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ABSTRACT OF THE DISSERTATION 

Surveying the metastatic single cell state 

by 

Andres Jose Nevarez 

Doctor of Philosophy in Biology 

University of California San Diego, 2022 

Professor Nan Hao, Chair 

 

Metastases arise from a small subset of cells, less than 1%, in the primary 

tumor. Metastasis is responsible for most cancer-related deaths and plays a 

significant role in therapy resistance, yet this hallmark of cancer is poorly 

understood. Metastasis is not determined by a genetic coding pattern 

among metastatic tumors pan-cancer. Identifying roots of metastatic 

potential is crucial for long-term research for the field; to this end, we must 

identify metastatic phenotypes for targeted therapy. Instead of the 

therapies we have now, metastatic cells can still avoid. First, we employ a 

generative neural network in combination with supervised machine learning 
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to classify patient-derived melanoma xenografts as “efficient” or 

“inefficient” metastatic, validate predictions regarding melanoma cell lines 

with unknown metastatic efficiency in mouse xenografts, and use the 

network to generate in silico cell images that amplify the critical predictive 

cell properties. These exaggerated images unveiled metastatic phenotypes 

of pseudopodial extensions and increased light scattering as hallmark 

properties of metastatic cells. We found from our mouse experiments that 

the metastatic melanoma samples with TPMs had increased metastasis in 

the mice and were predicted to have increased metastatic potential from 

our deep learned model. Recently, sequencing the non-coding regions of 

patient metastatic tumors reveals two monoallelic TPMs, C228T and C250T. 

TPMs are found in the primary tumor but become highly enriched in 

metastatic tumor sites suggesting a functional role of the TPMs in metastatic 

potential. To determine the functional role of TPMs in metastasis, we have 

taken a phenotypic-driven interrogation. We have shown through 

bioinformatic analysis that C250T TPM has increased metastatic potential 

and penetrance in mice studies. We observed that TPMs increase the 

collective cell migration rate and distance with significant spatiotemporal 

features. We highlighted the increased gene expression heterogeneity due 

to the TPMs. We have shown differences between the TPMs and WT through 

machine learning using imaging cytometry focusing on morphological and 
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light scattering features. This shows the trend that C250T has an advantage 

over C228T and WT, while C228T has an advantage over WT Telomerase in 

metastatic tumors. 
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Chapter 1 

Quantitative cell imaging approaches to metastatic state profiling 

 

Andres J. Nevarez1,2, and Nan Hao1 

1Section of Molecular Biology, Division of Biological Sciences, University 

of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA 

2@technicolordres 

Keywords: metastasis, cellular morphology, quantitative imaging, light 

microscopy, machine learning, deep learning 

 

Abstract 

Genetic heterogeneity of metastatic dissemination has proven 

challenging to identify exploitable markers of metastasis. Cellular 

morphology is a robust readout of cellular state due to the connections of 

the underlying complex signaling pathways. Recent advancements in 

quantitative cellular imaging have allowed the detection of subtle 

morphological phenotype changes that would be missed by human 

operators specific to metastasis. This review focuses on the recent 

developments in using machine and deep learning to gain more 

information about the metastatic cell state using light microscopy. We 
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describe the latest studies using quantitative cell imaging approaches to 

identify cell appearance-based metastatic patterns. We offer these 

quantitative cancer biologists can use these frameworks to work backward 

toward exploitable hidden drivers in the metastatic cascade. 

 

Cannot grind and find them all: Genomics hits the metastatic wall  

While we have made enormous progress regarding our understanding 

of cancer, it is still a leading cause of death worldwide. The cause of this high 

lethality is primarily due to the metastatic stage of the disease; metastasis 

occurs when cells from the primary tumor leave the local environment and 

colonize a distant organ (Chiang and Massagué 2008; Hanahan and 

Weinberg 2011; Reddy et al. 2012; Bogenrieder and Herlyn 2003; Gupta and 

Massagué 2006; Dillekås et al. 2016). Metastasis, and therefore therapy 

resistance, is the last frontier of cancer treatment; metastasis and therapy-

resistant cells share many common properties (Fares et al. 2020). 

Nevertheless, less than 1% of the cells from the primary location can create 

tumors in distant organs. While metastatic cells may be rare events, they 

possess extraordinary abilities to survive an onslaught of insults that the cells 

must endure disseminating, colonizing, and thriving in a new 

microenvironment. Either a single "leader" migratory cell or clusters of 

migratory cells define the initial invasion (Cheung and Ewald 2016; 
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Padmanaban et al. 2019). The cells must adapt to an anchorless mobile 

state (Adeshakin et al. 2021) and navigate the surrounding 

microenvironment. They may enter the circulatory and must withstand shear 

stress due to blood pressure (Huang et al. 2018) and enter drainage sits such 

as the lymphatic systems (Bockhorn, Jain, and Munn 2007; Reymond, 

d'Água, and Ridley 2013; Friedl and Alexander 2011). Then the cells need to 

adapt to immune surveillance (Janssen et al. 2017) and numerous 

environmental changes in the new location (Baghban et al. 2020). 

Metastatic cells must possess cell properties that are entirely different from 

their primary, stationary counterparts. This way, metastatic cells adapt to 

evolutionary pressures by creating polyclonal populations, some of which 

survive each stressor (Cheung et al. 2016; Kok et al. 2021; Lo et al. 2020) to 

thrive in distinct niches ultimately (Tasdogan et al. 2020; Piskounova et al. 

2015; Gal et al. 2015) from the primary tumor site. Due to clonal and genetic 

heterogeneity (Marusyk et al. 2014; Yates and Campbell 2012; Calbo et al. 

2011), the seed and soil hypothesis (Paget 1889), and the disputes in 

acquired or somatic mutations relation to metastatic ability (Bernards and 

Weinberg 2002; Ramaswamy et al. 2003; Van't Veer et al. 2002), there is a 

debate on the genomic etiology of metastasis. Surprisingly, the deluge of 

mutations from genomic studies has landed on stereotypical metastatic 

signaling states (Klein 2009) reminiscent of the Waddington landscape 
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(Waddington 1959), although not converging on the metastatic target 

pathway. The landscape has led the field to use phenotypic-driven 

interrogations of metastasis to work towards identifying the hidden drivers in 

the metastatic cell state.  

 

Figure 1.1 Schematic of metastatic landscape connects cell appearance through the 
underlying signaling networks determined by the underlying various mutations. 

Appearances can be revealing 

Subtle changes in metastatic cell states should manifest in detectable 

phenotypic changes (Fig 1.1). The subtle differences are due to the 

morphological connection to the cytoskeleton changes necessary for 

invasion in the metastatic cascade. Initially, these changes were quantified 

through static shape morphometrics and connected to changes in 

metastatic potential. Cell appearance is a reliable monitor of cell signaling 
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pathways (Yin et al. 2013; Bakal et al. 2007; Gordonov et al. 2016; Goodman 

and Carpenter 2016; Pascual-Vargas et al. 2017; Scheeder, Heigwer, and 

Boutros 2018; Sero and Bakal 2017) due to the strong connection to the 

cytoskeleton (Moujaber and Stochaj 2020). The strong relationships allow for 

a readout of metastatic expression profiles (Nguyen et al. 2016) and a cell's 

invasion ability (Minn et al. 2005). Recent studies have shown explicitly that 

cell appearance phenotypes have a solid connection to the metastatic 

phenotype (Lyons et al. 2016; Cooper et al. 2015; Wu et al. 2020). 

Morphological changes to identify invasive cancers stem from recognizing 

the epithelial to mesenchymal transition (EMT) (Lu and Kang 2019; Li and 

Balazsi 2018). Not only this, but pathologists often see gross morphological 

changes from primary to metastatic site biopsy samples, which allow for 

disease staging and grading (Lee et al. 2020). This review highlights studies 

that push forward the morphological analysis of metastatic cells and offers 

an experimental and analytical platform on which others can build their 

investigations, such as quantitative metastatic assays for probing the 

metastatic single-cell state. 
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Figure 1.2 Machine learning of live cell imaging for metastatic classification. (A) Cell 
appearance from live-cell imaging quantified through supervised feature extraction, 
consisting of dozens of features that describe the cell appearance in many ways. Often 
these are clustered (B) into classes as input for a machine-learned model for classification 
(C).  

 
In the beginning, there were shapes: two-dimensional cell morphology and 

machine learning to classify metastatic cell state 

Using two-dimensional (2D) live-cell imaging (Fig 1.2A), engineered 

features to describe metastatic cells (Fig 1.2B), and machine learning (Fig 

1.2C) has taught us the value of cell appearance and its relation to 

metastatic ability. Recently the role of mechanotransduction's effect on 

metastasis as readout by 2D cell shape has shown to be an opportunistic 

avenue to assay metastatic potential (Riehl et al. 2021; Holenstein et al. 
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2019). Lyons et al. showed a deep connection between shape and 

metastatic potential compared to paired non-metastatic parental cells 

(Lyons et al. 2016). They investigated the effect of three different surfaces 

with varying hydrophobicity; glass detergent washed and air-dried, glass 

acid-etched and air-dried, and last, a siliconized ethanol-treated surface. 

Using four paired osteosarcomas, one with low metastatic potential and one 

with high metastatic potential from the same cell lineage. They showed that 

metastatic cells display different morphometric features using twenty-nine 

cellular and nuclear shape features. We must note that they focused on 

interpretable geometric shape features and not expansion shape features. 

They distilled these twenty-nine shape features into five morphological 

properties: projected cell size, cell roundness versus elongation, shape 

variability, nuclear size, and nuclear shape. They noted that high metastatic 

potential cells differ from their low potential counterparts in projected cell 

area and volume, then experimentally validated in vivo. Examining only the 

nuclear shape features showed no clear low versus high metastatic potential 

trends. Using only a single cellular feature highlights the pitfalls of using one 

morphometric as a classification tool, especially with prospects for clinical 

applications. However, they overcome this using machine learning feeding 

all shape features into a multilayer perceptron to classify cells. They showed 

their classifier had good accuracy against high and low cells from the same 
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lineages across cell surfaces and aggregate classes such as high versus low 

metastatic potential. This early work, and others like it, laid the foundation for 

computer vision and machine learning techniques to investigate metastatic 

cells.  

 

Wu and company have repeatedly continued the exploration of 

shape features in 2D. Building upon their work in pancreatic ductal 

adenocarcinoma (Wu et al. 2015), they investigated the heredity of 

morphological traits in single-cell clones (SCC) of metastatic breast cancer 

cell lines. They found that each clone displayed a distinct morphology from 

which they investigated 14 SCC and their matched parental cell line. The 14 

SCC cell morphology was described by extracting two hundred and fifteen 

cellular and nuclear morphometrics and using unsupervised clustering 

methods were distilled to seven distinct morphological profiles. Within the 

clones, there was morphological heterogeneity, albeit at a much lower 

degree, compared to the parental line indicating there are heritable 

morphological traits. With these quantitative morphologies relating to cell 

appearance, they sought to see how the different morphologies affect 

metastatic potential in vivo. They implanted each of the seven 

morphological profiles into the mouse mammary fat pad and examined the 

metastatic potential of each morphology. They observed that, depending 
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on the morphology class, there were differences in metastatic potential and 

tumorigenesis compared to the parental line in vivo. They found a range of 

aggressiveness of the SCC: low tumorigenicity, tumorigenic, metastatic, and 

hypermetastatic. While they had several interesting findings regarding 

metastasis, tumor volume, and circulating tumor cells burden, they identified 

that cells with a high aspect ratio do not have higher metastatic potential, 

contradicting other findings in the literature by Lyons et al. Interestingly, SCCs 

with the same morphology displayed similar in vivo outcomes of 

tumorigenicity, circulating tumor cells, and metastatic potential; this 

highlights the connection between cellular appearance and metastasis. 

Stratifying the morphologies into high and low metastatic potential with 

corresponding expression profiles allowed Wu et al. to identify potential 

predictive genes of metastasis for their cell line of choice. This correlative 

study of metastatic morphological phenotypes highlights the immense 

impact that homogenous heritable morphological traits condense the 

heterogeneous genomic landscape to stereotypical cell morphologies. 

 

Functionalized coated cell surfaces further 2D morphological profiling of 

metastasis 

Instead of using traditional plastic culture dishes or plain glass slides, 

Hasan et al. used 2D light microscopy of metastatic glioblastoma and 
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astrocytes on functionalized glass coverslips (Hasan et al. 2018). They trained 

a supervised classifier with an accuracy of 82% to discriminate between non-

cancerous astrocytes and metastatic glioblastoma cells taken from a 

patient biopsy. They previously developed a glass-coated coverslip with 

anti-EGFR aptamer, which showed a high affinity for cells that overexpress 

EGFR on the cell surface (Mahmood et al. 2015; Wan et al. 2010; Wan et al. 

2013; Mansur et al. 2018). Building upon this in the current study, they laid the 

foundation to develop a framework to identify circulating tumor cells from 

blood samples in glioblastoma patients. The captured cells by the aptamer 

were able to move about over time while anchored to the coverslip to 

achieve short-term time-lapse imaging. They extracted multiple cell feature 

vectors such as area, perimeter, and center of mass. Each segmentation 

model includes aspect ratio, convexity, bounding rectangle, minimum 

enclosing circle, and best-fitted ellipse based on single cells feature vectors. 

They tracked the morphodynamic changes using the feature vectors of 

each segmentation model using the Hausdorff distance between time 

frames. Hasan et al. trained three different machine learning classifiers, 

Support Vector Machine (SVM), Naïve Bayes Classifier, and Random Forest 

Tree. They decided that the Naïve Bayes Classifier yielded the best 

classification results. They presented a unique and label-free approach that 

can be quickly implemented using standard instruments and low 



11 
 

computational power in a clinical setting. Such a pipeline is a powerful tool, 

especially for those that work with cells that are hard to transfect or for 

samples one may not want to perturb using fluorescent proteins.  

 

Alizadeh et al. used fluorescent imaging of over a dozen cancer cell 

lines, with varying metastatic potential, on fibronectin-coated glass 

coverslips (Alizadeh et al. 2020). To discriminate between populations, they 

quantified the texture of the cell, the spreading of the cell, and irregular cell 

shape, all of which trained an SVM or shallow layered Perceptron. They 

found that cell and nuclei geometric shape features, interpreted as cellular 

spread size, elongation, and boundary irregularity, reliably represented a cell 

over experimental replicates and cell types. However, label-free features 

such as texture are a more reliable representation of cell states. Of note in 

this study was the comparison of high (MDA-MB-231), low metastatic (MCF7), 

and normal breast cells (MCF10A) and a range of linearly progressed 

matched osteosarcoma cancer cell lines. Using the extracted 

morphological information in the reduced principal component (PCA) 

space, they showed no linear progression from normal to low then high 

metastatic morphological space; instead, there is some overlap in each 

morphometric category. For instance, the normal breast cells' cell hull 

geometry and waviness (Fourier transform) lie between low and high 
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metastatic potential breast cancer cell lines. However, the low metastatic 

potential lies between normal and high metastatic features for grayscale 

morphological features. Grayscale and cell geometry features displayed 

significant separation between the normal and osteosarcoma cancer lines 

for the osteosarcoma cell lines. 

 

In contrast, waviness and hull geometry showed a high overlap of all 

cell lines. They tested the morphological features at the single-cell level using 

an SVM or Perceptron. They found that morphometric-based features are 

more feature-rich for classification. They can discriminate between the high 

and low metastatic cells of both osteosarcoma and breast cancer cell lines. 

They concluded that there might be stereotypical morphological 

transformations in the metastatic process. However, based on this study 

alone, it cannot be supposed how many stereotypical categories there may 

be for metastatic cells, which leaves an opportunity for long-term 

morphometric analysis of the development of normal to metastatic cells 

over many cancer types. 

 

2.5D imaging and interpretable deep learning 

Zaritsky et al. used label-free imaging and interpretable deep learning 

to identify cellular properties that discriminated between high and low 
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metastatic potential patient-derived xenografted (PDX) melanoma cells 

(Zaritsky et al. 2022). Most studies use live-cell imaging and deep learning for 

classification (Fig 1.3A-C). Zaritsky et al. generated in silico images based on 

latent features to identify (Fig 1.3D) cellular properties that opened the black 

box of the deeply learned model to visualize the cell appearance 

differences which discriminate between high and low metastatic 

melanoma. While not strictly 2D, they imaged the PDXs atop a thick collagen 

matrix to negate the physical forces of a plastic/glass and the morphological 

homogeneity plastic culture dishes impose. They imaged the metastatic cells 

over multiple time durations to gather morphological dynamics. They 

noticed that metastatic cells were not particularly migratory and were 

defined mainly by rounded shape, with surface membrane blebbing, 

regardless of metastatic potential; this is consistent with other studies' patient 

biopsies atop collagen (Sadok et al. 2015). They hypothesized that neither 

shape nor migratory ability would yield discriminative power between high 

and low metastatic cells. Instead, the discriminatory power may come from 
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visually unstructured information in the images; to this end, they developed 

an interpretable deep  

Figure 1.3 Opening the black box of deep learning to identify the features used for 
classification of metastatic cells. Live-cell images (A) feed into various deep learning neural 
networks (B) for unsupervised feature extraction. The learned features are the basis of the 
classification of metastatic cells (C). These features are often a black box of unknown 
representation of cell appearance. However, there are methods to decipher the essential 
cellular properties through image reconstruction (D). 

 
learned model. First, they created an autoencoder, which uses a deep 

convolutional neural network (CNN) to encode the unstructured latent cell 

information. Next, they transferred the architecture (Donovan-Maiye et al. 

2022) previously used to reconstruct fluorescent images for their phase-

contrast images. They could designate a latent cell descriptor that contains 

a compressed version of single-cell image information. 
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Using this latent cell descriptor, they could discriminate between a 

panel of metastatic melanoma cell lines against fetal foreskin melanocytes. 

Intriguingly, the latent descriptor could discern a single cell clonal line from 

a parental line. Furthermore, they could successfully discriminate between 

the cell line and PDX metastatic melanoma panels. Incongruent with the 

other studies mentioned in this review, cell shape performed worse than the 

latent cell descriptor, and temporal information did not increase the latent 

descriptor's discriminative power. They were able to discriminate between 

high and low metastatic melanoma PDXs using the latent cell descriptor and 

linear discriminate analysis machine learning classifier. The authors 

investigated the latent descriptor encoded in cell properties while exploring 

existing deep learning models on a unique physiologically relevant 2D 

system. They identified that pseudopodial extensions and interior light 

scattering cell properties discriminate between high and low metastatic 

melanoma. It is important to note that many studies focused on using 

machine learning and deep learning methods to identify differences in 

morphologies of metastatic cells; most studies have not used interpretable 

methods. The lack of interpretability is common in most investigations of cell 

appearance connections to the metastatic state, yet it is critical to work 

backward from phenotype to actionable signaling targets.  
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Integrating spatiotemporal information for morphological profiling 

While imaging in 2D has profoundly impacted the field, it was always 

apparent that those studies were missing the mechanical forces that affect 

the cytoskeleton and thus the signaling pathways to which it connects. 

Furthermore, cell actions imaged over time illuminate stereotyped cell 

behaviors (Tweedy et al. 2019). Here we focus on studies that have exploited 

time-lapsed imaging of dynamic morphological changes (Fig 1.4A-C) and 

three-dimensional (3D) imaging of cells in suspension (Fig 1.4D), in spheroid 

culture (Fig 1.4E), and embedded in collagen matrixes (Fig 1.4F). 

 

Elbez et al. developed a unique approach to image single-cell 

dynamic morphological phenotypes using machine learning and magneto-

rotation, simulating circulating tumor cell morphologies (Elbez et al. 2021). 

They exploited magnetic nanoparticles, which can endocytose into the cell, 

activating green-fluorescent protein (GFP). They used an external oscillating 

magnetic field to suspend and rotate cells with the nanoparticles in a 

microfluidic device they could image 3D morphological deformation. Using 

the supervised Adaboost machine learning method of single cells (identified 

and segmented using GFP), they were able to locate metastatic cells (MDA-

MB-231) that had undergone the EMT, cells that were not metastatic (MCF-

7) with an f1 score of 0.965. Next, they used the prostate cancer cell line PC-
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3 as a control, then forced PC-3 cells to undergo EMT and become HR-14 

cells to test if their classifier could identify the same cell lineage. Still, they 

could differentiate between the two states of the same cell lineage with 

different cell states. The unsupervised K-means clustering method (with a 

strict homogeneity score of 0.95) identified seven distinct morphological 

phenotypes within the populations. They followed up on this and determined 

they could differentiate between functional phenotypes of high and low 

migratory and invasive cells using the MDA-MB-231 cell line and a Boyden 

chamber. Unfortunately, they do not identify the morphological phenotypes 

that either machine-learned method used to discriminate between the 

populations; however, using interpretable learning methods remedies this 

issue. 

 

Recently metastatic breast cancer cell lines embedded in collagen 

exhibited morphological phenotype transitions that allowed them to 

efficiently traverse non-uniform matrixes that mimic the ECM (Eddy et al. 

2021). They developed machine learning models to quantify cell shape 

dynamics in 3D for up to 24 hours. Eddy et al. quantified cell appearance 

using twenty-one shape geometric features, including cell size, backbone 

curvature, surface topography, deviation from circle shape. They found the 

geometric space the cells sample is similar to random walk; however, they 
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found the morphology dynamics are subdiffusive while having superdiffusive 

properties in actual 3D space. Interestingly, they found the same cells 

exhibited increased morphodynamics sampling of geometric space on 2D 

surfaces than 3D embedded in ECM; this again highlights meaningful 

differences between 3D and 2D morphological analysis. Using manually 

labeled cells, they trained an SVM to classify the cells into four distinct cell 

morphological phenotypes, with an accuracy of 88%. The four 

morphological phenotypes they ranked are actin-enriched leading edge, 

small blebbing, filopodial, and lamellipodial. They focused on these four 

morphological phenotypes due to their tight connection to molecular 

profiles: actin-enriched have elevated actin protrusions; small blebbing has 

high cortical stress, which drives the blebbing; filopodial and lamellipodial 

phenotypes have strong ECM adhesions with polarized bodies, where the 

filopodial distinguish themselves with F-actin bundles running across the cell 

body, while the lamellipodial distinguishes itself through cellular fan shapes. 

They perturbed the signaling networks attached to these phenotypes and 

changed and also changed the ECM homogeneity. Focusing on disrupting 

the RHO/Rock signaling pathway, they discovered that perturbations did not 

force cells to favor one phenotype over another; instead, they altered 

phenotypes' morphodynamics.  
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Decreasing RHO expression led to amoeboid-to-mesenchymal 

transitions through the actin-enrich and lamellipodial phenotypes. In 

contrast, activation of RHO led to increased morphodynamics overall, which 

enriched the blebbing morphological phenotype. This sheds light on the 

required morphological plasticity to traverse heterogeneous ECM through 

phenotype switching. Still, this study also highlights the interpretable use of 

machine learning critical for furthering metastatic research.  

 

 

Figure 1.4 Cell appearance dynamics resolved through time-lapse imaging modalities. (A) 
Depicts nuclear changes over time, (B) depicts significant cell shape changes, while (C) 
depicts more minor scale shape changes. Diagram of different types of 3D cell interrogation 
with cells (D) single cells suspended, while (E) shows spheroid cells, and (F) shows single cells 
embedded in an extracellular matrix.  
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Future prospective and concluding remarks 

While not used previously in identifying metastatic cells, we want to 

highlight Imaging Flow Cytometry (IFC). The pairing of deep learning and 

machine learning with different imaging technologies such as IFC can 

interrogate the metastatic stage in primary samples as part of the pathology 

pipeline. Given that these samples can be fragile and genetic engineering 

can perturb the cell state, IFC can probe the cell using cell light scatter and 

brightfield images. Both require no labels for cancer classification with deep 

and machine learning (Doan et al. 2021; Hennig et al. 2017). Tang and Chen 

et al. use this label-free deep learning analysis of 3D images (Tang et al. 2020; 

Chen et al. 2021). The future use of this technology and deployment of 

trained deep learned models can rapidly identify metastatic cell states, 

allowing the physician to make decisions about treatment. 

 

We have highlighted multiple studies investigating cell appearance in 

varying spatiotemporal imaging modalities as a readout of metastatic 

potential to accelerate the discovery of metastatic specific features. With 

the massive expansion of deep and machine-learned models, we can 

process large amounts of imaging data. These works have levied the rich 

information found in images of metastatic cancer cells, therefore, 

overcoming the limits seen using the genetic code for metastatic profiling. 
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Using morphology, the quantified cell appearance differences have been 

connected to enhanced cell cycle progression, especially important for 

micro-metastases (Mohan et al. 2019; Molinie et al. 2019). Multiple studies 

have followed up on their metastatic cell appearance metrics in vivo using 

a mouse model. Indeed, these cell appearance changes identified using 

A.I. have translated to in vivo metastatic potential. 

 

Rather than focusing on a specific gene, the works highlighted here 

offer a holistic quantitative phenotype-genotype approach for identifying 

novel or overlooked weak points of metastasis. Cell appearance is highly 

connected to cell state, sometimes causally; we can determine the impact 

of existing therapies on metastatic states. While it may seem evident that 

anti-cytoskeletal treatments will inhibit metastasis (Fife, McCarroll, and 

Kavallaris 2014; Gandalovičová et al. 2017; Aseervatham 2020), these drugs 

often are non-specific to metastatic tumors. They are highly cytotoxic and 

cardiotoxic (Stehn et al. 2013) and often fail to suppress metastasis. We 

believe this is due to cytoskeletal plasticity escape of targeted therapy, 

which Eddy et al.'s study highlights.  

 

Understanding how cells from a primary tumor source can develop to 

form metastases in the brain and lung, two highly distinct environments, 
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each with their unique challenges to thrive, is critical to identifying these in 

core and liquid biopsies. The purpose of this review is to serve as an 

opportunity to extend these quantitative morphological assays to new 

frontiers probing more realistic microenvironments in which metastatic cells 

reside. In exciting avenues, we can use advanced imaging modalities to 

image immune co-culture, spheroid, and embedded cell culture. We will 

learn more about subtle cell appearance characteristics in a more realistic 

environment. Therapies do not have to target the metastatic cell or 

surrounding environment solely; instead, manipulating the microbiome, 

immune cells, and the microenvironment to inhibit metastasis are promising 

avenues of metastatic treatment (Sepich-Poore et al. 2021; Garner and de 

Visser 2020; Dmello, To, and Chand 2021). The mentioned works have made 

it feasible and affordable for the community to focus on the last formidable 

frontier of cancer treatment, metastasis. 

 

Conflict of interest statements 

Nothing declared. 

 

 

 

 



23 
 

Acknowledgments 

Chapter 1, in part is currently being prepared for submission for 

publication of the material. Nevarez, Andres; Hao, Nan. The dissertation 

author was the primary investigator and author of this material.  

This work was supported by the National Institutes of Health, National 

Institute of General Medical Sciences, USA, R01GM111458. We would like to 

acknowledge Saruna Artwork for adapting the Waddington landscape in 

Figure 1. We would like to acknowledge Biorender for the icons for Figures 2-

4.  

 

 

 

 

 

 

 

 

 

 

 



24 
 

References 

Adeshakin, Funmilayo O., Adeleye O. Adeshakin, Lukman O. Afolabi, 
Dehong Yan, Guizhong Zhang, and Xiaochun Wan. 2021. 'Mechanisms for 
Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic 
Reprogramming', Frontiers in Oncology, 11. 
 
 
Alizadeh, Elaheh, Jordan Castle, Analia Quirk, Cameron D. L. Taylor, Wenlong 
Xu, and Ashok Prasad. 2020. 'Cellular morphological features are predictive 
markers of cancer cell state', Computers in Biology and Medicine, 126: 
104044. 
 
 
Aseervatham, Jaya. 2020. 'Cytoskeletal Remodeling in Cancer', Biology, 9: 
385. 
 
 
Baghban, Roghayyeh, Leila Roshangar, Rana Jahanban-Esfahlan, Khaled 
Seidi, Abbas Ebrahimi-Kalan, Mehdi Jaymand, Saeed Kolahian, Tahereh 
Javaheri, and Peyman Zare. 2020. 'Tumor microenvironment complexity and 
therapeutic implications at a glance', Cell Communication and Signaling, 
18: 59. 
 
 
Bakal, Chris, John Aach, George Church, and Norbert Perrimon. 2007. 
'Quantitative morphological signatures define local signaling networks 
regulating cell morphology', science, 316: 1753-56. 
 
 
Bernards, René, and Robert A Weinberg. 2002. 'Metastasis genes: a 
progression puzzle', Nature, 418: 823-23. 
 
 
Bockhorn, Maximilian, Rakesh K. Jain, and Lance L. Munn. 2007. 'Active versus 
passive mechanisms in metastasis: do cancer cells crawl into vessels, or are 
they pushed?', The Lancet. Oncology, 8: 444-48. 
 
 
Bogenrieder, Thomas, and Meenhard Herlyn. 2003. 'Axis of evil: molecular 
mechanisms of cancer metastasis', Oncogene, 22: 6524-36. 
 



25 
 

Calbo, Joaquim, Erwin van Montfort, Natalie Proost, Ellen van Drunen, H 
Berna Beverloo, Ralph Meuwissen, and Anton Berns. 2011. 'A functional role 
for tumor cell heterogeneity in a mouse model of small cell lung cancer', 
Cancer cell, 19: 244-56. 
 
 
Chen, Xinyu, Lauren Waller, Jiajie Chen, Rui Tang, Zunming Zhang, Ivan 
Gagne, Bien Gutierrez, Sung Hwan Cho, Chi-Yang Tseng, Ian Y. Lian, and Yu-
Hwa Lo. 2021. 'Label-free image-encoded microfluidic cell sorter with a 
scanning Bessel beam', APL Photonics, 6: 076101. 
 
 
Cheung, Kevin J., and Andrew J. Ewald. 2016. 'A collective route to 
metastasis: Seeding by tumor cell clusters', Science (New York, N.Y.), 352: 167-
69. 
 
 
Cheung, Kevin J., Veena Padmanaban, Vanesa Silvestri, Koen Schipper, 
Joshua D. Cohen, Amanda N. Fairchild, Michael A. Gorin, James E. Verdone, 
Kenneth J. Pienta, Joel S. Bader, and Andrew J. Ewald. 2016. 'Polyclonal 
breast cancer metastases arise from collective dissemination of keratin 14-
expressing tumor cell clusters', Proceedings of the National Academy of 
Sciences, 113: E854-E63. 
 
 
Chiang, Anne C, and Joan Massagué. 2008. 'Molecular basis of metastasis', 
New England Journal of Medicine, 359: 2814-23. 
 
 
Cooper, Sam, Amine Sadok, Vicky Bousgouni, and Chris Bakal. 2015. 'Apolar 
and polar transitions drive the conversion between amoeboid and 
mesenchymal shapes in melanoma cells', Molecular biology of the cell, 26: 
4163-70. 
 
 
Dillekås, Hanna, Romano Demicheli, Ilaria Ardoino, Svein AH Jensen, Elia 
Biganzoli, and Oddbjørn Straume. 2016. 'The recurrence pattern following 
delayed breast reconstruction after mastectomy for breast cancer suggests 
a systemic effect of surgery on occult dormant micrometastases', Breast 
cancer research and treatment, 158: 169-78. 
 
 



26 
 

Dmello, R. S., S. Q. To, and A. L. Chand. 2021. 'Therapeutic Targeting of the 
Tumour Microenvironment in Metastatic Colorectal Cancer', Int J Mol Sci, 22. 
 
 
Doan, Minh, Claire Barnes, Claire McQuin, Juan C. Caicedo, Allen 
Goodman, Anne E. Carpenter, and Paul Rees. 2021. 'Deepometry, a 
framework for applying supervised and weakly supervised deep learning to 
imaging cytometry', Nature Protocols, 16: 3572-95. 
 
 
Donovan-Maiye, Rory M., Jackson M. Brown, Caleb K. Chan, Liya Ding, 
Calysta Yan, Nathalie Gaudreault, Julie A. Theriot, Mary M. Maleckar, Theo 
A. Knijnenburg, and Gregory R. Johnson. 2022. 'A deep generative model of 
3D single-cell organization', PLOS Computational Biology, 18: e1009155. 
 
 
Eddy, Christopher Z., Helena Raposo, Aayushi Manchanda, Ryan Wong, 
Fuxin Li, and Bo Sun. 2021. 'Morphodynamics facilitate cancer cells to 
navigate 3D extracellular matrix', Scientific Reports, 11: 20434. 
 
 
Elbez, Remy, Jeff Folz, Alan McLean, Hernan Roca, Joseph M. Labuz, 
Kenneth J. Pienta, Shuichi Takayama, and Raoul Kopelman. 2021. 'Cell-
morphodynamic phenotype classification with application to cancer 
metastasis using cell magnetorotation and machine-learning', PLOS ONE, 16: 
e0259462. 
 
 
Fares, Jawad, Mohamad Y. Fares, Hussein H. Khachfe, Hamza A. Salhab, and 
Youssef Fares. 2020. 'Molecular principles of metastasis: a hallmark of cancer 
revisited', Signal Transduction and Targeted Therapy, 5: 28. 
 
 
Fife, C. M., J. A. McCarroll, and M. Kavallaris. 2014. 'Movers and shakers: cell 
cytoskeleton in cancer metastasis', British journal of pharmacology, 171: 
5507-23. 
 
 
Friedl, Peter, and Stephanie Alexander. 2011. 'Cancer Invasion and the 
Microenvironment: Plasticity and Reciprocity', cell, 147: 992-1009. 
 
 



27 
 

Gal, Kristell Le, Mohamed X. Ibrahim, Clotilde Wiel, Volkan I. Sayin, Murali K. 
Akula, Christin Karlsson, Martin G. Dalin, Levent M. Akyürek, Per Lindahl, Jonas 
Nilsson, and Martin O. Bergo. 2015. 'Antioxidants can increase melanoma 
metastasis in mice', Science Translational Medicine, 7: 308re8-08re8. 
 
 
Gandalovičová, A., D. Rosel, M. Fernandes, P. Veselý, P. Heneberg, V. 
Čermák, L. Petruželka, S. Kumar, V. Sanz-Moreno, and J. Brábek. 2017. 
'Migrastatics-Anti-metastatic and Anti-invasion Drugs: Promises and 
Challenges', Trends Cancer, 3: 391-406. 
 
 
Garner, Hannah, and Karin E. de Visser. 2020. 'Immune crosstalk in cancer 
progression and metastatic spread: a complex conversation', Nature 
Reviews Immunology, 20: 483-97. 
 
 
Goodman, Allen, and Anne E Carpenter. 2016. 'High-throughput, 
automated image processing for large-scale fluorescence microscopy 
experiments', Microscopy and Microanalysis, 22: 538-39. 
 
 
Gordonov, Simon, Mun Kyung Hwang, Alan Wells, Frank B Gertler, Douglas A 
Lauffenburger, and Mark Bathe. 2016. 'Time series modeling of live-cell shape 
dynamics for image-based phenotypic profiling', Integrative Biology, 8: 73-
90. 
 
 
Gupta, Gaorav P, and Joan Massagué. 2006. 'Cancer metastasis: building a 
framework', cell, 127: 679-95. 
 
 
Hanahan, Douglas, and Robert A Weinberg. 2011. 'Hallmarks of cancer: the 
next generation', cell, 144: 646-74. 
 
 
Hasan, Mohammad R., Naeemul Hassan, Rayan Khan, Young-Tae Kim, and 
Samir M. Iqbal. 2018. 'Classification of cancer cells using computational 
analysis of dynamic morphology', Computer Methods and Programs in 
Biomedicine, 156: 105-12. 
 



28 
 

Hennig, Holger, Paul Rees, Thomas Blasi, Lee Kamentsky, Jane Hung, David 
Dao, Anne E. Carpenter, and Andrew Filby. 2017. 'An open-source solution 
for advanced imaging flow cytometry data analysis using machine learning', 
Methods, 112: 201-10. 
 
 
Holenstein, Claude N., Aron Horvath, Barbara Schär, Angelina D. 
Schoenenberger, Maja Bollhalder, Nils Goedecke, Guido Bartalena, Oliver 
Otto, Maik Herbig, Jochen Guck, Daniel A. Müller, Jess G. Snedeker, and Unai 
Silvan. 2019. 'The relationship between metastatic potential and in vitro 
mechanical properties of osteosarcoma cells', Molecular biology of the cell, 
30: 887-98. 
 
 
Huang, Qiong, Xingbin Hu, Wanming He, Yang Zhao, Shihui Hao, Qijing Wu, 
Shaowei Li, Shuyi Zhang, and Min Shi. 2018. 'Fluid shear stress and tumor 
metastasis', American journal of cancer research, 8: 763-77. 
 
 
Janssen, Louise M. E., Emma E. Ramsay, Craig D. Logsdon, and Willem W. 
Overwijk. 2017. 'The immune system in cancer metastasis: friend or foe?', 
Journal for ImmunoTherapy of Cancer, 5: 79. 
 
 
Klein, Christoph A. 2009. 'Parallel progression of primary tumours and 
metastases', Nature Reviews Cancer, 9: 302-12. 
 
 
Kok, Sau Yee, Hiroko Oshima, Kei Takahashi, Mizuho Nakayama, Kazuhiro 
Murakami, Hiroki R. Ueda, Kohei Miyazono, and Masanobu Oshima. 2021. 
'Malignant subclone drives metastasis of genetically and phenotypically 
heterogenous cell clusters through fibrotic niche generation', Nature 
Communications, 12: 863. 
 
 
 
Lee, Andrew HS, Zsolt Hodi, Irshad Soomro, Vishakha Sovani, Areeg Abbas, 
Emad Rakha, and Ian O Ellis. 2020. 'Histological clues to the diagnosis of 
metastasis to the breast from extramammary malignancies', Histopathology, 
77: 303-13. 
 
 



29 
 

Li, Chunhe, and Gabor Balazsi. 2018. 'A landscape view on the interplay 
between EMT and cancer metastasis', npj Systems Biology and Applications, 
4: 34. 
 
 
Lo, Hin Ching, Zhan Xu, Ik Sun Kim, Bradley Pingel, Sergio Aguirre, Srikanth 
Kodali, Jun Liu, Weijie Zhang, Aaron M. Muscarella, Sarah M. Hein, Alexander 
S. Krupnick, Joel R. Neilson, Silke Paust, Jeffrey M. Rosen, Hai Wang, and Xiang 
H. F. Zhang. 2020. 'Resistance to natural killer cell immunosurveillance confers 
a selective advantage to polyclonal metastasis', Nature Cancer, 1: 709-22. 
 
 
Lu, W., and Y. Kang. 2019. 'Epithelial-Mesenchymal Plasticity in Cancer 
Progression and Metastasis', Dev Cell, 49: 361-74. 
 
 
Lyons, Samanthe M., Elaheh Alizadeh, Joshua Mannheimer, Katherine 
Schuamberg, Jordan Castle, Bryce Schroder, Philip Turk, Douglas Thamm, 
and Ashok Prasad. 2016. 'Changes in cell shape are correlated with 
metastatic potential in murine and human osteosarcomas', Biology open, 5: 
289-99. 
 
 
Mahmood, Mohammed Arif I, Mohammad Raziul Hasan, Umair JM Khan, 
Peter B Allen, Young-tae Kim, Andrew D Ellington, and Samir M Iqbal. 2015. 
'One-step tumor detection from dynamic morphology tracking on aptamer-
grafted surfaces', Technology, 3: 194-200. 
 
 
Mansur, Nuzhat, Mohammad Raziul Hasan, Zaid I Shah, Frank J Villarreal, 
Young-tae Kim, and Samir M Iqbal. 2018. 'Discrimination of metastatic breast 
cancer cells from indolent cells on aptamer-functionalized surface with 
imaging-based contour-following techniques', Biomedical Physics & 
Engineering Express, 4: 025038. 
 
 
Marusyk, Andriy, Doris P Tabassum, Philipp M Altrock, Vanessa Almendro, 
Franziska Michor, and Kornelia Polyak. 2014. 'Non-cell-autonomous driving of 
tumour growth supports sub-clonal heterogeneity', Nature, 514: 54-58. 
 
 



30 
 

Minn, Andy J, Yibin Kang, Inna Serganova, Gaorav P Gupta, Dilip D Giri, 
Mikhail Doubrovin, Vladimir Ponomarev, William L Gerald, Ronald Blasberg, 
and Joan Massagué. 2005. 'Distinct organ-specific metastatic potential of 
individual breast cancer cells and primary tumors', The Journal of clinical 
investigation, 115: 44-55. 
 
 
Mohan, Ashwathi S, Kevin M Dean, Tadamoto Isogai, Stacy Y Kasitinon, 
Vasanth S Murali, Philippe Roudot, Alex Groisman, Dana K Reed, Erik S Welf, 
and Sangyoon J Han. 2019. 'Enhanced dendritic actin network formation in 
extended lamellipodia drives proliferation in growth-challenged Rac1P29S 
melanoma cells', Developmental cell, 49: 444-60. e9. 
 
 
Molinie, Nicolas, Svetlana N Rubtsova, Artem Fokin, Sai P Visweshwaran, 
Nathalie Rocques, Anna Polesskaya, Anne Schnitzler, Sophie Vacher, Evgeny 
V Denisov, and Lubov A Tashireva. 2019. 'Cortical branched actin determines 
cell cycle progression', Cell research, 29: 432-45. 
 
 
Moujaber, O., and U. Stochaj. 2020. 'The Cytoskeleton as Regulator of Cell 
Signaling Pathways', Trends Biochem Sci, 45: 96-107. 
 
 
Nguyen, Alexander, Mitsukuni Yoshida, Hani Goodarzi, and Sohail F Tavazoie. 
2016. 'Highly variable cancer subpopulations that exhibit enhanced 
transcriptome variability and metastatic fitness', Nature Communications, 7: 
1-13. 
 
 
Padmanaban, Veena, Ilona Krol, Yasir Suhail, Barbara M. Szczerba, Nicola 
Aceto, Joel S. Bader, and Andrew J. Ewald. 2019. 'E-cadherin is required for 
metastasis in multiple models of breast cancer', Nature, 573: 439-44. 
 
 
Paget, Stephen. 1889. 'The distribution of secondary growths in cancer of the 
breast', The Lancet, 133: 571-73. 
 
 
 
 



31 
 

Pascual-Vargas, Patricia, Samuel Cooper, Julia Sero, Vicky Bousgouni, Mar 
Arias-Garcia, and Chris Bakal. 2017. 'RNAi screens for Rho GTPase regulators 
of cell shape and YAP/TAZ localisation in triple negative breast cancer', 
Scientific data, 4: 1-13. 
 
 
Piskounova, Elena, Michalis Agathocleous, Malea M. Murphy, Zeping Hu, 
Sara E. Huddlestun, Zhiyu Zhao, A. Marilyn Leitch, Timothy M. Johnson, Ralph 
J. DeBerardinis, and Sean J. Morrison. 2015. 'Oxidative stress inhibits distant 
metastasis by human melanoma cells', Nature, 527: 186-91. 
 
 
Ramaswamy, Sridhar, Ken N Ross, Eric S Lander, and Todd R Golub. 2003. 'A 
molecular signature of metastasis in primary solid tumors', Nature genetics, 
33: 49-54. 
 
 
Reddy, Bobby Y, Philip K Lim, Kimberly Silverio, Shyam A Patel, Brian Wong 
Won, and Pranela Rameshwar. 2012. 'The microenvironmental effect in the 
progression, metastasis, and dormancy of breast cancer: a model system 
within bone marrow', International journal of breast cancer, 2012. 
 
 
Reymond, Nicolas, Bárbara Borda d'Água, and Anne J. Ridley. 2013. 
'Crossing the endothelial barrier during metastasis', Nature Reviews Cancer, 
13: 858-70. 
 
 
Riehl, Brandon D., Eunju Kim, Tasneem Bouzid, and Jung Yul Lim. 2021. 'The 
Role of Microenvironmental Cues and Mechanical Loading Milieus in Breast 
Cancer Cell Progression and Metastasis', Frontiers in Bioengineering and 
Biotechnology, 8. 
 
 
Sadok, Amine, Afshan McCarthy, John Caldwell, Ian Collins, Michelle D 
Garrett, Maggie Yeo, Steven Hooper, Erik Sahai, Sandra Kuemper, and Faraz 
K Mardakheh. 2015. 'Rho kinase inhibitors block melanoma cell migration 
and inhibit metastasis', Cancer research, 75: 2272-84. 
 
 
 



32 
 

Schardt, Julian A, Manfred Meyer, Claudia H Hartmann, Falk Schubert, Oleg 
Schmidt-Kittler, Christine Fuhrmann, Bernhard Polzer, Marco Petronio, Roland 
Eils, and Christoph A Klein. 2005. 'Genomic analysis of single cytokeratin-
positive cells from bone marrow reveals early mutational events in breast 
cancer', Cancer cell, 8: 227-39. 
 
 
Scheeder, Christian, Florian Heigwer, and Michael Boutros. 2018. 'Machine 
learning and image-based profiling in drug discovery', Current opinion in 
systems biology, 10: 43-52. 
 
 
Sepich-Poore, Gregory D., Laurence Zitvogel, Ravid Straussman, Jeff Hasty, 
Jennifer A. Wargo, and Rob Knight. 2021. 'The microbiome and human 
cancer', science, 371: eabc4552. 
 
 
Sero, Julia E, and Chris Bakal. 2017. 'Multiparametric analysis of cell shape 
demonstrates that β-PIX directly couples YAP activation to extracellular 
matrix adhesion', Cell Systems, 4: 84-96. e6. 
 
 
Stehn, J. R., N. K. Haass, T. Bonello, M. Desouza, G. Kottyan, H. Treutlein, J. 
Zeng, P. R. Nascimento, V. B. Sequeira, T. L. Butler, M. Allanson, T. Fath, T. A. 
Hill, A. McCluskey, G. Schevzov, S. J. Palmer, E. C. Hardeman, D. Winlaw, V. 
E. Reeve, I. Dixon, W. Weninger, T. P. Cripe, and P. W. Gunning. 2013. 'A novel 
class of anticancer compounds targets the actin cytoskeleton in tumor cells', 
Cancer Res, 73: 5169-82. 
 
 
Tang, Rui, Zunming Zhang, Xinyu Chen, Lauren Waller, Alex Ce Zhang, Jiajie 
Chen, Yuanyuan Han, Cheolhong An, Sung Hwan Cho, and Yu-Hwa Lo. 
2020. '3D side-scattering imaging flow cytometer and convolutional neural 
network for label-free cell analysis', APL Photonics, 5: 126105. 
 
 
Tasdogan, Alpaslan, Brandon Faubert, Vijayashree Ramesh, Jessalyn M 
Ubellacker, Bo Shen, Ashley Solmonson, Malea M Murphy, Zhimin Gu, Wen 
Gu, and Misty Martin. 2020. 'Metabolic heterogeneity confers differences in 
melanoma metastatic potential', Nature, 577: 115-20. 
 



33 
 

Tweedy, Luke, Patrick Witzel, Doris Heinrich, Robert H. Insall, and Robert G. 
Endres. 2019. 'Screening by changes in stereotypical behavior during cell 
motility', Scientific Reports, 9: 8784. 
 
 
Van't Veer, Laura J, Hongyue Dai, Marc J Van De Vijver, Yudong D He, 
Augustinus AM Hart, Mao Mao, Hans L Peterse, Karin Van Der Kooy, Matthew 
J Marton, and Anke T Witteveen. 2002. 'Gene expression profiling predicts 
clinical outcome of breast cancer', Nature, 415: 530-36. 
 
 
Waddington, C. H. 1959. 'Canalization of development and genetic 
assimilation of acquired characters', Nature, 183: 1654-5. 
 
 
Wan, Yuan, Young-tae Kim, Na Li, Steve K Cho, Robert Bachoo, Andrew D 
Ellington, and Samir M Iqbal. 2010. 'Surface-immobilized aptamers for cancer 
cell isolation and microscopic cytology', Cancer research, 70: 9371-80. 
 
 
Wan, Yuan, Deepika Tamuly, Peter B Allen, Young-tae Kim, Robert Bachoo, 
Andrew D Ellington, and Samir M Iqbal. 2013. 'Proliferation and migration of 
tumor cells in tapered channels', Biomedical microdevices, 15: 635-43. 
 
 
Weis, Sara M, and David A Cheresh. 2011. 'αV integrins in angiogenesis and 
cancer', Cold Spring Harbor perspectives in medicine, 1: a006478. 
 
 
Wu, Pei-Hsun, Daniele M Gilkes, Jude M Phillip, Akshay Narkar, Thomas Wen-
Tao Cheng, Jorge Marchand, Meng-Horng Lee, Rong Li, and Denis Wirtz. 
2020. 'Single-cell morphology encodes metastatic potential', Science 
advances, 6: eaaw6938. 
 
 
Wu, Pei-Hsun, Jude M. Phillip, Shyam B. Khatau, Wei-Chiang Chen, Jeffrey 
Stirman, Sophie Rosseel, Katherine Tschudi, Joshua Van Patten, Michael 
Wong, Sonal Gupta, Alexander S. Baras, Jeffrey T. Leek, Anirban Maitra, and 
Denis Wirtz. 2015. 'Evolution of cellular morpho-phenotypes in cancer 
metastasis', Scientific Reports, 5: 18437. 
 
 



34 
 

Yates, Lucy R, and Peter J Campbell. 2012. 'Evolution of the cancer genome', 
Nature Reviews Genetics, 13: 795-806. 
 
 
Yin, Zheng, Amine Sadok, Heba Sailem, Afshan McCarthy, Xiaofeng Xia, 
Fuhai Li, Mar Arias Garcia, Louise Evans, Alexis R Barr, and Norbert Perrimon. 
2013. 'A screen for morphological complexity identifies regulators of switch-
like transitions between discrete cell shapes', Nature Cell Biology, 15: 860-71. 
 
 
Zaritsky, Assaf, Andrew R. Jamieson, Erik S. Welf, Andres Nevarez, Justin Cillay, 
Ugur Eskiocak, Brandi L. Cantarel, and Gaudenz Danuser. 'Interpretable 
deep learning uncovers cellular properties in label-free live cell images that 
are predictive of highly metastatic melanoma', Cell Systems. 
 
 
Author ORCIDs  

Andres Nevarez https://orcid.org/0000-0002-8337-6454 

Nan Hao https://orcid.org/0000-0003-2857-4789  

 
 
 

 

 

 

 

 

 

 

 



35 
 

Chapter Two  

Interpretable deep learning uncovers cellular properties in label-free live 

cell images that are predictive of highly-metastatic melanoma 

Assaf Zaritsky1,2*§, Andrew R. Jamieson1*, Erik S. Welf1*, Andres Nevarez1,3*, 

Justin Cillay1, Ugur Eskiocak4, Brandi L. Cantarell, Gaudenz Danuser1§ 

1Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, 

Dallas, TX 75390, USA 

2Department of Software and Information Systems Engineering, Ben-Gurion 

University of the Negev, Beer-Sheva 84105, Israel 

3Section of Molecular Biology, Division of Biological Sciences, University of 

California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA 

4Children’s Research Institute and Department of Pediatrics, University of 

Texas Southwestern Medical Center, Dallas, TX 75390, USA 

* Equal contribution. 

§ Corresponding author. 

 
 
 

 

 

 



36 
 

Abstract 

Deep learning has emerged as the technique of choice for identifying 

hidden patterns in cell imaging data, but is often criticized as ‘black-box’. 

Here, we employ a generative neural network in combination with 

supervised machine learning to classify patient-derived melanoma 

xenografts as ‘efficient’ or ‘inefficient’ metastatic, validate predictions 

regarding melanoma cell lines with unknown metastatic efficiency in mouse 

xenografts, and use the network to generate in silico cell images that amplify 

the critical predictive cell properties. These exaggerated images unveiled 

pseudopodial extensions and increased light scattering as hallmark 

properties of metastatic cells. We validated this interpretation using live cells 

spontaneously transitioning between states indicative of low and high 

metastatic efficiency. This study illustrates how the application of Artificial 

Intelligence can support the identification of cellular properties that are 

predictive of complex phenotypes and integrated cell functions but are too 

subtle to be identified in the raw imagery by a human expert.  
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Introduction 

Recent machine learning studies have impressively demonstrated that 

label-free images contain information on the molecular organization within 

the cell (Cheng et al., 2021; Christiansen et al., 2018; Guo et al., 2019; 

LaChance and Cohen, 2020; Ounkomol et al., 2018; Sullivan and Lundberg, 

2018; Yuan et al., 2018). These studies relied on generative models that 

transform label-free to fluorescent images, which can indicate the 

organization and, in some situations, even the relative densities of molecular 

structures. Models were trained by using pairs of label-free and fluorescence 

images subject to minimizing the error between the fluorescence ground-

truth image and the model-generated image. Other studies used similar 

concepts to enhance imaging resolution by learning a mapping from low-

to-high resolution (Belthangady and Royer, 2019; Fang et al., 2019; Nehme 

et al., 2018; Ouyang et al., 2018; Wang et al., 2019; Weigert et al., 2018). 

Common to all these studies is the concept that the architecture of a deep 

convolutional neural network can extract from the label-free or low-

resolution cell images unstructured hidden information – also referred to as 

latent information – that is predictive of the molecular organization of a cell 

or its high-resolution image yet escapes the human eye.  
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We wondered whether this paradigm could be applied also to the 

prediction of complex cell states that result from the convergence of 

numerous structural and molecular factors. We combined unsupervised 

generative deep neural networks and supervised machine learning to train 

a classifier that can predict the metastatic efficiency of human melanoma 

cells. The power of cell appearance for determining cell states that correlate 

with function has been the basis of decades of histopathology (Chan, 2014a; 

López, 2013a; Travis et al., 2013). Cell appearance has been established as 

an explicit predictor of signaling states that are directly implicated in the 

regulation of cell morphogenesis (Bakal et al., 2007; Goodman and 

Carpenter, 2016; Gordonov et al., 2015; Pascual-Vargas et al., 2017; 

Scheeder et al., 2018; Sero and Bakal, 2017; Yin et al., 2013). Whether cell 

appearance is also informative of a broader spectrum of cell signaling 

programs, such as those driving processes in metastasis, is less clear, although 

very recent work, using conventional shape-based machine learning of 

fluorescently labeled cell lines, suggests this may be the case (Wu et al., 

2020).  

 

The paradigm of extracting latent information via deep convolutional 

neural networks from label-free and time-resolved image sequences holds 

particularly strong promise for a task of this complexity. The design of cell 
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appearance metrics that encode the state of, e.g., a cellular signal that 

promotes cell survival or proliferation, exceeds human intuition. The flip side 

of learning information that classifies well but is non-intuitive is the discomfort 

of relying on a ‘black box’. Especially in a clinical setting, the lack of a 

straightforward meaning of key drivers of a classifier is a widely perceived 

weakness of deep learning systems. Here, we demonstrate a mechanism to 

overcome this problem: By generating “in silico” cell images that were never 

observed experimentally we “reverse engineered” the physical properties of 

the latent image information that discriminates melanoma cells with low 

versus high metastatic efficiency. These results demonstrate that the internal 

encoding of latent variables in a deep convolutional neural network can be 

mapped to physical entities predictive of complex cell states. More broadly, 

they highlight the potential of “interpreted artificial intelligence” to augment 

investigator-driven analysis of cell behavior with an entirely novel set of 

hypotheses. 
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Results 

Label-free imaging of living patient-derived xenograft (PDX) melanoma 

cells and cell lines 

To test whether the latent information extracted from label-free live 

cell movies can predict the metastatic propensity of melanoma, we relied 

on a previously established patient-derived xenotransplantation (PDX) assay, 

in which tumor samples from stage III melanoma patients were taken and 

repeatedly transplanted between immuno-compromised mice (Quintana 

et al., 2012). All tumors grew and eventually seeded metastases in the 

xenograft model. Whereas some tumors seeded widespread metastases in 

various distant organs, referred to as a PDX with high metastatic efficiency, 

other tumors mainly seeded only lung metastases, referred to as a PDX with 

low metastatic efficiency. Low efficiency PDXs originated from patients that 

were cured after surgery and chemotherapeutic treatment. High efficiency 

PDXs originated from patients with fatal outcome (Quintana et al., 2012).  

 

For this study, we had access to a panel of nine PDXs, seven of which 

had known metastatic efficiency and matching patient outcome. For the 

remaining two PDXs, the metastatic efficiency, including patient outcome, 

was unknown (Table S1). To define the genomic states of the PDXs with 
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known metastatic efficiency, we sequenced a panel of ~1400 clinically 

actionable genes and found that the PDXs span the genomic landscape of 

melanoma mutations, including mutations in BRAF (5/6), CKIT (2/6), NRAS 

(1/6), TP53 (2/6), and copy number variation (CNV) in CDKN2A (6/6) and 

PTEN (3/6) (Hayward et al., 2017; Hodis et al., 2012) (Table S2). For one PDX 

(m528), we were unable to generate sufficient genomic material for 

sequencing, although the cell culture was sufficiently robust for single cell 

imaging. 

 

In order to prevent morphological homogenization and to better 

mimic the collagenous ECM of the dermal stroma, we imaged cells on top 

of a thick slab of collagen. The cells were plated sparsely to focus on cell-

autonomous behaviors with minimal interference from interactions with other 

cells (Methods). For each plate, we recorded with a 20X/0.8NA lens phase 

contrast movies of at least 2 hours duration, sampled at 1 minute intervals 

(Fig. 2.1A, Video S1-2). Each recording sampled 10-20 randomly distributed 

fields of view from 1-4 plates of different cell types, each containing 8-20 

individual cells.  
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Figure 2.1. Unsupervised learning of a latent vector that encodes characteristic features of 
individual melanoma cells. (A) Top: Snapshot of a representative field of view of m481 PDX 
cells. Scale bar = 50 𝜇m. Bottom: Time-lapse sequence of a single cell undergoing dynamic 
blebbing. Scale bar = 50 𝜇m. (B) Representative time-lapse images of single cells from PDX 
tumors exhibiting low (m498) and high (m634) metastatic efficiency. Sequential images 
were each acquired 1 minute apart. (C) Design of the adversarial autoencoder, comprising 
an encoder (dark red) to extract from single cell images a 56-dimensional latent vector, so 
that a decoder can reconstruct from the vector a similar image. The “adversarial” 
component (top) penalizes randomly generated latent cell descriptors q(z) that the network 
fails to distinguish from latent cell descriptors drawn from the distribution of observed cells 
p(z). (D) Examples of cell reconstructions. Raw cell images (top): beginning of epoch #110K 
(trained on 10,000 images), around midway training of epoch #11M (after 1,000,000 
images), at the end of epoch #3, epoch #6, and epoch #46. (E) Convergence of 
autoencoder loss (binary cross-entropy between raw and reconstructed image). Epoch is a 
full data set training cycle that consists of ~1.7 million images. Mini-batch is the number of 
images processed on the GPU at a time. Each mini-batch includes 50 cell images randomly 
selected for each network parameter learning update. For every epoch, the images order 
is scrambled and then partitioned into ordered sets of 50 for each mini-batch. 
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We complemented the PDX data set with equivalently acquired time-

lapse sequences of two untransformed melanocyte cell lines and six 

melanoma cell lines. The former served as a control to test whether the latent 

information allows at minimum the distinction of untransformed and 

metastatic cells. The latter served as a control to test whether the latent 

information allows the distinction of different cell populations, which, by the 

long-term selection of passaging in the lab, likely have drifted to a spectrum 

of molecular and regulatory states that differs from the PDX.  

 

In total, our combined data set comprises time-lapse image 

sequences of more than 12,000 single melanoma cells, resulting in 

approximately 1,700,000 raw images. The cells were typically not migratory 

but displayed variable morphology and local dynamics (Video S3). Many of 

the cells were characterized by an overall round cell shape and dynamic 

surface blebbing (Fig. S1A, Video S1-2), regardless of whether they belonged 

to the melanoma group with high or low metastatic efficiency (Fig. 1B, Fig. 

S1B), which is consistent with reports of primary melanoma behavior in vivo 

(Pinner and Sahai, 2008; Sadok et al., 2015; Sahai and Marshall, 2003) and on 

soft substrates in vitro (Cantelli et al., 2015; Welf et al., 2016). Thus, we 

speculated that cell shape or motion might not be informative of the 

metastatic state of a melanoma cell. Nonetheless, we still noted textural 
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variation and dynamics between individual cell images. Thus, we wondered 

whether these images contain visually unstructured signal that could predict 

the metastatic propensity of a cell.  

 

 

Design of adversarial autoencoders for unsupervised feature extraction 

After detection and tracking of single cells over time (Methods), we 

used the cropped single cell images as atomic units to train an adversarial 

autoencoder (Makhzani et al., 2015) (Fig. 2.1C, Methods). The autoencoder 

comprises a deep convolutional neural network to “encode” the image 

data of a single cell in a vector of latent information, from which a structurally 

symmetric deep convolutional neural network “decodes” synthetic images 

(Fig. 2.1C). The networks are trained to minimize the discrepancy between 

input and reconstructed images. The adversarial component penalizes 

randomly generated latent cell descriptors q(z) that the network fails to 

distinguish from latent cell descriptors drawn from the distribution of observed 

cells p(z), thus ensuring regularization of the latent information space. Our 

network architecture employed the part of the network previously used to 

reconstruct landmarks of the cell nucleus and cytoplasm (Johnson et al., 

2017) in fluorescence microscopy images. We supplied the network with 
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phase-contrast images instead of fluorescence images and found that the 

adversarial autoencoder displayed fast convergence in reconstructing 

phase-contrast cell images (Fig. 2.1D-E, Video S4, Fig. S1C). Furthermore, the 

trained network’s latent space defined a faithful metric for discriminating 

images of cells that appear morphologically different (Methods, Fig. S2). The 

network training was agnostic to the subsequent classification task. The goal 

of this step was to determine for each melanoma cell an unsupervised latent 

cell descriptor that holds a compressed representation of a cell image for 

further classification of cell states. 

 

The latent cell descriptor can discriminate between different cell categories 

In our label-free imaging assay, the latent space cell descriptors 

seemed to be distorted by batch effects related to inconsistencies in 

different imaging sessions such as operator, microscope, and gel 

preparation (Methods, Fig. S3). These systematic but meaningless variations 

in the data are a major hurdle in classification tasks (Boutros et al., 2015; 

Caicedo et al., 2017; Chandrasekaran et al., 2020). To address this issue, we 

transformed the auto-encoder latent space into a classifier space that was 

robust to inter-day confounding factors, but discriminated between different 

cell categories. A cell category was defined as a set of multiple cell types 
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with a common property. For example, the category “cell line” comprises six 

different cell types: A375, MV3, WM3670, WM1361, WM1366, and SKMEL2. The 

discrimination was accomplished by training supervised machine learning 

models on the normalized latent cell descriptor using Linear Discriminant 

Analysis (LDA) at the single cell level. Our intuition was that the diversity of 

the training data, in terms of cell categories and range of batch effects, 

makes the LDA classifier space robust. We validated the models in multiple 

rounds of training and testing, each round with the imaging data of one cell 

type (i.e., a specific cell line or PDX) designated as the test-set, while the rest 

of the data was used as the training set (Fig. 2.2A). Hence, the discriminative 

model was trained with information fully independent of the cell type it was 

tested on (Jones, 2019).  

 

The number of cells from each category was balanced during training 

to eliminate sampling bias. To overcome the limited statistical power due to 

the small number of cell types (two melanocytes, four clonal expansions, six 

cell lines and nine PDXs), we also considered test datasets defined by all cells 

from one cell type imaged in one day. In this case, the training dataset 

included the remainder of all imaging data, except cells of any type imaged 

on the same day or cells of the same type on any other day (Fig. S4A). These 
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approaches were successful in discriminating transformed melanoma cell 

lines from non-transformed melanocyte cell lines (Fig. 2.2B-D, Fig. S4B-C), 

melanoma cell lines from clonal expansions of these cell lines (Fig. 2.2E-G, 

Fig. S4D-E, Methods), and melanoma cell lines from patient-derived 

xenografts (PDX) (Fig. 2.2H-J, Fig. S4F-G). We also found that in pairwise 

comparisons most cell types could be discriminated from one another (Fig. 

S4H). Our latent space descriptor surpassed simple shape-based descriptors 

attained by phase contrast single cell segmentation (Winter et al., 2016), and 

it did not benefit from either explicit incorporation of temporal information or 

mean square displacement analysis of trajectories (Methods, Figs. S5). Based 

on these findings we used the time-averaged latent space cell descriptors 

as the basic feature set for cell classification throughout the remainder of our 

study. 

Although the classification performance was moderate at the single 

cell level (e.g., AUC of cell lines versus PDXs was 0.71, Fig. 2.2H), each imaging 

session included enough cells to accurate categorize cells at the population 

level (e.g., 14/15 successful cell lines versus PDXs predictions at the 

population level, Fig. 2.2I). Altogether, these results established that the 

latent cell descriptor captures information on the functional cell state that is 

distinct for different cell categories and types.  
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Figure 2.2. Discrimination of different melanoma cell categories: melanoma cell line versus 
melanocytes (B-D), cell lines versus clonal expanded cell lines (E-G), and cell lines versus 
PDXs (H-J). (A) Blinding the cell type. A cell type was defined as a specific cell line or PDX. 
Categories encompass multiple cell types. Multiple rounds of training and testing were 
performed. In each round, data from one cell type was used as the test dataset, defining a 
single observation that was composed of many single cell classifications. The training set 
contained the rest of the data relevant for the task (e.g., all melanoma cell lines and all 
PDXs when discriminating these two categories). The trained model was completely blind 
to the cell type used in each test set. The trained model classified each single cell in the test 
set. (B) Receiver-Operator Characteristic (ROC) curve for the distinction of the category 
‘cell lines’ from the category ‘melanocytes’. AUC = 0.635. (C) Accuracy in predicting for a 
cell type its association with the category ‘cell lines’ versus the category ‘melanocytes’. 
Each data point indicates the outcome of testing a particular cell type by the fraction of 
individual cells classified as ‘cell line’. N = 8 cell types: 6 melanoma cell lines, 2 melanocyte 
lines. 7/8 successful predictions. Wilcoxon rank-sum and Binomial statistical tests on the null 
hypothesis that the classifier scores of a cell line and of melanocytes are drawn from the 
same distribution, p = 0.071 (Wilcoxon), p = 0.035 (Binomial), see Methods for justification of 
the statistical tests. (D) Bootstrap distribution of the prediction of a cell type as a member of 
the ‘cell lines’ category. For each cell type, we generated 1000 observations by repeatedly 
selecting 20 random cells and recorded the fraction of these cells that were classified as 
‘cell lines’. Horizontal line – median. Wilcoxon rank-sum test p < 0.0001 rejecting the null 
hypothesis that the classifiers scores of observations from the two categories stem from the 
same distribution. This analysis demonstrated the ability to discriminate cell lines versus 
melanocytes from random samples of 20 cells in a cell type. (E) ROC curve for the distinction 
of the category ‘cell lines’ from the category ‘clonal’ (expansion line). (F) Accuracy in 
predicting for a cell type its association with the category ‘cell lines’ versus the category 
‘clonal’. Each data point indicates the outcome of testing a particular cell type by the 
fraction of individual cells classified as ‘cell line’. N = 10 cell types: 6 melanoma cell lines, 4 
clonal expansion lines. 10/10 successful predictions. Wilcoxon rank-sum and Binomial 
statistical test on the null hypothesis that the classifier scores of a cell line and of a clonal 
expansion line are drawn from the same distribution, p = 0.010 (Wilcoxon), p < 0.001 
(Binomial). (G) Bootstrap distribution of the prediction of a cell type as a member of the ‘cell 
lines’ category. See panel D. Horizontal line - median. Wilcoxon rank-sum test p < 0.0001 
rejecting the null hypothesis that the classifiers scores of observations from the two 
categories stem from the same distribution. (H) ROC curve for the distinction of the category 
‘cell lines’ from the category ‘PDXs’. AUC = 0.714. (I) Accuracy in predicting for a cell type 
its association with the category ‘cell lines’ versus the category ‘PDXs’. Each data point 
indicates the outcome of testing a particular cell type by the fraction of individual cells 
classified as ‘cell line’. N = 15 cell types: 6 cells lines, 9 PDXs. 14/15 successful predictions. 
Wilcoxon rank-sum and Binomial statistical test on the null hypothesis that the classifier scores 
of cell lines and of PDX are drawn from the same distribution, p < 0.0004 (Wilcoxon), p < 
0.0005 (Binomial). (J) Bootstrap distribution of the prediction of a cell type as a member of 
the ‘cell lines’ category. See panel D. Horizontal line – median. Wilcoxon rank-sum test p < 
0.0001 rejecting the null hypothesis that the classifiers scores of observations from the two 
categories stem from the same distribution. For all panels we used the time-averaged latent 
space vector over the entire movie as a cell’s descriptor. 
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Classification of melanoma metastatic efficiency  

Equipped with the latent space cell descriptors and LDA classifiers, we 

tested our ability to predict the metastatic efficiency of single cells from 

melanoma stage III PDXs (Fig. 2.3A). Our approach was able to perfectly 

discriminate between the categories melanomas with high versus low 

metastatic efficiency (Fig. 2.3B-D). It was also successful at distinguishing 

single cells from PDXs with low versus high metastatic efficiency that were 

imaged on a single day (small n), by classifiers that were blind to the PDX 

and to the day of imaging (Fig. S4A, Fig. 2.3E-G). Cell shape information (Fig. 

S6A) and mean square displacement analysis of trajectories (Fig. S6B-C) 

could not stratify PDXs along these two categories. Classifiers trained with the 

latent space cell descriptor were robust to artificial blurring (Fig. 2.3H), and 

illumination changes (Fig. 2.3I). These results established the potential of the 

proposed imaging and analytical pipeline as a diagnostic, live cytometry 

approach. 
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Figure 2.3. Discrimination of PDXs with low versus high metastatic efficiency as defined by 
the correlation between outcomes in mouse and man (A) (Quintana et al., 2012). Classifiers 
were trained to predict metastatic efficiency at the single cell level (panels B, E). The 
association of a particular PDX with either the category ‘Low’ [metastatic efficiency] or the 
category ‘High’ [metastatic efficiency] was determined at the population level – either 
considering the fraction of all cells of a PDX predicted as ‘Low’ (C, F) or a bootstrap sample 
of 20 cells (D, G). (B) Receiver Operating Characteristic (ROC) curve for single cell 
classification. AUC = 0.71. (C) Accuracy in predicting for a single PDX (cell type) its 
association with the category ‘Low’ versus the category ‘High’. Each data point indicates 
the outcome of testing a particular cell type by the fraction of individual cells classified as 
‘Low’. N = 7 PDXs: 4 low efficiency, 3 high efficiency metastasizers. 7/7 predictions are 
correct. Wilcoxon rank-sum and Binomial statistical test on the null hypothesis that the 
classifier scores of PDX with low versus high metastatic efficiency are drawn from the same 
distribution, p = 0.0571 (Wilcoxon),  p ≤ 0.00782 (Binomial), see Methods for justification of the 
statistical tests. (D) Bootstrap distribution of the prediction of a PDX as a member of the ‘Low’ 
category. For each PDX we generated 1000 observations by repeatedly selecting 20 
random cells and recorded the fraction of these cells that were classified as ‘Low’. 
Horizontal line - median. Wilcoxon rank-sum test p < 0.0001 rejecting the null hypothesis that 
the classifiers scores of observations from the two categories stem from the same distribution. 
This analysis demonstrated the ability to predict metastatic efficiency from samples of 20 
random cells. (E-G) Discrimination results using classifiers that were blind to the cell type and 
day of imaging (Fig. S4A, more observations, smaller n - number of cells for each 
observation). (E) Receiver Operating Characteristic (ROC) curve; AUC = 0.723. (F) Accuracy 
in predicting for one PDX on a particular day (cell type) its association with the category 
‘Low’ versus the category ‘High’. Each data point indicates the outcome of testing one PDX 
on a particular day by the fraction of individual cells classified as ‘Low’. N = 49 cell types 
and days: 25 low metastatic efficiency, 24 high metastatic efficiency. 32/49 predictions 
were correct. Wilcoxon rank-sum and Binomial statistical test on the null hypothesis that the 
classifier scores of PDX with low versus high metastatic efficiency are drawn from the same 
distribution p = 0.0042 (Wilcoxon), p ≤ 0.0222 (Binomial). (G) Bootstrap distribution of the 
prediction of a PDX imaged in one day as member of the ‘Low’ category. See panel D. 
Horizontal line - median. Wilcoxon rank-sum test p < 0.0001 rejecting the null hypothesis that 
the classifiers scores of observations from the two categories stem from the same distribution. 
(H) Robustness of classifier against image blur. Blur was simulated by filtering the raw images 
with Gaussian kernels of increased size. The PDX m528 was used to compute AUC changes 
as a function of blur. Representative blurred image (middle) and its reconstruction (bottom). 
(I) Robustness of classifier to illumination changes. AUC as a function of altered illumination 
(top). Representative image of m528 cell after simulated illumination alteration (middle), 
and its reconstruction (bottom). 
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Identification of classification-driving features in autoencoder latent space 

Our results thus far established the predictive power of the latent cell 

descriptor for the diagnosis of metastatic potential. However, the power of 

these deep networks to recognize statistically meaningful image patterns 

that escape the attention of a human observer is also its biggest weakness 

(Belthangady and Royer, 2019; Caicedo et al., 2017; Chandrasekaran et al., 

2020): What is the information extracted in the latent space that drives the 

accurate classification of low versus high metastatic PDXs? When we plotted 

a series of cell snapshots from one PDX in rank order of the LDA-based 

classifier score of metastatic efficiency, there was no pattern that could 

intuitively explain the score shift (Fig. 2.4A). This outcome was not too 

surprising given that much of the cell appearance is likely unrelated to 

metastasis-enabling functions, including the image signals associated with 

batch effects (Boyd et al., 2020) (Fig. S3). 

 

To probe which features encapsulated in the latent cell descriptor are 

most discriminative of the metastatic state we first correlated each of the 56 

features to the classifier score (Fig. 2.4B-C). The correlations were calculated 

independently for each PDX using a classifier blind to the PDX (see Fig. 2.2A). 

For all 7 PDXs the last feature #56 stood out as highly negatively correlated 
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to the classifier scores (Fig. 2.4C-D). The correlation values fell outside the 

range of correlations observed for any other feature (Fig. 2.4E-F). The 

distributions of values of feature #56 for individual cells clearly separated 

tumors with high versus low metastatic efficiency (Fig. 2.4G & H). However, 

as with the classifier score (Fig. 2.4A), a series of random cell snapshots from 

one PDX in rank order of feature #56 values did not reveal a cell image 

pattern that could intuitively explain the meaning of this feature (Fig. 2.4I). 

This suggests that feature #56 encoded a multifaceted image property 

reflecting the metastatic potential of melanoma PDXs that cannot readily 

be grasped by visual inspection. 
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Figure 2.4. Metastatic efficiency is encoded by a single component of the latent space cell 
descriptor. (A) Gallery of snapshots of cells from a PDX (m610) ordered by their 
corresponding classifier score. (B) Approach: Each feature in the latent space cell descriptor 
is correlated with the score of the classifier trained to distinguish PDXs with high versus low 
metastatic efficiency. (C) Correlation between all 56 features (y-axis) and classifier scores 
for 7 PDXs (x-axis). (D) Value of feature #56 and classifier scores for individual cells color-
grouped by PDX. (E) Distribution of the correlations from panel B; feature #56 (red arrow) is 
an obvious outlier. Left: distribution. Right: plot of log frequency for better visualization of 
feature #56. (F) Normalized correlation values (Z-scores) all 56 features (y-axis) and classifier 
scores (x-axis). Z-scores are calculated using the mean value and standard deviation of the 
distribution of correlation values in panel D. (G) Distribution of feature #56 values for cells 
grouped by association with a PDX. (H) Distribution of feature #56 values for cells grouped 
by association with low and high metastatic efficiency. (I) Gallery of snapshots of cells from 
PDX m610 in ascending order of the normalized value of feature #56. Note, high metastatic 
efficiency relates to negative, low metastatic efficiency to positive values of feature #56. 
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Interpretation of classification-driving latent feature using generative models 

and spontaneous cell plasticity 

Neither a series of cell images rank-ordered by classification scores of 

high vs low metastatic efficiency nor a series rank-ordered by feature #56 

offered a visual clue as to which image properties may determine a cell’s 

metastatic efficiency. We concluded that the natural variation of feature 

#56 values in our data was too low to give such clues and/or that the natural 

variation of features unrelated to metastatic efficiency largely masked 

image shifts related to the variation of feature #56 between PDXs with low 

and high metastatic efficiency. To glean some of the image properties that 

are controlled by feature #56 we exploited the network decoder to 

generate a series of “in silico” cell images in which, given a particular 

location of a cell in the latent space, feature #56 was gradually altered while 

fixing all other features (Fig. 2.5A). As expected, the changes in feature #56 

negatively correlated with the changes they caused in the classifier score, 

regardless of the metastatic efficiency of the cells from which the images 

were derived (Fig. 2.5B). The generative modeling brought two advantages 

over our previous attempts of visually interpreting feature #56: First, it allowed 

us to observe ‘pure’ image changes along a principal axis of metastatic 

efficiency change. Second, it allowed us to shift the value of feature #56 

outside the value range of the natural distribution and thus to analyze the 
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exaggerated cell images for emergent properties in cell appearance. Upon 

morphing a PDX cell classified as low metastatic efficiency within a 

normalized z-score range for feature #56 of [-3.5, 3.5], we observed two 

properties emerging with the high metastatic efficiency domain. The 

formation of pseudopodial extensions and changes in the level of cellular 

light scattering as observed by brighter image intensities at the cell periphery 

and interior (Fig. 2.5C). The pseudopodial activity was visually best 

appreciated when compiling the morphing sequences into videos that shift 

a cell classified as low metastatic towards the high metastatic efficiency 

domain (Video S5) and, vice versa, a cell classified as highly metastatic 

towards the low metastatic efficiency domain (Video S6).  

  

Repeating the morphing for many PDX cells (Fig. S7, Video S7) 

underscores pseudopod formation and enhanced light scattering as the 

systematic factors that distinguish cells with low feature #56 values/high 

metastatic efficiency from those with high feature #56 values/low metastatic 

efficiency. Moreover, by variation of all other latent space features one-by-

one we visually confirmed this combination of morphological properties was 

specifically controlled by feature #56 (Fig. S8). 
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To corroborate our conclusion from synthetic images we tested 

whether “plastic” cells, which change their classifier score during the time 

course of acquisition from low to high efficiency or vice versa, displayed 

visually identifiable image transitions. First, we verified that temporal 

fluctuations in feature #56 negatively correlated with the temporal 

fluctuations in the classifier scores (Fig. 2.5D-F). Second, we confirmed that 

PDX cells spontaneously transitioning from a predicted low to a predicted 

high metastatic efficiency displayed increased light scattering (Fig. 2.5G, 

Video S8). We were not able to conclusively validate the enhanced 

protrusive activity in the time courses of experimental data. The subtlety and 

perhaps also the subcellular localization of this phenotype requires 

visualization outside the natural variation of the latent feature space. 
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Figure 2.5. Generative modeling of cell images to interpret the meaning of feature #56. (A) 
Approach: alter feature #56 while fixing all other features in the latent space cell descriptor 
to identify interpretable cell image properties encoded by feature #56. (B) Shifts in feature 
#56 (y-axis, measured in z-score) negatively correlated with variation in the classifier scores. 
(C) In silico cells generated by decoding the latent cell descriptor of a representative m498 
PDX cell under gradual shifts in feature #56 (“Recon.”). Visualization of the intensity 
differences between consecutive virtual cells (Izscore - Izscore+0.5), only positive difference 
values are shown (“Diff+”). Changes in feature #56 are indicated in units of the z-score. The 
corresponding classifier’s score and value of feature #56 are shown. (D) Approach: 
correlating temporal fluctuations of each feature to fluctuations in the classifiers’ score. (E) 
Summary of correlations. Y-axis - different classifiers for each PDX. X-axis - features. Bin (x,y) 
records the Pearson correlation coefficients between temporal fluctuations in feature #x 
and the score of classifier #y over all cells of the PDX. (F) Normalization of correlation 
coefficients as a Z-score. Mean value and standard deviation are derived from the 
correlation values in panel E. (G) Following a m610 PDX cell spontaneously switching from 
the low to the high metastatic efficiency domain (as predicted by the classifier). Live 
imaging for 10 minutes. Left (top-to-bottom): raw cell image, diff+ images, classifier’s score, 
feature #56 values. Right: visualization of the classifier score as a function of time, switching 
from “low” to “high” in less than 10 minutes. 
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Generalizing the interpretation to high dimensions  

When we applied the same feature-to-score correlation analysis to 

classifiers trained for discrimination of cell lines from PDXs, we found the three 

features #26, #27, and #36 as classification-driving (Fig. S9A-B). This result 

underscores two key properties of our interpretation of the latent space: First, 

distinct classification tasks are driven by different feature subsets in the latent 

space cell descriptor, which capture distinguishing cell properties. In all 

generality, the classification task is driven not by a single but by multiple 

latent space cell descriptors. To enable interpretation of such multi-feature 

drivers, we generalized the traversal of the latent space by computing a 

trajectory that follows in every location the gradient of the classifier score. 

Since LDA is a linear classifier, the gradient follows throughout the entire 

latent space the directions determined by the classifier coefficients (Fig. S9C-

D). Thus, we traversed the latent space up and down in steps that are 

weighted by the LDA coefficients (Methods). For the classifier distinguishing 

PDXs from cell lines, the latent space traversal to positions beyond the natural 

variation in the data suggests that PDX cells exhibit a wider range of non-

round morphologies than cell lines (Fig. S9E). However, for one cell the 

simulated PDX image outside the natural data range displays an artefactual 
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break-up of the cell volume, indicating an example of occasional failure of 

the described extrapolation strategy.   

 

As a second test case, we trained another (unsupervised) adversarial 

autoencoder (Fig. 2.1C) to capture an alternative latent space 

representation of cell appearance. The network training was performed on 

the same dataset of PDXs, cell lines, clones and melanocyte images as the 

first network, and was followed by training LDA classifiers to discriminate 

between high and low metastatic efficient PDXs, each blind to the PDX in 

test. Because of the stochasticity in selecting mini-batches, the training 

converged to a different latent space cell image representation. In this 

representation, several features, and not only feature #56, correlated with 

the classifier score (Fig. S10A), as also reflected by multiple LDA coefficients 

with high magnitudes (Fig. S10B-C). Tracing PDX cells along the LDA 

coefficients to latent space locations outside the natural variation of the 

data confirmed light scattering and pseudopodial extensions as the 

determinants between cells with high versus low metastatic efficiency by 

shifting feature #56 in the latent representation determined by the original 

autoencoder network (compare Fig. S10D). These results establish the 

generalization of in silico latent features amplification to higher-dimensional 

discriminant feature sets.  
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PDX-trained classifier can predict the metastatic potential of melanoma cell 

lines in mouse xenografts 

We were interested in the capacity of PDX-trained classifiers to predict 

the spontaneous metastasis of tumor-forming melanoma cell line xenografts. 

We hypothesized that, despite the distinct morphologies of PDX and cell lines 

indicated by the classifier in Fig. 2.2H-J, the core differentiating properties 

between low and high efficiency metastatic PDXs would be conserved for 

melanoma cell lines. Using the PDX-trained classifiers, A375, a BRAFV600E-

mutated and NRAS wild-type melanoma cell line, originally excised from a 

primary malignant tumor (Davies et al., 2002; Ghandi et al., 2019; Giard et 

al., 1973; Kozlowski et al., 1984; Rozenberg et al., 2010; Tanami et al., 2004), 

was predicted as the most aggressive metastasizer (Fig. 2.6A). MV3, a BRAF 

wild-type and NRAS-mutated melanoma cell line, originally excised from a 

metastatic lymph node and described as highly metastatic (Quax et al., 

1991; Schrama et al., 2008; van Muijen et al., 1991), was predicted by the 

PDX-trained classifiers as the least aggressive (Fig. 2.6A). Consistent with our 

previous analyses of the influence of the latent space features on 

classification, feature #56 was lower for A375 than for MV3 (Fig. 2.6B). We 

subcutaneously injected luciferase-labeled versions of A375 and MV3 cells 

into the flanks of NSG mice (Methods). Both cell models formed robust 
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primary tumors at the site of injection (Fig. 2.6C-D) as well as metastases in 

the lungs and in multiple other remote organs (Fig. 2.6E-F). Bioluminescence 

imaging of individual excised organs showed a higher spreading to organs 

other than the lungs in mice injected with A375 cells compared to those 

injected with MV3 cells (Fig. 2.6E-F). It was previously determined that the 

most robust measure of metastatic efficiency in this model was visually 

identifiable macrometastases in organs other than the lungs (Quintana et 

al., 2012). As confirmation that the A375 cells metastasized more efficiently 

in this model, we found macrometastases in other organs in 5/5 mice 

xenografted with A375 cells versus in 1/5 mice xenografted with MV3 cells 

(Fig. 2.6G). Intriguingly, primary tumors in MV3-injected mice grew much 

faster than in A375-injected mice (Fig. 2.6H), in contrast to being less 

aggressive in spreading to remote organs, suggesting that primary tumor 

growth is uncoupled from the ability to produce remote metastases (Ganesh 

et al., 2020; Quintana et al., 2012; Viceconte et al., 2017). Under the 

assumption that overall tumor burden would be limiting for metastatic 

dissemination instead of time after injection, we conclude, in agreement 

with the prediction of our classifier, that A375 cells are more metastatically 

efficient than MV3 cells in this model. Broadly, these data confirm that 

properties captured by the latent space cell descriptor define a specific 
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gauge of the metastatic potential of melanoma that is independent of the 

tumorigenic potential.  
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Figure 2.6. PDX-trained classifiers predict the potential for spontaneous metastasis of mouse 
xenografts from melanoma cell lines. (A) All 7 PDX-trained classifiers consistently predicted 
that among the 6 analyzed cell lines A375 has the highest and MV3 the lowest metastatic 
efficiency. (B) The distribution of single cell values of feature #56 is lower for A375 than the 
distribution of values for MV3 cells. (C, E) Bioluminescence (BLI) of NSG mouse sacrificed 24-
35 days after subcutaneous transplantation of 100 Luciferase-GFP+ cells from the A375 
melanoma cell line (C) versus from the MV3 cell line (E). (D, F) Bioluminescence of organs 
dissected from the A375 xenografted mouse (D) and from the MV3-xenografted mouse (F). 
1, Gastrointestinal Tract (GI); 2, Lungs and Heart; 3, Pancreas and Spleen; 4, Liver; 5, Kidneys 
and Adrenal glands. In the MV3, mouse metastases were mostly found in the lungs. Black 
shades are mats on which the organs and mice are imaged (Methods). (G) Summary of 
metastatic efficiency for A375 and MV3 melanoma cell lines in 5 mice. “BLI Lungs”: 
Detection of BLI in the lungs. “BLI other organs”: BLI in multiple organs beyond the lungs. 
“Remote macro mets”: Macrometastases in remote organs (excluding lungs), identification 
of “visceral metastasis”, macrometastases visually identifiable without BLI, the measure used 
to define metastatic efficiency to the PDXs in (Quintana et al., 2012). (H) Primary tumors in 
MV3 xenografts grow faster than in A375 xenografts. Mice were sacrificed 24 days after 
injection with MV3, 35 days after injection with A375 cells. N = 5 mice for A375 and MV3 cell 
line. Statistics for tumor size after 24 days p-value = 0.0079 (Wilcoxon rank-sum test), fold = 
1.6241. 
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Image-based classifiers are more predictive of metastatic potential than the 

mutational profile 

Following initial diagnosis, it is standard practice for a melanoma 

biopsy to undergo mutational sequencing analysis to determine the best 

course of therapy. But, to our knowledge it has not been determined if there 

is a general mutational profile associated with more aggressively metastatic 

disease. While metastatic melanoma are expected to harbor a ‘standard’ 

set of primary mutations, such as those in BRAF or NRAS (Jakob et al., 2012) – 

and indeed all our PDX models and metastatic cell lines do contain an 

activating mutation in either one of these genes (Table S2) – we were curious 

as to whether secondary mutations in the genomic profiles of these cell 

models would encode information on the metastatic efficiency. To address 

this question we examined the distributions of genomic distances among the 

PDX cell models and two cell lines vis-à-vis the distance distributions in the 

latent feature space. The conclusion from these experiments was that the 

states of oncogenic/likely-oncogenic mutations in the 20 most mutated 

genes in melanoma (Hodis et al., 2012) were insufficient for a prediction of 

the metastatic efficiency (Fig. S11). In fact, the oncogenic/likely-oncogenic 

mutations in the genes were not more predictive than non-oncogenic 

mutations or an unbiased analysis of a full panel of 1400 genes for metastatic 

states. Thus, image-based classifiers can identify more metastatically 
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aggressive cancers, which is not currently possible for clinical diagnostics 

based on genomics.  

 

Discussion  

Visually unstructured properties of cell image appearance enable robust cell 

type classification  

Morphology has long been a cue for cell biologists and pathologists 

to recognize cell category  and abnormalities related to disease (Bakal et 

al., 2007; Chan, 2014b; Eddy et al., 2018; Gordonov et al., 2015; Gurcan et 

al., 2009; López, 2013b; Pavillon et al., 2018; Wu et al., 2020; Yin et al., 2013). 

In this study, we rely on the exquisite sensitivity of deep learned artificial 

neural networks in recognizing subtle but systematic image patterns to 

classify different cell categories and cell states. To assess this potential we 

chose phase contrast light microscopy, an imaging modality that uses simple 

transmission of white or monochromatic light through an unlabeled cell 

specimen and thus minimizes experimental interference with the sensitive 

patient samples that we used in our study. A further advantage of phase 

contrast microscopy is that the imaging modality captures visually 

unstructured properties, which relate to a variety of cellular properties, 
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including surface topography, organelle organization, cytoskeleton density 

and architecture, and interaction with fibrous extracellular matrix.  

 

Our cell type classification rests on the combination of an 

unsupervised deep learned autoencoder for extraction of meaningful but 

visually hidden features followed by conventional supervised classifier that 

discriminates between distinct cell categories. The choice of this two-step 

implementation allowed us to construct several different cell classifiers for 

different tasks using a one-time learned, common feature space.  Thus, the 

task of distinguishing, for example, melanoma cell lines from normal 

melanocytes could benefit from the information extracted from PDXs, while 

PDXs could be divided into groups with high versus low metastatic propensity 

with the support of information extracted from melanoma cell lines and 

untransformed melanocytes. Accordingly, sensitive classifiers could be 

trained on relatively small data subsets – much smaller than would be 

required to train an ab initio deep-learned classifier for the same task. The 

approach is not only data-economical, but it greatly reduces 

computational costs as the deep learning procedure is performed only once 

on the full dataset. Indeed, in our study we learned a single latent feature 

space using time lapse sequences from over 12,000 cells (~1.7 million 

snapshots); and then trained classifiers on data subsets that included labeled 
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categories smaller than 1,000 cells. As an additional benefit of the 

orthogonalization of unsupervised feature extraction and supervised 

classifier training, we were able to evaluate the performance of our classifiers 

by repeated leave-one-out validation, verifying that the discriminative 

model training is completely independent of the cell type at test. A similar 

evaluation strategy, requiring the repeated re-training of a deep learned 

classifier, would likely become computationally prohibitive.  

 

Application of cell type classification to the prediction of metastatic 

efficiency  

Among the cell classification tasks, we were able to distinguish the 

metastatic efficiency of stage III melanoma harvested from a 

xenotransplantation assay that had previously been shown to maintain the 

patient outcome (Quintana et al., 2012). While the distinction was perfect at 

the level of PDXs, at the single cell level the classifier accuracy dropped to 

70%. This is not necessarily a weakness of the classifier but speaks to the fact 

that tumor cells grown from a single cell clone are not homogeneous in 

function and/or appearance. Our estimates of classifier accuracy relies on 

leave-one-out strategies where the training set and the test set were 

completely non-overlapping, both with regards to the classified cell 
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category and to the days the classified category was imaged. Thus, it can 

be assumed that the reported accuracies can be reproduced on new, 

independent PDXs.  

 

Besides numerical testing, we validated the accuracy of our classifiers 

high versus low metastatic efficiency in a fully orthogonal experiment. We 

applied the PDX-trained classifiers to predict the metastatic efficiency of 

well-established melanoma cell lines and validated their predictions in 

mouse xenografts. We emphasize that the PDX-trained classifier has never 

encountered a cell line and that despite the significant differences between 

cell lines and PDXs (Fig. 2.2H-J), the classifier correctly predicted high 

metastatic potential for the cell line A375 and low potential for MV3 (Fig. 2.6). 

Moreover, a recent paper that demonstrated the use of in vivo barcoding 

as a readout for metastatic potential of cancer cell lines engrafted in mice 

showed that A375 is more aggressive than SKMEL2 (Jin et al., 2020), in 

agreement with our classifier’s prediction (Fig. 2.6A). Intriguingly, the 

aggressiveness in primary tumor growth was reversed between A375 and 

MV3, supporting the notion that tumorigenesis and metastasis are unrelated 

phenomena (Ganesh et al., 2020; Jin et al., 2020; Quintana et al., 2012; 

Viceconte et al., 2017) (Fig. 2.6H). This shows that the latent feature space 

encodes cell properties that specifically contribute to cell functions required 
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for metastatic spreading and that these features are orthogonal to features 

that distinguish cell lines from PDX models.  

 

Interpretation of latent features discriminating high and low metastatic cell 

propensity  

Deep Learning Artificial Neural Networks have revolutionized machine 

learning and computer vision as powerful tools for complex pattern 

recognition, but there is increasing mistrust in results produced by ‘black-box’ 

neural networks(Belthangady and Royer, 2019). Aside from increasing the 

confidence, the interpretation of the properties – also referred to as 

‘mechanisms’ – of the pattern recognition process can potentially generate 

insight of a biological/physical phenomenon that escapes the analysis 

driven by human intuition.  

 

In medical imaging the quest for interpretability has been responded 

by identifying image sub-regions of special importance for trained deep 

neural networks (Ash et al., 2018; Courtiol et al., 2019; Cruz-Roa et al., 2013; 

Fu et al., 2019; Pan et al., 2019; Shamai et al., 2019). A similar idea was 

implemented in fluorescent microscopy images, in the context of 

classification of protein subcellular localization, to visualize the supervised 
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network activation patterns (Kraus et al., 2017). Localization of sub-regions 

that were particularly important for the classifier result permitted a visual 

assessment and pathological interpretation of distinctive image properties. 

Such approaches are only suitable when the classification-driving 

information is localized in one image region over another, and when 

highlighting the region is sufficient to establish a biological hypothesis. For 

cellular phenotyping, this is not the case. Because of the orthogonalization 

of feature space construction and classifier training we could elegantly 

extract visual cues for the inspection of classifier-relevant cell appearances. 

By exploiting the single cell variation of the latent feature space occupancy 

and the associated variation in the scoring of a classifier discriminating high 

from low metastatic melanoma, we identified feature #56 as predominant 

in prescribing metastatic propensity. Of note, the feature-to-classifier 

correlation analysis is not restricted to determining a single discriminatory 

feature (Fig. S9, S10) and is directly applicable to non-linear classifiers.  

 

Visual inspection of cell images ranked by the classifier score or 

feature #56 did not reveal any salient cell image appearance that would 

distinguish efficiently from inefficiently metastasizing cells (Fig. 2.4A,I). These 

particular image properties were masked by cell appearances that are 

unrelated to the metastatic function. Moreover, the function-driving feature 
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#56 represents a nonlinear combination of multiple image properties that 

are not readily discernible. To test whether feature #56 encodes image 

properties that are human-interpretable but buried in the intrinsic 

heterogeneity of cell image appearances, we exploited the generative 

power of our autoencoder. We ‘shifted’ cells along the latent space axis of 

feature #56 while leaving the other 55 feature values fixed. The approach 

also allowed us to examine how cell appearances would change with 

feature #56 values outside the natural range of our experimental data. 

Hence, the combination of purity and exaggeration allowed us to generate 

human discernible changes in image appearance that correspond to a shift 

in metastatic efficiency.  

 

The outcome of a single feature, i.e., feature #56, driving the 

classification between two cell categories is by chance. As we show for the 

classification of PDXs versus cell lines, multiple features may strongly correlate 

with the classifier score. In this case, interpretation by visual inspection of 

exaggerated images has to be achieved by traversing the latent space in 

trajectories that follow in every location the gradient of the classifier score. 

In the particular case of the LDA classifier, the gradient is spatially invariant 

and follows the combination of the LDA coefficients. Thus, the proposed 
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mechanism of visual latent space interpretation does not hinge on the 

identification of a single driver feature.  

  

Once exaggerated in silico images offered a glimpse of key image 

properties distinguishing efficient from inefficient metastasizers, we could 

validate the predicted appearance shifts in experimental data. This was 

especially important to exclude the possibility that our extrapolation of 

feature values introduced image artifacts. We screened our data set for cells 

whose classification score and feature #56 values drifted from a low to high 

metastatic state or vice versa. We supposed that during such spontaneous 

dynamic events the variation in cell image appearances would be 

dominated, for a brief time window, by the variation in feature #56 and only 

marginally influenced by other features. Therefore, time-resolved data may 

present transitions in cell image appearance comparable to those induced 

by selective manipulation of latent space values along the direction of 

feature #56. It is highly unlikely to find a similarly pure transition between a 

pair of cells, explaining why we were unable to discern differences between 

cells with low and high metastatic efficiency in feature #56 ordered cell 

image series (Fig 2.4A).  
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Analyses of appearance shifts in both exaggerated in silico images 

and selected experimental images unveiled cellular properties of highly 

metastatic melanoma. First, these cells seemed to form pseudopodial 

extensions (Fig. 2.5C, Fig. S7, Video S5, Video S6). Because of its subtlety, this 

phenotype was more difficult to discern visually during spontaneous 

transitions of cell states (Fig. 2.5G). Second, images of cells in a highly 

metastatic state displayed brighter cell peripheral and interior signals, 

indicative of alteration in cellular light scattering. Because light scattering 

affects the image signal globally, this phenotype was clearly apparent in 

simulations (Fig. 2.5C, Fig. S7, Video S5, Video S6) and in experimental time 

lapse sequences of transitions between cells states (Fig. 2.5G, Video S8). 

Neither one of the two cell phenotypes follows a mathematically intuitive 

formalism that could be implemented as an ab initio feature detector. This 

highlights the power of deep learned networks in extracting complex cell 

function-driving image appearances.  

 

Pseudopodial extensions play critical roles in cell invasion and 

migration. However, at least in a simplified migration assay in tissue culture 

dishes, the highly metastatic cell population did not exhibit enhanced 

migration (Fig. S6). Recent work has suggested mechanistic links between 

enhanced branched actin formation in lamellipodial and enhanced cell 
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cycle progression (Mohan et al., 2019; Molinie et al., 2019), especially in 

micro-metastases. Therefore, we offer as a hypothesis that the connection 

between pseudopod formation and metastatic efficiency predicted by our 

analysis relates to the lamellipodia-driven upregulation of proliferation and 

survival signals (Nikolaou and Machesky, 2020; Swaminathan et al., 2020).  

 

The observation that light scattering can indicate metastatic 

efficiency suggests that the cellular organelles and processes captured by 

light scattering are relevant to the metastatic process (Schürmann et al., 

2015). Indeed, differences in light scattering upon acetic acid treatment are 

often used to detect cancerous cells in patients (Marina et al., 2012). 

Although the mechanisms underlying light scattering of cells are unclear, 

intracellular organelles such as phase separated droplets (Falke et al., 2019) 

or lysosomes will be detected by changes to light scattering (Choi et al., 

2007). With the establishment of our machine-learning based classifier, we 

are set to systematically probe the intersection of hypothetical metastasis-

driving molecular processes, actual metastatic efficiency, and cell image 

appearance in follow-up studies. 
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STAR Methods 

RESOURCE AVAILABILITY 

Lead contact: Further information and requests for resources and 

reagents should be directed to and will be fulfilled by the Lead Contact, 

Assaf Zaritsky (assafza@bgu.ac.il) or Gaudenz Danuser 

(gaudenz.Danuser@utsouthwestern.edu). 

Materials Availability: This study did not generate new materials. 

Data and Code Availability:  

Raw image data, raw single cell images, corresponding metadata, 

the trained neural network, and the feature representation of all cells 

source data have been deposited at the Image Data Resource 

(Williams et al., 2017), https://idr.openmicroscopy.org, and are 

publicly available under the accession numbers: idr0109. 

• Original source code and test data is publicly available at 

https://github.com/DanuserLab/openLCH (doi: 

https://doi.org/10.5281/zenodo.4619858)  

• Scripts used to generate the figures presented in this paper are not 

provided in this paper but are available from the Lead Contact on 

request. 
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• Any additional information required to reproduce this work is available 

from the Lead Contact. 

 

METHOD DETAILS 

Patient-derived xenograft (PDX) melanoma cells  

Populations of primary melanoma cells were created from tumors 

grown in murine xenograft models as described previously (Quintana et al., 

2010). Briefly, cells were suspended in Leibovitz's L-15 Medium (ThermoFisher) 

containing mg/ml bovine serum albumin, 1% penicillin/streptomycin, 10 mM 

HEPES and 25% high protein Matrigel (product 354248; BD Biosciences). 

Subcutaneous injections of human melanoma cells were performed in the 

flank of NOD.CB17-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice (Jackson Laboratory). 

These experiments were performed according to protocols approved by the 

animal use committees at the University of Texas Southwestern Medical 

Center (protocol 2011-0118). After surgical removal, tumors were 

mechanically dissociated and subjected to enzymatic digestion for 20 min 

with 200 U ml−1 collagenase IV (Worthington), 5 mM CaCl2, and 50 U ml−1 

DNase at 37oC. Cells were filtered through a 40 µm cell strainer to break up 

cell clumps and washed through the strainer to remove cells from large tissue 

pieces.  
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Cell culture and origin 

Cell cultures were grown on polystyrene tissue culture dishes to 

confluence at 37°C and 5% CO2. Melanoma cells derived from murine PDX 

models were gifts from Sean Morrison (UT Southwestern Medical Center, 

Dallas, TX) and cultured in medium containing the Melanocyte Growth Kit 

and Dermal Cell Basal Medium from ATCC. Primary melanocytes were 

obtained from ATCC (PCS-200-013) and grown in medium containing the 

Melanocyte Growth Kit and Dermal Cell Basal Medium from ATCC. The m116 

melanocytes, a gift from J. Shay (UT Southwestern Medical Center, Dallas), 

were derived from fetal foreskin and were cultured in medium 254 (Fisher). 

A375 cells were obtained from ATCC (CRL-1619). SK-Mel2 cells were 

obtained from ATCC (HTB-68). MV3 cells were a gift from Peter Friedl (MD 

Anderson Cancer Center, Houston, TX). MV3 and A375 cells were cultured in 

DMEM with 10% FBS. WM3670, WM1361, and WM1366 were obtained directly 

from the Wistar Institute and cultured in the recommended medium (80% 

MCDB1653, 20%, 2% FBS, CaCl2 and bovine insulin). 

 

PDX-derived cell culture  

We found that melanoma cell cultures derived from PDX tumors 

exhibited variable responses to traditional cell culture practices. Although 
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some of the cell cultures retained high viability and proliferated readily, 

others exhibited extensive cell death and failed to proliferate. We 

determined that frequent media changes (<24 hrs) and subculturing only at 

high (>50%) confluence dramatically increased the viability and proliferation 

of PDX-derived cell cultures. Although we observed no correlation between 

metastatic efficiency and robustness in cell culture, we followed these 

general cell culture practices for all PDX-derived cultures. 

 

Clonal cell line experiments 

To create cell populations “cloned” from a single cell, cells were 

released from the culture dish via trypsinization and passed through a cell 

strainer (Fischer; 07-201-430) to ensure single-cell solution, counted and then 

seeded on a 10 cm polystyrene tissue culture dish at low density of 350,000 

cells/10 ml of phenol-red free DMEM. Single cells were identified via phase-

contrast microscopy. The single cells were isolated using cloning rings (Sigma; 

C1059) and expanded within the ring. For clonal medium changes, the 

medium was aspirated within the cloning rings. Subsequently, conditioned 

medium from a culture dish with corresponding confluent cells were passed 

through a filter (Fischer; 568-0020), which removed any cells and cell debris 

and then added to each cloning ring. Once confluent within the cloning 



87 
 

ring, the clonal populations were released via trypsinization inside the 

cloning ring, transferred to individual cell culture dishes, and allowed to 

expand until confluence.  

 

Bioluminescence imaging of NSG mice with melanoma cell lines 

Injection of melanoma cells, monitoring of mice, dissection of mice, 

and imaging were all done as described in Quintana & Piskounova et al. 

(Quintana et al., 2012). Briefly, 100 Luciferase-GFP+ cells were injected into 

the right flank. Mice were monitored until the tumor at the site of injection 

reached 2 cm in diameter. Mice injected with MV3 were sacrificed 24 days 

after injection and A375 sacrificed 35 days after injection. The stomach, gut, 

rectum, and esophagus were labeled as the gastrointestinal tract. The black 

shades are mats that were used to image the mice’s organs. Some 

mouse/organ images have mats with (Fig. 6D) and without (Fig. 6F) gridlines.  

 

Quantification of metastatic efficiency in NSG mice 

We used three measures to assess metastatic efficiency (Quintana et 

al., 2012). First, detection of BLI in the lungs. Second, detection of BLI in 

multiple organs beyond the lungs. Third, identification of “visceral 

metastasis”, macrometastases visually identifiable without BLI, see details in 
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(Quintana et al., 2012). We refrained from a more quantitative analysis of the 

BLI intensity for two reasons: 1) cells from some tumors lose expression of 

luciferase and 2) differences in melanin expression in melanoma cells and in 

tissue absorption can affect luminescence independent of cell density.  

 

Targeted sequencing cancer-related genes and copy number variation 

analysis 

Targeted sequencing of exons of 1385 cancer-related genes was 

performed by the Genomics and Molecular Pathology Core at UT 

Southwestern Medical Center as previously described (Zhang et al., 2020). 

Sequencing was performed on 6 out of 7 PDXs and the two cell lines A375 

and MV3. Due to the difficulty in expanding the cells of PDX m528 in culture, 

we were not able to sequence this PDX. From the raw variant calling files, 

high confidence variants were determined by filtering variants found to have 

(a) strand bias, (b) depth of coverage < 20 reads and alt allele frequency < 

20%. Common variants were filtered if they were in > 1% allele frequency in 

any population (Karczewski et al., 2020). Oncogenic potential was assess 

using oncokb-annotator (https://github.com/oncokb/oncokb-annotator). 

Summary tables of high-confidence variants of melanoma PDXs and cell 

lines were assembled in Table S2.  
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Live cell imaging 

Live cell phase contrast imaging was performed on a Nikon Ti 

microscope equipped with an environmental chamber held at 37oC and 

5% CO2 in 20x magnification (pixel size of 0.325µm). In order to prevent 

morphological homogenization and to better mimic the collagenous ECM 

of the dermal stroma, we imaged cells on top of a thick slab of collagen. 

Collagen slabs were made from rat tail collagen Type 1 (Corning; 354249) at 

a final concentration of 3 mg/mL, created by mixing with the appropriate 

volume of 10x PBS and water and neutralized with 1N NaOH. A total of 200 

µL of collagen solution was added to the glass bottom portion of a Gamma 

Irradiated 35MM Glass Bottom Culture Dish (MatTek P35G-0-20-C). The dish 

was then placed in an incubator at 37°C for 15 minutes to allow for 

polymerization. 

 

Cells were seeded on top of the collagen slab at a final cell count of 

5000 cells in 400 uL of medium per dish. This solution was carefully laid on top 

of the collagen slab, making sure not to disturb the collagen or spill any 

medium off of the collagen and onto the plastic of the MatTek dish. The dish 

was then placed in a 37°C incubator for 4 hours. Following incubation, one 

mL of medium was gently added to the dish. The medium was gently stirred 
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to suspend debris and unattached cells. The medium was then drawn off 

and gently replaced with two mL of fresh medium.  

 

Single cell detection and tracking 

We took advantage of the observation that image regions associated 

with “cellular foreground” had lower temporal correlation than the 

background regions associated with the collagen slab because of their 

textured and dynamic nature. This allowed us to develop an image analysis 

pipeline that detected and tracked cells without segmenting the cell outline. 

This approach allowed us to deal with the vast variability in the appearance 

of the different cell models and batch imaging artifacts in the phase-

contrast images. The detection was performed in super-pixels with a size 

equivalent to a 10 x 10 µm patch. For each patch in every image, we 

recorded two measurements, one temporal- and the other intensity-

dependent (see details later), generating two corresponding downsampled 

images reflecting the local probability of a cell being present. We used these 

as input to a particle tracking software, which detected and tracked local 

maxima of particularly high probability (Aguet et al., 2013). The first 

measurement captures the patch’s maximal spatial cross-correlation from 

frame t to frame t+1 within a search radius that can capture cell motion up 
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to 60 µm/hour. The second measurement used the mean patch intensity in 

the raw image to capture the slightly brighter intensity of cells in relation to 

the background in phase-contrast imaging. Notably, our reduced resolution 

in the segmentation-free detection and tracking approach would break for 

imaging in higher cell densities. A bounding box of 70 x 70 µm around each 

cell was defined and used for single cell segmentation and feature 

extraction (details will follow). We excluded cells within 70µm from the image 

boundaries to avoid analyzing cells entering or leaving the field of view and 

to avoid the characteristic uneven illumination in these regions. Tracking of 

single cells over 8 hours was performed manually using the default settings in 

CellTracker v1.1 (Piccinini et al., 2016).  

 

Unsupervised feature extraction with Adversarial Autoencoders 

We have developed an unsupervised, generative representation for 

capturing cell image features using Adversarial Autoencoders (AAE) 

(Goodfellow et al., 2014; Makhzani et al., 2015). The autoencoder learns a 

compressed representation of cell images by encoding the images using a 

series of convolution and pooling layers leading ultimately to a lower 

dimensional embedding, or latent space. Points in the embedding space 

can then be decoded by a symmetric series of layers flowing in the opposite 
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direction to reconstruct an image that, once trained, ideally appears nearly 

identical to the original input (Hinton et al., 2006). The training/optimization 

of the AAE is regularized (by using a second network during training) such 

that points close together in the embedding space will generate images 

sharing close visual resemblance/features (Makhzani et al., 2015). This 

convenient property can also generate synthetic/imaginary cell images to 

interpolate the appearance of cells from different regions of the space. We 

used the architecture from Johnson et al. (Johnson et al., 2017), that was 

based on the network presented in (Makhzani et al., 2015). Johnson’s 

network includes an AAE that learns to reconstruct landmarks of the cell 

nucleus and cytoplasm. The adversarial component teaches the network to 

discriminate between features derived from real cells and those drawn 

randomly from the latent space. We trained the regularized AAE with 

bounding boxes of phase-contrast single cell images (of size 70µm x 70 µm, 

or 217 x 217 pixels) that were rescaled to 256x256 pixels. The network was 

trained to extract a 56-dimensional image encoding representation of cell 

appearance. This representation and its variation over time were used as 

descriptors for cell appearance and action. We adapted Torch code from 

https://github.com/AllenCellModeling/torch_integrated_cell (Arulkumaran, 

2017; Johnson et al., 2017) for unsupervised AAEs, and adjusted it to execute 

on our high-performance computing cluster. Torch (Collobert et al., 2011) is 
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a Lua script-based scientific computing framework oriented towards 

machine learning algorithms with an underlying C/CUDA implementation.  

 

The adversarial autoencoder latent vector preserves a visual similarity 

measure  

We verified that the 56-dimensional latent vector preserves a visual 

similarity measure for cell appearance, i.e., increasing distances between 

two data points in the latent space correspond to increasing differences 

between the input images. We first validated that variations in the latent 

vector cause variations in cell appearances (Fig. S2A). To accomplish this we 

numerically perturbed the latent vector after encoding a cell image with 

varying amounts of noise and calculated the mean squared error between 

the raw and reconstructed images. As expected, the mean squared error 

between reconstructed and raw images monotonically increased with 

increasing amount of noise added in the latent space (Fig. S2B). Hence, the 

trained encoder generates a locally differentiable latent space. Second, we 

interpolated a linear trajectory in the latent space between two 

experimentally observed cells, as well as between two random points, and 

confirmed, visually and quantitatively, that the decoded images gradually 

transform from one image to the other (Fig. S2C-D, Video S9). Hence, the 
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trained encoder generates a latent space without discontinuities. Third, we 

calculated the latent space distances between a cell at time t and the 

same cell at t+100 minutes and between a cell at time t and a neighboring 

cell in the same sample at time t. The distances between time-shifted latent 

space vectors for the same cell were shorter than those between 

neighboring cells (Fig. S2E). Hence, the combined effects of time variation in 

global imaging parameters and of morphological changes on 

displacements in the latent space tend to be smaller than the difference 

between cells. 

 

Determining batch effects (inter-day variability)  

In the case of the presented label-free imaging assay, batch effects 

may arise from uncontrolled experimental variables such as variations in the 

properties of the collagen gel, illumination artifacts, or inconsistencies in the 

phase ring alignment between sessions. Autoencoders are known to be very 

effective in capturing subtle image patterns. Therefore, they may pick up 

batch effects that mask image appearances related to the functional state 

of a cell. Under the assumption that intra-patient/cell line variability in image 

appearance is less than inter-patient/cell line appearance, we expect the 

latent cell descriptors of the same cell category on different days to be more 
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similar than the descriptors of different cell categories imaged on the same 

day. 

 

To test how strong batch effects may be in our data, we 

simultaneously imaged four different PDXs in an imaging session that we 

replicated on different days. Every cell was represented by the time-

averaged latent space vector over the entire movie. We then computed 

the Euclidean distance as a measure of dissimilarity between descriptors 

from the same PDX imaged on different days to the distribution of Euclidean 

distances between different PDXs imaged on the same day (Fig. S3A). For 

three of the four tested PDXs we could not find a clear difference between 

the intra-PDX/inter-day similarity and the intra-day/inter-PDX similarity (Fig. 

S3B). Only PDX m610 displayed greater intra-PDX/inter-day similarity than 

intra-day/inter-PDX similarity. Consistent with this assessment, visualization of 

all time-averaged cell descriptors over all PDXs and days using PCA (Jolliffe, 

2011) or tSNE (Maaten and Hinton, 2008) projections neither showed cell 

clusters associated with different PDXs nor with different imaging days, 

except for m610 (Fig. S3C-D). These results suggest that the latent space cell 

descriptors are impacted by both experimental batch effects and putative 

differences in the functional states between PDXs.  
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Single cell segmentation in phase-contrast imaging and shape feature 

extraction  

To compare the performance of the deep-learned cell descriptors to 

conventional, shape-based descriptors of cell states (Bakal et al., 2007; 

Goodman and Carpenter, 2016; Gordonov et al., 2015; Pascual-Vargas et 

al., 2017; Scheeder et al., 2018; Sero and Bakal, 2017; Yin et al., 2013) we 

segmented phase contrast cell images of multiple cell types with diverse 

appearances.  

 

Label-free cell segmentation is a challenging task, especially in the 

diverse landscape of shapes and appearance of the different melanoma 

cell systems we used. We used the LEVER (Winter et al., 2016) (downloaded 

from https://git-bioimage.coe.drexel.edu/opensource/lever), a designated 

phase-contrast cell segmentation algorithm to segment single cells within 

the bounding boxes identified by the previously described segmentation-

free cell tracking. Briefly, the LEVER segmentation is based on minimum cross 

entropy thresholding and additional post-processing. While the 

segmentation was not perfect, it generally performed robustly to cells from 

different origins and varied imaging conditions (Fig. S5A-B). We used 

MATLAB’s function regionprops to extract 13 standard shape features from 



97 
 

the segmentation masks produced by LEVER. These included: Area, 

MajorAxisLength, MinorAxisLength, Eccentricity, Orientation, ConvexArea, 

FilledArea, EulerNumber, EquivDiameter, Solidity, Extent, Perimeter, 

PerimeterOld. 

 

Encoding temporal information 

We compared three different approaches to incorporating temporal 

information when using either the autoencoder-based representation or the 

shape-based representation of cell appearance (Fig. S5C). First, static 

snapshot images ignoring the temporal information. Second, averaging the 

cell static descriptors along a cell’s trajectory, canceling noise for cells that 

do not undergo dramatic changes. Notably, the resulting cell descriptor 

matches the static descriptor in size and features. Accordingly, classifiers that 

were trained on average temporal descriptors could be applied to static 

snapshot descriptors (see Figs. 4-5). In the third encoding we relied on the 

‘bag of words’ (BOW) approach (Sivic and Zisserman, 2009), in which each 

trajectory is represented by the distribution of discrete cell states, termed 

‘code words’. A ‘dictionary’ of 100 code words was predetermined by k-

means clustering (MacQueen, 1967) on the full dataset of cell descriptors. 
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We found that purely shape-based descriptors could not distinguish 

cell lines from PDXs (Fig. S5D). This indicates that the autoencoder latent 

space captures information from the phase-contrast images that is missed 

by the shape features. Incorporation of temporal information, especially the 

time-averaging, slightly (but significantly) boosted the classification 

performance of LDA models derived from latent space cell descriptors (Fig. 

S5E). This outcome is consistent with computer vision studies concluding that 

explicit modeling of time may lead to only marginal gains in classification 

performance (Karpathy et al., 2014). 

 

Dimensionality reduction 

We used tSNE (Fig. S3C) and PCA (Fig. S3D) for dimensionality 

reduction. Each cell was represented by its time-averaged descriptors in the 

latent space. For tSNE we used a GPU-accelerated implementation, 

https://github.com/CannyLab/tsne-cuda (Chan et al., 2018). 

 

Discrimination analysis 

We used Matlab’s vanilla implementation of Linear Discriminant 

Analysis (LDA) for the discrimination tasks (Figs. 2-3) and to identify the cellular 

phenotypes that correlate with low or high metastatic efficiency (Figs. 4-5). 
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The feature vector for each cell was given by the normalized latent cell 

descriptor extracted by the autoencoder. Normalization of each latent cell 

descriptor component to a z-score feature was accomplished as follows. The 

mean (µ) and standard deviation (σ) of a latent cell descriptor component 

were calculated across the full data set of cropped cell images and used to 

calculate the corresponding z-score measure: xnorm = (x −µ)/σ, i.e., the 

variation from the mean values in units of standard deviation that can later 

be compared across different features. 

 

For each classification task, the training data was kept completely 

separate from the testing data. Training and testing sets were assigned 

according to two methodologies. First, hold out all data from one cell type 

and train the classifier using all other cell types (Fig. 2A). Second, hold out all 

data from one cell type imaged in one day as the test set (“cell type - day”, 

e.g., Fig. 3F) and train the classifier on all other cell types excluding the data 

imaged on the same day as the test set (Fig. S4A). This second approach 

trained models that had never seen the cell type or data imaged on the 

same day of testing. In both classification settings we balanced the instances 

from each category for training by randomly selecting an equal number of 

observations from each class. This scheme was used for classification tasks 

involving categories containing more than one cell type: cell lines versus 
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melanocytes, cell lines versus clonally expanded cell lines, cell lines versus 

PDXs, low versus high metastatic efficiency in PDXs (Figs. 2-3). For statistical 

analysis, all the cells in a single test set are considered as a single 

independent observation. Hence, “cell type - day” testing sets provide more 

independent observations (N) at the cost of fewer cells imaged in each day 

compared to testing set of the form of “cell type”.  

 

We used bootstrapping to statistically test the ability to predict 

metastatic efficiency from samples of 20 random cells. This was performed 

for “cell type” (Fig. 3D) or “cell type - day” (Fig. 3G) test sets. For each test 

set, we generated 1000 observations by repeatedly selecting 20 random 

cells (with repetitions), recorded the fraction of these cells that were 

classified as low efficiency and the 95% confidence interval of the median. 

Statistical significance in all settings was inferred using two statistical tests 

using each test set classifier’s mean score: (1) The nonparametric Wilcoxon 

signed-rank test, considering the null hypothesis that the classifiers scores of 

observations from the two categories stem from the same distribution; (2) The 

Binomial test, considering the null hypothesis that the classifier prediction is 

random in respect to the ground truth labels. For inference of phenotypes 

that correlate with metastatic efficiency (Fig. 5) we used the classifier that 

was trained on the mean latent cell description along its trajectory (which 
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proved to be superior to training with single snapshots) on latent cell 

descriptors derived from single snapshots, which hold the same, just noisier 

features. 

 

The area under the Receiver Operating Characteristic (ROC) curve 

was recorded to assess and compare the discriminative accuracy of 

different tasks (Figs. 2-3). The true-positive rate (TPR) or sensitivity is the 

percentage of “low” metastatic cells classified correctly. The false-positive 

rate (FPR) or (1-specificity) is the percent of “high” metastatic cells incorrectly 

classified as “low”. Area under the ROC curve (AUC) was used as a measure 

of discrimination power. Note that the scores of all cells from all relevant cell 

types were pooled together for this analysis. Different classifiers can produce 

different scores, which means that our analysis provides a lower bound 

(pessimistic estimation). ROC analysis could not be applied for individual 

(held-out) test sets because they consist of only a single ground truth label. 

We used the web-application PlotsOfData (Postma and Goedhart, 2019) to 

generate all boxplots.  
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In silico traversal weighted according to LDA coefficients 

To generalize the in silico cell image amplification to multiple features, 

we traversed the high dimensional latent space according to the 

corresponding LDA coefficients. More specifically, we moved up/down the 

classifier’s score gradient by adding/subtracting multiples of one standard 

deviation of the unit vector weighted according to the LDA classifier 

coefficients. 

 

Correlating classifier scores to genomic mutation markers  

We calculated a distance matrix to assess the similarity between all 

pairs of PDXs and the cell lines A375 and MV3. The distances were calculated 

in terms of the classifier score and of genomic mutation panels. m528 was 

excluded from the analysis due missing sequencing data (see above). For 

the distance matrix of the classifier score, we calculated the Jensen-

Shannon (JS) divergence (Lin, 1991) between the distributions of single cell 

classifier scores using the corresponding PDX-based classifiers (see 

discrimination analysis section in the Methods). For the cell lines, a new 

classifier was trained using all cells from all seven PDXs. This classifier was used 

to determine the classifier score for A375 and MV3. For each cell type, the 
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distribution was approximated with a 25 bin histogram. JS divergence was 

calculated on pairs of cell type classifier score distributions. 

  

To calculate distance matrices based genomic mutations we 

considered three panels of established melanoma genomic mutation 

markers. Two genomic mutation panels were derived from variation of 

exomes associated with 1385 cancer-related genes (see above). Mutations 

in commonly mutated genes in melanoma (Hodis et al., 2012) were 

annotated using OncoKB (Chakravarty et al., 2017) and divided into (i) 

oncogenic or likely oncogenic (Table S3, Fig. S11B) and (ii) benign or 

unannotated (“non-oncogenic”) (Table S4, Fig. S11C). Mutational based 

genetic distances were derived by converting mutation scores to a binary 

state (1=presence, 0=absence) and computing the Jaccard index 

(Jaccard, 1912) between cell types. In Fig. S11D we calculated distances 

using MASH (Ondov et al., 2016), which compared the K-mer profiles 

between samples, thus giving a distance of the raw sequence data, without 

biases introduced in the alignment and variant calling analysis. 

 

The distance matrices derived from classifier scores and mutational 

states were correlated (Pearson correlation) to assess whether the genomic 
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mutation state and image-derived classifier scores for low and high 

metastatic efficacies were linked.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

For each classification task, the training data was kept completely 

separate from the testing data. For statistical analysis, all the cells in a single 

test set were considered as a single independent observation. We used 

bootstrapping to statistically test the ability to predict a category from 

samples of 20 random cells (Fig. 2D, Fig. 2G, Fig. 2J, Fig. 3D, Fig. 3G). Statistical 

significance in category classification of “cell type” (Fig. 2C, Fig. 2F, Fig. 2I, 

Fig. 3C) or “cell type - day” (Fig. 3F, Fig. S4C, Fig. S4E, Fig. S4G) was inferred 

using two statistical tests. (1) The nonparametric Wilcoxon signed-rank test, 

considering the null hypothesis that the classifiers scores of observations from 

the two categories stem from the same distribution; (2) The Binomial test, 

considering the null hypothesis that the classifier prediction is random in 

respect to the ground truth labels. The purpose of testing two different null 

hypotheses was to increase thoroughness, especially given the small sample 

sizes (number of cell types). Statistical significance of discrimination using cell 

shape and temporal information (Fig. S5D-F, Fig. S6A) was inferred using the 

Wilcoxon signed-rank test. Full details on the statistical issues can be found in 
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sub-section entitled Discrimination analysis in the Methods. Statistical details 

of all experiments can be found in the figure legends including the statistical 

tests used, exact value of n, and clear descriptions of what n represents.  
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Appendix 

All appendix materials are found and hosted at 

https://www.cell.com/cell-systems/fulltext/S2405-4712(21)00158-

7#supplementaryMaterial 

Table S1. Panel of melanoma cell types used for this study: cell lines, 

melanocytes and patient-derived xenograft (PDX), Related to the STAR 

Methods section. Cells with high metastatic efficiency were derived from 

patients that exhibited metastases within 22 months, whereas cells with low 

metastatic efficiency were derived from patients that developed distant 

metastases within 22 to 50 months (Quintana et al., 2012). 

Table S2. Genomics Variants in PDX and two cell lines. PDX-SNVs-Indel and 

CellLines-SNVs-Indels: Single nucleotide variants (SNVs) and 

Insertions/Deletions (Indel)s of high-quality variants identified were filtered for 

common variants in > 1% of any population in GnomAD, Related to the STAR 

Methods section. The information provided by the columns is as follows: Cell 

Type, corresponding sample labels in Table S1; Hugo Symbol, the HUGO 

Gene Nomenclature Committee approved gene name (symbol); 

Chromosome, the affected chromosome; Start, the mutation start 

coordinate; Variant_Classification translational effect of variant allele; 
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Depth, the read depth across this locus in tumor BAM; RefCt, the Read depth 

supporting the reference allele in tumor BAM; AltCt, read depth supporting 

the variant allele in tumor BAM; Tumor_MAF, mutational allele frequency 

(AltCt/Depth) and GT, the genotype encoded as alleles values separated 

by either of ”/” or “|”, e.g. The allele values are 0 for the reference allele 

(what is in the reference sequence), 1 for the ALT. PDX-CNVs and CellLines-

CNVs: Copy number variants (CNVs) identified were filtered for genes 

mutated in > 5% of patients and > 10 patients in TCGA (Hoadley et al., 2018): 

The information provided by the columns is as follows: Cell Type, 

corresponding sample labels in Table S1; Hugo_Symbol, the HUGO Gene 

Nomenclature Committee approved gene name (symbol); Chromosome, 

the affected chromosome; Start, the mutation start coordinate; End, the 

mutational end position; Abberation is the type of copy number alteration 

as gain or loss; CN, the copy number of the gene; Score is calculated by 

CNV Kit as the sum of the weights of the bins supporting the CNV; Cytoband, 

the position on the chromosomal cytogentic band. 

Table S3. Oncogenic Genomics Variants in PDX and two cell lines in 

commonly mutated genes (Hodis et al., 2012) , Related to the STAR Methods 

section. The information provided by the columns is as follows: Annotation, 

the oncogenic effect, Hugo_Symbol, the HUGO Gene Nomenclature 

Committee approved gene name (symbol); Variant Type, CNV=Copy 
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Number Variation, SNV=Single Nucleotide Variant and Indel= Insertion or 

Deletion; Variant, for SNVs and InDels, this is the HSGS protein change and is 

the aberration type (gain or loss) which has the predicted oncogenic effect; 

each following column is the Cell Type corresponding to Table S1 and the 

genotype or copy of the Cell Type. 

Table S4. Non-oncogenic Genomics Variants in PDX and two cell lines in 

commonly mutated genes (Hodis et al., 2012), Related to the STAR Methods 

section. The information provided by the columns is as follows: Hugo_Symbol, 

the HUGO Gene Nomenclature Committee approved gene name (symbol); 

Variant Type, CNV=Copy Number Variation, SNV=Single Nucleotide Variant 

and Indel= Insertion or Deletion; Variant, for SNVs and InDels, this is the HSGS 

protein change and is the aberration type (gain or loss) which has the 

predicted oncogenic effect; each following column is the Cell Type 

corresponding to Table S1 and the genotype or copy of the Cell Type. 

Video S1. Time lapse sequence of a representative field of view of high 

metastatic m481 PDX cells, Related to Figure 1. 

Video S2. Time lapse sequence of a representative field of view of low 

metastatic m610 PDX cells, Related to Figure 1. 
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Video S3. Heterogeneous morphology and local dynamics of patient 

derived melanoma cells. Shown are time lapse of single cells cropped from 

the field of view and used as the input for the autoencoder, Related to Figure 

1. 

Video S4. Reconstruction evolution and convergence during autoencoder 

training, Related to Figure 1. Raw (top) and reconstructed (bottom) images 

during the autoencoder training minimizing the binary cross-entropy error 

between the two. 

Video S5. Morphing m498 PDX cell in silico from low to high metastatic 

efficiency by decoding the latent cell descriptor under gradual shifts in 

feature #56, Related to Figure 5. The corresponding classifier’s score 

(“ClassifierScore”) and value of feature #56 in units of the z-score (“f56”) are 

shown. 

Video S6. Morphing m405 PDX cell in silico from high to low metastatic 

efficiency by decoding the latent cell descriptor under gradual shifts in 

feature #56, Related to Figure 5. The corresponding classifier’s score 

(“ClassifierScore”) and value of feature #56 in units of the z-score (“f56”) are 

shown. 
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Video S7. Morphing 100 m498 cells by gradually decreasing feature #56 

(increasing classifier score), Related to Figure 5.  

Video S8. Time lapse of a m610 PDX cell spontaneously switching from the 

low to the high metastatic efficiency domain (as predicted by the classifier), 

Related to the Figure 5. Live imaging for 10 minutes. 

Video S9. Cell morphing in silico, Related to the STAR Methods section. 

Following the decoded cell image gradually morphing along an 

interpolated linear trajectory in the latent space between two cells.  
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Supplementary figures 

Figure S1: Motility, cell shape and latent space dimensionality, Related to Figure 1. 
(A) PDX melanoma on collagen were not migratory. Full field of view in phase 
contrast (left). Corresponding trajectories from 120 minutes indicate that cells are 
minimally motile (right). Only cells within the 70µm (dashed lines) were tracked 
(Methods). (B) Cell shape (left: area, right: eccentricity) cannot distinguish high from 
low metastatic efficiency. Shown distributions were calculated from all cells in call 
time points. (C) Loss and image reconstruction training error as a function of the 
latent space dimensionality. We selected the 56-dimensional latent vector based 
on minimizing loss and reconstruction error. Left: autoencoder loss (binary cross-
entropy) after training, right: mean square error for image reconstruction after 
training. 
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Figure S2: Validation of adversarial autoencoder latent space as a quantitative 
measure of cell appearance, Related to the STAR Methods section. (A) Pipeline to 
test that increasing shifts in the latent vector of a cell relate to a monotonically 
increasing shift in cell appearances. (B) Increasing perturbation of a particular cell’s 
latent space vector by Gaussian noise yields an increased deviation of the 
reconstructed cell image from the original image (image indicated at x = 0). For 
each noise level, except level 0, four representative reconstructed images are 
shown. Lines indicate the reconstruction error for 92 randomly selected cells from 
different cell types and different biological replicates. (C) Cell “morphing”. Latent 
space interpolation shows that a gradual linear transition in latent space yields 
gradual transition in image space. By “gradual linear transition in latent space” we 
refer to constant size shifts in feature space for each shift. The trajectory goes from 
top-left (red) to bottom-right (green). (D) Differences of images in panel C and to 
the start- (red) and endpoint (green) images. (E) Cells are more self-similar over time 
than two neighboring cells at the same time. Two-dimensional histogram of the 
Euclidean distance between the latent space descriptors of a cell at time 0 and 
time 100 (x-axis) versus the distance of the same cell to its closest (in terms of 
distance in the physical space) neighboring cell in the same field of view, also at 
time 0 (y-axis). 
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Figure S3: Determining batch effects (day-to-day variability), Related to Figure 2. 
Cells from four melanoma PDXs (m481, m498, m610, m634) were imaged in one 
batch, and this experiment was repeated on 6 different days. (A) Assessing the 
distance among different days for the same PDX versus the distance among the 
different PDXs imaged on the same day. (B) Intra-PDX/inter-day distance (x-axis) 
versus intra-day/inter-PDX distance (y-axis). Each dot represents the distance 
between the mean time-averaged latent cell descriptors averaged over all cells, 
arbitrary units. (C) tSNE projection of latent space cell descriptors of different PDXs 
on the same day (left) and of one PDX imaged on different days (right). (D) PCA 
projection of latent space descriptors of different PDXs on the same day (left) and 
of one PDX imaged on different days (right).  
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Figure S4: Discrimination results using classifiers that were blind to the cell type and 
day of imaging, Related to Figure 2. (A) Blinding the cell type and the day of 
imaging. Multiple rounds of training and testing were performed. In each round, all 
cells of one cell type imaged in one day were used as the test dataset. The training 
set consisted of the remainder of the data, excluding the cell type at test and data 
from the same day of imaging. Thus, the trained model was completely blind to the 
test set. The model classified each cell in the test set, the overall mean classification 
accuracy for a specific cell type and imaging day was reported. The classifier’s 
score of every cell was recorded and accumulated for all cell type + imaging day 
pair for Receiver Operating Characteristic analysis. Besides excluding batch-effects 
by blinding the classifier to the day of imaging, this provided us with an increased 
number of observations (cell type, day) at the cost of a reduced number of cells 
per observation. (B-C) Discriminating melanoma cell lines from melanocyte lines. 
(B) Receiver Operating Characteristic (ROC) curve. AUC = 0.635. (C) Accuracy in 
predicting the label ‘cell lines’ for a single cell as opposed to the label 
‘melanocytes’. Each data point indicates the outcome (fraction of cells classified 
as ‘cell line’) of testing the cells of one melanoma cell line or melanocyte line on a 
particular day. N = 24: 18 cell lines, 6 melanocyte lines. 19/24 successfully predicted 
observations. Wilcoxon rank-sum test p = 0.026. Binomial statistical test p < 0.003, see 
Methods for justification of the statistical tests. (D-E) Discriminating melanoma cell 
lines from clonally expanded cell lines. (D) Receiver Operating Characteristic (ROC) 
curve. AUC = 0.65. (E) Accuracy in predicting the label ‘cell lines’ for a single cell as 
opposed to the label ‘clonal’. Each data point indicates the outcome of testing 
the cells of one melanoma cell line or clonal expansion line on a particular day. N 
= 29: 18 cell lines, 11 clonal expanded cells. 22/29 successfully predicted 
observations. Wilcoxon rank-sum test p = 0.0032. Binomial statistical test p < 0.0041. 
(F-G) Discriminating melanoma cell lines versus PDXs. (F) Receiver Operating 
Characteristic (ROC) curve. AUC = 0.686. (G) Accuracy in predicting the label ‘cell 
lines’ for a single cell as opposed to the label ‘PDXs’. Each data point indicates the 
outcome of testing the cells of one melanoma cell line or PDX on a particular day. 
N = 75: 18 cell lines, 75 PDXs. 63/75 successful predicted observations. Wilcoxon rank-
sum test p < 0.0001. Binomial statistical test p < 0.0001. (H) Pairwise discrimination of 
cell types. Discriminating two cell types from one another. Each data point indicates 
the AUC value for predicting the cell type label for single cells. Multiple rounds of 
training and testing were performed for each pairwise classification. In each round, 
data from one cell type imaged in one day was used as the test dataset, while the 
training set consisted of the remainder of the data, excluding data from the same 
day of imaging. Note that here the classifiers were blind to the day of imaging, but 
not to the cell type at test. The green dashed line is the mean AUC = 0.66. The blue 
dashed line indicates the AUC level of a random classifier. p-value < 0.0001 
(Wilcoxon sign-rank test) rejecting the null hypothesis that pairs of different cell types 
cannot be discriminated.  
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Figure S5: Discriminating cell lines from PDXs using cell shape and temporal 
information, Related to Figure 2 and to the STAR Methods section. (A-B) Single cell 
segmentation in phase-contrast images by LEVER. (A) Examples of successful 
segmentation. The region outside the segmentation mask is colored black. (B) 
Examples of failed segmentations. (C) Three scenarios of incorporating temporal 
information in a cell descriptor applied to either cell shape-based features or latent 
space cell descriptors. (D) Accuracy in predicting the label ‘cell lines’ for a single 
cell as opposed to the label ‘PDXs’. Each data point indicates the outcome of 
testing the cells of one melanoma cell line or PDX on a particular day (Fig. S4A). 
Classifiers derived from cell shape-based features could not discriminate between 
the two labels, regardless of the mode of incorporating temporal information. In 
contrast, the latent space cell descriptors slightly improved with explicit 
consideration of temporal information and all classifier modes significantly 
outperformed shape-based classifiers (*** - p-value < 0.0001, nonparametric 
Wilcoxon sign-rank test. N = 65 experiments of one cell type imaged in one day. The 
green line is the median. The dashed red horizontal line represents the random 
model.). (E) The latent cell descriptor outperforms shape features. Matrix 
visualization of the comparison of the different encodings. Fold (left), p-value 
(middle), log p-value (right, -3 corresponds to the p-value of 0.05). The average 
latent cell descriptor classification accuracy surpasses other cell encoding 
schemes. Stat - static, Avg. - average, BOW - bag of words. (F) Mean squared 
displacement analysis (MSD) analysis of single cell trajectories averaged over each 
cell type did not show discrimination between cell lines and PDXs. Maximal time lag 
of 60 frames (=minutes). 
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Figure S6: Discriminating high versus low metastatic efficient PDXs using cell shape 
and temporal information, Related to Figure 3. (A) Accuracy of classifiers derived 
from shape based features and from latent space cell descriptors in predicting the 
label ‘low efficiency’ for a single cell. The classifiers include various modes of 
incorporating temporal information (Fig. S5). The 0.5 horizontal line reference the 
accuracy of a random classifier. Shape-based classifiers could not discriminate 
between PDXs with high and low metastatic efficiency. Classifiers derived from 
latent space cell descriptors performed significantly better than random ** - p-value 
< 0.01 (0.0053 for Autoenc. static, 0.0056 for Autoenc. time avg.), nonparametric 
Wilcoxon sign-rank test. N = 40 experiments of PDX imaged in one day. Green lines 
indicate medians of accuracy distributions. (B) Mean squared displacement (MSD) 
analysis of single trajectories averaged over each PDX could not distinguish 
between high and low metastatic efficiency. Max time lag of 60 frames (=minutes). 
(C) MSD analysis for a longer duration of 8 hours could not distinguish (p-value not 
significant in 100, 200, 300 and 480 minutes) between m498 (low metastatic 
efficiency, N = 30 cells) versus m481 (high metastatic efficiency, N = 30 cells).   
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Figure S7: Panel of in silico cells generated by decoding a representative PDX cells’ 
latent space cell descriptor under gradual shifts in feature #56, Related to Figure 5. 
Raw images (left), reconstructed images (middle), the positive values of the 
intensity differences between consecutive virtual cells (right). 
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Figure S8: Visualization of in silico cells by altering each feature highlight the unique 
properties of feature #56, Related to Figure 5. Reconstructed images (left), the 
positive values of the intensity differences between cells with different values in 
feature #56 (middle), the classifiers’ predicted scores (right). 
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Figure S9: Generalized high-dimensional generative modeling for linear classifiers 
applied for cell lines versus PDXs discrimination. N = 6 melanoma cell lines, 9 PDXs, 
Related to Figure 5. (A-B) Multiple features are classification-driving for 
discriminating cell lines from PDXs. (A) Correlation values between all 56 features (y-
axis) and the classifier scores for different cell types (x-axis). The correlation was 
calculated based on all cells from each cell type. (B) Normalized correlation values 
(Z-scores). (C) LDA coefficients trained to discriminate cell lines from PDXs (y-axis) for 
different cell types (x-axis). (D) LDA coefficients are correlated with feature-to-
classifier-score-correlation. Each dot represents one features’ correlation with the 
classifier (x-axis) and its corresponding LDA coefficient (y-axis). (E) Panel of in silico 
cells generated by decoding a representative PDX cells’ latent space cell 
descriptor under gradual shifts along the 56-dimensional latent space weighted 
according to the LDA coefficients of cell lines versus PDX classification. Left-to-right 
describe the transition from PDX to cell line. These are the same cells used in Fig. S7. 
The red arrow highlights a cell where traversal of the feature space outside the 
natural range of data variation artificially fractionates the cell image.   
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Figure S10: High-dimensional generative modeling for linear classifiers applied for 
high versus low metastasis PDXs discrimination, Related to Figure 5. (A) Multiple 
features are classification-driving for discriminating high from low metastatic PDXs 
using latent cell descriptors derived from a second adversarial autoencoder 
network that was independently trained on the same dataset. (B) LDA coefficients 
trained to discriminate high from low metastatic PDXs (y-axis) for different PDXs (x-
axis). (C) LDA coefficients are correlated with feature-to-classifier-score-correlation. 
Each dot represents one features’ correlation with the classifier (x-axis) and its 
corresponding LDA coefficient (y-axis). (D) Panel of in silico cells generated by 
decoding a representative PDX cells’ latent space cell descriptor under gradual 
shifts along feature #56 of the first network (left) and the 56-dimensional latent 
space weighted according to the LDA coefficients of the second network (right). 
Left-to-right describe the transition from high to low metastatic efficiency. These are 
the same cells used in Fig. S7. 
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Figure S11: Genomic markers could not distinguish between high and low 
metastatic efficiency. Distance measures between pairs of different cell types were 
compared between image-based (classifier scores) and genomic-mutational 
based information, Related to Figure 6. (A-D) Distance matrices between pairs of 
cell-types. Red sub-matrices indicate the distances between PDXs (and the A375 
cell line) classified as highly metastatic. Orange sub-matrices indicate the distances 
between PDXs (and the MV3 cell line) classified as highly metastatic. (A) Distance 
matric derived from image based classifier scores. Individual distances were 
computed based on the Jensen-Shannon divergence of the classifier score 
distributions for single cells in each of the compared cell types. The sub-matrices of 
cell types with similar levels of metastatic efficiency show low distances compared 
to matrix bins comparing cell types with differing metastatic efficiency. (B-D) 
Distance matrices derived from the genomic profiles of cell types cannot distinguish 
between high and low metastatic efficiency. (B) Distances calculated based on 
the Jaccard index of the mutational state of the oncogenic mutations in the 20 top 
mutated genes in melanoma. (C) Distances calculated based on the Jaccard 
index of the non-oncogenic mutations from those same genes. (D) Distances 
calculated by application of the alignment-free method MASH to the sequences 
from the entire 1400 gene panel. (E-G) Distances derived from image-based versus 
genomics-based cell-type to cell-type distinction are not correlated. Each datum 
holds the matched pair classifier- and genomic- distances between two cell types. 
E, F, and G correspond to the matrices in B, C and D, each correlating with the 
distance matrix in A. No correlation was found to be statistically significant. 
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Abstract 

While we have made enormous progress regarding our understanding 

of Melanoma, it is still a leading cause of skin cancer deaths worldwide. The 

cause of this high lethality is primarily due to the metastatic stage of the 

disease. Sequencing patients' metastatic tumors have revealed two 
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monoallelic Telomerase promoter mutations (TPMs), C228T and C250T. TPMs 

occur early in melanoma development but become enriched in metastatic 

tumor sites; this clonal evolution suggests a functional role of TPMs in 

metastatic progression. C228T occurs at a higher frequency than C250T; 

however, in Melanoma, C250T occurs nearly equal to C228T compared to 

all other cancers. To dissect the effect of TPMs on in vitro metastatic 

phenotypes without the plethora of background mutations found in 

Melanoma, we engineered isogenic clonal cell lines with monoallelic TPMs 

and expression reporters under both alleles' endogenous promoter of 

Telomerase. Single-allele single-cell imaging reveals that, contrary to 

consensus, C228T and C250T mutations are not equal. C250T displays 

increased allele expression heterogeneity, healing rate, spatiotemporal 

collection cell dynamics, and morphological differences over the C228T TPM 

and the WT cell lines. This work quantitatively identifies sources of functional 

metastatic advantages of TPMs, which may positively compound in vivo 

fitness for increased metastatic dissemination.  

 

Introduction 

Increased Telomerase expression is a hallmark of cancer, reactivating 

in most cancer diagnoses to enable replicative immortality (Kim, Piatyszek et 

al. 1994, Hanahan and Weinberg 2011). Telomerase promoter mutations 
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(TPMs), initially found in Melanoma, are found in over 90% of aggressive 

cancers (Huang, Bai et al. 2003, Horn, Figl et al. 2013, Bell, Rube et al. 2015). 

Melanoma is known for its high mortality rate due to its ability to metastasize 

and intrinsic drug resistance (Eggermont, Spatz et al. 2014). Metastatic and 

therapy-resistant cells share many common properties; metastasis and, 

therefore, therapy resistance is the last frontier of cancer treatment (Fares, 

Fares et al. 2020). Since then, TPMs correlate with poor prognosis and an 

increased rate of metastasis in Melanoma patients (Hugdahl, Kalvenes et al. 

2018). The majority of Melanoma related deaths are due to the metastatic 

stage of the disease; metastasis occurs when cells from the primary tumor 

leave the local environment and colonize a distant organ (Bogenrieder and 

Herlyn 2003, Gupta and Massagué 2006), Chiang and Massagué (2008), 

(Hanahan and Weinberg 2011, Reddy, Lim et al. 2012, Dillekås, Demicheli et 

al. 2016).  

 

There are multiple variants of TPMs, but the most common are located 

at positions -124 (C228T) and -146 (C250T) base pairs upstream of the 

translational start site (Heidenreich, Rachakonda et al. 2014, Chiba, Lorbeer 

et al. 2017). The C228T and C250T mutations are mutually exclusive and 

almost always are heterozygous in patients (Griewank, Murali et al. 2014). 

Both C228T and C250T create an identical 11 base pair sequence 
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"CCCGGAAGGGG", making a new de novo ETS binding motif for ETS 

transcription factors to activate Telomerase expression. C228T occurs at a 

higher frequency than C250T; however, in Melanoma, C250T occurs at a 

near equal frequency to C228T compared to all other cancers (Huang, Hodis 

et al. 2013, Hafezi and Perez Bercoff 2020). Because C228T and C250T are 

the most common TPMs, it suggests that these TPMs are selected early in 

melanoma development (Heidenreich, Rachakonda et al. 2014, Shain, Yeh 

et al. 2015, Torrecilla, Sia et al. 2017). Despite being an activating mutation, 

TPMs do not increase Telomere length despite increasing Telomerase 

expression in Melanoma to varying magnitudes (Ceccarelli, Barthel et al. 

2016, Nagore, Heidenreich et al. 2016, Hayward, Wilmott et al. 2017) 

especially in aggressive metastatic tumors (Viceconte, Dheur et al. 2017).  

 

Meta-analysis of metastatic potential and penetrance in tumors harboring 

TPMs 

A clonal composition change in cancer progression from primary to 

metastatic disease enriches cells harboring the TPMs (Griewank, Murali et al. 

2014). This clonal evolution suggests a functional advantage for metastatic 

potential and penetrance correlating to TPM status. To quantify metastatic 

potential and penetrance of TPMs in vivo, we turned to the large-scale pan-

cancer study MetMap (Ershov et al., 2021). MetMap does not include the 
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TPM statuses of their cell lines; however, we mined cell databases and 

primary literature to identify the TPM statuses of cell lines. While the N of our 

C228T and C250T samples used in the subsequent analysis is nowhere near 

the 500 cell lines used in the MetMap study. We are limited because TPM 

status is identified using whole-genome or Sanger sequencing. Often, clinics 

and research groups will use exome sequencing for cancer mutation 

profiling; however, this is changing. We could not stratify C250T and C228T 

by cancer type due to a lack of TPM information for many of the 500 cell 

lines used in the MetMap study. We found that C250T had higher penetrance 

and potential than the C228T pan-cancer and in all organs (Fig 3.1A and G). 

Breaking down metastatic potential and penetrance by each organ for 

TPMs shows that C250T has significantly higher penetrance in the Lung, Liver, 

and Brain (Fig 3.1B-D). At the same time, the Kidney and Bone show no 

difference. 

 

In contrast, C250T has significantly higher potential in the Lung and 

Liver than in the Kidney, Bone, and Brain, which show no difference. We 

found that TPMs do not correlate with aneuploidy, mutational burden, or 

replication rate of the samples used. Using the MetMap database, we could 

not interrogate metastatic potential and penetrance in Melanoma 

specifically. However, it should be noted that the difference in the 
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metastatic potential of TPMs in Melanoma was corroborated by a recent 

study using interpretable, deeply learned models to identify high and low-

efficiency metastatic melanoma single-cell properties (Zaritsky et al., 2021). 

The interpretable deep learned model predicted A375, which harbors the 

C250T mutation (Heidenreich et al., 2014), to have higher metastatic 

potential This was confirmed in the metastatic mouse model established by 

the landmark study of metastatic Melanoma (Quintana et al., 2012). While it 

is the consensus that TPMs genetically and functionally are identical, these 

results suggest that TPMs are not similar in vivo. Furthermore, since C250T 

occurs in higher frequency in Melanoma, a cancer type known for its 

aggressive metastatic stage (Tracey and Vij 2019), C250T may impact 

metastatic phenotypes. This meta-analysis shows pan-cancer tumors 

harboring the C250T TPM have higher metastatic potential and penetrance. 

However, we are not extending this to claim C250T is solely causative in 

increasing metastatic potential and penetrance over C228T.  
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Figure 3.1 Metanalysis of mined information from MetMap database for quantified 
metastatic potential and penetrance of cell lines harboring Telomerase Promoter Mutations 
stratified by C228T and C250T. C228T n = 76, and C250T n = 13. (A) Metastatic Penetrance 
comparison of C228T and C250T aggregated by all organs used in the MetMap database, 
p =0.0330. (B, C, D, E, F) Metastatic Penetrance comparison of C228T and C250T separated 
by organ Brain p = 0.0240, Lung p = 0.0326, Liver p =0.0055, Kidney p = 0.0615, and Bone p = 
0.0766. (G) Metastatic Potential comparison of C228T and C250T aggregated by all organs 
used in the MetMap database, p = 0.0326. (H, I, J, K, L) Metastatic Potential comparison of 
C228T and C250T separated by organ Brain p = 0.1555, Lung p = 0.0099, Liver p = 0.0347, 
Kidney p = 0.0819, and Bone p = 0.3706. All p values from Mann-Whitney test.  
 
 

Isogenic cells harboring TPMs increase mean expression and stochastic 

expression variance 

To dissect the effect of each TPM on metastatic phenotypes in vitro, 

we chose 293T cells due to minimal mutational burden and unlimited 

replicative ability other than through the Telomerase pathway. To this end, 

293T TERTWT/WT, TERTC228T/WT, and TERTC250T/WT single-cell clones were 

engineered with spectrally distinct fluorescent expression reporters on each 

allele under the endogenous promoter and at the endogenous loci (Fig 3.2A 

and B). We first confirmed the mean expression of the TPM allele increased 
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~1.4x over the corresponding WT allele (Fig 3.2C), as other groups have 

shown before (Huang, Bai et al. 2003, Horn, Figl et al. 2013). However, there 

is a statistical increase in the mean expression of the C250T over the C228T 

TPM allele, which has not been seen using endogenous reporter systems 

before. There were significant differences between the three populations 

regarding the WT allele. C250T, and to a minor degree C228T, had increased 

mean expression over the corresponding WT allele (Fig 3.2D). Since we have 

an allelic resolution of Telomerase, we quantified the impact of TPMs on the 

gene expression variance seen in the scatter plot (Fig 3.2E) of cells using the 

Fano Factor (Sanchez, Garcia et al. 2011). C250T had the highest expression 

variance, while C228T showed a moderate increase in variance, and the 

corresponding WT allele had the slightest variance in the Fano Factors (Fig 

3.2F). When looking at only the WT allele, we see the double WT cell line has 

an increased expression variance over C228T, while C250T has the highest 

variance about the Fano Factors (Fig 3.2G). This is not seen in other studies, 

as all have focused solely on the mutated allele. We posit that this may be 

due to the three-dimensional architecture of the nucleus allowing for alleles 

to be near each other (Quinodoz, Ollikainen et al. 2018) and possibly sharing 

transcriptional machinery. 
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Figure 3.2 TPMs increase mutant allele expression and clonal variance. (A) Schematic of the 
engineered genomic structure of the cell lines. (B) False-colored image montage of 
representative cells for Telomerase promoter mutants, C228T, C250T, and WT cell lines. 
Telomerase gene expression separated by allele for n = 67,000 cells. (C) The bar graph shows 
the difference in mean mCherry Allele expression of the mutant allele containing the control 
WT allele and the promoter mutation C228T and C250T, respectively. WT displayed 
significantly lower expression than C228T p <0.0001 and C250T <0.0001. While C228T showed 
significantly lower expression than C250T <0.0001 (unpaired t-tests). (D) The bar graph shows 
the difference in mean YFP Allele expression of the WT allele containing the control WT allele 
and the WT allele of the mutant C228T and C250T, respectively. WT displayed significantly 
lower expression than C228T p <0.0001 and C250T <0.0001. While C228T showed significantly 
lower expression than C250T <0.0001 (unpaired t-tests). (E) scatter plot overlaying the WT, 
C228T, and C250T allele expression. (F) Bar graph showing the allele expression variance for 
the mCherry allele quantified using the Fano Factor calculation. (G) Bar graph showing the 
allele expression variance for the YFP Allele quantified using the Fano Factor calculation. 

 

Here we investigated cell-to-cell variance in the expression of TPMs 

against WT cell lines. TPMs are heterozygous and kept in epigenetically 

distinct allelic states, potentially contributing to increased stochastic gene 

expression (Stern, Paucek et al. 2017). C250T has the highest expression and 

variance and the most significant metastatic potential and penetrance 
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seen in the MetMap study, followed by C228T. Stochastic gene expression 

has been shown to drive diversity and allow clonal populations to exhibit 

phenotypic heterogeneity, possibly aiding in metastatic dissemination (Raj 

and van Oudenaarden 2008, Matak, Lahiri et al. 2018, Kumar, Cramer et al. 

2019, Deshmukh and Saini 2020). Although there has not been a strong 

connection between Telomerase expression and overall survival (Pópulo, 

Boaventura et al. 2014), the increase in mean expression and variance could 

be a barrier to effective therapy (Guinn, Wan et al. 2020), which assumes 

that the population will react homogeneously to the treatment and support 

the metastatic ability to survive multiple stressors in metastatic dissemination. 

This may be due partly to Telomerase's non-canonical roles, one of which is 

protection against reactive oxygen species by translocating to the 

mitochondria (Ling, Wen et al. 2012). While metastatic melanomas harboring 

TPMs do not necessarily have long telomeres or active telomere 

maintenance programs (Viceconte, Dheur et al. 2017), many speculate on 

other non-canonical roles Telomerase may have, especially in resistant and 

metastatic tumors. 
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Machine learned classifiers can discriminate TPMs vs. WT with low false 

positives 

We next investigated multiple cellular measurements beyond the 

mean intensity and other metrics such as nuclear shape and texture of the 

phase channel for 290 metrics. These single-cell measurements were used to 

train interpretable and noninterpretable machine-learned classifier models 

to discriminate between WT, C228T, and C250T cell lines. Using interpretable 

methods such as Random Forest, we found the top features related to the 

expression and variance of the mutant allele, which yielded an overall 

accuracy of 77.06% (Fig 3.3A) with F1 scores of 0.83 for WT, 0.72 for C228T, 

0.76 for C250T (Fig 3.3B). Using noninterpretable methods such as a shallow 

Perceptron Neural Network, we achieved an overall accuracy of 80.64% (Fig 

3.3C) with F1 scores of 0.83 for WT, 0.76 for C228T 0.82 for C250T (Fig 3.3D). 

However, when we group the categories as WT vs. TPM (C228T and C250T), 

our classification accuracy and F1 scores improved. Again, using Random 

Forest, we found the top features related to the expression of the mutant 

allele, which yielded an overall accuracy of 87.81% (Fig 3.3E) with F1 scores 

of 0.83 for WT, 0.90 for TPM (Fig 3.3F). Using noninterpretable methods such 

as a shallow Perceptron Neural Network, we achieved an overall 

classification accuracy of 86.61% (Fig 3.3G) with F1 scores of 0.81 for WT, 0.90 

for TPM (Fig 3.3H). Since reducing the multidimensional feature for 2D 
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visualization for all methods was highly similar, we have included PCA and 

tSNE plots for the Random Forest models (Fig 3.3I-L). There is a significant 

overlap between the cell lines in the tSNE and PCA space since there is only 

a base pair difference between these cell lines. We have shown that the 

features relating to the mutant allele expression hold the most discriminative 

power, with low false positives, as seen by the high F1 scores, between the 

isogenic cell lines in 2D cell culture. However, it is valuable for the community 

to identify label-free cell features that can be used to discriminate between 

TPMs and WT cells. Towards this, not only does this allow other genes of 

interest to be reported with the fluorescent proteins used in this study. 

Furthermore, identifying biopsy samples for which genetic engineering can 

be toxic or alter the cell state is highly valuable.  

 

Interrogation of 2D label-free cell features for the discrimination of TPMs and 

WT cells 

As highlighted in Chapter 1, subtle changes in metastatic cell states 

should manifest themselves in detectable phenotypic changes. This is due to 

the morphological connection to the cytoskeleton changes necessary for 

invasion in the metastatic cascade. Cell appearance is a reliable monitor of 

cell signaling pathways (Bakal, Aach et al. 2007, Yin, Sadok et al. 2013, 

Goodman and Carpenter 2016, Gordonov, Hwang et al. 2016, Pascual-
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Vargas, Cooper et al. 2017, Sero and Bakal 2017, Scheeder, Heigwer et al. 

2018) due to the strong connection to the cytoskeleton (Moujaber and 

Stochaj 2020), which is readout metastatic expression profiles (Nguyen, 

Yoshida et al. 2016), and a cell's ability to invade (Minn, Kang et al. 2005). 

 

 

Figure 3.3 Machine learning discriminates between clonal cell lines. Confusion matrix and 
classification report containing precision, recall, and F1-score for WT vs. C228T vs. C250T 
using (A and B) Random Forest and (C and D) Perceptron Neural Net and WT vs. TPM using 
(E and F) Random Forest, and (G and H) using Perceptron Neural Net. Dimensionality 
reduction visualization of the feature sets used in the Random Forest classification model for 
WT vs. C228T vs. C250T using (I) tSNE and (J) PCA and WT vs. TPM using (K) tSNE and (L) PCA. 

 
 

Recent studies have shown explicitly that cell appearance 

phenotypes have a solid connection to the metastatic phenotype (Cooper, 

Sadok et al. 2015, Lyons, Alizadeh et al. 2016, Wu, Gilkes et al. 2020). 

Morphological changes to identify invasive cancers stem from recognizing 
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the epithelial to mesenchymal transition (EMT) (Li and Balazsi 2018, Lu and 

Kang 2019). Increased Telomerase expression has been shown to be 

connected to EMT (Liu, Li et al. 2013). Not only this, but pathologists often see 

gross morphological changes from primary to metastatic site biopsy 

samples, which have long been used for disease staging and grading (Lee, 

Hodi et al. 2020).  

 

Using two-dimensional (2D) cell culture has taught us the value of cell 

appearance and its relation to metastatic ability. Recently the role of 

mechanotransduction's effect on metastasis as readout by 2D cell shape has 

shown to be an opportunistic avenue to assay metastatic potential 

(Holenstein, Horvath et al. 2019, Riehl, Kim et al. 2021). Based on these 

previous works and our work in Chapter 2, we wanted to see the differences 

in cell appearances between WT and C228T and C250T isogenic cell lines in 

a typical culture setting. Due to how the cell lines grew in vitro, it was difficult 

to get whole cell segmentation using phase-contrast images, and our 

reporters were localized to the nucleus. Therefore, we used the nuclear mask 

to gather information in the phase-contrast images. Whether in tissue or 

single cells, previous studies of cancer have exploited light microscopy 

images using texture metrics to classify parts of the tissues or single cells for 
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metastatic properties (Kather, Weis et al. 2016, Rahman, Mahanta et al. 

2020).  

 

While traditional Haralick Texture features are intensity-based on 

grayscale coefficient matrix, which can introduce biases due to day to day, 

well to well, position to position within well variability, we used an updated 

version of Haralick texture that is intensity invariant (Löfstedt, Brynolfsson et al. 

2019), which is based on the original Haralick features (Haralick, Shanmugam 

et al. 1973), to circumvent these biases. We quantified the Haralick intensity 

invariant texture features, Haralick Texture statistics of the grayscale matrix, 

and Local Binary Patterns (Ojala, Pietikainen et al. 1994) of 67,000 single cell 

phase-contrast images to train machine-learned classifiers. We present the 

LDA models, which yielded the best classification results for WT vs. TPM 

classes. We visualized the overlap of features used for LDA classification using 

the stand deviation of parallel coordinates for Haralick Texture intensity 

invariant features (Fig 3.4A), Haralick Texture statistics (Fig 3.4C), and Local 

Binary Patterns (Fig 3.4E). Using LDA classifier we achieved a classification 

score of 80.6% for TPMs and 34.0% for WT using Haralick Texture intensity 

invariant features (Fig 3.4B); 83.6% for TPMs and 29.7% for WT using Haralick 

Texture statistics features (Fig 3.4D); 84.9% for TPMs and 36.4% for WT using 

Local Binary Patterns (Fig 3.4F). For the LDA models, the receiver operator 
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curves (ROC) with the area under the curve (AUC) are shown for Haralick 

Texture intensity invariant features (Fig 3.4G and H), Haralick Texture statistics 

features (Fig 3.4I and J), and Local Binary Patterns (Fig 3.4K and L). We 

reduced the dimensionality of each feature set using the t-SNE method (Fig 

3.4M-O). We show that using Haralick Texture intensity invariant features; 

there is significant overlap between the two populations. Haralick Texture 

statistics features and Local Binary Patterns show greater separation; 

however, none show a clear separation between the populations. These 

texture feature differences between the isogenic populations show that the 

LDA classifier has morphological differences to classify all populations over 

50%. While not the best classification results and not nearly enough power 

for clinical application, there is promise here for classification, albeit not using 

2D phase-contrast cell culture images atop plastic dishes. It should be noted 

that 2D cell culture atop plastic dishes homogenizes cell appearance 

(Duval, Grover et al. 2017, Kapałczyńska, Kolenda et al. 2018). We noted 

similar differences between the populations visualized using tSNE with a 

classification accuracy using LDA. While these results show there is not much 

difference in cell appearance with the introduction of TPMs in isogenic cell 

lines, there are multiple background mutations that co-occur with TPMs 

specific to different cancer types that may yield striking differences in the 

cell appearance. These results were replicated with more granular labeling 
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of TPMs into C228T and C250T labels to highlight a loss of classification 

accuracy. At the same time, the reduced feature space is identical (Fig 3.5).  

 

 

 

Figure 3.4 Label-free intensity invariant features do not discriminate between clonal cell 
lines. Linear Discriminant Analysis model (A) Parallel coordinates of the standard deviation 
of computed Haralick features, and (B) confusion matrix. (C) Parallel coordinates of the 
standard deviation of computed Haralick statistics features, and (D) confusion matrix. € 
Parallel coordinates of the standard deviation of computed Local Binary Patterns and (F) 
confusion matrix. Receiver Operator Curves with Area under the curve for Haralick features 
of (G) WT and (H) TPMs; Haralick statistics features (I) WT and (J) TPMs; and Local Binary 
Patterns (K) WT and (L) TPMs. We visualized the dimensionality using t-SNE of (M) Haralick 
Texture, (N) Haralick Texture Statistics, and (O) Local Binary Patterns.  
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Figure 3.5 Label-free intensity invariant features do not discriminate between WT and TPM 
cell lines. Linear Discriminant Analysis model (A) Parallel coordinates of the standard 
deviation of computed Haralick features, and (B) confusion matrix. (C) Parallel coordinates 
of the standard deviation of computed Haralick statistics features, and (D) confusion matrix. 
€ Parallel coordinates of the standard deviation of computed Local Binary Patterns and (F) 
confusion matrix. Receiver Operator Curves with Area under the curve for Haralick features 
of (G) WT and (H) TPMs; Haralick statistics features (I) WT and (J) TPMs; and Local Binary 
Patterns (K) WT and (L) TPMs. We visualized the dimensionality using t-SNE of (M) Haralick 
Texture, (N) Haralick Texture Statistics, and (O) Local Binary Patterns.  

 

TPMs are discriminated using label-free images from imaging flow cytometry 

The pairing of deep learning and machine learning with different 

imaging technologies such as Imaging Flow Cytometry (IFC) can interrogate 

the metastatic stage in primary samples as part of the pathology pipeline. 

IFC simulates an ex vivo circulating tumor cell (CTCs) environment and may 

display increased cell appearance changes. Using IFC for label-free imaging 

has advantages over engineered cells. Given that these samples can be 

fragile and genetic engineering can perturb the cell state, IFC can probe 



160 
 

the cell using cell light scatter and brightfield images, both of which require 

no labels and have been used for cancer classification with deep and 

machine learning (Hennig, Rees et al. 2017, Doan, Vorobjev et al. 2018, 

Doan, Barnes et al. 2021, Edgar, Tarhini et al. 2021). Here we leverage the 

power of the ImageStreamX imaging flow cytometry platform and the Amnis 

AI deep learning software platform, which utilizes a modified U-Net model to 

identify subtle differences between the TPMs. Here we show that using 

brightfield images alone; we can discriminate between the three cell lines 

with high accuracy and probability of predicting the correct class (Fig 3.6A 

and B) with low false positives (Fig 3.6C). We could identify WT cells with 100% 

precision, 99.68% recall, and 99.84% F1 score, indicating low false positives. 

Whereas we could identify C228T cells with 86.16% precision, 85.23 % recall, 

and 85.69% F1-score and C250T with 69.31% precision, 71.04% recall, and 

70.16% F1-score. However, we could not discriminate between the cell lines 

using side light scatter images alone using this model. The normalized 

probability of correct predicted class confusion matrixes (Fig 63.D and E) was 

low with many false positives, as indicated by the F1-score (Fig 3.6F). 
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Figure 3.6 Brightfield and light scatter images discriminate between clonal cell lines using 
deep neural networks. (A) Normalized confusion matrix of WT vs. C228T vs. C250T using 
brightfield images. (B) The median probability of predicted classes using brightfield images. 
(C) Class-wise metrics of precision, recall, and F1 for brightfield images. (D) Normalized 
confusion matrix of WT vs. C228T vs. C250T using side scatter images. (F) The median 
probability of predicted classes using side scatter images. € Class-wise metrics of precision, 
recall, and F1 for side scatter images. 

 

The future use of this technology and deployment of trained deep 

learned models can rapidly identify metastatic cell states, which in turn can 

allow the physician to make treatment decisions, especially for the detection 

of CTCs in liquid biopsies; CTCs are rare, but metastatic cells would be part 

of this population. It is imperative to identify cells with TPMs that would 

potentially colonize a distant organ, as they are highly correlated with the 

aggressive stage of metastasis and resistance. 
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TPMs display higher collective migration with monolayer spatiotemporal 

variations 

We next investigated the effect of TPMs have on functional 

phenotypes such as collective cell migration after wound healing. Wounds 

are essentially a breach in cells that are typically linked tightly to form a 

protective barrier that is suddenly separated. Similarly, cells detach from their 

neighbors in metastasis and adopt a migratory behavior to reach new 

locations. It is suspected that the wound repair program equips both types 

of cells to survive this anchorless state Ganesh, K, et al. (2020). This allows cells 

to move into the breach and make new tissues, enabling metastatic cells to 

detach and colonize new destinations. Increased Telomerase expression has 

been shown to promote the epithelial to mesenchymal transition and three-

dimensional invasion through Matrigel in vitro (Liu, Li et al. 2013). Additionally, 

Telomerase and WNT/b-Catenin pathway is connected to invasiveness and 

stemness in cancer (Fang, Yuan et al. 2018).  

 

Using previously published software, we investigated spatiotemporal 

dynamics of collective cell migration between the three clonal cell lines via 

in vitro wound healing (Zaritsky et al., 2015). We first segment each image 

into cellular (foreground) and background regions and calculate the 

velocity fields. We then calculate kymographs that capture the experiment's 
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spatiotemporal dynamics. Next, we extract features vectors from the 

kymographs and calculate the principal components. The WT cell line had 

a significantly lower healing rate between C228T and C250T. C250T showed 

a substantially higher healing rate over C228T (Fig 3.7A). Overall distance 

migrated showed similar results, with WT having significantly lower distances 

between C228T and C250T, while C250T migrated further than C228T (Fig 

3.7B). We examined the averaged speed and directionality of the 

kymographs across experiments. We found the speed was significantly lower 

for WT, while directionality showed no difference between WT and C228T. 

This differed for WT than C250T, where speed and directionality were 

substantially higher. C250T showed significantly higher speed and 

directionality (Fig 3.7C and D). We then investigated the speed in each of 

the 12 features of the kymographs individually. The 12 features encode 

acceleration at the wound edge (features 1-4), 60 -12 microns in the wound 

interior (features 5-8), and spatial variation in migration at later stages (9-12). 

We found that WT compared to C250T was significantly different in all 12 

features and C228T compared to C250T differed significantly in all 12 features 

for directionality (Fig 3.7E and F). Whereas WT compared C228T showed 

differences in only 6/12 features. We next examined the speed of each 12 

features. WT compared to C228T displayed significant differences in 10/12 

features. While WT compared to C250T were significantly different in all 12 
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features for speed. C228T compared to C250T were statistically different in 

features 1-6, whereas features 7-12 also had significant differences (Fig 3.7G 

and H). We have shown that C250T has a considerable advantage in healing 

rate and overall distance covered in an in vitro wound-healing assay, 

followed by C228T, while WT is the slowest and covered the least distance. 

 

Furthermore, C250T has considerable spatiotemporal differences in 

speed and directionality propagating from the wound edge into the 

monolayer compared to WT and C228T. C228T lags behind C250T in all 

metrics but is still significantly faster and migrated further, with significant 

spatiotemporal differences in nearly all 12 features. This follows the same 

trend seen with allele expression and variance and MetMap differences in 

the metastatic potential and penetrance. 
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Figure 3.7 C250T increases healing rate, distance, and information propagation from wound 
edge to interior of monolayer. n = 38 movies for each cell line. (A) Violin plot comparison of 
healing rates across cell lines. WT compared to C228T p <0.0001, WT compared to C250T p 
<0.0001, and C250T compared to C228T p <0.0001. (B) Total distance in microns the leading 
edge covered throughout the movies. WT compared to C228T p = 0.0175, WT compared to 
C250T p = 0.0047, and C250T compared to C228T p <0.0001. Aggregate comparisons of the 
average of each of the 12 kymograph features for all movies across cell lines. (C) Speed of 
each of the 12 averaged figures. WT compared to C228T p = 0.1600, WT compared to C250T 
p = 0.0036, and C250T compared to C228T p = 0.0332. (D) Directionality of each of the 12 
averaged figures. WT compared to C228T p = 0.0242, WT compared to C250T p <0.0001, and 
C250T compared to C228T p = 0.0083. (E) Graph showing the speed of individual 12 
kymographs features averaged among the 38 movies with SD error bars. (F) Graph 
depicting p-values from multiple Mann-Whitney tests for speed features. WT compared to 
C228T were significantly different in features 2-8 and 10-12 with p values 0.013734, 0.000344, 
0.000010, 0.024413, 0.000085, 0.000010, <0.000001 and 0.002214, 0.000359, and 0.000014 
respectively. While features 1 and 9 were not significantly different with p values of 0.061604 
and 0.550616, respectively. WT compared to C250T were significantly different in all 12 
features, p <0.000001. C228T compared to C250T differed significantly in all features with 
corresponding p values of <0.000001, <0.000001, <0.000001, 0.000012, <0.000001, <0.000001, 
0.000006, 0.000887, 0.000008, 0.000003, 0.001708, 0.018402. (G) Graph showing the 
directionality of individual 12 kymographs features averaged among the 38 movies with SD 
error bars. (H) WT compared to C228T differed significantly in directionality features 1-5, and 
7 with p values <0.000001, 0.001646, 0.000027, 0.000670, 0.000093, and 0.008123 respectively. 
While features 6 and 8-12 were not significantly different with corresponding p values of 
0.621746, 0.060135, 0.993789, 0.260206, 0.203475, and 0.048283. WT compared to C250T were 
significantly different in all 12 features, p <0.000001. C228T compared to C250T differed 
significantly in all 12 features p <0.000001. All p values from Mann-Whitney tests.  
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Conclusions 

Through the meta-analysis of the MetMap atlas, we found that tumors 

harboring C250T TPM have more metastatic potential and penetrance in the 

organs used in the study than tumors bearing the C228T TPM. We then 

engineered isogenic cell lines harboring either C228T or C250T TPMs on the 

endogenous locus under the endogenous promoter to dissect the effect 

TPMs have on metastatic phenotypes in vitro. While monitoring the 

differential expression using spectrally distinct fluorophores, we found that 

the C250T TPM increases mean expression and stochastic gene expression 

variance over C228T TPM. Unexpectedly, the WT allele in the TPM cell lines 

displayed increased expression. WT alleles in the C250T TPM cell line showed 

the most increase in expression. 

 

Furthermore, using interpretable and uninterpretable machined 

learned models using over 200 cell features, we could discriminate between 

C250T and C228T with high accuracy and low false positives. However, the 

most discriminative power was grouping TPMs against WT cell lines. This is very 

promising for identifying cells harboring TPMs in tumors; however, it would be 

ideal to have label-free, non-genetic engineering fluorescent models to 

identify cells bearing TPMs.  
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We investigated differences in the 2D cell appearance of C228T and 

C250T cells. However, using the 2D cell culture model, we could not 

discriminate between the TPMs and WT cells. We investigated previously 

described cell appearance differences between metastatic melanoma 

biopsies using imaging flow cytometry. We found that using brightfield 

images and a deeply learned model, we could accurately and with low 

false positives identify TPMs. This shows the promise of using label-free 

features to identify cells harboring TPMs in biopsy samples; however, biopsy 

samples are needed to train a clinically relevant model. This study highlights 

a pattern where C250T correlates with a more significant increase of various 

metastatic metrics over the C228T TPM, also increasing over WT. This increase 

in each phenotype may compound in vivo and relate to the increased 

metastatic potential and penetrance in our MetMap results.  
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Methods 

 

Cell culture and origin 

HEK293T were ordered from ATCC (ATCC CRL-11268) and tested 

negative for Mycoplasma using Mycoplasma detection kit (Southern 

Biotech). HEK293T cells were cultured in Dullbecco minimal essential medium 

(DMEM: Thermo Scientific HyClone #SH30022FS) supplemented with 10% 

fetal bovine serum, 4 mM L-glutamine, 100 I.U./ml penicillin and 100 mg/ml 

streptomycin at 37 ̊C, 5% CO2 and 90% humidity.  

 

 

Transfection 

The transfections were performed with 1 mg DNA: 2 ml Fugene HD 

(Promega E2311) ratio. Cells were seeded at 300,000 cells/well in six-well 

plate for 18 hrs before transfection. Two days after transfection puromycin 

was added to the medium at 1 mg/ml, and cells were selected for 2 days. 

Survival cells were grown for another 7 days before sorted with FACS into 96-

well and expanded into monoclonal cell lines. We plated 300,000 cells/well 

in 6-well plate overnight. Transfect with 1.25 ug gRNA and 1.25 ug linearized 

donor with 5 ul FugeneHD in 100 ul final volume in Opti-MEM. 
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Construct designs and homogenous clonal cell line creation 

We followed the CRISPR/Cas9 protocol (Ran et al., 2013) to construct 

the reporter cell line. In general, the gRNAs were designed by online CRISPR 

tool (http://crispr.mit.edu) and the DNA oligos were ordered from Eurofins 

Genomics, annealed and cloned into pSpCas9(BB)�2A-Puro (Addgene 

#48139) vector plasmids. gRNA plasmids were transfected into HEK293T cells 

and tested for gRNA efficiency using the T7 endonuclease assay. Only the 

most efficient gRNA was used with the donor DNA. The donor plasmids were 

constructed using Gibson assembly method. We used site-directed in-vitro 

mutagenesis to make synonymous substitution in the donor plasmids to avoid 

gRNA recognition and Cas9 cutting of the linearized donor DNA. In more 

detail, we first developed a nuclear marker cell line by inserting the nuclear 

localization signal followed by two copies of infrared fluorescent protein 

(NLS-2xiRFP) (Ogrodnik et al., 2014) under the endogenous actin promoter 

followed by a P2A spacer in HEK293T cells. This cell line ensured a constitutive 

expression without introducing exogeneous strong constitutive promoter and 

greatly assisted cell segmentation and tracking. Briefly, the gRNA and the 

linearized donor DNA were transfected into HEK 293T cells and the 

transfected cells were screened with 1 mg/ml puromycin for 2 days. The cells 

were allowed to grow for additional 5 days before sorted by FACS. The 

fluorescently positive cells were sorted as single cell into 96-well plate. We 
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collected at least 500 single cells. We grew the cells for additional 3 weeks 

to obtain homogenous clones. On average, about 30% of cells formed 

colonies and all were screened for fluorescent signal with the microscope. A 

minimal of 10 clones were then genotyped and checked for homozygosity 

and correct integration using at least three pairs of primers and confirmed 

with sequencing. Positive clones were further validated with western blot to 

ensure correct protein expression. After construction and validation, the 

engineered single-clonal cell line was assigned a unique identification 

number, entered in our electronic data- base, and stored in liquid nitrogen 

with a cryoprotectant. The same procedure was performed for CRISPR-

based tagging the other allele of Telomerase. Cells were screened with 

puromycin and sorted by FACS to generate monoclonal cell lines.  

 

Flow cytometry and single cell sorting 

To create cell populations “cloned” from a single cell, cells were 

released via trypsinization and passed filtered through a cell strainer (Fischer; 

07-201-430), to ensure single-cell solution, cells were resuspended in HBH and 

analyzed using a benchtop BD FACSAria Fusion flow cytometer (BD 

Biosciences, Franklin Lakes, NJ). For single cell clone generation of WT and 

TPM cell lines, were then sorted using Fluorescent Activated Cell Sorting into 

96-well plates. Acquired flow cytometry data were all analyzed with FlowJo 
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software (Tree Star). All cells were gated on FSC, SSC, iRFP, and then 

mCherry, and YFP taking cells from bulk of the populations and not the 

outliers. Single cells were identified via phase contrast and fluorescence 

microscopy. Once confluent within the well, the clonal populations were 

released via trypsinization inside the well, transferred to individual cell culture 

dishes, and allowed to expand until confluency. 

 

Live cell imaging 

The imaging medium is phenol red free DMEM (Life Technology-

Gibco) with the same supplements as the regular culture medium. Live cell 

phase contrast and fluorescence imaging was performed on a Nikon Ti 

microscope equipped with an environmental chamber held at 37oC and 

5% CO2 in 20x magnification (pixel size of 0.803µm). Cells were seeded in 24-

well polystyrene dish in 4 mL of phenol-red free DMEM per dish.  The dish was 

then placed in a 37°C incubator for 24 hours to allow cells to recover from 

trypsinization before imaging. Snapshot images were taken before time-

lapse. Time-lapse imaging was performed for 3-4 days to allow for multiple 

cell divisions. 
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Collective cell migration 

Cells were grown in a 2-well culture insert until a cell monolayer was 

established using Phenol-red free DMEM. The insert was removed and 1ml 

medium was added while monolayer positions were imaged every 10 

minutes over 24 hours. Each time-lapse movie was inspected for quality over 

the 24 hours. If the movie time needed to be cropped due to monolayers 

colliding, we removed these time frames as to not affect analysis. Code 

availability is here: 

(https://github.com/assafZaritskyLab/SpatiotemproalQuantificationMonola

yerCellMigrationPipeline). The plots were generated using PRISM 9.  

 

Allele expression quantification 

Background correction was performed using ImageJ’s Rolling ball 

background subtraction algorithm with 15-pixel radius (Schneider, Rasband 

et al. 2012). We took advantage of the popular CellProfiler platform (Stirling, 

Swain-Bowden et al. 2021) for automated nuclear segmentation using the 

nuclear marker iRFP reporter, followed by exclusion of non-cell objects by 

size and shape selection (CellProfiler Pipeline with representative images are 

attached in Supplemental Figure 2). Cell segmentations were then subject 

to manual inspection, and segmented objects that did not correspond to 

cells were then eliminated. For each data set, automated segmentation 
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parameters were chosen such that the fraction of incorrectly identified cells 

was minimized. 

 

Imaging flow cytometry acquisition 

To image single cells, cells were released via trypsinization and passed 

filtered through a cell strainer (Fischer; 07-201-430), to ensure single-cell 

solution, cells were resuspended in HBH and analyzed using a benchtop 

ImageStream X platform to capture images of live HEK 293T cells. For each 

cell, we captured images of brightfield and side scatter images. After image 

acquisition, we used the IDEAS analysis tool (this is software that 

accompanies the ImageStream X software) to discard multiple cells or 

debris, omitting them from further analysis. Typical ImageStream settings: 

Sample volume: 2.6 ml (extracted from the 100 ml loaded). Flow diameter: 7 

mm. Velocity of flow: 44 m s 1. Resolution: 0.5 mm. Magnification: 60. Camera 

sensitivity: 256 on all channels. Camera gain: 1. Brightfield LED intensity: 88 

mW. Darkfield laser intensity: 1 mW.  

 

IFC configuration and acquisition 

All samples were run on an ImageStream®X Mark II dual CCD camera 

system (Luminex Corporation, Seattle, WA, USA) at 40X magnification with 

the 405 nm laser set to 15 mW. For all samples, a data acquisition template 
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described previously26 was used to eliminate small and large debris, 

unfocused imagery events.  

 

Amnis® AI (AAI) software description 

The AAI software (v1.0) uses the Keras Application Programming 

Interface version 2.1.5 with TensorFlow version 1.7.0 library. The convolutional 

neural network (CNN) architecture used for training and classification is pre-

configured based on the VGG16 network to work optimally on image data 

acquired on Amnis® IFCs. All pixel values in each image are normalized to 

the range [0 1]. Once the ground truth data has been populated, the AAI 

software splits the data into training, validation, and test sets using an 

80/10/10 ratio – the validation and test data sets are never seen by the CNN 

during training. Class balancing and data augmentation are also performed 

to control classification bias and enhance the robustness of trained models. 

 

Quantification and statistical analysis of Metastatic potential and 

penetrance  

TPM status was determined by the mining of cell databases and 

primary papers. Plots were made in PRISM 9®.   
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General Image Analysis 

All computations were performed on an AMD Ryzen 5 3600 CPU @ 4.1 

GHz machine with an NVIDIA® RTX® 3060 GPU running Windows 10 

Professional. This machine was built as a moderate machine/deep learning 

workstation that is accessible to most research and clinical budgets.  
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