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ABSTRACT

Given the emergence of data science and machine learning throughout all aspects of society, but particularly in the scientific domain, there is
increased importance placed on obtaining data. Data in materials science are particularly heterogeneous, based on the significant range in
materials classes that are explored and the variety of materials properties that are of interest. This leads to data that range many orders of
magnitude, and these data may manifest as numerical text or image-based information, which requires quantitative interpretation. The
ability to automatically consume and codify the scientific literature across domains—enabled by techniques adapted from the field of natural
language processing—therefore has immense potential to unlock and generate the rich datasets necessary for data science and machine
learning. This review focuses on the progress and practices of natural language processing and text mining of materials science literature and
highlights opportunities for extracting additional information beyond text contained in figures and tables in articles. We discuss and provide
examples for several reasons for the pursuit of natural language processing for materials, including data compilation, hypothesis develop-
ment, and understanding the trends within and across fields. Current and emerging natural language processing methods along with their
applications to materials science are detailed. We, then, discuss natural language processing and data challenges within the materials science
domain where future directions may prove valuable.
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I. INTRODUCTION

Data have always been a fundamental ingredient for realizing,
accelerating, and optimizing any scientific pursuit. The increasing
ubiquity of data science methods, based on improved computing
power and algorithm development, has driven significant opportunity
and interest in immense, structured datasets. When such data are
assembled in a form readily consumed and mined using data science
tools, coupled with domain expertise, there is tremendous potential to
accelerate discovery,1 build upon previous findings, rapidly enter a
new field, connect individual research efforts, and link across
disciplines.

The physics community has long understood the value of
curating data in a way that can be comprehended by computer logic.
This is particularly true in the domains of high-energy physics, astron-
omy, and astrophysics, where data emanate from very rare and spe-
cialized research machines. For example, the Large Hadron Collider at
CERN, in Switzerland, generates a wide range of data from particle
collisions, certain types of which can be measured using unique detec-
tors, and enables collaborations among 3000 scientists and engineers
for each collaboration. Other examples include the gravitational-wave
observatories (LIGO2 and Virgo3 collaborations are currently>1000

and>500 members, respectively) and widely shared astronomical
mappings from satellites and telescopes. These sources of data tend to
be managed by large international research facilities since multi-
national efforts are needed to fund and build them. Scientists work
within large, coordinated, research consortia to produce, process, and
analyze the data.4,5 Raw data are contained within each facility but are
accessible, albeit sometimes in normalized form, and their particular
data characteristics tend to limit the variety of data types.

However, one aspect of the physical sciences still wanting for more
and better organized data to leverage emerging data science tools is in
the domain of materials science. Successful examples of application of
materials informatics to the discovery of new materials can be found in
alloy development,6 polymer design,7 organic light emitting diodes,8 and
solar cells.9,10 However, these cases are still quite limited and suffer most
from lack of data. While there are a growing number of open databases
that contain materials property information,11–15 most of these databases
are created from computationally calculated properties. As an example,
the materials project includes computational information for over
130000 inorganic compounds, and the analogous experimental data-
bases only contain 9000 materials.15 Experimentally based, large, and
structured materials property databases are still lacking.

Unlike other fields, materials science lacks sufficient incentive to
make it practical to centralize its data, not only because the data are so
diverse but also because data arise from so many independent scien-
tists and laboratory sources.16 Figure 1 illustrates this contrast. Data in

FIG. 1. Comparison of large centralized datasets in high-energy physics, astronomy, and astrophysics compared to heterogeneous, decentralized data in materials physics.
Unlike other fields, materials science lacks sufficient incentive to make it practical to centralize the data, not only because the data are so diverse but also because the data
arise from a variety of independent scientists and laboratory sources. Data in the field of materials science are particularly heterogeneous due to the wide variety of material
classes studied by scientists. The data appear as numerical text or image-based information, which requires quantitative interpretation.
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materials science are particularly heterogeneous, based on the signifi-
cant range in materials classes that are explored and the variety of
materials properties that are of interest. This leads to data that range
many orders of magnitude, and these data may manifest as numerical
text or image-based information, which requires quantitative interpre-
tation. The many length scales of materials science add to this diver-
sity, with data being measured from the atomic structure to massive
components that are integrated at a system level, such as airplane
wings or turbine blades. In addition, only a small sub-set of specialized
materials-physics research needs to be carried out at centralized facili-
ties, such as government-run synchrotrons, neutron and muon sour-
ces, nanocenters, high-magnetic field laboratories, laser laboratories,
or high-performance supercomputing facilities.17–21 Some of these
facilities archive the raw or normalized (“reduced”) data, and some
offer their scientific users the option to tag their experimental data
with a document object identifier (DOI) to make them traceable.22 If
even once such data become openly available, the metadata generated
by the experiment may be missing.23 Metadata are vital for processing
the data to the point where one can interpret their scientific meaning.

Fortunately, there is a prospective approach to address at least
some aspects of this data-access quandary in materials science.
Scientists will cede control of their processed data if they publish their
results, and publications continue to be the primary means of commu-
nicating within the materials domain. These data will be spread across
various journal articles, patents, or company reports, owing to the vari-
ety of ways that scientists can publish their findings. The data will also
present in an unstructured form, given the highly diverse way in which
scientists write an article and select the most salient results for show-
casing their scientific points (i.e., as text or in figures, tables, and sche-
matics). For example, scientists may report the composition of a metal
alloy in one table, the processing conditions for that alloy in the body
text of the methods, and then the final properties in figures within the
results. Despite the distributed nature of these processed data, harvest-
ing them from documents presents a way to retrieve materials-physics
data en masse. The manual task of mining information from docu-
ments by editors is not practical, given the amount of data that are
needed to succeed in the field of materials informatics. A means to
automatically extract materials-physics data from scientific documents
is, therefore, required. This challenge presents a prime opportunity for
information extraction and natural language processing (NLP),
whereby “materials-aware” text-mining models can be used to collate
processed data that lie within the literature to afford auto-generated
materials databases that can be used in materials informatics.

Capturing unstructured information from the vast and ever-
growing number of scientific publications has substantial promise to
meet this need and enable creation of experimental-based databases
currently lacking. This reliance on publications in scientific communi-
cation is exemplified by the proliferation of new journals and increased
frequency of publication.24–26 Developing methods to mine the litera-
ture for data may also prevent information loss. Without structuring
information, scientists cannot make the necessary connections among
findings; they may instead be drawn by what the authors of a scientific
document have chosen to be highlighted in a journal or individual
publicity efforts. Scientific progress relies on hypothesis development,
which requires leveraging increased knowledge toward greater under-
standing, typically based on synthesizing existing information.
Scientists are not trained to formalize their findings in a structured

way. The rapid growth of scientific knowledge has the potential to pro-
vide opportunities to transfer solutions from one domain to address
problems in another. However, the underlying relationships largely
remain embedded, and groups from disparate domains remain within
their own specialties.24 The significant quantity of existing and new
published literature. Limits what one individual can draw relationships
between varied concepts, topics, and domains. There is a distinct value
to be drawn beyond what is known and what is known as individuals
from the collective to broad multidisciplinary knowledge within and
across a given domain. This sharing and integration of information
across communities is a tall order to accomplish comprehensively, but
the ability to automatically extract information from the literature can
provide a tool to facilitate this engagement.

A. The scope of this review

In this review, we look at the fully and semi-automated means of
assembling and structuring scientific data through NLP and text
mining. In the realm of scientific text, methods, tools, and databases of
relevance for NLP have been most well developed for the biomedical
domain27,28 where information is sought on genes, proteins, drugs,
medical symptoms, and disease. These efforts exist also in the chemis-
try discipline, which arguably began earlier, but tools for chemistry are
less advanced than those in the biomedical domain. Efforts in chemis-
try have focused on developing comprehensive chemical dictionar-
ies,29,30 substance and small molecule composition, and structure and
property descriptions.31–34 This review will focus on what has been
achieved to date in NLP for the discipline of materials science.

The structure of this article is as follows. We first describe reasons
for pursuit of NLP of scientific text given the motivation provided
above. Next, we focus on the tasks and methods involved, describing
the challenges for the materials science domain including a summary
of commonly used tools. Then, we show in detail about particular
examples of NLP applications in materials science. Next, we discuss
data mining beyond NLP and how this nonetheless tracks back to the
cognate need for NLP. Finally, we provide some commentary on the
future needs and directions for the use of NLP as a tool for the materi-
als community.

II. THE WAYS THAT NLP CAN BENEFIT DATA-DRIVEN
MATERIALS SCIENCE

Leveraging NLP tools in materials science remains in its infancy.
The methods used, and the level of accuracy required, vary depending
on the inquiring goal. Before diving into the details of how NLP is per-
formed, we briefly mention some of the key benefits that NLP afford for
data science. These include generating datasets for mining and visualiza-
tion across multiple research efforts, as well as contributing to machine
learning (ML) predictions and identifying research trends. Examples of
the application of NLP in materials science will be provided in Sec. IV.

The use of NLP on scientific text can generate libraries of infor-
mation to explore, which enables data visualization, mining, and ana-
lytics. The primary goals of text extraction can be used to populate
databases with quantitative information or make text information
summative and interactive in a way that can reveal patterns, gaps, or
trends. Advances in data analytics and visualization tools, described in
greater detail in Sec. V, have also accelerated the process of informa-
tion consumption to decision-making. A well-structured database
with an interactive and intuitive graphical user interface allows
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researchers to perform significant background research, test hypothe-
ses, survey the field, and form a sound basis for designing and
performing experimental work, saving hours if not months of labor-
intensive literature surveying and wasted experiments. Text extraction
can provide data that drive search-engine development in the scientific
domain and a beginning of active learning systems tied to automated
materials discovery and synthesis platforms.35–37

Beyond data extraction and visualization, researchers may also
leverage NLP to derive fundamental insight across these data; for
example, NLP may be used to find relationships between compounds
by mapping materials mentioned in the text to corresponding chemi-
cal structures. This identification of relationships and trends is fre-
quently done by using various ML techniques on the extracted data.
Scientists can search for similar chemical structures or substructures,
meaning that text information can be combined with knowledge from
established computational-property databases. For example, this com-
bination of extracted and existing data might allow for exploring and
screening the relevance of compounds to a new application as a func-
tion of published properties.38 The ML models used vary in complex-
ity, but the key opportunities for the scientific-language assembly
include literature-based knowledge discovery, suggesting novel scien-
tific hypotheses, or predicting the outcomes of reactions.

NLP activities across scientific text can also identify future
research trends by predicting emerging associations (co-occurrences)
between selected keywords found in the scientific literature. This type
of analysis has been done previously for biochemistry,39,40 neurosci-
ence,41,42 and human innovations.43,44 Significant work in this area
can also be found in the domain of “the Science of Science.”24 The
NLP community presents a nuanced differentiation between
“information extraction” and “knowledge-based creation” (traditional
and emergent approaches, respectively). Information extraction struc-
tures extracted text according to entity recognition and entity relation-
ships, which, then, feed into downstream search and query-based
activities. Knowledge-based creation can provide an end unto itself in
the form of ontology development where facts and relationships with
a discipline are extracted in a form that could be used to annotate
area-specific databases or to transfer knowledge between fields. Early
efforts in materials science have focused primarily on information

extraction. Given the need for expanded datasets in materials science
(beyond what is currently available), this is a logical emphasis. As the
community refines key tools toward NLP for materials, a broader set
of pursuits can be realized.

III. PERFORMING NATURAL LANGUAGE PROCESSING

Before delving into the specific details of methodology, we pro-
vide a few key themes related to NLP, which convey the perspective
taken in the materials science community. First, there are manual
and semi-automated methods of literature-data extraction, which
yield insights into “small” datasets (i.e., tens to hundreds of relevant
articles), but the focus moving forward (and within this review) must
be on the ability to apply methods to create large datasets (i.e., tens of
thousands of relevant articles). Generic NLP tools (such as CoreNLP)
exist that do not perform well in the materials science domain with-
out modification, as the vernacular, sentence construction, terminol-
ogy, and chemical semantics are specialized. Therefore, we need to
develop and apply materials-specific text mining tools to meet the
needs of this community. To reach any sort of economy of scale
across such an interdisciplinary field, approaches that transfer effec-
tively within the materials science domain are needed, which requires
a balance between accuracy and generalizability. Each application
space will have local norms from which rules can be crafted for highly
accurate information retrieval in that one domain; however, these
rules often breakdown when applied to a different area of inquiry.
Challenges with developing generalizable tools are also influenced by
the type of document and section within the document. Finally, there
is a tension in balancing model development toward the semantic or
linguistic structure of the document, while still incorporating critical
domain knowledge in how individuals within the field communicate.
Natural language carries a high degree of ambiguity, and implicit
knowledge plays a significant role in how a field communicates.
However, if too much of this implicit knowledge is integrated within
models, leveraging the linguistic structure of the text becomes more
difficult.

Most natural language extraction pipelines follow a similar over-
all approach, shown in Fig. 2, which consists of (1) acquiring a relevant
corpus of text, (2) processing that text into individual terms, which is

FIG. 2. Schematic of NLP including examples of tools and models at each step. It is visible that most natural language extraction follows similar approaches: (1) acquiring rele-
vant text resources, (2) processing the text into individual terms (also known as tokenization), (3) document segmentation and paragraph classification, (4) recognizing tokens
as classes of information, (5) entity relation extraction, and (6) named entity linking.
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called tokenization, (3) segmenting documents and classifying para-
graphs, (4) recognizing tokens as specific classes of information, gener-
ally referred to as named entity recognition (NER), (5) entity relation
extraction, and (6) named entity linking. Depending on the question
being pursued by researchers, pipelines may vary in their methods and
approach, including the order in which the above-described steps are
performed, the types of information models are provided, and devia-
tions in the models themselves. Using broad strokes, we can describe
the continuum of approaches as direct word mapping, defining heuris-
tics, and then to ML-based methods. ML approaches, in and of them-
selves, can vary within the continuum of unsupervised to supervised,
the latter requiring labeled data often in significant volumes. This sec-
tion describes details on each of these steps with materials-relevant
method development presented with each step.

A. Content acquisition

The first step is to develop and acquire a relevant corpus of sub-
ject articles of interest from which information will be retrieved. The
content varies by the degree of accessibility, the corpus of subject
articles of interest, and the kinds of documents (patents vs journal
articles, for example). This content can only be digested within the
subsequent models if rendered in plain text-accessible format,
although there is variety in that format.45 The older digitized content
is available primarily in portable document format (PDF) (introduced
in 1993); however, even the older content may be preserved as images,
presenting an insurmountable challenge in extracting information at
scale. Converting PDF to plain text relies on spatial identification of
blocks of text in a layout-aware manner, which is still an area of
research.46 Errors may arise in terms of misplaced blocks of text and
font-conversion challenges. Most journals and publishers after the
mid-1990s also provide content as hypertext markup language
(HTML) or extensible markup language (XML). HTML or XML often
has more consistency in their conversion to plain text format, but this
format is not ubiquitous across publishers. Given the challenges asso-
ciated with PDF conversion, nearly all reports of text mining of mate-
rials science texts have been on articles available in markup
language.47,48

Acquiring information from patents provides another way to
obtain content, given patent accessibility and centralized hosting
by country-specific patent offices. However, patent authors often
seek to protect their knowledge from being fully disclosed, and so,
these texts may have even more implicit information than journal
articles. Patents relevant to materials science have a closely defined
structure and style of presentation;49 in particular, the example
section mirrors the synthesis section, so they can be interpreted
with a high degree of accuracy. Patents will not be a focus of the
methodology discussion going forward in this text, but they have
been used in biology and chemistry applications with some
frequency.50

The downloaded content consists of article text and meta-
data (journal name, title, abstract, and author names). The meta-
data provide value in databasing the content, as well as being
high-level information that can inform entity recognition as
described below; it is typically more structured than the docu-
ment content.

B. Text preprocessing and tokenization

Once the content has been obtained, three main activities are used
to manipulate the information contained within the text: entity extrac-
tion, entity relation, and entity linking. This overall flow begins with a
series of steps that preprocess the text of the article to enable identifica-
tion of the desired information. Preprocessing will vary according to the
order of events and the tools used for each stage. A low-level, but critical,
step is character encoding, establishing the way that the characters are
represented. Tokenization (a form of preprocessing) segments text into
the relevant sentences, phrases, words, or word pieces, to be processed
individually or as a sequence. Punctuation marks are the obvious
approach to identify sentences, but the language of the scientific domain
is often complicated by terms that are composed of multiple words, sym-
bols, and other types of structural entities, which, therefore, requires
specialized tokenization pipelines. Some examples of this challenge with
chemical and material notation include the uses of commas:
(Y,In)BaCo3ZnO7; periods: (La0.8Sr0.2)0.97MnO3 or CuSO4�5H2O;
hyphens: (1�x)Pb(Zr0.52Ti0.48)O3�xBaTiO3 or Ti-64 (common term for
Ti90Al6V4 alloy); and colons: LiSr1�xPO4:Eux. Using materials domain-
specific tokenization has been shown to be important for successful NLP
of materials texts as it can have a significant impact on downstream
activities.47,48,51 Common tokenizers for the scientific literature include
those available within the software: OSCAR4,34 ChemDataExtractor,33

ChemSpot,32 and BANNER’s simple tokenizer.27 More general tokenizers
that may also be used or adapted for the scientific literature include those
by SpaCy and the Penn Treebank tokenizer.

Dependency-based parsing of sentences and part-of-speech (POS)
tagging identify the syntactic structure of a sentence. Current state-of-
the-art approaches use neural algorithms, including sequential and
bidirectional modeling; however, these algorithms rely on larger
volumes of training data and corpora than is typical for specific cases
within materials science.52 Nonetheless, some models such as bidirec-
tional encoder representations from transformers (BERT)53 have
shown the ability to adapt readily to certain tasks using datasets on the
order of thousands of documents, simply by “swapping out” the final
layers of the model to a task-specific architecture (e.g., part-of-speech
tagging during parsing). Further-distilled models, such as
DistilBERT,54 may improve this ability to adapt to thousands of
document-sized datasets, as there are fewer parameters to fine tune
during domain adaptation. Note that we will discuss the role of BERT
and other word embedding models below.

When compared to general-purpose text, a scientific
dependency-parse should learn specific sentence structures and pat-
terns, such as an extensive use of passive and past tense, limited use of
pronouns, and depersonalization of a sentence.55 The accurate con-
struction of dependency-based parse trees is highly sensitive to the
punctuation and correct usage of the word forms, especially verb
tenses. These aspects of the grammar are often neglected in scientific
publications, making it difficult to use standard well-developed algo-
rithms and tools for text mining. To date, there have not been develop-
ments to address these caveats for scientific text.

C. Document segmentation and paragraph
classification

NLP can afford better accuracy when one operates only within
specific parts of the article, such as the abstract, main text body, tables,
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or figures, depending on the area of inquiry. This approach not only
helps computationally but can also increase the uniformity of the
desired extracted text. Matching regular expressions to identify section
headers provides an easy guide, and this can be done simply using
string matching within a set of text or regular expression (regex)
coding, although the variation in the application of headers by pub-
lishers can present a challenge even in this straightforward activity.
Huo and colleagues have recently applied probabilistic methods, such
as latent Dirichlet allocation (LDA), across several million articles to
use unsupervised approaches to identify experimental steps implied in
sentences.56 LDA provided a probabilistic topic distribution for each
sentence. These authors, then, applied random decision forests, using
the topic n-gram as the feature, to classify different types of synthesis
procedures; this required annotation of only a few hundred para-
graphs. Another feature of this work is that the authors were able to
construct a Markov chain representation of the material synthesis flow
chart.

As an alternative to the unsupervised approaches discussed,
Hiszpanski et al. used a supervised ML approach to evaluate every
sentence within an article and extract solution-based synthesis proto-
cols.57 Specifically, by iterative rounds of training with human-
annotated sentences, they trained a logistic regression classifier that
yields the likelihood of a given sentence describing solution-based syn-
thesis protocols based on the words present within the sentence. As
may be expected from scientific writing conventions, past tense verbs,
unit terms (e.g., ml and min), and chemicals are weighed heavily as
being indicative of a synthesis description. Surprisingly, function
words such as “the,” “of,” “then,” and “and,” which are normally fil-
tered out from text as “stop words” in nonscientific applications, occur
more commonly in synthesis protocols and are important in distin-
guishing sentences that concern synthesis or otherwise. This observa-
tion points out again how traditional NLP approaches may need to be
modified when these tools are translated in their application from gen-
eral texts to the scientific literature.

D. Named entity recognition (NER)

Each of the preprocessing steps described above enable the heart
of the text-extraction activity, NER, which identifies the objects of
semantic value by recognizing and classifying concepts mentioned in
the text. Entities are useful in and of themselves for researchers to map
to properties, to find similar compounds, or to incorporate in annota-
tion labeling. Historically, immense effort has gone into NER for the
medical domain, extracting symptoms, diagnoses, and medications
from text.27 The chemistry domain has expended significant effort in
NER, but even state-of-the-art NER systems do not typically perform
well when applied to different domains, and effort is required to create
quality data for trainable statistical NER systems.58

NER is an area where the materials community is clearly in its
infancy. There is a need for training data to develop entity-recognition
models. Where knowledge bases exist already for a field, training may
be done using distant supervision models that map known entities and
relations onto unstructured text. In the computer-science community,
this activity is supported by “all community” developed learning tasks
that are orchestrated through conferences in the field; these tend to
tackle significant challenges along a roadmap, thereby making con-
certed progress as a domain.59 There is no equivalent yet in the materi-
als space.

The general methods for NER range from dictionary look-ups,
rule-based, and machine-learned approaches. Typical pipelines used
in the materials science domain include hybrids of all three of these
approaches. Hybrid systems provide a balance of precision with com-
putational efficiency, where only those cases that cannot be handled
by dictionaries or rules pass to ML approaches to make efficient use of
annotated data. Dictionary look-ups include material composition,
chemical element names, properties, as well as processes and experi-
mental parameters.

Hand-crafted rule/knowledge-based methods are a collection of
rules or specifications defining how to handle relative ordering and
matching among those rules. Rules may be developed through corpus-
based systems that require examining several cases to obtain the
patterns or via domain knowledge understanding of nomenclature con-
vention. To overcome the time intensive nature of rule development,
strategies have been developed to learn rules through small collections
of seed examples that begin from very high precision rules and learn to
generalize or vice versa. Examples of these approaches include
LeadMine,60 which uses naming convention rules, ChemicalTagger,61

which parses experimental synthesis sections of chemistry texts, and
portions of ChemDataExtractor, which uses nested rules. For example,
when researchers extended ChemDataExtractor for use in magnetic
materials, additions were made for domain-specific parsing rules
including off-stoichiometry and relevant terms associated with the
domain of interest (in this case magnetic materials such as ferroelectrics
and ferrites).51

Finally, at the other end of the continuum of NER, approaches
are ML-based statistical models, which use a feature-based representa-
tion of observed data to recognize specific entity names. These models
typically depend on sets of annotated documents, which rely on anno-
tated corpora and the development of metrics for inter-annotator
agreement where multiple annotators are involved. Given that a sen-
tence is represented as a sequence of words, it is insufficient to con-
sider only the current word class; therefore, sequential (and typically
bidirectional) models are necessary to consider the proceeding, cur-
rent, and following word. While rule-based approaches are tedious to
develop and not easily generalized, supervised ML models, in contrast,
require substantial expert-annotated data for training along with
detailed annotation guidelines. ML models invite careful consideration
of the types of classes that are identified and the order in which labels
are classified. Initial NER work specific to the materials domain was
performed by Kim et al.47 Kononova et al. further built upon this
work through a two-step materials entity recognition48 using the bidi-
rectional long short-term memory network with the conditional ran-
dom field neural network.

As alluded to above, the degree of supervision within NLP is
often modulated by word vector representations that capture the syn-
tactic and semantic word relationships, the so-called “word
embeddings.” Word embeddings are a learned continuous vector rep-
resentation, which encode the local word context; these can, then, be
analyzed to capture distributional similarities of words. These models
may be intrinsic, wherein they identify semantic relations, or extrinsic.
Character-based word representation models help with “what does the
word look like”; these use the individual character of a token to gener-
ate the token vector representation and include morphemes (suffixes
and prefixes) and morphological inflections (number and tense). The
effectiveness of word vectors depends not only on the training
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algorithm and hyperparameters but obviously also on the source data.
Recent work explored the impact of similarity between pre-training
data and target task, particularly in the area of word embeddings.62

This work proposed to select pre-trained data using the target vocabu-
lary covered rate (percentage of the target vocabulary that is also pre-
sent in the source data) and language-model perplexity (if the model
finds a sentence very unlikely, in other words dissimilar from the data
where this language model is trained on, it will assign a low probability
and therefore high perplexity). The authors found that the effective-
ness of pre-trained word vectors depends on whether the source data
have a high vocabulary intersection with target data, while pre-trained
language models can gain more benefits from a similar source. We
note, therefore, that the choice of corpus used for the training process
is critical, pointing to the quality of text and domain-specificity
requirements.38 A range of word-embedding models have been used
in the materials community to date and vary with aspects of the corpus
that they are trained on; for example, Word2Vec63 is trained just on
the solid-state synthesis paragraphs vs the contextual model, which is
trained on full text.64 Other word embedding models that have been
used in the materials science domain include FastText,65 Embeddings
from Language Models (ELMo),66 and BERT.53,67

Materials-specific challenges to NER will vary by the subdomain.
These include subtleties associated with the property, context, and
reporting of the underlying measurement. For example, within the
work from Audus et al. on the NLP of polymers,68,69 the authors have
undertaken specific NER efforts related to that domain, termed
polyNER. A synthetic polymer is rarely a single entity and is described
instead by distributions of molecular weight, often in conjunction with
nonstandard naming conventions or trade names.68 Thus, polyNER
focuses on a necessary pretreatment for polymer entity recognition,
highlighting the challenges of generalizing NER tools across disparate
domains within materials science. As another example, in work pur-
sued by Kononova et al. on solid-state synthesis of inorganic materials,
material entries were processed with a material parser that converted
strings for a material into a chemical formula, which in turn was split
into elements and stoichiometric balances. Then, the authors obtained
balanced reactions from precursors and target materials by solving a
system of linear equations; this included a set of open compounds that
can be released or absorbed, which were inferred based on the compo-
sition of precursor and target materials.48

Often, these approaches require hybrid system development,
where the computer automates one aspect of the activity and human
intervention enables precise execution. For the polymer extraction
work, the NLP-based extraction process identified candidates within
the article and subsequent automated and crowd-sourcing curation
steps processed these candidates. There are several ways to formalize
the role that a human might play in these activities.70,71 Approaches
can leverage word-embedding models to establish entity-rich corpora,
the so-called candidate generation, for expert labeling, which feeds
into a context-based word-vector classifier.69 Researchers have also
pursued active learning with maximum-entropy uncertainty sampling
to achieve valuable annotations from experts to improve performance,
but this proved time intensive to pursue.72 Roles for hybrid systems
also include establishing dictionaries for stop words and rules to detect
systematic names.

An additional challenge in the materials community is multi-
word tokens. Huang and Ling recently proposed multi-word

identifying and representing methods. This involves recognizing the
multi-word phrases in the chemical literature through unsupervised
methods and then representing the phrases in the vocabulary.73

Typically, word embedding is performed after tokenization with
phrase representation obtained based on a post-vector addition. In
this method, a new step is incorporated to identify multi-word phrases
and add the detected terms to the vocabulary. In this case, word
embedding is performed afterwards at the phrase level. Huang and
Ling’s computationally intense approach starts from tokenized and
trimmed single words and sentence context. Then, they use scoring
functions to identify bigrams, repeating this process up to n-grams,
and then move to phrase-level word embedding.74,75

E. Entity relation extraction and linking

Entity relation extraction is the activity that identifies relations
between entities mentioned in a given document. It is primarily done
in post-processing steps after NER. Entities extracted can also be
linked to their properties or co-occurrence with other entities, which
allows new knowledge between them to be identified. Efforts have pri-
marily focused on the co-occurrence of entities within a few sentences
of each other, although there is a need to extend this to a full
document.

Within materials science, most entity-relation extraction occurs
through dependency parsing. More direct supervised ML-based
approaches would require the development of larger annotated cor-
pora and quantifying similarity by computing representation similar-
ity. One approache used in materials examples concerns Snowball
methods, which include seed examples of known positive relation-
ships. Based on locating sentences with these seed examples, typical
patterns are learned using clustering of textual similarity.61 By compar-
ing unseen sentences to learned patterns, new relationships can be
identified based on a threshold minimum level of similarity. These
methods have been extended recently within ChemDataExtractor tools
using a modified Snowball algorithm.51 The original Snowball algo-
rithm uses several thousand seed examples.76 For the modified
Snowball algorithm, the quaternary relationships included the prop-
erty specifier, chemical entity mention, property value, and then
unit.51 Named entity linking, then, connects information extracted
from text with data stored in curated databases where the challenges
are to delineate entities that are different from those that are synonyms
and should be linked to one unique identifier.

There are several issues to consider after initially applying NLP
techniques to scientific text. First, whether or not the data are extracted
accurately. Second, are the data reported correctly. Third, are data
being reported with sufficient details to warrant these efforts. As the
process of text mining proceeds down the pipeline shown in Fig. 2, the
accuracy of the extracted data decays rapidly, and noise accumulates.
Hence, the choice between having higher precision within a set of
extracted data vs having a larger dataset size becomes pivotal because
this choice will significantly affect the results of the data mining. Kim
et al. showed that even when using millions of raw papers as a starting
position, numbers may drop to just hundreds of thousands of papers
depending on the specific topic.47 Data loss arises not only due to
imperfections of the extraction methods but also, oftentimes, due to
the misrepresentation of the original information. A prominent exam-
ple is referencing a previously published procedure or data analysis
instead of providing its description in the current paper. The use of
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nonstandard abbreviations, acronyms, and terms also significantly
affects the amount of false negative outcomes, as these abbreviations
complicate the linking of the information from different parts of the
text.

All these places for data loss point to the significant role of
outliers and how frequently a data point is occurring, as well as
how they are treated afterwards. The pursuit of ground truth for
supervised ML within NLP is costly and time-consuming since it is
based on the limited annotated documents thus far as discussed
above. Whether or not accuracy that is sufficient for the spread of
goals of NLP and text mining in materials science can be achieved
is still an open question.

F. Conceptual network

Separate from the NLP pipeline described above, the use of text-
based approaches to generally learn a field has been an area of interest
linked to the concept of ontologies, as described above. A high-level
workflow for ontology generation is as follows: first, generate concept
lists through expert input and comparisons between a curated refer-
ence list and a random set of scientific documents. Then, use methods,
such as bag-of-words, to populate the ontology. Recent work used a
hierarchical LDA, which learned an overall structure from the data
and generated a tree of classes that could be used for searching terms,
annotation, and standardization of metadata.77 There are a few inter-
esting ways to generate these concept lists. The work by Krenn and
Zelinger analyzed trends in quantum physics by generating a concept
list through human-expert input that is expanded by Rapid Automatic
Keyword Extraction to a term list; this is, then, fed into a comprehen-
sive corpus to establish links between each of the terms. To project
future directions of research, they performed a link-prediction task to
ask which new link will be formed between unconnected vertices given
the current network. This was done using an artificial neural network
with four fully connected layers, which ranked unconnected pairs of
concepts and further extended this approach to identify pairs with
exceptional network properties.78

IV. RESOURCES AND TOOLS FOR NLP

Given the methods described above, a section is provided here,
which summarizes some helpful resources and tools, including a cov-
erage of the tools most commonly used in NLP for materials. Table I
lists the most common NER toolkits publicly and freely available and
the information that they are capable of extracting. Most have been
focused on capabilities to extract entities from body text, but many
have expanded efforts to extract tables as well. Several also have a focus
on extracting biology-relevant information, which stems from the ear-
lier leading NLP efforts in life sciences. The groups that developed
these tools have taken varied approaches, tailored to their specific
sub-field of literature. The tools typically vary with the tokenizers and
techniques that they use to identify chemicals, which often involve a
combination of dictionaries, hand-crafted rules/patterns, and
POS-tagging methods, as previously discussed.

Researchers are likely to be interested in extracting categories of
information, which are specific to their research topic and beyond, for
which there are readily available tools shown in Table I. If the category
of information that is desired has a formulaic representation, or it has
a limited number of possible ways of being expressed, then rather sim-
ple pattern- or dictionary-based approaches can be created to extract
this new category of information. When these more straightforward
methods fail, then ML-based models can be developed, such as the
CRF models for chemical-entity recognition, as previously discussed.
Common packages for developing such NLP models include Natural
Language Toolkit (NLTK),83 SpaCy,84 Stanford CoreNLP,85

AllenNLP,86 and openNLP.87

In addition to the plethora of software packages for NLP, recent
developments in word representation research have led to generalized
models that may be rapidly fine-tuned to domains of interest. A nota-
ble example is BERT,53 which has been fine-tuned to scientific text to
produce SciBERT;67 such models may ultimately advance the accuracy
of entity recognition for chemicals and materials.

Moreover, other advances in NLP research beyond word repre-
sentation and subsequent supervised tasks (i.e., classification) may

TABLE I. Tools available for natural language processing in the materials discipline.

Entity recognition toolkits Information capable of extracting
Approach for named entity recognition (chemistry

focused)

ChemDataExtractor33 Chemicals Tables CRF (hand-crafted features þ unsupervised features)
þ filtered Jochem dictionary

ChemicalTagger61 Chemicals Quantities Synthesis actions
and conditions

OSCAR (see below) þ pattern-based rules
þ dictionaries

Chem Spot 2.014,79 Chemicals CRF (hand-crafted featuresþ unsupervised features)
þ ChemIDPlus dictionary

BANNER-CHEMDNER27 Chemicals Bio-relevant entities CRF (hand-crafted features þ unsupervised features)
ChemXSeer80 and
TableSeer81

Chemicals Tables CRF (hand-crafted features þ unsupervised features)
þ Jochem and custom dictionaries

OSCAR4 Chemicals Reaction names Bio-relevant entities Maximum entropy Markov model þ ChEBI and
custom dictionaries

LeadMine82 Chemicals Named reactions Bio-relevant entities Dictionaries þ pattern-based rules
tmChem31 Chemicals CRF (hand-crafted features þ unsupervised features)
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have the potential for rapid domain adaptation to materials science
and chemical science. For example, deep-learning approaches to entity
resolution88,89 are largely driven by unsupervised methods and may
serve to resolve mentions of materials into canonical, physically mean-
ingful entities.

However, developing ML models requires many examples of
human-annotated text for training and testing a model, which can dic-
tate a heavy investment of time. For those embarking on this route,
easy-to-use tools for text annotation are needed. Many free and com-
mercial tools exist and continue to be developed for text annotation; as
such, a comprehensive review unrealistic but some commonly used
tools include brat,90 Prodigy,91 WebAnno,92 and Callisto.93 A com-
mon question that often arises is how many annotated data are
enough data to train a good model? The unsatisfying answer is that
one cannot concretely say until one tries. ML-model development is
often an iterative process involving model training and testing. If the
performance of a model does not meet expectations, then a common
means of trying to improve the model is to retrain it with additional
data, i.e., more annotated text.

The lack of publicly available materials-relevant corpora with
human annotations is hindering progress in NLP research within mate-
rials science. Having such publicly available datasets would reduce the
need for newcomers in the field to engage in the costly annotation exer-
cise previously described. Additionally, such datasets are essential for
enabling comparisons of the performance of new entity-recognition
models. This comparison is necessary to help the entire field of NLP
for materials science better understand our progress and shortcomings.
The largest and most materials-relevant publicly available corpus of
annotations is the BioCreative IV CHEMDNER corpus, which was cre-
ated from a community-wide effort in the 2000s to make a “gold stand-
ard” for training and testing NLP tools for the life-science literature.58

The corpus consists of 10000 abstracts, taken from PubMed in 2013
with 84 355 human-annotated chemical entity mentions, corresponding
to 19806 unique chemical names.

Currently, no large-scale equivalent corpus derived from the
materials science literature exists, but smaller and more materials-
focused annotated corpora are beginning to be reported, which have
annotations beyond only chemicals, as well. For example, Mysore
et al. released 230 materials-synthesis procedures with annotations of
materials, operations, conditions, apparatuses, and units, amongst
others.94 Likewise, Hiszpanski et al. recently released “gold standard”
annotations of chemicals and wet-synthesis protocols from 99 articles
pertaining to materials synthesis that they then used to compare the
performance of various chemical entity recognition tools that are iden-
tified in Table I.57 Other recent examples include data related to solid-
state electrolytes and fuel cells.95,96 Though somewhat further afield
from materials, Kulkarni et al. created an annotated corpus of 622
wet-lab protocols from experimental biology that has labeled actions,
conditions, reagents, amounts, and concentrations, amongst others.97

There have also been attempts to make the annotation process more
efficient through improved interfaces that could potentially enable
crowd-sourced annotations,98 although domain expertise has proven
critical. There is a paucity of relevant annotated datasets for the field of
materials science. Each of these examples required significant domain
expertise and time to craft. Continued efforts by the materials commu-
nity to share annotated corpora will only help further accelerate pro-
gress in this field.

To add details around datasets/corpora size, within NLP research,
the number of documents is oftentimes provided as an implied proxy
for data size, as we have done throughout. The number of documents
provides a relevant metric for tasks associated with word embedding
models, for example (where the corpora associated with materials sci-
ence is small relative to the large number of texts in the scientific
domain more broadly). However, of relevance beyond the number of
documents is the number of tokens of a particular class present in
those documents. Ideally, for machine learning, training data are inde-
pendent and identically distributed, but we know that this is not the
case when dealing with tokens within documents for NLP. Rare is it to
find a training corpus that has specific entities in nearly equal amounts
across the documents. Some documents are of greater relevance to a
topic and are more likely to have more tokens, and within the scientific
literature, it is expected that published works will influence others’
works. Thus, training data for NLP applications are far from being
independent and identically distributed. While providing a precise
number will vary by tasks, one can surmise an approximation of what
a “large enough” dataset constitutes by surveying the material NLP lit-
erature. In these works, after filtering documents for relevancy, most
have document corpora on the order of tens-of-thousands where each
document has dozens to low hundreds of entities and entity relations
for a specific token class.

Finally, a critical but often overlooked category of tools necessary
for reaping the full benefits of NLP efforts is data visualization tools.
The NLP of the materials literature creates structured datasets from
unstructured text, but databases by themselves are of little use if one
cannot see and explore the data interactively. While hard-coded plots
and graphs can be presented, such fixed visualizations do not allow
further exploration of the dataset beyond the presented perspective.
The interactive aspect of data visualization is critical to broaden the
utility of such databases and enable users to form hypotheses and test
them, thereby building their own understanding of trends. Interactive
visualization dashboards, which typically have multiple frames of dif-
ferent data representations, are effective tools for this purpose. Custom
interactive dashboards can be created using freely available open-
source software packages such as Candela,99 Bokeh,100 and D3.101 The
increased ubiquity and interest in data science have also spurred many
commercial software packages for creating custom interactive visuali-
zation of data, which are commonly marketed as business intelligence
and analytics tools.

V. EXAMPLES OF NLP BEING USED IN MATERIALS
SCIENCE

Based on the motivation for pursuit of NLP within materials, and
the detailed methodology provided, we now describe a series of exam-
ples of automated text extraction, which are specific to materials sci-
ence. The reasons for this pursuit include generating data for mining,
visualization, contributing to ML predictions, and the identification of
research trends. The ultimate goal of NLP in materials science would
be to evolve toward a new way of thinking about materials discovery,
but this will only become possible as databases that suit a given appli-
cation are developed.16 The examples that this section will cover are
captured in Fig. 3.

Examples of datasets gathered and curated by NLP-based
methods can be found across materials science, although progress is
still early in the physical domain. NLP-based curation efforts with
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more of a physical focus include polymers,68,69,102 Curie and N�eel
magnetic phase-transition temperatures,51 and pulsed-laser deposition
processing conditions of complex oxides.103 Efforts that can be linked
to physical properties, but are currently focused on materials chemis-
try, include solid-state reactions for all inorganic materials, synthesis
of inorganic oxides,47,48,104 zeolites,105 and nanomaterials.57

Repositories of materials metrology data are also being curated using
NLP tools. For example, a database of UV/vis absorption spectral
characteristics was auto-generated by mining the experimental values
of the wavelength of maximum absorption, kmax, and molar extinction
coefficients, e, of chemicals from the literature.106 Metrology data offer
a more general data platform to serve an entire physics community;
the example given will aid a wide range of optical and optoelectronic
applications. We offer some specificity around each of these examples.

Within the domain of polymers, leading text extraction efforts
are driven by the Polymer Properties Predictor and Database107 and
the NIST Synthetic Polymer MALDI Recipes Database.108 The former
includes semi-automated literature extracted data on Flory-Huggins
interaction parameters and glass transition temperatures, Tg, for close
to 300 systems. The latter comprises data records for 1250 polymer/
matrix combinations. While these datasets are small, they rival those
available in relevant, analogous polymer handbooks. Court and Cole
have assembled close to 40 000 chemical compounds and associated
Curie and N�eel magnetic phase-transition temperatures (approxi-
mately one-fourth of the data points are N�eel temperature records)
across almost 70 000 chemistry and physics articles51 using

ChemDataExtractor.33 These data describe the temperatures for ferro-
magnetic and antiferromagnetic phase transitions. The work was
motivated by the use of ML techniques in magnetism and supercon-
ductivity, which has the potential to lead to innovations in data storage
devices, quantum information processing, and medicine. Previously,
only manually curated databases existed for magnetic materials,
designed for single entry lookup. Data have been extracted for pulsed-
laser deposition processing conditions of complex oxides21 (substrate,
thickness, growth temperature, repetition rate, and partial pressure of
oxygen) and their physical characteristics (critical temperatures, Tc)
and functional properties (fluence and remnant polarization); this
work leveraged crowd sourcing for error checking.

For the case of solid-state synthesis, just under 20 000 recipes
were extracted from over 50 000 paragraphs, and these data include
information on the material made, starting compounds, operations,
and their conditions.48 The distinguishing feature about these data, in
addition to their breadth (13 000 unique targets and 16 000 unique
reactions), was that the authors provide balanced chemical reactions
that enable significant informatics work, at a scale not previously
obtainable. Earlier work extracted synthesis parameters from the body
text of 640 000 journal articles across 30 different oxide systems.47 For
zeolites, an industrially relevant catalysis material, 70 000 relevant
articles were fed through an automated pipeline to extract gel-
synthesis conditions. This work also included a highly curated set of
1200 synthesis routes that are specific to germanium-based zeolites.105

These data were used to support comprehensive literature curation in

FIG. 3. Overview of the ways that NLP has leveraged data-driven materials science, from information extraction to knowledge base creation and knowledge innovation. The
ultimate goal of NLP in materials science would be to evolve toward a new way of thinking about materials discovery, but this will only become possible as databases that suit
a given application are developed. Examples that are listed on the right hand side are described within the text.
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order to describe inter-zeolite transitions, affording an important
opportunity for accessing new zeolitic structures.109 The work by
Hiszpanski and authors extracted synthesis and morphology informa-
tion from 35 000 articles related to metallic nanomaterials, which
enabled them to easily identify the types of nanomaterials that are of
higher interest in the field. Furthermore, NLP-based extraction of this
information from the broader literature enabled them to identify what
specific chemical additions during synthesis result in the morphologi-
cal differentiation of nanomaterials (i.e., resulting in nanosphere vs
nanowire)—information that is otherwise typically gleaned through
targeted, time-consuming, and iterative synthesis efforts by individual
researchers.25

The materials-metrology database of optical absorption spectral
characteristics consists of 18 309 records of chemical names, their
experimentally determined kmax values, and molar extinction coeffi-
cients, e, where present. These were sourced from just over 400 000
academic papers using ChemDataExtractor.33 The information density
of data extraction (number of data records obtained: number of papers
sampled) is quite low in this case, relative to the above examples of
text extraction from documents. This is because the data sought on
UV/vis absorption spectra nearly always take the form of core
materials-characterization data, which support rather than lead the
focus of a paper. Accordingly, the information is semi-hidden in a
paper or is entirely latent, often being relegated to the supplementary
material of a paper. The data that do appear in the main article are
highly fragmented and are somewhat elusive to keyword search terms.
Moreover, materials-metrology data are reported over a particularly
wide range of journals, compared with synthesis or materials-centered
data. For example, there are journals that are dedicated to chemical
synthesis, materials chemistry, or materials physics, such that it is fac-
ile to choose the journals to mine, which are rich in the content
required to populate a database that suits a given application. In con-
trast, UV/vis absorption spectral characteristics will be noted in a
paper of any journal that reports a new chemical product, which is
optically absorbing, as well as being present in papers that focus on
optical properties. The information density of data extraction is thus
low, such that NLP tools must track many more papers for the desired
outcome. This issue tracks a general trend that despite the highly per-
vasive nature of core materials-characterization data, such as UV/vis
absorption spectra, they can be quite inaccessible to NLP tools.

Beyond, the datasets themselves are the capabilities to visualize
them and comment on trends within them. For example, Hiszpanski
et al. packaged the data that they extracted from 35 000 metallic nano-
material synthesis articles into a distributable visualization tool that
allows users to explore how the chemicals used in protocols vary
depending on the targeted nanomaterial morphology and composi-
tion. For the case of the pulsed-laser deposition data, the extraction
enabled visualization of growth windows, trends, and outliers (Fig. 3,
¶); these serve as an initial pathway for analyzing the distribution of
growth conditions to act as feedback for first-principles calculations to
link with thermodynamic stability windows. The authors extended
their analysis to determine the likelihood of achieving a low, medium,
or high Tc through a decision-tree classifier (a predictive modeling
approach used in statistics).21 Kim et al. observed that high calcination
temperatures are found more frequently in the synthesis of bulk mate-
rials with greater elemental complexity.27 Kononova et al. leveraged
the reaction dataset for insights related to the nature of solid-state

synthesis. For example, alkali and transition-metal cations are typically
used in a reaction based on several types of precursors, including
binary oxides, nitrides, sulfides, or simple salts such as carbonates,
phosphates, and nitrates. They also observed that the counterion in
solid-state synthesis controls the temperature of precursor melting or
decomposition. This could indicate when the precursor becomes active
during synthesis or direct the synthesis method.

The next level of depth within the materials examples that have
leveraged NLP are those that perform some degree of ML on the data
toward the pursuit of fundamental insights. Within the work by Court
and Cole, case studies of perovskite-type oxides and pnictide super-
conductors demonstrated that magnetic and superconducting phase
diagrams could be reconstructed with good accuracy (Fig. 3, ¶), and
associated phase-transition temperature predictions could be made,
which were relatable to the underlying physical theory of magnetism
and superconductivity. Specifically, the authors were able to predict
N�eel temperatures in rare-earth manganites and orthochromites and
document the unconventional superconductivity of ferropnictide
superconductors, as well as predict Tc across the lanthanides. The
models used elemental and structural features as a basis. While this
contribution was for known compounds, the overall approach points
to the ability to extend this capability to discovery.29 Indeed, others
have already used this NLP-generated magnetic-materials database, in
concert with ML methods, to realize data-driven materials discov-
ery.110 Thereby, a new magnetic refrigerant, HoB2, was successfully
predicted (Fig. 3, •). This is an important discovery since there is cur-
rently a world-wide search for a material that exhibits magnetocalorific
effect around the hydrogen liquefaction temperature (T¼ 20.3K),
given the need for hydrogen storage to serve an energy-sustainable
fuel industry.111

Methods based on quantitative structure-property relationships
(QSPRs) are also being adapted. Such approaches are long-standing on
the small scale, but multiple structure-property relationships are now
being drawn together to analyze volumes of data. For example, a hier-
archical sequence of questions with the generic form “Which data obey
this QSPR?” can be set within an inverse pyramid construct of decision
making to successively whittle down a large dataset to a few lead candi-
dates that hold all of the requested QSPR requirements that suit a given
material application (Fig. 3, ‚). The lead candidates that result from
this materials screening process are, then, experimentally validated. For
example, the database containing UV/vis absorption spectral character-
istics was subjected to this hierarchical QSPR-based decision-making
process, to successfully discover five light-harvesting materials for pho-
tovoltaic applications.5 This work also illustrates how the NLP-based
provision of materials databases can be embedded within a “design-to-
device” pipeline for data-driven materials discovery.112

Owing to the nature of extracted data, the structuring of knowl-
edge from an NLP-generated database offers interpretable ways of
developing materials insight. For example, decision trees leveraging
only extracted data can point to experimental handles that drive par-
ticular synthesis outcomes (Fig. 3, »). Decision trees have been used
to examine the critical parameters that are needed to synthesize titania
nanotubes via hydrothermal methods and verify the driving condi-
tions of NaOH and temperature against known mechanisms. For the
case of zeolites, data were used to generate a decision tree to predict
zeolite synthesis conditions with low framework densities.105 In addi-
tion, this work has demonstrated the capacity for learning across
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materials classes using NLP-extracted information. This was done via,
so-called, transfer-learning ML approaches, to predict synthesis out-
comes on materials systems that were not included in the training set
(Fig. 3, „); the results outperformed heuristic strategies. For example,
in predicting the phase for BiFeO3 (trained on BaTiO3), a support vec-
tor machine (SVM), with the synthesis vector for this material as
input, performed over 40% better than a heuristic logistic regression
whose input was annealing temperature.47

More complex ML methods may also be applied to these data.
For example, a subset of the authors have generated synthesis parame-
ters based on observations from the literature, conditioned on specific
synthesis-relevant parameters using generative ML models.113 One
class of generative models uses an autoencoder, which is a class of
neural-network algorithms that learn to reproduce the identity func-
tion, while compressing data through a lower-dimensional layer. What
makes this particular form of model generative, and therefore useful in
making new material predictions, is an additional constraint (varia-
tional autoencoder) where the compressed space must also approxi-
mate a previous distribution. This model architecture enables a
literature-based synthesis-screening technique to generate, for exam-
ple, suggested synthesis parameters, accelerate positing of driving fac-
tors in forming rare phases, and identify correlations among
intercalated ions and resulting synthesized polymorphs. These
approaches have been applied to SrTiO3, TiO2, andMnO2, due to their
technological relevance in applications, ranging from energy storage to
catalysis.113 Most recently, the work has been extended to generate
syntheses for perovskite materials (Fig. 3, ”). Using only training data
published over a decade prior to their first reported syntheses, the
model generated precursors for InWO3 and PbMoO3, which were
published in the literature a few years ago (2016 and 2017, respec-
tively).64 This work demonstrated that the NLP-based model learns
representations of materials that correspond to synthesis-related prop-
erties, such as aqueous solubility, and that the behavior of the model
complements existing thermodynamic knowledge. Data-augmentation
strategies using the literature were also applied in this case, demon-
strating the value of automated, comprehensive text extraction.
Structured data from the literature may also initialize where experi-
mental inquiry should start or seed the design of predictive tools for
optimizing reaction procedures. Data that have been assembled in a
structured way may lend themselves more effectively to develop
reporting standards to inform reproducibility, or they may be made
interoperable with other data within materials science or from broader
disciplines.55

Finally, one might pursue NLP toward knowledge innovation.
Linking knowledge discovery and NLP is a relatively new pursuit for
the materials community. A recent example was to uncover semantic
relations between concepts in a network for quantum physics.78 This
work used the content of 750 000 publications to generate a network
of physical concepts where the links between two nodes were drawn
when concurrently studied in research articles (Fig. 3, ‰). The authors
examined the evolution of the network to identify emerging trends
and the rate of those trends. The fastest growing concept found was
the qubit, emerging first in 1995, which is the basic unit of quantum
information. Another growing topic was found to be research in topo-
logical materials and, more recently, the application of machine learn-
ing. As far as suggestions of future topics, strong potential links were
identified between orbital angular momentum and magnetic

skyrmions and spin-orbital coupling. Another example is found in the
materials-discovery domain. Taking a largely unsupervised approach,
Tshitoyan and coauthors were able to extract implicit knowledge, held
within the materials science community around the periodic table, and
structure property relationships in materials, perhaps pointing to a
way to examine new discoveries. This is a finding that is echoed in the
original embedding work that was undertaken on general (nonscien-
tific) text.114 They have leveraged this capability to point to promising
thermoelectric materials.38

This use of NLP to develop knowledge bases, from which to
derive insight, is not too dissimilar to ontology creation (Fig. 3, …);
whereby, there has been limited pursuit in the materials community.
Ontologies are a formal presentation of a domain, and they provide an
account of term meaning and insight into the hierarchical structure of
the terms. Ontologies provide and formalize semantics of each entity
and their specific domain. Ontologies are organized in formal
machine-readable formats. This enables their integration in relation
extraction models, and they may provide opportunities to learn ontol-
ogies for how materials information should be presented and what
needs to be included. A recent effort in biomaterials generated an
ontology to attempt to develop an accepted taxonomy for manufac-
tured biomaterials; this captured the complexity of how scaffolds and
devices are described and named. Examples of some of the super-
classes generated were manufactured objects, biomaterials, material
processing, effects on the biological system, and medical applications.
The goals of this work were to provide an annotation resource to facili-
tate “term” (or “entity” in the NLP domain) recognition, outline
“accepted” or used language in the field, and offer a common basis for
understanding the range of distinct scaffolds with their associated fea-
tures, beyond just the materials and document discovery.77

Table II summarizes some of the open data resources referenced
in this section and highlights potential research directions enabled by
these data. Despite the early nature of the application of NLP to mate-
rials science, these examples illustrate the breadth of what has been
accomplished to date and the potential for knowledge creation and
innovation as tools and methods mature.

VI. BEYOND BODY TEXT

In addition to extracting information from the main text of docu-
ments, valuable data that are embedded in figures and tables should
also be captured.115,116 In a given manuscript, figures can include com-
plex images, graphs, and schematics. While these figures, tables, and
graphs provide a succinct representation of useful data that are rela-
tively easy for humans to understand, the identification and collection
of information from figures and tables to convert them into a struc-
tured format are significant challenges.117,118 Similar to the way that
NLP processes identify sections and relevant paragraphs, as mentioned
above, the locations of figures and tables have also to be identified and
extracted. Once the figures and tables have been extracted, segmenta-
tion, classification, and image analysis must be performed to extract
relevant information that may need to be reconstructed. Successful
extraction of data from the figures can reinforce and validate the infor-
mation extracted from the main texts, provide additional data points,
and aid in building relationships between multiple entities and numer-
ical values. The information from figures and tables will allow the
researchers to re-plot, compile, and quickly compare data across mul-
tiple sources and add newly obtained data, which can be visualized in
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a bigger context. One particularly challenging area of information
extraction is from image-based data.

Microscopy images, which characterize the microscopic- to
atomic-scale structure of materials, contain a wealth of information
that would be useful in the design and understanding of functional
materials. Figures in the scientific literature, which arise from image-
based metrology, are predominantly sourced from scanning and trans-
mission electron microscopy (SEM or TEM, respectively), as well as
atomic force microscopy (AFM). The majority of such images are only
discussed qualitatively in their surrounding text, despite the fact that
the images contain a wide range of quantitative data on the structure
of materials, such as particle size and shape, grain boundaries, crystal
habits and crystal facets, material heterogeneity, and morphological

diversity. These data could shed light on particularly important
research problems that rely on nanotechnology or crystallography.
Figure 4 shows the path for extraction of this information from text.

Image-recognition methods based on ML, Bayesian inference,
and computer vision have been employed to analyze small datasets
that address a bespoke problem in materials science. Efforts in the field
of metallurgy are especially noteworthy in this regard. For example,
convolutional neural networks (CNNs) have been applied to SEM
images of ultrahigh carbon-based steel to analyze grain boundaries
therein.119 Microstructural features of steel, as displayed in SEM and
optical microscopy images, have also been classified using CNNs120

and SVMs.121 More sophisticated data analytical tools have been
applied to individual datasets of STEM and STM images, as befits their

FIG. 4. Image extraction schematic including examples derived from microscopy images or molecular structures. Figures in the scientific literature, which arise from image-
based metrology, are predominantly sourced from (scanning) transmission electron microscopy and atomic force microscopy. Most of these images are discussed qualitatively
in their surrounding text despite the fact that the images contain a wide range of quantitative data on the structure of materials. These data could shed light on particularly
important research problems that rely on, e.g., nanotechnology or crystallography. This figure suggests a path for extraction of this information from text.

TABLE II. Examples of open data resources for NLP in materials science.

Data resource(s) Data summary Example usage

Materials word embeddings38,64 Word2Vec,63 FastText,65 and ELMo66 word embed-
dings trained on materials text

Input features for entity recog-
nition models

Annotated materials text48,94 (Human and machine) annotated plain-text synthesis
paragraphs for materials

Training data for entity rela-
tion models or data mining for
materials science insights

Text-mined Curie and N�eel temperatures51 Text-mined database of magnetic compounds and
their phase transition temperatures.

Training data for entity linking
models that map material men-
tions and properties
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greater value in terms of the much greater effort that is expended to
produce these types of more specialized data. For example, STEM
images that display defects in steels122 or defects that cause structural
transformations in tungsten sulfide123 have been analyzed quantita-
tively using deep-learning methods. Interatomic interaction potentials
have also been extracted from STM images using Bayesian infer-
ence.124 However, none of these efforts are generalizable or scalable to
the high-throughput data extraction and quantitative analysis of
microscopy images, which is needed for data-driven approaches to
materials physics.

The software tool, ImageDataExtractor,125 begins to address this
issue, shifting from assisting manual analysis of images to a generic
tool that auto-extracts and quantifies microscopy images from docu-
ments. This tool executes an autonomous pipeline of image-
recognition methods to detect particles in a series of microscopy
images and quantify them in terms of shape, size, and radial distribu-
tion. Particles are detected by a sequential process of image binariza-
tion and thresholding, followed by a series of contour-detection
algorithms. These algorithms use edge detection to identify all closed
contours (particles), excluding any that are occluded by image annota-
tion (e.g., particles that lie beneath the scale bar) or are truncated
because they lie at the edge of an image, split apart particles that lie
particularly close to each other, and refine contour detection using
ellipse fitting where required. Particle sizes are determined via optical
character recognition (OCR), which helps to detect and read the text
in the scale bar of each image; this scale bar information is normalized
with respect to the number of pixels in each image, in order to calcu-
late the particle size. Super-resolution convolutional neural networks
(SR-CNNs) are employed to assist the OCR of text in images where
the image resolution is too low to identify text solely using the OCR
engine, Tesseract 3.0.126 The standard SR-CNN architecture127,128 was
modified specifically to suit ImageDataExtractor.125 A radial distribu-
tion function that describes the particle-size variation is calculated,
pending a sufficient number of particles that are detected on a given
image. The shape of each particle is determined by comparing its
aspect ratio and contour profile to that of reference data that depict
common geometric shapes, using a similarity index.129

ImageDataExtractor can function in one of the two operational
modes: it can either receive a series of images directly for immediate
processing or work in concert with a specially integrated form of
ChemDataExtractor33 that uses its native “chemistry-aware” NLP
capabilities to read figure captions of documents to identify micros-
copy images and then use ImageDataExtractor125 to process them. If
this second operational mode is used, ImageDataExtractor125 employs
a bespoke algorithm that splits apart figures within documents where
they constitute panels of multiple images, such that individual micros-
copy images can be processed in the fashion described above.

More recently, Kim et al. have reported an image-recognition
tool that identifies the size of nanomaterials and classifies the mor-
phology of each nanomaterial into one of the four categories: nano-
cubes, nanoparticles, core-shell nanoparticles, and nanorods.57,130 The
particles are located by applying a distance transform-based segmenta-
tion process on a binarized form of the image, while their size estima-
tion tracks a similar process to that of ImageDataExtractor.125 Kim
et al. identifies and extracted SEM and TEM images from the docu-
ment via a different route to ImageDataExtractor,125 employing a con-
volutional neural network (CNN) with transfer learning. Thereby, a

small sample (<100) of SEM and TEM images was fed into the
Inception-V3 CNN,131 which has been pre-trained on pictures from
several sources, including ImageNet.132,133 The image features for
SEM and TEM were extracted from the penultimate layer of the CNN,
yielding a transfer-learning process with an 89% accuracy in SEM and
TEM image classification.

Tatum et al. have also recently reported an image-recognition
method that provides quantitative analysis of particles appearing spe-
cifically in images created by scanning probe microscopy (SPM) tech-
niques, such as STM and AFM.134 Particles are first detected using
feature selection that is enabled by principal-component analysis
(PCA); this clusters all data channels into the key representative struc-
ture of the image-based information. These clustered data are, then,
classified using a Gaussian mixture model (GMM), which segments
each pixel into distinct material phases; in the case study, the phases
are structural domains of a polymer blend. This semantic segmenta-
tion method is, then, complemented by instance segmentation. This
involves pixel-by-pixel clustering to characterize the size and distribu-
tion of each morphological domain in an image. Tatum et al. provided
two possible image segmentation options to perform this task: con-
nected component labeling or persistence watershed segmentation
(PWS).134 The former method assigns a domain label to each set of
connected pixels, establishes the number of distinct domains that are
present, and then places the domains in order of size. The latter
method identifies the morphology of each domain using the height
channels of the image to help distinguish the particle signal from that
of the background. The PWS option tends to better identify isotropic
domains, while the connected component method performs best in
the characterization of highly anisotropic structural domains.

Another type of material information that is trapped inside fig-
ures of documents concerns chemical schematic diagrams (shown in
the lower path of Fig. 4). This form of image is often the only means
by which one or more organic chemical that is described in a docu-
ment can be identified. A range of optical chemical structure recogni-
tion (OCSR) methods have been developed to interpret such images
and convert them into computer-readable output, such as text.
Kekul�e,135 CliDE (and its more recent version, CliDE Pro136),
ChemReader,137 OSRA,138 and ChemSchematicResolver139 all per-
form such a task. All use a common generic operational pipeline
whereby an image figure is segmented into its structures and any sur-
rounding text (e.g., chemical labels). The structure of each chemical
schematic is, then, broken down into its bonds and atoms. There are
various ways of achieving this goal, the most popular being thinning
down the lines of the schematic to one-pixel in width and converting
the result into a connected graph of nodes (atoms) and vertices
(bonds). Optical character recognition (OCR) is used to interpret any
atom names and chemical labels of a given structure. An algorithm
may, then, be employed to match up any chemical labels to their asso-
ciated structures. The resulting digitalized form of the chemical sche-
matic is often converted into a simplified molecular input line entry
system (SMILES)140 text-string to provide the output. Such text output
is readily interpretable using NLP tools.

The Kekul�e software135 is quite old, while the newer products,
CliDE Pro136 and ChemReader,137 are not open-source tools.
OSRA138 is an open-source, but it is not suited to high-throughput
data-mining, nor can it resolve generic substituents or atom labels
(e.g., R-groups) in a chemical diagram or match chemical labels to the

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 7, 041317 (2020); doi: 10.1063/5.0021106 7, 041317-14

Published under license by AIP Publishing



diagrams. The ChemSchematicResolver139 tool was built to incorpo-
rate OSRA while overcoming these limitations, as well as provide a
framework that intrinsically links up to the NLP-capabilities
(ChemDataExtractor).33 This NLP link-up is important because it ena-
bles ChemSchematicResolver to identify chemical schematic diagrams
in the figure captions of documents in an autonomous manner so that
they can be processed in a high-throughput fashion.

While the ability to automate domain-aware semantic linkages
between figures and text remains an ongoing challenge, attention-
based models141,142 have shown promise for analyzing nonscientific
images and describing their contents via captions. Applied to a materi-
als context, such methods may be adapted to identify and annotate
phases or locate defects within a micrograph.

VII. CHALLENGES AND OPPORTUNITIES

Many challenges still exist for information extraction and NLP in
the materials domain, which stem largely from the complexity and
heterogeneity of the text. For NLP specific to materials, there are chal-
lenges with transferability across materials domains given the high
level of heterogeneity in the discipline, ranging across materials classes,
application space, and even fundamental links between chemistry and
physics. Since the volume of data within each of these individual
domains may be relatively small, the accuracy of the models becomes
critical so that data points are not lost as an extraction pipeline pro-
gresses. Of course, text extracted from the materials science literature
is not and cannot be the only source of data leveraged by the informat-
ics community. High-throughput experimental and computational
data ported directly into informatics models still provide the most sig-
nificant, high quality source of inputs to ML models. Text extracted
information provides a supplement to these sources. In general, the
challenges in use of NLP to “generate” and compile data are the age
variety of quality of texts and the bias within the published literature
based on the absence of negative examples.

Despite these challenges, there is potential (and need) to leverage
the vast archive of information in published scientific text, toward the
generation of new knowledge. For this to be successful, we must con-
tinue to push the boundary of what information can be extracted accu-
rately and at scale, but we must also ensure that the extraction is done
toward increased synergy with downstream ML algorithm develop-
ment. One example of this synergy would be improvements in extrac-
tion, which are focused on transfer learning, whereby the language
representations are pre-trained, in an unsupervised manner, on cor-
pora and fine-tuned on a variety of specific materials questions for
which there are fewer data. This will allow each specific area of
research within materials science communities to work toward
improving accuracy, while sharing the collected data for others to
build-off of and to continue to grow the database and the collective
information. Advances in entity linking, where entities within a text
are automatically linked to databases of information, would also pro-
vide distinct synergistic opportunities to leverage fundamental physical
knowledge to downstreamML activities.

One critical challenge in NLP is to draw linked information
across a document, or the so-called non-local dependencies. To date,
information extraction has focused on the use of sequential models
that rely primarily on local dependencies. However, as experiments
are described throughout a document, this is a significant limitation to
reaching at scale accurate, automated extraction from the scientific

text, particularly since we aim to extract information across body text,
figures, images, and even the supplementary material. To date, this has
mostly been done through post-processing activities by constraining
the output space during inference, but automatically learning interac-
tions between local and non-local dependencies would provide a sig-
nificant opportunity to improve learning. One recent effort used a
graph-based framework to represent a broad, cross-document set of
word or sentence-level dependencies and define a data structure with-
out access to any major processing or external resources.143 This
becomes NER at the discourse level (DiscNER), in contrast to
sentence-level NER, where sentences are processed independently.
This means that long-range dependencies have a crucial role in the
tagging process and that they can be added as a soft constraint to
improve information extraction. Given the challenge of labeling long-
distance linkages within documents, unsupervised learning may prove
useful toward advancing this branch of research. In language transla-
tion144 and entity resolution,88 the approach of aligning embeddings
has proved effective in rapidly computing many unsupervised align-
ments (e.g., translations between English and Spanish) using a small
amount—or sometimes zero—of labeled data.

As the scope and complexity of NLP models used in materials
science increase, so too must the evaluation methods adapt. Recent
results145 in invariance testing for commercial NLP models have
shown that invariances to typos, names, gender, and so on are not
respected by many widely used NLP models. For example, changing
the name of the employee in a customer review may affect a model’s
predicted sentiment, even though the true sentiment should be invari-
ant to this. Such methods could be adapted to materials science: an
NER model that correctly labels TiO2 and SrCO3 as precursors for
SrTiO3 should perform equally as well when the metals are exchanged
(e.g., Ti with Fe).

Databases that unfold from NLP tasks may also be comple-
mented by high-throughput calculations about materials; these pre-
dominantly take the form of electronic-structure calculations. At
present, the computationally generated datasets that are afforded by
these efforts are separated from experimental data, save for a few
exceptions.11,106,146 One of these exceptions106 involved concerting
NLP-based database auto-generation with high-throughput electronic-
structure calculations on the materials that populated this database.
This produced pairwise experimental and computational data on
chemicals in the database. This synergy stands to be very powerful for
a number of reasons. First, the comparison between pairwise experi-
mental and computational data of a given material provides implicit
quality control of a database; achieving the quality control of NLP-
based auto-generated databases is a matter of concern that has been
raised by various agencies.147,148 Second, a good match between exper-
imental and computational values will assure that wave functions of
the electronic-structure calculations are correct; pending that to be the
case, computation can, then, be used to calculate many additional
properties about a given compound, with an assured reliability, to aug-
ment the contents of the materials database. In this sense, computa-
tional data have a distinct advantage over experimental data since the
latter are naturally limited to the contents of the documents from
which they were extracted by NLP. Third, such pairwise data can miti-
gate the common problem that important experimental data are often
not available to suit a particular need in material physics in which
case, computation provides a means to combat issues of missing data,
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as long as the materials computed are similar to those of calculations
that have been benchmarked against their pairwise experimental data.
The collation of synergic experimental and computational data and
their cohesive deposition into a data repository are nonetheless contin-
gent on the availability of a suitably designed operational pipeline.

In broader terms, data management systems in materials science
are starting to be developed for the automated processing and storing
of data.149,150 Some of these efforts involve robotics to aid the automa-
tion of materials characterization.36,151,152 It is also being advocated
and regulated that the data management of materials databases needs
to attest to findable, accessible, interoperable, and reusable (FAIR)
principles.153 The increasing government regulations toward open-
access data will also help journals capture data. These sorts of initia-
tives will help make data sources themselves more easily processed
and analyzed, perhaps in raw data form. This aim is all but a pipe
dream on a wide scale, at present, and even if such automation in data
processing becomes normal in materials physics, NLP will still be in
business for the long term. This is not only because of the huge
amount of legacy data that already exist worldwide but also because it
will likely never be practical to process raw data from highly specialist
experiments automatically since the data analysis will be similarly spe-
cialized. NLP, therefore, has a bright future to continue to support
automatic extraction from the literature.

VIII. CONCLUDING REMARKS

NLP and information extraction are early in their application to
materials science. It will continue to require sustained effort to build
domain-relevant extraction algorithms, scientific dependency parsers,
annotation sets, and structures for disseminating extracted informa-
tion. There are domain-specific needs regarding accuracy and ambigu-
ity and tradeoffs to be weighed between the accuracy and degree of
generalizability. However, we have shown that there is tremendous
potential if we can unlock the troves of information within the primary
way that we choose to communicate in the scientific community,
through published, unstructured documents.

Throughout discussions of the rise of data in materials science,
there is a dialog regarding encouraging researchers to deposit their
own data. We must make sure that data continue to be disseminated
in a way that provides direct compute operability;154 infrastructure
development within materials science needs to be in lockstep to allow
that to happen. Given the potential for data science tools in accelerat-
ing the materials development process, data in general, and particu-
larly freely available open data, need to undergo an inversion of
priorities. Thus far, materials scientists have only considered humans
familiar with their subject material as the audience for their published
works. However, with application of NLP to materials science increas-
ing, an entirely new audience should also be considered by authors:
software tools. Unfortunately, the writing styles and data presentation
formats that are often most interesting to the former can prove quite
challenging to the latter. If we shift the pendulum toward data struc-
tures that enable compute capabilities, we will not only be able to bet-
ter leverage the data revolution as materials scientists, we will increase
the reproducibility and comprehension of our output.
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