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Abstract 

Children and adults can use cross-situational information to 
identify words’ referents. What do learners retain about the 
potential referents that occur with a word: do they encode 
multiple referents or a single guess? We tested this question 
using novel mouse tracking and finger tracking paradigms. 
Adults were exposed to novel words in a series of ambiguous 
training trials and then tested on the words’ referents. In some 
test trials, participants saw the target and three referents that 
had never occurred with the word; other test trials included a 
high-probability competitor that had repeatedly occurred with 
the word. Participants’ mouse movements were slower, less 
accurate, and took a more complex path to the selected 
referent when the competitor was present, indicating that 
participants were aware that both the target and competitor 
had previously occurred with the word. This suggests that 
learners can accrue information about multiple potential 
referents for a word, and that mouse tracking provides a 
promising way of assessing this knowledge. However, this 
knowledge was not evident in participants’ finger movements, 
suggesting that the dynamics of finger movements might not 
capture real-time competition between referents.  

Keywords: cross-situational learning; language acquisition; 
mouse tracking 

Introduction 
For any given utterance of a word, the referential scene 
offers many possible interpretations. Researchers have long 
assumed that learners cope with such referential ambiguity 
in part by considering additional referential contexts in 
which the same word occurs (e.g., Fisher, Hall, Rakowitz, & 
Gleitman, 1994; Pinker, 1984; Siskind, 1996; Yu & Smith, 
2007). Across situations, scene elements that are relevant to 
a word’s meaning should occur more consistently than those 
that are not relevant. If learners could identify the elements 
that consistently co-occurred with a word across uses, then 
this would help them determine the word’s likely referent. 

Recent evidence suggests that children and adults can use 
cross-situational information to identify a word’s referent 
(e.g., Scott & Fisher, 2012; Smith & Yu, 2008; Yu & Smith, 
2007). For instance, Yu and Smith (2007) presented adults 

with a series of training trials in which they saw four novel 
objects and heard four made-up words. Across trials, each 
novel label consistently co-occurred with only one object. 
Following training, participants received a series of test 
trials in which they heard one novel label and saw its target 
referent and three distracters. Participants selected the target 
referent significantly more often than expected by chance. 

These findings have raised many questions about the 
mechanism by which learners exploit cross-situational 
information in word learning. In particular, how much 
information do learners retain about the potential referents 
that occur with a word? Some researchers have proposed 
that learners simultaneously accrue information about an 
entire set of potential referents for a word (Fazly, Alishahi, 
& Stevenson, 2010; Yurovsky, Fricker, Yu, & Smith, 2014). 
On their first encounter with a word, learners encode 
whatever referents co-occur with that word. The next time 
they encounter the word, learners compare the current set of 
potential referents to the set previously stored in memory, 
adding new possibilities and updating the co-occurrence 
probabilities for previously encountered referents. 

Other researchers, however, have argued that when 
learners first encounter a word, they make a guess or 
conjecture about the word’s meaning (e.g., Medina, 
Snedeker, Trueswell, & Gleitman, 2011; Trueswell, Medina, 
Hafri, & Gleitman, 2013). Learners retain this hypothesis 
and discard information about alternative referents. The next 
time learners encounter the word, they retrieve and evaluate 
their conjecture. If the hypothesized referent is present, then 
they strengthen and retain the hypothesis. Otherwise, 
learners discard the hypothesis and generate a new one 
based on the current referential scene.  

Empirical attempts to test these accounts have yielded 
mixed results. While some studies suggest that learners 
accumulate knowledge about multiple competing referents 
for a word (e.g., Dautriche & Chemla, 2014; Smith, Smith, 
& Blythe, 2011; Yurovsky & Frank, 2015; Yurovsky et al., 
2014), others suggest that participants retain only a single 
potential referent for a word across observations (Medina et 
al., 2011; Trueswell et al., 2013). These conflicting findings 
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are difficult to reconcile because the experiments have 
differed along many dimensions, including the number of 
potential referents that occurred on each observation, 
whether those referents were presented in isolation or in a 
natural scene, and the interval between observations for a 
word (see Yurovsky & Frank, 2015; Yurovsky et al., 2014). 

Here, however, we focus on a feature that all of these 
prior studies share: participants’ knowledge about the 
potential referents for a word was inferred from their 
patterns of explicit guesses across trials. Although the 
referent that a participant selects provides one index of their 
knowledge, this measure might nevertheless fail to capture 
valuable information about the process by which that 
selection was made. A participant might select the correct 
referent for a word because that participant had previously 
guessed that referent and thus confidently selects it again 
without considering other referents. Alternatively, the 
participant might consider how often each of the available 
referents had occurred with the word in the past and select 
the correct referent because it had the highest co-occurrence 
probability. In order to distinguish between these two 
possibilities, one would need to examine the participant’s 
decision-making process as it unfolded in real time. 

Mouse tracking provides one way of capturing this 
decision-making process (e.g., Dale, Kehoe, & Spivey, 
2007; Spivey, Grosjean, & Knoblich, 2005). For instance, 
Spivey et al. (2005) asked participants to click on one of 
two objects on a computer screen. When the objects were 
phonological competitors (e.g., pickle, picture), participants 
took longer to select the target, achieved maximum velocity 
later, and exhibited more deviation toward the distracter 
than they did when the two objects’ names were dissimilar. 
Thus, the velocity, duration, and shape of participants’ 
mouse trajectories revealed real-time competition between 
alternative referents as they made their selection.  

When participants select a referent for a word in a cross-
situational learning task, do they experience real-time 
competition between referents that previously co-occurred 
with the word? To test this question, we devised novel 
mouse-tracking (Experiment 1) and finger-tracking 
(Experiment 2) versions of Yu and Smith’s (2007) 
paradigm. Participants viewed training trials in which 
multiple novel labels occurred with multiple referents, 
followed by test trials in which a single label occurred with 
four objects. On each test trial, participants selected the 
object that they thought the word referred to, and we tracked 
their mouse/finger movements as they did so. In half of the 
test trials (competitor-absent trials), participants saw the 
target referent and three objects that had not previously 
occurred with the word. In the remaining test trials 
(competitor-present trials), one of the three non-target 
objects had occurred with the word in 50% of the training 
trials (high-probability competitor). If participants retain co-
occurrence information for the set of potential referents for a 
word, then in the competitor-present trials they should 
experience online competition between the high-probability 
competitor and the target as they make their selection. This 

competition should impact their response trajectories in the 
competitor-present trials, resulting in differing patterns of 
motor dynamics across the two trial types. If, however, the 
participants track a single conjecture, then the frequency 
with which the available referents had previously occurred 
with the word should have no influence and response 
trajectories should not differ across trial types. 

Experiment 1 

Method 
Participants 208 undergraduates (139 females) completed 
the experiment for course credit. All the participants used 
their right hand to perform the task.  

 
Stimuli Referents were high-resolution photos of 18 
common objects; each was paired with a 1- or 2-syllable 
nonsense word. Words were phonotactically probable in 
English and recorded by a female native English speaker.  

 
Design Participants received 27 training trials and 18 test 
trials. On each training trial, participants saw four objects, 
one in each corner of the screen, and heard four labels 
played over the computer speaker (Figure 1). The objects 
for each trial were randomly selected with the constraint that 
each word occurred six times with its target referent, three 
times with a high-probability competitor referent, and less 
than three times with all other objects. We randomly 
generated two unique sets of word-object pairs. 

 

 
 
Figure 1: Sample of a single learning trial. 

 
In each test trial, participants saw four objects, one in 

each corner of the screen, and heard a single label. On 
competitor-absent trials, objects consisted of the target and 
three objects that had appeared in training but had never co-
occurred with the word. On competitor-present trials, the 
objects consisted of the target, the high-probability 
competitor, and two objects that had appeared in training 
but had never co-occurred with the word. Participants saw 
one of two randomized test orders. The onscreen positions 
of the objects were randomly generated with the constraint 
that on competitor-present trials the target and the high-
probability competitor could not be diagonally adjacent. 
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This ensured a consistent angle between the target and the 
high-probability competitor relative to the starting position. 
 
Procedure Participants were instructed that they would see 
a series of objects and hear words and afterwards they 
would be tested on which word went with which object. 
Participants then viewed the training trials on a 65 cm by 45 
cm computer screen. On each trial, participants saw four 
objects and heard four consecutively presented audio labels. 
The first label occurred 1s after the onset of the trial; each 
subsequent label occurred 1s after the previous label. Each 
trial lasted 12s; trials were separated by 1s of black screen.  

Following training, participants moved to a second 
identical computer in an adjoining room. Participants were 
told that they would see sets of objects accompanied by a 
single word and that after hearing each word, they should 
drag the green dot that appeared in the center of the screen 
to the object that they thought matched the word. 
Participants were told to make their decision as quickly and 
accurately as possible. At the start of each trial, the objects 
and the green dot appeared on screen; after 1s, a single 
audio label was delivered. The green dot was initially 
locked in place and unlocked at the offset of the audio label. 
This prevented the participants from making a selection 
prior to hearing the word. Once the participants released the 
green dot over one of the objects, the trial ended. Trials 
were separated by 1s of black screen. During each trial, we 
recorded the streaming x, y coordinates of the computer 
mouse as participants dragged the dot from the start position 
to their chosen referent object (sample rate ≈ 71 Hz). 

 
Data Preprocessing On each trial, participants’ final x, y 
coordinates were taken as their referent selection. To 
examine participants’ real-time decision making, trajectories 
were remapped to orient the target location to the top-right 
corner by inverting the trajectories along the x-axis and y-
axis. All trajectories were lined up to a common x, y starting 
position (0, 0), then individually normalized by resampling 
trajectories at 101 equally time-spaced values and 
computing, by means of linear interpolation, the 
corresponding mouse-coordinate values (separately for the x 
and y coordinate vectors). 

All data analyses were conducted with R 3.1.2 (2014) and 
the lme4 package (Bates, Maechler, Bolker, & Walker, 
2015). All of the subsequent analysis of variance (ANOVA) 
models include participant as a random effect. 

Results and Discussion 
Participants selected the target significantly more often than 
expected by chance (.25) on both competitor-absent trials 
(M = .50, SD = .24), t(207) = 14.88, p < .001, d = 2.07, and 
competitor-present trials (M = .41, SD = .25), t(207) = 9.22, 
p < .001, d = 1.28. However, participants selected the target 
significantly more often on competitor-absent trials than on 
competitor-present trials, t(207) = 5.93, p < .001, d = .37.  

To determine whether participants experienced real-time 
competition between potential referents, we examined 

participants’ mouse trajectories. We identified trials where 
participants’ selected either the target or the high-probability 
competitor (we did not analyze trials in which participants 
selected other objects because the angle between the start 
position and the object varied based on the object selected). 
We then separated the trajectories into three trajectory 
types: competitor-absent (795 trajectories), competitor-
present correct (target selected; 454 trajectories), and 
competitor-present incorrect (high-probability competitor 
selected; 275 trajectories).  

We next examined the participants’ reaction times (from 
label offset to mouse-click release). A one-way ANOVA 
revealed a significant main effect of trajectory type, F(2, 
325) = 6.06, p = .003. Planned comparisons revealed 
significantly faster reaction times for competitor-absent 
trajectories (M = 1618 ms, SD = 947) than for competitor-
present correct trajectories (M = 1767 ms, SD = 1030), z = -
2.74, p = .015, and competitor-present incorrect trajectories 
(M = 1802 ms, SD = 942), z = -2.86, p = .01. The speed of 
competitor-present correct and competitor-present incorrect 
trajectories did not differ, z < 1. The fact that participants 
were slower on competitor-present trials suggests that they 
experienced real-time competition between the target and 
the high-probability competitor. 

To further examine this competition, for each trajectory 
we computed the maximum deviation (MD): the largest 
positive x-coordinate deviation from a straight line between 
the starting position and the selected object. For each 
participant, we calculated average MD values for each 
trajectory type. A one-way ANOVA on participants’ MD 
revealed a significant main effect of trajectory type, F(2, 
325) = 5.44, p = .005. Planned comparisons revealed 
significantly smaller MD values for competitor-absent 
trajectories (M = 65.60, SD = 68.07) than competitor-
present correct trajectories (M = 76.23, SD = 77.66), z = -
2.38, p = .05. Competitor-absent trajectories exhibited 
significantly smaller MD values than competitor-present 
incorrect trajectories (M = 82.77, SD = 83.89), z = -2.91, p = 
.01. The MD values of competitor-present correct and 
competitor-present incorrect trajectories did not differ, z < 1.  

Finally, angle information and sample entropy were 
computed using the mousetrack R package (Coco & Duran, 
2015). Angle information has been used in previous mouse-
tracking studies (e.g., Dale et al., 2007) to investigate how 
initial movements deviated from the point of origin. Angle 
trajectory of mouse movements is computed as the angle 
relative to the y-axis for each sample in a trajectory. This 
provides a single measure that integrates information about 
x-axis and y-axis movements. A trajectory starting at the 
origin and moving directly to the participant’s final 
selection would have a constant angle trajectory. If 
participants experienced competition between referents, 
then this should result in more complex angle trajectories.  

To measure the complexity of angle trajectories, we 
submitted angle trajectory to an analysis of sample entropy 
for each trial (Richman & Mooreman, 2000). Sample 
entropy measures the complexity of a given time series. It is 
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robust for small time series (Yentes et al., 2013) and has 
been used to measure the complexity or “disorder” of mouse 
movement trajectories (Dale et al., 2007; McKinstry, Dale, 
& Spivey, 2008). Sample entropy is computed for the angle 
trajectories by counting the number of similar sequences, m 
and m+1 (up to m=5), within a similarity tolerance 
parameter, 0.2*SDangle trajectory and then taking the negative 
logarithm of the ratio of similar sequence pair across m and 
m + 1, –ln(m/m+1). A time series of similar distances 
between data points across sequence lengths will result in 
lower sample entropy values. Larger sample entropy values 
are considered to have higher complexity.  

We interpret higher values of sample entropy of angle 
trajectories as exhibiting competition effects through more 
disordered movements toward the selected object, whereas 
lower values of sample entropy indicate more ordered, 
regular movements toward the selected object. A one-way 
ANOVA on sample entropy revealed a significant main 
effect of trajectory type, F(2, 325) = 6.67, p = .002. Planned 
comparisons revealed that trajectories were significantly 
less complex for competitor-absent trajectories (M = .13, SD 
= .06) than for competitor-present correct trajectories (M = 
.14, SD = .07), z = -2.63, p = .023, and competitor-present 
incorrect trajectories (M = .15, SD = .08), z = -3.23, p = 
.003. Within the competitor-present trajectories, the 
complexity of the trajectories did not differ, z < 1.  

Participants were slower and their trajectories exhibited 
greater deflection and complexity when the competitor was 
present than when it was absent. This suggests that on 
competitor-present trials, the target and high-probability 
competitor were partially active as potential response 
alternatives as participants were making their selection. 

These results are inconsistent with what one would expect 
if learners retained only a single conjecture about a word’s 
meaning. If participants only recalled their prior guess for a 
given word, then when that hypothesized referent was 
present in the test trial, they should have selected it. When 
that conjecture was absent, participants should have selected 
a referent at random from the available choices. In either 
case, their decision-making process should not have been 
affected by how frequently the available referents had 
previously co-occurred with the word. Contrary to this 
prediction, the accuracy, speed, and shape of participants’ 
response trajectories differed across trial types, suggesting 
that participants were sensitive to the fact that both high-
probability competitor and target previously co-occurred 
with the word. Thus, our results suggest that under at least 
some circumstances, learners can accrue information about 
multiple potential referents for a word.  

Experiment 2 
The results of Experiment 1 suggest that mouse tracking has 
the potential to capture learners’ underlying knowledge 
about alternative referents for a word during cross-
situational learning. In Experiment 2, we explored whether 
we would obtain similar results if we tracked participants’ 
fingers as they performed our task with a touchscreen 

device. If so, this would provide a portable way of assessing 
cross-situational learning outside of the laboratory. It would 
also facilitate the assessment of real-time decision-making 
in young children, who have difficulty interacting with a 
mouse (e.g., Agudo, Sanchez, & Rico, 2010).  

Method 
Participants 79 undergraduates (60 females) completed the 
experiment for course credit (none participated in the 
previous experiment). All participants used their right hand 
to perform the task.  

 
Stimuli, Design, and Procedure The stimuli, design, and 
procedure were identical to Experiment 1 with one 
exception: participants completed the test phase on a 24 cm 
by 19 cm touchscreen tablet and we recorded the streaming 
x, y coordinates of the participants’ finger position as they 
dragged the dot from the start position to their chosen 
referent object (sampling rate ≈ 143 Hz). Participants were 
instructed to not lift their finger as they dragged the dot. 

Results and Discussion 
Participants selected the target significantly more often than 
expected by chance (.25) on both competitor-absent trials 
(M = .48, SD = .28), t(78) = 7.16, p < .001, d = 1.62, and 
competitor-present trials (M = .47, SD = .27), t(78) = 7.38, p 
< .001, d = 1.67. Unlike in Experiment 1, participants’ 
accuracy did not differ across trial types, t < 1. 

We next examined participants’ finger trajectories, 
separated into three trajectory types: competitor-absent (293 
trajectories), competitor-present correct (211 trajectories), 
and competitor-present incorrect (59 trajectories).  

A one-way ANOVA on participants’ reaction times 
revealed a marginally significant main effect of trajectory 
type, F(2, 99) = 2.93, p = .058. Planned comparisons 
revealed that competitor-present incorrect trajectories were 
significantly slower (M = 540 ms, SD = 408) than 
competitor-absent trajectories (M = 395 ms, SD = 298), z = 
2.38, p = .04, and marginally slower than competitor-present 
correct trajectories (M = 392 ms, SD = 331), z = 2.15, p = 
.08. However, competitor-absent and competitor-present 
correct trajectories did not differ in speed, z < 1.  

A one-way ANOVA on participants’ MD also revealed a 
significant main effect of trajectory type, F(2, 99) = 6.08, p 
= .003. Competitor-present incorrect trajectories (M = 
38.70, SD = 50.08) exhibited significantly larger MD values 
than did competitor-absent trajectories (M = 22.48, SD = 
29.35), z = 3.25, p = .003, or competitor-present correct 
trajectories (M = 21.45, SD = 28.91), z = 3.31, p = .003. MD 
values for competitor-absent and competitor-present correct 
trajectories did not differ, z < 1. 

Finally, a one-way ANOVA on sample entropy revealed a 
significant main effect of trajectory type, F(2, 99) = 4.22, p 
= .02. Competitor-present incorrect trajectories (M = .14, SD 
= .11) were significantly more complex than competitor-
absent trajectories (M = .11, SD = .10), z = 2.76, p = .02, or 
competitor-present correct trajectories (M = .11, SD = .09), z 
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= 2.78, p = .01. Competitor-absent and competitor-present 
correct trajectories did not differ in complexity, z < 1. 

The presence of the high-probability competitor did not 
impact the accuracy, speed, or shape of participants’ finger 
trajectories. In contrast to the findings of Experiment 1, 
these results provide no indication that participants’ 
considered the high-probability competitor as a potential 
response alternative as they made their selection.  

General Discussion 
Recent studies suggest that adults and children are able to 
use cross-situational information to identify the referents of 
novel words under at least some circumstances (e.g., Yu & 
Smith, 2007). However, it remains unclear how much 
information learners retain about the potential referents for a 
given word. The present study attempted to shed light on 
this question using novel mouse- and finger-tracking 
paradigms. Adult participants were exposed to novel words 
in a series of ambiguous learning trials and then tested on 
their knowledge of the words’ referents. In some test trials, 
participants saw the word’s target referent and three 
alternative referents that had never co-occurred with the 
word before, while in other trials the target referent was 
accompanied by a high-probability competitor that had 
repeatedly occurred with the word during training. In 
Experiment 1, participants were faster and more accurate 
when the high-probability competitor was absent than they 
were when it was present, and their mouse trajectories 
revealed differing patterns of motor dynamics across the 
two types of test trials: when the high-probability 
competitor was present, participants deviated more from a 
straight line and followed a more complex path to the 
selected referent. In Experiment 2, however, we observed no 
differences in accuracy or motor dynamics across trial types.  

On the one hand, the results of Experiment 1 demonstrate 
that continuous measures can provide information about 
learners’ knowledge of potential referents that is not evident 
in their discrete guesses. For instance, participants’ in 
Experiment 1 were more accurate on competitor-absent than 
on competitor-present trials. This could reflect the fact that 
participants were tracking multiple potential referents for 
each word and the resulting competition increased the 
difficulty of competitor-present trials. However, unlike 
competitor-absent trials, competitor-present trials included 
two referents that had previously co-occurred with the word. 
These trials therefore afforded the opportunity to confirm an 
incorrect conjecture: if participants had previously guessed 
that the word referred to the high-probability competitor, 
they would select it if present, resulting in lower accuracy 
on competitor-present trials. Examining participants’ mouse 
trajectories as they made their guesses allowed us to tease 
apart these two possibilities: the differing patterns of motor 
dynamics across the two trial types indicated that 
participants experienced competition between the high-
probability competitor and the target. Even when 
participants ultimately selected the target, the way in which 
they did so differed when the high-probability competitor 

was present. These results thus suggest that assessing the 
decision-making process in real-time can reveal information 
not captured by forced-choice measures.  

Converging evidence for this conclusion comes from 
Trueswell et al. (2013), who eye-tracked participants as they 
performed a cross-situational learning task. Adults viewed a 
series of trials in which a novel label occurred with two or 
five everyday objects. On each trial, participants selected 
the object that they thought the word referred to. 
Examination of participants’ trial-by-trial guesses revealed 
that when they incorrectly guessed which referent went with 
a word, they performed at chance on the next encounter with 
that word. This suggested that participants only remembered 
their previous conjecture and if that guess was disconfirmed 
on the next trial, they were unable to remember which 
alternative referents were present the last time they heard 
the word. In contrast to their forced-choice responses, 
however, participants’ eye movements suggested that under 
some conditions, they retained knowledge of multiple 
referents. Specifically, when participants saw only two 
referents on each trial, they looked significantly longer at 
the target than the competitor referent, regardless of whether 
they had guessed correctly on their previous encounter with 
a word. Together with the findings of Experiment 1, these 
results suggest that continuous measures have the potential 
to capture fine-grained information that learners retain about 
alternative referents, even when this information does not 
appear to impact their overt guesses.  

More generally, the results of Experiment 1 suggest that 
mouse tracking offers a promising avenue for exploring the 
mechanisms behind cross-situational word learning. 
Incorporating mouse tracking into cross-situational 
paradigms in which participants select a referent on each 
exposure to a word (e.g., Smith et al., 2011; Trueswell et al., 
2013) could provide new insight into the amount of 
information participants retain on a given exposure as well 
as how this information changes across observations. Recent 
work also suggests that when learners receive similar cross-
situational evidence for two potential referents for a word, 
this can disrupt cross-situational learning (e.g., Bunce & 
Scott, in press; Yurovsky, Yu, & Smith, 2013). Mouse 
tracking could be used to examine the influence of carefully 
controlled co-occurring distracters in order to better 
understand when and how competition between referents 
leads to breakdowns in cross-situational word learning. 

On the other hand, the negative results of Experiment 2 
suggest that finger tracking, at least as implemented here, 
might not capture real-time competition between potential 
referents. This failure to replicate the results of Experiment 
1 could be due in part to the smaller sample size in 
Experiment 2. However, a power analysis indicated that this 
sample size should have been more than adequate to detect 
the difference in accuracy between competitor-absent and 
competitor-present that we observed in Experiment 1. The 
fact that we nevertheless failed to observe a difference in 
accuracy across trial types suggests that the results of 
Experiment 2 were not merely a product of sample size.  
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Why then was there no impact of the high-probability 
competitor on participants’ performance in Experiment 2? 
One possibility is that the shift in context (computer to 
tablet) interfered with participants’ memory of the potential 
referents for each word, especially those that had occurred 
with the word less frequently. If so, then perhaps we did not 
observe real-time competition between the referents because 
participants’ memory for the non-target referents was 
degraded and thus there was no competition to detect. 

Alternatively, it may be that the participants in 
Experiment 2 did retain knowledge of multiple competing 
referents, but our finger tracking measure failed to capture 
that knowledge due to differences in how participants 
interacted with the touchscreen. Specifically, participants 
tested on the computer tended to keep their hand on the 
mouse throughout the test phase, whereas those tested on 
the tablet only touched the screen while making their 
selection. As a result, participants tested on the computer 
may have been more likely to initiate the movement of the 
dot during the decision-making process. Those tested on the 
tablet may instead have waited to touch the dot until after 
they had decided which referent they intended to select. 
Consistent with this possibility, the interval between the 
audio label and when participants’ engaged the dot was 
longer on average in Experiment 2 than in Experiment 1. 
This suggests that perhaps we did not detect competition in 
Experiment 2 because our finger-tracking measure did not 
capture participants’ online decision-making process. Future 
work will examine whether requiring participants to touch 
the dot throughout each trial will allow us to detect real-time 
competition in finger movements.  
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