UC Davis
IDAV Publications

Title
GIST: An Interactive, GPU-Based Level-Set Segmentation

Permalink
https://escholarship.org/uc/item/19i8q404

Journal
Medical Image Analysis, 8

Authors

Cates, Joshua E.
Lefohn, Aaron
Whitaker, Ross T.

Publication Date
2004

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/19j8g40z
https://escholarship.org
http://www.cdlib.org/

GIST: An Interactive, GPU-Based Level Set Segmentation Tool for
3D Medical Images

Joshua E. Cates, Aaron E. Lefohn, Ross T. Whitaker
Scientific Computing and Imaging Institute,
University of Utah, Salt Lake City, UT 84112-9205
Contact: cates@cs.utah.edu

February 4, 2004

Abstract

While level sets have demonstrated a great potential for 3D medical imageestgion,
their usefulness has been limited by two problems. First, 3D level sets atigalglalow to
compute. Second, their formulation usually entails several free paramétiets can be very
difficult to correctly tune for specific applications. The second probleeoispounded by
the first. This paper describes a new tool for 3D segmentation that addrésese problems
by computing level-set surface models at interactive rates. This tool empl@yimportant,
novel technologies. First is the mapping of a 3D level-set solver onto a cdityrgraph-
ics card (GPU). This mapping relies on a novel mechanism for GPU memorggearent.
The interactive rates level-set PDE solver give the user immediate fdedbdhe parameter
settings, and thus users can tune free parameters and control the &hia@enodel in real
time. The second technology is the use of region-based speed funetivioh, allow a user
to quickly and intuitively specify the behavior of the deformable model. Westiaund that
the combination of these interactive tools enables users to produce gtialller segmenta-
tions. To support this observation, this paper presents qualitative résufiseveral different

datasets as well as a quantitative evaluation from a study of brain tumor segioes.



1 Introduction

Image segmentation is arguably the most widely studiedlenoln image processing, and the lit-
erature shows a plethora of image segmentation algorithatsdly on a diverse range of strategies
such as statistics, differential geometry, heuristicapgrtheory, and algebra. No one segmentation
technique has emerged as being superior to all others iralimstances, and thus it seems that
the field of medical image processing will evolve to a statemelresearchers and clinicians have
access to a set of segmentation tools, i.e. a toolbox, fromhathey can choose the particular tool
that is best suited for their particular application.

A complete segmentation toolbox will include a segeheral purposéools as well as various
specializedsegmentation tools. General purpose tools are those thabeajuickly launched
and used as the need arises in a wide range of applicatioreciaped tools rely on stronger
assumptions about a specific modality, anatomy, or apmitatVhen properly trained, tuned, and
applied we would expect specialized tools to perform betien general purpose tools—when all
other factors, such as operator time and compute time, ar@.e4mong general tools, the most
popular example, and the goal standard for many applicgtierhand contouring, which entails a
knowledgeable user (e.g. a medical doctor) creating a 2{e¢arawn by manipulating a mouse,
on a sequence of slices to delineate the object of interest.

This paper describes a new, general-purpose segmentatibthat relies on interactive de-
formable models implemented as level sets. While level sete demonstrated a great potential
for 3D medical image segmentation, their usefulness has heged by two problems. First,
3D level sets are relatively slow to compute. Second, tleembilation usually entails several free
parameters, which can be very difficult to correctly tunesfoecific applications. The second prob-
lem is compounded by the first. That is, users find it imprattic explore the space of possible
parameter settings when an example result from a point irsffece requires minutes or hours to
generate.

The software application described in this paper is calld8TG(GPU-based rteractive

Segmentation @ol). GIST updates a level-set surface model at interacates on commodity

2



graphics cards (GPUSs), such as those that are commonly fmucdnsumer-level personal com-
puters. It can be applied to a general set of medical anddidbapplications by tuning several
free parameters. Despite its general nature, we demonsiaeffectiveness of GIST by a quan-
titative comparison to a specialized tool and the assatigtdd standard for a specific problem:

brain tumor segmentation [1, 2]. This paper make the folh@agontributions:

e A 3D segmentation tool that uses a new level-set deformatidver to achieve interactive

rates (approximately 10-15 times faster than previougisols)).

¢ A interactive mechanism for defining a level-set speed fonchat works on both scalar

and multivalued (i.e. spectral) data.

¢ Quantitative and qualitative evidence that this intex&clevel-set approach is effective for

brain tumor segmentation.

The remainder of the paper is organized as follows. The reption gives some technical
background and related work on level sets, GPUs, and segtrmmevaluation methods. Sec-
tion 3 describes the formulation of the level-set equatabthe solution on the GPU. Section 5.2
presents qualitative results on various datasets and digae analysis of the performance of

the method for brain tumor segmentation. Section 6 sumesittas work.

2 Background and Related Work

2.1 Level Sets

This paper relies on an implicit representation of deforilmairface models called the method of
level setsproposed by Osher and Sethian [3]. The level-set methoel #8e Sect. 3) computes
the motion of a moving interface by solving a partial diffietial equation (PDE) on a volume. The
use of level sets has been widely documented in the medieaing literature, and several works

give more comprehensive reviews of the method and the agedaiumerical techniques [4, 5].



For certain classes of applications level sets have seadvantages over parametric models.
Because they are implicit, level sets can change topologg. mbans that during a deformation a
user need not worry about surfaces colliding or pinching Af§o, level sets do not require repa-
rameterization as they deform far from their initial comalis—e.g. deformable meshes typically
require the insertion or deletion of triangles under sucturnstances [6]. Finally, level sets allow
for geometricsurface deformations, which means that the results of ametton process depend
on the shape of the surface and the input datarexdidn some underlying parameterization. The
level-set method is a general framework that must be tunsgeoific applications.

As with the original work on image segmentation by parametgformable models [7], the
level-set approach to segmentation typically combinesta-fiing term with a smoothing term.
However, there are alternatives. For instance, Whitakepf8poses a formulation that mimics
parametric deformable models, in which level surfaces moward edges (high gradient mag-
nitude) in volumes. In that formulation the model must behwita somewhat narrow band of
attraction (defined by the second derivative) in order td& looto such edges, and therefore the
author proposes a multiscale computational method to ivgconvergence. Malladi et al. [9] de-
scribe a formulation in which level curves/surfaces exp@maontract) with a motion that slows
at image edges. Because of the monotonic expansion/caatracbnvergence to local minima is
less of a problem, but the results tend to be biased eitharther outward. Caselles et al. [10]
propose an alternative that minimizes an edge-weighteirasdric. In that case the data term is
weighted more heavily as the model approaches its targesselimethods (and many others) focus
on image edges, but the the literature documents several stitategies for fitting level sets to
image data. For instance, several authors have proposgtasistatistics of the greyscale interior
of the model to control the motion [11, 12]. Alternativellietmotion of the level set can depend
on a variational formulation that positions the interfazereate discontinuities that best model the
discontinuities in the input data [13, 14, 15]. In this paperuse a supervised, statistical classifier
to drive the motion of the level-set model.

Virtually all of these methods include a form of mean curvatto keep the level-set smooth



as it converges on a solution. Whitaker [8] proposes a weihbten of principle curvatures to
preserve cylindrical structures. Lorigio et al. [16] preps the minimum curvature, in the context
of segmenting blood vessels; this is equivalent to a spaneture shortening for very thin objects.
Recently, Tasdizen et al. propose the diffusion of normalsrder to approximate higher-order
geometric flows [17, 18].

Solving level-set PDEs on a volume requires proper numiesacteemes [19] and entails a sig-
nificant computational burden. Stability requires thatshe&ace can progress at most a distance
of one voxel at each iteration, and thus a large number ddtitars are required to compute sig-
nificant deformations. There is a special case of the leeR®Es in which the surface motion
is strictly inward or outward. Such equations can be sol@desvhat efficiently using th&ast
marching method4] and variations thereof [20]. However, this case coverly @ very small
subset of interesting speed functions, and such speeddosdare inconsistent with interactive
parameter tuning. In general we are concerned with probieatsnclude a surface curvature term
and simultaneously require the model to expand and corttvaatch the data.

Efficient algorithms for solving the more general level{z&tblem rely on the observation that
at any one time step the only parts of the solution that areoitapt are those adjacent to the
moving surface. In light of this several authors have prepasumerical schemes that compute
solutions for only those voxels that lie in a small numberaylrs adjacent to the surface as shown
in Fig. 1b. Adalsteinsson and Sethian [21] have proposeddhew band methadvhich updates
the embedding on a band of 10-20 pixels around the model, eintlializes that band whenever
the model approaches the edge. Whitaker [22] proposespirse-fieldnethod, which introduces
a scheme in which updates are calculated only on the wavefod several layers around that
wavefront are updated via a distance transform at eachidaerdeng et al. [23] present a similar
local method. Even with this very narrow band of computatigpdate rates using conventional
processors on typical medical data sets (e.g32b&els) are not interactive. This is the motivation

behind the GPU-based solver in GIST.



2.2 Graphics Processing Units for Scientific Computation

Graphics processing units have been developed primarilyheocomputer gaming industry, but
over the last several years researchers have come to reedgam as low cost, high performance
computing platforms. Two important trends in GPU developimiecreased programmability and
higher precision arithmetic processing, have helped tefasew non-gaming applications.

Graphics processors outperform central processing U@REE)—often by more than an order
of magnitude—because of thestreamingarchitecture[24] and dedicated high-speed memory. In
the streaming model of computation, arrays of input datgpaneessed identically by the same
computationkernelto produce output data streams. The GPU takes advantage dhth-level
parallelism inherent in this model by having many identgadcessors execute the computation
in parallel. This computation model has been used by a numbersearchers to map a wide
variety of computationally demanding problems to GPUs.ripias include matrix multiplication,
finite element methods, and multi-grid solvers [25, 26, 241].of these examples demonstrate a
homogeneous sequence of operations over a densely papgtatestructure.

Strzodka et al. [28] were the first to show that the level-seta¢ions could be solved using a
graphics processor. Their solver implements the two-dsiweral level-set method using a time-
invariant speed function for flood-fill-like image segmeiaa, without the associated curvature.
Their solver does not take advantage of the sparse natufdgedevel-set PDEs and therefore
performs only marginally better than a highly-optimizeduse-field CPU implementation. The
work in this paper relies on a three-dimensional generatinaf [28], which includes a second-
order curvature computation, and a significantly imprové&Golver that implements a narrow-
band strategy. Also related is the work of Sherbondy et &, 2 which they identify regions of
interest to solve a diffusion equation for volume segmemtat

This paper describes a GPU computational model that suppore-dependent, sparse grid
problems. These problems are difficult to solve efficientithviGPUs for two reasons. The first
is that in order to take advantage of the GPU’s paralleli$ra,streams being processed must be

large, contiguous blocks of data, and thus grid points neardvel-set surface model must be
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packednto a small number of textures. The second difficulty is thatlevel set moves with each
time step, and thus the packed representation must reathiyt 0 the changing position of the
model. This requirement is in contrast to the recent spawseixrsolvers [30, 31] and previous
work on rendering with compressed data [32, 33]. In the twarsp-matrix solvers[30, 31], a
packed texture scheme is used to efficiently compute spaatexmector multiplications as well

as compute values of the sparse matrix elements on the GRLsCHeme is static, however, in the

sense that the nonzero matrix elements must be identifienldotife computation begins.

2.3 Segmentation Evaluation

This paper includes a systematic evaluation of the perfocmaf GIST. The role of segmentation
evaluation is to understand the strengths, limitations] jpotential applications of a particular
segmentation algorithm. There are two strategies for atialg segmentation algorithms. One
strategy is to study segmentation performance in the coofex particular clinical or scientific
guestion [34, 35]. For instance, the effectiveness of tgerdghm within a study that monitors
the volumes or sizes of tumors. The second approach is ty studvaluate segmentation in
the absence of a specific clinical application by quantgyime general behavior of the algorithm
relative to andeal solution. This paper takes the second approach, and usesajshape metrics
to compare watershed segmentation results with the dejatdastandard for clinical applications,
which is hand contouringone slice at a time (which we will also cattanualsegmentation) by
expert observers.

Segmentation evaluation is difficult because of the lackaridgard metrics and the difficulty of
establishing ground truth in clinical data. Our evaluatioethodology is derived from ideas devel-
oped by [36], and others [37, 38, 39], who emphasize the itapoe of quantitative evaluation and
statistical metrics. The study in this paper concerns aasssted segmentation technique, which
requires a user-based evaluation to capture variatiortseimndividual decision-making process.

Experimental trials across a number of users and image4l4@an generate data appropriate for



statistical analysis that account for user variability.

A combination of different factors determines the effestigss of a segmentation. For instance
Udupa et. al[37] propose a quantification of performancethas validity of the results (accuracy),
reproducibility of the results (precision), and efficierafythe segmentation method (time). Other
researchers have studied the sensitivity of the technmwarious disruptive factors such as data
artifacts, pathology, or individual anatomical variatigabustness) [42].

Accuracy metrics typically rely onground truthsegmentation—segmentations that are some-
how close to this ground truth are considered better thasethwat are not. Studies with digital or
physical phantoms provide a ready definition of ground tréitbwever, for biological or clinical
data sets, ground truth is usually unknown. In such a casearehers typically rely on experts to
delineate the ground truth by hand [42, 43]. Experts seldbageee, but a statistical combination
(averaging) of several expert segmentations can accouskfeert variability. Averaging of mul-
tiple nonparametric shapes, however, is itself a difficottgpem. One technique for combining
multiple segmentations Bimultaneous Truth and Performance Level Estimat®mPLE), [44].
This treats segmentation as a pixelwise classificationchvleads to an averaging scheme that
accounts for systematic biases in the behavior of experts

The accuracy of an individual experimental segmentatiarsiglly given through some mea-
sure of a region’s overlap and its distance from the grouwnti trtCommon distance metrics include
the Hausdorff distance [45] and the root mean squared distaetween selected boundary points
[38, 39]. Often overlap is characterized bgienilarity measure between experimental and ground
truth volumes. One common similarity measure is the cahtjnaf the intersection (in pixels or
voxels) of positive classifications in two volumes volumesrothe union of the positive classifi-
cations [40, 46], denotesl Another overlap metric is thital correct fraction ¢, which is simply
the percentage of correctly classified pixels in the imadenae (negative and positive) [1].

Another strategy for evaluating a single-object segmemntas to view each pixel as an instance
of a detection task, which gives rise to metrics for sengjtiand specificity. Sensitivityp, is the

true positive fraction of the segmentation, the percentdgexels in an image correctly classified



as lying inside the object boundary. Specificity,is the true negative fraction, the percentage
of pixels in a segmentation correctly classified as lyingswlé the object boundary. Because
there is an explicit tradeoff between sensitivity and sji@ty, researchers have proposed using
receiver operator characterizations (ROC), which monitertehavior of this tradeoff for different
segmentation algorithms or parameter settings [47, 37].

The precision of a segmentation method is an indicator of lepeatable the results are using
that technique. Alternatively, precision is an indicatothee degree of randomness inherent to the
method. Precision does not rely on knowing ground truth ardbe estimated by applying the
similarity measura within a set of experimental segmentations [37]. The nsalue from these
comparisons gives a characterization of the precisionefribthod.

The efficiency of a segmentation technique is a measure dirtieeinvolved in achieving a
segmentation. This can include user interaction and coenpues. These two characteristics are
usually considered individually, because each has a sepawat and will affect the practicability

of the method in a way that depends on the specific application

3 Level-Set Formulation and Algorithms

We begin this section with a brief review of the notation anatmematics of level-set methods
and describe the particular formulation that is relevarthie paper. Comprehensive reviews of
level-set methods are given the literature [4, 5].

An implicit model is a surface representation in which thefaze consists of all points =
{X[o(X) = 0}, where@: 0% — . Level-set methods relate the motion of that surface to a PDE
on the volume, i.e.d0@/ot = —[@- v(t), where describes the motiat) of the surface. Within
this framework one can implement a wide range of deformatimndefining an appropriate For
segmentation, the velocity often consists of a combinatidwo terms [8, 9]

Ue

O GD®+(1—G)D‘W : (1)
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whereD is a data term that forces the model toward desirable fematarthe input data, the term
O- (Og/|Cg|) is the mean curvature of the surface, which forces the saitfabave less area (and
remain smooth), and € [0,1] is a free parameter that controls the degree of smoothndbe in
solution. There are several variations on this framewotkénliterature, e.g. [10].

The behavior of the model is mostly characterized by the ttata and how it relates to the
image. Invariably, the data term introduces free pararagterd the proper tuning of those param-

eters, along withu, is critical to making the model behave in a desirable manner

3.1 An Intensity-Based Speed Function

Our strategy is to construct a speed functibthat causes the model to grow in regions where the
data is consistent with the desired segmentation and teaszinh regions where it is not. We can
achieve this by lettindd have positive or negative values depending on whether otheatnodel

is within a specified range of data values. In this case thedsheiction at any one point is based
solely on input value valukat the pointxin the image, i.d(X) = D(I (X)).

Such a simple scalar speed function is given by

D) =e— I -TJ, (2)

whereT controls the dominant intensity of the region to be segnieatede controls the range
of greyscale values around that could be considered inside the object. Thus when theemod
lies on a voxel with a greyscale level betweékr € andT + €, the model expands and otherwise it
contracts. The speed term is gradual, and thus the effettteDfdiminish as the model approaches
the boundaries of regions whose greyscale levels lie witleff + € range. Even with this simple
scheme a user would have to specify three free paramé&tegsanda, as well asan initialization.

Figure 1 shows a graph &f defined in this manner.
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Figure 1: (a) A speed function based on image intensity catiemodel to expand over regions
with greyscale values within the specified range and conttherwise. (b) Efficient implementa-
tions of level sets entail computing the solution only né& moving wavefront.

3.2 A Statistical Classifier

The speed term in (2) represents a simple one-dimensiov@aklass statistical classifier. If we let
P(A|l) be the probability that a pixel lies in the object conditiboa the pixel/voxel valu¢ and

P(B|l) be the probability that the pixel is not in the object, thea Bayesian decision variable is

D= ~ 3)

which should be compared to unity in order to decide on either B. If all intensities in the
backgroundB, are equally likely (the goal here sgmplicity), the denominator is constant, and the
log of D is

logD = logP(1|A) +logP(A) —logP(l|B) — logP(B). 4)

If we let the statistics of the inside of the object be Gaus&IgA|l) = exp— (1 — p)2/20?], we

have the following decision rule for a pixeMwith intensityl

_ { A I-T|<e
Xe (5)

B otherwise
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1
2, andT = . Thus, we see that this simple

wheree = [|20%(logP(A) — logP(1|B) —logP(B))|]
three parameter model allows a user to explore the possbibf this simple statistical classifier
and combine it with the geometric information embodied & ¢harvature of the level set.

This analysis sheds some light on the proper interface fsdtlparameters. For instance, we
can help the user choose these parameters by providingradtite tool that allows a user to
select a set of points (e.g. by holding down a mouse buttomawing the cursor over the area of

interest) that generate a mean and a variance, and use tlaes initializeT ande.

3.3 A Speed Function for Spectral Volumes

This statistical classifier also extends to image/volumiis multiple values, i.espectral images

with values denotet(x) € O™. In this case the in-object condition probability is

1 — =
P(AIl =exp|—S(1 =)' (1 - |, (6)
whereZ is the covariance. We can express the classifier in terms bMaobis distance. That is:

A D<e

Xe

(7)

B otherwise

andD = [(I— Tz (-] 2.

The graph of the speed function given in (7) is an ellipsoidgdercone that crosses the zero
axis of the independent variable to form an ellipsoid, cetteatp, with a shape and orientation
given by the covariance. Figure 2 depicts thisrfoe 2. The free parameterdefines thevidth of
the resulting ellipsoidal classifier in units of standardidigon. The model expands when it lies on
a pixel whose value is within the classifier range and cotdgralsewhere. This Mahalanobis clas-
sifier is a natural extension of the scalar speed functionabeounts for the correlation between

different features of and allows for curved decision boundaries. In the case wdikfeatures are
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Figure 2: (a)A Mahalanobis distance classifier describesa@amand standard deviation of feature
values that is normalized with respect to the covariancéeffiéatures. (b) Image values within
the classifier range are mapped to a positive speed. Valusislethe classifier range are mapped
to a negative speed.

uncorrelated Mahalanobis distance is equivalent to Eeahdistance.

For three-channel data such as color RGB images, the couanmatrix and mean vector entail
a total oftwelve free parameters. Thus, it is not feasible to providsa interface to interactively
control all of the parameters associated with the multatarform of this speed function. Instead,
we allow the user to extract the mean and variance from amegficnterest and provide the user
with a single free parametey which controls the size of the ellipsoidal region in thetéea space

and corresponds to the relative prior probabilities betwtbe object and background.

3.4 The Role of Surface Curvature

If a user were to initialize a model in a volume and use thedperns in Egs. (2—7) without any
curvature the results would be virtually the same as a sirfiqdal fill over the region bounded
by the upper and lower thresholds (or the ellipsoid in ithi2 case). However, the inclusion of
the curvature term alleviates the critidabkingproblem that arises when using flood filling as a
segmentation technique. The leaking effect is particylacute in 3D segmentations and is easily
demonstrated on a brain tumor data set, as shown in Fig. Sidforore in cases where the noise in

the data corrupts the shapes of object boundaries, thetatewarm can provide smoother results.
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Figure 3: Showing one slice of a MRI volume: (a) The spheriad#idlization. (b) A model
expands to fill the tumor but leaks through gaps and expardsther anatomy. (c¢) The same
scenario with a degree of curvature prevents unwantedrigalihe level set isosurface is shown
in yellow.

However, oversmoothing with curvature can significantbtalit the shapes of segmented objects,
and if the weight of the curvature is too large the model willl away from the data and collapse

to a point.

3.5 Rescaling the Distance Function

When solving the PDE associated with Eg. (1), the differevglieets of the functiorp will tend
to spread out in some regions of the volume (due to the cuevatum and numerical diffusion)
and aggregate in other areas (due to the speed term). Theserplna are characterized by a
decreasing or increasing @fig| over time, respectively. Both of these tendencies will undee
the effectiveness of narrow-band algorithms, and theedtoe literature describes mechanisms for
maintainingg with a relatively constant gradient magnitude. For inséamt [21], the authors stop
the evolution ofp at regular intervals and establish a n@that corresponds to the signed distance
transform of the zero level set. In [22], the author updatesvialues of grid points around the
zero-set ofpin layers that maintain an approximation to the signed dista

For the GPU-based solver, neither of this strategies isogpjaite, because they entail dynamic
data structures that cannot be easily implemented in tearsing architecture. Instead we main-
tain |O¢|, by the addition of an extra term to the update equation (RBd&)governs the evolution

of @. This term will force the level sets @fto spread out if the gradient is too large and to move
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together if the gradient is too low. Thisscalingterm, Gy, is of the form

Gr =(ge—|0¢), (8)

wheregy, the target magnitude for the gradient.

This rescaling term has several properties that are impottathe implementation of GIST.
First, the distance transform of the level set, scaleggis formally (i.e. ignore points wheiépis
undefined) a fixed point of (8). Second, beca@sés proportional tap, it does not affect the values
of @ near the zero set, and therefore should not impact the éwolat the surface model. Finally,
when G; is implemented with the upwind scheme, it will maintain mtorocity, and therefore
the fixed point of this term applied to updates of grid repnésg ¢ will be a clamped distance
transform with extreme values limited by those in the ihitianditions. ThusG, will maintain the
narrow-band property, which is to say thgill have |¢| ~ g, within a narrow band around the

zero set andJq| ~ O elsewhere.

4 Software Application Design

This section describes GIST, an interactive level-set segation tool, and the GPU implemen-
tation that makes it possible. It begins with a brief revidwhe GPU-based level-set solver (for
a more complete description see [48]), describes the visimin of the volume data and surface

models, and then describes the user interface to GIST.

4.1 GPU Level-Set Solver

The efficient solution of the level-set PDEs relies on onlgating voxels that are on or near the
isosurface. The sparse GPU level-set solver achievesyiisdomposing the volume into a set of
small 2D tiles (e.g. 16 x 16 pixels each). Only those tileswnibn-zero derivatives are stored on
the GPU (Fig. 4b). Thesactivetiles are packed, in an arbitrary order, into a large 2D textan

the GPU. The 3D level-set PDE is computed directly on thispassed format. Because active
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Figure 4: (a) The modern graphics processor computatiaipg (b) The proposed method relies
on packing active tiles into 2D texture—a compressed format

tiles are identified by non-zero gradients, it is cruciat tha volume in which the level-set surface
is embeddedyp, resemble a clamped distance transform. In this way regiare near the model
will have finite derivatives, while tiles outside this nasrdand will be flat, with derivative values
of zero. Thus, the rescaling term given in Eq. (8) is partidylimportant.

For each PDE time step update, the 3D neighborhoods of algir the active tiles must be
sampled from the compressed 2D compressed format. For etieh tle, the CPU sends texture
coordinates, i.e. memory addresses, to the GPU for eacle ¢l that share a side or an edge in
the 3D volume. These texture coordinates are generated amtaimed on the CPU. Using these
texture coordinates, the GPU can perform neighborhoodup®ko produce the complete set of
partial derivatives (finite differences) used for the geadliand curvature calculations, which are in
turn used to update values @f

After the level-set embedding is updated, the GPU usesipittardware acceleratechipmap-
ping capabilities to create a bit vector image that summarizestiditus of each tile. Each pixel in
this coarse texture contains a bit code that identifies if itg as well as any of its six cardinal
neighbors, need to be active for the next time step. Thislsmage = 64KB) is read back by
the CPU and used to update the data structures that tracktitre @walume regions. The texture
coordinates are updated based on these structures andckthigngestep is computed.

This GPU-based level-set solver achieves a speedup of téifteen times over a highly-
optimized, sparse-field, CPU-based solver. All benchmarksewun on an Intel Xeon 1.7 GHz
processor with 1 GB of RAM and an ATI Radeon 9700 Pro GPU. Foruh®t segmentations

performed in the user study, the GPU-based solver ran aD@i¥ié steps per second while the
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CPU version ran at 7-8 steps per second. The final steps oftbleraécortex segmentation shown

in Fig. 10 ran at 4 steps per second on the GPU and 0.25 stepegmrd on the CPU.

4.2 Interactive Visualization

An important aspect of GIST is the interactive visualizataf the level-set surface, the volume
data, and the speed function. This interactivity includBssHce-by-slice visualization of data,
model, and speed, as well as 3D volume/surface renderimgusér-controlled clipping planes to
visualize and query the volume data.

GIST provides a simultaneous volume visualization of thmutrdata with the evolving level-
set model. The volume renderer associated with GIST pedarfull 3D (transfer-function based)
volume rendering of the greyscale data. For rendering tiggnat volume, the input data and its
gradient vectors are kept on the GPU as 3D textures. This Bd&¥dd volume rendering incor-
porates multidimensional transfer functions as describd¢hiss et al. [49]. The current imple-
mentation of GIST renders only scalar volume data, and tbusgectral data it renders only a
derived scalar quantity (e.g. one component or magnituBejure work will include the use of
multidimensional transfer functions to directly rendeesipal data.

For rendering the evolving level-set model, we use a modi@inaf the conventional 2D sliced
approach to texture-based volume rendering [50]. The nuadifin to the conventional approach
is the rendering of the level-set solution directly from gaeked tiles, which are stored as a single
2D texture. The level-set data and tile configuration is dyica and therefore does not require
separate precomputed versions of the data (e.g. sliced abmdinal views) as is typically done
with 2D texture approaches. Instead the renderer recatsttivlese views, as needed, each time
the volume is rendered. For efficiency, the renderer reuatswiherever possible. For instance,
lighting for the level-set surface uses gradient vectoreated during the level-set update stage.
The rendering of the source data relies on precomputedeagradata—the gradient magnitude is
used by the transfer function and the gradient directiorsélun the lighting model. More details

on this design are given in [48].
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Figure 5. The main user interface of software applicatiafied GIST. The center window shows
a slice of an MRI volume overlaid by a brain tumor segmentaitioprogress. The right window
displays the sign of the speed function.

4.3 Interface and Usage

GIST combines a graphical user interface (GUI), which aaatthe underlying GPU-based level-
set solver, with a volume renderer. The GUI presents the wgblrtwo volume slices, a 3D
rendering window, and a control panel. The first slice windbgplays the current segmentation
as a yellow line overlaid on top of the target data. The secdicé viewing window displays
a visualization of the speed function that use color to tyedelineate the positive and negative
regions. The GUI has controls for scrolling through imagees, starting and stopping the solver,
and saving the 3D segmentation to file. The user can also giagayalues in the slice viewer and
create spherical surface models to use as initializatiotiset level-set solver. A screen capture of
the slice-based interface is shown in Fig. 5.

To set the free parameters of the speed function, the us@iasimage values by clicking and
dragging the mouse in regions of interest through the 2 sliew window (center window of
5). As the user gathers statistical samples, GIST simuiiasig updates the mean value and the
variance or covariance that defines the shape of the classifieser will typically probe the object
across a range of slices for a better representative sagrtplm can be obtained in just one image
slice. The remaining speed function parametisrset manually in the GUI. The speed function is
updated and displayed in real time as parameters are mottifgadde the process.

The volume renderer window displays a 3D rendering of thecsodiata and a surface rendering
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(a) (b)
Figure 6: Two views of the volume rendering window from GI&Tbrain cortex segmentation
is shown at left with a cutting plane applied to the rendennghe right. The intersection of the
level-set surface with the cutting plane is shown as a yeliand.

of the evolving level-set model. The opacity of each remdgdan be controlled by the user. A
clipping plane with the original data can also be appliedh® tendering in any orientation and
position. All of the interactions available in the 2D slicew are also available on the clipping
plane, e.g. the user can probe data to set the speed termgtarsiand draw spheres for initializing
the model directly into the 3D view. The intersection of teedl-set solution with the clipping
plane is shown as a yellow band. Figure 6 shows two views flfevolume rendering window.
For a typical segmentation GIST, a user scrolls througteslimtil they find the location of the
target object and then queries values with the mouse to setpided function parameters. Next,
the user creates an initial model by drawing one or more ggshaithin the object and then starts
the solver. The user scrolls through slices as the modehbeagideform, observing its behavior
and modifying curvature (model smoothness) and classifigttvas needed. The user may also
stop the solver and resample the data to either refine oraeefiie current statistical speed function
parameters. Using the immediate feedback they get on thevimetof the model, they continue
modifying parameters until the model boundaries appeatfigo avith those of the tumor. In a

typical 5 minute session, a user may modify the model parméetween 10 and 30 times.
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5 Results

This section presents results from the application of oud@®BRsed level-set segmentation tool to
a range of scalar and spectral data. The evaluations inghigsa include qualitative and quanti-
tative comparisons with hand contouring as well as two otiser-assisted methods. We choose
hand contouring as the main focus of the comparison for akweasons. First, it is (like the pro-
posed method) a general purpose segmentation method. Gekeriield at large considers hand
contouring (by experts) to be the de facto gold standardd]hand contouring is, in many cases,
the state of the art. That is, a large number of clinical ajapidns that require image segmentation
still rely on hand contouring as their primary segmentatexhnique.

Section 5.1 gives a qualitative analysis of several anaainsegmentations from MRI and
color cryosection data. A more rigorous, quantitative eatibn is presented in Sect. 5.2, which
describes a user study of our software and compares resuitsia tumor segmentations with

ground truth obtained from experts.

5.1 Qualitative Evaluation

As a preliminary evaluation of our segmentation tool, wenseugt a variety of anatomical structures
in several imaging modalities: scalar and spectral MRI, anldrcryosection data from the Visible
Human Female (VHF) [51]. This section presents results &ulidsion of those segmentations.

Figure 7(a) is a rendering of a cortical brain surface sedatiem from a 256 x 256 x 175 MRI
volume. The complete segmentation required no prepraug$sig. no filtering) of the data and
required five minutes using the one-dimensional classifieed function with a small, spherical
surface (placed by the user) as the initial model. This tyfgegmentation is impractical to com-
pute on ordinary, CPU-based solvers because of the size amplexty of the solution. In our
experience with state-of-the art CPU-based solvers (eegtheelnsight Toolkitwww.itk.org) the
same cortical segmentation typically takes more than an hou

For MRI spectral data, we use volumes consisting of co-reggtT1, T2, and proton density
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Figure 7: Renderings of (a) brain cortical surface from sc®&| and (b) white matter from
spectral MRI show qualitatively good results on large, cantructures computed at interactive
rates.

data. This combination of image modalities requires thedkdimensional classifier, given in
Eq. (7), to take full advantage of the wider spectrum of infation. Figure 7(b) shows a rendering
of a segmentation of the white matter of the brain. As withdb#gicle segmentation, the results
are encouraging because they can be obtained in only a fewtesitino preprocessing) with a
simple sphericaseed pointnitialization. We have seen similarly promising resultshaour tool
segmenting skin and skull tissue from spectral MRI data.

For the VHF color cryosection data, we use a region of intgf@epped volume) from the
head that contains two interesting structures: the rightdrectus muscles, and anterior portions
of the right and left optic nerves. The texture informationtlis data set posed a significant
challenge, and therefore we preprocessed the data by simgpatith 10 iterations of modified-
curvature diffusion [52]. This diffusion step blurs the radvomogeneous regions of the data while
preserving object boundaries. This nonlinear diffusiomeigitively computationally expensive,
especially on spectral data, and it required approxim&8lyninutes of computation on a two-
processor Pentium IV desktop machine.

Figure 8 presents the results of our VHF anatomical segriensaand compares them with
results obtained using other general-purpose segmemtai@thods. Column (a) shows a single
slice of the original data with the target object for segra@ah highlighted. Column (b) is a sur-

face rendering of the results using our level-set tool. Eseilts from (b) are overlaid on the slice
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(b) GPU LS (c) Manual (d)WS assisted

Figure 8: Visual comparison of surface renderings of GP@lleet (b) and manual (c) segmenta-
tions of the Visible Human Female color cryosection anatohine targeted anatomical structure is
highlighted in column (a), which shows the segmentatiomf(b) superimposed over a transverse

slice through the original color data. Column (d) is a congmariwith the user-assisted watershed
technique.

Lateral
Rectus

Optic
Nerves

in column (a). Expert segmentations of the same structueesrewn in 8(b). The expert segmen-
tations were obtained from multiple operators at HarvargtBam and Women’s Hospital and at
the University of Utah using the Slicer Tool [53]. The reridgs shown in (b) are of composite
ground-truth volumes created with the STAPLE method dbedrin Sect. 5.2. Column (c) shows
results obtained using another general, interactive setatien method based on morphological
watersheds segmentation method (for details see [54]).

Visual inspection of the GPU level-set results show theme@tsimilar quality as the hand-
contour and watershed results. Anterior and posterioigecioptic nerves in the area of the
optic chiasm are segmented separately in this example amtbiced prior to rendering. The
current speed function implementation in GIST is limitectsingle statistical feature profile, and
therefore distinct structures in color space such as the opiasm must be segmented separately.

Because of the curvature term in (1), segmentations creaiad our tool are naturally anti-

aliased. The level-set technique also tends to produce atBerdboundary in the axial direction
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than the hand-contour and watershed methods, which tendte rasemble a stack of 2D slices
with poor continuity of the boundary in the axial directiomhe greatest advantage to the GPU
level-set segmentation is its relative efficiency. The tiadeen for the VHF segmentations are up
to 20 times faster than hand-contouring (several minutesugeup to several hours) and were up
to 6 times faster than using the watersheds method (fullgssing time). As the following section

will demonstrate, the level-set segmentation tool can gdiyegproduce acceptable results on the
raw image data, which is not possible with many other algordt, such watershed segmentation;
therefore the level-set segmentation tool is particuladgful for fast, impromptu segmentations

of 3D data sets.

5.2 User Study
5.2.1 Motivation

The purpose of this study is to determine if our level-set tam produce volumetric delineations
of brain tumor boundaries comparable to those done by exjperg. radiologists or neurosur-
geons) using traditional hand-contouring. We apply ourhoeétto the problem of brain tumor
segmentation using data from tBeain Tumor Segmentation Databasehich is made available
by the Harvard Medical School at the Brigham and Women’s Hak(HBW) [1, 2]. The HBW
database consists of ten 3D 1.5T MRI brain tumor patient degaelected by a neurosurgeon as
a representative sampling of a larger clinical database.e&oh of the ten cases, there are also
four independent expert hand segmentations of one randsetdgted 23licein the region of the
tumor.

We use nine cases for our study: three meningioma (casesrid3) low grade glioma (4-6,
8-10). One case, number 7, is omitted because a quick ingpettows that its intensity structure
is too complicated to be segmented by the proposed tool—apcbblem remains as future work,
as we will discuss in Sect. 6. For this study, thereagpreprocessing on the dagend there are no

hidden parameters in this study—all parameters in our sysate set by the users in real time, as
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they interact with the data and the models.

The subjects consist of five people from among the staff amdesits in our group who have
each been given a brief introduction on how to use the agmita During the study, each user
is asked to delineate the full, 3D boundaries of the tumoraicheof the nine selected cases. We
set no time limit on the users and record their time to conepéstch tumor. None of our users
are experts in reading radiological data. It is not our ititento test for tumor recognition (tissue
classification), but rather to test whether parameters easelected for our algorithm to produce
a segmentation which mimics those done by the experts. Toatdor tumor recognition, we
allow each user to refer to a single slice from an expert seggtien. Users are told to treat this
hand segmentation slice as a guide for understanding ttezatite between tumor and non-tumor

tissue. Our assumption is that an expert would not need suelRample.

5.2.2 Aggregation of Expert Segmentation Data

The expert data serves two purposes in the this study. Rigtovides a mechanism for estab-
lishing a ground truth, against which we can compare thel-ssesegmentation. Second, the
set of expert segmentations establish a performance bemkHor the accuracy, precision, and
efficiency of hand contouring.

Ground truth is established from manual segmentationsdogxtperts using the STAPLE algo-
rithm [2], an iterative EM algorithm that accounts for systdic biases in the behavior of experts.
The STAPLE algorithm generates a fuzzy ground truth as veedksmsitivity and specificity param-
eters for each expert and each case.

We denote a single subject within a population with the sapsg¢ and the pixels within the
image/volume as. An image of binary value®;j represents a segmentation for a particular
subject. Given sensitivitiegj and specificities|; for each subject, the degree of confidence that a

particular pixel is in the target object is

_ gidi
W= gidi +(1—gi)Bi’ ©
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whereg; is the prior probability that any pixel would be classifiedrasde the target object (usually

taken to be the fraction of the image that is filled by the af)jethe values obr andf3 are

o = [Ap;Dyj] [Mj(1—pj)(1—Djyj)] and B= [M;g;(1—Dy)] [M;(1—q;)D;].  (10)

Given a probability imag®\, the sensitivity/specificity for each subject can be updiate

> iWDjj ~ Yi(1-Wj)(1-Dy)
P Tw T T AW o

The full STAPLE algorithm entails iterating on these updateack and forth betweeip,q) and
W, until the process converges.

Accuracy is evaluated against aggregate volumes createghfih segmented object by ap-
plying the STAPLE algorithm to the expert hand-contourseSéaggregate (STAPLE) volumes
consist of a graded membership function (zero to one). W&/aedhe accuracy of the experi-
mental, level-set results by evaluating the sensitivitg gpecificity of each experimental subject,
using Eq. (11), relative to these aggregate volumes. Wehmanrhake comparisons by computing
average sensitivity and specificity for the two groups—seatg using hand contouring and sub-
jects using the level-set GUI. Additionally, we can combwadues ofp; andg;j to compute a total

correct fraction for a subject:

Ci = Z|VV'D|] +2I(1_VVI)(1—D|J>
b 2il '

(12)

Ideally we would compute accuracy of hand-contour segniientausing aggregate data from
anindependengroup of expert segmenters. A characterization of the acyuof a small group
of manual segmentations using ground truth generated asnplet® aggregate dhose same
segmentationsontains an clear bias that over estimates the accuracyg @Xert segmentations.
A second, less conservative measurement that produceseaunbiased estimate of the manual

segmentation accuracy is a round-rol@ave-one-oustrategy, [55], wher@, g, andc values for
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eachDj; are computed usingk generated by all segmentatidksg- j.

Accuracy metrics must be interpreted carefully. Note thaeme a segmentation technique
shows high sensitivity, there is a high confidence level & iibsults it produces fanegatively
classified pixels, and where a technique shows high spégiftbiere is a high confidence level
for positivelyclassified pixels. The magnitudes pfandq are incommensurate because they are
percentages of different populations of pixels. Total ectrfraction is particularly difficult to
interpret because it is biased by the ratio of the size ofriiegie volume to the size of the target
object. Where this ratio is higlt approaches.. Where the ratio is lows approache. Total
correct fraction is used in this study only as a way to compareresults with other published
results on the same data.

We quantify precision in this study using teinilarity six of results from subjectg andk,

(13)

and average similarity across all pairs of subjgctsk. Accuracy, precision, and efficiency metrics
were also applie@crosssubjects. Given the limited resources for this study andstacity of
manually segmented data, we were not able to makta-subject comparisons, which require

multiple segmentations from the same subject.

5.2.3 Discussion and Analysis

Figure 9 shows graphs of averageq, andc values for the experts and the users in our study.
Error bars represent the standard deviations of the asedaialues. This figure shows the average
accuracy across all experts using round-robin ground.truth

The performance of the experts and our users varies casesby lmat in almost all cases the
performance of our users was within the range of performaotte experts. A comparison with
expert-biased ground truth shows similar results. Theamesicorrect fraction of our users was

better than the experts in 6 out of 9 cases. A general trelaiour users tended to underestimate
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Figure 9: A comparison of user study results (GPU LS) withezkpnd expert round-robin (RR)

results reveal an overall comparable performance with detecy to underestimate the region of

tumor.

(b)
Figure 10: (a) An expert hand segmentation of a tumor fronHB®V database shows significant
interslice artifacts. (b) A 3D segmentation of the same tufraon one of the subjects in our study.

the tumor relative to the experts, as indicated by lowere&lof p and higher values af, espe-
cially when compared to the round-robin expert averages iStconsistent with our experiences
with hand segmentations and level set models— with hancdoonyg users tend to overestimate
structures, and with level sets the curvature term tendsdogae the size of convex structures.

The segmentations in our study show a much higher degreesoispyn than the expert hand
segmentations. Mean precision [37] across all users ared gass 9D4%+ 0.04% while the mean
precision across all experts and cases wa®2+ 0.07%. Regarding efficiency, the average time
to complete a segmentation (all users, all cases) wal3rBinutes. Only 5%- 10% of this time is
spent processing the level-set surface. This comparesafalyowith the 3-5 hours required for a
typical 3D segmentation done by hand.

The accuracy and precision of subjects using our tool alsapeoes well with the automated
brain tumor segmentation results of Kaus, et al. [1], whoausgperset of the same data used in our

study. They report an average correct volume fraction dd&%+ 0.29% (using the expert-biased
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ground truth), while the average correct volume fractioowf users was 998%-+ 0.13%. Their
method required similar average operator times (5-10 ragjutout unlike the proposed method
their classification approach required subsequent priogetimes of approximately 75 minutes.
That method, like many other segmentation methods disdusgke literature, includes a number
of hidden parameters, which were not part of their analysisrong or performance.

These quantitative comparisons with experts pertain tdyasamgle 2D slice that was extracted
from the 3D segmentations. This is a limitation due to thea@tyaof expert data. Our experience
is that computer-aided segmentation tools perform redtietter for 3D segmentations because
the hand contours typically show signs of interslice inistesicies and fatigue. Figures 10a—b
show a segmentation by an expert with hand contouring cosdpaith a segmentation done by

one of our subjects.

6 Summary and Conclusions

A careful implementation of real-time visualization angarse level-set solver on a GPU provides
a new tool, called GIST, for interactive 3D segmentationeldsan manipulate several parameters
simultaneously in order to find a set of values that are ap@atgpfor a particular segmentation
task. The quantitative results of using this tool for braimor segmentation suggest that it is
compares well with hand contouring and state-of-the-adraated methods. However, the tool as
built and tested is quite general, and it has no hidden pasamerhus, the same tool can be used
to segment a variety of anatomy as was show in Sect. 5.1.

The current limitations are mostly in the speed function @inedinterface. The speed function
used in this paper is quite simple and easily extended, nvitiee current framework, to include
image edges and more complicated statistical classifietsré&work will include development of

a more intuitive 3D interface that could potentially impeayser interaction times and accuracy.
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