
UCLA
On-Line Working Paper Series

Title
Child Mortality and Fertility Decline:  Does the Barro-Becker Model Fit the Facts?

Permalink
https://escholarship.org/uc/item/19j643rs

Author
Doepke, Matthias

Publication Date
2002-11-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19j643rs
https://escholarship.org
http://www.cdlib.org/


 
 

  
 

 
 
 
 

CChhiilldd  MMoorrttaalliittyy  aanndd  FFeerrttiilliittyy  
DDeecclliinnee::    DDooeess  tthhee  BBaarrrroo--BBeecckkeerr  
MMooddeell  FFiitt  tthhee  FFaaccttss??  
  
 
Matthias Doepke  
 
  
CCPR-012-02 
  
November 2002 

 
  
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
California Center for Population Research 

On-Line Working Paper Series   



Child Mortality and Fertility Decline:
Does the Barro-Becker Model Fit the Facts?�

Matthias Doepke

UCLA

November 2002

Abstract

I compare the predictions of three variants of the altruistic-parent model by
Barro and Becker for the relationship between child mortality and fertility. In the
baseline model, fertility choice is continuous, and there is no uncertainty over the
number of surviving children. The baseline model is contrasted to an extension
with discrete fertility choice and stochastic mortality, and a setup with sequential
fertility choice. The quantitative predictions of the models are remarkably similar.
While in each model the total fertility rate falls as child mortality declines, the
number of surviving children increases. The results suggest that factors other
than declining infant and child mortality are responsible for the large decline in
net reproduction rates observed in industrialized countries over the last century.

�Financial support by the National Science Foundation (grant SES-0217051) and the UCLA Aca-
demic Senate is gratefully acknowledged. Department of Economics, University of California, Los
Angeles, 405 Hilgard Ave, Los Angeles, CA 90095-1477 (e-mail: doepke@econ.ucla.edu).



1 Introduction

In 1861, the average woman in England had five children over her lifetime. However,
only 70 percent of newborn children would live to see their tenth birthday. By 1951,
average fertility had fallen to just over two children per woman, and only five percent
of children would die in their first ten years of life. A similar pattern of declining fer-
tility and mortality rates, collectively known as the demographic transition, has been
observed in every industrializing country. Recently, a number of economists have
developed macroeconomic theories that integrate an account of the demographic
transition with theories of long-run economic growth. However, in most cases these
studies have concentrated on the fertility aspect of the demographic transition, while
abstracting from mortality decline (see, for example, Galor and Weil 2000 and Green-
wood and Seshadri 2002). Demographers, in contrast, have pointed out that in many
cases mortality decline precedes fertility decline, which suggests a causal link from
falling mortality to falling fertility.

One reason why the macroeconomic literature has abstracted from mortality decline
as a cause for fertility decline is that commonly used economic models of fertility
are inconsistent with such a link. In particular, this is true for the model of Barro
and Becker (1989), where parents are altruistic towards their surviving children. In
the Barro-Becker model, infant and child mortality rates affect choices only to the
degree that they influence the overall cost of a surviving child. Falling mortality
rates tend to lower the cost of having a surviving child, hence fertility actually in-
creases, not decreases, as mortality declines (this is discussed in Boldrin and Jones
2002 and Fernández-Villaverde 2001). Instead of emphasizing mortality decline, the
Barro-Becker framework points to the quantity-quality tradeoff as an explanation for
fertility decline: parents choose to have smaller families in order to invest more in the
education of each child.

In this paper, I examine whether simple extensions of the Barro-Becker model can
overturn its predictions for the link of mortality and fertility. In the baseline Barro-
Becker model, fertility is treated as a continuous choice, all fertility decisions are made
at one point in time, and there is no uncertainty over the number of surviving chil-
dren. Richer models that allow for uncertainty and sequential fertility choice may
lead to different implications. In particular, when mortality is stochastic and parents
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want to avoid the possibility of ending up with very few (or zero) surviving chil-
dren, a “precautionary” demand for children arises. Kalemli-Ozcan (2002) argues
that when this effect is taken into account, declining child mortality can have a nega-
tive impact on fertility. If fertility is chosen sequentially, there is also a “replacement”
effect: parents may condition their fertility decisions on the survival of children that
were born previously.

To analyze whether these effects are quantitatively important, I examine three exten-
sions of the basic Barro-Becker framework. The first model allows for different costs
per birth and per surviving child, but is otherwise identical to the Barro-Becker setup.
In the second model, fertility choice is restricted to be an integer, and there is mortal-
ity risk. The third extension adds sequential fertility choice.1 The three models are
compared with regards to their theoretical and quantitative implications regarding
the link between infant and child mortality and fertility.

The main conclusion is twofold. All three models are consistent with a falling total
fertility rate in response to declining child mortality. However, none of the models
predicts that the net fertility rate (i.e., the number of surviving children) declines with
child mortality. In other words, the analysis suggests that mortality decline may be
one factor behind falling fertility during the demographic transition, but certainly not
the only or even the main factor.

2 Three Variations on Altruistic Parents and Fertility

As the benchmark case, I consider the model by Barro and Becker (1989) with contin-
uous fertility choice. In this model, parents care about their own consumption c and
the number n and utility V of their surviving children.2 The utility function is:

U(c, n) =
c1�σ

1� σ
+ βnεV.

1Fertility models with stochastic outcomes and sequential choices have been used in the empirical
fertility literature, see Wolpin (1997). A model with sequential fertility choices and child mortality, but
without stochastic outcomes has been considered by Eckstein, Mira, and Wolpin (1999).

2If parents can choose education, V becomes an endogenous variable. Since mortality is concen-
trated in the first few years of life, while education occurs later, child mortality and education decisions
do not interact. Therefore, I abstract from education choice.
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Throughout the paper, it is assumed that σ, β, ε 2 (0, 1) and V > 0.3 Let b denote the
number of births, and s is the probability of survival for each child, where 0 < s �
1. Mortality is deterministic in the sense that s is the fraction of children surviving.
Consequently, the number of surviving children is not constrained to be an integer.
The full income of a parent is denoted by w. Since w is taken as given, the distinction
between time and goods costs for children is irrelevant. It is assumed that each birth
is associated with a cost of p, and each surviving child entails an additional cost of
q. The budget constraint is then c + pb + qn � w or, after plugging in the survival
function n = sb:

c + (p + qs)b � w.

Income and cost parameters satisfy w > 0, p � 0, q � 0, and p + q > 0. At least
one of the costs has to be strictly positive; otherwise, the optimal fertility choice is
infinity. Both consumption and fertility are restricted to be nonnegative. The decision
problem in the standard version of the Barro-Becker model is:

Problem A: (Barro-Becker with continuous fertility choice)

max
0�b�w/(p+qs)

�
(w� (p + qs)b)1�σ

1� σ
+ β(sb)εV.

�

I will now consider two variations of the Barro-Becker framework which add real-
ism to the benchmark model. The first extension introduces stochastic survival and
restricts fertility choice to be an integer. In this model, the realized number of chil-
dren is uncertain. I assume that for each birth there is a constant probability of death,
implying that that the distribution of surviving children is Binomial. Apart from the
integer restriction and stochastic survival, the model is identical to the benchmark.
The decision problem is now given by:

Problem B: (Stochastic Barro-Becker with discrete fertility choice)

max
b2fN[0g, b�w/(p+q)

(
b

∑
n=0

�
(w� pb� qn)1�σ

1� σ
+ βnεV

��
b
n

�
sn(1� s)b�n

)
.

3The deterministic model can be extended to risk-aversion parameters equal to one (log utility)
or bigger than one. However, in those cases the utility associated with having zero children is nega-
tive infinity, so that the choice problem under uncertainty (where zero surviving children occur with
positive probability) is not well defined.

3



The second extension adds yet more realism by allowing sequential fertility choice,
while preserving the integer constraint and stochastic survival of Problem B. In the
sequential model, the period is divided into T + 1 subperiods, running from 0 to
T. Parents have a fixed income of w in each subperiod. The parameter γ 2 (0, 1)
is the discount factor between periods. In each period, parents can give birth to a
single child. Since children live for multiple periods, the setup allows to distinguish
infant and child mortality. Newborn infants survive with probability si until the next
period. If the child survives, the probability of surviving the second period of life
is sy. Once a child has survived for two periods, it will survive until adulthood for
sure.4 bt 2 f0, 1g denotes the birth decision in period t, yt 2 f0, 1g represents a young
child (born in the preceding period), and nt is the number of older children (born
at least two periods prior) alive in period t. The cost per birth bt is given by p, a
young child yt is associated with cost q, and older children nt do not involve further
expenses.5 The budget constraint in period t is ct + pbt + qyt � w.

In the sequential model, parents are able to decide on fertility conditional on the sur-
vival of older children. Formally, the choice object of the parent is a sequence of
decision rules fbt : Ht ! f0, 1ggT

t=0 which map the state ht at time t into a birth deci-
sion. A parent is fecund only until period K, which imposes the additional constraint
bt = 0 for K < t � T. This constraint is imposed to provide a motive for “hoard-
ing” of children. If a child dies after period K, it cannot be replaced. The state at
time t is given by ht = fnt, ytg, where nt � 0 is the number of children that were
born at least two periods ago and survived, and yt 2 f0, 1g denotes whether there
is a young child that was born in the preceding period. Since there is at most one
birth per period, the maximum number of children is K. The state space is therefore
Ht = f0, 1, . . . , Kg � f0, 1g. The evolution of the number of children depends on the
number of older children nt, whether there is a newborn bt and a young child yt, and
on the survival probabilities. Specifically, for a parent that has nt older children to-
day, the probability of having nt + 1 tomorrow is zero when there is no young child,

4The model could be extended to allow for a richer set of age-specific survival probabilities, but two
survival probabilities are sufficient to contrast the sequential setup to the case of simultaneous fertility
choice. In the data, mortality is highly concentrated in the first few years of a child’s life.

5This assumption can be justified through the economic benefits of older children in terms of child
labor and help in the household. The model could be extended to a richer cost profile. It is impor-
tant, however, that children do not cause expenses forever, because then late-born children would be
cheaper overall than older children.
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and sy if a young child exists. Similarly, the probability of having a young child yt

in the next period is si if there is a newborn in this period, and zero otherwise. The
probabilities over states are therefore defined recursively as:

Pt+1(n, y) = Pt(n, 0) (1� y + (2y� 1)bt(n, 0)si) (1)

+Pt(n, 1) (1� y + (2y� 1)bt(n, 1)si) (1� sy)

+Pt(n� 1, 1) (1� y + (2y� 1)bt(n� 1, 1)si) sy.

For example, consider the probability of having three old children and one young
child in period six (n = 3, y = 1). This state can only be reached if in period five there
are either three old children, or two old children and a young child. Therefore (1)
sums over the respective probabilities in period five. Also, there has to be a birth in
period five, and the infant has to survive, since otherwise there would be no young
child in period six. Therefore, each probability is multiplied by b5(n, y)si. If the state
in period five is f3, 1g, there are three old children in period six only if the young
child dies. Therefore, the respective probability is also multiplied by 1� sy. Finally, if
there are only two old children in period five, the young child has to survive if there
are to be three old children in period six. Hence, the last term is multiplied by sy. The
probability of having n children survive into adulthood is:

P(n) = PT(n, 1) (1� sy) + PT(n, 0) + PT(n� 1, 1) sy. (2)

Birth decisions do not enter here, since there are no births in the final period of adult-
hood T. The decision problem in the sequential model is:

Problem C: (Stochastic Barro-Becker with discrete and sequential fertility choice)

max
fbtg

T
t=0

(
T

∑
t=0

∑
ht2Ht

γt (w� pbt(ht)� qyt)
1�σ

1� σ
Pt (ht) + β

N

∑
n=0

nεVP (n)

)
,

where the probabilities over states Pt(ht) and surviving children P(n) are functions
of the birth decisions as defined in (1) and (2) above, and the initial probabilities are
given by P0(0, 0) = 1 and P0(h0 6= f0, 0g) = 0 (adults start without children).
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3 Mortality Decline and Fertility: Analytical Findings

In this section, I examine the effect of mortality decline on fertility in the three variants
of the altruistic-parents model. All proofs are contained in the appendix.

Proposition 1 Let b(s) denote the solution to Problem A as a function of s. b(s) has the
following properties:

� The number of surviving children sb(s) is non-decreasing in s.

� If p > 0 and q = 0, fertility b(s) is increasing in s.

� If p = 0 and q > 0, fertility b(s) is decreasing in s and sb(s) is constant.

The intuition for these results is simple. Since parents care only about surviving
children and there is no uncertainty, the survival probability s affects choices only
through the full cost of a surviving child p/s + q. Raising s lowers this cost, and
through the substitution effect therefore increases the number of surviving children.
In the special case where the cost p for each birth is zero, the total cost of a surviv-
ing child is independent of s, and consequently parents choose the preferred number
of surviving children irrespective of s. Total fertility can fall as mortality declines if
the cost of births is relatively low, but net fertility (the number of surviving children)
never declines as mortality falls. I turn to the stochastic models next.

Proposition 2 Let b(s) denote the solution to Problem B as a function of s. If p = 0, the
optimal choice b(s) is non-increasing in s.

Proposition 3 Let bt(ht)(si) denote the solution to Problem C as function of the infant sur-
vival probability si at a given state ht. If p = 0 and sy = 1, bt(ht)(si) is non-increasing in
si.

Thus in both stochastic models, we find that if births are costless, the optimal num-
ber of births declines as survival rates increase. In the sequential model, we get the
additional implication that age at first birth increases. However, there are no clear-
cut results regarding net fertility. If utility is highly concave in n, parents want to
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avoid a low number of surviving children. If mortality is high, this can give rise to
a “precautionary” demand for children, which declines as mortality (and therefore
uncertainty) decreases. However, the opposite effect is also possible, since utility is
concave in consumption as well. If parents are very risk averse in terms of consump-
tion, they might want to avoid the risk of having too many surviving children (and
thereby high expenditures on children), which would lower the number of births
when mortality is high. While these effects apply in principle to both Problem B and
Problem C, the model with sequential fertility choice is in some sense in between the
deterministic and the stochastic model. Since choices are spread out over time, par-
ents have the possibility of replacing children that die early in the life cycle, leading
to less uncertainty over the realized number of children than in Problem B, where all
children are born simultaneously.

4 Mortality Decline and Fertility: Quantitative Findings

The analytical results show that all models are consistent with declining fertility rates
in response to falling mortality. However, while the deterministic model predicts that
the number of surviving children rises as mortality falls, the more elaborate models
do not make clear-cut predictions. Therefore, I assess the quantitative predictions of
the models with a calibration exercise. Each model is parameterized to reproduce
mortality and fertility rates in England in 1861, when infant and child mortality was
still high. I then increase the survival parameters to correspond to mortality rates in
1951 (by which time most of the fall in infant and child mortality had been completed)
and compare the predictions of each model for the impact on fertility rates.

The models are parameterized as follows. In the sequential model, we set T = 14 and
K = 12, so that the maximum number of births is 13. Income w is a scale parameter
and is set to 1 per period in the sequential model and 14 in the other models. The
parameter p corresponds to the cost of a child until its first birthday, while the pa-
rameter q accounts for the remaining cost. In terms of goods, it is natural to assume
that the yearly cost increases until the child is able to work and partly pay for itself.
The time cost, on the other hand, decreases over time. In addition, the cost per birth
should account for the cost of pregnancy and the risk of the mother’s death during
childbirth. Since time and goods cost move in opposite directions, I assume as the
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baseline case that overall cost is proportional to age, and that children are no longer a
net burden once they are six years old. I therefore set q/p = 5. The overall level of the
cost parameters is set such that in the sequential model, a household with both an in-
fant and a young child spends half of its income on the children. This gives p = 1/12
and q = 5/12. The curvature parameters in the utility function are set to σ = ε = 1/2,
and the discount factor in the sequential model is γ = 0.95. The children’s utility level
V is equated to the parent’s utility in each case (i.e., the steady-state utility that would
obtain with constant income and mortality rates). The survival parameters are cho-
sen to correspond to the situation in England in 1861. According to Preston, Keyfitz,
and Schoen (1972) the infant mortality rate (death rate until first birth rate) was 16
percent, while the child mortality rate (death rate of between first and fifth birthday)
was 13 percent. Accordingly, I set si = 0.84 and sy = 0.87 in the sequential model,
and s = sisy = 0.73 in the other models. Finally, the altruism factor β is set in each
model to match the total fertility rate, which was 4.9 in 1861 (Chesnais 1992). Since
fertility choice is discrete in Models B and C, I chose a total fertility rate of 5.0 as the
target.

Each model is thus calibrated to reproduce the relationship of fertility and infant and
child mortality in 1861. I now examine how fertility adjusts when mortality rates fall
to the level observed in 1951, which is 3 percent for infant mortality and 0.5 percent
for child mortality. The results for fertility can be compared to the observed total
fertility rate of 2.1 in 1951. In Model A (Barro-Becker with continuous fertility choice),
the total fertility rate falls from 5.0 (the calibrated target) to 4.2 when mortality rates
are lowered to the 1951 level. The expected number of surviving children increases
from 3.7 to 4.0. Thus while there is a small decline in total fertility, the net fertility
rate increases. While given Proposition 1 this was to be expected, it is surprising that
Model B (stochastic Barro-Becker with discrete fertility choice) generates very similar
results. In the stochastic model, total fertility falls from 5.0 to 4.0, and net fertility
increases from 3.7 to 3.9. While fertility falls more than in the continuous model, the
difference is small. In Model C (sequential fertility choice), the total fertility rate is not
an integer since it depends on the random individual mortality outcomes. Therefore,
β was chosen to move the total fertility rate to 5.2, which is the closest possible match.
When mortality is lowered to 1951 levels, fertility falls only to 5.0, while net fertility
increases substantially from 3.8 to 4.8. These results are partly due to the fact that
the sequential model distinguishes infant and child mortality, while the other models
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do not. The models line up more closely if we set sy = 1 and assign the entire fall
in mortality to infant mortality si (as we do implicitly in the other two models). In
this case, total fertility falls from 5.1 to 4.0, while net fertility increases from 3.7 to 3.9.
This is identical to the results with Model B.6 Figures 1 to 3 show that the predictions
of the models are similar for the entire range of possible infant mortality rates (solid
line is total fertility, dotted line net fertility rate; for Figure 3, child mortality was set
to sy = 1). The sequential model yields additional predictions for the age at first
birth, which increases with the survival probability once si is at least 10 percent. This
increase not only reflects the corresponding decline in total fertility, but also narrower
spacing of births. When mortality is high, parents start to have children early so
that there is time to make up for children who die. This replacement motive is less
important when survival rates are high.

In summary, each model predicts that total fertility falls with infant mortality, but
none of the models predicts a fall in net fertility rates. Relative to the data, the mod-
els suggest that only a small proportion of observed fertility decline, and none of the
net fertility decline, is accounted for by declining infant mortality. The question arises
whether the results are specific to the calibrated parameter values. In other words,
are there reasonable parameters for which any of the models predicts a substantial
decline in net fertility as infant mortality declines? We know from Proposition 1 that
this can never be the case in Model A. In the other models, however, a “precaution-
ary” demand for children can arise if parents’ utility is highly concave in the number
of children, but close to linear in consumption. Indeed, if we choose the (somewhat
extreme) utility parameters σ = ε = .01 and adjust β to keep fertility at 5.0 given 1861
mortality rates, in Model B total fertility falls from 5.0 to 2.0, and net fertility from
3.7 to 1.9 when mortality rates drop to their values in 1951. This effect disappears
entirely, however, when we move (with the same parameters) to the more realistic
sequential model, where parents can replace children who die early. Here, despite
the extreme risk-aversion with regards to the number of children, total fertility drops
only to 4.0, and net fertility rises to 3.9, just as with the benchmark parameters. Fig-
ures 5 and 6 show fertility rates over the entire range of mortality rates in the two

6In the computations, the children’s utility V was held constant. However, results are virtually un-
changed if V is adjusted to reflect the new (higher) steady-state utility. We also disregard the increase
in income per capita over the period, since with the chosen functional forms fertility is independent of
the level of income (assuming that the cost of children is proportional to income).
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models. Thus, once we allow for sequential fertility choice, the conclusion that only a
minor fraction of observed fertility decline is explained by mortality decline is robust
with regards to the choice of parameters.

5 Conclusions

All three models discussed in this paper lead to the same conclusion: declines in
child mortality lower total fertility rates, but do not cause substantial decreases in net
fertility. It is in line with this finding that van de Walle (1986) finds only a loose asso-
ciation between the exact timing of infant mortality and fertility decline in a number
of European countries and regions. This is particularly true for England, where rapid
fertility decline started in 1880, but infant mortality stayed relatively high until early
in the twentieth century. Thus, while mortality decline may contribute to an overall
explanation of fertility decline, our findings provide no reason to discard alternative
theories based on the quantity-quality tradeoff, old-age security, or the role of child
labor.

In terms of modeling choices, we find that the implications of the baseline model are
virtually the same as those of the more sophisticated setup with sequential choice
and stochastic outcomes. While the sequential model yields additional predictions
regarding the timing and spacing of births which are important in certain applications
(see Caucutt, Guner, and Knowles 2002), as long as only total and net fertility rates are
of interest, the standard Barro-Becker model appears to be a useful approximation.
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Fernández-Villaverde, Jesús. 2001. “Was Malthus Right? Economic Growth and
Population Dynamics.” Unpublished Manuscript, University of Pennsylvania.

Galor, Oded and David N. Weil. 2000. “Population, Technology, and Growth: From
Malthusian Stagnation to the Demographic Transition and Beyond.” American
Economic Review 90 (4): 806–28.

Greenwood, Jeremy and Ananth Seshadri. 2002. “The U.S. Demographic Transi-
tion.” American Economic Review Papers and Proceedings 92 (2): 153–159.

Kalemli-Ozcan, Sebnem. 2002. “A Stochastic Model of Mortality, Fertility, and Hu-
man Capital Investment.” Forthcoming, Journal of Development Economics.

Preston, Samuel H., Nathan Keyfitz, and Robert Schoen. 1972. Causes of Death: Life
Tables for National Populations. New York: Seminar Press.

Sah, Raaj K. 1991. “The Effects of Child Mortality Changes on Fertility Choice and
Parental Welfare.” Journal of Political Economy 99 (3): 582–606.

van de Walle, Francine. 1986. “Infant Mortality and the European Demographic
Transition.” Chapter 4 of The Decline of Fertility in Europe: The Revised Proceedings
of a Conference on the Princeton European Fertility Project, edited by Ansley J. Coale
and Susan Cotts Watkins, 201–233. Princeton: Princeton University Press.

Wolpin, Kenneth I. 1997. “Determinants and Consequences of the Mortality and
Health of Infants and Children.” Chapter 10 of Handbook of Population and Fam-
ily Economics Vol. IA, edited by Mark R. Rosenzweig and Oded Stark, 483–557.
Amsterdam: Elsevier.

11



A Mathematical Appendix

Proof of Proposition 1: Problem A is given by:

max
0�b�w/(p+qs)

�
(w� (p + qs)b)1�σ

1� σ
+ β(sb)εV.

�
(3)

The assumptions on parameter values (σ, ε, β 2 (0, 1), s 2 (0, 1], p, q � 0, w, V, p+ q >
0) guarantee that (3) is strictly concave in b and that an interior optimum exists. The
optimal number of births b(s) as a function of the survival probability s is character-
ized by the first-order condition:

(p + qs) s�εb(s)1�ε

(w� (p + qs)b(s))σ
= βεV, (4)

which can be written as:

(p + qs) (sb(s))1�ε

s1�σ(ws � (p + qs)sb(s))σ
= βεV

or:
(p/s + q)1�σ (sb(s))1�ε

(w/(p/s + q)� sb(s))σ
= βεV. (5)

Clearly, there is a unique b(s) which satisfies (5) for any s. Notice that the term (p/s +
q) is non-increasing in s (strictly decreasing if p > 0), while the term w/(p/s + q) is
non-decreasing in s (strictly increasing if p > 0). Since (5) has to be satisfied for all s,
sb(s) is therefore non-decreasing in s (strictly increasing if p > 0), which proves the
first part of the claim.

If q = 0, (4) simplifies to:
p b(s)1�ε

sε (w� pb(s))σ
= βεV. (6)

Since the left-hand side is strictly decreasing in sε and (6) has to be satisfied for all s,
b(s) is strictly increasing in s, which proves the second part of the claim.

Finally, if p = 0 (4) simplifies to:

q (sb(s))1�ε

(w� qsb(s))σ
= βεV. (7)

Since s only enters through sb(s), net fertility sb(s) has to be constant for all s to satisfy
(7), which proves the last part of the claim. 2

Proof of Proposition 2: We are considering Problem B under the assumption that the
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per-birth cost is zero, p = 0. In this case, Problem B is a special case of the model
analyzed by Sah (1991), and the results derived there apply. Specifically, define:

u(n) =
(w� qn)1�σ

1� σ
+ βnεV,

and:

U(b, s) =
b

∑
n=0

u(n)
�

b
n

�
sn(1� s)b�n.

Problem B is to maximize U(b, s) by choice of b, and U(n) is strictly concave in n and
does not depend on b or s. The model is now in the form of Sah (1991), and since
the concavity assumption is satisfied, the proof for Proposition 2 in Sah (1991) applies
here as well.

2

To prove Proposition 3, it is useful to first develop some additional notation. The
assumptions p = 0 and sy = 1 are maintained throughout. Let Vt(ht) be the utility at
time t � T given that state ht has been realized. These utilities are given by:

VT(n, y) =
(w� qy)1�σ

1� σ
+ β [(1� y)nε + y(n + 1)ε]V (8)

for t = T and:

Vt(n, y) =
(w� qy)1�σ

1� σ
+ γ bt(n, y)si

h
(1� y) Vt+1(n, 1) + y Vt+1(n + 1, 1)

i
(9)

+ γ (1� bt(n, y)si)
h
(1� y) Vt+1(n, 0) + y Vt+1(n + 1, 0)

i
for 0 � t � T. Optimal birth decisions are determined by:

bt(n, y) = argmaxb2f0,1g

�
b
h
(1� y) Vt+1(n, 1) + y Vt+1(n + 1, 1)

i
(10)

+ (1� b)
h
(1� y) Vt+1(n, 0) + y Vt+1(n + 1, 0)

i�
,

with the additional restriction that bt(n, y) = 0 for t > K. I assume that when a parent
is just indifferent, a birth takes place and bt(n, y) = 1. This assumption is for ease of
exposition only and does not affect results. We will also need to consider derivatives
with respect to si. Since the usual derivative may not be well defined for all si (bt is a
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step function), we will use left-hand derivatives. We have ∂VT(n,y)
∂si

= 0 and for t < T:

∂Vt(n, y)
∂si

= γ bt(n, y)
h
Vt+1(n + y, 1)�Vt+1(n + y, 0)

i

+ γ
h
(1� bt(n, y)si)

∂Vt+1(n + y, 0)
∂si

+ bt(n, y)si
∂Vt+1(n + y, 1)

∂si

i
. (11)

Notice that (10) and (11) imply:

bt(n, 1) = bt(n + 1, 0) (12)

and:
∂Vt(n, 1)

∂si
=

∂Vt(n + 1, 0)
∂si

. (13)

These relations will be used below. The following lemma can now be established:

Lemma 1 For all t and y, Vt(n, y) is strictly monotone increasing and weakly concave in n.
bt(n, y) is non-increasing in n. Vt(n, 1)� Vt(n, 0) is non-increasing in n.

Proof: First, notice that Vt(n, 1) is equal to Vt(n + 1, 0) apart from the first term,
which does not depend on n. Concavity of Vt(n, 0) (i.e., Vt(n + 1, 0)�Vt(n, 0) is non-
increasing in n) is therefore equivalent to Vt(n, 1) � Vt(n, 0) being non-increasing in
n. The last part of the claim is therefore implied once we prove the first part. We also
have:

Vt(n, 1)�Vt(n� 1, 1) = Vt(n + 1, 0)�Vt(n, 0). (14)

Monotonicity and concavity of Vt(n, 0) therefore imply the same properties for Vt(n, 1).
In the induction step below, it therefore suffices to establish these properties for Vt(n, 0).

The proof proceeds by induction. The first step is to show that VT(n, y) is strictly
increasing and concave in n. These properties follow directly from the definition (8).
Since T > K, we also have that bT(n, y) = 0, thus bT(n, y) is non-increasing in n.

Now assume that Vt+1(n, y) is strictly increasing and weakly concave in n for y 2

f0, 1g. To complete the induction, we need to show that Vt(n, 0) has the same proper-
ties and that bt(n, y) is non-increasing in n. For the last part, it follows from (10) that
bt(n, 0) = 1 if and only if:

Vt+1(n, 1)�Vt+1(n, 0) � 0.

Since we assume that Vt+1 is increasing and concave, the difference on the left-hand
side is non-increasing in n, and therefore bt(n, 0) is non-increasing in n. The same
argument applies to bt(n, 1). Next, notice that in (9) Vt(n, 0) is a strictly increasing
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function of the Vt+1 on the right-hand side. Since the Vt+1 are assumed to be strictly
increasing in n, raising n therefore strictly increases Vt(n, 0) even if the birth decision
is held constant. Vt(n, 0) is therefore strictly increasing.

Concavity requires more work. We want to show that Vt(n + 1, 0)�Vt(n, 0) does not
increase with n:

[Vt(n + 1, 0)�Vt(n, 0)]� [Vt(n, 0)� Vt(n� 1, 0)] � 0 (15)

for all n. Three cases can be distinguished. Assume first that for a given n, bt(n +
1, 0) = bt(n, 0) = bt(n� 1, 0) = b. Writing out (15) for this case gives:

bsi [Vt+1(n + 1, 1)� 2Vt+1(n, 1) + Vt+1(n� 1, 1)]
+ (1� bsi) [Vt+1(n + 1, 0)� 2Vt+1(n, 0) + Vt+1(n� 1, 0)] � 0,

which holds because of the assumed concavity of Vt+1, regardless of b. Next, assume
bt(n + 1, 0) = bt(n, 0) = 0 and bt(n� 1, 0) = 1 (notice that we already established that
bt is non-increasing in n given the induction hypothesis). In this case, writing out (15)
gives:

Vt+1(n + 1, 0)� 2Vt+1(n, 0) + [si Vt+1(n� 1, 1) + (1� si) Vt+1(n� 1, 0)] � 0 (16)

Notice that since bt(n, 0) = 0, we must have Vt+1(n, 0) > Vt+1(n, 1). Since the left-
hand side is increased relative to (16), it is therefore sufficient to show:

Vt+1(n + 1, 0)�Vt+1(n, 0)
� [si [Vt+1(n, 1)�Vt+1(n� 1, 1)] + (1� si) [Vt+1(n, 0)� Vt+1(n� 1, 0)]] � 0. (17)

Because of (14), this is equivalent to:

Vt+1(n + 1, 0)�Vt+1(n, 0)
� [si [Vt+1(n + 1, 0)�Vt+1(n, 0)] + (1� si) [Vt+1(n, 0)� Vt+1(n� 1, 0)]] � 0,

which is satisfied because of the assumed concavity of Vt+1(n, 0). The last case is
bt(n + 1, 0) = 0 and bt(n, 0) = bt(n� 1, 0) = 1. Writing out (15) gives:

Vt+1(n + 1, 0)� 2 [si Vt+1(n, 1) + (1� si) Vt+1(n, 0)]

+
h
si Vt+1(n� 1, 1) + (1� si) Vt+1(n� 1, 0)

i
� 0. (18)

This time, since bt(n, 0) = 1, we must have Vt+1(n, 0) � Vt+1(n, 1). By the same
argument as before, it is sufficient to establish the following condition where the left-

15



hand side has is increased relative to (18):

Vt+1(n + 1, 0)�Vt+1(n, 0)
� [si [Vt+1(n, 1)�Vt+1(n� 1, 1)] + (1� si) [Vt+1(n, 0)� Vt+1(n� 1, 0)]] � 0.

This is (17) and therefore satisfied. Vt(n, 0) is therefore concave, which completes the
proof. 2

Proof of Proposition 3: We would like to show that bt(n, y)(si) is non-increasing in
si. From (10), we have that bt(n, y)(si) = 1 if and only if:

Vt+1(n + y, 1) � Vt+1(n + y, 0).

It is therefore sufficient to show that for all t and n:

∂Vt(n, 1)
∂si

�

∂Vt(n, 0)
∂si

. (19)

The proof is once again by induction. At time T, condition (19) is trivially satisfied
since VT(n,y)

∂si
= 0 for all n and y. Now assume that:

∂Vt+1(n, 1)
∂si

�

∂Vt+1(n, 0)
∂si

(20)

is satisfied for all n. To complete the proof, we need to show that (19) follows at time
t for all n. Using (11), condition (19) can be written as:

∂Vt(n, 1)
∂si

�

∂Vt(n, 0)
∂si

=

γ bt(n, 1) [Vt+1(n + 1, 1)� Vt+1(n + 1, 0)]� γ bt(n, 0) [Vt+1(n, 1)� Vt+1(n, 0)]

+ γ

�
(1� bt(n, 1)si)

∂Vt+1(n + 1, 0)
∂si

+ bt(n, 1)si
∂Vt+1(n + 1, 1)

∂si

�

� γ

�
(1� bt(n, 0)si)

∂Vt+1(n, 0)
∂si

+ bt(n, 0)si
∂Vt+1(n, 1)

∂si

�
� 0. (21)

The first term is less than or equal to zero since Lemma 1 shows:

Vt+1(n + 1, 1)�Vt+1(n + 1, 0) � Vt+1(n, 1)�Vt+1(n, 0)

and Lemma 1 together with (10) implies that bt(n, 0) � bt(n, 1). It therefore suffices
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to show that:

γ

�
(1� bt(n, 1)si)

∂Vt+1(n + 1, 0)
∂si

+ bt(n, 1)si
∂Vt+1(n + 1, 1)

∂si

�

� γ

�
(1� bt(n, 0)si)

∂Vt+1(n, 0)
∂si

+ bt(n, 0)si
∂Vt+1(n, 1)

∂si

�
< 0. (22)

This condition is satisfied since (13) and the induction hypothesis (20) imply:

∂Vt+1(n + 1, 1)
∂si

�

∂Vt+1(n + 1, 0)
∂si

=
∂Vt+1(n, 1)

∂si
�

∂Vt+1(n, 0)
∂si

,

which completes the proof. 2
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Figure 1: Births and Survivors in the Benchmark Model
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Figure 2: Births and Survivors in the Binomial Model
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Figure 3: Births and Survivors in the Sequential Model
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Figure 4: Age at First Birth in the Sequential Model
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Figure 5: Births and Survivors in the Binomial Model, σ = .01, ε = .01
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Figure 6: Births and Survivors in the Sequential Model, σ = .01, ε = .01
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