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2.3 Forecasted abundances of the VD model during our 8-year experiment with the
WAVE, SODA and INTEL parameters using state estimation with the EnKF.
Time series plots of measured and forecasted abundances of the predator
and prey species (left panels), and scatter plots of simulated and observed
abundances (right panels). Data assimilation enhances significantly the ability
of the VD model to track the population dynamics of the predators and preys.
This is particularly true for the SODA and INTEL parameterizations, which
follow most closely the observed population counts. . . . . . . . . . . . . . . 87

2.4 Box plots of the marginal posterior distributions of the (A) SODA and (B)
INTEL parameters. The box plot of each VD model parameter is normalized
by its prior ranges (listed between parentheses in Table 1). The larger the
spread of a box plot the larger the posterior parameter uncertainty. . . . . . 88

2.5 A) Root Mean Square Error, or RMSE, of the forecasted abundances of the
VD model using the WAVE, SODA and INTEL parameters with different
assimilation frequencies, and (B) ensemble mean value of the state innovation.
The red bars signify the results of the INTEL model with state estimation
restricted to 20% of the time steps with largest fluctuations in the observed
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.6 Ecological forecast horizon of the VD model derived from open loop simulation
with the WAVE, SODA and INTEL parameter values using many different
initial states drawn from the mesocosm data set. The forecast horizon is
defined as the first time from the start of simulation at which the distance
between the state forecast and corresponding observation exceeds a threshold
value, called FPT. The forecast horizons quantify the ability of the VD model
to produce “good” forecasts, without data assimilation. . . . . . . . . . . . . 91

2.7 Bifurcation analysis of the VD model simulated abundances of the two predator,
P1 and P2, and two prey, Z1 and Z2, species for t ∈ [X,X] and initial
state, x0 = {P1, P2, Z1, Z2} = {0.28, 0.50, 0.14, 0.18} as a function of the prey
coefficient α: (A) Bifurcation diagram that displays the local minima and
maxima in the fluctuations of the phytoplankton abundances, P1, at different
values of α; Time series plot of simulated abundances for (B) α = 0.1, (C)
α = 0.3, and (D) α = 1.4. All other VD model parameters were kept constant
at their WAVE values listed in Table 1. The bifurcation plot was generated
with the GRIND Matlab package (http://www.sparcscenter.org/grind). 94

2.8 Bifurcation analysis of the VD model simulated abundances of the two predator,
P1 and P2, and two prey, Z1 and Z2, species for t ∈ [X,X] and initial
state, x0 = {P1, P2, Z1, Z2} = {0.28, 0.50, 0.14, 0.18} as a function of the
predator coefficient β: (A) Bifurcation diagram that displays the local minima
and maxima in the fluctuations of the simulated phytoplankton abundances,
P1, at different values of β; Time series plot of simulated abundances for
(B) β = 0.001, (C) β = 0.15, and (D) β = 0.4. All other VD model
parameters were kept constant at their WAVE values listed in Table 1. The
bifurcation plot was generated with the GRIND Matlab package (http://
www.sparcscenter.org/grind). . . . . . . . . . . . . . . . . . . . . . . . . . 95

xi

http://www.sparcscenter.org/grind
http://www.sparcscenter.org/grind
http://www.sparcscenter.org/grind
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3.6 Outputs from CLM4.5(ED) for mortality, or the fraction of each trees that die
in each year. Figures show the outputs for the various tree sizes considered,
including small (diameter < 10 cm), medium (10 cm < diameter < 50 cm),
and large trees (diameter > 50 cm). Shown are the mean simulation (black
line) with 95% confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . 119

3.7 Sensitivity index of the model parameters (1st order) for the mortality outputs
of CLM4.5(ED) (outputs for mortality are in units [% yr−1] since the fraction
of dead trees was considered for this analysis). The sensitivity values shown in
this figure reflect parameter influence on the mortality outputs that calculated
as the fraction of dead trees in each category, rather than the number of
dead trees in each category. Also shown are sensitivities of the remaining
parameters (’1st order - Other Pars’) as well as the sensitivity of parameter
interactions (’2nd order - All Pars’). . . . . . . . . . . . . . . . . . . . . . . . 120

3.8 Outputs from CLM4.5(ED) model include GPP, NPP, LAI, and biomass.
Shown are the mean simulation (black line) with 95% confidence intervals.
The system is initialized with a bare ground, and this is shown with initial
values of 0 for the different outputs. . . . . . . . . . . . . . . . . . . . . . . . 122

3.9 Sensitivity index of the model parameters (1st order) for the outputs of interest,
including CLM4.5(ED) outputs of GPP, NPP, TLAI, and biomass (units for
each output are shown in Fig. 7). Also shown are sensitivities of the remaining
parameters (’1st order - Other Pars’) as well as the sensitivity of parameter
interactions (’2nd order - All Pars’). . . . . . . . . . . . . . . . . . . . . . . . 124

3.10 Relations between the most sensitive parameters (Vc,max25, storage carbon, leaf
and stem allocation) to outputs of CLM (i.e. GPP, NPP, TLAI, and biomass)
at years 10 and 130 of the simulations. Shown are the mean relations, with the
95 % confidence interval in grey envelopes. These figures show how an output
will generally increase or decrease when a given parameter is changed. For
example, the relation between the photosynthetic parameter (Vc,max25) and all
the outputs were positive, as is the case with storage carbon parameter. . . . 126

3.11 Impact of stem allometry on basal area (BA) distribution across trees of
different sizes. The figure shows results for the simulations years 100-130,
and the 95% uncertainty of these relations. . . . . . . . . . . . . . . . . . . . 131

3.12 Impact of stem allometry on tree diameter growth (dDBH). The values in
the figures are normalized by the expected value at lowest stem allometry
coefficient c. The red curve are used for small trees, blue for medium trees,
and black for large trees. The figure shows results for the simulations years
100-130, and the 95% uncertainty of these relations. . . . . . . . . . . . . . . 131

3.13 Outputs from CLM4.5(ED) for tree density, or the number of trees per area
(NPLANT). Figures show the outputs for the various tree sizes considered,
including small (diameter < 10 cm), medium (10 cm < diameter < 50 cm),
and large trees (diameter > 50 cm). Shown are the mean simulation (black
line) with 95 % confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . 132

xiii
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In 2013, the World Meteorological Organization (WMO) urged the global community

for coordinated international action against accelerating and potentially devastating climate

change. Preliminary data indicated that CO2 levels increased more between 2012 and 2013

than during any other year since 1984, and this was possibly related to reduced uptake

by the Earth’s biosphere in addition to the steadily increasing emissions from the Earth’s

surface. In the upcoming decades, it will be critical for scientists and policy makers to

not only resolve the problem of carbon emissions by assessing human behavior, but also

to understand as thoroughly as possible the underlying coupled processes of the Earth’s

atmosphere and biosphere in order to adequately measure and estimate the fluxes of carbon,

water, and energy that are dictating the climatic trends we observe today. Fortunately, our

ability to understand Earth’s processes and predict climate change is improving.

This thesis covers a suite of environmental models and numerical methods to disentangle

information found both in observed data as well as model simulations. Various methods

are applied such as parameter estimation with Markov Chain Monte Carlo (MCMC), state

estimation with data assimilation using the Ensemble Kalman Filter (EnKF), and sensitivity

analysis of model parameters using the Fourier Amplitude Sensitivity Test (FAST), which all

in one way or another offer treatments to predictive uncertainty. Furthermore, applying these

methods on more sophisticated and complex models can be impossible sometimes due to their
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high CPU costs; in this thesis model emulators are built using Polynomial Chaos Expansion

(PCE) to reduce the computational burden for various environmental models. Overall, our

goal in this dissertation is to present what tools are currently available for making predictions

of environmental systems, with emphasis on maintaining accuracy of model simulations when

compared to observed data, optimizing the efficiency of computationally heavy models to

minimize their run time costs, and obtaining fidelity of model structures to properly represent

the underlying hydrologic, biophysical, and biogeochemical processes occurring on our Earth.
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This book chapter summarizes the main elements of Bayesian probability theory to help reconcile

dynamic environmental system models with observations, including prediction in space (interpolation),

prediction in time (forecasting), assimilation of data, and inference of the model parameters.

Special attention is given to the treatment of parameter uncertainty (first-order approximations

and Bayesian intervals), the prior distribution, the formulation of the likelihood function (using

first-principles), and sampling techniques used to estimate the posterior target distribution.

1.1 Introduction and Scope

The Earth is the densest planet in our solar system and the only astronomical object known to

man-kind to harbor life. About 71% of the Earth’s surface is covered with water, and the remaining

29% constitutes land mass made up of continents and islands dissected by rivers, lakes, and other

sources of water that contribute to the hydrosphere. The large scale motion of the Earth’s outermost

shell (lithosphere), composed of several tectonic plates which float on a hotter, softer layer in the

mantle (asthenosphere), has created mountain ranges and volcanic activity on plate boundaries.

Co-evolution and juxtaposition of these topographic features with climatic and geologic variations

have resulted in a highly diverse landscape with large variations in soils, vegetation, geomorphology,

and biota (biosphere). These landscapes can be conceived as a series of large and small ecosystems,

nested within one another in a hierarchy of spatial scales.

Ecosystems constitute a complex network of living organisms, which are interconnected and

linked together with the abiotic environment through a myriad of interrelated physical, chemical and

biological processes operating at or near the Earth’s surface. Many of these processes are difficult,

costly, labor intensive, and/or unethical to measure directly in the field, particularly at large spatial

scales. This daunting complexity has stimulated researchers in many different fields of study to

explore the use of mathematical modeling to mimic the behavior of complex systems. Computer

models are particularly useful to gain (new) insights and understanding of system functioning and

to predict behavior into the space (interpolation) and time (forecasting) domain. The capabilities

of such models exceed by far traditional paper-and-pencil calculations and can involve simulations

2



on spatial scales of individual atoms to the entire ecosystem, and temporal scales of nanoseconds

to many millions of years. Examples include numerical weather prediction models, astrophysical

and cosmological simulations of dark matter, computational modeling of the brain, and spatially

distributed simulation of environmental systems. The CPU-time of these simulations can vary from

less than a second for simple dynamic models with fixed (integration) time step up to many hours of

calculation for spatially explicit models involving multidimensional numerical solution of (systems

of) differential-algebraic or ordinary/partial differential equations.

The model building process is strongly influenced by perception, intuition, and prior knowledge

on system functioning and reality, and colored by mental concepts (state of mind). From countless

processes and mechanisms, the modeler seeks to isolate, detect, and generalize into laws those

key principles that explain the observed data. Their selection and translation to a mathematical

model is the most critical, difficult, and subjective part of modeling. To guard against the use of an

inadequate model, statisticians advise selecting the ”best” model among a set of plausible candidate

models chosen and/or construed by the researcher(s). This approach rules out model selection

bias and recognizes explicitly the ambiguity in the interpretation and analysis of complex natural

systems. The ensemble of models, or hypotheses, constitute a finite sample of possible explanations

of the data deemed plausible a-priori from the extremely large, perhaps even incomprehensible,

space of alternatives. This can include black-box, conceptual (empirical), and physically-based

models and involve widely different mechanisms of the spatio-temporal processes that determine

system behavior and response. Each of these models might be as justifiable as the other (Clark

et al., 2011; Vrugt and Robinson, 2007b; Ye et al., 2008).

Figure 1.1 provides a schematic overview of most important sources of uncertainty that affect

our ability to mimic perfectly complex dynamical systems. These sources of uncertainty have

been discussed extensively in the literature, and many different (non)statistical methods have been

developed to quantify parameter, calibration data, model output and state variable uncertainty.

Model structural errors (4: epistemic error) have received relatively little attention, yet are key to

learning and scientific discovery (Gupta et al., 2008; Vrugt et al., 2005; Vrugt and Sadegh, 2013).
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1.2 Model Calibration

Consider a n-vector of measurements, Ỹ = {ỹ1, . . . , ỹn} observed at discrete times t = {1, . . . , n}

that summarizes the response of an environmental system = to k temporally-variant control inputs,

B = {b1, . . . ,bn}, with column elements, bt = {bt1, . . . , btk}. We use a computer model, M(·), to

explain the observed data

Ỹ←M(θ,x0, B̃) + E, (1.1)

where θ = {θ1, . . . , θd} is the d × 1-vector of model parameters, x0 stores the values of the state

variables at the start of simulation, B̃ signifies the k×n control matrix with temporal measurements

of the forcing variables, and E = {e1, . . . , en} is a vector of residuals. The index t for time takes on

strictly positive integer values in the remainder of this Chapter, t ∈ {1, . . . , n} ∈ N+, yet may take

on real values, t ∈ (0, n] ∈ R+ in the actual system model, M(·), to resolve for continuous-time

processes, wherein the simulated output at t = 0 is defined completely by x0.

The model in Equation (1.1) simplifies considerably the description of the spatially distributed

real-world system, into a lumped topology consisting of much fewer, and discrete, entities. This

simplification is computationally convenient in that it reduces to a finite dimension the state space

of the system, and the partial differential equations of the continuous time and space domain of

the physical system into ordinary differential equations with much fewer parameters. If deemed

appropriate, a spatially explicit can be used instead with control vector, b, formulated as a two- or

three-dimensional matrix to account explicitly for spatially-varying boundary conditions. Without

further loss of generality, we restrict the model parameters to a closed space, Θ, equivalent to a

d-dimensional hypercube, θ ∈ Θ ∈ Rd, called the feasible parameter space. The n-vector of error

residuals, E, thus depends on the assumed model, M, and its associated parameters, initial states

and forcing data, hence

EM(θ,x0, B̃) = Ỹ−YM(θ,x0, B̃) (1.2)

where YM(θ,x0, B̃) signifies the simulated output of the model, M.

For the time being, lets make the convenient assumption thatMmimics perfectly the underlying
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system, =, it is intended to represent. Lets further assume that the forcing data are observed

without measurement error, δ(B, B̃) = 0, and that errors in the initial states, x0, pose no harm

as their impact on the simulated output, Y, diminishes rapidly with advancing time. This latter

assumption is certainly appropriate for real-world systems controlled by negative (or degenerative)

feedback. A prime example of negative feedback is the thermostat. If room temperature drops

below a reference value, the furnace will supply heat and restore the temperature to ”normal”. This

cooling-warming cycle thus regulates room temperature. Similar degenerative interactions are found

among processes that control the rainfall-runoff transformation in a watershed. Surface runoff,

overland flow, evaporation, infiltration, transpiration, drainage, and recharge (among others), act

together to remove excess precipitation, thereby promoting convergence of the soil moisture status

to a stable state. The existence of such equilibrium state is easily verified in practice using repeated

numerical simulation with a watershed model using different values of the initial states. This

equilibrium state does not exist for systems whose behavior is regulated by positive feedback as small

perturbations to the initial states can lead to widely different responses of the model via exponential

growth, oscillation or chaotic behavior. For systems with negative feedback, a spin-up period of Q

days therefore suffices to promote stability and ameliorate the effect of state initialization errors on

the model output, lim
t→Q

δ
(
yt(x̃0), yt(x0)

)
→ 0.

For systems with generative (negative) feedbacks, the error in the initial states poses no harm

as its effect on system simulation rapidly diminishes when time advances. One can therefore take

advantage of a spin-up period to remove sensitivity of the modeling results (and error residuals) to

state value initialization.

The assumptions of perfect model, input data, and initial states (due to spin-up period) are

common to environmental modeling. This ideal case leaves as our only ”unknowns” the model

parameters. The residual vector can thus be written as

E(θ) = Ỹ−Y(θ) = {e1(θ), . . . , en(θ)}, (1.3)

and necessitates inference on θ to minimize the n-vector of residuals, E(θ).

Figure 1.2 shows an overview of the model calibration problem. The prior values of the
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parameters provide a simulation (gray line) that mimics reasonably well the transient behavior

of the system (blue dots), yet underestimates systematically the peaks and recession periods. A

subsequent trial of the parameter values much better explains (green line) the observed data. Model

calibration now involves the searching of the parameter values that mimic ”best” the observed

system response. The calibrated model can then serve a host of different purposes such as process

analysis, evaluating different management strategies, and prediction of system behavior into the

space and/or time domain. These tasks can only be completed with confidence if the physical

system of interest and its control inputs (forcing variables) satisfy ”constancy”. This stationarity

assumption is rather convenient and opens up the wide arsenal of (multivariate) statistical and

nonlinear optimization methods for inference of the model parameters (Sadegh et al., 2015). Note,

per scope of this book, we will focus primarily on hydrologic models with output calibration targets

such as river discharge and soil moisture content.

The word ”best” appears purposely quoted in the previous paragraph as much research has

shown that there is no unambiguously correct way in which to determine unique model parameters.

Indeed, the ”optimal” parameter values are dependent critically on the assumptions that are made

with respect to the different error sources of Figure 1.1. In the ideal case (perfect model, input

data and initial states), the sum of squared residuals (SSR)

min
θ∈θ

F (θ) =

n∑
i=1

ei(θ)2, (1.4)

provides unbiased and minimum-variance estimates of the parameters when the measurement

errors of the calibration data, Ỹ, are homoscedastic (constant variance) and serially (temporally)

uncorrelated. This is also referred to as the least squares solution. Visually, this solution minimizes

the sum of squared vertical distances between the n-vector of data points, Ỹ and the corresponding

simulated values, Y(θ), of the model. The lower the value of the SSR the better the model

fits the data. When the measurement errors are believed to have a nonconstant variance, the

heteroscedastic maximum likelihood estimator (HMLE) can be used (Sorooshian and Dracup,

1980). Other commonly used metrics in hydrologic model calibration include the coefficient of

6



determination, the index of agreement, and the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970),

although these metrics are not rooted in statistical theory.

In Equation (1.4) the function F (θ) is also called the objective function. This function lumps

the n-residuals of the vector E(θ) into a single aggregate measure of model-data mismatch, and this

measure is subsequently minimized (or maximized, if appropriate) with an optimization algorithm.

This constitutes the field of constrained optimization, that is,

arg min
θ∈Θ

F (θ), (1.5)

where the goal is to find the optimum parameter values as rapidly as possible using the smallest

number of model evaluations. The constraints are equivalent to the lower and upper bounds of the

parameters, and ensure that the optimum parameter values reside in the feasible parameter space,

θ. The choice of objective function, however remains a rather intricate and difficult task, fraud

with subjective assumptions regarding model structural, control data, and calibration data errors.

Optimization algorithms provide an estimate of the ”best” parameter values that minimize

(maximize) some predefined objective function, F (θ). It would be naive, however to rely on such

single unique estimate of the parameters in the presence of epistemic uncertainty and measurement

errors of the control input and calibration data. Indeed, practical experience suggests that it is

typically difficult to find a single ”best” vector of parameter values, whose performance obviates

consideration from other feasible solutions. It is therefore of paramount importance to investigate

and delineate properly the space of feasible solutions. This is key to (among others) analysis of

parameter identifiability and quantification of the uncertainty associated with the simulated model

output.

1.3 Parameter Uncertainty: First-order Approximation

Per statistical theory, we can approximate the confidence intervals of the parameters by centering

around the d×1-vector of optimum parameter values, θ∗, a d-variate normal distribution,Nd
(
θ∗,C(θ∗)

)
,

with d× d covariance matrix C evaluated at θ∗. The probability density function, P (θ|Ỹ), of this
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multivariate Gaussian is given by

P (θ|Ỹ) = (2π)−
d
2 |C(θ∗)|−

1
2 exp

(
−1

2
(θ− θ∗)TC(θ∗)−1(θ− θ∗)

)
, (1.6)

where | · | signifies the determinant operator, and T denotes transpose. The symbol ” | ” in

P (θ|Ỹ) characterizes conditional probability, and conveys that the distribution of Equation (1.6)

is conditioned on the observed data, Ỹ. Note that Equation (1.6) reduces to the univariate normal

distribution if C(θ∗) is a 1×1 matrix (scalar). The d×d covariance matrix, C(θ∗), can be derived

from the model parameter sensitivity matrix, JM(θ∗) as follows

C(θ∗) = σ2
E

(
JM(θ∗)TJM(θ∗)

)−1
, (1.7)

where σ2
E = SSR/(n− d) denotes the variance of the residuals, and the symbol −1 signifies matrix

inverse. The transpose operator acting on the first of two JM(θ∗)’s (term between brackets)

enforces equal inner and outer dimensions of n and d, respectively, so that the matrix product

produces, after inversion and multiplication with σ2
E, the d× d covariance matrix, C(θ∗).

The n×d Jacobian matrix, JM(θ∗), stores the first-order partial derivatives of the model output

with respect to each of the parameters

JM(θ∗) =
∂M(θ∗)

∂θ∗
=
[
∂Y(θ∗)
∂θ1

· · · ∂Y(θ∗)
∂θd

]
=


∂y1(θ∗)
∂θ1

· · · ∂y1(θ∗)
∂θd

...
. . .

...
∂yn(θ∗)
∂θ1

· · · ∂yn(θ∗)
∂θd

 . (1.8)

The jth column of JM(θ∗), thus stores the sensitivity of the n elements of the model output

Y = {y1, . . . , yn} to the jth parameter. These columns are also referred to as basis functions. For

models whose output Y depends linearly on the values of the parameters, the d basis functions of

JM(θ∗) can be derived analytically. In fact, these basis functions will be constant and independent

of θ, hence the first-order approximation of C in Equation (1.7) will be exact. For all other

models, the different basis functions cannot be derived by analytical means nor by analytical

approximation, and numerical simulation is required to approximate the Jacobian matrix. For
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instance, we can approximate the first column of the sensitivity matrix, ∂Y(θ∗)/∂θ1, by perturbing

the first parameter with a quantity, ∆θ1 and calculating the resulting change in model output from

the default (optimal) simulation with θ∗

∂Y(θ∗)

∂θ1
=

∆Y(θ∗)

∆θ1
≈

Y({θ∗1 + ∆θ1, . . . , θ
∗
d})−Y({θ∗1, . . . , θ∗d})

∆θ1
. (1.9)

This recipe is repeated for the other d − 1 parameters (columns) of JM(θ∗). Equation (1.9)

uses a one-sided interval to approximate the partial model derivatives. More accurate results will

be obtained if a two-sided interval is used with −∆θ1 and ∆θ1, yet this doubles the number of

simulations.

For models with valid basis functions, the first-order approximation of Equation (1.6) constitutes

an exact description of the parameter uncertainty. For all other models with invalid basis functions,

the first-order approximation is only an approximation of the actual parameter uncertainty. This

approximation can be deficient if the covariance matrix varies considerably over the domain of θ

for which there is significant uncertainty. This is more the rule than the exception for nonlinear

system models, particularly when the actual P (θ|Ỹ) distribution exhibits is poorly described by

a multivariate normal distribution due to the presence of multimodality, local minima, and strong

nonlinear parameter interactions. What is more, P (θ|Ỹ) can be truncated by the prior distribution.

1.4 Bayesian Inference

Bayesian inference allows for an exact description of parameter uncertainty (and other sources of

uncertainty) by treating the parameters (and nuisance variables) as probabilistic variables with

joint posterior probability density function, P (θ|Ỹ). This multivariate distribution, the so-called

posterior parameter distribution, is the consequence of two antecedents, a prior distribution which

captures our initial degree of beliefs in the values of the model parameters, and a likelihood function

which quantifies by the rules of probability theory the level of confidence ( = conditional belief) in

the parameter values, θ, in light of the observed data, Ỹ, alone. Bayes’ theorem (also referred to
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as Bayes’ law or Bayes’ rule) expresses mathematically, and in a simple formula, the fundamental

relationship between the prior, conditional, and posterior (= updated) beliefs of the parameters.

The theorem is named after the English statistician, philosopher, and Presbyterian minister Thomas

Bayes (1701-1761), who formulated the solution in written notes. These ideas were not published

until two years after Bayes’ death, when his work on inverse probability emerged posthumously in

the Philosophical Transactions of the Royal Society of London in the masterwork ”An Essay towards

solving a Problem in the Doctrine of Chances” (Bayes and Price, 1763). In this publication, Bayes’

relates the ”direct” probability of a hypothesis conditional on some body of data to the ”inverse”

probability of the data conditional on the hypothesis (nowadays referred to as likelihood).

Bayes’ theorem can be derived from the basic axioms of probability, specifically conditional

probability, and reads in our application

P (θ|Ỹ) =
P (θ)P (Ỹ|θ)

P (Ỹ)
, (1.10)

where P (θ) and P (θ|Ỹ) signify the prior and posterior parameter distribution, respectively, and

L(θ|Ỹ) ≡ P (Ỹ|θ) denotes the likelihood function. The model evidence, P (Ỹ) (or marginal

likelihood) acts as a normalizing constant (scalar)

P (Ỹ) =

∫
Θ
P (θ)P (Ỹ|θ)dθ =

∫
Θ
P (θ)L(θ|Ỹ)dθ =

∫
Θ
P (θ, Ỹ)dθ, (1.11)

so that the posterior distribution integrates to unity over the prior (feasible) parameter space,

θ ∈ Θ ∈ Rd. Knowledge of p(Ỹ) is strictly necessary for hypothesis testing to select the most

plausible model of the real-world system = from a set of different models deemed valid a-priori. We

will briefly discuss the topic of model selection in this chapter. For now, we suffice to say that the

evidence of a model is largest, if its data likelihood is high relative to other models and distributed

uniformly over the prior parameter space, θ. The evidence estimates can also serve as weights to

average the simulations of the different models, as in Bayesian model averaging.

If we rely on a single hypothesis,M(·), of the system = of interest, then the denominator, P (Ỹ)

in Equation (2.4), is of no particular interest as all statistical inferences about the parameters of
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M(·) can be made from the unnormalized posterior distribution

P (θ|Ỹ) ∝ P (θ)L(θ|Ỹ) (1.12)

The proportionality sign conveys that the posterior density of the unnormalized distribution is

an unknown multiple (scalar) of the normalized density. This might be confusing, yet consider a

empirical histogram of M = 1000 independent observations of some variable of interest. Whether

we use for each bin units of frequency, relative frequency ( = frequency/M) or probability density

(histogram integrates to one), the 95% confidence intervals of the variable are unaffected. Thus,

our inferences of the parameters are protected against linear transformations of the density.

Numerical implementation of the Bayesian paradigm in Equation (1.12) requires the user to

specify a prior parameter distribution, P (θ) and the likelihood function, L(θ|Ỹ). The next two

sections review these two antecedents.

1.4.1 The Prior Distribution

The prior distribution should encode all the ”subjective” knowledge about the parameters, θ, before

collection of the data, Ỹ. This distribution, often simply called the prior, expresses one’s beliefs

about the parameters before the data (also referred to as evidence) is taken into account. The work

by Berger (2013) describes up to ten different techniques to construct the prior distribution.

In general, a prior distribution can be construed on the basis of findings reported in the

literature or other publications, past experimental data collected in the laboratory or field, or

other direct and indirect information. This can include ”soft” data based on qualitative knowledge

and understanding of processes and/or system behavior. A prior can also be elicited from expert

judgment, or guided by principles of symmetry (scale invariance) or information-theoretical arguments

(maximum entropy). Examples of the latter include a Jeffreys prior (Jeffreys, 1946) and the

reference prior (Berger et al., 2009; Bernardo, 1979). Finally, for certain choices of the prior

distribution, the posterior distribution has the same algebraic form, possibly with different parameter

values. For example, if the likelihood function is Gaussian, then a normal prior over the mean will
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ensure that the posterior distribution is also Gaussian. Such priors, also called conjugate priors,

can thus be deliberately chosen in lieu of analytical tractability. This avoids the need for numerical

approximation of the posterior distribution using sampling methods (more of which later).

Prior distributions can be classified as informative or uninformative (or noninformative) depending

on their information content for the model parameter or entity of interest. Figure 1.3 portrays

graphically the two different types of prior distribution for some hypothetical model with just a

handful of unknown parameters. Also shown is their anticipated effect on the marginal posterior

distribution of the first parameter for a fixed likelihood function.

The uninformative prior expresses vague and general information about a variable. All its

values are deemed equally likely a-priori. Yet, an uninformative prior can communicate objective

information on the ranges of the quantity of interest. The classification ”uninformative” is therefore

somewhat of a misnomer, instead the wording diffuse prior might seem more appropriate. An

informative prior expresses specific, or definite, information about a variable of interest. Such

distribution voices preference to certain values of the parameter. The effect of this is visible on

the posterior distribution as it appears more condensed with a informative prior than with a

uninformative prior distribution. This is not always the case, certainly not if the prior distribution

and the likelihood function are in disagreement on the statistical distribution of the parameters.

The uninformative prior is also referred to as flat or uniform prior.

For the time being, we assume conveniently the use of a multivariate uniform prior distribution,

Ud(a,b), where a and b are d-vectors with lower and upper bound values of the d parameters of θ,

respectively

P (θ)
D∼ Ud(a,b), (1.13)

where the vectors a and b are defined by the d-dimensional hypercube, θ, or aj = min(Θj) and

bj = max(Θj) where j = {1, . . . , d}. The density of the uninformative prior distribution, P (θ), in

Equation (1.13) is constant and independent of θ.

The use of a multivariate prior distribution is appropriate when all the different parameters

of the model have a similar marginal prior distribution. Examples of such priors include the
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multivariate Gaussian, Nd(·), the multivariate uniform, Ud(·), the multivariate Student, Td(·), the

multivariate Gamma, and the Wishart distribution. All these constitute informative priors - with

the exception of Ud(·) (of course one can make each of these distributions almost flat by using

infinitely large parameter variances). One of the advantages of a multivariate prior is that they can

honor explicitly (linear) correlations among the model parameters (as off-diagonal terms in d × d

covariance matrix). A disadvantage is that they assume the same type of marginal distribution

for each of the parameters. This might not be appropriate for multivariate cases with differing

individual priors. As alternative, we could use a different univariate distribution, P (θj) ∼ X (·),

for each of the parameters, j = {1, . . . , d}. This univariate approach enhances considerably our

freedom in picking suitable marginal prior distributions, yet assumes parameter independence. The

joint density of P (θj)’s is therefore equivalent to the product of their individual densities, P (θ) =

P (θ1) × · · · × P (θd). This approach allows using at the same time informative and uninformative

prior distributions. For the uniform case of Equation (1.13) the joint density can be written as

P (θ) = P (θ1)× . . .× P (θd) = c1 × . . .× cd ∝ 1 (1.14)

where each constant, ci; i = {1, . . . , d}, is equivalent to the reciprocal of the range of each parameter.

This ensures that the prior distribution, P (θ), integrates to one,
∫
Θ P (θ) = 1, and as such is a

formal probability distribution. The effect of normalization is clearly visible in Figure 1.3 wherein

the larger support of the uninformative (uniform) prior distribution (on right) is counteracted by

a density that is much smaller than that of the informative Gaussian distribution (on left). In

practice, however we are allowed to work with ”improper” priors that do not integrate to unity, as

long as we are focused solely on inference of the model parameters. For multiple different working

hypotheses, the prior must integrate to one, otherwise the marginal likelihood, P (Ỹ) is corrupted

and we cannot proceed with model selection.

1.4.2 The Likelihood Function

Now the prior distribution has been defined, we are left with the definition of the likelihood function,

L(θ|Ỹ). This function summarizes, in a probabilistic sense, the compatibility of the n observed
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data, Ỹ, and the n model output, Y = M(θ) simulated by the parameter values, θ. Likelihood

functions play a key role in statistical inference, and the word ”likelihood” is used often as synonym

for ”probability” - yet, in practice the word probability is appropriate when describing possible

future outcomes for fixed parameter values before data are available. The use of likelihood, on the

contrary, is appropriate to describe a function of a parameter vector for a given outcome after data

are available. If we want to quantify the likelihood of an outcome b in light of some observation, a,

then we need to define a probability density function, fa(b), for the entity a. For example, if fa(b) is

a normal distribution, fa(b) ∼ N (a, c) then we can calculate the density of this distribution at our

outcome b once the (measurement error) variance c of the observation a is known. This computation

of the likelihood is easily generalized to a vector of observations, and leaves us with n likelihoods of

Y(θ) evaluated at Ỹ using the different distributions of fỹj (yj), where j = {1, . . . , n}. In practice,

it is more insightful to express the likelihood as a function of the residuals, E(θ), instead rather

than the observed and simulated values. This does not affect the actual likelihood values, except

centers fa(b) on a = 0 and uses as entry the residual, b = a − b, between the observation and

outcome. We therefore use instead the notation f
(
ej(θ)

)
in the remainder of this paper.

We cannot proceed further without making some important assumptions regarding the dependence

structure of the n different residuals (and thus likelihoods). For the time being we assume conveniently

that the residuals are serially uncorrelated. Then the joint likelihood, L(θ|Ỹ), can be written in

multiplicative form as follows

L(θ|Ỹ) = f
(
e1(θ)

)
× . . .× f

(
en(θ)

)
=

n∏
t=1

f
(
et(θ)

)
, (1.15)

where f(b) signifies the zero-mean probability density function evaluated at b. If serial correlation

is expected among the residuals, then this can be explicitly accounted for with an autoregressive

model of the residuals in the computation of the joint probability density of the n different ”events”

(likelihoods). The first and/or higher-order correlation coefficients of this model are commonly

unknown and join as nuisance variables the inference of θ. The likelihood then acts on the

decorrelated residuals. We will revisit serial dependence of the residuals in a later part of this
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section. Note, that this approach reduces automatically to Equation (1.15) when the autocorrelation

coefficients take on values of zero.

Now we have an expression for the joint likelihood of the residuals (and thus parameters, θ)

we need to make an assumption regarding the statistical distribution of the different fs. In the

ideal case with a perfect model, input data, and initial states, we certainly expect the residual

distribution to match perfectly the distribution of the measurement errors of the system response,

Ỹ. A typical assumption is that these measurement errors follow a Gaussian distribution, N (0, σ̂2)

with constant variance σ̂2 - and thus f
(
ej(θ)

) D∼ N (0, σ̂2) ∀j ∈ {1, . . . , d}. If we substitute N (0, σ̂2)

in Equation (1.15) then the joint likelihood of the n residuals is simply equivalent to the product

of n normal densities

L(θ|Ỹ, σ̂2) =

n∏
t=1

1√
2πσ̂2

exp

[
−1

2

( ỹt − yt(θ)

σ̂

)2
]
. (1.16)

Mathematics teaches us that

n∏
t=1

1

a
= a−n and

n∏
t=1

exp(−at) = exp

(
−

n∑
t=1

at

)
(1.17)

so we can simplify Equation (2.5) to read

L(θ|Ỹ, σ̂2) = (
√

2πσ̂2)−n exp

(
−1

2
σ̂−2

n∑
t=1

(
ỹt − yt(θ)

)2)
, (1.18)

where the summation term in the exponent is equivalent to the SSR used commonly as objective

function, F (θ), in model calibration. The better the model fits the data, the larger the value of

the joint likelihood, L(θ|Ỹ, σ̂2) in Equation (2.5). The vector of parameter values that maximizes

the likelihood function is also referred to as maximum likelihood (ML) solution.

The formulation of the likelihood function of Equation (2.5) can suffer from arithmetic underflow,

that is, finite multiplication can result in a number that is so close to zero that the computer cannot

store this in memory. This can already happen for relatively small n, say n = 500, particularly if the
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model describes poorly the observed data, and the residuals are large compared to the measurement

error standard deviation, |et(θ)| � σ̂ for many elements t ∈ {1, . . . , n}. For reasons of numerical

stability it is therefore convenient to work with the log-likelihood, L(θ|Ỹ, σ̂2) instead

L(θ|Ỹ, σ̂2) = −1

2
n log(2π)− 1

2
n log(σ̂2)− 1

2
σ̂−2

n∑
t=1

(
ỹt − yt(θ)

)2
. (1.19)

This log-likelihood formulation is arguably also easier to interpret algebraically. The value of σ̂2

can be defined a-priori by the user or alternatively its value can be inferred simultaneously with the

parameters, θ. As last resort we can ”integrate out” the measurement error variance in Equation

(1.19) using as proxy for σ̂2 the variance s2 of the error residuals

s2 =
1

n− 1

n∑
t=1

(
ỹt − yt(θ)

)2
. (1.20)

We can substitute for σ̂2 the sufficient statistic s2. This gives us

L(θ|Ỹ) = −1

2
n log(2π)− 1

2
n log

(
1

n− 1

n∑
t=1

(
ỹt − yt(θ)

)2)

− 1

2

n∑
t=1

(
ỹt − yt(θ)

)2
1

n−1

∑n
t=1

(
ỹt − yt(θ)

)2 , (1.21)

and with log(ab) = log(a) + log(b) this results in

L(θ|Ỹ) = −1

2
n log(2π)− 1

2
n log

(
1

n− 1

)
− 1

2
n log

(
n∑
t=1

(
ỹt − yt(θ)

)2)

− 1

2
(n− 1). (1.22)

A further simplification of

1

2
n log

(
1

n− 1

)
=

1

2
n (log(1)− log(n− 1)) = −1

2
n log(n− 1) (1.23)
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leads to

L(θ|Ỹ) = −1

2
n log(2π) +

1

2
n log(n− 1)− 1

2
n log

(
n∑
t=1

(
ỹt − yt(θ)

)2)− 1

2
(n− 1) (1.24)

We can safely discard those terms from Equation (1.24) that are independent of θ. These terms

are normalization constant of L(θ|Ỹ). This includes the first, second and fourth term at the

right-hand-side, respectively. Without these constants the log-likelihood function reads

L(θ|Ỹ) ∝ −1

2
n log

(
n∑
t=1

(
ỹt − yt(θ)

)2)
(1.25)

and the proportionality sign is used as expression for the unnormalized likelihood. This equation

is equivalent to

L(θ|Ỹ) ∝ log

(
n∑
t=1

(
ỹt − yt(θ)

)2)− 1
2
n

. (1.26)

If we are interested in the actual likelihood, L(θ|Ỹ), we end up with

L(θ|Ỹ) ∝

(
n∑
t=1

(
ỹt − yt(θ)

)2)− 1
2
n

, (1.27)

which is similar to

L(θ|Ỹ) ∝
n∑
t=1

|ỹt − yt(θ)|−n (1.28)

If we now apply Bayes theorem, P (θ|Ỹ) ∝ P (θ)L(θ|Ỹ), and assume a uniform prior distribution

of the parameters, then the posterior density is equivalent to

P (θ|Ỹ) ∝
n∑
t=1

|ỹt − yt(θ)|−n (1.29)

This concludes the derivation.

The derivation of Equation (1.29) assumes that the measurement errors of the system response

data, Ỹ exhibits a constant variance, σ̂2. This assumption might be appropriate for variables such
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as temperature and pressure which are known to have a homoscedastic measurement error. This

assumption, however is not justified for entities such as windspeed and discharge as the variance

of their measurement error increases with their magnitude. We can modify Equation (2.5) to take

into account a non-constant measurement error variance

L(θ|Ỹ, σ̂2) =
n∏
t=1

1√
2πσ̂2

t

exp

[
−1

2

( ỹt − yt(θ)

σ̂t

)2
]
, (1.30)

where σ̂
2 = {σ̂2

1, . . . , σ̂
2
n} denotes the n-vector of measurement error variances. The log-likelihood

of Equation (1.30) now becomes

L(θ|Ỹ, σ̂2) = −1

2
n log(2π)− 1

2

n∑
t=1

{log(σ̂2)} − 1

2

n∑
t=1

((
ỹt − yt(θ)

)2
σ̂2
t

)
. (1.31)

This allows for a different value of the measurement error variance for each observation of Ỹ.

Now lets imagine a situation in which the residuals E(θ) = Ỹ − Y(θ) = {e1(θ), . . . , en(θ)}

exhibit temporal correlation. This serial correlation, also known as autocorrelation, can exist

between values at different times, as a function of the two times, or of the time lag. Lets assume

conveniently that the residual mean, µE(θ), and variance, σ2
E(θ) are time invariant. Then, E(θ) is

a wide-sense stationary process, and the (auto)correlation of two residuals, ei(θ) and ej(θ), is a

function only of the time lag k = i − j between i and j (i ≥ j). The (auto)correlation coefficient,

ρ(k) ∈ [−1, 1] is then mathematically defined as follows

ρ(k) =
E[
(
et(θ)− µE(θ)

)(
et+k(θ)− µE(θ)

)
]

σ2
E(θ)

=

∑n−k
t=1

(
et(θ)− µE(θ)

)(
et+k(θ)− µE(θ)

)∑n−k
t=1

(
et(θ)− µE(θ)

)2 ,

(1.32)

where µE(θ) = 1
n

∑n
t=1 et(θ). A value of ρ(k) = 1 indicates perfect positive correlation, whereas a

value of ρ(k) = −1 signifies perfect anticorrelation. Two words of caution. First, the (auto)correlation

coefficient characterizes only linear relationships between the residuals. Second, the residual variance,

σ2
E(θ) must be stable (homogeneity assumption) and larger than zero.
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The value of ρ(k) is also referred to as the kth-order (auto)correlation, and can be depicted

graphically in a so called autocorrelation function (see Figure 2.3). The autocorrelation is particularly

significant at the first few lags, but then deteriorates rapidly at larger distances between the

residuals. Residuals that are more than k = 11 lags apart appear, on average, uncorrelated.

Thus, the temporal correlation, ρ(k), of the residuals depends only on the ”distance” between two

residuals and not on their actual position in the time series of E(θ).

We can take into explicit account serial correlation of the residuals in the derivation of the

log-likelihood function. For example, lets suppose that the residuals exhibit correlation at the first

lag, that is k = 1. We can write this serial correlation as an AR(1)-process

et(θ) = c+ φ1et−1(θ) + εt, (1.33)

where c signifies the bias, φ1 ∈ [−1, 1] is the first-order correlation coefficient, and εt denotes the

remaining errors, ε(θ) = {ε1, . . . , εn}, hereafter also referred to as the ”decorrelated” residuals. If

we assume that εt
D∼ N (0, σ̂2

t ), then the expectation E
[
et(θ)

]
= c/(1− φ1), and central dispersion

Var
[
et(θ)

]
= σ̂2/(1−φ2

1). To illustrate the effect of autocorrelation, please consider Figure 2.5 which

displays two different residual time series with (orange line) and without (green line) first-order

serial correlation. The differences between the two residual vectors are evident. The uncorrelated

residuals traverse randomly up and down the zeroth line (dotted gray line) and do not display

any ”collective” memory or consciousness. The correlated residuals, on the contrary, show a much

strong memory effect with neighboring residuals that take on very similar values.

Lets assume that the residuals do not exhibit a systematic bias, thus c = 0. Per Equation (1.33)

with c = 0 the values of εt are equivalent to

εt(θ, φ1) = et(θ)− φ1et−1(θ)

=
(
ỹt − yt(θ)

)
− φ1

(
ỹt−1 − yt−1(θ)

)
,

(1.34)

with Var
[(
ỹt − yt(θ)

)
− φ1

(
ỹt−1 − yt−1(θ)

)]
= Var

[
εt(θ, φ1)

]
= σ̂2. As we do not have available ỹ0

we cannot derive in a single step the log-likelihood function of the decorrelated residuals, ε. Instead,

lets ignore for now y1(θ) and focus on the last n−1 simulated values of Y(θ). Per Equation (1.31)
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the log-likelihood of {ε2(θ, φ1), . . . , εn(θ, φ1)} equates to

L(θ|{ỹ2, . . . , ỹn}, φ1, {σ̂2
2, . . . , σ̂

2
n}) = −1

2
(n− 1) log(2π)− 1

2

n∑
t=2

{log(σ̂2
t )}

− 1

2

n∑
t=2


((
ỹt − yt(θ)

)
− φ1

(
ỹt−1 − yt−1(θ)

))2

σ̂2
t

 . (1.35)

which is identical to

L(θ|{ỹ2, . . . , ỹn}, φ1, {σ̂2
2, . . . , σ̂

2
n}) = −1

2
(n− 1) log(2π)− 1

2

n∑
t=2

{log(σ̂2
t )}

− 1

2

n∑
t=2

(
ε2t (θ)

σ̂2
t

)
. (1.36)

We are now left with the log-likelihood of the first simulated value, y1(θ), of Y(θ). We know that

the Var
[
e1(θ)

]
= σ̂2

1/(1− φ2
1) and thus the log-likelihood of y1(θ) is

L(θ|ỹ1, φ1, σ̂
2
1) = −1

2
log(2π)− 1

2
log

(
σ̂2

1

(1− φ2
1)

)
− 1

2

((
ỹ1 − y1(θ)

)2
σ̂2

1/(1− φ2
1)

)
. (1.37)

As log(a/b) = log(a)− log(b) this equation can be rearranged and simplified to

L(θ|ỹ1, φ1, σ̂
2
1) = −1

2
log(2π)− 1

2
log(σ̂2

1) +
1

2
log(1− φ2

1)

− 1

2
(1− φ2)σ̂−2

1

(
ỹ1 − y1(θ)

)2
. (1.38)

The joint log-likelihood of the first-order correlated residuals, L(θ|{Ỹ, φ1, σ̂
2) is now equivalent to

the sum of L(θ|ỹ1, φ1, σ̂
2
1) and L(θ|{ỹ2, . . . , ỹn}, φ1, {σ̂2

2, . . . , σ̂
2
n}) which yields

L(θ|Ỹ, φ1, σ̂
2) = −1

2
n log(2π)− 1

2

n∑
t=1

{log(σ̂2
t )}+

1

2
log(1− φ2

1)

− 1

2
(1− φ2)σ̂−2

1

(
ỹ1 − y1(θ)

)2 − 1

2

n∑
t=2


((
ỹt − yt(θ)

)
− φ1

(
ỹt−1 − yt−1(θ)

))2

σ̂2
t

 . (1.39)
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This Equation reduces to the Gaussian likelihood function of Equation (1.31) if φ1 = 0, that is,

the residuals, e(θ), do not exhibit serial correlation. We can generalize further Equation (1.39) by

explicit treatment of bias in the residuals. We will not present this derivation herein as it follows

exactly the previous steps, except that c 6= 0. The log-likelihood becomes

L(θ|Ỹ, c, φ1, σ̂
2) = −1

2
n log(2π)− 1

2

n∑
t=1

{log(σ̂2
t )}+

1

2
log(1− φ2

1)

− 1

2
(1− φ2)σ̂−2

1

(
ỹ1 − y1(θ)− [c/(1− φ)]︸ ︷︷ ︸

E
[
e1(θ)

]
=c/(1−φ1)

)2

− 1

2

n∑
t=2


((
ỹt − yt(θ)

)
− c− φ1

(
ỹt−1 − yt−1(θ)

))2

σ̂2
t

 . (1.40)

This concludes the derivation of the different likelihood functions. The nuisance variables1 φ1,

c, and the n-vector of measurement error variances, σ̂
2, can be defined a-priori by the user, or

alternatively, their values can be inferred jointly with the parameters, θ. If the system response

data, Ỹ, exhibit heteroscedastic measurement errors then this could be a pitfall as the number of

unknown variables of σ̂2 grows linearly with n. A pragmatic remedy to this problem is to relate σ̂t

to the measured data, ỹt, using some predefined measurement error model

σ̂t = σ0 + σ1ỹt. (1.41)

where σ0 > 0 and σ1 ∈ [0, 1] are two unknown coefficients that define the intercept and slope of the

measurement error function. This approach reduces the number of nuisance variables to four, that

is, α = {σ0, σ1, c, φ1}. Nonlinear measurement error models can be used as well, whatever is deemed

appropriate in practice. The inference thus involves the estimation of the posterior distribution of

{θ,α} using the model, M(θ) and observed data, Ỹ.

1A nuisance variable is a random variable that is fundamental to the probabilistic model, but that is not
of particular itself.
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1.4.3 The Posterior Distribution

Now we have defined the prior distribution, P (θ), and the likelihood function, L(θ|Ỹ), we are

left with inference of the (unnormalized) posterior distribution, P (θ|Ỹ) ∝ P (θ)L(θ|Ỹ), which

summarizes our updated knowledge (belief) on the parameters, θ. Unfortunately, in most applications

of Bayes’ theorem the posterior distribution does not have a closed-form (compact) analytical

solution, and we have to resort to sampling methods to approximate the posterior distribution. The

underlying principles of this approach are explained in Figure 1.6 using a scatter plot of M = 160

samples drawn randomly from a bivariate normal distribution, N2(a,Σ) with mean a = {a1, a2}

and 2× 2 covariance matrix,

Σ =

[
σ2

1 0
0 σ2

2

]
.

As the off-diagonal entries of Σ are set to zero, the two parameters of the distribution, θ1 and

θ2, are independent, and consequently P (θ1) ∼ N (a1, σ
2
1) and P (θ2) ∼ N (a2, σ

2
2). The plotted

samples exhibit several key features. First, the scatter of points exhibits significant variations in

sampling density. The sample density is largest in the center of the cloud, and decreases slowly in

all radial directions away from this midpoint. Second, a circular pattern emerges of points with

equal sampling density. Third, the sampled points do not express a preferred orientation of θ1 and

θ2. The lack of linear dependence is exemplary for uncorrelated variables (parameters). Fourth, the

peaks of the inferred frequency distributions of θ1 (green line) and θ2 (blue line) are within the bins

of maximum sample density. This coincides with the nucleus (heart) of the point cloud. Finally, the

frequency distributions of the two parameters are symmetric and well described with a Gaussian

distribution. The key notion of these findings is that a) the sampling density is a proxy for the

probability density of the target distribution, b) the orientation of the samples is a measure of the

correlation among the variables of the target distribution, and c) the dispersion of the samples is a

measure of the variances of the individual variables of the target distribution.

This simple example with the point cloud shows that we can represent any probability distribution

with a large number of samples as long as the sampled points satisfy one crucial requirement
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and that is that they are distributed exactly according to the underlying density function of the

probability distribution. In other words, the sample density at any point of the target distribution

must match exactly the density of the distribution at that point. Then, the inferred marginal

distributions of the parameters will match their counterparts of the target distribution of interest

and the covariance (correlation) structure of the parameters is honored perfectly. Indeed, the

inferred distributions of θ1 and θ2 in Figure 1.6 match exactly their ”true” counterparts, P (θ1) and

P (θ2). The number of samples that is required to represent properly a multivariate probability

distribution depends on the shape and dimensionality of this distribution, more of which later.

These results now beg the question of how we should generate the samples? We cannot simply

use a random number generator as the resulting samples will likely not be distributed exactly

according to the target distribution of interest. Many different methods have been developed to

generate samples of an unknown distribution. All these methods rely in some way on Monte Carlo

simulation. In the next sections we discuss the application of these methods to approximate the

d-variate posterior distribution, P (θ|Ỹ). This distribution, also referred to as the target or limiting

distribution, is often high dimensional. The different methods assume a continuous parameter space

θ ∈ Θ ∈ Rd, yet with simple modifications can be used to approximate discrete target distributions.

1.5 Monte Carlo approximation

Monte Carlo methods are a broad class of computational algorithms that use repeated random

sampling to approximate some arbitrary d-variate distribution, F (x) with probability density

function, f(x). This unknown multivariate distribution, F (x), is equivalent to the posterior

distribution, P (θ|Ỹ). For the time being, we use the symbol x = {x1, . . . , xd} to denote the

d-variables of the unknown distribution, F (x), which, in our application, constitute the model

parameters, θ, possibly augmented with nuisance variables, thus x = {θ,α}.

The basic idea of Monte Carlo methods is to use an alternative distribution, Q(x), which is

easy to sample from in practice, and whose probability density function, q(x), approximates as
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closely and consistently as possible the unknown density, f(x). The ”known” distribution Q(x) is

also referred to as the proposal distribution and serves as catalyst to approximate the posterior

distribution.

1.5.1 Rejection Sampling

The earliest Monte Carlo method is the acceptance-rejection algorithm (also referred to as rejection

sampling) and produces M different samples of the desired target distribution, F (x). The various

steps of this method are summarized in the numerical recipe of Algorithm 1, wherein the label Z

signifies a draw from the standard uniform distribution, Z ∼ U(0, 1). After a sufficient number

Algorithm 1 Rejection Sampling

1: Define a proposal distribution, Q(x), so that q(x) ≥ f(x) if f(x) > 0.
2: Define M and set counter, i = 1.
3: while i < M do
4: Sample randomly a candidate point, xp, from Q(x), xp ∼ Q(x) and calculate f(xp).
5: Compute the acceptance probability, Pacc(xp) = f(xp)/q(xp), of xp.
6: If Z ≤ Pacc(xp) then set x(i) = xp and counter, i = i+ 1, otherwise reject xp.
7: end while

of iterations, rejection sampling produces M different samples that will be distributed exactly

according to the unknown distribution, F (x) with underlying density, f(x). Why the accepted

samples converge exactly to F (x) is relatively easy to proof mathematically using the envelope

principle. Here, instead we provide a visual explanation (see Figure 1.7) and draw samples from a

uniform distribution (black line) to approximate the univariate target distribution, F (x), with

arbitrary density, f(x) (gray line). It is not difficult to see that the acceptance probability,

Pacc(xp) = f(xp)/q(xp), of each candidate point, xp ∈ [1, 5], is directly proportional to the density,

f(xp), of the target distribution. Thus if we accept each candidate point with probability, Pacc(xp),

we account for ”bias” in the samples drawn from the proposal distribution, and distribute the

accepted samples exactly according to the target density, f(x) of F (x). This does require that

the entire target distribution is sampled, that is the space of x for which f(x) > 0, and that

q(x) ≥ f(x), otherwise the acceptance probability can reach values larger than unity, thereby

chopping off the peaks of the target distribution. In practice, a multiplier c ∈ [1,∞) is used
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to inflate the density of the proposal distribution so that it always exceeds the density of the

target distribution, cq(x) ≥ f(x). This multiplier enters into the denominator of the acceptance

probability, and should thus be chosen wisely, otherwise (e.g. too large) the rejection algorithm

can become highly inefficient as most candidate points will be dismissed. The value of c can be

determined as largest value of the ratios, f(xp)/q(xp), of the many different xp’s. Then, the new

acceptance probability, Pacc = f(xp)/
(
cq(xp)

)
of each sample xp can be recomputed and the set of

accepted samples re-construed. In practice, the ”best” proposal density, q(x), minimizes the value

of the constant c, that is c = supx

(
f(x)/q(x)

)
. A perfect agreement between the proposal and

target distribution equates to a value of c = 1.

The efficiency of rejection sampling depends in large part on the choice of the proposal distribution

that is used to generate trial points. This distribution must satisfy two conditions that is a)

it envelops the target distribution, and b) its density is at least equal to the density of the

target distribution. These two conditions are very difficult to satisfy in practice, without detailed

knowledge of the target distribution (as in our Bayes’ application). This is especially true for

high-dimensional targets with complicated multivariate relationships among the variables. A poorly

construed proposal distribution has profound consequences as a (very) large portion of the candidate

points will be rejected and go to waste. For high-dimensional target distributions, say d = 50 this

can lead to acceptance rates on the order of say 0.1%. Consequently, it will take a very large

number of iterations to generate a sufficient sample from the target distribution.

1.5.2 Importance Sampling

Importance sampling is an important improvement over the acceptance-rejection algorithm. This

algorithm can be written in a few lines (see ‘Algorithm 2) and is widely used to compute raw,

central and standardized moments of the target distribution, F (x). Whereas rejection sampling

produces samples with equal weight that are distributed exactly according to the target distribution,

importance sampling returns a collection of weighted samples. This weighted sample cannot be

used to draw marginal and or joint histograms of the target distribution, but rather serves to
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compute moments of F (x) such as its mean, variance, skewness, and kurtosis. To generate a sample

from F (x) we must draw with replacement from the importance samples, {x(1), . . . ,x(M)}, using

selection probabilities proportional to the importance weights, {w(x(1)), . . . , w(x(M))}. This process

is also known as sampling importance re-sampling (SIR) and produces a collection of samples with

equal weights distributed according to the target distribution, F (x). Thus, points with relatively

large importance weights have a much higher chance to be selected (with replacement) in this

collection of equal weight points than samples with a negligible importance weight. The frequency

of appearance of each importance sample in this re-sampled collection of points is thus proportional

to the underlying density function, f(x), of the target distribution, F (x). If the importance sample

is sufficiently large then re-sampling should provide a reasonable approximation of F (x).

Importance sampling has two main advantages over rejection sampling. First, it does not produce

waste as all samples are used to approximate the moments of the target distribution. Second,

the density, g(x), of the (importance) sampling distribution, G(x), does not have to be equal to

or larger than the target density. The only requirement is that g(x) > 0 if f(x) > 0. This

simplifies considerable practical application. Nevertheless, the construction of a proper importance

distribution is difficult without detailed knowledge of the target distribution (as in our Bayes’

application), and becomes particularly cumbersome in high-dimensional parameter spaces. When

the importance distribution is too wide, a large majority of the sampled points will receive negligible

weights. On the other hand, when the importance distribution is too narrow, the sampled points

will not characterize adequately the target distribution. Indeed, methods such as rejection sampling

and importance sampling are rather frugal and inefficient for all but very low dimensional problems.

Next, we therefore resort to an alternative class of methods to explore the target distribution.

1.5.3 Markov Chain Monte Carlo simulation

The basis of MCMC simulation is a Markov chain that generates a random walk through the

search space and successively visits solutions with stable frequencies stemming from a stationary

distribution, F (x). To explore the target distribution, F (x), a MCMC algorithm generates trial
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moves from the current state of the Markov chain x(i−1) to a candidate point, xp. The earliest

MCMC approach is the random walk Metropolis (RWM) algorithm introduced by Metropolis et al.

(1953). This scheme is constructed to maintain detailed balance with respect to f(x) at each

step in the chain. If f(a) denotes the probability to find the system in state a and q(a → b)

is the conditional probability, q(b|a), to perform a trial move from a to b, then the probability

Pacc(x(i−1) → xp) to accept the trial move from x(i−1) to xp is related to Pacc(xp → x(i−1))

according to

f(x(i−1))q(x(i−1) → xp)Pacc(x(i−1) → xp) = f(xp)q(xp → x(i−1))Pacc(xp → x(i−1)) (1.42)

This principle of detailed balance originates from the work of Boltzmann and Maxwell on collision

and gas kinetics, respectively. This condition implies that there is no net inflow or outflow of

probability among some closed set of possible states, and consequently, there exists a unique

equilibrium distribution of the states. Detailed balance is of particular relevance to a Markov

chain as it guarantees that the chain, under some regularity conditions, will converge to the exact

equilibrium (= target) distribution. Indeed, a chain that maintains detailed balance will visit each

state, a, of the stationary (equilibrium) distribution with frequency proportional to its underlying

probability density, f(a). This does require the chain to be irreducible (it is possible to transition,

in one or more steps, from any state to another configuration) to be a-periodic (return to a state

occurs at irregular times) and to be positive recurrent (positive probability to return to a state).

For a properly constructed proposal distribution, these three conditions are usually satisfied in

practice, except for trivial exceptions. Note that detailed balance is not a necessary condition for

convergence of the Markov chain to the target distribution. A few examples will be given later.

If a symmetric jumping distribution is used, that is q(x(i−1) → xp) = q(xp → x(i−1)), then it

follows from Equation (1.42) that

Pacc(x(i−1) → xp)

Pacc(xp → x(i−1))
=

f(xp)

f(x(i−1))
(1.43)

This Equation does not yet fix the acceptance probability. Metropolis et al. (1953) made the
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following choice

Pacc(x(i−1) → xp) = min

[
1,

f(xp)

f(x(i−1))

]
, (1.44)

to determine whether to accept a trial move or not. This selection rule of candidate points has

become the basic building block of MCMC algorithms. Hastings (1970) has generalized Equation

(1.44) to cases with non-symmetrical proposal distributions

Pacc(x(i−1) → xp) = min

[
1,

f(xp)q(xp → x(i−1))

f(x(i−1))q(x(i−1) → xp)

]
, (1.45)

wherein the forward jump, x(i−1) → xp, and backward jump, xp → x(i−1), do not have equal

probability, thus q(xp|x(i−1)) 6= q(x(i−1)|xp). This generalization is known as the Metropolis-Hastings

(MH) algorithm and broadens significantly the type of proposal distribution that can be used for

posterior inference.

Figure 1.8 depicts the evolution (trajectory) of a single Markov chain starting from an arbitrary

initial state (black square) for some hypothetical d = 2-dimensional target distribution. The gray

arrows denote the different trial moves (jumps) of the chain, most of which are accepted (green

dots), and some of which are declined (red dots). If a proposal is accepted then the chain moves to

this new position, otherwise the chain remains at its ”old” state and this position (e.g. values of x)

is replicated in the Markov chain. After about thirteen steps, the chain has reached the stationary

distribution (in orange). The subsequent positions of the chain are used to approximate the target

distribution, F (x). The samples which are stored in the chain have equal weights, and share in

common with SIR that their frequency of appearance is directly proportional to the underlying

density, f(x), of the target distribution. One crucial difference with rejection and importance

sampling is that the sampling (proposal) distribution, q(·), in MCMC simulation does not have to

cover or envelope the target distribution. This proposal distribution simply travels with the state

of the chain, and centers on the last position to create candidate points.

The core of the RWM algorithm can be written in just a few lines (see Algorithm 3) and requires

a symmetric jumping distribution, q(·), a uniform random number generator, Z ∼ U(0, 1), and the
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target density, f(x), to create a chain trajectory. In words, assume that the points {x0, . . . ,x(i−1)}

have already been sampled, then the RWM algorithm proceeds as follows. First, a candidate point

xp is sampled from a proposal (jumping) distribution, q(·), that depends on the present location,

x(i−1), and is symmetric, q(xp|x(i−1)) = q(x(i−1)|xp). Next, the candidate point is either accepted

or rejected using the Metropolis acceptance probability (Equation 1.44). Finally, if the proposal

is accepted the chain moves to xp, otherwise the chain remains at its current location x(i−1).

Repeated application of these three steps results in a Markov chain which, under certain regularity

conditions, has a unique stationary distribution with posterior probability density function, f(x).

In practice, this means that if one looks at the archived values of x in the chain sufficiently far

from the arbitrary initial state, thus after a burn-in period, then these successively generated states

will be distributed according to F (x), the unknown target distribution of x. Burn-in is required to

allow the chain to explore the search space and reach its stationary regime (see Figure 1.8).

The RWM algorithm is relatively simple to implement, yet its efficiency is determined in large

part by the choice of the proposal distribution, q(·) used to create trial moves (transitions) in

the Markov chain. When the proposal distribution is too wide, too many candidate points are

rejected, and therefore the chain will not mix efficiently and converge only slowly to the target

distribution. On the other hand, when the proposal distribution is too narrow, most candidate

points will be accepted, but the covered distance is so small that it will take a prohibitively large

number of iterations before the chain has converged to the target distribution. The choice of

proposal distribution is therefore of crucial importance and determines the computational cost and

practical feasibility of MCMC simulation.

Note, that we assume a fixed computational budget of M iterations of the RWM algorithm. In

practice, the chain will continue to evolve until it reaches a stationary distribution as judged by

one or more convergence diagnostics (discussed later). The budget of iterations is thus determined

on the fly based on the convergence properties of the sampled chain.

29



1.5.4 Automatic Tuning of Proposal Distribution

In the past decade, a variety of different approaches have been proposed to increase the efficiency

of MCMC simulation and enhance the original RWM and MH algorithms. These approaches can

be grouped into single and multiple chain methods.

Single-chain methods The most common adaptive single chain methods are the adaptive

proposal (AP) (Haario et al., 1999), adaptive Metropolis (AM) (Haario et al., 2001) and delayed

rejection adaptive metropolis (DRAM) algorithm, respectively. These methods simulate a single

trajectory by drawing candidate points from a Gaussian proposal distribution, xp ∼ Nd(x(i−1), s(d)Σ),

with covariance matrix, Σ, which is updated periodically after every m iterations (m ≥ 1) using

all past samples stored in the chain, Σ = Cov[{x(1), . . . ,x(i−1)}] + ϕId. The variable s(d) signifies

the so-called jump rate, and depends on the dimensionality of the target distribution, Id denotes

the d× d identity matrix, and ϕ = 10−6 is a small scalar that prevents the collapse of the sample

covariance matrix to singularity (jumps become zero). This term also guarantees, at least in theory,

that the sampled chain is irreducible, because of the unbounded support of the normal jumping

distribution with nonsingular (invertible) covariance matrix, Σ, that is |Σ| > 0. As a basic choice,

the scaling factor is chosen to be s(d) = 2.382/d which has proven optimal for Gaussian target and

proposal distributions (Gelman et al., 1996) and should give an acceptance rate close to 0.44 for

d = 1, 0.28 for d = 5 and 0.23 for large d.

A summary of the AM method appears below in algorithm 4, wherein the notion mod(a, b)

signifies the modulo operator. This operator returns zero if the quotient k of a > 0 and b > 0, or

k = a/b, equates to an integer, or mod(a, b) = 0 if k ∈ N+. Thus, the AM algorithm is a special

implementation of the RWM algorithm with a transient (multi)normal transition kernel as proposal

distribution of the Markov chain. The covariance matrix of the Gaussian proposal distribution is

adapted every m iterations using the archived chain samples. This adaptation enhances, sometimes

dramatically, the convergence speed of the chain to the stationary distribution, as the jumps will

align slowly with the orientation and scale of the target distribution. An important drawback of
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adaptation is, however that the AM algorithm does not satisfy the detailed balance condition of

Equation (1.42) at every step in the chain. This is easy to see if we compare the (multi)normal

proposal distribution of the AM algorithm immediately before and after an update to Σ at iterations

j = km, where k ∈ N+. Then the (conditional) probability, q(x(j)|x(j−1)), of the forward jump,

x(j−1) → x(j) (with ”old” Σ), does not equate to the conditional probability, q(x(j−1)|x(j)), of

the backward jump, x(j) → x(j−1) (with ”new” Σ). Detailed balance is rapidly restored during

the subsequent m − 1 iterations of the chain as the candidate points are created with a fixed Σ.

Nonetheless, the resulting chain simulated by the AM algorithm is not truely Markovian.

But why then does the AM algorithm converge to the appropriate limiting distribution? This is

because of diminishing adaptation. In words, the transition kernel (multivariate normal distribution)

of the AM algorithm converges to a fixed proposal distribution with increasing length of the chain.

Indeed, the distance between successive values of Σ decreases to zero as the number of samples

in the chain grows without bound. Note that the chain may converge to another than the target

distribution if only the recent past is used to generate trial moves (see Haario et al. (2001) for an

example). Another viable adaptation strategy is to fix the covariance matrix (say identity matrix)

and to tune instead the scaling factor, s(d), during a burn-in period, until a desired acceptance

rate is obtained (23% for large d). If adaptation is limited to the burn-in period then the chain

transitions in the equilibrium distribution are fully Markovian.

The use of a multivariate normal transition kernel (with/without adaptation) may work well for

Gaussian-like target distributions, but may not be adequate to characterize multimodal distributions

with long tails, and possibly infinite first and second moments. Experience further suggests that

single chain methods have a hard time to explore efficiently multidimensional parameter spaces,

particularly when confronted with different regions of attraction and (numerous) local optima. The

use of an overly dispersed proposal distribution will help to traverse difficult search spaces and/or

sample disconnected modes, yet the resulting chain will converge only slowly due to an improper

scaling of the jumps (excessively large). It is also particularly difficult to judge convergence of a

single chain trajectory in absence of an independent benchmark against which we can compare the
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statistics of the sampled values. Even the most powerful diagnostics do not protect us against a

chain that has converged to a local basin of attraction in the parameter space or a chain that explores

only one mode of the target distribution. Indeed, single-chain MCMC methods (e.g. DRAM, RWM,

AM and AP) suffer many similar problems as local optimization methods (e.g. steepest descent,

Newton method, Levenberg-Marquardt) and cannot guarantee an exhaustive exploration of the

parameter space in pursuit of the target distribution.

Multiple chain methods: DE-MC Multiple chain MCMC methods simulate different

trajectories in parallel to explore the posterior target distribution. This approach has several

important advantages, particularly for search spaces with different regions of attraction and numerous

local optima, and skewed, tailed, and multimodal target distributions with complex multivariate

dependencies among the variables. The use of multiple different chains offers a robust protection

against premature convergence, and opens up an array of powerful statistical tests to assess

convergence of the sampled values to an equilibrium distribution. One example of an efficient

multi-chain method is the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm (Vrugt

et al., 2003). This method has found application in environmental modeling and builds on the

shuffling concept of the SCE-UA optimization method to distribute, among the parallel chains,

information gained about the search space. The use of this shuffling approach introduces a transient

transition kernel which expedites convergence of SCEM-UA to the equilibrium distribution, but

at the expense of exact reversibility of the sampled chain trajectories. Another novelty of the

SCEM-UA algorithm is its explicit treatment of outlier chains, a necessity to traverse efficiently

complex search spaces in lieu of the target distribution. If adaptation of the (multi)normal proposal

distribution is restricted to the burn-in period only, then the chain transitions simulated by the

SCEM-UA algorithm satisfy reversibility. The method then derives an efficient Gaussian proposal

distribution for the standard Metropolis algorithm.

Differential Evolution Markov chain, or DE-MC, uses differential evolution as genetic algorithm

for population evolution with a Metropolis selection rule to decide whether candidate points should

replace their parents or not. In DE-MC, N different Markov chains are run simultaneously in
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parallel. If the state of a single chain is given by the d-vector x, then at each generation i− 1 the

N chains in DE-MC define a N × d matrix (population), X(i−1) = {x1
(i−1), . . . ,x

N
(i−1)}, with each

chain as a row. Then multivariate proposals, xjp in each chain, j = {1, . . . , N} are generated on

the fly from the collection of chains, X(i−1), using differential evolution

xjp = γ(d)(x
a
(i−1) − xb(i−1)) + ζd, a 6= b 6= j, (1.46)

where γ(d) signifies the jump rate (dimensionality dependent), a and b are integers drawn without

replacement from the natural numbers {1, . . . , j−1, j+ 1, . . . , N}, and ζ
D∼ Nd(0, c∗) is drawn from

a normal distribution with small standard deviation, say c∗ = 10−6. By accepting each proposal

with Metropolis probability

Pacc(x
j
p) = min[1, f(xjp)/f(xj(i−1))], (1.47)

a Markov chain is obtained, the stationary or limiting distribution of which is the posterior

distribution.

Because the joint probability density function of the N chains factorizes to f(x1|·)×. . .×f(xN |·),

the states, x1
(k) . . .x

N
(k), of the individual chains are independent at any iteration (generation) k after

DE-MC has become independent of its initial value. If the initial population is drawn from the prior

distribution, then DE-MC translates this sample into a posterior population. From the guidelines

of s(d) in RWM the optimal choice of γ(d) = 2.38/
√

2d. With a 10% probability the value of

γ is set to unity to enable the DE-MC chains to traverse rapidly large search spaces and jump

directly between different (disconnected) modes of the equilibrium distribution. Mode-jumping is

a desirable property of the DE-MC algorithm as evidenced by the performance of this method on

multimodal target distributions.

Algorithm 5 summarizes the DE-MC algorithm in different algorithmic steps, wherein the

auxiliary label Z is drawn for each chain by sampling from the standard uniform distribution,

Z ∼ U(0, 1). The DE-MC method remedies an important practical problem of the RWM algorithm,

namely that of choosing an appropriate scale and orientation for the proposal distribution. Earlier
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approaches such as (parallel) adaptive direction sampling solved the orientation problem but not

the scale problem. The DE-MC method suffers one critical deficiency, however and that its

performance is impaired if one or more of the sampled chains are trapped in an unproductive

area of the parameter space in pursuit of the target distribution. This problem is well understood

and explained in Figure 1.9 using some arbitrary univariate probability density function. Thus,

chains that populate local optima can continue to persist forever if the jumps are insufficient to

move the chain outside the space spanned by this optima. The state of this outlier chain not only

contaminates the jumping distribution of Equation (1.46) thereby slowing down unnecessarily the

evolution and mixing of the ”good” chains, but also impair convergence to a limiting distribution.

By sampling a disjoint part of the parameter space, the N chains will not reach consensus on the

limiting distribution as the statistics of the outlier chain (certainly the mean sampled values) will

differ substantially from their counterparts simulated by the other N − 1 chains.

The chance of a dissident chain increases rapidly with dimensionality of the target distribution

(larger number of chains, N ≥ 2d) and complexity of the underlying density function. A patch

is therefore of crucial importance to remedy the searching behavior of the DE-MC algorithm and

to expedite convergence on non-smooth density functions with different regions of attraction and

numerous local optima. Such a patch has important implications however, as any efforts to remedy

outlier chains will violate detailed balance. The treatment of dissident chains should therefore be

restricted to a burn-in period (see the SCEM-UA algorithm).

The next section concludes the section on MCMC simulation and presents the DiffeRential

Evolution Adaptive Metropolis (DREAM) algorithm. This multi-chain algorithm does not suffer

from outlier chains and uses subspace sampling with more than one chain pair to enhance, sometimes

dramatically, the convergence rate to the target distribution. Many published papers have confirmed

the efficiency and robustness of this algorithm for a large array of target distributions involving

(among others) complex and/or high-dimensional search spaces, with one or multiple modes and

intricate multivariate parameter dependencies. This explains why the DREAM algorithm has

found widespread application and use in many different fields of study to reconcile, using Bayesian

inference, system models with data. In fact, several publications have shown that DREAM even
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provides better solutions than commonly used optimization algorithms. Whereas optimization

algorithms are subject to population degeneration, the Metropolis selection rule promulgates chain

diversity necessary to explore difficult search spaces in pursuit of the stationary distribution.

Multi-chain methods: DREAM The DREAM algorithm has it roots within DE-MC but

uses subspace sampling and outlier chain correction to speed up convergence to the target distribution.

Subspace sampling is implemented in DREAM by only updating randomly selected variables

(coordinates) of x each time a proposal is generated. If A is a subset of d∗-dimensions of the original

search space, Rd∗ ⊆ Rd, then a jump, ∆xj(i−1) in the jth chain, j = {1, . . . , N} at some iteration

i − 1 is calculated from the collection of chains, X(i−1) = {x1
(i−1), . . . ,x

N
(i−1)}, using differential

evolution

∆xj(i−1),A = ζd∗ + (1d∗ + λd∗)γ(δ,d∗)

δ∑
k=1

(
xak

(i−1),A − xbk

(i−1),A

)
∆xj(i−1), 6=A = 0,

(1.48)

where γ(δ,d∗) = 2.38/
√

2δd∗ is the jump rate, δ signifies the number of chain pairs that is used

to compute the jump, and a and b are δ-vectors with integers drawn (without replacement) from

{1, . . . , j − 1, j + 1, . . . , N}. The default value of δ = 3, and results, in practice, in one-third of the

proposals being created with δ = 1, another third with δ = 2, and the remaining third using δ = 3.

The values of λ and ζ are sampled independently from Ud∗(−c, c) and Nd∗(0, c∗), respectively, the

multivariate uniform and normal distribution with, typically, c = 0.1 and c∗ small compared to the

width of the target distribution, c∗ = 10−6 say. To expedite sampling of multimodal distributions,

the default jump rate is switched to unity, γ(δ,d∗) = 1, with probability 0.2. The candidate point of

the jth chain at iteration i then becomes

xjp = xj(i−1) + ∆xj(i−1), (1.49)

and the Metropolis ratio of Equation (1.47) is used to determine whether to accept this proposal

or not. If Pacc(x
j
p) ≥ U(0, 1) the candidate point is accepted and the jth chain moves to the new
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position, that is xj(i) = xjp, otherwise xj(i) = xj(i−1). The default equation for γ should, for Gaussian

and Student target distribution, result in optimal acceptance rates close to 0.44 for d = 1, 0.28 for

d = 5, and 0.23 for large d.

The d∗-members of the subset A are sampled at random from the entries {1, . . . , d} (without

replacement) and define the dimensions of the parameter space to be sampled by each proposal.

This subspace spanned by A is construed in DREAM with the help of a crossover operator as follows.

First, a value η ∈ (0, 1] is sampled randomly from a geometric series of r different crossover values,

η = {1
r ,

2
r , . . . ,

r
r}, with selection probabilities, pη = {1

r , . . . ,
1
r}. Then, a d-vector z with random

labels is drawn from the multivariate uniform distribution, z ∼ Ud(0, 1). All those coordinates l

which satisfy zl ≤ η are stored in the subset A and span the subspace that will be sampled using

Equation (1.48). If A is an empty set, then one dimension of the target distribution will be sampled

at random to avoid the jump vector, ∆xj(i−1), to have zero entries everywhere.

We now provide an algorithmic recipe of the DREAM algorithm (see algorithm 6). The auxiliary

label Z is drawn for each chain by sampling from the standard uniform distribution, Z ∼ U(0, 1),

and U{a, b} denotes the discrete uniform distribution with support {a, a + 1, . . . , b − 1, b}, where

a, b ∈ N+ and b ≥ a. The variable F(η|pη) signifies the discrete multinomial distribution on the

crossover values, η = {η1, . . . , ηr}, with selection probabilities, pη = {pη1 , . . . , pηr}, and the symbol

|A| signifies the cardinality, or number of elements, of the set A. The use of a vector of crossover

probabilities enables single-site Metropolis (A contains one element), Metropolis-within-Gibbs (A

has one or more elements) and regular Metropolis sampling (A = {1, . . . , d}), and constantly

introduces new directions in the parameter space that chains can take outside the subspace spanned

by their current positions. What is more, the use of subspace sampling allows using N < d

in DREAM, an important advantage over DE-MC that requires N = 2d chains to be run in

parallel. This randomization of the search space, introduces one additional algorithmic variable to

the algorithm, namely the desired number of crossover values, r. The default setting of r = 3 has

shown to work well in practice, but larger values of this algorithmic variable might enhance the

convergence rate on high-dimensional target distributions, say d > 50, to preserve the frequency
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of low-dimensional jumps. Note, more intelligent subspace selection methods can be devised for

target distributions with complex multivariate dependencies among the parameters. Correlated

parameters should preferably be sampled jointly in tandem, otherwise too many of the (subspace)

proposals will be rejected and the search can stagnate.

To enhance search efficiency, the selection probabilities, pη = {pη1 , . . . , pηr}, of the different

crossover values, {η1, . . . , ηr} are adapted during a burn-in period to maximize the distance traveled

(Eulicdean norm) by the N chains.

In the past years, several other MCMC algorithms have appeared in the literature which use

DREAM as their basic building block but include special extensions to simplify inference (among

others) of discrete and combinatorial search spaces, and high-dimensional and CPU-intensive

system models. This includes the DREAM(ZS), DREAM(D), DREAM(DZS), DREAM(ABC) and

MT-DREAM(ZS) algorithm. These methods are summarized in Vrugt (2016) and have their own

respective MATLAB toolboxes.

Convergence Monitoring Per theory, the chains that are simulated by a MCMC algorithm

are expected to eventually converge to a stationary distribution, which should be the desired target

distribution. But, how do we actually assess that convergence has been achieved in practice, without

knowledge of the actual target distribution?

One way to check for convergence is to see how well the chains are mixing, or moving around

the parameter space. For a properly converged MCMC sampler, the chains should sample, for a

sufficiently long period, the approximate same part of the parameter space, and mingle readily and

in harmony with one another around some fixed mean value. This can be inspected visually for

each dimension of x separately, and used to diagnose convergence informally.

Another diagnostic that can be used to monitor convergence is the acceptance rate. A value

between 15 - 30% is usually indicative of good performance of a MCMC simulation method. Much

lower values usually convey that the posterior surface is difficult to traverse in pursuit of the target

distribution. A low acceptance rate can have different reasons, for instance poor model numerics,
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or the presence of multi-modality and local optima. Yet, the acceptance rate can only diagnose

whether a MCMC method such as DREAM is achieving an acceptable performance, it cannot be

used to determine when exactly convergence has been achieved.

Several non-parametric and parametric statistical tests can be used to determine when convergence

of the sampled chains to a limiting distribution has been achieved. The most powerful of these

convergence tests is the multi-chain R̂-statistic. This diagnostic compares for each parameter

l = {1, . . . , d} the within-chain

Wl =
2

N(T − 2)

N∑
j=1

T∑
i=bT/2c

(xj(i),l − xjl )
2 xjl =

2

T − 2

T∑
i=bT/2c

xj(i),l (1.50)

and between-chain variance

Bl/T =
1

2(N − 1)

N∑
j=1

(xjl − xl)
2 xl =

1

N

N∑
j=1

xjl (1.51)

using

R̂l =

√
N + 1

N

σ̂
2(l)
+

Wl
− T − 2

NT
, (1.52)

where T signifies the number of samples in each chain, b·c is the integer rounding operator, and

σ̂
2(j)
+ is an estimate of the variance of the lth parameter of the target distribution

σ̂
2(j)
+ =

T − 2

T
Wj +

2

T
Bj . (1.53)

To official declare convergence, the value R̂l ≤ 1.2 for each parameter, l ∈ {1, . . . , d}, otherwise the

value of T should be increased and the chains run longer. As the N different chains are launched

from different starting points, the R̂-diagnostic is a relatively robust estimator.

A related, but more powerful convergence diagnostic is the multivariate variant of the R̂-statistic.

This statistic, hereafter referred to as R̂d-diagnostic assesses convergence of the d parameters

simultaneously by comparing their within and between-sequence covariance matrix. Convergence
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is achieved when a rotationally invariant distance measure between the two matrices indicates that

they are ”sufficiently” close. Then, the multivariate R̂d-statistic achieves a value close to unity,

otherwise its value is much larger. In fact, the R̂ and R̂d-statistic take on a very similar range

of values, hence simplifying analysis of when convergence has been achieved. The R̂d-statistic is

particularly useful for high-dimensional target distributions involving complicated multi-dimensional

parameter interactions.

Other statistics include the autocorrelation function. The autocorrelation function for each

parameter l = {1, . . . , d} is defined as

ρjl,k =

∑T−k
i=1 (xj(i),l − xjl )(x

j
(i+k),l − xjl )∑T

i=1(xj(i),l − xjl )
2

, (1.54)

and returns the correlation between two samples k iterations apart in the jth chain, j = {1, . . . , N}.

Compared to rejection sampling which, per construction, produces uncorrelated samples, MCMC

chain trajectories exhibit autocorrelation as the current state of the chain is derived from its previous

state. This correlation is expected to decrease with increasing lag k. The autocorrelation function

is a useful proxy to assess sample variability and mixing, but does not convey when convergence

has been achieved. A high autocorrelation, say |ρ| > 0.8, at lags, say k ≥ 5, demonstrates a poor

mixing of the individual chains.

Altogether, joint interpretation of the different diagnostics should help assess convergence of the

sampled chain trajectories. Of all these metrics, the R̂d-statistic is most conservative and strict and

provides the best guidance on exactly when convergence has been achieved. This happens as soon

as this statistic drops below the critical threshold of 1.2. Suppose this happens at T ∗ iterations

(generations) then the first (T ∗− 1) samples of each chain are simply discarded as burn-in and the

remaining N(T −T ∗) samples from the joint chains are used for posterior analysis. Note, we always

recommend to verify convergence of DREAM by visually inspecting the mixing of the different

chain trajectories.

In practice, one has to make sure that a sufficient number of chain samples is available for

the inference, otherwise the posterior estimates can be biased. For convenience, we list here the
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total number of posterior samples, N(T − T ∗) (in brackets) one would need for a reliable inference

with DREAM for a given dimensionality of the target distribution: d = 1 (500); d = 2 (1,000);

d = 5 (5,000); d = 10 (10,000); d = 25 (50,000); d = 50 (200,000); d = 100 (1,000,000); d = 250

(5,000,000). These listed numbers are only a rough guideline, and based on several assumptions

such as a reasonable acceptance rate ( > 10%) and not too complicated shape of the posterior

distribution. In general, the number of posterior samples required increases with rejection rate and

complexity of the target distribution.

1.6 Case Studies

In this section we illustrate the application of Bayesian inference to four different case studies

involving modeling of the instantaneous unit hydrograph, the rainfall-runoff transformation, and

water movement in the variably saturated zone. These examples focus on the movement and

distribution of water in the surface and subsurface, and satisfy the overarching theme of this book.

The last two case studies have appeared in literature publications (not everything), therefore we only

present herein a short summary of the experimental data, models, numerical setup, and findings.

Interested readers are referred to the original publications for further details.

1.6.1 Instantaneous Unit Hydrograph

The first case study considers the modeling of the instantaneous unit hydrograph defined as

Qt =
1

rcΓ(h)

(
t

rc

)(h−1)

exp

(
− t

rc

)
, (1.55)

where Qt (mm day−1) signifies the simulated streamflow at time t (days), h (-) denotes the number

of reservoirs, rc (days) signifies the recession constant, and Γ(·) is the gamma function.

A n = 25 - day period with synthetic daily streamflow data was generated by driving Equation

(1.55) with an artificial precipitation record using h = 2 reservoirs, and a recession constant of rc = 4

days. This artificial data set is subsequently perturbed with a heteroscedastic measurement error
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(non-constant variance) with standard deviation equal to 10% of the original simulated discharge

values. We now use the n-record of corrupted discharge values, Ỹ = {ỹ1, . . . , ỹn}, to estimate

the posterior distribution, P (θ|Ỹ), of the Nash parameters, θ = {h, rc}, using Bayes’ theorem in

Equation (1.12). We assume a flat prior distribution for the two Nash parameters, P (θ) ∼ U2[1, 10],

and use the likelihood function, L(θ|Ỹ, σ̂2), of Equation (1.30). The n-vector of measurement

error variances, σ̂
2 = {σ̂2

1, . . . , σ̂
2
n} is derived from Equation (1.41) using the nuisance variables,

α = {σ0, σ1}. We estimate the joint posterior distribution of the Nash model parameters and the

nuisance variables, P (θ,α|Ỹ), using MCMC simulation with DREAM (algorithm 6).

Figure 1.10 summarizes the results of our analysis and presents a scatter plot matrix of the

posterior samples derived with the DREAM algorithm. The main diagonal displays histograms of

the marginal distribution of the two Nash model parameters h and rc and the nuisance variables

σ0 and σ1, whereas the off-diagonal graphs display bivariate scatter plots of the posterior samples.

The x-axes matches exactly the posterior ranges of the parameters and their ”true” values, h = 4,

rc = 2, σ0 = 0 and σ1 = 0.1. are separately indicated in each histogram with the red cross.

The posterior histograms of the Nash model parameters follow closely a Gaussian distribution

with mean that is in excellent agreement (as should be!) with the true values used to create the

synthetic 25-day hydrograph. The marginal distributions exhibit a relatively small dispersion (in

comparison to prior ranges), which demonstrates that h and rc are well defined by calibration

against the observed (synthetic) streamflow data. The nuisance variables of Equation (1.41) are

also well resolved, yet the marginal posterior distribution of the slope of the linear measurement

error model, σ1 is somewhat biased towards larger values. Indeed, the true value of the slope

appears to the left of the maximum a-posteriori (MAP) density solution of σ1 in the left tail of

the distribution. The intercept, σ1, of Equation (1.41) is truncated at zero by the uniform prior

distribution, and consequently follows a log-normal distribution. Such distribution is difficult to

approximate accurately with the first-order approximation of Equation (1.6), but poses no problems

for sampling methods. The bivariate scatterplots of the posterior samples (off-diagonal plots)

demonstrate a strong linear (negative) correlation between the Nash model parameters, h and rc.
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The nuisance variables and Nash parameters appear uncorrelated, a testament to the use of an

adequate likelihood function.

We next investigate how the posterior parameter uncertainty translates into simulation uncertainty

of the Nash model. Figure 1.11 presents a time series plot of the observed data (red dots) and 95%

simulation uncertainty ranges of the hydrograph due to parameter (dark gray region) and total

uncertainty (light gray region). The Nash model tracks closely the observed data (as is to be

expected with synthetic data) with simulation intervals that appear reasonably small. Further

analysis of the residuals confirms our assumptions that the residuals are temporally uncorrelated

and follow an approximately Gaussian distribution. We next present an example in which the

residuals do not satisfy our assumptions.

1.6.2 The Rainfall-Runoff Transformation

The second case study involves modeling of the discharge dynamics of the French Broad River basin

at Asheville, North Carlina, USA. This case study has appeared in Schoups and Vrugt (2010) and

readers are referred to this work for further details. We summarize briefly the experimental data,

the hmodel and its parameters, the prior distribution and likelihood function(s) before we report

the findings of our analysis.

The rainfall-discharge relationship of the French Broad is simulated using the hmodel of Schoups

and Vrugt (2010). This relatively simple conceptual watershed model is illustrated in Figure 1.12

and transforms mean areal precipitation into runoff emanating from the catchment outlet using

four different reservoirs (state variables) and process descriptions for interception, throughfall,

evaporation, runoff generation, percolation, and surface and subsurface routing (see Figure 1.12).

Runoff generation is assumed to be dominated by saturated overland flow and is simulated as

a function of basin water storage without an explicit dependence on rainfall intensity. This

assumption is typically valid for temperate climates but may be violated in semiarid watersheds.

Snow accumulation and snowmelt are also not accounted for, yet this is not a problem if we focus

on ”warm” watersheds. Table 2.1 summarizes the seven different parameters of the hmodel, and
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their prior uncertainty ranges.

We use a seven-year record of the French Broad River basin from the MOPEX data set with

daily data of discharge (mm/day), mean areal precipitation (mm/day), and mean areal potential

evapotranspiration (mm/day) to estimate the hmodel parameters, θ = {Imax, Smax, Qmax, αE, αF,KF, αS}.

We use a two-year spin-up period to reduce sensitivity of the model to state-value initialization. In

other words, only the last five years are used for our analysis.

We assume a uninformative prior distribution, P (θ), for the parameters of the hmodel using the

ranges listed in Table 2.1. As a first attempt, we expect conveniently that the discharge residuals

are uncorrelated, normally distributed, and with a constant variance. These assumptions lead to

the Gaussian likelihood function, L(θ|Ỹ), in Equation (1.28) - and with our uniform prior leads to

the density function of Equation (1.29).

Figure 1.13 displays the results of the DREAM algorithm. The top panel plots the simulation

of the maximum likelihood solution for the 1800-day calibration data record, whereas the bottom

panel presents a diagnostic check of the corresponding discharge residuals. The hmodel simulation

tracks closely the observed discharge data (dots), with 95% intervals (not shown) that appear

rather small. Unfortunately, the residuals do not satisfy the three main underlying assumptions

of our likelihood function (Gaussian, uncorrelated, constant variance). Indeed, the variance of the

residuals increases with flow level, the residual distribution deviates from normality (much more

peaked), and the residuals display considerable serial correlation at the first lag.

We now relax the residual assumptions and use the generalized likelihood function to derive

the parameters of the hmodel. This requires inference as well of the nuisance variables, α =

{σ0, σ1, β, ξ,Φp}. We use p = 4 and derive the the posterior distribution of the hmodel parameters

and nuisance variables, P (θ,α|Ỹ) using MCMC simulation with the DREAM algorithm. Figure

1.14 presents the main results of this analysis. It is evident that the residuals of the maximum

likelihood simulation (top plot) now are consistent with the properties of the likelihood function.

The residual variance is constant and independent of flow level, the residual distribution is well-described
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with a Laplace distribution, and the residuals are temporally uncorrelated.

Figure 1.15 summarizes the effect of the choice of likelihood function on the posterior marginal

distribution of the hmodel parameters Imax, Smax, Qmax, αF, KF, and KS. The blue histograms

display the results of the Gaussian likelihood function and their green counterparts pertain to the

generalized likelihood function. The results in Figure 1.15 highlight several important findings.

First, the marginal distributions of the hmodel parameters differ substantially between the two

different likelihood function. Second, the posterior histograms derived from the generalized likelihood

function exhibit a larger dispersion. Finally, the marginal distributions derived from the generalized

likelihood functions are not truncated by the prior distribution. This is particularly evident for the

maximum interception, Imax, which hits it upper bound of 10 mm for the Gaussian likelihood and

takes on much more realistic values of 1-4 mm with the generalized likelihood function.

This concludes the second case study. Interested readers are referred to Schoups and Vrugt

(2010) for a much more detailed interpretation and treatment of the results.

1.6.3 Vadose Zone Hydrology

The third and last case study considers the modeling of the soil moisture regime of an agricultural

field near Jülich, Germany. Soil moisture content was measured with Time Domain Reflectometry

(TDR) probes at 6 cm deep at 61 locations in a 50 × 50 m experimental plot. The TDR data

were analysed and the measured apparent dielectric permittivities were converted to soil moisture

values. Measurements were taken on n = 29 days between 19 March and 14 October 2009,

comprising a measurement campaign of 210 days. For the purpose of the present study, the soil

moisture observations were averaged per day to yield a single plot-mean water content time series.

Precipitation and other meteorological variables were recorded at a meteorological station located

100 m west of the measurement site.

The HYDRUS-1D model of Simuunek et al. (2008) was used to simulate variably saturated

water flow in the agricultural field. This model uses the finite element method to solve numerically
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Richards’ equation

∂θ

∂t
=

∂

∂z

[
K(h)

(
∂h

∂z
+ 1

)]
, (1.56)

for given (measured) initial and boundary conditions, where θ (cm3 cm−3)2 signifies moisture

content, t (days) denotes time, z (cm) is the vertical (depth) coordinate, h (cm) is the pressure

head, and K(h) (cm day−1) represents the corresponding (unsaturated) soil hydraulic conductivity.

Numerical solution of Equation (4.1) requires knowledge of the soil hydraulic properties. We

use the van Genuchten-Mualem (VGM) model (Van Genuchten, 1980)

θ(h) = θr + (θs − θr)[1 + (α|h|)n]−m

K(h) = KsSe(h)λ[1− (1− Se(h)1/m)m]2,

(1.57)

where θs and θr (cm3 cm−3) signify the saturated and residual soil water content, respectively, α

(cm−1), n (-) and m = 1 − 1/n (-) are shape parameters, Ks (cm day−1) denotes the saturated

hydraulic conductivity, and λ (-) represents a pore-connectivity parameter. The effective saturation,

Se (-) is defined as

Se(h) =
θ(h)− θr
θs − θr

. (1.58)

Observations of daily precipitation and daily potential evapotranspiration are used to characterize

the upper boundary condition of our experimental plot. In the absence of detailed knowledge of

the lower boundary condition, we assume a constant head, hbot (cm) at the bottom of our modeled

soil domain and estimate its value along with the six soil hydraulic parameters of Equation (1.57).

Table 3.1 lists the parameters of the HYDRUS-1D model, their units, upper and lower bounds

for the soil domain under investigation, and respective prior distributions. These parameters,

θ = {θr, θs, α, n,Ks, λ, hbot}, are subject to inference using the soil moisture measurements. The

marginal priors of the six soil hydraulic parameters (first six in table) are construed from surrogate

data (soil texture) using the Rosetta toolbox of hierarchical pedotransfer functions. A flat prior with

2The symbol θ (cm3 cm−3) is used in the hydrologic sciences to denote volumetric soil moisture content.
In present paper we also use this symbol to denote the parameter vector.
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ranges between -250 and -10 cm is used for the bottom head, hbot. This guarantees the parameters

to take on values that are deemed physically realistic. Folding is the only efficient boundary

treatment procedure that does not destroy detailed balance of the sampled chain trajectories.

The initial state of each chain is sampled from the prior distribution, and the N = 10 different

chains are ran in parallel using the MATLAB parallel computing toolbox.

Figure 1.16 presents histograms of the marginal posterior distributions sampled by DREAM of

the HYDRUS parameters θs, α, n, and Ks of the 100 cm deep soil of our 50 × 50 experimental

plot in Germany. The bottom panel presents a time series plot of simulated soil moisture contents.

The dark gray region constitutes the 95% HYDRUS-1D simulation uncertainty due to parameter

uncertainty, whereas the light gray region denotes the total simulation uncertainty (parameter +

randomly sampled additive error). The observed soil moisture values are indicated with a red

circle. The soil hydraulic parameters appear well defined by calibration against the observed soil

moisture measurements. Their marginal distributions follow closely their respective normal prior

distributions (Table 3.1), yet exhibit somewhat less dispersion. The HYDRUS-1D model closely

tracks the observed soil moisture contents with Root Mean Square Error (RMSE) of the posterior

mean simulation of about 0.01 cm3/cm−3. About 95% of the observations lies within the gray region,

an indication that the simulation uncertainty ranges are statistically adequate. The acceptance

rate of DREAM averages about 12.6% - about half of its theoretical optimal value of 22-25%

(for Gaussian and Student target distributions). This deficiency is explained in part by the high

nonlinearity of retention and hydraulic conductivity functions, and numerical errors of the implicit,

time-variable, solver of the Richards’ equation. This introduces irregularities (e.g. local optima) in

the posterior response surface and makes the journey to and sampling from the target distribution

more difficult.

1.7 Limits of Acceptability

In the manifesto for the equifinality thesis, Beven (2006) suggested that a more rigorous approach

to model evaluation would involve the use of limits of acceptability for each individual observation
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against which model simulated values are compared. Within this framework, behavioural models

are defined as those that satisfy the limits of acceptability for each observation. Ideally, the limits

of acceptability should reflect the observational error of the variable being compared, together

with the effects of input error and commensurability errors resulting from time or space scale

differences between observed and predicted values. The limits of acceptability approach has been

used by various authors, although earlier publications used similar ideas within GLUE based on

fuzzy measures. The limits of acceptability framework might be considered more objective than

the standard GLUE approach advocated as the limits are defined before running the model on the

basis of best available hydrologic knowledge.

For now lets assume that the prior distribution, P (θ) ∼ Ud(a,b) is multivariate uniform between

some d-vector of values a and b. For a proposal, θj to be deemed acceptable, Y(θj) should be

contained exclusively within the interval [ỹt − ∆t, ỹt + ∆t] at each time t = {1, . . . , n}. This so

called ”behavioral simulation space” belongs to the set Ω̂(Y) and can be defined as

Ω̂(Y) =
{

Y ∈ Rn : Y =M(θ,x0, B̃) ; θ ∈ Ω̂
(θ|Ỹ)

}
, (1.59)

where Ω̂
(θ|Ỹ)

constitutes the posterior (behavioral) parameter set

Ω̂
(θ|Ỹ)

= Ω
(θ|Ỹ)

. (1.60)

The conditional parameter set, Ω
(θ|Ỹ)

is defined as follows

Ω
(θ|Ỹ)

=
{
θ ∈ θ ∈ Rd : Ỹ−F(θ,x0, B̃) = E(θ) ; et(θ) ∈ [−∆t,∆t] , t = 1, . . . , n

}
, (1.61)

and contains solutions, θj ∈ Ω̂(θ|Y), that satisfy the limits of acceptability of each observation.

If an informative prior distribution is used then the behavioral (posterior) parameter set is

computed as the intersection of the prior parameter set, Ω(θ) and conditional parameter set

Ω̂
(θ|Ỹ)

= Ω(θ) ∩ Ω
(θ|Ỹ)

. (1.62)
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1.7.1 The DREAM(ABC) Algorithm

Application of the limits of acceptability approach requires the availability of a sampling method

that can efficiently search the parameter space in pursuit of behavioral solution set, Ω̂
(θ|Ỹ)

. Commonly

used (population Monte Carlo) rejection sampling methods are rather inefficient in locating behavioral

solutions. The chance that a random sample from the prior distribution satisfies the limits of

acceptability of each observation is disturbingly small, particularly if the prior parameter space

is large compared to the posterior (behavioral) solution space and the number of observations,

n is large. Fortunately, an efficient MCMC sampling method, the DREAM(ABC) algorithm, has

been developed by Sadegh and Vrugt (2014) to explore efficiently set-theoretic functions such as

Equation (1.61).

This selection rule is defined as

Pacc(θ(i−1) → θp) =

{
I
(
f(θp) ≥ f(θ(i−1))

)
if f(θp) < n

1 if f(θp) = n
, (1.63)

where I(a) is an indicator function that returns one if the condition a is satisfied and zero otherwise,

and the fitness function, f(·), is calculated as follows

f(θ) =

n∑
t=1

I(|ỹt − yt(θ)| ≤ ∆t). (1.64)

If the proposal is accepted, then the Markov chain moves to this new position, θ(i) = θp, otherwise

it remains at its current location, that is θ(i) = θ(i−1).

The fitness of the proposal, θp, is equivalent to the number of observations its simulation satisfies

within the limits of acceptability. We accept the proposal, Pacc(θ(i−1) → θp) = 1, if the fitness of

θp is larger than that of the current state of the chain, θ(i−1), or if the simulation of the proposal

is consistently within ∆ = {∆1, . . . ,∆n} of the observed values, and thus f(θp) = n, otherwise

the candidate point is rejected. After a burn-in period in which f(·) < n, the convergence of

DREAM(ABC) can be monitored with the R̂ diagnostic. A full description of DREAM(ABC) appears
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in Sadegh and Vrugt (2014) and interested readers are referred to this publication for further details.

1.7.2 Vadose Zone Hydrology Revisited

We now revisit the third case study and use instead limits of acceptability. Scharnagl et al. (2011)

depict in their figure 8 (p. 3055), the 95% ranges of the observed soil moisture data at each

measurement time. The value of ∆t; t = {1, . . . , n} is simply set equal to half the width of the 95%

interval of the distributed moisture content observations. This equates to an average value of the

limits of acceptability of 0.047 (cm3cm−3).

Figure 1.19 presents histograms of the marginal posterior distribution of the six HYDRUS-1D

model parameters considered in this study. The bottom panel presents a time series plot of the

behavioral simulation set, Ω̂(Y). The observed soil moisture data are indicated separately with red

dots. The behavioral HYDRUS-1D model nicely tracks the observed soil moisture measurements

with behavioral simulation space, Ω̂(Y) that encapsulates consistently the observed data. The root

mean square error (RMSE) of the behavioral (posterior) mean simulation equates to about 0.0149

cm3/cm−3, a value somewhat larger than derived separately using the formal Gaussian likelihood

function. The behavioral parameter space of most parameters extend a large part of their respective

prior ranges with marginal distributions that deviate markedly from normality. The prior ranges are

rather narrow and derived from Monte Carlo simulation with the ROSETTA pedotransfer toolbox

using textural data (percentages of sand, silt, and clay) as main input variables.

Finally, Figure 1.18 shows how the posterior parameter set translates into uncertainty of the

soil water retention (left) and unsaturated soil hydraulic conductivity (right) functions. The light

gray region corresponds to the prior parameter set, Ω(Y) whereas the dark gray is used to denote

the behavioral (posterior) solution set, Ω̂(Y). Note, we use here the variable Y to denote the

functional space rather than moisture content values. The posterior mean soil hydraulic functions

are indicated with the solid black line. The posterior uncertainty of the soil hydraulic functions

appears rather large in response to the observed spatial variability of the soil moisture data. This
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uncertainty can now be used to simulate the soil moisture variability in the 50 × 50 experimental

plot, simply by drawing soil hydraulic functions from the posterior ranges. Thus, the limits of

acceptability framework provides a way to account explicitly for spatial variability. This concludes

our section with case studies. Many other examples can be found in different fields of study (e.g.

chemistry, ecology, geomorphology, physics, structural engineering) and tackle much more complex

problems involving large dimensionalities of the target distribution. A summary with some of these

applications is found on Page 276 of Vrugt (2016).

1.8 Marginal Likelihood and Model Complexity

Thus far in this Chapter, we have focused our inferences on a single model but without recourse

to the denominator, P (Ỹ), in Equation (2.4), the so-called marginal likelihood. This normalizing

constant in Bayes’ theorem ensures that the posterior distribution, P (θ|Ỹ), integrates to unity.

The marginal likelihood, or Bayesian model evidence, is of no particular interest for parameter

estimation, yet of imminent importance for hypothesis testing. The hypothesis (model), Mk,

where k = {1, . . . ,K}, with largest evidence, P (Ỹ|Mk), is most supported by the available data,

Ỹ.

Bayesian model selection encodes a natural preference for simpler and more constrained models.

This approach provides a rigorous justification to the parsimony principle of William of Ockham

(1287-1347), an English Franciscan friar, philosopher and theologian, who stated that ”....Entities

must not be multiplied beyond necessity”. This principle of parsimony, also known as Occam’s azor,

is traceable to the works of philosophers such as Aristotle (384-322 BC), Ptolemy (c. AD 90 -

c. AD 168), and consistent with requirements of falsifiability in the scientific method. Indeed,

simpler hypothesis (theories) are preferred as they involve fewer assumptions and are therefore

easier testable. Thus, a ”good” model selection technique must necessarily balance goodness of fit

with complexity (number of ”free” parameters). Unfortunately, analytical solutions of P (Ỹ|Mk)

are available only for certain special cases, which are too limiting to be of practical value in
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environmental modeling. We therefore have to resort to sampling methods which approximate

numerically the integral of the posterior distribution.

In the Monte Carlo approach, the marginal likelihood can be approximated by the arithmetic

mean of the likelihood function, L(θ|Ỹ), of a large sample of points drawn randomly from the prior

distribution. This approximation, however, is not particularly efficient, as many of the random

samples drawn from the prior parameter distribution will exhibit insufficient density to contribute

to the evidence. A more efficient approach constitutes importance sampling (see algorithm 2).

The importance distribution, G(θ), has a known integral of unity, and should satisfy that g(θ) >

0 whenever P (θ) > 0, otherwise certain parts of the target distribution, P (θ|Ỹ) are possible

dismissed. The ratio of the density of the unnormalized posterior, P (θ)L(θ|Ỹ), and the density,

g(θ), of the importance distribution, G(θ), now details the contribution of some importance sample,

θj , to the marginal likelihood. The integral of the unnormalized posterior distribution, P (Ỹ|Mk),

is thus equivalent to the expected value of P (θ)L(θ|Ỹ)/g(θ), or E[P (θ)L(θ|Ỹ)/g(θ)] and can be

approximated numerically

P (Ỹ|Mk) '
1

M

M∑
j=1

P (θj |Mk)L(θj |Mk, Ỹ)

g(θj)
(1.65)

using M different samples {θ1, . . . ,θM} drawn randomly from the importance distribution, G(θ).

The importance estimator of Equation (1.65) is accurate and robust but not without practical

problems. Indeed, the efficiency of importance sampling depends critically on the choice of the

importance distribution, G(θ). This becomes particularly relevant for CPU-intensive system models

and high-dimensional target distributions. To enhance the computuational efficiency of the estimator

of Equation (1.65), a two-step approach in which samples from the target distribution (step 1) are

used to construct an adequate importance distribution (step 2). Benchmark experiments show

that this approach, called Gaussian mixture importance sampling (GMIS) is unbiased, robust,

and, efficient, requiring only M = 10, 000 samples to estimate the evidence, P (Ỹ|Mk), of complex,

high-dimensional, target distributions (up to 100 dimensions). The GMIS approach is implemented
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in the MATLAB package of DREAM described by Vrugt (2016) and simplifies considerably scientific

inquiry through hypothesis testing and model selection.

As last item in this Chapter we provide in Figure (1.19 a textbook example of the relationship

between model complexity, and (left graph) the magnitude of the residuals in the calibration (red

line) and (independent) evaluation (blue line) period, and (right graph) the value of the maximum

likelihood (blue line) and the marginal likelihood (red line). The most important findings are

as follows. First, the residuals of the calibration data period decrease steadily in magnitude

with increasing complexity of the model. The benefits of using more parameters are largest for

parsimonious models, and become increasingly smaller for more complex models. If the model is

too complex, then the quality of fit can hardly be improved with the use of more parameters. Second,

the residuals of the evaluation period (prediction error) exhibit a characteristic ”U” shape. Indeed,

adding complexity to simple models will help reduce the prediction error, but only until an optimal

complexity of the model is derived, after which the magnitude of the prediction error increases

due to model overparameterization. Third, the maximum likelihood value of the calibration period

increases with model complexity. The more parameters that are used to explain the calibration

data the more flexible the model, and the larger the likelihood maximum. Fourth, the marginal

likelihood shows a pattern equivalent to the prediction error. Its value is maximized when the model

has an optimal complexity. Finally, to judge the optimum model complexity, traditional metrics of

fit require use of an independent evaluation period (left plot), whereas the same conclusions can be

drawn from the marginal likelihood using only the observations in the calibration data set.

1.9 Conclusion

This Chapter has reviewed the main elements of Bayesian inference to reconcile dynamic environmental

system models with observations, to facilitate prediction in time (forecasting) and space (interpolation),

data assimilation, and inference of the model parameters. The prior distribution, formulation

of the likelihood function, and marginal likelihood have been discussed extensively with special

emphasis on numerical techniques suited to approximate the posterior distribution. This includes
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rejection sampling, importance sampling, and recent developments in Markov chain Monte Carlo

simulation to sample complex target distributions. We also have highlighted their application to

sampling limits of acceptability. Three different case studies with surface and subsurface models

were presented to illustrate the application of Bayesian inference to quantification of parameter and

model predictive uncertainty. Numerical recipes were provided for each of the numerical techniques

to facilitate implementation and use of Bayes analysis.
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Figure 1.1: Schematic illustration of the most important sources of uncertainty in environmental
systems modeling, including (1) parameter, (2) input data (also called forcing or boundary
conditions), (3), initial state, (4) model structural, (5) output, and (6) calibration data uncertainty.
The measurement error of the calibration data is often prescribed, a rather convenient assumption
in most practical situations.
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Figure 1.2: Schematic overview of the model calibration problem in the presence of measurement,
parameter, and epistemic uncertainty. The model parameters are adjusted iteratively so that the

simulated response (solid lines) of the model,M(θ, x̃0, B̃), approximates as closely and consistently
as possible the observed response (blue dots).

Algorithm 2 Importance Sampling

1: Define an importance distribution, G(x), so that g(x) > 0 if f(x) > 0.
2: Define M .
3: for i = 1, . . . ,M do
4: Sample randomly a point, x(i), from G(x), x(i) ∼ G(x) and calculate f(x(i)).
5: Compute the importance weight, w(x(i)) = f(x(i))/q(x(i)), of x(i).
6: end for
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to different values of the parameter. Some values of the parameter are deemed more plausible
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Figure 1.4: Illustrative example of the autocorrelation function of some hypothetical residual time
series, E(θ). The serial residual correlation, ρ(k), is computed at different lags k = {1, . . . , 22}
using Equation (1.32). These values are subsequently connected using the gray line. Per definition,
the zeroth-order correlation is equal to unity, or ρ(0) = 1. This is easily shown as et(θ) = et+0(θ)
and so the numerator in Equation 1.32) simplifies to σ2

E(θ), the denominator.
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Figure 1.5: The impact of first-order serial correlation on the residuals. The green line lacks serial
correlation, hence φ1 = 0, whereas the orange time series of residuals exhibits strong autocorrelation
at the first lag, φ1 = 0.8. The dashed gray line signifies a perfect match between the model and
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Figure 1.6: Scatter plot of M = 160 samples (gray dots) drawn at random from a bivariate normal
distribution, N2(a,Σ, The dashed lines delineate the different bins that are used to construct the
frequency distribution (histogram) of θ1 and θ2. The green and blue lines depict the marginal
distributions of the parameters and are inferred from the sampled points.
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Figure 1.7: Application of rejection sampling to some univariate target distribution, F (x), with
arbitrary density function, f(x) (in gray) using as proposal density (in black) the uniform
distribution, Q(x) ∼ U(1, 5).
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Figure 1.8: Schematic illustration of a chain trajectory derived from MCMC simulation for a
two-dimensional target distribution, f(x). The black square signifies the initial state of the chain,
and the gray arrows denote the different jumps. Color coding is used to differentiate between
proposals (candidate points or trial moves) that have been accepted (green dots) or rejected
(red dots), respectively. The orange circle signifies the area of the stationary distribution, which
envelops the target distribution. The number of times each chain position appears in the Markov
chain (replicates after rejection of proposals) is directly proportional to the density of the target
distribution.
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Algorithm 3 Random Walk Metropolis

1: Define the proposal distribution, q(·) (must satisfy q(a|b) = q(b|a)) .
2: Define M .
3: Draw randomly x(1), the initial state of the chain, and calculate f(x(1)).
4: for i = 2, . . . ,M do
5: Sample randomly a candidate point, xp, from the symmetric proposal distribution,

q(x|x(i−1)), centered on x(i−1), thus xp ∼ q(x|x(i−1)).
6: Compute the target density, f(xp), at xp.
7: Calculate the Metropolis ratio, Pacc(xp) = min

(
1, f(xp)/f(x(i−1))

)
.

8: if Z ≤ Pacc(xp) then
9: Set x(i) = xp and f(x(i)) = f(xp),

10: else
11: Remain at ”old” state, that is x(i) = x(i−1) and f(x(i)) = f(x(i−1)).
12: end if
13: end for

Algorithm 4 Adaptive Metropolis

1: Calculate s(d) = 2.382/d, define d× d covariance matrix, Σ, ϕ = 10−6, m ≥ 1, and M .
2: Draw randomly x(1), the initial state of the chain, and calculate f(x(1)).
3: for i = 2, . . . ,M do
4: Sample randomly a candidate point, xp ∼ Nd(x(i−1), s(d)Σ).
5: Compute the target density, f(xp), at xp.
6: Calculate the Metropolis ratio, Pacc(xp) = min

(
1, f(xp)/f(x(i−1))

)
.

7: if Z ≤ Pacc(xp) then
8: Set x(i) = xp and f(x(i)) = f(xp).
9: else

10: Remain at ”old” state, x(i) = x(i−1) and f(x(i)) = f(x(i−1)).
11: end if
12: if mod(i,m) = 0 then
13: Adapt covariance matrix, Σ = Cov[{x(1), . . . ,x(i)}] + ϕId.
14: end if
15: end for

Table 1.1 Model parameters and their prior uncertainty ranges.

Parameter Symbol Minimum Maximum Units

Maximum interception Imax 1 10 mm
Soil water storage capacity Smax 10 1000 mm
Maximum percolation rate Qmax 0.1 100 mm/d

Evaporation parameter αE 0.1 100 -
Runoff parameter αF -10 10 -

Time constant, fast reservoir KF 0.1 10 days
Time constant, slow reservoir KS 0.1 150 days
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Algorithm 5 Differential Evolution Markov chain

1: Define number of chains N ≥ 2d, and c∗ = 10−6.
2: Set iteration, i = 2.
3: for j = 1, . . . , N do
4: Draw randomly xj(1), the initial state of the jth chain, and calculate f(xj(1)).

5: end for
6: while chains not converged do
7: for j = 1, . . . , N do
8: Draw without replacement integers a and b from {1, . . . , j − 1, j + 1, . . . , N}
9: Select the jump rate; if U(0, 1) ≤ 0.9 then γ(d) = 2.38/

√
2d otherwise γ(d) = 1.

10: Create a candidate point, xjp, in the jth chain using Equation (1.46)

11: Compute the target density, f(xjp), at xjp.

12: Calculate the Metropolis ratio, Pacc(x
j
p) = min

(
1, f(xjp)/f(xj(i−1))

)
.

13: if Z ≤ Pacc(x
j
p) then

14: Set xj(i) = xjp and f(xj(i)) = f(xjp).

15: else
16: Remain at ”old” state, xj(i) = xj(i−1) and f(xj(i)) = f(xj(i−1)).

17: end if
18: end for
19: Compute convergence diagnostics
20: Update iteration, i = i+ 1.
21: end while

Table 1.2 Parameters of the HYDRUS-1D model and their prior uncertainty ranges.

Parameter Symbol Lower Upper Units Prior

Residual moisture content θr 0.043 0.091 cm3 cm−3 N (0.067, 0.006)
Saturated moisture content θs 0.409 0.481 cm3 cm−3 N (0.445, 0.009)
Reciprocal of air-entry value α 0.003 0.009 cm−1 N (0.005, 6.90 · 10−4)

Curve shape parameter n 1.510 1.849 - N (1.671, 0.042)
Conductivity at saturation Ks 0.138 19.962 cm day−1 N (1.660, 1.386)

Tortuosity parameter λ -5.490 6.270 - N (0.390, 1.470)
Pressure head at bottom hbot -250 -50 cm U(−250, 50)
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Figure 1.9: Schematic illustration of a dissident chain (red) that is mired in a local basin of
attraction of the search space of some univariate probability distribution. This outlier chain cannot
transition to the target distribution demarcated in orange. The reasons are as follows. First, the
aberrant chain cannot travel in multiple iterations the valley as almost all trial moves will exhibit
a negligible acceptance rate. Second, a direct move to a point with equal probability density at
the other side of the valley is implausible as the variation among the target chains is insufficient to
warrant a large enough jump size with Equation (1.46). Third, a direct move to the target with
unit jump rate is impossible as the outlier chain cannot sample its own position (a 6= b 6= i) - a
requirement for each chain trajectory to satisfy detailed balance. As a consequence, the dissident
chain will be trapped forever.
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Algorithm 6 DiffeRential Evolution Adaptive Metropolis

1: Define number of chains N ≥ bd/2c.
2: Define algorithmic variables, r, c = 0.1 and c∗ = 10−6.
3: Compute r crossover values, η = {η1, . . . , ηr} with pη = {1

r
, . . . , 1

r
}.

4: Set iteration, i = 2.
5: for j = 1, . . . , N do
6: Draw randomly xj(1), the initial state of the jth chain, and calculate f(xj(1)).

7: end for
8: while chains not converged do
9: for j = 1, . . . , N do

10: Draw the crossover value, η, from F(η|pη).
11: Draw a d-vector z from Ud(0, 1).
12: Store in subset A the indexes l of z that satisfy zl ≤ η, where l = {1, . . . , d}.
13: If A = ∅ (empty set), then fill A with random draw from integers {1, . . . , d}.
14: Compute the cardinality of A, that is d∗ = |A|.
15: Draw the value of δ at random from integers, {1, 2, 3}, thus δ ∼ U{1, 3}.
16: Sample δ-vectors a and b without replacement from {1, . . . , j − 1, j + 1, . . . , N}.
17: Draw a label R ∼ U(0, 1), if R ≤ 0.8 set γ(δ,d∗) = 2.38/

√
2δd∗ otherwise γ(δ,d∗) = 1.

18: Create a candidate point, xjp, in the jth chain using Equations (1.48) and (1.49).

19: Compute the target density, f(xjp), at xjp.

20: Calculate the Metropolis ratio, Pacc(x
j
p) = min

(
1, f(xjp)/f(xj(i−1))

)
.

21: if Z ≤ Pacc(x
j
p) then

22: Set xj(i) = xjp and f(xj(i)) = f(xjp).

23: else
24: Remain at ”old” state, xj(i) = xj(i−1) and f(xj(i)) = f(xj(i−1)).

25: end if
26: end for
27: Compute convergence diagnostics.
28: Patch for dissident chains.
29: Update iteration, i = i+ 1.
30: end while
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Figure 1.10: Unit hydrograph: Scatter-plot matrix of the posterior samples created the DREAM
algorithm. The main diagonal presents histograms of the marginal posterior distributions of the
Nash model parameters, h and rc, and nuisance variables, σ0 and σ1. The off-diagonal graphs
display bivariate scatter plots of the posterior samples of the different parameter pairs. The true
parameter values are separately indicated in each histogram using the red cross.
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Figure 1.11: Unit hydrograph: Comparison of the observed (red dots) and posterior simulated
hydrographs. The light and dark gray regions demarcate the 95% simulation intervals of the Nash
model due to parameter and total uncertainty, respectively.
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Figure 1.12: The rainfall-runoff transformation: Schematic representation of the hmodel conceptual
watershed model.
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Figure 1.13: The rainfall-runoff transformation: Least-squares calibration with Gaussian likelihood
of Equation (1.28) for the French Broad River basin. Time series plot (top panel) of maximum
likelihood streamflow simulation (solid blue line) and observations (red dots). The bottom panel
analyzes the corresponding residuals. The left plot displays the residuals as a function of the
simulated flow level. The middle plot shows the assumed (solid line) and actual (red squares)
histogram of the residuals. The right plot summarizes the autocorrelation function of the residuals.
The 95% significance levels are separately indicated in this graph with the dashed lines.
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Figure 1.14: The rainfall-runoff transformation: Calibration with the generalized likelihood
function for the French Broad River basin. Time series plot (top panel) of maximum likelihood
streamflow simulation (solid blue line) and observations (red dots). The bottom panel analyzes
the corresponding residuals. The left plot displays the residuals as a function of the simulated
flow level. The middle plot shows the assumed (solid line) and actual (red squares) histogram of
the residuals. The right plot summarizes the autocorrelation function of the residuals. The 95%
significance levels are separately indicated in this graph with the dashed lines
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Figure 1.15: The rainfall-runoff transformation: Histograms of the marginal posterior distribution
of the hmodel parameters for the French Broad River basin using (in blue) the Gaussian likelihood
and (in green) the generalized likelihood.
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Figure 1.16: Vadose zone hydrology: Histograms of the marginal posterior distribution of the soil
hydraulic parameters, (A) θs, (B) α, (C) n, and (D) Ks, and (E) HYDRUS-1D 95% simulation
uncertainty intervals due to parameter (dark region) and total uncertainty (light gray). The
observed soil moisture value are indicated with a red circle.
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Figure 1.17: Vadose zone hydrology: (top panel) Histograms of the behavioral set, Ω̂
(θ|Ỹ)

, of the

soil hydraulic parameters, (A) θr, (B) θs, (C) α, (D) n, (E) Ks, and (F) hbot. The x-axis matches
exactly the (uniform) prior distribution. (bottom panel) Comparison of observed (red dots) and

posterior simulated, Ω̂(Y) (gray region) soil moisture contents.
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Figure 1.18: Vadose zone hydrology: Comparison of the prior (dark gray) and posterior (light
gray) ranges of the (left) soil water retention, and (right) unsaturated soil hydraulic conductivity
function. The posterior (or behavioral) mean hydraulic functions are indicated separately with the
solid black line.
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Figure 1.19: Schematic overview of the relationship between model complexity (number of
parameters) and (left plot) the magnitude of the error residuals in the calibration and evaluation

period, and (right plot) the value of the maximum likelihood, L(θ∗|Ỹ), and the marginal likelihood,

P (Ỹ) of the calibration data set.
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Chapter 2

Improving Predictions in Ecology

with Data Assimilation

by Elias C. Massoud, Elisa Beninca, Jef Huisman,

Willem Bouten and Jasper A. Vrugt

Reference:

Massoud, E. C., Huisman, J., Beninca, E., Heerklos, R., Vrugt, J. A.: Probing the limits of

predictability: data assimilation improves forecasts of complex dynamics in ecosystems. Ecology
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Many systems in ecology have shown to exhibit chaotic dynamics. As a consequence, predictability

of these systems is limited in the long term. In a previous study Benincà et al. (2008) demonstrate

chaos in a long term experiment of a plankton community, and the forecast window for this system

was around 15-30 days. Here, we fuse this unique data set with a general coupled predator prey

model and successfully model the species dynamics using the data assimilation (DA) technique. To

our knowledge, this is the first successful attempt to model predator prey dynamics that exhibit

chaotic behavior. DA methods have been introduced in many fields, such as meteorology, but have

rarely been used in ecological applications despite the recognition in recent literature of its potential

benefits (Peng et al., 2011).
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Figure 2.1: Food web structure of the experimental data. Our analysis focuses on two prey species
(picocyanobacteria and nanoflagellates) and two predator species (rotifers and calanoid copepods),
shown in color. Modified from Benincà et al. (2008).

After successful application of DA, its efficiency is examined when used at reduced frequencies.

This is done because the application of DA is costly and requires frequently sampled data to update
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the model simulations. This analysis provides insight on measurement design and shows how the

accuracy of the model simulations changes with reduced measurement frequencies.

Lastly, we estimate the Ecological Forecast Horizons (EFH) of the model simulations (Petchey

et al., 2015), which ultimately show how far into the future can the model projections be trusted

without the help from DA. We achieve acceptable projections that span roughly 80 days in some

cases, absolutely surpassing the previous benchmark of 15-30 days for this system.

2.1 Manuscript Title - Probing the limits of predictability:

data assimilation improves forecasts of complex dynamics

in ecosystems

Abstract: The daunting complexity of ecosystems has led ecologists to use mathematical modeling

to gain understanding of ecological relationships, to simulate long-term ecological processes, and to

predict future system dynamics. In pursuit of mathematical tractability, these models use simplified

descriptions of key patterns, processes and relationships observed in nature. In contrast, ecological

data are often complex, scale-dependent, space-time correlated, and governed by nonlinear relations

between organisms and their environment. This disparity in complexity between ecosystem models

and data has created a large gap in ecology between model and data-driven approaches. Here, we

explore data assimilation (DA) with the Ensemble Kalman Filter (EnKF) to fuse a two-predator-two-prey

model with abundance data from a 2600+ day experiment of a plankton community. We analyze

the chaotic population dynamics using different assimilation intervals. Overall, results show that

DA improves substantially the predictability and ecological forecast horizon of complex community

dynamics.

2.2 Introduction

Ecosystems constitute a complex network of living organisms, which are interconnected and linked

with their environment through a myriad of nutrient cycles, mass and energy flows. This may
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give rise to emergent and self-organized behavior with structural, spatial, and temporal patterns

and dynamics of the organisms that are difficult, costly, and labor intensive to measure directly in

the field, particularly at large spatial scales (Hari et al., 2013; Schaeffer et al., 1988). Faced with

this daunting complexity, ecologists have developed mathematical models to gain understanding of

ecosystem functioning, simulate large-scale experiments, and predict far into the future ecological

processes. These models typically use simplified mathematical equations to conceptualize and

aggregate the complex, spatially distributed, and highly interrelated nutrient, energy, mass, and

ecological processes in an ecosystem (Running et al., 1999; Vandermeer, 2004). Consequently,

most ecological models may explain only a small fraction of the dynamics of the actual ecosystem

(Wintle et al., 2003). What is more, due to process and spatial aggregation the parameters of an

ecological model often do not represent directly measurable ecosystem quantities and must therefore

be estimated indirectly through a calibration process using measurements of ecosystem inputs and

outputs. The “calibrated” model can then be used to predict ecological processes over very long

periods of time (Fasham et al., 1990; Sitch et al., 2003).

During the past few decades increasingly larger volumes of ecological data have become available

in response to continued advances in measurement techniques and the rapid expansion of long-term

monitoring networks (Aanensen et al., 2009; Running et al., 1999). This ever increasing wealth

of data provides unique opportunities for ecologists to enhance ecosystem understanding and

characterization (Reichman et al., 2011; Ter Braak and Van Tongeren, 1995). Yet, ecological data

are often complex, high-dimensional, and scale-dependent as governed by local interactions and

feedback loops between organisms individually and their environment, and periodic and stochastic

changes to the ecosystem (Benincà et al., 2009; Conway et al., 1970).

In this paper, we advocate use of advanced statistical methods to improve treatment of model

and measurement errors, and reconcile ecological models with data (Kendall et al., 1999; Peng et al.,

2011). This includes state-of-the-art parameter estimation (Ali et al., 2015; Conroy et al., 1995)

and data assimilation (DA) methods (Luo et al., 2011; Luo and Schimel, 2011). DA incorporates

observations of system behavior into the stace space of a computer model of this system. The

prototype of this method, the Kalman filter (KF), was developed by Kalman (1960) for optimal
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control of dynamical systems. DA holds great promise in ecology as it will help close the gap

between ecosystems models and data, enhance ecological forecasting (McMahon et al., 2009),

provide insights into measurement and model errors, and guidance on “optimal” experimental

design. For example, via integration with inferential ecosystem models, DA can help further refine

wireless sensor networks by weighing the value of an observation against cost of data collection

(Clark et al., 2001).

DA has found widespread application and use in many different fields of research, including

oceanography (Bertino et al., 2003; Gehlen et al., 2015), marine ecology (Triantafyllou et al., 2013;

Xiao and Friedrichs, 2014), hydrology (Vrugt et al., 2005), glaciology (Granzow, 2014), and satellite

remote sensing (Dorigo et al., 2007), to name a few. Furthermore, DA has received operational

status in real-time weather, traffic, tsunami, and flood prediction systems because of its proven

ability to enhance significantly the forecast skill of dynamic system models, and quantify accurately

prediction uncertainty. In ecology, the interest in DA has increased rapidly in the past decade (Chen

et al., 2008; Mo et al., 2008; Quaife et al., 2008; Williams et al., 2005), to support ecological analysis

(Zobitz et al., 2011), to account for model structural, input and output errors (Luo et al., 2011),

to constrain model parameters and system states, and improve ecological prediction (Niu et al.,

2014), and shed new light on model malfunctioning, and provide guidance on model improvement

and data informativeness (Keenan et al., 2011; Sitz et al., 2002; Vrugt et al., 2005). In fact, next

generation ecological models are developed conscientiously in anticipation of DA applications (Peng

et al., 2011; Williams et al., 2009; Wu et al., 2009; Xu et al., 2012) .

To date, only few authors have used DA to analyze chaotic predator prey dynamics in complex

microbial food webs. For example, Lawson et al. (1995) used an adjoint DA method to assimilate

synthetic abundance data into a simple predator-prey model, and Lawson et al. (1996) recovered

rate parameters, initial conditions, and the amplitude of episodic events in a marine ecosystem

model from a 60-day assimilation period using simulated monthly, bi-weekly and weekly distributions

of nutrients, phytoplankton and zooplankton. Here, we present the first application of DA to chaotic

population dynamics in a long-term laboratory experiment with a marine plankton community
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isolated from the Baltic Sea (Benincà et al., 2008). The dataset displayed chaotic population

dynamics with species abundances that showed striking fluctuations over several orders of magnitude.

Chaos implies that long-term prediction of the population dynamics in our food web is fundamentally

impossible. We use the Ensemble Kalman Filter, or EnKF (Evensen, 1994) to fuse the predicted

abundances of the two-predator-two prey model of Vandermeer (2004) with measured abundances.

The parameters are simultaneously estimated, by minimizing in a loop outside the EnKF, the

forecast error of the model. We follow guidelines from Petchey et al. (2015) and compute the

ecological forecast horizons of our population model to determine how far into the future useful

forecasts can be made (Simmons and Hollingsworth, 2002). Altogether, results demonstrate that

joint parameter and state estimation enhances significantly the forecast horizon and predictive

ability of a population model.

2.3 Materials and Methods

This section presents our application of DA to provide guidelines for researchers new to model-data

fusion methods. We first review our food web and data, then discuss the Vandermeer (VD)

population model (Vandermeer, 2004), and then present a brief technical description of the parameter

estimation and DA methods used to close the gap between observed and simulated abundances.

We conclude this section with a description of the concept of ecological forecast horizons of Petchey

et al. (2015) to evaluate DA with different VD model parameterizations.

2.3.1 The data set

We use a microbial plankton community isolated from the Darss-Zingst estuary in the southern

Baltic Sea. The structure of this food web is depicted graphically in Benincà et al. (2008) and

consists of bacteria, several phytoplankton species, herbivorous and predatory zooplankton species,

and detritivores. The plankton community was cultured in a laboratory mesocosm under constant

external conditions and sampled twice a week for a period of more than 8 years to count population

abundances of the functional groups. A detailed description of the mesocosm experiment appears in
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the Supplementary information (SI) of Benincà et al. (2008) and data preprocessing is discussed in

Benincà et al. (2009). The final data set comprises 2656 days and consist of n = 794 observations

of each species’ population count (in (mg fwt L−1)1/4) with constant measurement interval of

∆t = 3.35 days.

The mesocosm data set provides an excellent test bed for DA as the measured species abundances

show striking fluctuations over several orders of magnitude, despite the constant external conditions.

What is more, Benincà et al. (2008) has demonstrated that the population dynamics exhibit chaos.

We focus our attention to the rotifers, calanoid copepods, picocyanobacteria, and nanoflagellates,

because these four species have a relatively large presence in our food web, govern a large part

of the population dynamics, and their abundances resemble the oscillations typical for coupled

predator-prey interactions. The n = 794 measured abundances of these k = 4 species are stored in

a k × n matrix, Ỹ, where ˜ signifies observed data.

2.3.2 Coupled predator-prey model

We analyze the dynamics of the two-predator-two-prey communities using the population model

of Vandermeer (1982, 2004). This VD model assumes that the prey species interact through

Lotka-Volterra competition, and are consumed by predators according to a saturating functional

response. If P1 and P2 denote the abundances of the nanophytoplankton and picophytoplankton

prey species, and Z1 and Z2 the abundances of the calanoid copepods and rotifers (competing

predators), respectively, then the VD model is given by

dP1

dt
= r1P1

(
1− 1

K
(P1 + αP2)

)
−
(

gP1Z1

H + (P1 + βP2)
+

gβP1Z2

H + (βP1 + P2)

)
dP2

dt
= r2P2

(
1− 1

K
(αP1 + P2)

)
−
(

gβP2Z1

H + (P1 + βP2)
+

gP2Z2

H + (βP1 + P2)

)
dZ1

dt
=

g(P1 + βP2)Z1

H + (P1 + βP2)
−mZ1

dZ2

dt
=

g(P2 + βP1)Z2

H + (βP1 + P2)
−mZ2.

(2.1)
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This system of four ordinary differential equations describes the coupled interactions of our two

competing predators and two prey species and the evolution of their abundances under constant

environmental conditions. The VD model has four state variables, namely the abundances, Z1,

Z2 and P1, P2 of the two predators and two preys, respectively, and d = 8 parameters, whose

values we store in vector θ. This includes the two unitless coefficients α ≥ 0 and β ∈ [0, 1] which

characterize the competition between the zooplankton and their predator selectivity, respectively,

the growth rates of the first and second prey, r1 (day−1) and r2 (day−1), respectively, the grazing

rate, g (day−1), the carrying capacity, K ((mg fwt L−1)1/4), the mortality rate, m (day−1) and

functional response, H ((mg fwt L−1)1/4).

We write the VD model as a regression function

Y = VD(θ), (2.2)

which uses as input the d-vector θ = {α, β, r1, r2, g,K,m,H} of VD model parameters, and returns

as output a k × n matrix, Y with the simulated abundances of the two predators and two preys,

respectively. Bifurcation analyses of the simulated abundances, Y, displays different dynamics,

including stable equilibria, limit cycles and chaos depending on the values of the VD parameters

(Figures S1-S3). In particular, chaotic dynamics is quite ubiquitous in this model, resulting in

complex patterns of synchronous and asynchronous fluctuations of the four species. We refer

interested readers to the publications of Vandermeer (1982, 2004) for a detailed explanation of the

VD model, and Benincà et al. (2009) for analysis of coupled predator-prey cycles in our food web.

We must choose the VD parameter values so that the simulated abundances, Y, match as closely

and consistently as possible the observed data, Ỹ. This necessitates inference of θ to minimize the

overall ”length” of the k × n matrix of residuals, E(θ)

E(θ) = Ỹ−Y(θ) = {e1(θ), . . . , ek(θ)}, (2.3)

where the 1× n vector ej stores the residuals of the jth species, j = {1, . . . , k}.

In this study we examine three different parameterizations. The first originates from wavelet

analysis by Benincà et al. (2009) and is listed in Table 1 under “WAVE”. The other two parameter
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vectors, coined “SODA” and “INTEL”, are derived from the measured abundances using inference

methods outlined in the next sections.

2.3.3 Bayesian inference of the VD model parameters

In recent decades, Bayesian inference has emerged as a working paradigm for modern probability

theory, parameter and state estimation, model selection and hypothesis testing (Vrugt, 2016).

Bayesian inference allows for an exact description of parameter uncertainty (and other sources of

uncertainty) by treating the parameters as probabilistic variables with joint posterior pdf, p(θ|Ỹ).

This multivariate distribution, the so-called posterior parameter distribution, is the consequence of

two antecedents, a prior distribution, p(θ), which captures our initial degree of beliefs in the values

of the model parameters, and a likelihood function, L(θ|Ỹ), which quantifies the level of confidence

in the parameter values, θ, in light of the observed data, Ỹ. Bayes’ theorem can be derived from

basic axioms of probability

p(θ|Ỹ) =
p(θ)L(θ|Ỹ)∫
Θ p(θ)L(θ|Ỹ)

∝ p(θ)L(θ|Ỹ), (2.4)

where the denominator, p(Ỹ) =
∫
Θ p(θ)L(θ|Ỹ), acts as a normalizing constant so that p(θ|Ỹ)

integrates to unity.

Without loss of generality, we restrict the model parameters to a closed space, Θ, equivalent

to a d-dimensional hypercube, θ ∈ Θ ∈ Rd, called the feasible parameter space. In the absence

of detailed knowledge about the parameter values of our food web, we assume a uniform prior

distribution, p(θ), over the ranges listed in Table 2.1. This leaves us with specification of L(θ|Ỹ).

In the ideal case with a perfect model and initial states, we expect the distribution of the residuals

of Equation (2.3) to match exactly the distribution of the measurement errors of the species’

abundances, Ỹ. If we assume the n-measurement errors, vj = {vj1, . . . , vjn}, of each species,

j = {1, . . . , k}, to be independent and zero-mean normally distributed, N (0, σ̂2
v), with constant
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variance, σ̂2
v, then the likelihood function becomes

L(θ|Ỹ, σ̂2
v) =

n∏
t=1

1√
2πσ̂2

v

exp

−1

2
σ̂−2

v

k∑
j=1

n∑
t=1

(ỹjt − yjt(θ))2

 , (2.5)

where ejt(θ) = ỹjt−yjt(θ) signifies the residual of the jth species’ population count at time t. The

summation term inside the exponent is equivalent to the sum of squared residuals used widely in

model fitting.

The vector of VD parameter values that maximizes the likelihood function is also referred to as

the maximum likelihood (ML) solution. With a uniform prior, this ML solution is equivalent to

the peak solution of the posterior distribution, p(θ|Ỹ). We ”integrate out” the measurement error

variance, σ̂2
v, using as proxy for σ̂2

v the variance of the ML residuals. This gives (Vrugt, 2016)

L(θ|Ỹ) ∝

 k∑
j=1

n∑
t=1

(ỹjt − yjt(θ))2

− 1
2
nk

. (2.6)

We are now left with inference of the (unnormalized) posterior distribution, p(θ|Ỹ) ∝ p(θ)L(θ|Ỹ),

which summarizes our updated knowledge (belief) on the parameters. Unfortunately, in most

applications p(θ|Ỹ) does not have a closed-form analytic solution. We therefore resort to Markov

Chain Monte Carlo (MCMC) simulation and use the DiffeRential Evolution Adaptive Metropolis

(DREAM) algorithm (Vrugt, 2016) to generate samples of the posterior parameter distribution. A

detailed description of DREAM appears in Vrugt (2016) and interested readers are referred to this

publication for further details.

2.3.4 Joint parameter and state estimation

The assumption of exact knowledge of the initial states of our food web may be appropriate for our

mesocosm data set, but the assumption of a perfect model cannot be justified. Indeed, the VD model

is a highly simplified description of the population dynamics in our food web, and consequently, it
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may not be able to mimic accurately the observed abundances. One should therefore not expect the

residuals to satisfy assumptions of normality and independence, but instead exhibit considerable

variation in bias, variance, and serial correlation under different population counts. We therefore

consider the SODA method (Vrugt et al., 2005) which relaxes the assumption of a perfect model

and accounts implicitly for structural errors of the VD model during parameter estimation.

Lets assume, for the time being, that the VD parameter values are known. We write the VD

model in a state-space formulation

xf
t = VD(θ,xt−∆t) + qt, (2.7)

where xf
t is a 4 × 1 vector with forecasted abundances of the two predator and two prey species,

respectively, θ = {θ1, . . . , θd} is the d = 8-vector of parameters, and qt is a 4×1 process noise vector

that accounts for model structural inadequacies. The time step, ∆t, is equivalent to the interval of

3.35 days between measured abundances. Thus, based on the state, xt−∆t, at time t−∆t and the

values of the parameters, θ, the VD model predicts the one-observation-ahead abundances using

numerical integration of the coupled two-predator-two-prey system in equation (2.1) between t−∆t

and t days. These VD-predicted abundances are then corrupted with the stochastic noise term, qt,

to create the state forecast, xf
t, at time t. We can now calculate the likelihood of the forecasted

state via recursive implementation of Bayes’ theorem in Equation (2.4), details which are found

elsewhere.

If the model operator in Equation (5.1) is linear, and the distributions of the model error, qt,

and measurement error, vt are multivariate Gaussian, respectively, then the Kalman filter (KF)

(Kalman, 1960) provides an optimal estimate of the population counts in our food web at each

measurement time t as follows

xa
t = xf

t + Kt(ỹt − xf
t), (2.8)

where xa
t is a 4× 1 vector with the analysis state, and Kt ∈ [0, 1] is a 4× 4 matrix of weights called

the Kalman gain. The optimal, or analysis, state is our best estimate of the abundances in the

food web and lies between the state forecast, xf
t, and state measurement, ỹt. The second term on

the right-hand-side is the innovation vector, it(θ).
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The Kalman gain is the relative weight given to the state forecast and state measurement,

respectively, and is calculated using

Kt =
Qt

Qt + R
= Qt(Qt + R)−1 (2.9)

where Qt and R signify the 4 × 4 covariance matrices of the model and measurement errors,

respectively. In general, if the model errors are large compared to the measurement errors, the gain

will be high and the analysis state, xa
t , of the KF will track closely the measured abundances, ỹt.

On the contrary, if the model errors are small relative to the measurement errors, the gain will be

small and the analysis state close to xf
t. The analysis state now enters the VD model to predict the

abundances at t + ∆t, and this two-step process of state prediction and state analysis is repeated

for every next observation. This recursion negates forecast bias, and helps close the gap between

the observed and simulated abundances.

The original Kalman filter requires an analytic formula for the evolution of the model error

covariance matrix, Qt. This formula can only be derived for linear state-space models. For nonlinear

models, the extended Kalman filter can be used, which linearizes Qt via a tangent linear operator.

This approximation, however is notoriously unstable for the VD model as governed by highly

nonlinear and/or choatic state transitions. We therefore resort to the Ensemble Kalman filter

(EnKF) of Evensen (1994) instead, which approximates the matrix Qt by the sample covariance of

N different realizations, called an ensemble, of the state forecast. The EnKF is relatively easy to

implement. Figure 2.1 presents a brief summary of the method. Interested readers are referred to

Evensen (2009) for a detailed explanation of the EnKF. SI-B explicates further our choice for the

EnKF rather than the more generic particle filter.

The performance of the KF (or EnKF) depends in large part on the choice of R and Qt. We make

the common assumption that the state measurement errors are independent, zero-mean normally

distributed with variance, σ̂2
v. Consequently, R = σ̂2

vU4, where I4 is the 4 × 4 unit (or identity)

matrix. Based on recommendations in Evensen (1994) we use temporally correlated process noise,

qt, in Equation (5.1)

qt = ρqt−∆t + wt, (2.10)
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where ρ ∈ (−1, 1) (-) is the first-order autocorrelation coefficient of the model errors, and wt is a

4× 1 vector with values drawn randomly from a zero-mean Gaussian distribution with covariance

matrix, σ̂2
wU4.

Thus far, we have assumed the VD parameter values to be known during state estimation,

a supposition that is not particularly realistic for the present application. We therefore use

the SODA method and estimate jointly the states and parameters. This method uses an inner

EnKF loop for recursive state estimation conditioned on an assumed parameter set, and an outer

MCMC simulation loop for batch estimation of the posterior VD parameter distribution, p(θ|Ỹ).

We assume, again, a uniform prior parameter distribution, p(θ) and compute the likelihood,

L(θ|Z), of the k × n matrix of state forecast errors, Z, using Equation (2.6) (but with Z rather

than residuals without DA). The ML parameter values derived from SODA will minimize the

one-observation-ahead forecast errors of the VD model. Note, that if we set the model error

covariance matrix Q to zero then the Kalman gain, K, will always contain zeros and SODA simplifies

to parameter estimation only via Bayes’ theorem in Equation (2.4).

We assume an ensemble of N = 100 members, σ̂2
v = 0.05, and treat ρ and σ̂2

w as nuisance

variables whose values are estimated along with the VD parameters using the measured abundances,

Ỹ, of the predators and preys. The ML values of “SODA” are listed in Table 2.1.

2.3.5 The ”Intelligent” (INTEL) model

The estimated parameter values derived from SODA assume the continued application of DA to

the entire 2656 day record. This equates to an average assimilation interval of ∆t = 3.35 days. As

data collection may be rather expensive and wasteful, we raise the question here of how frequently

must we assimilate the measured abundances to describe accurately population dynamics in our

food web? For this, we investigate the relationship between the time interval of two successive

population counts, and the forecast skill of the VD model. We also investigate whether we can

lower the intensity of data collection, and make intelligent choices regarding measurement timing.
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We construct a second and perhaps more “intelligent” model, coined INTEL, which restricts

state updating to those 20% of the observations with largest fluctuations in the abundances. In

between these “important” observations, the VD model is executed in open loop without state

adjustments. We estimate the VD parameters and nuisance variables ρ and σ̂2
w of INTEL with

SODA but assimilating only the 20% key abundance measurements. Table 1 list the ML values of

INTEL.

2.3.6 Reduced measurement frequencies

To assess the effect of measurement interval on the predicted population dynamics by the VD model,

we evaluate the WAVE, SODA and INTEL parameters with state updates at every ∆t = 3.35,

2∆t = 6.70, 5∆t = 5.07 and 10∆t = 33.50 days, thereby assimilating 100, 50, 20, and 10% of the

measured abundances of the predators and preys, respectively. This analysis will provide insights

into the relationship between the time interval of successive abundance measurements and the

forecast skill of the VD model. These findings provide guidance on experimental design in support

of efficient and effective data collection.

2.3.7 Ecological Forecast Horizons

DA should enhance drastically the VD model’s ability to track our food web’s population dynamics.

Yet, state estimation can only be used “in sample” requiring knowledge of the observed abundances.

To better understand the “out of sample” performance of the VD model, we use open loop

simulation and evaluate the ecological forecast horizon (EFH) of the WAVE, SODA and INTEL

parameterizations. Petchey et al. (2015) defined the EFH (P. 597) as “. . . the dimensional distance

for which useful forecasts can be made”. Benincà et al. (2008) showed the population dynamics in

our food web to have a limited predictability of 15 - 30 days due to chaotic state transitions. We

extend the analysis of Benincà et al. (2008) and compute EFHs for the individual predator and

prey species using the three different VD parameterizations.

To compute the EFH we need to define a criterion that measures forecast proficiency, and
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another, related, criterion that classifies a forecast as being “good” or “bad”. This second criterion,

coined the forecast proficiency threshold, or FPT, by Petchey et al. (2015), defines the horizon for

which model predictions are deemed good enough, and below which the forecasts are considered

unacceptable. The forecast horizon is now defined as the first time from the start of simulation

at which the forecast proficiency drops below the FPT. In our application, we set the forecast

proficiency equivalent to the distance (absolute residual) between the observed and predicted

abundances. Without formal guidelines on the choice of the FPT, we use FPT = {0.1, 0.2, 0.3, 0.4, 0.5},

and report the corresponding forecast horizon for each species and VD parameterization. This

provides insights into the relationship between the choice of the FPT and the EFH.

One could argue in favor of an independent evaluation data set to help assess the performance

and forecast horizons of the VD model. The use of an evaluation data set should, however not

change much our findings. Main reason is the inability of the VD model to explain, without state

estimation, the measured abundances. The use of many different starting points of the VD model

within the measured record, Ỹ, should therefore provide robust EFHs of the predators and preys

(see SI-C) for a detailed recipe).

We calculate separately the EFH for each predator and prey species and evaluate the forecast

errors of the VD model with the INTEL, WAVE, and SODA parameterizations using many different

starting points within the calibration data record of observed abundances (see recipe below).

[1] Choose the VD model parameter vector (WAVE, SODA or INTEL)

[2] Define the forecast proficiency threshold (FPT = {0.1, 0.2, 0.3, 0.4, 0.5})

[3] For j = {1, . . . , 4} species

[A] Repeat M times

[1] Draw randomly an integer, T ∈ {1, . . . , 601}

[2] Initialize the VD model at ts = (T − 1)∆t (days)

[3] Simulate abundances to tf = 2656 days using a print step of ∆t days

[4] Compute the residual vector of the jth species

[5] At time, tFH, (days) the absolute residual exceeds, for the first time, FPT
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[6] Define the forecast horizon, FH = tFH − ts

[B] End (repeat M times)

[C] The EFH of the jth species is equal to the mean of its M forecast horizons [4] End (for loop)

The recipe above computes the forecast horizon of the VD model via open loop simulation

within the calibration data set. One might argue that this approach violates the basic principles

of the EFH, and that we should have used split sampling to evaluate the performance and forecast

horizons of the VD model for an independent data set. Yet, we do not expect out-of-sample VD

model evaluation to dramatically change our findings. The main reason for this is the inability

of the VD model to track closely, without state estimation, the measured data. The use of M

different starting points of the VD model within the calibration data record, Ỹ, should thus suffice

to provide robust forecast horizons of each species.

2.4 Results

To simplify discussion and graphical interpretation, we use color coding in green, blue, and black

to differentiate between the results of the WAVE, SODA and INTEL parameter vectors of Table

1, respectively.

2.4.1 Parameter estimates and model outputs

Table 1 compares the WAVE values of the VD model parameters derived from wavelet analysis

Benincà et al. (2009) with their ML counterparts of SODA and INTEL. The values in parenthesis

report the posterior standard deviations of the VD parameters, and the nuisance variables ρ and

σ̂2
w. Figure S4 presents box plots of the marginal posterior distributions of the SODA and INTEL

parameters. To simplify plotting each box plot is normalized with the prior range of each parameter.

The nuisance variables ρ and σ̂2
w are required for state estimation by SODA and INTEL. Our DA

experiments with the WAVE parameters uses SODA’s ML values of ρ and σ̂2
w.
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Figure 2.2: Open loop simulation of the VD model for t ∈ [0, 2656] days using the WAVE, SODA
and INTEL parameter values: Time series plots of measured and simulated abundances of the
predator and prey species (left panels), and scatter plots of simulated and observed abundances
(right panels). The three parameterizations (solid lines) poorly describe the highly nonlinear and
chaotic population dynamics of the two predator and two prey species in our microbial food web.
Therefore, we investigate the use data assimilation to reduce simulation bias of the VD model, and
close the gap between the observed and simulated species abundances.

The SODA and INTEL values of the VD parameters are in good agreement (Figure 9), and

correspond reasonably well with their WAVE values. All three parameterizations use values for

α ∈ [0.1− 0.3], β ∈ [1.36− 1.75] and m ∈ [0.05− 0.08], respectively. This is an encouraging result,

as β and α control in large part the population dynamics simulated by the VD model. Note, that

WAVE assign much higher values to the growth rates, r1 and r2, of the first and second prey,

respectively, and the grazing rate, g. It is difficult to pinpoint the exact reasons for this mismatch,

yet, these findings suggest that the VD model is structurally deficient, particularly in describing

the growth of the preys and the grazing behavior of the zooplankton organisms.

The DA method returns as byproduct estimates of the serial correlation, ρ, and variance, σ2
w,

of the VD model error. As expected, the model error exhibits some positive (SODA) or negative

(INTEL) serial correlation, but this temporal dependency is not very strong. This suggests that
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the model bias does not persist far into the future, but rather the sign of the forecast errors changes

rapidly from one observation to the next. This is typical for models that are unable to track closely

the observed data. The variance of the model error, σ2
w, appears to be 4 (INTEL) to 7 (SODA)

times larger than the measurement error variance, σ2
v = 0.05. This is a very reasonable finding,

and leads, on average, to a Kalman gain of about 0.8 or 0.9. In other words, we trust the measured

abundances about 5 times more than their simulated values of the VD model.

Figure 7 displays the abundances of the WAVE, SODA and INTEL parameters using open

loop simulation with the VD model. It is evident that the VD model cannot track the observed

abundances. If we assimilate the measured abundances, then the performance of the VD model

enhances dramatically (Figure 8). This is especially true for the SODA and INTEL parameterizations.

This finding is not surprising, as the SODA and INTEL parameters were derived from the SODA

method using minimization of the one-observation-ahead forecast error. The superiority of the

INTEL and SODA parameters is further confirmed in Table 1 which lists the Root Mean Square

Error (RMSE) of their forecast errors with and without state estimation. Separately, we also

report the mean absolute innovation of each VD model parameterization. As expected, the WAVE

parameters exhibit substantially larger forecast errors (on average), and, consequently, require

larger innovations to negate prediction bias.

2.4.2 Effect of data assimilation frequency

We evaluate the impact of state estimation frequency on the performance of the VD model, using

the WAVE, SODA and INTEL parameters. Panel A of Figure 10 compares in a bar plot the RMSE

of the forecast error of each VD parameterization. DA only slightly improves the forecast accuracy

of the WAVE parameters, regardless of state estimation frequency. The forecast proficiency of the

SODA and INTEL parameters, however steadily improves with increasing number of assimilated

abundance measurements. Panel B of Figure 10 displays a bar plot of the mean absolute innovation

of each parameterization. In general, the SODA and INTEL parameters have smaller innovations

as they closer track the observed abundances. Detailed analysis of the state innovations can help

pinpoint model structural errors (Vrugt et al., 2005). Altogether, INTEL is the most efficient
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Figure 2.3: Forecasted abundances of the VD model during our 8-year experiment with the WAVE,
SODA and INTEL parameters using state estimation with the EnKF. Time series plots of measured
and forecasted abundances of the predator and prey species (left panels), and scatter plots of
simulated and observed abundances (right panels). Data assimilation enhances significantly the
ability of the VD model to track the population dynamics of the predators and preys. This
is particularly true for the SODA and INTEL parameterizations, which follow most closely the
observed population counts.

use of DA with relatively low forecast errors if state estimation is applied to every fifth forecast.

Otherwise, the VD model runs in open loop, and residuals increase rapidly.

2.4.3 Model predictability: forecast horizons

Figure 11 presents the EFH of each species for different values of the FPT. When open loop

simulation is used with the VD model, then the SODA and INTEL parameters exhibit, on average,

the smallest forecast errors. In other words, for a given proficiency threshold, the SODA and

INTEL parameters can predict further into the future than their WAVE estimates. This translates

into a forecast horizon of SODA/INTEL that is just a few days larger than WAVE if FPT = 0.1

and grows rapidly to 20 - 40 days for FPT = 0.5. What is more, the zooplankton species exhibit

a much larger forecast horizon with SODA/INTEL than their phytoplankton counterparts. This
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Figure 2.4: Box plots of the marginal posterior distributions of the (A) SODA and (B) INTEL
parameters. The box plot of each VD model parameter is normalized by its prior ranges (listed
between parentheses in Table 1). The larger the spread of a box plot the larger the posterior
parameter uncertainty.

difference amounts to a few days if FPT = 0.1 and increases to about 20 days if FPT = 0.5. Note

also that the forecast horizons increase nonlinearly with proficiency threshold.

2.5 Discussion

Species abundances in ecological communities can display complex non-equilibrium dynamics (Becks

et al., 2005; Benincà et al., 2015, 2008; Hanski et al., 1993; May, 1973). A characteristic feature of

chaotic systems, is that long-term prediction of the system’s trajectory is fundamentally impossible

(Strogatz et al., 1995). How then should we make predictions for complex multi-species communities?

We have used DA with the EnKF to fuse the simulated abundances of the two predator - two

prey VD model with observed population counts. The state adjustments of the EnKF negate, at

least in part, structural errors of the VD model, and allow system dynamics to be better described.

For optimal predictions, we estimated the VD parameters in an loop outside the EnKF, otherwise

the model may not have maximum predictive ability as shown with the WAVE parameters. This

led to the SODA and INTEL parameterizations which minimize the forecast errors of the VD model

using either all or only the 20% most important abundance observations for state estimation. We

then examined the forecast errors of the WAVE, SODA and INTEL parameters using different

assimilation frequencies of the abundance measurements.
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Figure 2.5: A) Root Mean Square Error, or RMSE, of the forecasted abundances of the VD model
using the WAVE, SODA and INTEL parameters with different assimilation frequencies, and (B)
ensemble mean value of the state innovation. The red bars signify the results of the INTEL model
with state estimation restricted to 20% of the time steps with largest fluctuations in the observed
data.

DA not only allows ecologists to fuse their models with data, and close the gap between ecosystem

theory and observations, but also helps provide guidance on measurement design and frequency

and timing of observations. To this end, we introduced an “intelligent” model, called INTEL which

restricts state estimation to only the 20% most important measurement times with largest changes

in measured abundances. This approach showed to be the most efficient use of DA.

We quantified the forecast proficiency of the VD model using different proficiency thresholds.

These findings demonstrated that DA significantly enhances the forecast horizon of each species.

The SODA and INTEL parameters had significantly larger forecast horizons than their WAVE

counterparts. Nevertheless, we cannot confidently claim why long-term population dynamics in our

food web is unpredictable. One could envisage many different reasons. We argue that the answer

is twofold. On one hand, sudden, chaotic state transitions, make it fundamentally impossible to

predict system dynamics far into the future. On the other hand, structural errors of the VD model

limit its forecast horizon even during periods without large, unexpected, changes in population
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Figure 2.6: Ecological forecast horizon of the VD model derived from open loop simulation with
the WAVE, SODA and INTEL parameter values using many different initial states drawn from the
mesocosm data set. The forecast horizon is defined as the first time from the start of simulation at
which the distance between the state forecast and corresponding observation exceeds a threshold
value, called FPT. The forecast horizons quantify the ability of the VD model to produce “good”
forecasts, without data assimilation.

counts.

The SODA or INTEL parameters were shown to exhibit smaller prediction errors and larger

forecast horizons than their WAVE estimates. Yet, this does not imply that their parameter values

more accurately portray system properties. Without state estimation, for example, the SODA and

INTEL parameters do not reproduce the species’ population oscillations, a feature that the WAVE

parameterization is able to replicate almost exactly. The assumption that the two zooplankton

species share similar values of g, H and m may be too simplifying. Indeed, rotifers and copepods

are two different organisms, with a dissimilar grazing rate, mortality, and prey treatment. A

more inclusive parameterization may enhance the ability of the VD model to describe the coupled

predator-prey oscillations.

Short-term model predictions may be accurate for chaotic systems, but long-term prediction

impossible. This is precisely the reason that DA is an attractive approach, as it will help close

the gap between ecological observations and theory, and increase the forecast horizon of ecosystem
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models. Our results can serve as a benchmark for DA methods in ecology, and aid measurement

design and data collection. We look forward to further advances in ecological forecasting, especially

related to systems with chaotic dynamics.
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Supplementary information

A: Bifurcation analysis of the VD model

To inspire confidence in the robustness of the (maximum likelihood) values of the WAVE, SODA

and INTEL parameters, we performed a bifurcation analysis of the VD model using the prey

coefficient, α, predator coefficient, β, and carrying capacity, K, as our bifurcation parameters. All

other VD model parameters were kept fixed at their WAVE values listed in Table 1 of the main text.

Figures S1 - S3 present the outcome of this analysis. The three bifurcation plots illustrate, how

depending on values of α, β and K, the system exhibits different dynamical behaviors, including

stable equilibria, limit cycles and chaos. Note, that the SODA and INTEL values of the VD model

parameters (see Table 1) occupy the region of chaotic behavior.

The dynamical behavior of the VD model is quite complicated with species that show intriguing

mechanisms of (a-)synchronization and competitive exclusion depending on parameter selection.

A detailed bifurcation analysis with a larger range of values for the parameters α and β has

appeared in Vandermeer (2004), and interested readers are referred to this publication for further

information. Briefly, this analysis showed that, effectively, there are two distinct bifurcation

patterns: (1) eventual elimination of one of the predators through predator competition, and (2)

eventual elimination of one of the predators because of increased resource coupling (potentially

representing indirect mutualism between the two consumers). Both bifurcation patterns were

observed for many different values of α and β.
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Figure 2.7: Bifurcation analysis of the VD model simulated abundances of the two predator, P1
and P2, and two prey, Z1 and Z2, species for t ∈ [X,X] and initial state, x0 = {P1, P2, Z1, Z2} =
{0.28, 0.50, 0.14, 0.18} as a function of the prey coefficient α: (A) Bifurcation diagram that displays
the local minima and maxima in the fluctuations of the phytoplankton abundances, P1, at different
values of α; Time series plot of simulated abundances for (B) α = 0.1, (C) α = 0.3, and (D) α = 1.4.
All other VD model parameters were kept constant at their WAVE values listed in Table 1. The
bifurcation plot was generated with the GRIND Matlab package (http://www.sparcscenter.org/
grind).
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Figure 2.8: Bifurcation analysis of the VD model simulated abundances of the two predator, P1
and P2, and two prey, Z1 and Z2, species for t ∈ [X,X] and initial state, x0 = {P1, P2, Z1, Z2} =
{0.28, 0.50, 0.14, 0.18} as a function of the predator coefficient β: (A) Bifurcation diagram that
displays the local minima and maxima in the fluctuations of the simulated phytoplankton
abundances, P1, at different values of β; Time series plot of simulated abundances for (B) β = 0.001,
(C) β = 0.15, and (D) β = 0.4. All other VD model parameters were kept constant at their WAVE
values listed in Table 1. The bifurcation plot was generated with the GRIND Matlab package
(http://www.sparcscenter.org/grind).
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Figure 2.9: Bifurcation analysis of the simulated abundances of the VD model for t ∈ [X,X] and
initial state, x0 = {P1, P2, Z1, Z2} = {0.28, 0.50, 0.14, 0.18} as a function of the carrying capacity
K: (A) Bifurcation diagram that displays the local minima and maxima in the fluctuations of the
simulated phytoplankton abundances, P1, at different values of K; Time series plot of simulated
abundances for (B) K = 0.5, (C) K = 1.5, and (D) K = 2.5. All other VD model parameters were
kept constant at their WAVE values listed in Table 1. The bifurcation plot was generated using
the GRIND Matlab package (http://www.sparcscenter.org/grind).
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B: The particle filter

We briefly revisit our choice for the EnKF, rather than the more generic particle filter (PF). This

DA method has does not use a state analysis step, instead assigns a likelihood to the state forecasts

of each of the N particles. The state forecast distribution at each time is then constructed via the

likelihoods of the particles. Periodic resampling is used to discard ”bad” particles and to rejuvenate

the state ensemble. This approach does not make distributional assumptions, and can characterize

exactly the evolving posterior state distribution. Yet, we do not recommend the PF in our present

application as the VD model is rather deficient in tracking the highly dynamic and chaotic state

transitions of the mesocosm data set. This demands frequent resampling of the particles to negate

model bias and characterize properly the evolving state distribution. In principle, this would be

fine, were it not that resampling via the likelihood of the particles is highly inefficient compared to

the state analysis step of the EnKF. Indeed, this method resurrects rapidly a biased ensemble by

migrating the ensemble members’ state forecasts towards their measured values. Thus, the EnKF

exhibits the elasticity we need to track the behavior of highly nonlinear and/or chaotic systems.
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This chapter of the thesis expands from systems of microscopic scale to a scale that can

encompass the entire planet. Here, we investigate Earth System Models, models that are comprised

of several components such as land, oceans, atmosphere, and cryosphere. This thesis will look at

the land surface component, and extensive results are provided to discuss current uncertainties

found in today’s Land Surface Models (LSMs).

Figure 3.1: Schematic of an Earth System Model. The model formalizes and quantifies concepts
of ecological climatology. Ecological climatology is an interdisciplinary framework to understand
how natural and human changes in vegetation affect climate. It examines the physical, chemical,
and biological processes by which terrestrial ecosystems affect and are affected by climate across
a variety of spatial and temporal scales. The central theme is that terrestrial ecosystems, through
their cycling of energy, water, chemical elements, and trace gases, are important determinants of
climate. The land surface is a critical interface through which climate change impacts humans and
ecosystems and through which humans and ecosystems can effect global environmental change.
Reference: www.cesm.ucar.edu/models/clm
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Three case studies are presented, each looking at different vegetation processes and associated

uncertainties found in their respective model representation. The first study investigates a Land

Surface model’s parameter contribution to overall uncertainties found in the simulations; results

provide a diagnosis for reducing uncertainties in LSM parameterizations. The second study related

to uncertainties in LSMs introduces a next-generation nitrogen allocation model that represents

the photosynthetic capacity at a global scale; this work provides a thorough calibration of the

model to a global data set of photosynthetic capacity. Lastly, the third case study related to LSM

uncertainties is a project that compares model simulations of tree mortality to a data set comprised

a 2+ million observation of traits related to tree mortality in the tropics, and provides direction

for future improvement of the representation of mortality in LSMs.

3.1 Manuscript Title - Identification of key parameters

controlling vegetation dynamics in a demographically

structured land surface model

Abstract: Land Surface Models (LSMs) assess terrestrial feedbacks to climate change, and of

critical importance in governing these feedbacks is the representation of vegetation dynamics. In

the last decade, vegetation demography has emerged in LSMs to better represent light-competition

and thus coexistence of different plant functional types (PFTs). Outputs from these models are

typically controlled by many parameters and Sensitivity Analysis (SA) methods are often applied

to quantify the impact of each parameter in simulated fluxes and stores. In this study, we use the

Fourier Amplitude Sensitivity Testing (FAST) method to conduct a SA on the Community Land

Model (CLM) coupled to the Ecosystem Demography (ED), or CLM4.5(ED). While we confirm the

importance of the photosynthetic capacity parameter (Vc,max25) in the model, which is consistently

found to be important across terrestrial biosphere models, we also show the importance of carbon

storage and allometry parameters that determine vegetation demography through their impacts on

survival and growth strategies. Results shown in this study can be utilized in further diagnosis

of CLM4.5(ED) as well as other emerging LSMs and for future field measurement efforts that are
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directed towards reducing uncertainties in LSM parameterizations.

3.2 Introduction

Earth System Models (ESMs) are abstractions of nature used to simulate physical, chemical, and

biological processes across the interacting domains of the atmosphere, ocean, ice and land (Arora

et al., 2013; Claussen et al., 2002; Dunne et al., 2012; Hurrell et al., 2013) to estimate past, present,

and forecast future conditions and climate. In this paper, we consider Land Surface Models (LSMs)

or the land components of ESMs. LSMs consider the biophysical and biogeochemical interactions of

the terrestrial surface, and examine how the land’s feedbacks with the atmosphere affect the Earth’s

climate system. Such models typically contain a suite of different parameters to resolve the carbon,

water, and energy fluxes and pools at the land-atmosphere interface (Bastidas et al., 1999; Gupta

et al., 1999; Masson et al., 2003; Noilhan and Planton, 1989; Sargsyan et al., 2014). Many of these

parameters can be estimated directly in the field, but others are difficult or impossible to measure

due to various complications such as the lack of a physical meaning, technological limitations, or

spatial/temporal aggregation (Entekhabi and Eagleson, 1989; Kumar et al., 2006).

Parameters that are observable in the field are also often subject to large natural variability,

including changes through space and time (Fisher et al., 2015; Masson et al., 2003; Wood et al.,

1992). For example vegetation parameters can be used to describe different root profiles (Vrugt

et al., 2001b) or photosynthetic capacities (Leuning, 2002; Zeng, 2001), however parameter values

in models are often pulled from the literature or databases that may not represent local variation

or capture seasonal or ontogenetic changes. This can lead to significant divergence in multi-model

ensemble projections or uncertainty in model predictions (Dietze et al., 2014b; McDowell et al.,

2015; Rogers et al., 2017; Sitch et al., 2008). Since parameters are often defined in simulations

with limited prior knowledge of their mean values and variation (Geromel, 1999; Kitanidis, 1986;

O’Hagan and Leonard, 1976; Vrugt et al., 2002b, 2003), studies such as model sensitivity analysis

are typically required to adequately quantify the impact of the parameters on the model simulations.

Today, many sensitivity analysis techniques are available (Helton, 1993; Saltelli et al., 2000;
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Sobol’, 1990). Saltelli et al. (2000) classified sensitivity techniques into two groups: local and

global sensitivity analysis methods. Local sensitivity analysis techniques examine the response

of the output(s) by varying input parameters one at a time and holding other parameters at

central values. Global sensitivity techniques examine the response (averaged over the variation of

all the parameters) of model output(s) by exploring a finite (or even an infinite) region of the

parameter space. The local sensitivity analysis is relatively easy to implement, e.g. requires

less model simulations and thus less computing power which may often be a limiting factor.

However, the sensitivity index derived by local sensitivity analysis depends on the default values

of the other parameters. This assumption that default values are satisfactory is questionable (e.g.

Da Rocha et al. (1996); Groenendijk et al. (2011); Schwalm et al. (2010); Sen et al. (2001)) since

the discrepancies in LSM predictions are strongly tied (through feedbacks of momentum, energy,

mass and biogeochemistry) to the differences in their representation of the land surface (Crossley

et al., 2000; Rosolem et al., 2013). Therefore, global sensitivity methods are generally preferred

over local sensitivity methods when computing power is not a limiting factor.

LSMs are capable of representing vegetation dynamics through the use of a dynamic global

vegetation(Arora et al., 2013; Cox et al., 2000; Friedlingstein et al., 2006; Krinner et al., 2005; Sato

et al., 2007). In first generation models, which are still the most common (Fisher et al., 2015), the

land surface at a given location is discretized into tiles according to plant functional type (PFT),

with each PFT represented by a single big leaf. The abstraction of ecosystems into this simplistic

structure makes it difficult to simulate light competition, and thus is often considered less than

ideal for simulating processes at the plant to ecosystem scale. In the last decade, second-generation

vegetation demographic models have emerged, that can capture coexistence and competition of

PFTs driven by light-competition between different sizes of trees (represented as either cohorts or

individuals) in a vertical canopy structure (Fisher et al., 2010b; Moorcroft et al., 2001; Scheiter

et al., 2013) as well as successional dynamics through the representation of disturbance history

(Hickler et al., 2004; Sitch et al., 2003; Thonicke et al., 2001). These next generation models

also allow comparison with many more observed vegetation processes than first generation models,

but also contain more degrees of freedom causing them to be more complex and subject to high
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variability.

Our goal for this study is to apply a global sensitivity analysis, the Fourier Amplitude Sensitivity

Test (FAST), on the Community Land Model coupled to the Ecosystem Demography, or the

CLM4.5(ED) at a single site, to understand how the model behaves, to provide directions for

improved model parameterization, and to assure that simulated output is consistent with our

qualitative and quantitative understanding of vegetation dynamics. Specifically, we aim to answer

the following question: what are the main parameter controls on vegetation processes such as

growth and mortality and on the resultant dynamics of carbon fluxes and stocks? Even though

CLM4.5(ED) simulates both carbon and water cycles, in this study, our analysis focused on carbon,

because as the source for vegetation growth and dynamics, it exerts a strong control on emergent

properties of community dynamics and associated ecosystem processes. The study region for the

model simulations is in the Amazon basin and this analysis considers a single PFT that is a

typical vegetation type for this region, the Broadleaf Evergreen Tropical Tree. Despite the need for

such studies, systematic investigation of the parameter sensitivity of LSMs and/or DGVMs is not

standard practice, potentially on account of the high dimensionality involved (although c.f. Fisher

et al. (2010b); Pappas et al. (2013); Zaehle et al. (2005)). This is one of few formal global sensitivity

analyses for an LSM with cohort-based vegetation demography (see Pappas et al. (2013)) and thus

could provide important knowledge for model calibration as well as field measurement efforts.

This study is structured as follows: we first describe the CLM4.5(ED) and the reasoning behind

the parameter selection for this study. We then explain the FAST method used to estimate

parameter sensitivities in the model. Then, we illustrate the results where we show the model

outputs as well as the corresponding parameter sensitivities. Finally, we discuss the results and

their implications for diagnosing CLM4.5(ED).
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3.3 Materials and methods

3.3.1 CLM4.5(ED)

CLM4.5(ED) is a community-based open-source model that is widely used for understanding

climate-vegetation interactions. CLM is the land surface model used within various LSMs, including

the Community Earth System Model (CESM) and the Norwegian Earth System Model (NorESM)

(Bonan et al., 2011; Lawrence et al., 2011). The Ecosystem Demography (ED) concept is a method

for scaling the behavior of forest ecosystems by aggregating individual trees into representative

’cohorts’ based on their size, age and plant functional type (PFT), and by aggregating groups of

cohorts into representative ’patches’ (conceptually similar to a forest plot) which explicitly tracks

the time between disturbances (Moorcroft et al., 2001). The main property of the ED concept

that differs from most commonly used ’big-leaf’ models is the capacity to predict distributions

and compositions of plants directly from their given physiological traits described by the model

parameterization (Fisher et al., 2015). This is achieved via the means of trait-filtering, whereby

plant traits affect plant growth and survival, growth in turn affects the acquisition of light resources,

and feeds back onto growth, survival and reproduction. Differences in growth, survival and

reproduction rates thus directly control the relative distributions of vegetation types and their

traits as well as the overall carbon stocks.

CLM4.5(ED) represents vegetation using size-structured groups of plants (cohorts) which co-exist

on various successional trajectory-based land units. CLM4.5(ED) simulates growth by integrating

photosynthesis across different leaf layers for each cohort, and mechanistic mortality is simulated

based on plant carbon starvation and hydraulic failure (Fisher et al., 2015), in addition to a

background mortality rate, tree-fall impact mortality, and fire. The model allocates photosynthetic

carbon to different tissues such as leaf, root and stem based on the allometry of different tree

species. In this original version of CLM4.5(ED), some processes are relatively under-represented;

for example, the soil moisture impact on vegetation growth has a simple representation based on a

single modifying factor for the moisture, an indication of the room for improvements in the existing

structure of LSMs. CLM4.5(ED) can be simulated at different modes including point mode for
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sites, regional mode for watershed or regional scale, and global mode for continental and global

scale. See supplementary model description in Fisher et al. (2015) for details on specific components

of the model structure.

In our simulations, CLM4.5(ED) aggregates many cohorts into 12 separate size class bins, and

outputs the size-resolved information for each bin. There were 3 bins of trees with diameters less

than 10 cm and we categorized them as small. There were 4 bins of trees with diameters larger

than 10 cm and smaller than 50 cm and we categorized them as medium. Lastly, 5 bins of trees

with diameters larger than 50 cm were categorized as large. For sensitivity analysis of each size

category (small, medium and large trees), we choose to average the outputs over a 30 year interval

in view that the transient and abrupt changes across different size categories at annual resolution

could make the FAST analysis only accounts for a small amount of the variance contribution from

each parameter.

3.3.2 Sensitivity Analysis: The FAST method

Global sensitivity analysis (SA) aims at quantifying the effects of input variables onto the variance

of the response of a physical model such as an LSM. Among the abundant literature on sensitivity

analysis methods, the Sobol’ indices (Sobol’, 1990), have received much attention since they provide

accurate information for most models. However, the full description requires the evaluation of 2n

Monte Carlo integrals (Sudret, 2008), which is not practically feasible unless n is low (n here

represents the dimensionality of the model, or the number of active parameters). The Fourier

amplitude sensitivity test (FAST) is a popular sensitivity analysis technique that is computationally

efficient and can be used effectively for nonlinear and nonmonotonic models (Sudret, 2008; Xu

and Gertner, 2011). The FAST approach requires a tailored sampling strategy, which is what

differentiates this method from other estimators of variance-based indices (Pianosi et al., 2016).

FAST uses a periodic approach to sample the parameter space and a Fourier transformation

to decompose the variance of a model output into partial variances contributed by different model

parameters. Only the first order sensitivity indices referring to the ”main effect” of parameters
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were calculated in the original method. In the 1990’s, an extended FAST method able to calculate

sensitivity indices referring to ”total effect” was developed (Archer et al., 1997; Saltelli et al., 1999;

Sobol’, 1990). This ”total effect” of a parameter’s sensitivity refers to the sum of a parameter’s

individual contribution (1st order sensitivity) and the contribution from its interaction with other

parameters (higher order sensitivity) on the overall variance of the model output; that is, the total

effect includes all the higher order interactions. The FAST method has found widespread use in

many different fields of study including sensitivity analysis of the parameters of chemical reaction

(Haaker and Verheijen, 2004), nuclear waste disposal (Lu and Mohanty, 2001), erosion [Wang et al.,

2001], hydrologic (Francos et al., 2003), atmospheric (Kioutsioukis et al., 2004), matrix population,

and forest landscape models (Xu and Gertner, 2009; Xu et al., 2009).

To describe the FAST method used herein, we can conveniently write the CLM4.5(ED) model

as a nonlinear regression function, F(·),

Y = F(x, z0, B̃), (3.1)

which returns to the user a matrix, Y, with N simulated values of m different outputs (e.g. GPP

or LAI). Inputs to the model include, x, an 87-element vector with parameters, z0, a vector that

defines the initial state of the system (e.g. ground state with no vegetation in this case), and the

control matrix B̃ which summarizes the time-variant forcing variables. Note, that the tilde operator

is used for the forcing data to signify explicit use of measured values.

The domain of the independent parameters is a hypercube (high dimensional space)

Ωn =
(
x|x(Min)

i < xi < x
(Max)
i ; i = 1 , ..., n

)
(3.2)

where x
(Min)
i and x

(Max)
i are the minimum and maximum values for each parameter. In this study,

we focus specifically on the sensitivity of the CLM4.5(ED) model parameters, x = (x1, x2, . . . , xn),

and ignore the contribution of the initial states and forcing variables in determining the variance

in the model output. Our simulations involve monthly output for a period of N = 130 years, and

returns m different variables which are used in our parameter sensitivity analysis with FAST. The
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select m output variables include monthly basal area, change in diameter at breast height (dDBH),

mortality, GPP, NPP, LAI, biomass, etc. The model is capable of producing outputs for various

other processes, such as ecosystem-scale water fluxes, but these outputs are not investigated in this

paper.

Based on Sobol’s definition of variance-based sensitivity metrics (Sobol, 2001), we consider the

time series of output of interest m, Ym(t), to have corresponding variance at each time step Vm(t)

= VAR(Ym(t)). Then each parameter’s contribution to this variance can be expressed as:

S1
i,m(t) =

Vi(t)

Vm(t)
(3.3)

where S1
i,m is the 1st order sensitivity of parameter xi to output of interest m, Vi is the variance of

parameter xi, and Vm is the total variance of output m at time t.

We show that each parameters’ contribution to the variance of the expected value of Ym can

be calculated as follows (see Xu and Gertner (2011)):

Vi = Vm

(
E(Ym|Yi)

)
, (3.4)

Vi,j = Vm

(
E(Ym|Yi,j)

)
, i 6= j, (3.5)

Vi,j,k = Vm

(
E(Ym|Yi,j,k)

)
, i 6= j 6= k, (3.6)

· · ·

V[1,...,n]ni = Vm

(
E(Ym|Y[i,...,n]ni)

)
, (3.7)

V[1,...,n] = Vm

(
E(Ym|Y[i,...,n])

)
, (3.8)

where Vi(·) is the 1storder parameter contribution of parameter i to the variance of the output,

Vi,j(·) is the 2ndorder parameter contribution of parameters i and j to the variance of the output,

Vm(·) is the variance of the model output, E(·) are the expected values of the model outputs, and

[1, ..., n]ni represents all parameters except i.
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For a subset of parameters (xsub), Vx,sub represents the partial variance in the model output due

to the uncertainty in the subset of parameters of xsub. Therefore, V[1,...,n] represents the variance

in the model output resulting from uncertainties in all the model parameters:

V[1,...,n] = Vm. (3.9)

We define

Vi = Vi, (3.10)

Vi,j = Vi,j −Vi −Vj , (3.11)

· · ·

V[1,...,n] = V[1,...,n] −
( r∑
s=1

∑
1≤i1≤i2≤···≤is≤n

Vxi1 ···xis

)
, r = 1, 2, · · ·, n− 1 (3.12)

as partial variances of model output contributed by the first-order (or main) effects, the second

order interaction effects, the third-order interaction effects, and so on, until the nth order interaction

effects of model parameters (Saltelli and Tarantola, 2002),. Summing all the left and right terms

in Equations 10-12, we get the variance decomposition as follows:

Vm =

n∑
i=1

Vi +

n∑
i 6=j

Vi,j +

n∑
i 6=j 6=k

Vi,j,k + · · ·+ V[1,...,n], (3.13)

which suggests that the total variance resulting from parameter uncertainties can be decomposed

into partial variances contributed by the first-order effects, the second-order interaction effects,

third-order interaction effects, and until the nth order interaction effects of parameters. Dividing

both sides of Equation 13 by V[1,...,n] (or by Vm), we get

1 =

n∑
i=1

αi +

n∑
i 6=j

αi,j +

n∑
i 6=j 6=k

αi,j,k + · · ·+ α[1,...,n], (3.14)
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where

αi =
Vi(t)

Vm
= S1

i,m, (3.15)

αi,j =
Vi,j(t)

Vm
= S2

i,j,m, (3.16)

· · ·

α[1,...,n] =
V[1,...,n]

Vm
= Sni,m, (3.17)

represent the first-order, second-order, and so on, until nth order sensitivity indices, respectively.

In this study, we identify both the 1st and 2nd order sensitivities of the model parameters. It

is possible to identify the specific interactions with FAST (higher orders); however, because of

the sample size limitations for a larger tri-variate parameter space, the FAST-based estimation of

third-order sensitivity indices would be less reliable. We now can calculate the 1st and 2nd order

sensitivities of the model parameters for each output of interest and at each time step. Further

details on the FAST method can be found in (Xu and Gertner, 2007, 2011, 2009; Xu et al., 2009).

3.3.3 Parameter Selection

There are more than 200 parameters in CLM4.5(ED). In this study, we focus solely on vegetation

components resulting in 87 parameters that are relevant to vegetation processes, including parameters

for photosynthetic processes, temperature response, allometry description, radiative transfer, recruitment,

turnover and mortality. See Table A1-A4 in the appendix for a complete list of the parameters

used in this study, with corresponding description, units, default values, and applied ranges. Refer

to Appendix A for the allometry equations, Appendix B for the temperature response curve

(photosynthesis) equations, and Appendix C for the carbon storage equations used in CLM4.5(ED).

We use a broad definition of parameter and extract numerous features of the model that were

’hard-wired’ in previous CLM versions. The FAST algorithm requires valid ranges to be chosen for
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each parameter, which creates the possible space (Ωn) to sample from. In theory, each parameter

has a corresponding observational distribution that produces the ideal space for sampling (LeBauer

et al., 2013). However, in this study there are both a large parameter set and a scarcity of

appropriate data sources for Amazonian forests for many of the relevant quantities, therefore

obtaining a robust data-supported distribution for each parameter was not feasible. Thus, the

parameter ranges in this study were generated by applying a uniform distribution over a range

that spans +/- 15 % of the default parameter values of CLM4.5(ED) (i.e. default parameter values

for tropical evergreen trees). Then using FAST, 5000 parameter combinations were sampled from

the parameter space, Ωn. The sample size was determined using the method of Xu and Gertner

(2011) where it is appropriate to use 100 times the number of effective (important) parameters.

The 5000 model runs cost about 32 CPU hours for each simulation, and thus we ran our simulations

for a total of 160,000 CPU hours on the Los Alamos National Laboratory (LANL) Conejo super

computer.

In this analysis, we assume the majority of CLM4.5(ED) parameters to be non-correlated with

uniform probability due to the limitation of data for covariate traits for the 80+ parameters in this

study. However, we do need to take care of the correlation among parameters in the temperature

response functions (Appendix B) in order to generate realistic temperature response curves. These

parameters were tested for correlation using a published dataset (Leuning, 2002), which showed that

the photosynthetic parameters for activation energy (e.g. Vc,max,ha) were not necessarily correlated

with the other photosynthetic parameters. However the parameters for deactivation energy (e.g.

Vc,max,hd) and those related to entropy terms (e.g. Vc,max,se) were highly correlated as expected.

Thus, each of these parameters’ samples were generated from the same location in their relative

parameter spaces, which maintains their correlation.

3.3.4 Site Description

In this study, CLM4.5(ED) is tested for a site in a moist-tropical forest in the State of Par, The

Amazon, Brazil (7◦ S, 55◦ W). We initialized the runs (i.e. z0 in Equation 1) with a bare ground, or
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a state with no vegetation, and simulated the forest dynamics for 130 years, which is enough time

for the ecosystem to reach equilibrium dynamics by checking the simulated biomass, basal area

and various carbon fluxes. By choosing to start from bare ground and running the model until it

reaches a quasi-steady-state size distribution, rather than by examining short runs initialized from

observed initial forest size distributions (e.g. Dietze et al. (2014b)), we are deliberately allowing

the ecosystem demographic structure itself to be an outcome of the parametric uncertainty rather

than a separate, possibly non-self-consistent, initial condition uncertainty. This allows uncertainty

to propagate across timescales and therefore gives a more complete estimate of the uncertainty in

the system. The climate conditions (i.e. B̃ in Equation 1) for this site are from Qian et al. (2006)

representative of data from 1948-1972 and recycled for the 130 year simulations. CLM4.5(ED) has

the potential of simulating dynamics for an ecosystem with many PFT’s. In this study, in order

to better understand the biophysical, biochemical, and vertical light competition behavior of the

model with respect to carbon and water cycling, we focus only on a single broadleaf evergreen tree

PFT.

3.4 Results

In this section we will highlight the outputs from CLM4.5(ED) and corresponding uncertainties

generated from the 5000 simulations obtained for the FAST analysis. We go on to discuss the

sensitive parameters for each output. We first investigate the forest demographic dynamics, diagnosing

the growth and mortality processes simulated in CLM4.5(ED). Then, we analyze the forest carbon

cycles, specifically the carbon fluxes and stocks in the model simulations.

3.4.1 Forest demographic dynamics: growth and mortality

One of the key properties of CLM4.5(ED) is that vegetation is represented as cohorts of varying

sizes for more realistic simulation of light competition in the canopy. To better understand the key

drivers of growth and mortality for different size of trees, we group various cohorts of trees into 3

size categories for analysis purpose: small (diameter < 10 cm), medium (10 cm < diameter < 50
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Figure 3.2: Outputs from CLM4.5(ED) for basal area (BA). Figures show the outputs for the
various tree sizes considered, including small (diameter < 10 cm), medium (10 cm < diameter < 50
cm), and large trees (diameter > 50 cm). Shown are the mean simulation (black line) with 95%
confidence intervals.

cm), and large (diameter > 50 cm) trees. Since the model runs were initialized from a near-bare

ground state (i.e. with an initial density of half-centimeter diameter saplings), the simulated basal

area (BA) of the forest, which is the fraction of stem cross-sectional area per ground surface area

showed that (Fig. 1 B-D) the simulated forest grows from small trees (years 0 - ∼20), to medium

trees (years ∼20 - 45), and finally to large trees (after 45 - 50 years). Our FAST analysis shows

that a key parameter that controls the fraction of BA in different size of trees is the stem allometry

coefficient c (Fig. 2). Specifically, a higher value of stem allometry coefficient c, or a higher

allocation of carbon to stem (see Eq. A1 in the appendix), will eventually lead to a lower fraction

of BA in large trees than in smaller trees in the model simulations (Fig. A1). This is because a

higher value of stem allometry coefficient c ultimately leads to a faster reduction in stem growth

in large trees (in cm yr−1 ha−1), i.e. change in diameter at breast height (dDBH), due to a lower
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proportion of carbon allocated to leaves for productivity (Fig. A2).

The mean of simulated BA and associated uncertainty ranges from the 5000 simulations stabilize

after year 100 (Fig. 1A). This could result from the balance of growth and mortality processes

represented in the model. For the stem growth in terms of dDBH averaged per tree, small trees

observe lower rates of growth compared to medium or large trees (Fig. 3 B-D). However, the

fraction of overall stem diameter growth is dominated by the small trees (Fig. A5) due to their

high densities (Fig. A3). Our FAST analysis shows that the most sensitive parameters for tree

growth were the target storage carbon and stem allometry parameters, however, the importance

magnitude varies for different sizes of trees (Fig. 4). We observe that the stem allometry coefficient

c showed higher sensitivity for medium and large trees in terms of DBH growth than that for small

trees (Fig. 4). The target storage carbon determines the target amount of carbon for the plant to

store relative to the leaf biomass (see Appendix C for details). In terms of growth, the target carbon

storage parameter is more important for small trees than for medium and large trees, as smaller

trees are shaded and thus more vulnerable to changes in the amount of carbon storage that will

affect carbon allocations (see Eq. A9 in Appendix C). Yet, for the stem density, or the number of

trees in a given area, the target carbon storage parameter is less important for small trees compared

to medium and large trees (Fig. A11). Our sensitivity analysis also show specifically important

parameters for different sizes of trees. For example, leaf allometry was specifically important for

small trees, Vc,max25 for medium trees, and seed allocation was solely sensitive for large trees.

Mortality is an important driver for the simulated forest dynamics in CLM4.5(ED). It includes

four modes of mortality: 1) fixed background mortality, 2) hydraulic failure based on a threshold

of very low soil moisture; 3) carbon starvation resulting from the depletion of carbon storage in

plants (see Appendix C for details); and 4) impact mortality resulting from fall of big trees (Fisher

et al 2015). In the model, carbon starvation is the main driver for the overall mortality (Fig.

A4 in the appendix). Carbon starvation based mortality uses a threshold of carbon storage to

trigger mortality (see Appendix C). Under shaded conditions, less carbon storage as determined

by target carbon storage, respiration, and NPP could lead to a higher mortality. In terms of the
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Figure 3.4: Outputs from CLM4.5(ED) for the change in diameter at breast height (dDBH). Figures
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Shown are the mean simulation (black line) with 95% confidence intervals.

116



0
0.2
0.4
0.6
0.8
1.0

 

 

Minimum crown spread

Height allometry coef m

Maintenance respiration

Height allometry coef c

Leaf allometry coef b

Minimum height

Stem allometry coef c

Target carbon storage

0
0.2
0.4
0.6
0.8
1.0

 

 

Minimum crown spread

Minimum height

Height allometry coef c

Maintenance respiration

Storge priority

Leaf allometry coef b

Stem allometry coef c

Target carbon storage

0
0.2
0.4
0.6
0.8
1.0

 

 Growth respiration fraction

Stem allometry coef a

Height allometry coef c

Top of canopy SLA

Minimum crown spread

Vc,max25

Stem allometry coef b

Stem allometry coef c

20 40 60 80 100 120
0

0.2
0.4
0.6
0.8
1.0

 

 

Stem allometry coef a

Minimum crown spread

Height allometry coef c

Vc,max25

Maximum DBH

Stem allometry coef b

Seed allocation

Stem allometry coef c

Figure 3.5: Sensitivity index of the model parameters (1st order) for change in diameter at breast
height (dDBH) outputs from CLM4.5(ED) (outputs are in units [cm yr−1 tree−1]). Parameter
sensitivities to the CLM4.5(ED) outputs were analyzed for various tree sizes, including small
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cm). Also shown are sensitivities of the remaining parameters in red (’1st order - Other Pars’) as
well as the sensitivity of parameter interactions in magenta (’2nd order - All Pars’).
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number of plants dead, as expected, it is much higher in the small size of trees (Fig. 5). The

sensitivity analysis of predicted mortality rate (percentage of mortality) shows that the dominant

parameter for predicting mortality of large trees is the target carbon storage (Fig. 6); however, for

small and medium trees, other parameters such as allometric and photosynthetic parameters that

could potentially determine their competitive advantages in the canopy are also important (Fig. 6).

Specifically, for medium size trees, the mortality rate is affected by both the stem allocation and

targeted carbon storage parameters (Fig. 6). For the small trees, important parameters include

the photosynthetic parameter (Vc,max25), stem allocation coefficient c, leaf maintenance respiration,

and stress mortality rate.
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Figure 3.7: Sensitivity index of the model parameters (1st order) for the mortality outputs of
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3.4.2 Forest carbon cycles: carbon fluxes and stocks

The goal of CLM4.5(ED) is to predict carbon fluxes and stocks that can be fed into the ESMs

by simulating the vegetation demography. In order to understand the key parametric control on

carbon fluxes and stocks, we specifically investigate parameter sensitivities for GPP, NPP, LAI

and total forest biomass. Our results show that GPP and NPP levels increased consistently for

the first 10 years of the simulations, which was expected for a forest growing from bare ground.

However within a fairly short period of 5-10 years, GPP, NPP and LAI and their uncertainty ranges

reached a quasi-stable rate (Fig. 7). This amount of time to reach equilibrium is much shorter

compared to the basal area (Fig. 1A) and the total biomass accumulations (Fig. 7). Meanwhile,

our FAST sensitivity analysis showed that, for carbon fluxes of GPP and NPP, the photosynthetic

capacity parameter (Vc,max25) was most sensitive, which was not surprising as it controls leaf-level

carbon uptake (Fig. 8). Specifically for NPP, the respiration parameters showed high sensitivity,

such as the growth and leaf maintenance respiration. For TLAI, the leaf allometry parameter

was most sensitive as it determines carbon allocation for leaves and the stem allometry parameter

was most sensitive for total biomass as it determines carbon allocation to the stem. A common

important parameter is the target carbon storage that is important for GPP, NPP, TLAI and total

biomass (Fig. 8). This results from the fact that the target carbon storage is a key driver for

mortality especially for medium and large trees in the simulations (Fig. 6), which accounts for a

large proportion of biomass (Fig. A6 in the appendix) and GPP (Fig. A7).

Our bi-variate spline analysis (Wahba, 1990) shows that, for Vc,max25 and target storage carbon,

an increase in either of these parameters will cause an increase in the output of GPP, NPP, TLAI

and biomass (Fig. 9). For the parameters related to leaf and stem allometry, however, the relations

may differ depending on the output and the year of interest. At year 130, the higher leaf allocation

normally leads to higher fluxes (NPP and GPP) but less biomass. Meanwhile, higher stem allocation

lead to higher biomass but smaller fluxes (NPP and GPP). This suggests that the trade-offs between

carbon allocation to stem vs leaf tissues leads to a corresponding tradeoff between carbon stocks

and productivity in the model predictions.
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Figure 3.8: Outputs from CLM4.5(ED) model include GPP, NPP, LAI, and biomass. Shown are
the mean simulation (black line) with 95% confidence intervals. The system is initialized with a
bare ground, and this is shown with initial values of 0 for the different outputs.

3.5 Discussion

While second generation vegetation demographic models such as CLM4.5(ED) provide us great

opportunities to predict carbon cycles with LSMs, the larger number of parameters also creates

challenges for identifying key processes for further investigation. Our analysis shows similar results

to sensitivity analysis on first generation ’big-leaf’ vegetation models (e.g., Sargsyan et al. (2014))

in view that photosynthetic capacity, Vc,max25, is a key parameter for predicting GPP and NPP

fluxes; however, we do show important parameters that are unique to LSMs with second generation

vegetation demography. Specifically, results shown here indicate the importance of leaf and stem

allometry parameters, which control dynamic carbon allocation strategies based on size, and thus

control the general vegetative state and size structure of the forest (reference Waring et al. (1998);

Waring and Running (2010)). Our results also show that storage carbon has a key role in vegetation

dynamics as it regulates processes controlling survival and mortality in the model (Dietze et al.,
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2014a; Fisher et al., 2010a; McDowell et al., 2016). We want to point out that this may not represent

the ’true’ mechanisms that kill trees in the tropics. For example, Rowland et al. (2015) showed

that death from drought in tropical forests is triggered by hydraulics but not carbon starvation.

In the CLM4.5(ED), the hydraulic failure is only based on a simple soil moisture threshold (Fisher

et al., 2015) but did not consider the plant hydraulics. Ongoing research for CLM4.5(ED) that

account for the plant hydrodynamics is expected to better capture the hydraulic failure mortality

(e.g. Christoffersen et al. (2016)).

In CLM4.5(ED), storage carbon appears to control the degree to which plants can tolerate

conditions in the understory, and might thus be somewhat analogous to a mechanistic control over

shade tolerance. In the model, the carbon starvation based mortality use a threshold of carbon

storage to trigger mortality (see Appendix C). Under shaded conditions, less carbon storage as

determined by target carbon storage, respiration and NPP could leader to a higher mortality. The

biological control over shade tolerance in tropical trees remains under significant debate (Kitajima

and Poorter, 2010; Sterck et al., 2014; Wright et al., 2010); in this case, the importance of stored

carbon indicates that the degree of shade tolerance is a critical input parameter and feature of the

model output. Overall, the results indicate that that large trees persist in the forest and small

trees are recycled in the model simulations, since the most mortality and growth are seen for small

trees and highest levels of BA and biomass are seen for the large trees. This is why target carbon

storage is so important; it is the strategy of how much carbon to store in trees for later utilization,

which will produce more large trees and thus more persistent trees (less overall recycling of carbon

and more storage).

A parameter’s individual contribution to the variance in a certain output is the 1st order

sensitivity index for that parameter, where the 2nd order sensitivity is that due to bi-parameter

interactions. For the CLM4.5(ED) outputs, the parameter interactions that contribute to the

overall variance in BA are the stem allometry coefficients b and c, along with respiration parameters

such as maintenance respiration or growth respiration fraction (Fig. A8), which is consistent with

findings from Dietze et al. (2014b). Similar results are shown for dDBH (Fig. A9). The 2nd order
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Figure 3.9: Sensitivity index of the model parameters (1st order) for the outputs of interest,
including CLM4.5(ED) outputs of GPP, NPP, TLAI, and biomass (units for each output are shown
in Fig. 7). Also shown are sensitivities of the remaining parameters (’1st order - Other Pars’) as
well as the sensitivity of parameter interactions (’2nd order - All Pars’).

sensitivities of the parameters to outputs of GPP, NPP, TLAI, and biomass were also estimated

(Fig. A10). For GPP and NPP, the leaf allometry coefficient b,Vc,max temperature coefficient se,

top of canopy specific leaf area, and growth respiration fraction were the most sensitive parameters

in regards to 2nd order interactions. For TLAI and biomass, the growth respiration fraction and

Vc,max25 parameters had high 2nd order sensitivity. Therefore, a few parameters seem to contribute

the most to the variance in model outputs, and this is seen in both the 1st and 2nd order sensitivity

estimations. Thus, parameters that contribute consistently to the variance in the CLM4.5(ED)

outputs are namely the photosynthetic parameter (Vc,max25), the storage carbon parameter, and

leaf and stem allometry parameters.
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In theory, improvements in older generation models can be achieved when their relatively simple

structures are replaced with next-generation process based models. However, this comes at the cost

of increased complexity, which requires more detailed testing and assessment of the uncertainty in

the more complex models. As shown for many of the outputs, the Vc,max25 parameter accounted for

a large portion of the variance. It is possible, for example, that by replacing the current formulation

of the photosynthetic process in the CLM4.5(ED) with a model that more accurately represents

the allocation of nitrogen and thus the photosynthetic process (see Ali et al. (2016); Xu et al.

(2013)), a reduction in the overall variance of model projections can be achieved. However, it

has also been shown that proper parameter constraint can also lead to reduced model sensitivity

to Vc,max25 (Dietze et al., 2014b). Moreover even with additional model process representation

the underlying photosynthesis sub-models in DGVMs share similar forms but still result in very

different environmental responses of GPP, suggesting additional examination of approaches and

process representation is needed (Rogers et al., 2017). Additionally, our analysis shows that the

amount of target carbon storage could be an important parameter for predicting carbon stocks

and fluxes; however this process has minimal observational constraint globally. Future research

efforts focused on better understanding carbon storage and allocation dynamics under different

environmental stresses could substantially improve predictions of vegetation demography enabled

LSMs, such as CLM4.5(ED).

3.6 Conclusion

Land surface components of ESM’s have many parameters that could potentially affect the outcome

of their simulations. Quantifying the contribution of model parameters to the overall output

variance is critical for model diagnosis and improvement. Here, we used the Fourier amplitude

sensitivity test (FAST) to conduct a high-dimensional global sensitivity analysis on the Community

Land Model with Ecosystem Demography, CLM4.5(ED). We used an intermediate complexity of

simulation: runs were sufficiently long to permit short-term physiological uncertainty to propagate

into the long-term forest demographic structure, however we used only a single PFT for each run
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Figure 3.10: Relations between the most sensitive parameters (Vc,max25, storage carbon, leaf and
stem allocation) to outputs of CLM (i.e. GPP, NPP, TLAI, and biomass) at years 10 and 130 of
the simulations. Shown are the mean relations, with the 95 % confidence interval in grey envelopes.
These figures show how an output will generally increase or decrease when a given parameter is
changed. For example, the relation between the photosynthetic parameter (Vc,max25) and all the
outputs were positive, as is the case with storage carbon parameter.
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to eliminate from our analysis uncertainty due to competitive dynamics between different PFT

strategies.

The most sensitive parameters are those related to photosynthetic processes, followed by survival

and allometry parameters (namely Vc,max25, storage carbon, as a proxy for shade tolerance, and

leaf and stem allometry parameters). Specifically, for the CLM4.5(ED) outputs representing carbon

exchanges between the land and atmosphere, such as GPP and NPP, the most sensitive parameter

was Vc,max25. For outputs representing the vegetation state of the forest, such as LAI and biomass,

the leaf and stem allometry parameters, respectively, were the most sensitive parameters, along

with the storage carbon parameter. The outputs of BA, mortality, and dDBH were mostly affected

by storage carbon and stem allometry parameters, as well as Vc,max25. The importance of growth

and survival parameters that we find here emphasizes the importance of how long-term ecosystem

processes are represented in the governing ecosystem structure of this class of land model.

The FAST analysis provides a promising means of analyzing complex ESM components, and

can be a powerful tool in understanding the necessarily high-dimensional representation of living

systems within climate projection models. The results of the sensitivity analysis presented here can

be utilized in future calibration efforts to reduce the complexity of the parameter-output response

surface. We look forward to future diagnosis of CLM4.5(ED), and hope that results presented here

can serve to inform the analysis of the structure of the model and its parameters as well as for

future measurement campaigns.
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Appendix

Appendix A: Allometry equations

The following equations are representative of the cohort based calculations made in CLM4.5(ED).

Interested readers are referred to Fisher et al. (2015) for more information. The parameters used

for the allometry equations include dbh2hm, dbh2hc, dbh2bda, dbh2bdb, dbh2bdc, and dbh2bdd (all

are unitless variables). The equations represent processes such as converting changes in structural

biomass to changes in height, i.e.:

dBD

dh
= (dbh2bda)(dbh2bdb)(hitedbh2bdb−1)(DBHdbh2bdc)(densitydbh2bdd

wood ) (3.18)

where dbd
dh is the rate of change of dead biomass (KgC) per unit change of height (m), hite is the

height of the tree (m), DBH is the diameter at breast height (cm), and densitywood is the wood

density (g cm−3). The equations also represent the processes that convert changes in structural

biomass to changes in diameter, i.e.:

dBD

dDBH
= (dbh2bda)(dbh2bdc)(hite

dbh2bdb)(DBHdbh2bdc−1)(densitydbh2bdd
wood ) (3.19)

where dBD
dDBH is the rate of change of dead biomass (KgC) with change in DBH (cm). As long as

the DBH has not reached the maximum threshold yet (maxdbh). The rate of change of height (m)

with change in DBH (cm) is calculated as follows:

dH

dDBH
= 10dbh2hc(dbh2hm)(DBHdbh2bdm−1);DBH < maxDBH,pft (3.20)

and then if the DBH reached the maximum, the changes in structural biomass to changes in

diameter becomes:

dBD

dDBH
= (dbh2bda)(dbh2bdb)(DBHdbh2bdb−1)(DBHdbh2bdc)(densitydbh2bdd

wood ) (3.21)
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Appendix B: Temperature response curve

The parameters used for the temperature response curve equations include the equation to calculate

the maximum carboxylkation rate, Vc,max25, the maximum electron transport rate, Jmax, and the

Triose phosphate use (TPU) limited carboxylation rate, TPU (also all parameters here are unitless)

(Fisher et al., 2015). The temperature response equations for Vc,max,z, Jmax,z, and TPUz are:

Vc,max,z = Vc,max,25(e
vcmaxha

(0.001rgas)(tfrz+25) )(1−
tfrz + 25

tveg
)(

vcmaxc

1 + e−vcmaxhd+(vcmaxse)(tveg)
) (3.22)

Jmax,z = Jmax,25(e
jmaxha

(0.001rgas)(tfrz+25) )(1−
tfrz + 25

tveg
)(

jmaxc

1 + e−jmaxhd+(jmaxse)(tveg)
) (3.23)

TPUz = tpu25(e
tpuha

(0.001rgas)(tfrz+25) )(1−
tfrz + 25

tveg
)(

tpuc

1 + e−tpuhd+(tpuse)(tveg)
) (3.24)

where tfrz is the freezing point of water in Kelvin (273.15 K).

Appendix C: Carbon storage in CLM4.5(ED)

Carbon storage, bstore (in kg C/cohort) plays a very important role in both the growth and mortality

(Fisher et al., 2015). Specifically, CLM4.5(ED) assumes a target carbon storage determined by the

multiplication of leaf biomass (bleaf) and cushion factor (Scushion; variable cushion in Table A3).

At the specific time, the carbon balance for growth and storage is calculated as follows,

C = NPP − Tmdfmd,min (3.25)

where Tmd is the maintenance respiration and fmd,min is the minimum fraction of the maintenance

demand (storage priority parameter in Table A1) that the plant must meet each time step, which

represents a life-history-strategy decision concerning whether leaves should remain on in the case

of low carbon uptake (a risky strategy) or not be replaced (a conservative strategy).
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The fraction of the carbon balance for each cohort allocated to the carbon storage pool (fstore)

will be determined by the follow equations:

fstore = e(−ftstore)4
(3.26)

where

ftstore = max
(
0,

bstore

Scushionbleaf

)
(3.27)

Thus, the target carbon storage parameter, Scushion, can affect carbon allocations. Specifically, a

higher value of Scushion will lead to a higher allocation of carbon to storage and thus lower allocation

to growth at the specific time step.

Carbon storage also plays an important role for the mortality. Specifically, carbon starvation

mortality (Mcs) is calculated as follows:

Mcs = Smmax
(
0, 1− bstore

bleaf

)
(3.28)

where Sm is the stress mortality factor (i.e., stress mort in Table A.3).
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Appendix D: Growth relations to stem allometry
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Figure 3.11: Impact of stem allometry on basal area (BA) distribution across trees of different
sizes. The figure shows results for the simulations years 100-130, and the 95% uncertainty of these
relations.

Figure 3.12: Impact of stem allometry on tree diameter growth (dDBH). The values in the figures
are normalized by the expected value at lowest stem allometry coefficient c. The red curve are used
for small trees, blue for medium trees, and black for large trees. The figure shows results for the
simulations years 100-130, and the 95% uncertainty of these relations.
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Figure 3.13: Outputs from CLM4.5(ED) for tree density, or the number of trees per area
(NPLANT). Figures show the outputs for the various tree sizes considered, including small
(diameter < 10 cm), medium (10 cm < diameter < 50 cm), and large trees (diameter > 50
cm). Shown are the mean simulation (black line) with 95 % confidence intervals.
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Appendix E: Mortality Outputs
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Figure 3.14: Mortality outputs from CLM4.5(ED), including the mechanisms of M1 - Background
Mortality, M2 - Hydraulic Failure, M3 - Carbon Starvation, and M4 - Impact Mortality. The
bottom panel shows the total mortality, which is the sum of M1-M4. An additional possibility for
mortality in CLM4.5(ED) is from fire disturbances, however the fire sub-routine of the model was
turned off since the study site was in the Amazon. Shown are 95 % (light grey) and 90 % (dark
grey) confidence intervals, along with the mean simulation (black lines) and the simulation using
the default parameter set (green lines).
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Appendix F: CLM4.5(ED) fractional outputs of small, medium,

and large trees
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Figure 3.15: Outputs from CLM4.5(ED) for the change in diameter at breast height (dDBH).
Figures show the fraction of total dDBH that is distributed to each of the tree sizes considered,
including small (diameter < 10 cm), medium (10 cm < diameter < 50 cm), and large trees
(diameter > 50 cm). Shown are the mean simulation (black line) with 95 % confidence intervals.
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Figure 3.16: Biomass distribution for the various cohorts considered. Each figure shows the fraction
of total biomass that is in each cohort.
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Figure 3.17: GPP distribution for the various cohorts considered. Each figure shows the fraction
of total GPP that is in each cohort.
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Appendix G: 2nd order sensitivities
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Figure 3.18: 2nd order sensitivity index of the model parameters for the Basal Area (BA) outputs
from CLM4.5(ED).
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Figure 3.19: 2nd order sensitivity index of the model parameters for the change in diameter at
breast height (dDBH) outputs from CLM4.5(ED).
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Figure 3.20: 2nd order sensitivity index of the model parameters for GPP, NPP, TLAI, and biomass
outputs from CLM4.5(ED).
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3.7 LSM case study 2: Improved Global

Nitrogen Allocation Model

The second case study in this chapter is dedicated to the improved prediction of terrestrial nitrogen

and carbon fluxes. Xu et al. (2012) and other recently developed works have promoted the

development of a mechanistic leaf nitrogen allocation model at a global scale. We present a

dynamic carbon-nitrogen model that will incorporate recent advances in nitrogen modeling (see

Figure 3.22) and uses the DREAM algorithm to rigorously calibrate and evaluate the developed

model against observations. The observed data is unique, and includes soil fertilization and free

air CO2 enrichment (FACE) observations across a range of different forest types from across the

globe. The goal of the study is to provide reliable estimates of the relationships that leaf nitrogen

allocation takes on within a leaf on a global scale, which is crucial for prediction of land carbon

sinks in Earth System Models (ESMs). Currently, various forms of ESM’s exist, and are today’s

critical tools for making climate projections. Throughout this thesis, the ESM that will be used

is the Community Land Model with Ecosystem Demography option, or CLM4.5(ED), developed

by the National Center of Atmospheric Research (NCAR), LANL and many other universities for

prediction of various processes on the land surface and in the atmosphere.

A dynamic carbon-nitrogen allocation model within leaves was calibrated with the DREAM

algorithm. The parameters of the model include Jmaxb0 (baseline proportion of nitrogen allocated

for electron transport rate), Jmaxb1 (electron transport rate response to light), tc,j0 (ratio of rubisco

limited rate to light limited rate), and H (electron transport rate parameter related to relative

humidity). The values of the parameters were calibrated under two conditions, TRF1 and TRF2.

TRF1 considers temperature acclimation, while TRF2 does not. The formulation of TRF2 is same

as TRF1 except that in TRF2, an entropy term is fixed across the entire data set.

The estimated mean and standard deviation of the parameter values are shown in Table 3.1.
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Table 3.1 Mean values of parameters obtained by using DREAM when TRF1 and TRF2
were used. The parameters include; Jmaxb0 (unitless) - baseline proportion of nitrogen
allocated for electron transport rate, Jmaxb1 (unitless) - electron transport rate response
to light, tc,j0 (unitless) ratio of rubisco limited rate to light limited rate, and H (unitless) -
electron transport rate parameter related to relative humidity. The standard deviations are
shown in the parentheses.

Statistics Jmaxb0 Jmaxb1 tc,j0 H
TRF1 0.0311(0.0004) 0.1745(0.00025) 0.8054(0.0015) 6.0999(0.2416)
TRF2 0.0322(0.0002) 0.1695(0.0006) 0.7760(0.0031) 5.7139(0.0354)

The estimation of the model parameter values on a global scale is necessary for improved accuracy

in climate projections, because a large uncertainty exists in the current simulation of nitrogen

related processes (e.g. photosynthesis and soil carbon storage response to nitrogen addition),

which substantially affects the reliability of predicted terrestrial carbon fluxes. Thus, the estimates

provided will be implemented into larger scale models tested against observed global data of

variables that represent processes occurring in the biosphere, such as Net Primary Production

(NPP). This work with the collaborators from LANL assesses energy impacts on the global carbon

cycle and future climates.
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Figure 3.22: Schematic of the hierarchical plant functional nitrogen allocation for a leaf layer of a
tree. This is the general view of the model structure of mechanistic leaf nitrogen allocation model.
Figure drafted from Xu et al. (2012).
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3.8 LSM case study 3: Determining size dependence

on tree survival

Survival rates of large trees determine forest biomass dynamics. Forecasting the fate of the

terrestrial carbon sink depends on correctly incorporating size-dependent tree survival. We tested

patterns of tree survival across the tropics using data from 1781 species and two million individuals

to assess whether life-history survival strategies can be used to characterize complex and diverse

tropical forests. We resolved four size-dependent survival modes based on the relation of mortality

to tree size that explain life-history strategies shaping the terrestrial forest ecosystem carbon-cycle

budget. Frequently collected traits, such as wood density, leaf mass per area and seed mass were

not predictive of survival mode, suggesting a disconnect between traits and survival strategy. Mean

annual temperature and cumulative water deficit predicted the relative biomass of survival modes,

indicating important links between evolutionary strategies, climate and carbon cycling. We were

also able to use survival modes in simulations to predict biomass change over time. Our results

reveal common demographic strategies useful for defining plant functional types for global dynamic

vegetation models and provide an avenue for increased understanding of forest ecosystem dynamics.

Tropical forests are currently estimated to store 500-1000 Pg of C in biomass and soils. Whether

intact tropical forests will be sinks or sources of carbon in the future remains a critical question,

which will fundamentally depend on how forest species respond to climate change, such as storm

frequency and intensity, warming and drought. Forest carbon volume depends exponentially on

the annual rate of tree survival, and tree survival rates in turn depend on climate. In most forests,

survival strategies range from long-lived species that retain carbon for centuries to short-live species

that die within decades. Changes in the forest composition, due to differential survival responses of

species to climate variation or extreme episodic events (i.e. droughts and storms), may can cause

large and rapid changes in the terrestrial carbon balance that can potentially persist for centuries.

Such effects on tree survival are distinct but potentially more important than climate-driven changes
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in forest productivity through tree growth, which has a relatively constrained and slower influence

on terrestrial carbon dynamics.

By examining the survival of more than two million trees representing 1781 species in 14 large

forest plots across the tropics, we found four modes of size-dependent survival that are common

across diverse forests and contain information about how allocation differs over time and across

species. To understand the ecological significance of these modes we : 1) investigated how survival

modes contribute to carbon fluxes through differences in growth rates and biomass turnover; 2)

asked if the modes of survival that emerge from the demographic data are related to the commonly

collected plant traits of wood density, leaf mass per area and seed mass; 3) compared our predictions

of size-dependent survival with DGVM output to identify where improvements can be made; 4)

tested whether the relative abundance of these survival modes relate to climate variables and 5)

tested the predictions of our model results against the observed biomass at each site through time.

3.8.1 Results: global size-dependent tropical tree survival

Hierarchical cluster analysis of size-dependent survival of species occurring across 14 pan-tropical

large area forest dynamics plots (ranging from 2 to 52 ha each with 371 ha in total) indicates

four size-dependent survival modes that characterize tropical tree and shrub survival (Fig. 1).

Understory species are characterized by their small maximum diameters, with an across-site mean

99th percentile diameter of 9.8 cm.

Transient species are distinguished by their very 108 low overall survival with an across-site mean

maximum-survival rate of 78% yr−1 and an across-site mean 99th percentile diameter of 14.3 cm.

There are two groups of large stature tree species. Canopy species are the group with intermediate

maximum size, across-site mean 99th percentile diameter of 27.8 cm and lower small-diameter

survival rates compared to Large Canopy species which have larger maximum diameter, across-site

mean 99th percentile diameter of 68.4 cm and relatively higher survival at smaller diameters.
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Figure 3.23: The CLM4.5(ED) model (grey envelope) over predicted large tree survival when
compared with our size-based survival modes (colored envelopes). CLM4.5(ED) mortality function
includes terms for carbon starvation, hydraulic failure, crushing of small trees by large tree
mortality, a background rate of mortality and fire (though fire was not included in the simulations
used here). We found that the model predicted higher survival in the largest size classes (greater
than 70cm DBH) than our statistical model. The causes of mortality in large trees are likely to be
more complex than small trees which are more vulnerable to asymmetric competition with larger
trees for light and other resources.

Our analysis has an abundance threshold of 200 individuals; species with lower abundance are

Unclassified, and it is possible that some of them display other survival modes that were too rare

to describe statistically. To test the robustness of our survival modes, we calculated the Jaccard

similarity index for all clusters which were well above the 0.75 threshold indicating stable clustering

for our size-dependent survival modes based on a 1000 bootstrap simulations (Extended Data Table

2).

Our model predictions fit observed forest biomass well (Fig. 36), which is a challenge for DGVMs

which rely on physiological models to drive survival outcomes. We tested how a DGVM’s output
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maps to survival predicted by global survival modes. The CLM4.5(ED) model over predicted

large tree survival when compared with our size-based survival modes. CLM4.5(ED) mortality

function includes terms for carbon starvation, hydraulic failure, crushing of small trees by large tree

mortality, a background rate of mortality and fire (though fire was not included in the simulations

used here). We found that the model predicted higher survival in the largest size classes ( greater

than 70cm DBH) than our statistical model. The causes of mortality in large trees are likely to be

more complex than small trees which are more vulnerable to asymmetric competition with larger

trees for light and other resources. Large trees are likely to have accumulated wounds, lianas and rot

that are not currently simulated in DGVMs, though there have been calls for modeling insects and

diseases in both crops and forests. Including these types of stressors could be considered in future

DGVMs. Alternately, exogenous disturbance, e.g. wind, maybe a driver of large tree mortality that

is not currently captured by DGVMs. A path forward may be to parameterize a size-dependent

mortality term that allows for more accurate estimation of large individual survival.
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Trees and forests play a key role in controlling the water and energy balance at the land-air

surface. One case study in this thesis involves the simulation of water flux through a tree, using

a model named the Soil-Tree-Atmosphere Continuum (STAC) model. The STAC model follows

fundamental biophysical principles, in which soil water is taken up by the roots and moves through

the water-conducting vessels or xylem along a water potential gradient into the canopy, where it

transpires into the atmosphere through leaf stomata.

Historically, models that attempt to mimic this process have been based on the electrical

circuit analog, with resistance-capacitance (RC) models to characterize xyleme resistance to water

flow and water storage. Now, physically-based nonlinear modeling framework, numerical flow

models discretize the modeled domain into small elements and use finite-difference or finite-element

methods to solve the flow equations. However, few models use the integrated soil-tree continuum

approach, coupling the soil with the tree domain, simulating the soil, roots and tree trunk as a

continuum, in which water flow is driven by water potential gradients along the coupled STAC with

spatially distributed root water uptake and canopy transpiration sink terms. Water flow through

the coupled system is described using the Richards’ equation type of representation with both the

soil and tree conducting domains modeled as a porous medium, defined by nonlinear soil and tree

water relationships. Figure 4.1 shows the processes involved for the STAC model to simulate water

flux through such a system.

4.1 Manuscript Title - Bayesian inference of hydraulic

properties in and around a Douglas White Fir using

a process based ecohydrologic model

Abstract: Parameters used in land surface and climate models are typically inferred from empirical

relationships or extracted from arbitrary data sets that may not represent local variation or

capture seasonal or ontogenetic changes. This has caused major deviations in the representation of
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vegetation in this suite of models and new research has been prompted to identify parameter sets

that describe vegetation properties consistently. We present here a parameter estimation study of

the Soil-Tree-Atmosphere Continuum (STAC) model, a process based model that simulates water

flow through an individual tree and its surrounding root zone. Parameters are fitted to observations

made for a Douglas White Fir (Abies concolor) in the Sierra Nevada, California. Bayesian inference

is applied with a likelihood function that explicitly considers first-order temporal correlation of the

residuals. We highlight the estimation of properties such as the tree’s root distribution, tolerance

to drought, and hydraulic conductivity and retention functions.

4.2 Introduction

Ecohydrology is a field of study focusing on the hydrologic mechanisms that govern and explain

ecologic patterns and processes (Jackson et al., 2009; Rodriguez-Iturbe, 2000). Ecohydrologic

system properties depend on many interrelated links between climate, soil, and vegetation (Rodriguez-Iturbe

et al., 2001). One part of this cycle includes the role that climate and soil have in controlling

vegetation dynamics (Boyer, 1982; Jones, 2013; Kramer and Boyer, 1995; Lange et al., 1976;

Larcher, 2003), and another part of the cycle is the important control that vegetation exerts on

the water and energy balance (Kutzbach et al., 1996; Schlesinger et al., 1990; Zeng et al., 1999).

Many important issues depend on the quantitative understanding of these vegetation dynamics,

including environmental preservation, proper management of resources, as well as improved model

representation in simulations of ecohydrologic systems (Noy-Meir, 1973; Scholes and Walker, 2004;

Shmida et al., 1986; Xu et al., 2013).

Generally, the role that trees play on the overall water cycle in regards to water storage,

residence time, and vegetation tolerance to drought are hardly represented in Land Surface Models

(LSMs). This lack of understanding of water dynamics in vegetation is a potential cause for large

discrepancies seen between various model simulations that run into the next century (McDowell
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et al., 2015; Sitch et al., 2008). Much data has been collected to fill some of the gaps in our

understanding of tree water relations (Zweifel et al., 2007), and can usually inform ecohydrologic

models to enhance their fidelity and guide their development (Christoffersen et al., 2016). These

models can then be diagnosed to help further understand the same ecohydrologic relationships

that create them, providing information on where additional data is needed to re-iniform and

thus re-develop the model. Future development will enhance the ability of LSMs to predict

individual tree processes such as drought tolerance or storage capacity and thus enhance the overall

representation of vegetation’s effect on the global water cycle (Medlyn et al., 2016).

We present here a numerical model that simulates water storage and transport through a

tree and its root zone, coined the Soil-Tree-Atmosphere Continuum (STAC) model. The STAC

model is structured with an axi-symmetrical 2D (or quasi-3D) representation of water flow through

the combined soil-tree domain. The model uses Richards’ equation and Mualem-van Genuchten

hydraulic functions from Van Genuchten (1980) and Mualem (1976) to characterize water storage

and movement. This representation is important, as soil water flow models usually do not take

into account water storage in trees. In the STAC model, root water uptake is not assumed to be

equivalent to transpiration, which conceptually allows for change in the tree’s water storage. Our

goal here is to accurately simulate the dynamics of water flow in a mature Douglas White Fir and

its root zone. In doing so, we aim to properly infer model parameters that dictate how much water

can be stored (capacity) or can flow (conductance) in the tree and its surrounding soil domain.

Similar studies have been a topic of interest in the ecohydrologic community for decades (Sala and

Lauenroth, 1982; Tyree, 1988). Previous works have highlighted the differences between saturated

and unsaturated flow (Aumann and Ford, 2002), improved on the representation of branch junctions

(Schulte and Brooks, 2003), linked tree sap flow to stem growth (Steppe et al., 2006), modeled both

xylem as well as phloem water fluxes (Hölttä et al., 2009; Lacointe and Minchin, 2008), improved

prediction of xylem ABA concentrations by proper accounting of sap flow (Dodd et al., 2008),
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improved understanding of the affect of root system architecture for the enhancement of drought

tolerance (Draye et al., 2010), accounted for hydraulic redistribution between different soil parts

via plant root systems (David et al., 2013; Prieto et al., 2012), provided a computationally efficient

1-D alternative to 3-D models that includes a xylem flow model (Janott et al., 2009), among others.

The purpose of this study is to investigate mechanisms such as water uptake and transpiration by

a tree, spatial and temporal dynamics of soil moisture, retention and conductivity of the soil and

xylem, and soil and tree water storages as functions of time.

We utilize Bayesian inference to obtain optimal parameters that allow model simulations to

fit closely with observations made for a mature Douglas White Fir (Abies concolor) in the Kings

River Experimental Watershed (KREW) in the Sierra Nevada, California. Applying Bayes’ law

also allows for estimation of the underlying parameter uncertainty (Katz, 2002). This is important

since various sources of error can introduce uncertainty, such as errors from calibration data, model

inputs, or model structural errors. Numerical implementation of the Bayesian paradigm requires

the user to specify a prior parameter distribution as well as a likelihood function. The prior

distribution should encode all the subjective knowledge about the parameters before collection of

the data, whereas the likelihood function summarizes, in a probabilistic sense, the compatibility of

the observed data to the simulated model outputs (Vrugt and Massoud, 2017). Likelihood functions

play a key role in statistical inference, and here we utilize a specially designed likelihood function

that can combine various data streams from several processes being considered.

It is generally assumed that if only one data set is used for the parameter estimation, the

parameter values will be fitted to that specific process too closely. However, by considering various

processes during the parameter estimation, the parameter search will be balanced by each data

set and an overall more realistic representation of the system properties can be achieved (Medlyn

et al., 2015). To this end, we use the likelihood function defined in Schoups and Vrugt (2010) and

utilize multiple data streams in the estimation of the STAC model parameters. We show that this
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does provide an overall accurate estimation of the soil and tree water properties when compared to

observed data.

4.3 Material and methods

4.3.1 STAC Model

The Soil-Tree-Atmosphere Continuum (STAC) Model is a physically-based nonlinear modeling

framework (Bohrer et al., 2005; Chuang et al., 2006; Kumagai, 2001; Mirfenderesgi et al., 2016),

as typical for the simulation of water flow in unsaturated media (Rings et al., 2013; Siqueira

et al., 2008). The STAC model discretizes the system domain and couples the soil with the tree

domain, simulating the soil, roots and tree trunk as a continuum. Water flow is driven by water

potential gradients along the coupled system (Bittner et al., 2012) with spatially distributed root

water uptake and canopy transpiration sink terms. The STAC model utilizes the HYDRUS model

(Simuunek et al., 2008), where water flow through the soil and the tree root system and stem is

driven by the evaporative demand and soil-available water, leading to a gradient in soil and xylem

water potentials along the STAC. We approximate both the soil and plant conducting tissues by a

porous medium, with conductive and capacitive properties that are a function of water potential.

4.3.2 Domain and Boundary Conditions

HYDRUS allows the estimation of water potential, volumetric water content, and water flux density

across the coupled soil-tree domain. Both the soil and tree trunk are modeled as axial-symmetrical,

represented by a rectangular domain (Figure 4.2). The simulated soil domain extends to 5 m

outwards; three soil layers characterize the top 2.5 m in the unsaturated soil, and the bottom 2.5 m

interval represents the weathered low conductivity saprolite that can store water but is inaccessible

to tree roots.
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The lower boundary of the soil at the 5 m depth was described by a seepage boundary, allowing

water to leave the soil domain when saturated, and allowing for both upwards and downwards

flow across the whole soil domain. The upper boundary of the soil domain consists of measured

values of rainfall and evapotranspiration. The lower boundary condition of the tree trunk is root

water uptake from the soil domain, and the upper boundary of the tree is atmospheric demand of

potential evapotranspiration. The 10 cm radius of the tree trunk was chosen so that the domain

volume is approximately equal to that of the sapwood of the tree.

We use observations of soil moisture, soil water retention curves, and assume hydraulic equilibrium

to initiate water potential distribution across the domain. For the soil, we converted 24 elements

of soil moisture data collected on July 15, 2009, to soil water matric potential values using the

laboratory-measured retention curves. Then, a 2nd order polynomial interpolation scheme was

applied to estimate the soil water potential across the measured soil domain, assuming hydraulic

equilibrium at the domain boundaries. This completed the necessary initial and boundary conditions

of the domain for the model simulations.

4.3.3 Unifying Equations

To set up the model simulations, we use the finite element HYDRUS software (Simuunek et al.,

2008), which can solve unsaturated water flow across the soil-tree domain using the Richards’

Equation (Richards, 1931) in a discretized system of linear equations (Equations 4.1 and 4.2). The

flow in the soil domain is presented here in its axisymmetrical, two-dimensional, isotropic form:

∂θsoil

∂t
=

1

r

∂

∂r

(
rKr(h)

∂h

∂r

)
+

∂

∂z

(
Kz(h)

∂h

∂z

)
− ∂Kz(h)

∂z
−Wsoil(h, r, z) (4.1)

where θsoil (L3L-3) is the volumetric soil water content, K(h) (LT-1) defines the unsaturated

hydraulic conductivity function (further denoted by either r- for radial direction or z- for vertical

direction), h (L) is the soil water pressure head, r and z are the lateral and vertical coordinates
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(positive downwards) of the soil domain respectively, t (T) is time, and Wsoil (L3L-3T-1) defines

a sink/source term that quantifies spatially distributed root water uptake from the soil. Both K

and Wsoil are functions of θ and/or h. The subscripts r- and z- allow for the possibility of soil

anisotropy, i.e., to simulate water flow with the unsaturated hydraulic conductivity function being

different for the r- and z- directions.

The set up of Richards’ equation for the tree domain to represent flow through the canopy is

similar to that of the soil domain in Equation 4.1, but in one-dimensional form. This equation is

derivable directly from Equation 4.1 by reducing to one dimension, z- only. Thus, the axi-symetrical

flow through the tree canopy is represented by:

∂θtree

∂t
=

∂

∂z

(
Kz(h)

∂h

∂z

)
− ∂Kz(h)

∂z
−Wtree(h, z) (4.2)

where θtree (L3L-3) is the volumetric tree water content, K(h) (LT-1) defines the unsaturated

hydraulic conductivity function (further denoted by z- for vertical direction), h (L) is the tree water

pressure head, z is the vertical coordinate of the tree domain (positive downwards), t (T) is time,

and Wtree defines a sink term (L3L-3T-1) that quantifies spatially distributed canopy transpiration.

For solution of Equations 4.1 and 4.2, unsaturated hydraulic conductivity and the water retention

functions must be defined for both the soil and tree conducting matrix. The unsaturated hydraulic

conductivity function (Equation 4.3) defines the relationship between the moisture content and

the corresponding hydraulic conductivity of the domain, and the retention function (Equation

4.4) characterizes the ability of the domain to retain water. We define these functions using the

relationships of Van Genuchten (1980) and Mualem (1976), where

K (h) = Ks

√
Seff

(
1−
(
1− Seff

1
m

)m)2
(4.3)

and

Seff (h) = θ−θr
θs−θr = (1 + |αh|n)−m (4.4)
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in which K (h) represents the hydraulic conductivity, and the degree of effective saturation, Seff (h),

represents the retention function. For these equations, θs denotes the saturated water content at

h = 0 (L3L-3), θr is the residual water content (L3L-3), α is a scale parameter inversely proportional

to mean pore diameter (L-1), n (m = 1− 1/n) is a shape parameter of the soil water characteristic,

and Ks (LT-1) is defined as the conductivity at saturated conditions, or when θ = θs.

4.3.4 Root Water Uptake Model

The actual root water uptake term in Equation 4.1 is computed from:

Wsoil(h, r, z) = γ (h)β (r, z)πr2
mETp (4.5)

with Wsoil(h, r, z) representing actual water uptake of roots from the soil (L3L3T-1) at each node

in the soil domain, controlled by root density distribution, β(r, z) (L-3), and a soil water stress

response function, γ(h). rm is a coefficient that represents the maximum radial root depth, and

ETp is the potential tree transpiration shown later in Equation 4.8. Both β(r, z) and γ(h) have

functional values between 0 and 1.

The normalized root distribution, β(r, z) for an axisymmetrical soil domain Ω, is defined by

(Gardenass et al., 2005; Vrugt et al., 2001a):

β (r, z) = β∗

2π
∫
Ω rβ

∗ dΩ
(4.6)

with a general nonuniform root distribution, β∗, as defined by (Vrugt et al., 2001a):

β∗ (r, z) = [
(

1− z
zm

)
][
(

1− r
rm

)
]e
−
(

pz
zm
|z∗−z|+ pr

rm
|r∗−r|

)
(4.7)

where zm and rm define the maximum rooting extent in the vertical and radial directions (L),

respectively. z∗ and r∗ are empirical parameters (L) that shift the maximum of the distribution in

vertical and radial direction, respectively, and pz and pr are empirical parameters that determine the
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exponential shape of the distribution. Refer to Figure 4.3 for an example of these root distribution

values.

For water-stressed root conditions in the soil, γ(h) (dimensionless) was introduced by Feddes

et al. (1978), and reduces root water uptake from its maximum possible value because of soil water

stress. γ(h) is defined by four water potential values, P1 through P4. For soil water potential

values between P2 and P3, γ(h) will be optimum and equal to 1.0. For h-values between P1 and

P2 (soil aeration stress) and between P3 and P4 (soil water stress), γ(h) values will be smaller than

one and zero at a minimum. Refer to Figure 4.4 for an example of these stress values.

For the estimation of the potential tree transpiration (ETp) in Equation 4.5, meteorological

data from the weather tower were used to estimate local hourly potential evapotranspiration, ET0,

using the Penman-Monteith equation (Allen et al., 1998). Values for the aerodynamic resistance

and bulk surface stomatal resistance terms were calculated according to FAO guidelines (Allen

et al., 1998). To estimate the potential tree transpiration, ETp, we adopted the crop coefficient

approach (Doorenbos, 1977), and multiplied ET0 with a tree coefficient, sET0 (-) , or

ETp = sET0ET0 − Es. (4.8)

We assume soil water evaporation to be negligible as canopy cover dominates the landscape and

dry surface soil moisture conditions occurred throughout the study time period.

Finally, from integration of Equation 4.5 over the soil domain, the actual total root water uptake,

Ra, (L T-1) is computed from:

Ra = 2π
πr2

m

∫
Ω rWsoil dΩ. (4.9)

In the presented coupled domain, the volume of water taken up by the roots must now be transported

in the conducting vessels (xylem) of the sapwood in the tree trunk. For that purpose, the coupled

model includes a small storage reservoir that acts as a buffer for water transport between the soil

and the tree. Finally, by defining a lower flux boundary condition for the tree domain, the tree’s
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sapwood draws water from the buffer storage and initiates water flux through the tree. This water

flux, and ultimately tree transpiration, are discussed in the next section.

4.3.5 Tree Transpiration

We use the Jarvis model to quantify plant transpiration (Waring et al., 1979). We represent the

canopy transpiration sink term, Wtree(h, z), in Equation 4.2 as follows:

Wtree(h, z) = γ (h)β(z)ETp (4.10)

where β(z) is the one-dimensional canopy density distribution function used for estimation of

transpiration at different elevations of the tree domain, γ(h) is the canopy water stress response

function that represents the stomatal closure under increasing water tension and is of a similar

Feddes form as used for characterizing soil water stress. ETp is the potential tree transpiration

from Equation 4.8.

The normalized canopy distribution, β(z) for an axisymmetrical tree domain Ω, is defined by

(Gardenass et al., 2005; Vrugt et al., 2001a):

β(z) = β∗

2π
∫
Ω β

∗ dΩ
(4.11)

with a general nonuniform tree distribution, β∗ (L-1), as defined by (Rings et al., 2013):

β∗ (z) = 1−
(
z−6
24

)
(4.12)

for z >6 m and zero below 6 m. Thus, the actual tree transpiration (ETa) is computed from:

ETa = 2π
πr2

m

∫
Ω rWtree dΩ = 2πRa

∫
Ω
γ (h)β (z) dz (4.13)

In all, this approach couples root water uptake with tree transpiration.
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4.3.6 Data

The model will be tested using data collected in and around a White Fir (Abies concolor) in a 99 ha

subcatchment (P301) of the King’s River Experimental Watershed (KREW), as part of the Critical

Zone Observatory (CZO-TREE 1) project. This site is located in the rain-snow transition zone of

the southern Sierra Nevada mountain range in California at an elevation of 2018 m. Data include

soil water content and water potential in 3 spatial dimensions in the root zone, tree stem water

content and sap flux, canopy water potential, and atmospheric variables including: net radiation,

air temperature, and humidity. Undisturbed soil samples were collected to a depth of 2.5 m for the

soil analysis. Corresponding measurements of saturated hydraulic conductivity were made using

the constant head method (Reynolds et al., 2002).

Calibration data were selected for an 18-day rainless period in summer of 2009, starting July

15, and includes sapflow, stem potential, and soil storage. Three sap flow sensors (TransfloNZ,

Palmerston North, NZ) were installed into the sapwood at a trunk height of 2.5 m. Using the

compensation heat pulse technique (Green and Clothier, 1988), average sap flux flow (L/T) was

estimated at 30-minute time intervals. Then, stem water potential measurements were taken from

needle stems of various lower tree branches, at about 6 m from the ground. Seven measurements

were taken during 24 hours on July 21-22, 2009. Finally, Echo- 5TE soil moisture sensors were

installed at depths of 0.15 m, 0.30 m, 0.60 m and 0.90 m in each of 6 locations within a 5 m radius

from the tree trunk. The sensors were calibrated in the laboratory (Kizito et al., 2008), from which

it was determined that their accuracy is around 3% for a range of soils. Using all water content

measurements, average total soil water storage (m3) was computed during the 18-day measurement

period every half hour. However, only about half of the soil water storage data was used for the

parameter estimation due to incomplete measurements on some days.
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Figure 4.1: A schematic showing all of the processes involved for the simulation of water flow
through the Soil-Tree-Atmosphere Continuum (STAC) model.
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Figure 4.2: Initial domain used in the STAC model simulations. ’beta’ represents the root or
canopy distributions in Equations 4.7 and 4.12.
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Table 4.1 Estimated STAC parameters for root distribution and Feddes stress functions, with units and prior ranges. Shown
are the values when calibrating against each of the observed data sets, i.e. sapflow (SAP), stem potential (STEM), soil storage
(STOR), and the combination of all 3 (FULL). The standard deviation of the posterior samples is shown in parenthesis. The
subscripts z and r denote vertical or radial direction. The effect of these parameters on the root distribution and corresponding
Feddes functions are represented visually in Figures 4.3 and 4.4.

Root Distribution Parameters Estimation vs.
Symbol Prior Ranges Units SAP STEM STOR FULL

pz 50 - 250 (-) 219.47 (60.60) 60.43 (58.26) 243.64 (58.44) 184.13 (53.13)
pr 50 - 250 (-) 145.88 (57.75) 184.72 (48.85) 101.31 (56.67) 181.80 (54.23)
z∗ 50 - 250 cm 211.65 (56.75) 96.85 (59.96) 152.76 (56.56) 128.81 (58.61)
r∗ 50 - 250 cm 54.29 (58.48) 230.77 (48.96) 113.97 (57.73) 123.04 (59.20)

Feddes Parameters - Calibrated Estimation vs.
Symbol Prior Ranges Units SAP STEM STOR FULL

SoilP3 -2e4 - -25 cm -1.51e4 (5.6e3) -1.04e4 (6.0e3) -3.97e2 (6.0e3) -1.09e4 (5.0e3)
TreeP3 -2e4 - -2 cm -2.11e3 (1.8e3) -1.01e4 (3.0e3) -6.70e3 (5.9e3) -1.30e2 (7.0e2)
TreeP4 -7.5e4 - -2e4 cm -2.48e4 (7.3e2) -2.27e4 (1.8e3) -2.15e4 (1.6e4) -2.00e4 (2.1e2)
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Table 4.2 Estimated STAC parameters for the Van Genuchten functions of soil layers 1 and 2 and for the tree layer. Shown
are the values when calibrating against each of the observed data sets, i.e. sapflow (SAP), stem potential (STEM), soil storage
(STOR), and the combination of all 3 (FULL). The standard deviation of the posterior samples is shown in parenthesis. The
resulting hydraulic conductivity and retention functions for soil layers 1 and 2 as well as for the tree layer are shown in Figure
4.5.

Soil VG Parameters Estimation vs.
Symbol Prior Ranges Units SAP STEM STOR FULL

Ks,Soil1 0.2 - 1.2 cm day-1 0.55 (0.37) 0.96 (0.38) 1.07 (0.37) 0.54 (0.37)
θs,Soil1 0.2 - 0.6 m3 m-3 0.31 (0.10) 0.49 (0.08) 0.21 (0.12) 0.54 (0.12)
Ks,Soil2 0.2 - 1.2 cm day-1 0.48 (0.32) 0.79 (0.34) 0.25 (0.40) 1.46 (0.40)
θs,Soil2 0.2 - 0.6 m3 m-3 0.39 (0.11) 0.36 (0.13) 0.21 (0.12) 0.24 (0.12)

Tree VG Parameters Estimation vs.
Symbol Prior Ranges Units SAP STEM STOR FULL

αTree 1e-6 - 3e-5 cm-1 2.18e-5 (5.0e-6) 1.42e-5 (3.5e-6) 2.49e-6 (6.0e-6) 2.99e-5 (7.5e-5)
nTree 4.0 - 8.0 (-) 4.04 (1.02) 7.38 (1.25) 4.87 (1.15) 4.12 (0.19)
Ks,Tree 0.5 - 2 cm day-1 1.32 (0.04) 1.93 (0.15) 1.91 (0.42) 1.38 (0.02)
θs,Tree 0.05 - 0.6 m3 m-3 0.29 (0.10) 0.12 (0.18) 0.14 (0.16) 0.09 (0.06)

161



4.3.7 Bayesian Inference of Model Parameters

The flow simulations are coupled with observed data using a rigorous sampling algorithm, the

Differential Evolution Adaptive Metropolis (DREAM) of Vrugt (2016). The STAC model contains

15 parameters that can be estimated. A total of 4 parameters are used to characterize the spatial

tree root distribution (see Table 1), and these include z∗ and r∗ which are empirical parameters

(m) that shift the maximum of the distribution in vertical and radial direction, respectively, and

pz and pr are empirical parameters that determine the exponential shape of the distribution. Also,

a total of 3 parameters are used to characterize the water stress response functions (see Table 1).

Finally, a total of 8 parameters are used to characterize the hydraulic conductivity and retention

of the entire coupled domain, and are listed in Table 2. These parameters include θs, Ks, α, and n

for the tree layer, and θs and Ks for soil layers 1 and 2.

In recent decades, Bayes’ theorem has emerged as a working paradigm for modern probability

theory and hypothesis testing Vrugt (2016). This theorem (also referred to as Bayes’ law or Bayes’

rule) expresses mathematically the fundamental relationship between the prior, conditional, and

posterior beliefs of the parameter values (a 15-dimensional vector denoted by x). This probability

equation is formalized as follows:

P (x|Ỹ) =
P (x)P (Ỹ|x)

P (Ỹ)
, (4.14)

where P (x) and P (x|Ỹ) signify the prior and posterior parameter distributions, respectively, and

P (Ỹ|x) represents the likelihood function, also denoted by L(x|Ỹ). The model evidence, P (Ỹ) (or

the marginal likelihood) acts as a normalizing constant here and is canceled out in this analysis.

Therefore we can estimate the probability of a given parameter set, x, when evaluated against a

measured data set, Ỹ, using the following proportionality statement,

P (x|Ỹ) ∝ P (x)L(x|Ỹ). (4.15)
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Since the prior distributions of the unknown parameters are assumed to be uniform, Equation 4.15

is reduced to

P (x|Ỹ) ∝ L(x|Ỹ). (4.16)

4.3.8 Likelihood Function

In order to estimate the model parameters to the calibration data set, a likelihood function must

be defined prior to the estimation. Generally, a single data set is used for the estimation of a

model’s parameters, whereas in this case we want to join various data streams, namely the sapflow,

stem potential, and soil storage measurements. Therefore, a likelihood function is needed that can

combine all three sources of information without being affected by the magnitude of error that is

contributed from any of the individual sources. This will allow the parameter estimation algorithm

to combine residuals from many predictions, in this case sapflow, stem potential, and soil storage.

This likelihood function is derived mathematically based on assumptions regarding simulation

residuals, and is applied as follows:

L(x|Ỹ, φ, σ2) = −1

2

3∑
j=1

nj∑
t=2

{
(ej,t(x)− φej,t−1(x))

σj,t

}2

(4.17)

where j distinguishes the various model outputs considered for the parameter estimation, x is the

parameter set, Ỹ is the observed data, φ is the temporal correlation of the residuals (with 30 mins

between each time step), and very importantly σ is the measurement error of the calibration data.

ej,t(x) is the error of the model simulations for output j and a given parameter set x. Therefore, we

calculate a likelihood value from each considered output (i.e. L(x|Ỹ, φ, σ2)j), and as Equation 4.17

indicates we sum the three likelihood values to obtain one overall ’probability’ value. Each of the

sapflow, stem potential, and soil storage outputs are compared with their respective observation

data, and a likelihood value is assigned to each simulation. The total likelihood of our proposed
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parameter vector, x, is the sum of these three individual likelihood values. Note, the likelihood

function in Equation 4.17 is actually applied as a log-likelihood for mathematical convenience,

i.e. L(x|Ỹ, φ, σ2). This transformation allows us to simply add each likelihood value, rather than

multiplying them as the original likelihood function would require. Please refer to Vrugt and

Massoud (2017) for further information.

For this study we examine various parameter estimation strategies. First we fit the model

simulations to individual data sources (i.e. sapflux, stem potential, and soil storage), and then fit

the simulations to all three sources combined. In the first case, the model is calibrated to just the

sapflux data, and Equation 4.17 is reduced to just one term, the likelihood obtained from the fit

to the sapflux data; these results are assigned the ’SAP’ acronym. For the second and third cases,

the model is calibrated to the stem potential and soil storage data, respectively, and Equation 4.17

is similarly reduced to one term; these results are assigned the ’STEM’ and ’STOR’ acronyms,

respectively. In the final case, the model is calibrated to all three data sets, and Equation 4.17

utilizes all three likelihood terms; these results are assigned the ’FULL’ acronym. This final case

highlights the ability of the likelihood function to combine various data streams by normalizing the

prediction errors based on the observation error and combining the likelihood (or probability) from

all three processes considered. For the parameter estimation runs, the measurement error values

were defined as σSap = 1 cm/day, σStem = 100 kPa, and σStor = 0.05 m3.

4.4 Results

For the remainder of the paper, the results are color coded as follows: the estimation to sapflux

(SAP) is shown in blue, estimation to stem potential (STEM) is shown in light blue, estimation to

soil storage (STOR) is shown in green, and estimation to all three data sets (FULL) is shown in

black.
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Figure 4.3: Root distributions created from each of the parameter estimation methods. These
figures were created using parameter values from Table 1 and the general nonuniform root
distribution formula of Equation 4.7.

4.4.1 Parameter estimates

The STAC model simulates the spatial root distribution of the tree using Equation 4.7. For the 4

estimation methods considered, the estimated root distribution parameters are shown in Table 1.

The resulting root distributions shown in Figure 4.3 allow a visual comparison of all the estimation

strategies.

Both the tree and its roots may experience stress from water limitation, as well as nutrient

limitation, or stress from extreme vapor pressure deficits as a result of hot temperatures, among

other factors. The STAC model numerically accounts for this through the stress terms, γ, in

Equations 4.5 and 4.10. These stress terms are characterized using the Feddes function (Feddes

et al. (1978)), and have values ranging from 0 (full stress) to 1 (no stress). Four levels of head,
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Figure 4.4: Feddes stress functions for both the soil and tree layers. These functions were created
using the coefficients of Tables 1. The stress term, γ, in Equations 4.5 and 4.10 are the values on
the y-axis. For pressure head values between P2 and P3, there is no stress and γ = 1. The stress
occurs between P1-P2 (aeration stress, or saturated conditions) and between P3-P4 (water stress,
or drought conditions). These figures show that stress occurs sooner for the tree domain than for
the soil layers, which generally indicates that the tree layer cannot carry as much moisture as the
soil layer is able to, otherwise the tree starts to become stressed.

or pressure, are used to express this function, P1, P2, P3, and P4. For soil water potential values

between P2 and P3, there is no stress, while the stress occurs between P1-P2 (aeration stress, or

saturated conditions) and between P3-P4 (water stress, or drought conditions). A few of these

coefficients are parameterized, and the calibrated values are shown in Table 1. After all Feddes

parameters are defined, the stress functions for each layer can be constructed. These functions are

shown in Figure 4.4 and also allow a visual comparison of the various estimation strategies.

Through Equations 4.3 and 4.4, the STAC model characterizes the retention and hydraulic

conductivity of each soil layer and of the tree layer. Table 2 shows the values of the model parameters

that are Van Genuchten parameters used to create hydraulic relationships of the tree and soil
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Figure 4.5: Hydraulic relationships for soil layer 1, soil layer 2, and the tree layer. Shown in the
first column of figures are the retention functions for each layer, and in the second column the
hydraulic conductivity of each layer is shown. The parameters used to create these relationships
are presented in Tables 2.

domains. These parameters help represent the saturated conductivity and moisture contents of each

layer and also contain certain shape parameters for the Van Genuchten functions. The resulting

hydraulic conductivity and retention functions for soil layers 1 and 2 as well as for the tree layer are

shown in Figure 4.5. In the first column of figures, the retention function of each layer is shown.

One thing to note is that the retention function of the tree domain greatly differs from that of the

soil layers. The figure shows that it will require higher amounts of pressure to extract the water

from the tree than from the soils (103 kPa for soils vs. 105 kPa for tree), which can be expected

(Black and Pritchard, 2002; North and Nobel, 1997).
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4.4.2 Comparing STAC model simulations with observations

In this study we focus on three processes represented in the STAC model, which are the sapflux

through the tree domain, the stem water potential in the canopy, and the water storage of the soil

domain. All of these outputs are accompanied by observed data, and the model simulation results

are shown in Figure 4.6 for each parameter estimation method. For the sapflux simulations, the SAP

and FULL strategies performed the best according to the RMSE (Table 3). The other estimation

strategies (STEM and STOR) do not fit the observations quite as well, however they do allow

the simulations to capture high peaks in the observed data. For the stem potential simulations,

the STEM strategy provided the lowest RMSE. Although estimation to the stem potential data

was not as informative since there were only 7 data points to fit, these observations still allow us

to constrain the simulations. This is shown in Table 3 since the RMSE for the stem potential

simulations of the FULL strategy is lower than that of the SAP and STOR strategies, which is not

surprising since the FULL strategy considers the stem potential data in its likelihood function. For

the soil storage simulations, the STOR parameter set performed the best according to the RMSE,

yet we see in Figure 4.6 that all the simulations behave almost identically. In all simulations, the

model underestimated the observed soil storage, indicating a flaw in the model that allows too

much water to be drawn from the soil domain than is observed in the data.

Table 4.3 RMSE of model outputs for each parameter estimation strategy using the MAP
parameter values. Tabulated values shown here are corresponding to simulations shown in
Figure 4.6.

RMSE SAP STEM STOR FULL
Sapflux (cm day−1) 0.684 2.27 2.60 0.681

Stem Potential (kPa) 265.3 138.8 513.0 236.9
Storage (m3) 0.054 0.054 0.052 0.053
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Figure 4.6: Posterior solutions of the STAC model outputs, including sapflux (cm day-1), stem
potential (MPa), and water storage in the soil domain (m3). Observations are shown with red marks.
The simulations with parameters calibrated to sapflux data are shown in blue (SAP), simulations
with parameters calibrated to stem potential data are shown in light blue (STEM), simulations
with parameters calibrated to soil storage data are shown in green (STOR), and simulations with
parameters calibrated to all the data are shown in black (FULL).

4.5 Discussion

4.5.1 Including multiple data streams in likelihood function

With the advance of ecohydrologic models and increase in the corresponding data used to inform

these models, estimation of hydraulic processes between the land and air interface is becoming

more possible. Here, we investigated a process-based ecohydrologic model (the STAC model) at

a single site. STAC was calibrated using various data streams since ideally we want the model

to behave with fidelity to several processes, and not just one. Various estimation strategies were

tested, most of which including only one data stream for calibration, with the exception of one case

that included three different streams of data in the estimation process.

According to results in Table 3, the FULL estimation strategy performed the best overall, one
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can argue since it considers all three data streams in its likelihood function. For the sapflux

simulations, the FULL strategy was even better than the SAP strategy. For the stem potential

simulations, the FULL strategy was second best, to the over-fitted STEM strategy. For the soil

water storage, the FULL strategy again performed second best. Therefore, it seems that when

multiple processes are considered in an environmental or ecologic parameter estimation problem,

the obtained parameter values and corresponding model simulations are better able to represent

real-life properties and processes observed in the system.

4.5.2 Hydraulic properties in trees

Numerical models that simulate environmental processes range in scale from single site (such as the

STAC model) to the global, such as many Earth System Models (ESMs) in use today. Although

some of these models are state-of-the-art in their development and management, few (if any) of

them consider process based dynamics of coupled soil-tree water transport (Powell et al., 2013).

When considering a forest or continental scale simulation, the aggregation and averaging of water

behavior within and across trees causes a huge discrepancy between what the models simulate and

what is actually observed in reality. Thus, it is argued that more understanding of water processes

(such as water storage, residence time, resistance to drought) within trees is needed for a better

representation of the water cycle between the land and air surface. We hope that methods and

results presented in this study will show case the usefulness of the likelihood in Equation 4.17,

in which various calibration data streams can be considered for better representation of hydraulic

properties in a single tree.

4.5.3 Other parameter estimation methods - ABC

In this study, the parameter estimation algorithm sums the errors of the simulations into a single

index and computes a likelihood based on this sum. In fact, most calibration studies are performed
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Figure 4.7: Observations of the relative hydraulic conductivity in a Douglas White Fir (Abies
Concolor), compared with relationships simulated with the STAC model using calibrated
parameters in this study. The mean relationships are shown with solid curves and uncertainty
ranges are presented with dotted lines.

in this manner. However, likelihood-free calibration methods are new in the literature, e.g. the

Approximate Bayesian Computation (ABC) method which allows parameter estimation to a set of

summary metrics instead of calibrating to a set of simulation residuals (Sadegh and Vrugt, 2014;

Vrugt and Sadegh, 2013). For instance, Figure 4.7 shows the relative hydraulic conductivity of

a White Fir (Abies Concolor) compared with those produced from the calibrated parameter sets

in this study. The FULL parameter set creates a hydraulic relationship that is most realistic

according to the observed relationship. Yet, there could be a parameter set that produces a closer

hydraulic relationship to the observed data. This set can be inferred with the ABC method, and

may provide even more realistic parameters. Although this goes beyond the scope of this study, we

171



encourage readers to try various parameter estimation algorithms that are available, and with ABC

we encourage the use of many different summary metrics that may better capture the hydraulic

behaviors of the soil-tree-atmosphere system.

4.6 Conclusion

Major inconsistencies exist in the representation of vegetation in large scale land surface and climate

models. Model parameters are typically inferred from empirical relationships or extracted from

arbitrary data sets and efforts are now aimed to identify parameter sets that appropriately describe

these vegetation properties. We presented simulations with the Soil-Tree-Atmosphere Continuum

(STAC) model showing the hydraulic processes of a mature white fir (Abies concolor) and its

surrounding root zone. The model couples both soil and tree domains, and simulates the movement

of water based on different ecohydrologic processes. We used Bayesian inversion to estimate the

model parameters against observations of sapflux, stem water potential, and soil water storage.

We evaluated the models ability to describe the data, with specific emphasis on the soil and tree

water flow and storage properties. The calibration of the model allowed us to estimate the spatial

root distribution of the tree, the Feddes stress parameters to describe aeration or water stress,

and the Van Genuchten parameters that correspond to the retention and conductivity functions

of soil and tree domains. After calibration, the STAC model simulated processes such as sapflow,

stem potential, and soil storage, and the outputs were compared with the observed data for a full

diagnosis of the model.

The results presented in this paper show that the choice of calibration data largely affects the

parameter estimates and thus the model outputs. By considering the full domain of the tree and

combining all the observed data in the parameter estimation process, the most realistic parameter

combination was estimated and the closest fit between the model outputs and the observed data was

achieved. A likelihood function that considers various streams of data by normalizing simulation
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errors by the measurement errors was considered and implemented.

We conclude that the STAC model offers a physical representation of water flow in and around

a vegetative medium, and can provide insight on how trees actually behave in their environments.

Ecohydrologic models are evolving from having empirically based structures to more physically

based ones, setting the stage for tools such as the STAC model to expand our knowledge on

fundamental hydraulic processes that occur in vegetation.
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5.1 Manuscript Title - Emulation of environmental models

using polynomial chaos expansion

Abstract: Computer models are collections of scientific laws and principles that explain real-world

systems and predict their behaviors. More specifically, environmental models are applied for

problems regarding the Earth system, and have been evolving in the past few decades due to

extensive hypothesis testing, field and laboratory experimentation, and qualitative and quantitative

interpretation. Unfortunately, a model’s CPU, memory, and storage requirements may impose

limits on its application, and complicate routine tasks such as sensitivity analysis, parameter

estimation, uncertainty quantification, and scenario-analysis. Here, we investigate the applicability

of emulation to speed-up the simulation time of CPU-intensive computer models. We illustrate the

application of polynomial chaos expansion (PCE) to model emulation and parameter estimation

using three different environmental case studies of increasing complexity. Our results demonstrate

that PCE emulators mimic closely outputs of relatively simple, low-dimensional, simulation models,

but do not approximate as well outputs of complex, parameter-rich, system models.

5.2 Introduction

Ecosystems and environmental systems constitute a complex network of living organisms, interconnected

with their environment through a myriad of physical, chemical and biological processes operating

at or near the Earth’s surface. Many of these processes are difficult to observe directly in the

field, particularly at large spatial scales. This daunting complexity has stimulated researchers in

many different fields of study to explore the use of mathematical modeling to mimic the behavior

of complex systems. Computer models are particularly useful to gain insights and understanding

of system functioning and to predict their temporal and spatial behavior. The capabilities of
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such models exceed by far traditional paper-and-pencil calculations and can involve simulations

on spatial scales of individual atoms to the entire ecosystem, and temporal scales of nanoseconds

to many millions of years. Examples include numerical weather prediction models, astrophysical

and cosmological simulations of dark matter, computational modeling of the brain, or spatially

distributed simulation of environmental systems. The CPU-time of these simulations can vary from

less than a second for simple dynamic models up to many hours of calculation for spatially explicit

models involving multidimensional numerical solution of differential/algebraic or ordinary/partial

differential equations.

Earth system models (ESMs) are dynamic representations of the atmosphere, ocean, ice and

land, described in coupled systems to analyze and predict short and long term Earth system

behavior (Claussen et al., 2002; Hurrell et al., 2013; Wood et al., 2011). Typically, obtaining

better accuracy in these models comes at the expense of dimensionality and complexity, and thus an

enhanced computational efficiency (Arora et al., 2013; Dunne et al., 2012). State-of-the-art weather

and climate prediction models contain a large number of parameters to simulate the exchange of

energy, momentum and mass, between the land-surface and overlying atmosphere (Bastidas et al.,

1999; Masson et al., 2003; Noilhan and Planton, 1989; Sargsyan et al., 2014). Calibration of the

model parameters is a necessary step before the model can be ran for operational use (Gupta

et al., 1999; Rosolem et al., 2013). Yet, there is an immense CPU and time cost associated with

estimating model parameters since many thousands of runs are required to properly estimate

the parameter values (e.g. using Markov Chain Monte Carlo (MCMC) methods). Certainly,

computational limitations still remain a major obstacle to the effective use of ESMs in environmental

decision-making (Ratto et al., 2012).

Emulation is an important and growing field of research that signifies a major achievement in

the study of complex mathematical models (Ratto et al., 2012; Razavi et al., 2012). These methods

define surrogate responses of the original model outputs at a minimal computational cost. The
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concept of emulation dates back to Blanning (1975) and Kleijnen (1975) and has been greatly

evolving in recent years. The central idea is that the original complex model has a response

surface for its outputs (for a pre-defined parameter range), and this response surface has some

mathematical representation that the emulation methods are built to capture. Here we present and

implement polynomial chaos expansion (PCE) emulators (Ghanem and Spanos, 1991; Le Mâıtre

and Knio, 2010; Xiu and Karniadakis, 2002), which utilize orthogonal polynomials to mimic the

parameter effects on model outputs, and we build surrogates of various environmental models. To

our knowledge, this is the first application of PCE emulators for environmental models.

There are various algorithms and methods other than PCE used for emulation and surrogate

modeling and for many different types of applications. The set of methods referred to as the design

and analysis of computer experiments (DACE) is very popular (Levy and Steinberg, 2010; Sacks

et al., 1989; Santner et al., 2013), and books, reviews, and journal special issues have been written

on this subject (Fang et al., 2005; Kleijnen, 2010; Kuhnt and Steinberg, 2010; van Gigch, 1991). The

DACE method is also known as Gaussian Process (GP) or kriging metamodeling (Di Pierro et al.,

2009). For example, Conti and O’Hagan (2010) applied a GP emulator to mimic a multi-output and

dynamic computer simulation model, the Sheffield Dynamic Global Vegetation Model, and Machac

et al. (2016) used a similar method to create a surrogate model for an urban hydrodynamic drainage

simulator. Another emulation method uses radial basis functions (RBF), such as the techniques

used in Bliznyuk et al. (2012) and Regis and Shoemaker (2007a,b). Furthermore, artificial neural

networks (ANN) and support vector machines (SVM) are also emulation techniques, and have

been used in many studies such as the emulation of a hydrologic model (Zhang et al., 2009), the

identification of controlling mechanisms in transpiration of a Pine tree (Vrugt et al., 2002a), or

the estimation of regional variation in particulate organic carbon to nitrogen ratio in the surface

ocean (Martiny et al., 2013). In Keating et al. (2010), prediction uncertainty of a highly complex

CPU-intensive groundwater model was explored using a simplified surrogate model. Emulators
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have been used for data assimilation and parameter estimation using a probabilistic collocation

based Kalman filter (PCKF), which combines the Kalman filter with PCE emulators (Fan et al.,

2016; Man et al., 2016; Saad and Ghanem, 2009). Additionally, Laloy et al. (2013) jointly use a PCE

emulator of the original model and a dimensionality reduction (using the Karhunen-Love tranform)

of the parameter space to speed up the calibration of a groundwater model. Zeng et al. (2016) used

similar methods to build PCE emulators of a groundwater model using stochastic collocation and

sparse grids.

A goal of the study is to investigate the applicability of PCE based emulators for the calibration

of complex environmental and Earth system models. First, we consider two environmental models

of low and medium complexity, and compare the calibration of the original models to that of

their emulators. These two cases involve a conceptual rainfall runoff model (hmodel) (shown in

Schoups and Vrugt (2010)) and a Soil-Tree-Atmosphere Continuum (STAC) model that simulates

hydrodynamic processes of a single tree (Rings et al., 2013). Finally, we create an emulator for

an ESM, the Community Land Model (CLM) shown in Fisher et al. (2015). For this study, we

build the polynomial emulators using training parameters sampled from sparse grid approximation

(Nobile et al., 2008a,b; Smolyak, 1963; Xiu and Hesthaven, 2005). Sparse grids are numerical

techniques to represent, integrate or interpolate high dimensional functions, and can be useful in

the application of PCE emulators to sample the locations of the training runs. The user chooses

the ’level’ of sparse grid approximation, where an increasing level denotes an increased density of

sampling (which usually indicates a stronger emulator). We test 1st and higher level sparse grids,

as well as 1st and higher order polynomial emulators, and investigate the level of training and order

of polynomial necessary to sufficiently build accurate emulators. We analyze for these models the

accuracy, efficiency, and fidelity of the emulators compared to their original counterparts. Our aim

is to show that calibration of the emulator is an option for calibration of complex models.

The remainder of this paper is structured as follows. Section 2 describes the PCE method and
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reviews briefly the use of sparse grids to minimize emulator training. In section 3 we introduce

the models and data of each case study and report immediately the corresponding results of the

PCE emulator. This is followed in section 4 by a general discussion of the main implications of our

collective results. Finally, section 5 presents a summary of the most important findings and offers

concluding remarks.

5.3 Materials and Methods

In this section, we will briefly review the building blocks of the PCE method that is used herein

to emulate the output of different ecosystem models. Next, we will revisit the use of sparse grid

approximation methods to help build polynomial emulators with the least amount of grid points,

that is, values of the model parameters.

5.3.1 Model formulation

Consider a n-vector of measurements, Ỹ = (ỹ1, . . . , ỹn) observed at discrete times t = (1, . . . , n) that

summarizes the response of an environmental system, =, to k temporally-variant control inputs,

B = (b1, . . . ,bn), with column elements, bt = (bt1, . . . , btk). We use a computer model, F(·), to

explain the observed data

Ỹ← F(x, ζ̃0, B̃) + E, (5.1)

where x = (x1, . . . , xd) is the d × 1-vector of model parameters, ζ̃0 stores the values of the state

variables at the start of simulation, B̃ signifies the control matrix with temporal measurements of

the forcing variables, and E = (e1, . . . , en) is a vector of residuals

EF (x, ζ̃0, B̃) = Ỹ−YF (x, ζ̃0, B̃). (5.2)

The index t for time takes on strictly positive integer values in the remainder of this paper, t ∈

{1, . . . , n} ∈ N+, yet may take on real values, t ∈ (0, n] ∈ R+ in the actual system model, F(·), to
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resolve for continuous-time processes, wherein the simulated output at t = 0 is defined completely

by ζ̃0.

We make the convenient assumption that the forcing data are observed without measurement

error, and that errors in the initial states, ζ̃0, pose no harm as their impact on the simulated

output, Y, diminishes rapidly with advancing time. This latter assumption is certainly appropriate

for environmental systems controlled by negative (or degenerative) feedback. The assumptions

of perfect input data, and initial states (due to spin-up period) are common to environmental

modeling. This ideal case leaves as our only ”unknowns” the model parameters. Without further

loss of generality, we restrict the model parameters to a closed space, χ, equivalent to a d-dimensional

hypercube, x ∈ χ ∈ Rd, called the feasible parameter space. Note, that the tilde operator is used

for the initial state and forcing data to signify explicit use of measured values.

The large computational requirements of complex system models complicates tremendously tasks

such as parameter estimation via nonlinear optimization or statistical inference as the resulting

inverse problem may require many successive executions of the model. This becomes particularly

cumbersome for parameter-rich models. Emulation methods may help simplify parameter estimation

by using a fast-running surrogate model of the original complex CPU-intensive process model. The

next section reviews one of such emulation methods, namely PCE. Note, curly brackets are used

to differentiate between random variables and their actual sampled values. Thus, ({x1}, . . . , {xT })

stores a sequence of T different realizations (draws) of the model parameters, x.
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5.4 Model Emulation Using Generalized Polynomial

Chaos Expansion

The PCE method emulates the output, Y, of the original model in equation (5.1) via polynomial

approximation. We can write this emulator as follows

Ŷ = Fp(x), (5.3)

where p signifies the order of the polynomial, e.g. p = 1 for a first-order polynomial emulator.

As detailed in the previous section, we ignore measurement uncertainty of the initial states and

forcing variables, and thus assume that the model’s ability to describe the observed data, Ỹ, is

determined only by the d-values of the model parameters, x. Consequently, only the parameter

values are needed as input by the emulator to replicate the response of the original model.

The PCE emulator approximates the model output in the following manner

Ŷ = Fp(x) =
m∑
j=1

ajΨj(x), (5.4)

where a = (a1, . . . , am) is a m-vector of, yet unknown, deterministic expansion coefficients, m

signifies the number of d-dimensional orthogonal polynomials, and each Ψj(x) = ψj,1(x1) × . . . ×

ψj,d(xd) is the product of one-dimensional polynomials for expansion terms j = (1, . . . ,m). Thus,

each model parameter, xi, impacts Ψj in their own specific way. The number of orthogonal

polynomials, m, depends on the polynomial order, p, of the emulator, and the dimensionality,

d, of the parameter space, χ, according to m = (p+d)!/(p!d!), where the symbol ! denotes factorial.

In this study, the values of the coefficients a are estimated via spectral projection of the original

model response, Y(x), against each individual basis function [e.g see Xiu (2007)]

âj =

∑T
k=1wkΨj({xk})F({xk}, ζ̃0, B̃)

〈Ψ2
j ({X})〉

, (5.5)
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where {X} = ({x1}, . . . , {xT }) is a T ×d matrix of T different realizations of the parameter vector,

x, and the wk’s denote the corresponding weights of an integration (cubature) rule on the feasible

parameter space, χ, on Rd. The denominator, 〈Ψ2
j ({X})〉 in equation (5.5), is equivalent to the

inner product of the jth multivariate orthogonal polynomial, and can be computed as follows

〈Ψ2
j (X)〉 =

d∏
i=1

〈ψ2
j,i〉, (5.6)

where j = (1, . . . ,m). The d-univariate inner products, 〈ψ2
j,i〉, of each jth polynomial where

i = (1, . . . , d) (right hand side of equation (5.6)), have a simple closed-form analytic solution.

Therefore, the computational cost of PCE is determined by the time it takes to evaluate the forward

model, F({xk}, ζ̃0, B̃) for each of the T training parameter vectors, {xk}, of {X} in equation (5.5),

where k = (1, . . . , T ). If we now combine equations (5.5) and (5.6) then the approximate PCE

emulator reads as follows

F̂p(x) =

m∑
j=1

âjΨj(x). (5.7)

We refer interested readers to Xiu (2007) and Laloy et al. (2013) for a more detailed description of

spectral projection methods within the context of PCE.

The use of an cubature integration rule in equation (5.5) causes Fp(x) in equation (5.4) to

differ from F̂p(x) in equation (5.7). This is also referred to as the aliasing error (Xiu, 2007) and

decreases with T in equation (5.5). In theory, the larger the values of p and T , the better the

emulator output, Ŷ = F̂p(x), should approximate the simulations, Y(x), of the original forward

simulator, F(x, ζ̃0, B̃) for random parameter vector, x. The rate of convergence of Ŷ(x) to Y(x)

depends on the regularity of F(x, ζ̃0, B̃). The smoother the response of the forward model, the faster

Ŷ(x) will approximate Y(x). In practice, however computational requirements impose restrictions

on the values of p and T . Thus, the available computational budget dictates the accuracy of the
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surrogate model, F̂p.

To maximize the capabilities of the emulator, it would be desirable to select wisely, {X}, the

matrix of T training samples. Spectral projection has the advantage that it requires far fewer

parameter vectors than linear regression for a well-posed solution of the PCE expansion coefficients

in equation (5.7). The next section reviews briefly sparse grid methods to generate the matrix of

training realizations.

5.4.1 Sparse grid approximation

Sparse grid approximation methods reduce drastically the required number of parameter vectors to

construct an emulator, while preserving a high accuracy for moderately large dimensional parameter

spaces (Nobile et al., 2008a,b; Smolyak, 1963; Xiu and Hesthaven, 2005). A pth order PCE emulator

can be built with sparse grids of different levels, L, and thus variable number of training data points.

Thus, a sparse grid of level L does not necessarily equate to a p = Lth order PCE emulator. In

general, the larger the order of the polynomial emulator the more training points are required for

its calibration. Yet, this does not guarantee that the emulator will closely approximate the output

of the original forward model. Thus, we build, test, explore and contrast emulators of different

polynomial orders using a range of sparse grid levels.

Figure 5.1 depicts graphically training data pairs, ({x1}, {x2}) for a hypothetical two-parameter

model. We used a Gauss-Patterson sparse grid and separately present the results for levels L = 1

up to L = 6. The higher the order, L of the sparse grid, the more training data points. Indeed, with

L = 1 only TR = 5 samples are required to build the PCE emulator, and this number increases to

TR = 769 for L = 6.

Table 1 lists the number of training samples associated with sparse grids of levels L = 1, L = 2,

and L = 3 for the three forward models considered in this paper. Details of these models appear

in the case study section, and readers are referred to this part of the paper for further information.
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Figure 5.1: Training data points of a hypothetical two-parameter model using a Gauss-Patterson
sparse grid of level. Top: Left to Right - L = 1, L = 2, L = 3. Bottom: Left to Right - L = 4,
L = 5, and L = 6. We list separately in each graph the total number of training data points, also
coined TR.

The first case study considers a d = 7-parameter conceptual watershed model, named hmodel.

The first level sparse grid of this model corresponds to T = 15 TR’s, whereas a second and third

level grid increases the number of training points to T = 127 and T = 799, respectively. The

CPU-efficiency of the model warrants emulation using all three different grid levels.

The second case study involves simulation of water transport using a soil-tree-atmosphere

continuum, or STAC model. This model has d = 15 different parameters. A first level sparse

grid would require only T = 31 TR’s, and this number increases rapidly to T = 511 and T = 5, 925

for a second and third order level. Due to the somewhat large CPU-demands of STAC, we limit

construction of the emulator to a first and second level sparse grid.

Lastly, the third case study considers CLM. This model is rather complex, yet we consider

herein only the d = 87 parameters of interest to dynamic vegetation modeling. A first order
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sparse grid equates to T = 175 TR’s, whereas the second and third level grids necessitate 15, 487

and T = 2, 044, 416 executions of CLM. We deliberately use L = 1, that is, a sparse grid of

level one, as the second and third grid levels demand too much time. Indeed, a single forward

run of CLM takes about 8 hours using serial processing. We also consider separately a refined

CLM parameterization, in which only the ten most sensitive parameters are allowed to vary. This

alternative parameterization, coined CLM-10, is desirable as it requires far fewer model evaluations

for each of the three sparse grids.

In summary, we consider all three levels of the sparse grid for the hmodel, use L = 1 and L = 2 for

STAC, and L = 1 for CLM. Furthermore, for the hmodel and STAC model, we examine polynomial

emulators of first, second, and third order p ∈ (1, 2, 3). We coin these emulators ”Lxpyy”, where

”x” denotes the sparse grid level, and ”yy” signifies the polynomial order of the emulator. Thus,

L1p1 signifies a first-order polynomial emulator built using a sparse grid of level one. L2p3 thus is

equivalent to a third-order polynomial emulation using a second order sparse grid.

Table 5.1 Total number of training runs (TR’s) of a Gauss-Patterson sparse grid of level L
for each of the three system models considered in the case study section.

# of TR

hmodel STAC CLM-87 CLM-10
Sparse Grid 7 pars 15 pars 87 pars 10 pars

1st Level 15 31 175 21
2nd Level 127 511 15,487 241
3rd Level 799 5,925 2,044,416 2,001

5.4.2 Summary statistics

We use the root-mean-square-error (RMSE) and the correlation coefficient (CORR) to quantify

the level of agreement between the emulator output, Ŷ(x) = (ŷ1(x), . . . , ŷn(x)), and the output,

Y(x) = (y1(x), . . . , yn(x)), of the original forward model. These two summary statistics are also

used to determine the goodness-of-fit between the emulator or model output and the observed data,
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Ỹ = (ỹ1, . . . , ỹn), and can be calculated as follows

RMSE(a,b) =

√√√√ 1

n

n∑
t=1

(at − bt)2

CORR(a,b) =
1
n

∑n
t=1(atbt)−mamb√

1
n−1

∑n
t=1(at −ma)2

√
1

n−1

∑n
t=1(bt −mb)2

,

(5.8)

where a = (a1, . . . , an) and b = (b1, . . . , bn) are n-vectors with the simulated, emulated or observed

data, and ma and mb store the mean value of a and b, respectively.

5.5 Results

We present the results of our case studies in three sections, each discussing separately the results

of a specific model. These sections follow a similar format. First, we discuss the model of interest,

followed by a description of its parameters. We then present the emulation results using different

polynomial emulators and sparse grid levels.

We present the results of our case studies in three sections, each discussing separately the results

of a specific model. These sections follow a similar format. First, we discuss the model of interest,

followed by a description of its parameters. We then present the emulation results using different

polynomial emulators and sparse grid levels.

5.5.1 Case study 1: The rainfall-runoff transformation

The first case study simulates the rainfall-runoff transformation of the Guadalupe River at Spring

Branch in Texas using the hmodel conceptual watershed model. The model transforms rainfall into

discharge at the watershed outlet using explicit process descriptions of interception, throughfall,

evaporation, surface runoff, percolation, and surface and subsurface routing. A detailed description

of the hmodel structure and processes representations can be found in Schoups and Vrugt (2010).
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This manuscript also summarizes the d = 7 parameters of the hmodel and their prior uncertainty

ranges.

A six-year record of daily discharge (mm/day), mean areal precipitation (mm/day), and mean

areal potential evapotranspiration (mm/day) of the Guadalupe River was used for hmodel parameter

estimation using Markov chain Monte Carlo (MCMC) simulation with the DREAM algorithm

(Vrugt, 2016). This data was derived from the MOPEX data set Duan et al. (2006). We assumed

a uniform prior distribution for the hmodel parameters, and implemented a Gaussian likelihood

function. A 365-day spin-up period was used to reduce sensitivity to state-value initialization.

Details about the basin, experimental data, prior distribution and likelihood function can be found

in Schoups and Vrugt (2010).

Table 5.2 summarizes the results of our analysis and lists the CPU-time and RMSE of the

calibration and evaluation data period using first, second, and third order polynomial emulators

with sparse grids of level one, two, and three. We separately also report the average run time of a

single hmodel evaluation.

The calibration of the original model cost a total of 8,000 secs (2.2 hrs), which is not too

expensive considering the accuracy of the results. For the emulators, we must examine accuracy

under both the ’Calibration’ and ’Evaluation’ runs to assure that calibrated parameter values

are reasonable. We see in Table 2 that the ’Calibration’ runs all performed very well, since the

emulators were specifically calibrated to the observed data and thus achieved a good fit. However,

for the ’Evaluation’ runs we see discrepancies between the original model simulations and the

observed data. The emulators with higher polynomial orders (i.e. L1p3, L2p3, and L3p3) provided

parameter sets that performed the best with the original model, with RMSE’s of 0.68, 1.03, and 0.64

respectively, indicating that the calibration of the hmodel emulators obtain better parameter values

when a higher order polynomial is used. Interestingly, the L2p1 emulator performed better than

the L2p3 emulator in the ’Evaluation’ run, indicating that the calibration of the hmodel emulator
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with sparse grid of level 2 obtained the best parameter values when using a linear polynomial of

order 1 instead of a polynomial of order 3.
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Figure 5.2: Simulation results for the hmodel and a selection of its emulators. The panels on the
left show the model simulations compared with the observations. The top panels shows the direct
calibration result, and the bottom panels shows the original hmodel output when simulated with
each respective parameter set. RMSE values on the right are also shown in Table 2.

The model outputs for various runs of the hydrologic model and the p3 emulators are shown in

Figure 2. The top panel shows simulations of each calibration, meaning the results of calibrating the

original model and the emulators. The bottom panel shows the simulations of the original model,

but when using the parameter sets obtained with each calibration. This is an important test to

check, because in theory an emulator can be used for calibration and obtain accurate simulation

results, but when that corresponding parameter set is ran with the original model the simulation

results maybe totally unrealistic. Therefore, this test allows a secure assessment of the parameter

values obtained from the calibrated emulators.

The calibration run time cost for the hmodel emulators were all ’cheaper’ than the original

model calibration (see column under ’Calibration’ in the ’Run-Time’ section of Table 2), with the

exception of the L3p3 emulator which cost 12,400 sec (3.4 hrs). However when considering the

training cost of the emulators, the L3p2 emulator calibration also had a higher CPU cost than the

189



T
ab

le
5
.2

:
T

o
ta

l
ru

n
ti

m
e

an
d

ac
cu

ra
cy

re
su

lt
s

fo
r

th
e

h
m

o
d

el
.

T
h

e
li

st
ed

C
P

U
-t

im
e

(u
n

d
er

’T
ot

al
’)

of
th

e
em

u
la

to
r

in
cl

u
d
es

ov
er

al
l

co
st

o
f

tr
a
in

in
g

(u
n

d
er

’T
ra

in
in

g
’)

an
d

ca
li

b
ra

ti
on

(u
n

d
er

’C
al

ib
ra

ti
on

’)
.

T
h

e
R

o
ot

-M
ea

n
-S

q
u

ar
e

E
rr

or
(R

M
S

E
)

fo
r

ea
ch

ca
li

b
ra

ti
on

st
ra

te
gy

co
m

p
ar

ed
to

th
e

o
b

se
rv

ed
d

a
ta

is
sh

ow
n

.
R

es
u

lt
s

of
ca

li
b

ra
ti

n
g

th
e

em
u

la
to

r
ar

e
sh

ow
n

u
n

d
er

’C
al

ib
ra

ti
on

’
an

d
th

e
re

su
lt

s
of

ru
n

n
in

g
th

e
o
ri

gi
n

a
l

m
o
d

el
w

it
h

th
e

p
a
ra

m
et

er
se

t
ob

ta
in

ed
w

it
h

ea
ch

ca
li

b
ra

ti
on

is
sh

ow
n

u
n

d
er

’E
va

lu
at

io
n

’.
E

ac
h

M
C

M
C

ru
n

sp
an

n
ed

1,
00

0
g
en

er
a
ti

o
n

s
a
n

d
u

ti
li

ze
d

a
to

ta
l

o
f

8
ch

ai
n

s.
T

h
er

ef
or

e
a

to
ta

l
of

8,
00

0
si

m
u

la
ti

on
s

w
er

e
m

ad
e

fo
r

ca
li

b
ra

ti
n

g
ea

ch
of

th
e

h
m

o
d

el
an

d
it

s
em

u
la

to
rs

.

C
P

U
ti

m
e

(s
ec

)
R

M
S
E

(m
m

/d
ay

)

M
o
d
el

S
in

gl
e

R
u
n

T
ra

in
in

g
C

al
ib

ra
ti

on
T

ot
al

C
al

ib
ra

ti
on

E
va

lu
at

io
n

O
ri

gi
n
al

h
m

o
d
el

1
N

/A
8,

00
0

8,
00

0
(2

.2
h
rs

)
0.

59
0.

59

S
p
ar

se
G

ri
d

L
ev

el
1

L
1p

1
h
m

o
d
el

0.
2

15
1,

60
0

1,
61

5
(2

7
m

in
)

0.
60

2.
50

L
1p

2
h
m

o
d
el

0.
4

15
3,

20
0

3,
21

5
(5

4
m

in
)

0.
61

1.
70

L
1p

3
h
m

o
d
el

0.
7

15
5,

60
0

5,
61

5
(1

.5
h
rs

)
0.

62
0.

68

S
p
ar

se
G

ri
d

L
ev

el
2

L
2p

1
h
m

o
d
el

0.
25

12
7

2,
00

0
2,

12
7

(3
5

m
in

)
0.

64
0.

86
L

2p
2

h
m

o
d
el

0.
45

12
7

3,
60

0
3,

72
7

(1
h
r)

0.
62

1.
40

L
2p

3
h
m

o
d
el

0.
75

12
7

6,
00

0
6,

12
7

(1
.7

h
rs

)
0.

59
1.

03

S
p
ar

se
G

ri
d

L
ev

el
3

L
3p

1
h
m

o
d
el

0.
65

79
9

5,
20

0
5,

99
9

(1
.6

h
rs

)
0.

67
1.

00
L

3p
2

h
m

o
d
el

0.
95

79
9

7,
60

0
8,

39
9

(2
.3

h
rs

)
0.

62
0.

73
L

3p
3

h
m

o
d
el

1.
55

79
9

12
,4

00
13

,1
99

(3
.6

h
rs

)
0.

58
0.

64

190



original calibration (see column under ’Total’ in the ’Run-Time’ section of Table 2).

5.5.2 Case study 2: Soil-Tree-Atmosphere Continuum (STAC)

model

The second case study involves the STAC model, which is a physically-based nonlinear modeling

framework (Bohrer et al., 2005; Chuang et al., 2006; Kumagai, 2001) that simulates water flow in

the combined soil and tree systems (Rings et al., 2013; Siqueira et al., 2008). The STAC model

discretizes the system domain and couples the soil with the tree domain, simulating the soil, roots

and tree trunk as a continuum. Water flow is driven by water potential gradients along the coupled

system (Bittner et al., 2012) with spatially distributed root water uptake and canopy transpiration

sink terms. The STAC model utilizes the HYDRUS model (Simuunek et al., 2008), where water

flow through the soil and the tree root system and stem is driven by the evaporative demand and

soil-available water, leading to a gradient in soil and xylem water potentials along the STAC. The

STAC model contains 15 parameters, and we build emulators with 1st and 2nd level sparse grid

sampling (Table 1).

The STAC model uses Richards’ equation (Richards, 1931) to solve the unsaturated water flow

across the soil-tree domain. Each layer in the model domain can be represented by its own set of

equations in a axisymmetrical, two-dimensional, isotropic form. The Richards’ equation for the soil

domain is as follows:

∂θsoil

∂t
=

1

r

∂

∂r

(
rKr(h)

∂h

∂r

)
+

∂

∂z

(
Kz(h)

∂h

∂z

)
− ∂Kz(h)

∂z
−Wsoil(h, r, z) (5.9)

where θsoil (L3 L-3) is the volumetric soil water content, K(h) (L T-1) defines the unsaturated

hydraulic conductivity function (further denoted by either r− for radial direction or z− for vertical

direction), h (L) is the soil water pressure head, r and z are the lateral and vertical coordinates
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(positive downwards) of the soil domain respectively, t (T) is time, and Wsoil (L3 L-3 T-1) defines a

sink/source term that quantifies spatially distributed root water uptake from the soil. Both K and

Wsoil are functions of θ and/or h. The subscripts r and z allows for the possibility to include soil

anisotropy, i.e., to simulate water flow with the unsaturated hydraulic conductivity function being

different for the r− and z−direction.

Additionally, the set up of Richards’ equation for the tree domain to represent flow through the

canopy is similar to that of the soil domain in Equation 5.9, but in one-dimensional form. This

equation is derivable directly from Equation 5.9 by reducing to one dimension, z only. Thus, the

axi-symetrical flow through the canopy is represented by:

∂θtree

∂t
=

∂

∂z

(
Kz(h)

∂h

∂z

)
− ∂Kz(h)

∂z
−Wtree(h, z) (5.10)

where θtree (L3 L-3) is the volumetric tree water content , K(h) (L T-1) defines the unsaturated

hydraulic conductivity function (further denoted by z− for vertical direction), h (L) is the tree

water pressure head, z is the vertical coordinate of the tree domain (positive downwards), t (T) is

time, and Wtree defines a sink/source term (L3 L-3 T-1) that quantifies spatially distributed canopy

transpiration.

Calibration data include soil water content and water potential in three spatial dimensions in the

root zone, tree stem water content and sapflux, canopy water potential, and atmospheric variables

such as net radiation, air temperature and humidity providing the necessary information for

potential tree evapotranspiration. Three sapflux sensors (TransfloNZ, Palmerston North, NZ) were

installed into the sapwood at a trunk height of 2.5 m. Then, stem water potential measurements

were taken from needle stems of various lower tree branches, at about 6 m from the ground.

Additionally, Echo- 5TE soil moisture sensors were installed at depths of 0.15 m, 0.30 m, 0.60 m

and 0.90 m in each of six locations within a 5 m radius from the tree trunk. The data was selected

for an 18-day rainless period in summer of 2009, starting July 15, and were collected in and around
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a mature Douglas white fir (Abies concolor).

There are at least m=4 outputs for the STAC model, including sapflux, stem potential, soil

storage, and tree storage, however for the purposes of this study we focus solely on the sapflux

output (in [ cm day−1]), and we attempt to emulate the response for n=817 time steps representing

30-min intervals during an 18-day period.
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In this second case study, several emulators are built for the STAC model, requiring a total of

31 and 511 training sets for the sparse grid level 1 and 2 emulators, respectively. The original and

emulator models are simulated and calibrated to an observed data set spanning 18+ days. The

calibration of the original model cost a total of 600,000 secs (or roughly 1 week), which is rather

expensive since the calibration results cannot be obtained until the following week.
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Figure 5.3: Simulation results for the STAC model and a selection of its emulators. The panels
on the left show the model simulations compared with the observations. The top panel shows
the direct calibration result, and the bottom panel shows the original STAC model output when
simulated with each respective parameter set. Correlation figures on the right show how closely the
simulation dynamics track the observations, and the scatter plots allow for the comparison between
each model and respective parameter set.

Table 3 shows the results of calibrating the STAC model and its emulators. Under ’Calibration’

we see that the accuracy of calibrating the emulators gets progressively worse with increasing

polynomial order. For example, the L1p1 emulator calibration performed better than the L1p2 and

L1p3 emulators (RMSE of 0.77 vs 0.83 and 1.59 respectively), and the L2p1 emulator calibration

performed better than the L2p2 and L2p3 emulators (RMSE of 1.20 vs 1.54 and 1.56 respectively).

This is also shown for the ’Evaluation’ runs; the L1p1 and L2p1 emulator calibrations provided

the best overall parameter sets when ran through the original STAC model (RMSE’s of 0.80 vs
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0.93 and 2.34 for the L1 emulators, and 0.74 vs 0.88 and 1.23 for the L2 emulators). These results

indicate that the calibration of the STAC model emulators obtain better parameter values when a

first order polynomial is used for the two considered sparse grid levels.

The model outputs for various runs of the STAC model and its emulators of polynomial order 1

(P1 emulators) are shown in Figure 3. The top and bottom panels are shown similarly to Figure 2,

where results of calibrating the original model and the two emulators are shown in the top panel,

and simulations of the original model when using the parameter sets obtained with each calibration

are shown in the bottom panel. Again, this test is important to check for realistic model outputs

given the parameter values obtained from calibration of the emulator. On the right, correlation

scatter plots show how closely the simulation dynamics track the observations, and the correlation

with the observed data is included with each run. Apparently, the L2p1 emulator (one of the more

expensive emulators built for the STAC model) provided a parameter set that produced simulations

from the original model that had the highest correlation with the observed data ( = 0.9), which

was even higher than the correlation of the original model calibration (= 0.89). Yet, even a much

’cheaper’ emulator such as the L1p1 provided a parameter set that produced simulations from the

original model with a very high correlation (= 0.88) with the observed sapflux data.

The calibration run time cost for the STAC model emulators were all at least an order of

magnitude ’cheaper’ than the original model calibration (see column under ’Calibration’ in the

’Run-Time’ section of Table 3). Interestingly, all the emulator calibrations had a much lower CPU

cost than the original calibration, even when considering the training cost of the emulators which

significantly increases the overall CPU cost (see column under ’Total’ in the ’Run-Time’ section of

Table 2). These results indicate that calibration of the STAC model can be achieved in a much

shorter time if an emulator is used for the calibration process, since the original model calibration

cost over 1 week of CPU cost and the calibration of the emulators were anywhere between a few

hours to a few days.
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5.5.3 Case study 3: the Community Land Model with Ecosystem

Demography, CLM4.5(ED)

The ESM considered in this study is the CLM4.5(ED). CLM is a community-based open-source

model that is widely used for understanding climate-vegetation interactions. CLM is the land

surface model used within various ESM’s, including the Community Earth System Model (CESM)

and the Norwegian Earth System Model (NorESM) (Bonan et al., 2011; Lawrence et al., 2011).

The Ecosystem Demography (ED) concept is a method for scaling the behavior of forest ecosystems

by aggregating individual trees into representative ’cohorts’ based on their size and plant type or

PFT, and by aggregating groups of cohorts into representative ’patches’ (conceptually similar to

a forest plot) which explicitly tracks the time between disturbances (Moorcroft et al., 2001). The

ED component is the most advanced DGVM incorporated into the CLM framework. The main

property of the ED concept that differs from most commonly used ’big-leaf’ models is the capacity

to predict distributions and compositions of plants directly from their given physiological traits

described by the model parameterization (Fisher et al., 2015).

CLM(ED) simulates growth by integrating photosynthesis across different leaf layers for each

cohort, and mechanistic mortality is simulated based on plant carbon starvation and hydraulic

failure in addition to a background mortality rate, mortality from tree-fall impacts, and fire. The

model allocates photosynthetic carbon to different tissues such as leaf, root and stem based on

the allometry of different tree species. CLM(ED) can be simulated at different modes including

point mode for sites, regional mode for watershed or regional scale, and global mode for continental

and global scale. See supplementary model description in Fisher et al. (2015) for details on specific

components of the model structure. The CLM(ED) version considered here contains 87 parameters,

making it only acceptable to build an emulator with 1st level sparse grid sampling, but for a 2nd

level sparse grid emulator the number of training runs already become too large.
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For this analysis, the runs are initialized (i.e. ζ̃0) with a bare ground, or a state with no

vegetation. The climate conditions (i.e. B̃) for this site are from Qian et al. (2006) representative

of data from 1948-1972. The model is simulated for a site in the State of Pará, The Amazon,

Brazil (7◦ S, 55◦ W). There are dozens of possible outputs for the CLM, and here we focus on m=3

outputs, including Gross Primary Production (GPP [kgC m−2 yr−1]), Leaf Area Index (LAI [-]),

and overall biomass (Biomass [kgC m−2]). We attempt to emulate the response for n=960 time

steps representing 1-month intervals during an 80-year period.

5.5.4 87-parameter emulator

We build an L1p1 emulator for the 87-parameter CLM, requiring a total of 175 training sets. The

simulations spanned 80 years and the CPU cost of the original model is roughly 8 hrs, therefore

the emulator training cost a total of 1,400 CPU hrs (performed in parallel simulations on the

Conejo supercomputer at the Los Alamos National Laboratory). After obtaining the training

runs, a separate emulator is created for each output since any model output ordinarily has its

own response surface. To test the emulator, we compared the original model simulation with its

surrogate counterpart using a parameter set representing the default values for Broadleaf Evergreen

Tropical trees currently implemented in CLM. The various emulators built for GPP, LAI, and

biomass are shown with the original model simulations in Figure 4.

The black dotted line in Figure 4 shows the emulation results for the 87-parameter emulator,

which significantly deviate from the original model outputs shown with a red line. The 87-parameter

emulator of the CLM model does not capture the dynamics of the original model, and it seems that

at many time steps the emulator outputs are largely affected by noise. Figure 4 also shows scatter

plots of 100 various simulations with randomly drawn parameter values, using both the original

CLM and the 87-parameter emulator. The fit between the two models is not good for any of the

outputs, shown in the scatter plots with black dots. These simulations have correlations of 0.50

198



for GPP, 0.29 for LAI, and 0.47 for biomass. Clearly, this emulator will not serve the purposes of

calibrating the CLM.

Table 5.4 Total run time results for the CLM model. The listed CPU-time of the emulator
includes overall cost of training (under ’Training’) and simulation (under ’Single Simulation’).

CPU cost (time)

Model Single Simulation Training

Original CLM 8 hrs N/A

87-Par Emulator
L1p1 2.4 secs 1,400 hrs

10-Par Emulator
L1p1 0.2 secs 168 hrs
L2p1 0.4 secs 1,928 hrs

5.5.5 Reducing to a 10-Parameter Emulator

Since the bad emulator results shown with the black dotted line in Figure 4 are caused by applying

PCE emulators for a 87-parameter model, we hypothesize that reducing the dimensionality of the

emulator will reduce the noise at each projection which might allow the emulator to better mimc

the original model. According to Massoud et al. (2017, In Review), only a handful of parameters

generally control the outputs of this CLM version, and shown in their study are the 10 most sensitive

parameters for various outputs. In this study, we re-construct the emulator for CLM focusing on

the 10 most influential parameters (rather than the complete set of 87 parameters). Thus, L1p1 and

L2p1 emulators are built using training samples from the 10 most sensitive parameters, requiring

a total of 21 and 241 training runs, respectively.

The dimensionality reduction applied to the emulators significantly improves their outputs when

compared to the original model. The results of the 10-parameter L1p1 (blue) and L2p1 (green)

emulators for CLM are shown in Figure 4. Again, these simulations use the default parameter set for

the Broadleaf Evergreen Tropical tree, and the results of these emulators follow the original model
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Figure 5.4: Simulation results for the CLM model and its emulators. The panels on the left show
the original model outputs compared with the emulator simulations. The top panel shows results
for GPP, the middle panel shows results for LAI, and the bottom panel are the results for biomass
outputs. Correlation figures on the right show how closely the simulation dynamics of each emulator
track the original model outputs using 100 randomly drawn parameter sets.

outputs much closer than the 87-parameter emulator. The right panel of Figure 4 shows scatter

plots of 100 various simulations with randomly drawn parameter values, using both the original

CLM and the 10-parameter emulators. Note, these 100 parameter vectors draw randomly the 10

influential parameters and keeps the remaining 77 “non”-influential parameters at their default

value. The fit between the two models is fairly good for all of the outputs, with correlations of 0.93

for GPP, 0.70 for LAI, and 0.94 for biomass for the L1p1 emulator, and with correlations of 0.87 for

GPP, 0.49 for LAI, and 0.89 for biomass for the L2p1 emulator. Clearly, these emulators perform

much better than the 87-parameter emulator, and can possibly serve the purposes of calibrating

the CLM, but only for the sensitive parameters that are considered in building the emulator.

Calibration of a model such as CLM requires thousands of runs, resulting in a CPU cost that

is not feasible. However, if the 10-parameter emulators can produce similar output response as

the original CLM, then the less complex version of the original model can be used for calibration,
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which would cost a fraction of the total run time.

5.6 Discussion

In this paper, we investigate the applicability of emulation for the calibration of complex models,

which are often impossible to calibrate in practice. To address this, we build emulators of two

environmental models (hmodel and STAC model) and compare the calibration of these emulators

with their original counterparts. Results build confidence in the calibration of model emulators as

a replacement for the original model, and this also might be true for a more complex and higher

dimensional model such as an ESM (here we focus on the CLM).

In the following sections, we address the accuracy of the simulations, where we compare the

RMSE of the original model and emulator simulations with observed data. Then we compare the

efficiency of each method, where we compare CPU costs of each attempt. Furthermore, we check

for the fidelity of the emulator to the original model, where we compare the sensitivity of the model

parameters in the emulators to those of the original model. We finish with a brief discussion on

how the method presented in this paper can be applied for the calibration of ESMs.

5.6.1 Accuracy

To check the accuracy of each method, we must check two metrics. First, we check the RMSE of

the calibration run, which shows how well each calibration method performed (under ’Calibration’

in Tables 2 and 3). Then, we check the RMSE of the Evaluation run, which shows how well the

original model performs with each calibrated parameter set (under ’Evaluation’ in Tables 2 and 3),

which again is a test to check for realistic model outputs given the parameter values obtained from

calibration of the emulators.

For the hmodel, calibrating the original model resulted in a similar fit to the data as the
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calibration of the emulators, with RMSE’s that are nearly identical. However, when the parameter

sets obtained with the emulator calibrations are used as input to the original model (i.e. Evaluation

runs), the model simulations deviate a bit from the observed data (RMSE’s ranging from 0.64 to

2.50, compared with RMSE of original model calibration of 0.59). Overall, it seemed that the higher

the polynomial order used for the hmodel emulators the better the accuracy of the Evaluation runs.

In other words, the L1p3, L2p3, and L3p3 hmodel emulators generally obtained the best parameter

values.

For the STAC model, calibrating the original model resulted in the closest fit to the data, with

an RMSE of 0.68. After calibration, the first order polynomial emulators (L1p1 and L2p1) had

RMSE’s of 0.77 and 1.20, respectively. Moreover, the parameter sets obtained with the L1p1 and

L2p1 calibration fit the observed data rather well when validated with the original model. In the

Evaluation runs, the L1p1 and L2p1 parameters result in RMSE’s of 0.80 and 0.74, respectively,

which is quite similar when compared to the original model run. Additionally, the correlation of the

original model runs (= 0.89) to the observed data was very similar to the L1p1 and L2p2 Evaluation

runs (correlations of 0.88 and 0.90 respectively), indicating that the simulation dynamics of the

emulators track quite closely the dynamics seen in the observations. Therefore, it seems that first

order (P1) emulators are the best choice for calibration of the STAC model.

For CLM, the 87-parameter emulator did not perform well, whereas simulations using the

reduced 10-parameter emulators matched most of the outputs from the original model. Figure

4 shows these simulations and we argue that, overall, the 10-parameter emulators for CLM can be

trusted to mimic the original model outputs with high accuracy, especially for the L1p1 emulator.

5.6.2 Efficiency

The main goal of using emulators is to save computation cost. Therefore, we define efficiency

here in the context of run time efficiency. Tables 2 and 3 highlight the CPU costs of training
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and calibrating the emulators for both the hmodel and STAC models, compared to calibrating the

original model.

For the hmodel, calibration of the original model takes 8,000 secs. Although the total time to

train and calibrate the emulators is generally lower than calibrating the original model (with the

exception of the L3 emulators), the fit to the observed data is almost the same as the original model

in the ’Calibration’ runs. However, for the ’Evaluation’ runs simulations start to deviate from the

observations. The higher order polynomial emulators (L1p3, L2p3, and L3p3) achieve better fits

than the lower order polynomial emulators, but with a slightly higher CPU cost. So we conclude

that for a simple model with non-linear dynamics in its outputs such as the hmodel, calibration

of the original model will suffice (and in fact is the most accurate), yet a third order polynomial

emulator for this model produces similar results in a shorter time period than the original model,

and thus can still provide benefits to the calibration problem.

For the STAC model, calibration of the original model takes over 1 week, and results in the

best RMSE compared to the emulators, but not the highest correlation with the observed data

which was achieved by the L2p1 emulator Evaluation run. The total time to train and calibrate the

emulators, however, is much lower than calibrating the original model, ranging from a few hours to

a few days for the emulators compared with 1 week for the original model. Additionally, the fit to

the observed data is almost as good as the original model (see RMSE’s in Table 3). So we conclude

that for a medium-complexity model such as the STAC model, calibration of the original model

might take too long and would be rather expensive in regards to CPU costs. The Evaluation runs

of the first order polynomial emulators for the STAC model (i.e. L1p1 and L2p1) produce accurate

results in a fraction of the time. Therefore, we assume that for the STAC model the calibration of

a L1p1 or L2p1 emulator might be more efficient than calibrating the original model, since similar

results are achieved but with a much lower CPU cost.

For the CLM, the comparison of CPU-cost is simple. Running the original model for an 80 year
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simulation requires roughly 8 hrs of runtime on a super computing machine with parallel computing

capabilities, whereas the emulator can produce similar outputs in just a few seconds on a personal

laptop. This is indeed quite beneficial.

5.6.3 Fidelity

Lastly, we investigate the fidelity of the emulators to their original model counterpart, where we

compare the sensitivity of the model parameters in the emulators to those of the original models.

In theory, if the performance of the emulator is identical to that of the original model, then the

parameters of the emulator should have the same sensitivity index as those of the original model.

Many studies assume that emulators provide efficient sensitivity analysis for large and expensive

models (Crestaux et al., 2009; Ratto et al., 2012), however this may not always be true as emulators

may provide anomaluous parameter sensitivity estimates. In one study, the authors investigated

the joint application of emulators and their respective parameter sensitivities, and showed that with

enough training the emulator will match the original model in the parameter sensitivity rank and

magnitudes (Borgonovo et al., 2012). However, the environmental model used in Borgonovo et al.

(2012) only contained 12 parameters, and such a test for a higher-dimensional model such as CLM

does not exist in the literature and is warranted. To this end, we assess parameter sensitivities of

the original STAC and CLM models and compare results with the parameter sensitivities of the

emulators. In this study we investigate the claim that it is safe to assume the sensitivity index

obtained from the emulator represents the true importance of that parameter in the original model.

This will indicate that the processes represented in the original model are being replicated properly

in the emulator.

We use the Fourier Amplitude Sensitivity Testing (FAST) method of Xu and Gertner (2007,

2011) to evaluate the parameter sensitivities of the original model and the emulators. We test for

the 5 most sensitive parameters of the L1p1 and L2p1 emulators of the STAC model and compare
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Figure 5.5: Panel A: Top 5 sensitive parameters for the sapflux output of the original STAC model
and its L1p1 and L2p1 emulators. Panel B: Top 5 sensitive parameters for the GPP outputs of the
original CLM model and its 10-parameter emulators (Levels 1 and 2).

with those of the original model (Figure 5A). The parameters included are several Van Genuchten

parameters (Van Genuchten, 1980) that represent the hydraulic properties of the tree layer in

the Soil-Tree-Atmosphere continuum domain (i.e. Tree α, Tree Ks, Tree θs, and Tree n) as well

as a Feddes hydraulic stress parameter (Feddes et al., 1978) (i.e. Tree P3). The most sensitive

parameter for the STAC model sapflux output is the Tree α parameter which matches the most

sensitive parameter for the L2p1 emulator, however for the L1p1 emulator this parameter is the

third most sensitive after the Tree Ks and Tree P3 parameters. Also, the fourth most sensitive

parameter for the STAC model is the Tree θs, which is the second most sensitive for the L2p1

emulator. Overall, sensitivity of the model parameters have a different rank and magnitude for

the L1p1 emulator compared to the original model, however the L2p1 emulator almost matches

the original model. This is possibly an indication that the fidelity of the emulators to the original

STAC model becomes more ideal when there is a higher level of sparse grid sampling (and thus
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training points).

We then check the fidelity of the L1p1 and L2p1 10-parameter emulators of the CLM model

for the GPP outputs to that of the original counterpart by again checking the 5 most sensitive

parameters. The parameters included are several vegetation dynamics parameters, such as Vc,max25

(or the parameter that controls the photosynthetic capactiy), Target Carbon Storage, Top of

Canopy Specific Leaf Area (SLA), Maintenance Respiration, and Stem Allometry (or carbon

allocation to stem). We see in Figure 5B that the most sensitive parameters for both the emulator

and the original CLM are in the same order, but with totally different magnitudes. In fact, the L2p1

emulator sensitivities are shaped almost identically like the original model’s, yet with somewhat

of a bias. This bias could be attributed to the fact that the original model has 87 parameters

and the emulator only considers 10 parameters, which allows each respective parameter to have

more influence (and thus sensitivity) on the model outputs. However, we can assume there is high

fidelity between the original model and the emulator since the rank of the parameter sensitivities

is identical between the two.

5.6.4 Calibration of ESM’s

We have now checked the accuracy, efficiency, and fidelity of the emulators, and assume that an

emulator with reduced dimensions may be sufficient to calibrate an ESM, such as CLM4.5(ED).

The accuracy of the 10-parameter emulator for CLM is very good, since it closely mimics the output

response of the original model. The efficiency of the emulator is desirable, since the run time is a

fraction of the original model’s. The fidelity of the emulator is acceptable and quite impressive for

the L2p1 emulator, since it captures most of the main parameter sensitivity rank and magnitudes.

Overall, the application of PCE emulators for the calibration of ESMs seems possible and most

probably will allow inference of model parameters with realistic values.
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5.7 Conclusion

Environmental and Earth System Models (ESMs) are useful for analyzing the Earth and all its

processes. Many of these models are CPU-intensive and contain many dozens of parameters that

control the model output, making them rather difficult for calibration against observations. Here,

we created emulators of various models using the PCE method in search of a strategy for efficient

calibration of ESMs, a problem that the scientific community has struggled with for decades.

We first built emulators for the hmodel using sparse grid levels 1-3 and polynomial orders 1-3,

and built emulators for the STAC model using sparse grid levels 1-2 and polynomial orders 1-3. The

hmodel and STAC model were rigorously calibrated to measured data, and their calibration was

compared to that of their surrogate models. These results provided confidence in the calibration of

model emulators as a replacement for the original model, and we assume this to be true for a more

complex and higher dimensional model such as the CLM. To this end, we built an L1p1 emulator

for the 87-parameter CLM4.5(ED) for outputs of GPP, LAI, and biomass. The 87-parameter

emulator for CLM did not perform well, therefore we reduced the dimensionality of the emulator

to 10 parameters and built L1p1 and L2p1 emulators for this reduced version. This dimensionality

reduction allowed the emulators to achieve a much stronger fit, requiring only 21 (L1p1) and 241

(L2p1) forward runs from the original model to train the emulators.

To investigate this further, we examined the accuracy of the simulations, the efficiency of each

method, and the fidelity of each emulator to its original counterpart. In regards to accuracy and

efficiency, all models were able to produce emulators that performed well compared to the original

model and with much lower runtime costs. In regards to fidelity, the sensitivity of the STAC

model parameters had a different rank and magnitude for its emulators than for the original model.

However for CLM, the fidelity of the reduced 10-parameter emulator to the original CLM was very

good, with parameter sensitivities of similar rank and magnitude.

Overall, we argue that results shown here were promising and give hope for efficient calibration
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of ESMs. We look forward to the calibration and advancement of environmental models and ESMs,

and promote the use of this method for efficient and accurate exploration of the parameter space

for calibration problems of high CPU cost.
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Sustainable Groundwater

Management in the Central Valley
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6.1 Groundwater sustainability in California’s Central

Valley

California’s Central Valley, the most productive agricultural area in the United States, has already

experienced significant depletion in much of its aquifer systems. Although much of the Central

Valley is dependent on groundwater, the state lacks data regarding how much water is being used

and how much this amount changes year to year. Groundwater monitoring networks do not exist

at the same scope and scale for those that track surface water (Scanlon et al., 2012a). In fact,

no comprehensive framework for monitoring the world’s groundwater resources currently exists

(Famiglietti, 2014).

Lack of current effective management is already apparent in regions where wells have run dry,

subsidence is impacting infrastructure (Sneed et al., 2013), groundwater water quality is degrading

(Scanlon et al., 2007), and environmental impacts are becoming more visible. In this study, we

develop an alternative method for estimating groundwater levels in the Central Valley. The model

results are validated with historic groundwater level data provided by the USGS for the years

1981-2003 and from NASA’s Gravity Recovery And Climate Experiment (GRACE) satellite for the

years 2004-2014. The model is then used to predict future conditions of groundwater levels for the

years 2015-2050 under various water management scenarios in order to understand how different

practices can impact groundwater availability into the future.

To bypass the lack of publically available well monitoring data, various methods for estimating

groundwater levels have been developed. Of these, the most prominent are geostatistical methods,

computer model simulations (Harbaugh et al., 2000), and the use of remote sensing data for

groundwater monitoring has also increased in recent years (Famiglietti et al., 2011; Rodell et al.,
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2009). However, many of these methods provide estimates with high uncertainty, and there is

a need for new ways to estimate groundwater behavior at the scales at which water is managed

(Richey et al., 2015a). We believe that our model provides an alternative look at the groundwater

picture for the Central Valley, and can provide awareness as well as knowledge for decision making

in the upcoming decades.

6.2 An empirical method to estimate and project groundwater

depletion and recharge

Abstract: Detailed knowledge of California’s groundwater stockpile is of paramount importance

for statewide planning and management of water resources, and to promote sustainable agriculture

during periods of prolonged drought. Here, we use a thirteen year record (1998-2010) of water supply

and demand information from California’s Department of Water Resources (DWR) to quantify

groundwater levels in the Central Valley. A water balance model with simple empirical relationships

between annual precipitation, supply, and demand is used to explain historic groundwater levels

(1981- 2014) derived from the United States Geological Survey (USGS) and NASA’s Gravity

Recovery and Climate Experiment (GRACE). After calibration of a recharge parameter, our

empirical groundwater depletion (GWD) model mimics accurately the observed groundwater levels.

The calibrated GWD model is then used to predict future groundwater levels for the years 2015-2050.

During this period, we evaluate the impact of different management scenarios on future simulated

groundwater availability. One of these scenarios confirms that lack of management action leads

to continued depletion of California’s groundwater resources. Other scenarios incorporate demand

reduction and supply augmentation strategies and demonstrate sustainable groundwater levels for

California’s Central Valley.
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6.3 Introduction and Scope

California has a complex and storied history of water management. A statewide plan of water

storage, infrastructure, and conveyance has guaranteed for many decades a steady supply of surface

water to satisfy demands of the more arid Central and Southern parts of the state. However, in

recent years, urban, agricultural, and environmental demands in California have exceeded the

natural renewable supply. To date, this gap between the available statewide surface water supply

and the ever-increasing water demand is being met primarily by the extraction of groundwater.

This pragmatic solution can have dire consequences as continued groundwater extraction depletes

subsurface reservoirs, particularly in semi-arid regions with highly-variable precipitation amounts

(Famiglietti, 2014; Famiglietti et al., 2011; McGuire, 2009; Richey et al., 2015b; Rodell et al.,

2009; Wada et al., 2010). Indeed, California’s Central Valley, the most productive agricultural

area in the United States, has already witnessed significant groundwater depletion. Annually, at

least 40 percent or more of the Central Valley’s water supply comes from groundwater, which is

primarily used to meet agricultural demand (Lo and Famiglietti, 2013). The groundwater extracted

for irrigation more often than not exceeds the natural recharge, leading to rapid declines in the

groundwater table (Faunt, 2009; Scanlon et al., 2012a; Siebert et al., 2010). This impact has been

even more pronounced during prolonged dry periods when groundwater reliance increases.

The protection of California’s groundwater resources is critical for sustaining the state’s livelihood,

ecology, and agricultural production, and key to preventing potentially harmful regional economic

impacts that severe water shortages can cause. According to the United States Department of

Agriculture’s 2012 Census of Agriculture, the agricultural industry in California’s Central Valley

was valued at $42.6 billion, based on the market value of agricultural products sold. The region

has also been termed the ’fruit and vegetable basket’ of the United States supporting the diverse

cultivation of 250 different crops (Scanlon et al., 2012a).

In addition to agriculture, the Central Valley has a growing population that increases demands
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on the region’s resources. By 2030, the population is projected to reach 10 million people. Data

from the United States Geological Survey (USGS) shows that groundwater use has already increased

from 0.6 million acre-feet per year (MAF/yr) in 1962 to nearly 2 MAF/yr in 2003 (equivalent to an

increase from nearly 0.75 to 2 km3/yr) (Faunt, 2009). This ever increasing reliance on groundwater

occurred despite the implementation of various urban conservation measures, and an increasing use

of surface water (Faunt, 2009).

Although life and work in the Central Valley depend in large part on the availability of groundwater,

detailed year-to-year data of how much water is being extracted and used is largely lacking,

particularly when viewed in comparison to surface water resources. Groundwater monitoring

networks do not exist at the same scope and scale for those that track surface water (Scanlon et al.,

2012b). In fact, no comprehensive framework for monitoring the world’s groundwater resources

currently exists Famiglietti (2014). To bypass the lack of publically available well monitoring

data, various different methods have been used and developed to estimate groundwater levels.

This includes geostatistical interpolation methods, and computer model simulations (Harbaugh

et al., 2000). What is more, in recent years, much effort has focused on groundwater monitoring

using remote sensing data Alley et al. (2002); Famiglietti et al. (2011); McGuire (2009); Rodell

et al. (2009); Scanlon et al. (2012a); Yeh et al. (2006). Yet, the groundwater levels predicted

by these methods are subject to large uncertainties. Therefore, there is an urgent need for new

monitoring techniques and/or computational methods to estimate groundwater resources at the

scale of management (Richey et al., 2015b).

In this study, we develop an alternative method to estimate the groundwater levels in the

Central Valley of California using a historic record of annual water use and supply from California’s

Department of Water Resources (DWR). Our Groundwater Depletion (GWD) model builds on the

water balance and uses empirical relationships between annual precipitation, supply, and demand

to simulate (predict) annual groundwater levels and recharge rates at the aggregated level of the
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Central Valley. The simulated groundwater levels of the GWD model are evaluated against historic

data of groundwater levels (1981-2014) measured by the USGS (1981-2003) and NASA’s Gravity

Recovery And Climate Experiment (GRACE) satellite (2004-2014). The GWD model is then used

to predict groundwater levels for the years 2015-2050. During this period, we evaluate the impact

of different management scenarios on future simulated groundwater availability.

6.4 Methods

In this section, we review briefly the experimental site under investigation, the Central Valley in

California, and introduce the experimental data, empirical model and calibration approach used

herein.

6.4.1 Study Site: Central Valley, CA

Our study region is the Central Valley, a 58,000 km2 flat and elongated area located in the central

heart of California, inland from and parallel to the Pacific Ocean coast (see Figure 6.1). This valley

is 60-100 wide and stretches approximately 720 km from the city of Redding in the north-northwest

to the city of Bakersfield in the south-southeast. The Central Valley watershed comprises 160,000

km2 and is made up of three different main drainage systems, the relatively wet Sacramento Valley in

the north, the drier San Joaquin Valley in the south, and the Tulare basin and semi-desert climate

at the southernmost end. The climate is arid to semiarid with an average annual precipitation

between 13-26 inches (33-66 cm) in the Sacramento Valley and between 5-18 inches (13-45 cm) in

the San Joaquin Valley (Faunt, 2009). High inter-annual variability in precipitation has led the

occurrence of dry and wet years (Savtchenko et al., 2015). Persistent droughts caused by recurrent

dry years with insufficient rainfall and snowfall accumulation in the Sierra Nevada have enhanced

considerably groundwater reliance in the Central Valley with (unsustainably) high rates of water

depletion from its underlying reservoir. Evidence of this over-dependence on groundwater can be
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Figure 6.1: California’s Central Valley (green).

found in land subsidence rates which equate to 25 cm/year in certain areas of the San Joaquin

Valley (Faunt et al., 2016).

6.4.2 Experimental Data

Annual supply and demand data from DWR’s California Water Plan was used to construct the

calculation rules of our empirical Groundwater Depletion (GWD) model. The cited report includes

data on the various fresh water supply and demand variables for regions across California. The most

recent draft of this plan, the Water Plan Update 2013, provides annual constituents of water supply

in the period from 1998-2010, including surface water (SS), groundwater (GW), and recycle and

reuse (RR), as well as annual components of demand, including urban (URB), agricultural (AGR),
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wild and scenic flows (WS), and environmental managed releases (EnvM) (California Water Plan

Update, 2013). Sub-basin scale data for the Sacramento, San Joaquin and Tulare sub-basins were

obtained upon request from DWR, and values for each variable were aggregated to represent the

Central Valley as a whole. These values are shown in Table 1.

Precipitation data from the Parameter-Elevation Regressions on Independent Slopes Model

(PRISM) were used for the years 1981-2014. For our future groundwater projections in the period

from 2015-2050, annual precipitation estimates were derived from CAL-Adapt using the arithmetic

mean of bias-corrected and downscaled annual rainfall predictions of four different climate models.

This data was used in the Intergovernmental Panel on Climate Change Fourth Assessment Report

under scenario A2 with medium-high carbon emissions (Maurer and Hidalgo, 2008; Pachauri et al.,

2014), and includes output of the National Center for Atmospheric Research’s Parallel Climate

Model and Community Climate System Model, the NOAA Geophysical Fluid Dynamics Laboratory

Model, and the Centre National de Recherches Mtorologiques Model. The precipitation data are

made available through Cal-Adapt (http://cal-adapt.org), and detailed model descriptions can be

found at http://ipcc-data.org. All data were aggregated to reflect anomalies of the Central Valley

(Figure 6.1).

To evaluate the GWD model we use a 30-year record of ’measured’ groundwater levels. This

historic record includes data from the USGS (1981-2003) and from NASA’s GRACE satellite mission

(2004-2014) (Famiglietti et al., 2011; Faunt, 2009). Anthropogenic recharge, conceptualized as

recharge from return flow from agriculture and percolation from surface water reservoirs, was

obtained from the DWR California Water Plan.
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Table 1: Department of Water Resources freshwater supply and demand data for the Central Valley, CA, for the years 1998-2010. Values were used to 

create relationships with precipitation (or PP), see Fig. 2.  Shown are the supply variables, including surface supplies (SS), groundwater supplies (GW), 

and recycle and reuse supplies (RR), as well as demand variables, including urban (URB), agricultural (AGR), wild and scenic flows (WS), and 

environmental managed releases (EnvM). In blue are the. All values have units of Million Acre-Feet (MAF). 

*SS includes all surface water supplies and storage, including instream environmental supplies and "Local deliveries". 

        Demands (km^3)     Supplies  (km^3) 

YEAR PP Wet/Dry URB AGR WSC ENVM SS* GW RR 

1998 1.71 Wet 1.45 17.55 13.01 1.17 30.64 9.57 0.0023 

1999 0.92   1.18 23.49 11.64 0.00 29.01 16.12 0.16 

2000 0.97   1.68 23.25 10.34 0.96 30.25 15.73 0.0023 

2001 0.72 Dry 1.74 23.86 6.96 0.39 23.55 19.49 0.0023 

2002 0.81 Dry 1.40 23.89 7.88 0.98 25.07 19.13 0.0073 

2003 0.93   1.44 22.11 9.59 0.00 25.10 17.07 0.0 

2004 0.94   1.45 24.89 9.93 1.38 27.72 19.95 0.07 

2005 1.27 Wet 1.23 21.08 11.17 3.14 33.02 12.56 0.0 

2006 1.27 Wet 1.35 22.83 18.02 2.55 39.40 14.44 0.03 

2007 0.62 Dry 1.36 25.28 9.52 0.65 25.28 21.08 0.74 

2008 0.77 Dry 1.47 26.02 7.10 0.87 22.09 23.19 0.50 

2009 0.77 Dry 1.40 25.32 9.41 1.28 23.77 23.42 0.71 

2010 1.04   1.35 22.13 10.61 1.46 27.67 16.39 0.40 
 

Figure 6.2: Department of Water Resources freshwater supply and demand data for the Central
Valley, CA, for the years 1998-2010. Values were used to create relationships with precipitation
(or PP), see Fig. 2. Shown are the supply variables, including surface supplies (SS), groundwater
supplies (GW), and recycle and reuse supplies (RR), as well as demand variables, including urban
(URB), agricultural (AGR), wild and scenic flows (WS), and environmental managed releases
(EnvM). In blue are the. All values have units of Million Acre-Feet (MAF). *SS includes all surface
water supplies and storage, including instream environmental supplies and ’Local deliveries’.
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6.5 The Empirical GWD Model

In this section we introduce the GWD model that is used to simulate (predict), and project

groundwater levels in the Central Valley in the period 1981-2050. This model uses as main building

block a regional water balance equation, augmented with simple empirical relationships between

annual precipitation, supply, and demand. We next discuss these different relationships. To close

the water balance, we include a simple loss function which scales the supplies to meet overall

demands.

6.5.1 Supply-Demand Relationships with Precipitation

The data in Table 1 summarizes the total supply and demand for the years between 1998 and

2010, and is used to construct our GWD model. In essence, we develop empirical relationships

between each supply and demand variable and the percent of precipitation, PP (Figure 6.3).

These plots indicate how a given variable responds to different amounts of precipitation in a

given year. For example, agricultural demand is greater during dry years and causes a higher

reliance on groundwater supply. The opposite is true for wet years. We now use the empirical

relationships depicted graphically in Figure 6.3, to setup a regional water balance for the Central

Valley in California. Of course, groundwater is expected to play a major role in our model. The

following equation portrays an adequate fit between the 1998-2010 trends of groundwater use and

precipitation

GWPump(t) = −10 · PP (t) + 24 (6.1)

where GWPump (t) (km3) signifies the groundwater supply for year t, and PP (t)is the corresponding

percent of average precipitation. For an average year, PP would equal 100% or 1.0. For dry years

this value is less than 1.0, while for wet years this value is greater than 1.0.
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Figure 6.3: Empirical relationships that describe how each DWR supply and demand variable
changes with precipitation. Also shown is the relationship between anthropogenic recharge and
precipitation. DWR information for supply and demand and for anthropogenic recharge can be
found in Table 1, along with the annual precipitation values (PP values in table).
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6.5.2 Scaling Supplies to Meet Demands

To make sure that the supplies meet the estimated demands in each year, we include a ’loss’ function

that scales the supplies to meet overall demands. In other words, we assume that some amount of

freshwater supply was unaccounted for in the estimates that the relationships in Figure 6.3 produce.

Specifically, for each year, we calculate the difference between total demand and total supply and,

if necessary, adjust the supply. Throughout the remainder of this paper, demand signifies actual

use of water (e.g. agriculture or urban uses) and supply represents the type of water resource

(e.g. groundwater or surface water) that was used to meet usage. Thus, a scaling factor, X(t), is

introduced in the model to scale supplies in order to meet the deficit, as follows

X(t) =
TotalSupplies(t)

TotalDemands(t)
(6.2)

and this scaling factor is then applied to the estimated supplies

ActualSuplies(t) =
TotalSupplies(t)

X(t)
(6.3)

For example, if the supply estimate in the tth is 50 km3 and the demand equates to 55 km3, the

scale factor X(t) will scale up the supplies to satisfy the demand. See Figure 6.4 for further details

on how the scale factor affects the estimation of groundwater supplies.

6.5.3 Recharge Formulation

Recharge from precipitation is difficult to measure in practice, particularly at large spatial scales,

and was therefore not included in the DWR dataset. As a consequence, we have to parameterize

this component of the regional water balance. Groundwater recharge, the percolation of water

from the surface to subsurface aquifers, can come from a variety of sources, including precipitation,

leakage from streams and surface-water bodies, and return flow from irrigated agriculture. For
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Total  
Demands 

Recharge 

GWRecharge (t) = α *PP(t) + β(t) 

α = 4.3 km3 (Calibrated Parameter) 

β(t) = - 0.6*PP(t) + 6.9 

** Scale supplies to meet demands  ** 

GWRecharge (t)   -  GWPump(t) =  Δ GWLevel (t)  
 

GWLevel (t) = GWLevel (t - 1)  + Δ GWLevel (t) 

÷ = X  
(Scale Factor) 

GWPump(t)   =   GW(t)   ÷   X 

Figure 6.4: Schematic showing flow of model structure.
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this reason, it is not particularly easy to accurately model recharge in a region. Many different

studies have appeared in the literature that have developed methods for estimating groundwater

recharge(Crosbie et al., 2015; Doble et al., 2009; Scanlon et al., 2012b). Yet, all their recharge

estimates are subject to considerable uncertainty. Here, we use a much simpler approach, and

relate recharge directly to precipitation

GWRecharge(t) = α · PP (t) + β(t) (6.4)

where GWRecharge(t) signifies the tth year recharge (in km3), α denotes the unknown recharge

parameter (km3) associated with precipitation, and β is another recharge term (km3) associated

with anthropogenic effects.

As will be shown in the results section, the value of α is equivalent to about 4.3 km3.The yearly

values of β can be estimated from the DWR data set using the following linear relationship with

percent of average precipitation (see Figure 6.3 D)

β(t) = −0.6 · PP (t) + 6.9 (6.5)

The final recharge equation of the model now becomes

GWRecharge(t) = 4.3 · PP (t) + [−0.6 · PP (t) + 0.69] = 3.7 · PP (t) + 6.9 (6.6)

Figure 6.4 provides further explanation on how the recharge estimate is calculated in each year.

6.5.4 Simulating Groundwater Storage

To estimate groundwater storage in a given year, the model considers a virtual volume of groundwater,

then subtracts the supplied groundwater in that year and adds the volume of recharge calculated

for that year. The temporal evolution of the storage in the reservoir is calculated using the following

regional water balance equation for the groundwater compartment (all terms in km3)

GWLevel(t) = GWLevel(t− 1) +GWRecharge(t)−GWPump(t) (6.7)
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Figure 6.5: Calibration of the parameter, α , which represents the change in recharge per unit change
in precipitation. Fig. 4A. shows the trajectory of each of the chains, and provides information on
how the parameter value was estimated. In Fig. 4B., the final distribution of possible parameter
values is shown, which indicates the level of uncertainty for the parameter estimate.

where GWLevel(t) and GWLevel(t− 1) denote the groundwater level of the Central Valley reservoir

for some given year and the immediately predating year, respectively, and GWRecharge(t) and

GWPump(t) signify the present year’s recharge (estimated using Equation 6.6) and groundwater

supply (estimated using Equation 6.1). The initial storage of the reservoir, the groundwater level

in 1981, was derived from the USGS data set and set equivalent to -36 km3. It is evident from

Equation 6.7 that the GWD model uses an annual integration time step. The GWD model is

illustrated schematically, with its underlying equations, in Figure 6.4.
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6.5.5 Calibration of Recharge from Precipitation: An MCMC

Approach

The parameter that represents recharge from precipitation α, is estimated using an enhanced

Markov Chain Monte Carlo (MCMC) method - the DiffeRential Evolution Adaptive Metropolis

(DREAM) algorithm (Vrugt et al., 2009, 2008). This algorithm exhaustively searches the feasible

space of α in pursuit of a stationary distribution. This distribution contains the optimum value of

α and characterizes the underlying statistical uncertainty of this parameter. A detailed description

of the DREAM algorithm appears in the cited references (Vrugt, 2016) and interested readers are

referred to these publications for further details.

We use the MATLAB toolbox of DREAM described in Vrugt (2016) and assume a uniform prior

distribution for the recharge parameter, α, and a classical Gaussian likelihood function to compare

the observed and simulated groundwater table levels. This likelihood function,

L(α|Ỹ) ∝
n∑
t=1

|et(α)|−n (6.8)

where n = 34 constitutes the number of historic groundwater level observations, Ỹ = [ỹ1, · · ·, ỹn], in

the period from 1981-2014, and the variable, et(α) = ỹt−yt(α), signifies the annual residuals of the

observed and GWD simulated groundwater levels. A detailed derivation of the Gaussian likelihood

function of Equation 6.8 appears in Vrugt and Massoud (2016) and interested readers are referred

to this publication or Vrugt (2016). In essence, the recharge parameter will be tuned so that the

sum of squared residuals of the simulated and observed groundwater levels is minimized.

Note, that the residuals between the observed and simulated groundwater levels express some

temporal correlation. This is in disagreement with our assumption of uncorrelated residuals in our

Gaussian likelihood function. Without becoming too technical for the purpose of the present

paper and audience, we have tried alternative likelihood functions that account explicitly for
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first-order residual correlation. The DREAM results confirm presence of serial dependence among

the residuals, yet this temporal correlation of about 0.4 is rather weak and hardly affects the optimal

value of the recharge parameter, α.

Figure 6.5 A provides a trace plot of the simulated chain trajectories of the DREAM algorithm.

During the initial generations, the different Markov chains search different parts of the parameter

space. Then, the chains collapse to a small region - the so-called stationary distribution of α -

and rapidly reach convergence according to different built-in diagnostics. Figure 6.5 B, displays a

histogram of the samples produced by the different Markov chains. The peak of this distribution

coincides with the ’best’ estimate of the recharge parameter, whereas the dispersion of the bars

provides an estimate of the uncertainty of the calibrated parameter value. The value of α ranges

between 3.8 - 4.8 km3, and we select herein α = 4.3 km3 as a reasonable optimal estimate. It is

important to note that α has a distribution that is very well defined (small uncertainty), which

inspires confidence in the structure of the model. This is particularly beneficial for model simulation

as we can ignore the effect of parameter uncertainty and resort to deterministic projections of future

aquifer storage.

6.6 GWD Model Simulations

We now discuss the results of the GWD model in two different time frames, the past (for model

evaluation) and the future (for assessing sustainability of groundwater under various management

scenarios).

6.6.1 Model Evaluation

A major concern of California’s water resource management is the storage of the groundwater

aquifer of the Central Valley. This study aims to quantify the reliance on groundwater and highlights

the increase of this reliance during dry years. To this end, Figure 6.6 A shows precipitation
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anomalies from each year used to drive the model. PRISM data is used for the years 1981-2014 (dark

colors), and CAL-ADAPT data is used for the years 2015-2050 (light colors). The dry years are

shown in red and wet years are shown in blue. Figure 6.6 B shows the change in simulated GW levels,

calculated as the difference between supply from and recharge to groundwater, i.e. GWPump(t) and

GWRecharge(t) , respectively, from Equation 6.7. Also evident in Figure 6.6 B are large decreases

in GW levels during dry years, which are presumably the result of increased groundwater reliance

and decreased natural recharge. Figure 6.6 C shows the observed changes in groundwater levels

and allows a comparison with model results. The simulated changes in groundwater (Figure 6.6

B) match the observed changes (Figure 6.6 C) quite well and are particularly representative of

depletion during dry years (e.g. drought in 1987-1992) as well as of the high amounts of recharge

in wet years (e.g. wet years in 1982-1983).

The simulated groundwater levels are shown in Figure 6.7 (black line) and are compared with

observations (red and blue dots) for the years 1980-2014. The model fits the data relatively well,

even though the model is structured to aggregate processes that occur at annual time-steps and

over the spatial scale of the Central Valley. Errors in the model may occur if time-delayed processes

such as recharge from base flow or extensive anthropogenic recharge from irrigation occur at longer

timescales. One reason for mismatches between the GWD modeled data and the GRACE-based

groundwater observations could be from GRACE uncertainty (Rodell et al., 2009; Yeh et al., 2006).

GRACE-based groundwater changes rely on models to account for the non-groundwater components

(i.e. soil moisture and surface water) of GRACE total water storage estimates. These models often

fail to account for anthropogenic impacts on water storage changes and have their own degree of

uncertainty, leading to error propagation in the derived groundwater change values from GRACE

(Famiglietti et al., 2011).

Overall, we contend that the model is able to accurately assess impacts on groundwater levels

given different water management scenarios in California to a level that is necessary for examining
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Figure 6.6: Precipitation anomalies from each year are shown in Panel A, where PRISM data was
used for the years 1981-2014 (dark colors) and CAL-ADAPT data was used for the years 2015-2050
(light colors); dry years are shown in red and wet years are shown in blue. In Panel B., the change
in simulated GW levels is shown, which is calculated as the difference between the volume of water
extracted from groundwater and the recharge that replenishes it Panel C. highlights the observed
changes in groundwater levels in order to facilitate a direct comparison with the model’s estimated
values in Panel B.
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Figure 6.7: The GWD Model simulations for both the past and future years. The simulated
groundwater levels for the years 1980-2014 (black line) are compared with observations (red icons).
In future years, several adaptation scenarios are examined. The case of no adaptation is shown
with a red line and the case with a full adaptation (i.e. 20% augmentation in RR and SS supplies
and 20% reduction in URB and AGR demands) is shown with blue crosses (’+’). Then, each
supply/demand variable’s sensitivity to groundwater depletion is examined by assessing various
cases with 20% changes in each variable individually. In these cases, changes in demands are shown
in green and changes in supplies are shown in blue.

large, regional trends. Thus, we run the GWD model for future years under various adaptation

scenarios to provide general insights into the rates of depletion of the aquifer based on different

water management scenarios.

6.6.2 Future Projections: Business as Usual vs Adaptation

Several adaptation scenarios are examined for future years (2015-2050) using precipitation from

CAL-Adapt to drive the model. In Figure 6.7, the case of no adaptation (i.e. business as usual)
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is shown with a red line, and the case with significant management intervention is shown with

blue crosses (’+’). The management strategy we modeled for this study is a simultaneous demand

reduction and supply augmentation approach that reduces agricultural and urban demands by

20% and at the same time increases surface water supplies and supplies from recycle and reuse by

20%. To get an idea of how sensitive groundwater levels are to each variable individually, we also

run the model with individual reductions by 20% in each demand or 20% increase in each supply

variable. In these cases, demand reduction strategies are shown in green and supply augmentation

approaches are shown in blue. Model results show that efficiencies in surface water supply and

agriculture efficiency can have a stronger impact on groundwater levels compared to efficiencies in

urban water use and recycle and reuse. However, from these results it is clear that a comprehensive

approach that looks at both supply and demand side management strategies may be necessary to

sustain groundwater levels in the future.

Agricultural efficiency encompasses more than on-farm water use efficiency, and ’improvements’

can also reflect changes in total farmed acreage. As a result, management of groundwater at the

basin scale will need to focus on structural water demands (farmed acreage) in addition to on-farm

efficiency improvements over multiple years.

From our simulations it is clear that if no changes are made in water management (red line),

groundwater depletion will continue due to projected decreases in precipitation and an unbalanced

water management portfolio. Under the adaptive management strategy, groundwater storage can

be sustained, showing potential that the aquifer can indeed be managed sustainably and secured

for future generations.
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6.7 Discussion

6.7.1 What Does the Future Hold?

Groundwater extraction in the Central Valley is and will continue to be driven by the region’s

fresh water supply-demand gap. This study addresses various water management portfolios that

will impact the magnitude of this gap and groundwater depletion. The results of the GWD model

indicate that a no change scenario will cause the aquifer to deplete further in the future. We

considered several adaptation scenarios, including the reduction of agricultural or urban demand

by 20%, the increase in surface supplies or recycle and reuse supplies by 20%, and the final case

that considered a 20% change in all four of these variables simultaneously.

Because urban demand and supplies from recycled and reused water are such a small fraction

of the current uses and supplies, the results indicate that 20% improvement in these variables

only incrementally change the behavior of groundwater depletion in the Central Valley. However,

according to our model, implementing strategies that work towards both a 20% reduction in

agricultural demand and a 20% augmentation in the use of surface water supplies can significantly

mitigate groundwater depletion.

The current rate of depletion raises alarming questions, including how long the aquifer will

remain a useful source of fresh water for the region. This is a critical question for water managers, as

groundwater constitutes a significant portion of the supply portfolio. If aquifer depletion continues

at unsustainable rates, the gap between water demands and available supplies will eventually not

be satisfied by groundwater extraction and therefore create larger, and potentially severe, social

and economic problems for the state.
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6.7.2 Future Work

The GWD model is useful to assess the water balance in the California Central Valley, yet is rather

simplistic and empirical and thus has much room for improvement. The model aggregates spatially

processes occurring over the entire Central Valley and temporally aggregates activity over an entire

year. As a result it is susceptible to large uncertainties and errors. Building from the current

structure to model at the sub-basin, the scale at which groundwater is now managed in California,

and seasonal timescale can further the impact of this tool to help identify management scenarios

that incorporate processes that occur at spatiotemporal scales not captured by the current version

of the GWD model.

One result of the management strategies scenario testing shows that groundwater and surface

water use are strongly linked. Therefore, incorporating data on water availability in surface water

reservoirs into the model structure while simultaneously considering groundwater changes can

provide a more detailed picture on the dynamics of water resource management in the Central

Valley. This will also assist with multi-annual impacts not currently represented (i.e. consecutive

dry years).

An additional portion of the model that could be improved is that of urban demand. Population

growth and urban demand change over time and may not necessarily reflect changes in climate or

precipitation, despite policies. However, as stronger urban policies take hold we expect a stronger

relationship to emerge. The current structure of the model does not consider population growth,

something that would need to be considered if the model advances towards smaller spatial scales

where urban demand may have a stronger impact on a particular basin.

6.8 Conclusion

Due to the high degree of uncertainty associated with inter-annual precipitation and surface water

availability in semi-arid regions, groundwater is often relied upon to meet water needs. Lack of
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current effective management is already apparent in regions where wells have run dry, subsidence

is impacting infrastructure (Sneed et al., 2013), groundwater quality is degrading (Scanlon et al.,

2007), salinization of soil and groundwater resources is taking place (Schoups et al., 2005), and

environmental impacts are becoming more visible. Allowing unsustainable use of groundwater

resources will only exacerbate these problems. Costs associated with water extraction would also

increase due to the need to drill deeper wells, treat degraded groundwater quality and pump from

deeper depths (Konikow and Kendy, 2005). Moreover, 21 groundwater basins within California

are classified as critically over drafted, and recent groundwater management regulations require

implementation of groundwater sustainability plans over the next few decades.

Our simple GWD model provides an easily employable and interpretable tool to help analyze

the interconnected components that complicate system management. In this study, we present

the GWD model, a new empirical method to estimate groundwater depletion. We simulated

groundwater levels from 1981-2050 using historical and projected precipitation data. We explore

different future scenarios using projected precipitation and changes in management practices. Our

results show that a 20% augmentation of supplies other than groundwater coupled with 20%

reductions in demands for agriculture and urban water use could sustain groundwater storage

at its present level. An interactive web application was developed as a template for users to

explore and assess the sensitivity of groundwater sustainability in this region under a variety

of management strategies using our simple model. However, groundwater is a finite resource

when rates of use surpass natural replenishment, and the amount of groundwater in many areas

is unknown and/or highly uncertain (Richey et al., 2015b). Effective groundwater management

requires accurate knowledge of how strongly surface water and groundwater are linked and how

much groundwater is changing every year. Water management strategies must consider both surface

and groundwater supply within a given area in order to prevent unsustainable dependence on these

resources (McNutt, 2014).

The relatively constant gap between renewable surface water supplies and statewide demands
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indicates that supply mitigation and demand reduction strategies implemented today could have

lasting impacts into the future. In particular, the development of recycled and reused water systems

and the improvement of agricultural and urban water efficiencies could help close the gap even more

and reduce reliance on our non-renewable resources in times of drought. In addition, research and

innovation on alternative management strategies and new ideas to close the gap could also help to

ensure a steady supply as well as minimize future exploitation of groundwater resources.
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Chapter 7

Summary and Conclusions

In 2013, the World Meteorological Organization (WMO) urged the global community for coordinated

international action against accelerating and potentially devastating climate change. Preliminary

data indicated that carbon levels increased more between 2012 and 2013 than during any other year

since 1984, and this was possibly related to reduced uptake by the Earth’s biosphere in addition

to the steadily increasing emissions from the Earth’s surface. In the upcoming decades, it will

be critical for scientists and policy makers to not only resolve the problem of carbon emissions

by assessing human behavior, but also to understand as thoroughly as possible the underlying

coupled processes of the Earth’s atmosphere and biosphere in order to adequately measure and

estimate the fluxes of carbon, water, and energy that are dictating the climatic trends we observe

today. Fortunately, our ability to understand Earth’s processes and predict climate change is

improving. This is becoming possible due to increased volumes of data, increases in computational

power, advances in climate models and related statistical and optimization methodologies, and

most importantly, societal needs to develop better strategies for sustainable natural resource

management.

This thesis covered a suite of environmental models and numerical methods to disentangled

information found both in observed data as well as model simulations. Various methods were

applied such as parameter estimation with Markov Chain Monte Carlo (MCMC), state estimation
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with data assimilation using the Ensemble Kalman Filter (EnKF), and sensitivity analysis of

model parameters using the Fourier Amplitude Sensitivity Test (FAST), which all in one way

or another offer treatments to predictive uncertainty. Furthermore, applying these methods on

more sophisticated and complex models was impossible sometimes due to their high CPU costs;

in this thesis model emulators were built using Polynomial Chaos Expansion (PCE) to reduce

the computational burden for various environmental models. Overall, our goal in this dissertation

was to present what tools are currently available for making predictions of environmental systems,

with emphasis on maintaining accuracy of model simulations when compared to observed data,

optimizing the efficiency of computationally heavy models to minimize their run time costs, and

obtaining fidelity of model structures to properly represent the underlying hydrologic, biophysical,

and biogeochemical processes occurring on our Earth.
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