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Abstract

While level sets have demonstrated a great potential for 3D medical image segmentation,

their usefulness has been limited by two problems. First, 3D level sets are relatively slow to

compute. Second, their formulation usually entails several free parameterswhich can be very

difficult to correctly tune for specific applications. The second problem iscompounded by

the first. This paper describes a new tool for 3D segmentation that addresses these problems

by computing level-set surface models at interactive rates. This tool employs two important,

novel technologies. First is the mapping of a 3D level-set solver onto a commodity graph-

ics card (GPU). This mapping relies on a novel mechanism for GPU memory management.

The interactive rates level-set PDE solver give the user immediate feedback on the parameter

settings, and thus users can tune free parameters and control the shape of the model in real

time. The second technology is the use of region-based speed functions,which allow a user

to quickly and intuitively specify the behavior of the deformable model. We have found that

the combination of these interactive tools enables users to produce good, reliable segmenta-

tions. To support this observation, this paper presents qualitative resultsfrom several different

datasets as well as a quantitative evaluation from a study of brain tumor segmentations.
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1 Introduction

Image segmentation is arguably the most widely studied problem in image processing, and the lit-

erature shows a plethora of image segmentation algorithms that rely on a diverse range of strategies

such as statistics, differential geometry, heuristics, graph theory, and algebra. No one segmentation

technique has emerged as being superior to all others in all circumstances, and thus it seems that

the field of medical image processing will evolve to a state where researchers and clinicians have

access to a set of segmentation tools, i.e. a toolbox, from which they can choose the particular tool

that is best suited for their particular application.

A complete segmentation toolbox will include a set ofgeneral purposetools as well as various

specializedsegmentation tools. General purpose tools are those that can be quickly launched

and used as the need arises in a wide range of applications. Specialized tools rely on stronger

assumptions about a specific modality, anatomy, or application. When properly trained, tuned, and

applied we would expect specialized tools to perform betterthan general purpose tools—when all

other factors, such as operator time and compute time, are equal. Among general tools, the most

popular example, and the goal standard for many applications, is hand contouring, which entails a

knowledgeable user (e.g. a medical doctor) creating a 2D curve, drawn by manipulating a mouse,

on a sequence of slices to delineate the object of interest.

This paper describes a new, general-purpose segmentation tool that relies on interactive de-

formable models implemented as level sets. While level sets have demonstrated a great potential

for 3D medical image segmentation, their usefulness has been limited by two problems. First,

3D level sets are relatively slow to compute. Second, their formulation usually entails several free

parameters, which can be very difficult to correctly tune forspecific applications. The second prob-

lem is compounded by the first. That is, users find it impractical to explore the space of possible

parameter settings when an example result from a point in that space requires minutes or hours to

generate.

The software application described in this paper is called GIST (GPU-based Interactive

Segmentation Tool). GIST updates a level-set surface model at interactiverates on commodity
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graphics cards (GPUs), such as those that are commonly foundon consumer-level personal com-

puters. It can be applied to a general set of medical and biological applications by tuning several

free parameters. Despite its general nature, we demonstrate the effectiveness of GIST by a quan-

titative comparison to a specialized tool and the associated gold standard for a specific problem:

brain tumor segmentation [1, 2]. This paper make the following contributions:

• A 3D segmentation tool that uses a new level-set deformationsolver to achieve interactive

rates (approximately 10-15 times faster than previous solutions).

• A interactive mechanism for defining a level-set speed function that works on both scalar

and multivalued (i.e. spectral) data.

• Quantitative and qualitative evidence that this interactive level-set approach is effective for

brain tumor segmentation.

The remainder of the paper is organized as follows. The next section gives some technical

background and related work on level sets, GPUs, and segmentation evaluation methods. Sec-

tion 3 describes the formulation of the level-set equationsand the solution on the GPU. Section 5.2

presents qualitative results on various datasets and a quantitative analysis of the performance of

the method for brain tumor segmentation. Section 6 summarizes this work.

2 Background and Related Work

2.1 Level Sets

This paper relies on an implicit representation of deformable surface models called the method of

level sets, proposed by Osher and Sethian [3]. The level-set method (See also Sect. 3) computes

the motion of a moving interface by solving a partial differential equation (PDE) on a volume. The

use of level sets has been widely documented in the medical imaging literature, and several works

give more comprehensive reviews of the method and the associated numerical techniques [4, 5].
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For certain classes of applications level sets have severaladvantages over parametric models.

Because they are implicit, level sets can change topology. This means that during a deformation a

user need not worry about surfaces colliding or pinching off. Also, level sets do not require repa-

rameterization as they deform far from their initial conditions—e.g. deformable meshes typically

require the insertion or deletion of triangles under such circumstances [6]. Finally, level sets allow

for geometricsurface deformations, which means that the results of a deformation process depend

on the shape of the surface and the input data andnot on some underlying parameterization. The

level-set method is a general framework that must be tuned tospecific applications.

As with the original work on image segmentation by parametric deformable models [7], the

level-set approach to segmentation typically combines a data-fitting term with a smoothing term.

However, there are alternatives. For instance, Whitaker [8]proposes a formulation that mimics

parametric deformable models, in which level surfaces movetoward edges (high gradient mag-

nitude) in volumes. In that formulation the model must be within a somewhat narrow band of

attraction (defined by the second derivative) in order to lock onto such edges, and therefore the

author proposes a multiscale computational method to improve convergence. Malladi et al. [9] de-

scribe a formulation in which level curves/surfaces expand(or contract) with a motion that slows

at image edges. Because of the monotonic expansion/contraction, convergence to local minima is

less of a problem, but the results tend to be biased either inward or outward. Caselles et al. [10]

propose an alternative that minimizes an edge-weighted area metric. In that case the data term is

weighted more heavily as the model approaches its target. These methods (and many others) focus

on image edges, but the the literature documents several other strategies for fitting level sets to

image data. For instance, several authors have propose using the statistics of the greyscale interior

of the model to control the motion [11, 12]. Alternatively, the motion of the level set can depend

on a variational formulation that positions the interface to create discontinuities that best model the

discontinuities in the input data [13, 14, 15]. In this paperwe use a supervised, statistical classifier

to drive the motion of the level-set model.

Virtually all of these methods include a form of mean curvature to keep the level-set smooth
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as it converges on a solution. Whitaker [8] proposes a weighted sum of principle curvatures to

preserve cylindrical structures. Lorigio et al. [16] proposes the minimum curvature, in the context

of segmenting blood vessels; this is equivalent to a space-curvature shortening for very thin objects.

Recently, Tasdizen et al. propose the diffusion of normals inorder to approximate higher-order

geometric flows [17, 18].

Solving level-set PDEs on a volume requires proper numerical schemes [19] and entails a sig-

nificant computational burden. Stability requires that thesurface can progress at most a distance

of one voxel at each iteration, and thus a large number of iterations are required to compute sig-

nificant deformations. There is a special case of the level-set PDEs in which the surface motion

is strictly inward or outward. Such equations can be solved somewhat efficiently using thefast

marching method[4] and variations thereof [20]. However, this case covers only a very small

subset of interesting speed functions, and such speed functions are inconsistent with interactive

parameter tuning. In general we are concerned with problemsthat include a surface curvature term

and simultaneously require the model to expand and contractto match the data.

Efficient algorithms for solving the more general level-setproblem rely on the observation that

at any one time step the only parts of the solution that are important are those adjacent to the

moving surface. In light of this several authors have proposed numerical schemes that compute

solutions for only those voxels that lie in a small number of layers adjacent to the surface as shown

in Fig. 1b. Adalsteinsson and Sethian [21] have proposed thenarrow band method, which updates

the embedding on a band of 10-20 pixels around the model, and reinitializes that band whenever

the model approaches the edge. Whitaker [22] proposed thesparse-fieldmethod, which introduces

a scheme in which updates are calculated only on the wavefront, and several layers around that

wavefront are updated via a distance transform at each iteration. Peng et al. [23] present a similar

local method. Even with this very narrow band of computation, update rates using conventional

processors on typical medical data sets (e.g. 2563 voxels) are not interactive. This is the motivation

behind the GPU-based solver in GIST.
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2.2 Graphics Processing Units for Scientific Computation

Graphics processing units have been developed primarily for the computer gaming industry, but

over the last several years researchers have come to recognize them as low cost, high performance

computing platforms. Two important trends in GPU development, increased programmability and

higher precision arithmetic processing, have helped to foster new non-gaming applications.

Graphics processors outperform central processing units (CPUs)—often by more than an order

of magnitude—because of theirstreamingarchitecture[24] and dedicated high-speed memory. In

the streaming model of computation, arrays of input data areprocessed identically by the same

computationkernel to produce output data streams. The GPU takes advantage of the data-level

parallelism inherent in this model by having many identicalprocessors execute the computation

in parallel. This computation model has been used by a numberof researchers to map a wide

variety of computationally demanding problems to GPUs. Examples include matrix multiplication,

finite element methods, and multi-grid solvers [25, 26, 27].All of these examples demonstrate a

homogeneous sequence of operations over a densely populated grid structure.

Strzodka et al. [28] were the first to show that the level-set equations could be solved using a

graphics processor. Their solver implements the two-dimensional level-set method using a time-

invariant speed function for flood-fill-like image segmentation, without the associated curvature.

Their solver does not take advantage of the sparse nature of the level-set PDEs and therefore

performs only marginally better than a highly-optimized sparse-field CPU implementation. The

work in this paper relies on a three-dimensional generalization of [28], which includes a second-

order curvature computation, and a significantly improved GPU solver that implements a narrow-

band strategy. Also related is the work of Sherbondy et al. [29], in which they identify regions of

interest to solve a diffusion equation for volume segmentation.

This paper describes a GPU computational model that supports time-dependent, sparse grid

problems. These problems are difficult to solve efficiently with GPUs for two reasons. The first

is that in order to take advantage of the GPU’s parallelism, the streams being processed must be

large, contiguous blocks of data, and thus grid points near the level-set surface model must be
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packedinto a small number of textures. The second difficulty is thatthe level set moves with each

time step, and thus the packed representation must readily adapt to the changing position of the

model. This requirement is in contrast to the recent sparse matrix solvers [30, 31] and previous

work on rendering with compressed data [32, 33]. In the two sparse-matrix solvers[30, 31], a

packed texture scheme is used to efficiently compute sparse matrix-vector multiplications as well

as compute values of the sparse matrix elements on the GPU. The scheme is static, however, in the

sense that the nonzero matrix elements must be identified before the computation begins.

2.3 Segmentation Evaluation

This paper includes a systematic evaluation of the performance of GIST. The role of segmentation

evaluation is to understand the strengths, limitations, and potential applications of a particular

segmentation algorithm. There are two strategies for evaluating segmentation algorithms. One

strategy is to study segmentation performance in the context of a particular clinical or scientific

question [34, 35]. For instance, the effectiveness of the algorithm within a study that monitors

the volumes or sizes of tumors. The second approach is to study to evaluate segmentation in

the absence of a specific clinical application by quantifying the general behavior of the algorithm

relative to anidealsolution. This paper takes the second approach, and uses general shape metrics

to compare watershed segmentation results with the defactogold standard for clinical applications,

which is hand contouringone slice at a time (which we will also callmanualsegmentation) by

expert observers.

Segmentation evaluation is difficult because of the lack of standard metrics and the difficulty of

establishing ground truth in clinical data. Our evaluationmethodology is derived from ideas devel-

oped by [36], and others [37, 38, 39], who emphasize the importance of quantitative evaluation and

statistical metrics. The study in this paper concerns a user-assisted segmentation technique, which

requires a user-based evaluation to capture variations in the individual decision-making process.

Experimental trials across a number of users and images[40,41] can generate data appropriate for
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statistical analysis that account for user variability.

A combination of different factors determines the effectiveness of a segmentation. For instance

Udupa et. al[37] propose a quantification of performance based on validity of the results (accuracy),

reproducibility of the results (precision), and efficiencyof the segmentation method (time). Other

researchers have studied the sensitivity of the technique to various disruptive factors such as data

artifacts, pathology, or individual anatomical variation(robustness) [42].

Accuracy metrics typically rely on aground truthsegmentation—segmentations that are some-

how close to this ground truth are considered better than those that are not. Studies with digital or

physical phantoms provide a ready definition of ground truth. However, for biological or clinical

data sets, ground truth is usually unknown. In such a case, researchers typically rely on experts to

delineate the ground truth by hand [42, 43]. Experts seldom all agree, but a statistical combination

(averaging) of several expert segmentations can account for expert variability. Averaging of mul-

tiple nonparametric shapes, however, is itself a difficult problem. One technique for combining

multiple segmentations isSimultaneous Truth and Performance Level Estimation(STAPLE), [44].

This treats segmentation as a pixelwise classification, which leads to an averaging scheme that

accounts for systematic biases in the behavior of experts

The accuracy of an individual experimental segmentation isusually given through some mea-

sure of a region’s overlap and its distance from the ground truth. Common distance metrics include

the Hausdorff distance [45] and the root mean squared distance between selected boundary points

[38, 39]. Often overlap is characterized by asimilarity measure between experimental and ground

truth volumes. One common similarity measure is the cardinality of the intersection (in pixels or

voxels) of positive classifications in two volumes volumes over the union of the positive classifi-

cations [40, 46], denoteds. Another overlap metric is thetotal correct fraction, c, which is simply

the percentage of correctly classified pixels in the image volume (negative and positive) [1].

Another strategy for evaluating a single-object segmentation is to view each pixel as an instance

of a detection task, which gives rise to metrics for sensitivity and specificity. Sensitivity,p, is the

true positive fraction of the segmentation, the percentageof pixels in an image correctly classified
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as lying inside the object boundary. Specificity,q, is the true negative fraction, the percentage

of pixels in a segmentation correctly classified as lying outside the object boundary. Because

there is an explicit tradeoff between sensitivity and specificity, researchers have proposed using

receiver operator characterizations (ROC), which monitor the behavior of this tradeoff for different

segmentation algorithms or parameter settings [47, 37].

The precision of a segmentation method is an indicator of howrepeatable the results are using

that technique. Alternatively, precision is an indicator or the degree of randomness inherent to the

method. Precision does not rely on knowing ground truth and can be estimated by applying the

similarity measureswithin a set of experimental segmentations [37]. The meansvalue from these

comparisons gives a characterization of the precision of the method.

The efficiency of a segmentation technique is a measure of thetime involved in achieving a

segmentation. This can include user interaction and compute times. These two characteristics are

usually considered individually, because each has a separate cost and will affect the practicability

of the method in a way that depends on the specific application.

3 Level-Set Formulation and Algorithms

We begin this section with a brief review of the notation and mathematics of level-set methods

and describe the particular formulation that is relevant tothis paper. Comprehensive reviews of

level-set methods are given the literature [4, 5].

An implicit model is a surface representation in which the surface consists of all pointsS =

{x̄|φ(x̄) = 0}, whereφ : ℜ3 7→ ℜ. Level-set methods relate the motion of that surface to a PDE

on the volume, i.e.∂φ/∂t = −∇φ · v̄(t), where describes the motion ¯v(t) of the surface. Within

this framework one can implement a wide range of deformations by defining an appropriate ¯v. For

segmentation, the velocity often consists of a combinationof two terms [8, 9]

∂φ
∂t

= |∇φ|
[

αD(x̄)+(1−α)∇ ·
∇φ
|∇φ|

]

, (1)
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whereD is a data term that forces the model toward desirable features in the input data, the term

∇ · (∇φ/|∇φ|) is the mean curvature of the surface, which forces the surface to have less area (and

remain smooth), andα ∈ [0,1] is a free parameter that controls the degree of smoothness inthe

solution. There are several variations on this framework inthe literature, e.g. [10].

The behavior of the model is mostly characterized by the dataterm and how it relates to the

image. Invariably, the data term introduces free parameters, and the proper tuning of those param-

eters, along withα, is critical to making the model behave in a desirable manner.

3.1 An Intensity-Based Speed Function

Our strategy is to construct a speed functionD that causes the model to grow in regions where the

data is consistent with the desired segmentation and to contract in regions where it is not. We can

achieve this by lettingD have positive or negative values depending on whether or notthe model

is within a specified range of data values. In this case the speed function at any one point is based

solely on input value valueI at the point ¯x in the image, i.eD(x̄) = D(I(x̄)).

Such a simple scalar speed function is given by

D(I) = ε−|I −T|, (2)

whereT controls the dominant intensity of the region to be segmented andε controls the range

of greyscale values aroundT that could be considered inside the object. Thus when the model

lies on a voxel with a greyscale level betweenT −ε andT +ε, the model expands and otherwise it

contracts. The speed term is gradual, and thus the effects oftheD diminish as the model approaches

the boundaries of regions whose greyscale levels lie withintheT ± ε range. Even with this simple

scheme a user would have to specify three free parameters,T, ε, andα, as well asan initialization.

Figure 1 shows a graph ofD defined in this manner.
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D(I)
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T
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T-ε T+ε
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Model
Contracts

(a) (b)
Figure 1: (a) A speed function based on image intensity causes the model to expand over regions
with greyscale values within the specified range and contract otherwise. (b) Efficient implementa-
tions of level sets entail computing the solution only near the moving wavefront.

3.2 A Statistical Classifier

The speed term in (2) represents a simple one-dimensional, two-class statistical classifier. If we let

P(A|I) be the probability that a pixel lies in the object conditional on the pixel/voxel valueI and

P(B|I) be the probability that the pixel is not in the object, then the Bayesian decision variable is

D =
P(A|I)
P(B|I)

=
P(I |A)P(A)

P(I |B)P(B)
, (3)

which should be compared to unity in order to decide on eitherA or B. If all intensities in the

background,B, are equally likely (the goal here issimplicity), the denominator is constant, and the

log of D is

logD = logP(I |A)+ logP(A)− logP(I |B)− logP(B). (4)

If we let the statistics of the inside of the object be Gaussian P(A|I) = exp[−(I −µ)2/2σ2], we

have the following decision rule for a pixel ¯x with intensityI :

x̄∈







A |I −T| ≤ ε

B otherwise
, (5)

11



whereε =
[∣

∣2σ2(logP(A)− logP(I |B)− logP(B))
∣

∣

]
1
2 , andT = µ. Thus, we see that this simple

three parameter model allows a user to explore the possibilities of this simple statistical classifier

and combine it with the geometric information embodied in the curvature of the level set.

This analysis sheds some light on the proper interface for these parameters. For instance, we

can help the user choose these parameters by providing a interactive tool that allows a user to

select a set of points (e.g. by holding down a mouse button andmoving the cursor over the area of

interest) that generate a mean and a variance, and use these values initializeT andε.

3.3 A Speed Function for Spectral Volumes

This statistical classifier also extends to image/volumes with multiple values, i.e.spectral images,

with values denoted̄I(x̄) ∈ ℜm. In this case the in-object condition probability is

P(A|Ī) = exp

[

−
1
2
(Ī − µ̄)TΣ−1(Ī − µ̄)

]

, (6)

whereΣ is the covariance. We can express the classifier in terms of Mahalanobis distance. That is:

x̄∈







A D≤ ε

B otherwise
, (7)

andD =
[

(Ī − µ̄)TΣ−1(Ī − µ̄)
]

1
2 .

The graph of the speed function given in (7) is an ellipsoidalhypercone that crosses the zero

axis of the independent variable to form an ellipsoid, centered atµ̄, with a shape and orientation

given by the covariance. Figure 2 depicts this form= 2. The free parameterε defines thewidth of

the resulting ellipsoidal classifier in units of standard deviation. The model expands when it lies on

a pixel whose value is within the classifier range and contracts elsewhere. This Mahalanobis clas-

sifier is a natural extension of the scalar speed function that accounts for the correlation between

different features of̄I and allows for curved decision boundaries. In the case whereall features are
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D(I) µ

I

Model expands

Mode contracts

Ellipsoidal cone

Plane D(I)=0
Figure 2: (a)A Mahalanobis distance classifier describes a mean and standard deviation of feature
values that is normalized with respect to the covariance of the features. (b) Image values within
the classifier range are mapped to a positive speed. Values outside the classifier range are mapped
to a negative speed.

uncorrelated Mahalanobis distance is equivalent to Euclidean distance.

For three-channel data such as color RGB images, the covariance matrix and mean vector entail

a total oftwelve free parameters. Thus, it is not feasible to provide a user interface to interactively

control all of the parameters associated with the multivariate form of this speed function. Instead,

we allow the user to extract the mean and variance from a region of interest and provide the user

with a single free parameterε, which controls the size of the ellipsoidal region in the feature space

and corresponds to the relative prior probabilities between the object and background.

3.4 The Role of Surface Curvature

If a user were to initialize a model in a volume and use the speed terms in Eqs. (2–7) without any

curvature the results would be virtually the same as a simpleflood fill over the region bounded

by the upper and lower thresholds (or the ellipsoid in themD case). However, the inclusion of

the curvature term alleviates the criticalleakingproblem that arises when using flood filling as a

segmentation technique. The leaking effect is particularly acute in 3D segmentations and is easily

demonstrated on a brain tumor data set, as shown in Fig. 3. Furthermore in cases where the noise in

the data corrupts the shapes of object boundaries, the curvature term can provide smoother results.
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(a) (b) (c)
Figure 3: Showing one slice of a MRI volume: (a) The spherical initialization. (b) A model
expands to fill the tumor but leaks through gaps and expands into other anatomy. (c) The same
scenario with a degree of curvature prevents unwanted leaking. The level set isosurface is shown
in yellow.

However, oversmoothing with curvature can significantly distort the shapes of segmented objects,

and if the weight of the curvature is too large the model will pull away from the data and collapse

to a point.

3.5 Rescaling the Distance Function

When solving the PDE associated with Eq. (1), the different level sets of the functionφ will tend

to spread out in some regions of the volume (due to the curvature term and numerical diffusion)

and aggregate in other areas (due to the speed term). These phenomena are characterized by a

decreasing or increasing of|∇φ| over time, respectively. Both of these tendencies will undermine

the effectiveness of narrow-band algorithms, and therefore the literature describes mechanisms for

maintainingφ with a relatively constant gradient magnitude. For instance, in [21], the authors stop

the evolution ofφ at regular intervals and establish a newφ that corresponds to the signed distance

transform of the zero level set. In [22], the author updates the values of grid points around the

zero-set ofφ in layers that maintain an approximation to the signed distance.

For the GPU-based solver, neither of this strategies is appropriate, because they entail dynamic

data structures that cannot be easily implemented in the streaming architecture. Instead we main-

tain |∇φ|, by the addition of an extra term to the update equation (PDE)that governs the evolution

of φ. This term will force the level sets ofφ to spread out if the gradient is too large and to move
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together if the gradient is too low. Thisrescalingterm,Gr , is of the form

Gr = φ
(

gφ −|∇φ|
)

, (8)

wheregφ, the target magnitude for the gradient.

This rescaling term has several properties that are important to the implementation of GIST.

First, the distance transform of the level set, scaled bygφ, is formally (i.e. ignore points where∇φ is

undefined) a fixed point of (8). Second, becauseGr is proportional toφ, it does not affect the values

of φ near the zero set, and therefore should not impact the evolution of the surface model. Finally,

whenGr is implemented with the upwind scheme, it will maintain monotonicity, and therefore

the fixed point of this term applied to updates of grid representing φ will be a clamped distance

transform with extreme values limited by those in the initial conditions. Thus,Gr will maintain the

narrow-band property, which is to say thatφ will have |∇φ| ≈ gφ within a narrow band around the

zero set and|∇φ| ≈ 0 elsewhere.

4 Software Application Design

This section describes GIST, an interactive level-set segmentation tool, and the GPU implemen-

tation that makes it possible. It begins with a brief review of the GPU-based level-set solver (for

a more complete description see [48]), describes the visualization of the volume data and surface

models, and then describes the user interface to GIST.

4.1 GPU Level-Set Solver

The efficient solution of the level-set PDEs relies on only updating voxels that are on or near the

isosurface. The sparse GPU level-set solver achieves this by decomposing the volume into a set of

small 2D tiles (e.g. 16 x 16 pixels each). Only those tiles with non-zero derivatives are stored on

the GPU (Fig. 4b). Theseactivetiles are packed, in an arbitrary order, into a large 2D texture on

the GPU. The 3D level-set PDE is computed directly on this compressed format. Because active
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Figure 4: (a) The modern graphics processor computation pipeline. (b) The proposed method relies
on packing active tiles into 2D texture—a compressed format.

tiles are identified by non-zero gradients, it is crucial that the volume in which the level-set surface

is embedded,φ, resemble a clamped distance transform. In this way regionson or near the model

will have finite derivatives, while tiles outside this narrow band will be flat, with derivative values

of zero. Thus, the rescaling term given in Eq. (8) is particularly important.

For each PDE time step update, the 3D neighborhoods of all pixels in the active tiles must be

sampled from the compressed 2D compressed format. For each active tile, the CPU sends texture

coordinates, i.e. memory addresses, to the GPU for each of the tiles that share a side or an edge in

the 3D volume. These texture coordinates are generated and maintained on the CPU. Using these

texture coordinates, the GPU can perform neighborhood lookups to produce the complete set of

partial derivatives (finite differences) used for the gradient and curvature calculations, which are in

turn used to update values ofφ.

After the level-set embedding is updated, the GPU uses built-in, hardware accelerated,mipmap-

ping capabilities to create a bit vector image that summarizes the status of each tile. Each pixel in

this coarse texture contains a bit code that identifies if that tile, as well as any of its six cardinal

neighbors, need to be active for the next time step. This small image (<= 64KB) is read back by

the CPU and used to update the data structures that track the active volume regions. The texture

coordinates are updated based on these structures and the next time step is computed.

This GPU-based level-set solver achieves a speedup of ten tofifteen times over a highly-

optimized, sparse-field, CPU-based solver. All benchmarks were run on an Intel Xeon 1.7 GHz

processor with 1 GB of RAM and an ATI Radeon 9700 Pro GPU. For the tumor segmentations

performed in the user study, the GPU-based solver ran at 60-70 time steps per second while the
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CPU version ran at 7-8 steps per second. The final steps of the cerebral cortex segmentation shown

in Fig. 10 ran at 4 steps per second on the GPU and 0.25 steps persecond on the CPU.

4.2 Interactive Visualization

An important aspect of GIST is the interactive visualization of the level-set surface, the volume

data, and the speed function. This interactivity includes 2D slice-by-slice visualization of data,

model, and speed, as well as 3D volume/surface rendering with user-controlled clipping planes to

visualize and query the volume data.

GIST provides a simultaneous volume visualization of the input data with the evolving level-

set model. The volume renderer associated with GIST performs a full 3D (transfer-function based)

volume rendering of the greyscale data. For rendering the original volume, the input data and its

gradient vectors are kept on the GPU as 3D textures. This GPU-based volume rendering incor-

porates multidimensional transfer functions as describedin Kniss et al. [49]. The current imple-

mentation of GIST renders only scalar volume data, and thus for spectral data it renders only a

derived scalar quantity (e.g. one component or magnitude).Future work will include the use of

multidimensional transfer functions to directly render spectral data.

For rendering the evolving level-set model, we use a modification of the conventional 2D sliced

approach to texture-based volume rendering [50]. The modification to the conventional approach

is the rendering of the level-set solution directly from thepacked tiles, which are stored as a single

2D texture. The level-set data and tile configuration is dynamic, and therefore does not require

separate precomputed versions of the data (e.g. sliced along cardinal views) as is typically done

with 2D texture approaches. Instead the renderer reconstructs these views, as needed, each time

the volume is rendered. For efficiency, the renderer reuses data wherever possible. For instance,

lighting for the level-set surface uses gradient vectors computed during the level-set update stage.

The rendering of the source data relies on precomputed gradient data—the gradient magnitude is

used by the transfer function and the gradient direction is used in the lighting model. More details

on this design are given in [48].
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Figure 5: The main user interface of software application, called GIST. The center window shows
a slice of an MRI volume overlaid by a brain tumor segmentationin progress. The right window
displays the sign of the speed function.

4.3 Interface and Usage

GIST combines a graphical user interface (GUI), which controls the underlying GPU-based level-

set solver, with a volume renderer. The GUI presents the userwith two volume slices, a 3D

rendering window, and a control panel. The first slice windowdisplays the current segmentation

as a yellow line overlaid on top of the target data. The secondslice viewing window displays

a visualization of the speed function that use color to clearly delineate the positive and negative

regions. The GUI has controls for scrolling through image slices, starting and stopping the solver,

and saving the 3D segmentation to file. The user can also querydata values in the slice viewer and

create spherical surface models to use as initializations to the level-set solver. A screen capture of

the slice-based interface is shown in Fig. 5.

To set the free parameters of the speed function, the user samples image values by clicking and

dragging the mouse in regions of interest through the 2D slice view window (center window of

5). As the user gathers statistical samples, GIST simultaneously updates the mean value and the

variance or covariance that defines the shape of the classifier. A user will typically probe the object

across a range of slices for a better representative sampling than can be obtained in just one image

slice. The remaining speed function parameterε is set manually in the GUI. The speed function is

updated and displayed in real time as parameters are modifiedto guide the process.

The volume renderer window displays a 3D rendering of the source data and a surface rendering
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(a) (b)
Figure 6: Two views of the volume rendering window from GIST.A brain cortex segmentation
is shown at left with a cutting plane applied to the renderingon the right. The intersection of the
level-set surface with the cutting plane is shown as a yellowband.

of the evolving level-set model. The opacity of each rendering can be controlled by the user. A

clipping plane with the original data can also be applied to the rendering in any orientation and

position. All of the interactions available in the 2D slice view are also available on the clipping

plane, e.g. the user can probe data to set the speed term parameters and draw spheres for initializing

the model directly into the 3D view. The intersection of the level-set solution with the clipping

plane is shown as a yellow band. Figure 6 shows two views from the volume rendering window.

For a typical segmentation GIST, a user scrolls through slices until they find the location of the

target object and then queries values with the mouse to set the speed function parameters. Next,

the user creates an initial model by drawing one or more spheres within the object and then starts

the solver. The user scrolls through slices as the model begins to deform, observing its behavior

and modifying curvature (model smoothness) and classifier width as needed. The user may also

stop the solver and resample the data to either refine or replace the current statistical speed function

parameters. Using the immediate feedback they get on the behavior of the model, they continue

modifying parameters until the model boundaries appear to align with those of the tumor. In a

typical 5 minute session, a user may modify the model parameters between 10 and 30 times.
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5 Results

This section presents results from the application of our GPU-based level-set segmentation tool to

a range of scalar and spectral data. The evaluations in this section include qualitative and quanti-

tative comparisons with hand contouring as well as two otheruser-assisted methods. We choose

hand contouring as the main focus of the comparison for several reasons. First, it is (like the pro-

posed method) a general purpose segmentation method. Second, the field at large considers hand

contouring (by experts) to be the de facto gold standard. Third, hand contouring is, in many cases,

the state of the art. That is, a large number of clinical applications that require image segmentation

still rely on hand contouring as their primary segmentationtechnique.

Section 5.1 gives a qualitative analysis of several anatomical segmentations from MRI and

color cryosection data. A more rigorous, quantitative evaluation is presented in Sect. 5.2, which

describes a user study of our software and compares results of brain tumor segmentations with

ground truth obtained from experts.

5.1 Qualitative Evaluation

As a preliminary evaluation of our segmentation tool, we segment a variety of anatomical structures

in several imaging modalities: scalar and spectral MRI, and color cryosection data from the Visible

Human Female (VHF) [51]. This section presents results and discussion of those segmentations.

Figure 7(a) is a rendering of a cortical brain surface segmentation from a 256 x 256 x 175 MRI

volume. The complete segmentation required no preprocessing (e.g. no filtering) of the data and

required five minutes using the one-dimensional classifier speed function with a small, spherical

surface (placed by the user) as the initial model. This type of segmentation is impractical to com-

pute on ordinary, CPU-based solvers because of the size and complexity of the solution. In our

experience with state-of-the art CPU-based solvers (e.g. see the Insight Toolkit,www.itk.org) the

same cortical segmentation typically takes more than an hour.

For MRI spectral data, we use volumes consisting of co-registered T1, T2, and proton density
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(a) (b)
Figure 7: Renderings of (a) brain cortical surface from scalar MRI and (b) white matter from
spectral MRI show qualitatively good results on large, complex structures computed at interactive
rates.

data. This combination of image modalities requires the three-dimensional classifier, given in

Eq. (7), to take full advantage of the wider spectrum of information. Figure 7(b) shows a rendering

of a segmentation of the white matter of the brain. As with thecorticle segmentation, the results

are encouraging because they can be obtained in only a few minutes (no preprocessing) with a

simple sphericalseed pointinitialization. We have seen similarly promising results with our tool

segmenting skin and skull tissue from spectral MRI data.

For the VHF color cryosection data, we use a region of interest (cropped volume) from the

head that contains two interesting structures: the right lateral rectus muscles, and anterior portions

of the right and left optic nerves. The texture information in this data set posed a significant

challenge, and therefore we preprocessed the data by smoothing with 10 iterations of modified-

curvature diffusion [52]. This diffusion step blurs the more homogeneous regions of the data while

preserving object boundaries. This nonlinear diffusion isrelatively computationally expensive,

especially on spectral data, and it required approximately20 minutes of computation on a two-

processor Pentium IV desktop machine.

Figure 8 presents the results of our VHF anatomical segmentations and compares them with

results obtained using other general-purpose segmentation methods. Column (a) shows a single

slice of the original data with the target object for segmentation highlighted. Column (b) is a sur-

face rendering of the results using our level-set tool. The results from (b) are overlaid on the slice
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Figure 8: Visual comparison of surface renderings of GPU level-set (b) and manual (c) segmenta-
tions of the Visible Human Female color cryosection anatomy. The targeted anatomical structure is
highlighted in column (a), which shows the segmentation from (b) superimposed over a transverse
slice through the original color data. Column (d) is a comparison with the user-assisted watershed
technique.

in column (a). Expert segmentations of the same structures are shown in 8(b). The expert segmen-

tations were obtained from multiple operators at Harvard Brigham and Women’s Hospital and at

the University of Utah using the Slicer Tool [53]. The renderings shown in (b) are of composite

ground-truth volumes created with the STAPLE method described in Sect. 5.2. Column (c) shows

results obtained using another general, interactive segmentation method based on morphological

watersheds segmentation method (for details see [54]).

Visual inspection of the GPU level-set results show them to be of similar quality as the hand-

contour and watershed results. Anterior and posterior sections optic nerves in the area of the

optic chiasm are segmented separately in this example and combined prior to rendering. The

current speed function implementation in GIST is limited toa single statistical feature profile, and

therefore distinct structures in color space such as the optic chiasm must be segmented separately.

Because of the curvature term in (1), segmentations created using our tool are naturally anti-

aliased. The level-set technique also tends to produce a smoother boundary in the axial direction
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than the hand-contour and watershed methods, which tend to more resemble a stack of 2D slices

with poor continuity of the boundary in the axial direction.The greatest advantage to the GPU

level-set segmentation is its relative efficiency. The timetaken for the VHF segmentations are up

to 20 times faster than hand-contouring (several minutes versus up to several hours) and were up

to 6 times faster than using the watersheds method (full processing time). As the following section

will demonstrate, the level-set segmentation tool can generally produce acceptable results on the

raw image data, which is not possible with many other algorithms, such watershed segmentation;

therefore the level-set segmentation tool is particularlyuseful for fast, impromptu segmentations

of 3D data sets.

5.2 User Study

5.2.1 Motivation

The purpose of this study is to determine if our level-set tool can produce volumetric delineations

of brain tumor boundaries comparable to those done by experts (e.g. radiologists or neurosur-

geons) using traditional hand-contouring. We apply our method to the problem of brain tumor

segmentation using data from theBrain Tumor Segmentation Database, which is made available

by the Harvard Medical School at the Brigham and Women’s Hospital (HBW) [1, 2]. The HBW

database consists of ten 3D 1.5T MRI brain tumor patient datasets selected by a neurosurgeon as

a representative sampling of a larger clinical database. For each of the ten cases, there are also

four independent expert hand segmentations of one randomlyselected 2Dslicein the region of the

tumor.

We use nine cases for our study: three meningioma (cases 1-3)and 6 low grade glioma (4-6,

8-10). One case, number 7, is omitted because a quick inspection shows that its intensity structure

is too complicated to be segmented by the proposed tool—sucha problem remains as future work,

as we will discuss in Sect. 6. For this study, there isno preprocessing on the dataand there are no

hidden parameters in this study—all parameters in our system are set by the users in real time, as
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they interact with the data and the models.

The subjects consist of five people from among the staff and students in our group who have

each been given a brief introduction on how to use the application. During the study, each user

is asked to delineate the full, 3D boundaries of the tumor in each of the nine selected cases. We

set no time limit on the users and record their time to complete each tumor. None of our users

are experts in reading radiological data. It is not our intention to test for tumor recognition (tissue

classification), but rather to test whether parameters can be selected for our algorithm to produce

a segmentation which mimics those done by the experts. To control for tumor recognition, we

allow each user to refer to a single slice from an expert segmentation. Users are told to treat this

hand segmentation slice as a guide for understanding the difference between tumor and non-tumor

tissue. Our assumption is that an expert would not need such an example.

5.2.2 Aggregation of Expert Segmentation Data

The expert data serves two purposes in the this study. First,it provides a mechanism for estab-

lishing a ground truth, against which we can compare the level-set segmentation. Second, the

set of expert segmentations establish a performance benchmark for the accuracy, precision, and

efficiency of hand contouring.

Ground truth is established from manual segmentations by the experts using the STAPLE algo-

rithm [2], an iterative EM algorithm that accounts for systematic biases in the behavior of experts.

The STAPLE algorithm generates a fuzzy ground truth as well as sensitivity and specificity param-

eters for each expert and each case.

We denote a single subject within a population with the subscript j and the pixels within the

image/volume asi. An image of binary valuesDi j represents a segmentation for a particular

subject. Given sensitivitiesp j and specificitiesq j for each subject, the degree of confidence that a

particular pixel is in the target object is

Wi =
giαi

giαi +(1−gi)βi
, (9)
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wheregi is the prior probability that any pixel would be classified asinside the target object (usually

taken to be the fraction of the image that is filled by the object). The values ofα andβ are

α =
[

Π j p jDi j
][

Π j(1− p j)(1−Di j )
]

and β =
[

Πjqj(1−Dij )
][

Πj(1−qj)Dij
]

. (10)

Given a probability imageWi, the sensitivity/specificity for each subject can be updated as

p j =
∑i WiDi j

∑i Wi
and qj =

∑i(1−Wi)(1−Dij )

∑i(1−Wi)
. (11)

The full STAPLE algorithm entails iterating on these updates, back and forth between(p,q) and

W, until the process converges.

Accuracy is evaluated against aggregate volumes created for each segmented object by ap-

plying the STAPLE algorithm to the expert hand-contours. These aggregate (STAPLE) volumes

consist of a graded membership function (zero to one). We analyze the accuracy of the experi-

mental, level-set results by evaluating the sensitivity and specificity of each experimental subject,

using Eq. (11), relative to these aggregate volumes. We can then make comparisons by computing

average sensitivity and specificity for the two groups—subjects using hand contouring and sub-

jects using the level-set GUI. Additionally, we can combinevalues ofp j andq j to compute a total

correct fraction for a subject:

c j =
∑i WiDi j +∑i(1−Wi)(1−Di j )

∑i 1
. (12)

Ideally we would compute accuracy of hand-contour segmentations using aggregate data from

an independentgroup of expert segmenters. A characterization of the accuracy of a small group

of manual segmentations using ground truth generated as a complete aggregate ofthose same

segmentationscontains an clear bias that over estimates the accuracy of the expert segmentations.

A second, less conservative measurement that produces a more unbiased estimate of the manual

segmentation accuracy is a round-robinleave-one-outstrategy, [55], wherep, q, andc values for
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eachDi j are computed usingWk generated by all segmentationsk 6= j.

Accuracy metrics must be interpreted carefully. Note that where a segmentation technique

shows high sensitivity, there is a high confidence level in the results it produces fornegatively

classified pixels, and where a technique shows high specificity, there is a high confidence level

for positivelyclassified pixels. The magnitudes ofp andq are incommensurate because they are

percentages of different populations of pixels. Total correct fraction is particularly difficult to

interpret because it is biased by the ratio of the size of the image volume to the size of the target

object. Where this ratio is high,c approachesq. Where the ratio is low,c approachesp. Total

correct fraction is used in this study only as a way to compareour results with other published

results on the same data.

We quantify precision in this study using thesimilarity sjk of results from subjectsj andk,

sjk =
2∑i Di j Dik

∑i Di j +Dik
, (13)

and average similarity across all pairs of subjectsj 6= k. Accuracy, precision, and efficiency metrics

were also appliedacrosssubjects. Given the limited resources for this study and thescarcity of

manually segmented data, we were not able to makeintra-subject comparisons, which require

multiple segmentations from the same subject.

5.2.3 Discussion and Analysis

Figure 9 shows graphs of averagep, q, andc values for the experts and the users in our study.

Error bars represent the standard deviations of the associated values. This figure shows the average

accuracy across all experts using round-robin ground truth.

The performance of the experts and our users varies case by case, but in almost all cases the

performance of our users was within the range of performances of the experts. A comparison with

expert-biased ground truth shows similar results. The average correct fraction of our users was

better than the experts in 6 out of 9 cases. A general trend is that our users tended to underestimate
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Figure 9: A comparison of user study results (GPU LS) with expert and expert round-robin (RR)
results reveal an overall comparable performance with a tendency to underestimate the region of
tumor.

(a) (b)
Figure 10: (a) An expert hand segmentation of a tumor from theHBW database shows significant
interslice artifacts. (b) A 3D segmentation of the same tumor from one of the subjects in our study.

the tumor relative to the experts, as indicated by lower values of p and higher values ofq, espe-

cially when compared to the round-robin expert averages. This is consistent with our experiences

with hand segmentations and level set models— with hand contouring users tend to overestimate

structures, and with level sets the curvature term tends to reduce the size of convex structures.

The segmentations in our study show a much higher degree of precision than the expert hand

segmentations. Mean precision [37] across all users and cases was 94.04%±0.04% while the mean

precision across all experts and cases was 82.65%±0.07%. Regarding efficiency, the average time

to complete a segmentation (all users, all cases) was 6±3minutes. Only 5%−10% of this time is

spent processing the level-set surface. This compares favorably with the 3-5 hours required for a

typical 3D segmentation done by hand.

The accuracy and precision of subjects using our tool also compares well with the automated

brain tumor segmentation results of Kaus, et al. [1], who usea superset of the same data used in our

study. They report an average correct volume fraction of 99.68%±0.29% (using the expert-biased
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ground truth), while the average correct volume fraction ofour users was 99.78%±0.13%. Their

method required similar average operator times (5-10 minutes), but unlike the proposed method

their classification approach required subsequent processing times of approximately 75 minutes.

That method, like many other segmentation methods discussed in the literature, includes a number

of hidden parameters, which were not part of their analysis of timing or performance.

These quantitative comparisons with experts pertain to a only single 2D slice that was extracted

from the 3D segmentations. This is a limitation due to the scarcity of expert data. Our experience

is that computer-aided segmentation tools perform relatively better for 3D segmentations because

the hand contours typically show signs of interslice inconsistencies and fatigue. Figures 10a–b

show a segmentation by an expert with hand contouring compared with a segmentation done by

one of our subjects.

6 Summary and Conclusions

A careful implementation of real-time visualization and a sparse level-set solver on a GPU provides

a new tool, called GIST, for interactive 3D segmentation. Users can manipulate several parameters

simultaneously in order to find a set of values that are appropriate for a particular segmentation

task. The quantitative results of using this tool for brain tumor segmentation suggest that it is

compares well with hand contouring and state-of-the-art automated methods. However, the tool as

built and tested is quite general, and it has no hidden parameters. Thus, the same tool can be used

to segment a variety of anatomy as was show in Sect. 5.1.

The current limitations are mostly in the speed function andthe interface. The speed function

used in this paper is quite simple and easily extended, within the current framework, to include

image edges and more complicated statistical classifiers. Future work will include development of

a more intuitive 3D interface that could potentially improve user interaction times and accuracy.
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