Lawrence Berkeley National Laboratory
Recent Work

Title

. THE METHOD OF MOMENTS IN QUANTUM MECHANICS. Il. THE n-MESIC DISINTEGRATION
OF THE DEUTERON

Permalink

https://escholarship.org/uc/item/19k0t23n

Author
Halpern, Francis R.

Publication Date
1957-03-18

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/19k0t23n
https://escholarship.org
http://www.cdlib.org/

T

- o
il -
et EN
o . e
— P S
)

UCRL_3721

UNIVERSITY OF
CALIFORNIA

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



UCRL-3721

'UN‘IVERSITY OF CALIFORNIA

Radiation Laboratqry
"Berkeley, California

Contract No. W:7405-eng-48

t
e

I. THE METHO.DI OoF MOMENTS IN QUANTUM MECHANICS
II. THE w»-MESIC DISINTEGRATION OF THE DEUTERON

Francis R. Halpern
(The sis)

‘March 18, 1957

Printed for the U. S. Atomic Ener-gy Commission



I. THE METHOD OF MOMENTS IN QUANTUM MECHANICS

Contents
Abstract .
Introduction.

Notation .
Time -Independent Methods .
Some Applications of the Method of Moments .

Time -Dependent Methods

1I. THE w-MESIC DISINTEGRATION OF THE DEUTERON

.Contents

Abstvract .

Inti-‘oducti‘on .

The Absorption Matrix Element
Radiativé' Corrections
Conclusions . |

Acknowlédgment s .

. 21

. 28

. 34
. 35
. 39
. 49
. 58

. 59



=3-

I. THE METHOD OF MOMENTS IN'QUANTUM MECHANICS
Francis R. Halpern

Radiation Laboratory
University of California
. Berkeley, California

~March 18, 1957

ABSTRACT

The classical moment techniques of Tchebycheff, Markov, and’
Stieltjes have been applied to the problem of diagonalizing the Hamil -
tonian operator. These t,echniques: lead in a natural way to an extension
of the Rayleigh-Ritz principle and a series solution for the time-depend- '
~ ent Schrb'dingerv equation. . The application of these procedures to sev-

eral simple problems is considered.
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1. THE METHOD OF MOMENTS IN QUANTUM MECHANICS
Francis R. .Halpern

.Radiation Laboratory
University of California
Berkeley, California

March 18, 1957

INTRODUCTION

The standard problem in quantum mechanics is the diagonali-
zation of a Hermitian operator, the Hamiltonian. Usually the Hamil-
tonian consists of two parts; one can be diagonalized easily and the |
'other_ cannot be diagonalized. Perturbation methods make use of the
expansion of an eigenfunction of the total Hamiltonian in terms of the
eigenfunctions of the diagonal portion of the Hamiltonian. The coeffi-
cients in this expansion are themselves power series in some parameter
that characterizes the magnitude of the nondiagonal portion. Other
techniques are also based on the possibility of expanding an eigenfunction .
of the total Hamiltonian in terms of_erigenfunctions of the diagonal part.

By considering the inverse problem one is led to a class of meth-
ods for diagonalizing the Hamiltonian that may be called the method of
moments. In principle it is always possible to expand the eigenfunc-
| tions of the noninteracting (diagonalizable) portion of the Hamiltonian
in terms of the eigenfunctions of the total Hamiltonian. The coefficients
and eigenfunctions in this expansioh are of course unknown. The prob-
lem is now to remove ail but one of the terms in the expansion by oper-
ating on the known eigenfunction of the diagonalizable portion. What v |
remains is then an eigenfunction of the total Hamiltonian. A very sim-
ple example of this method is used to diagornalize finite matrices. If

A is a finite matrix and ¢ is any vector, then we have

lim (¢ | afntl | $)

ﬁ—*oo\ (¢_IA2“ | o)

=a___ . (1)

max
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The ve'ctorvq.) is assumed to have an expansion of the form
¢ = Zﬂ-i Y (ai) s

where the U (ai) are the normalized eigenfunctions of A and belong‘ to

the eigenvalues a. The largest eigenvalue in the expansion is a ax’

The quotient in Eq. (1) can be easily evaluated by use of the above ex-

pansion:

' | ' 2 2n+l
(¢|A2n+ll,¢) ) Zlail ai

@|a®™le)  z|e

a.
1

|2 2n
As n tends to infinity, it is clear that the above expression tends to
qmax’ ‘ : v

The quantities (¢ | A" l ¢) will be denoted by An and are called
the moments of the operator A, whether A is a finite matrix or not,-

It will be shown that they are.also the moments of a probability distri-
bﬁtion function‘ F¢(a). The method of moments consists of using the
moments in as efficient a way as possible to find approximate eigen-

~ values and eigenfunctions and to solve the time-dependent Séhradinger

‘ equatibn. The precision of any calculation will of course depend on

the number of moments employed. The principal advan‘ta.ge of the meth-
od of moments is that no se_pa’ration is made of the Hamiltonian into
perturbed:and unperturbed portions, and.the application of moment
techniques does not depehd on the size of the interactions {coupling con-
stants) involved. It is necessary, however, to find initial-state vectors
such that all the moments of the Hamiltonian under consideration are-
finite. This makes difficult the immediate appiication of these methods
to problems having nonanalytic pdtentials and to probler‘ns in field theo-
ry that do not have a cuto’ff,' The infinities encountered in field fheory '
é're no dbivfferent from those found in perturbation theory, and are pro-

bably removable by appropriate renormalizations.
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NOTATION

The operator under consideration is the Hamiltonian H. An
initial state ¢ is assumed such that all the moments (¢ I.Hn l ¢), of the
Hamiltonian_ in the:state ¢ are finite. The eigenfunctions of H are

Y (Ei," aj), and they satisfy the equations

H § (E;, d)

s

Ei’ aj),

A LHEV aj) aJ. Lp'(Ei, ajv),

and

(1, a] = 0. L

The A's are one or more auxiliary variables that commute with the
Hamiltonian and are necessary for the complete specification of the
states of the system. In general it is possible to choose the initial
'state ¢ to be an eigenfunction of the auxiliary variables A, and they
are then numbers during the course of a calculation, The system is
also assumed to be contained in a box, so that the eigenvalues are dis-
crete and the eigenfunctions are normalizable to unity.

The expansion of the state ¢ in terms of the eigenfunctions

b (B, a) is
b= 2y w(Ey)

-Since ¢ is assumed to be an eigenfunétioﬁ of the auxiliary variables
A, only one e.igenfunction of the Hamiltonian appears for each eigen-
value of the Hamiltonian, namely the one that belongs to the same set
of values qf the auxiliary variables as ¢. Further reference to the
auxiliary variables is suppreésed. The moments of the Hamiltonian
in the state ¢ can now be expressed in terms of the a's,

Z:En

| n . .
Hn=<¢‘H |,¢)=Ej<ai¢<Ei) aj‘*’(Ej)’:?l“il .

Hn
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It is convenient to introduce a function F¢(E), the energy-distri-
bution function of the system in the state ¢. This function is defined
by '

F(E) = 2 |a,|2 (2)

¢ E<Ei )

In terms of Fd')(E) the moments are

n } .
Hn = fE dF¢(E)

The fun'ctionAFq)'(E) has three important properties. ~F¢(E) is a nonde-

creasing function of its argument E; it is a function of bounded varia-
tion, i.e.; F, (%) - F

¢ ¢

of E less then a2 certain minimum value. Emin' ‘The first two properties

(- o0) < o0; and F¢(E) is zero for all values

"characterize F¢(E) as a probability-distribution function and are a.
consequence of the previously defined relationship (2) between the func-
tion F¢'(E) and the operator H and the state vector ¢. The monotonic
property follows, _sin:cev Fq')(E) .changes only at the points: Ei’ and there
by the amounts l a, I‘Z, which are positive numbers. Since ¢ was as-
sumed to be normalized, F¢(E) is of bounded variation for

F,{+o00) - F |2

é (- c0) :Elai

' (] 4).

The third property, finally, is of purely physicai origin and is not
shared by arbitrary Hermitian 6perators, The eigenvalues of H are
the allowable energy levels of a physical system and they must have
a lower\lim‘it Emin'
The enclosure of the system in a box serves to insure the sec-
ond property rather than. to produce a discontinuous function’ F¢(E).
All the results of this paper hold if the operator H has a continuous
spectrum, provided the vectors ¢ that are chosen are normalizable

to unity. If.the vector chosen has a delta-function normalization, then

this 'infinity must be suitably treated.
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, If ¢ had been an eigenfunctiqn.of H,. Fq)’(E) would have had a
single point of increase at.the eigenvalue to which ¢ belonged. The
aim of any apf)roximation technique is to produce an energy-distribution
function that approximates as closely as possible a single step. A suit-
able measure of the degree of approximation is the standard deviation

0 (), where 0(_¢) is the positive square root of 0'2(‘4)’), where

H,:[H 2
2 2 1
o%(e) = —~»—>
4) HO (HO

Since 02(¢) can be written as the norm of the vector

_ (¢[HJo) |
[« - ]

it is a nonnegative number. It is zero only for an eigenfunction. Iri
any state ¢, the mean value of the energy distribution in that state,

-. E(d)), will be used as an estimate of an elgenvalue The expression for
'E(q)) is |

@ - wluly _ i

(¢le) = H,

N

The amount to which e1genfunct10ns remote in energy from . E(¢) enter
into the distribution can be est1mated from the Tchebycheff Blenayme

inequality, 1
2 ' 1
Sley|® = [ dF(E) < —

|E-Ejpko  |E-Elzko

Similar inequalitiés can be worked out for the higher even mo-

ments. For example, defining p($) by

1Ha.r'-ald. Cramér, Mathematical Methods of Statistics (Princeton

University Press, 1946) p. 182,
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o) = [ (E - E@)*ar (B,

¢

we find that the corresponding inequality is

Z)Iai|2 = | AF(E) <k,14_

VIE('<1>)-'E1|>kp ‘|W-Eil?kp

TIME-INDEPENDENT METHODS

¢(E)

would be desirable. Actually this amounts to an almost complete solu-

The foregoing remarks suggest that the determination of F

tion of the problem of finding the ’eigenvalues of H. F'(ID(E)' has the
eigenvalues of H as discontinuities, and hence they could be read off
if F¢(E) were known. However, there are two serious drawbacks to |
this approach. . First, an approximation technique yields a sequence

of approximating functions F(n')¢(E), and even provided these convergé
.to F¢(E)' it may be very difficult to determine from the approximating
§equence the points of discontinuity of. Fq)'(E), Secondly,v if the qnly
data available are the moments of the operator H in the state ¢ then it
is possible that there may exist several distinct distribution functions
with the sarﬁe moment sequence, 2 In this event it is impossible for an
approximating sequ.ence of functions based only on the moments to con-
verge to all the possible different distribution functions that could have
“given rise to the moments. Methods for constructing an approximating
sequenée of functions from the méments have been given by Tchebycheff,
Markov, and Stieltjes. 3 ‘The decision whether a moment sequence u-
niquely dAetermines a distribution function or not is quite technical and
is not givén here, but is related to therate of increase of the moments.
For the reasons outlined above, _the function Fd')(E) is utilized only to,
assist in' the discussion rather than as a point of departure for practi-

cal methods.

2 For an example of this see D. V. Widder, The Laplace Transform

(Princeton University Press, 1946) p. 142. '
3 References to these earlier works will be found in the bibliogfaphy’

of Reference 5.
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A more modest goal is this: given a state ¢ with distribution
function Fd}(E), to manipulate ¢ in such a fashion that the'modifiedJ
distribution function that is generated resembles the distribution of an
eigenfunction more closely than did the original F¢'(E'). _ Two methods
in this category are developed. ' The chief difficulty underlying both of
them is, the possibility that the distribution is not determined by its
moments. The choice of initial state is crucial in%all these consider-
ations, and given a state such.that ité moments de_termine the distribu-
tion, - both methods are feasible. It is possible that even if the distri-
bution is not uniquely determined by the moments these methods may
producé a state whose standard deviation is -smalll compared with any
of the characteristic energies in the problem, and that this state is
then a satisfactory.approximation to an eigenfunction, -
| The problem of determining F¢(E) and the related problem of
convergence will be ignored for the present. With these reservations
methods will be described that will alter an;r vector and produce one
with a smaller standard deviation.. Only a single-state vector ¢ is
assumed given, ei_nd-the only way to modify it is to. operaté on it with
the Hamiltonian or the Hamiltonian plus.a constant. Thus one is led
to consider the new state vector ¢' = (H - c)¢ and to inquire under
what circumstances its standard deviation is smaller than that of ¢.

The-ekpansion of ¢ in terms of the eigenstates of H was

¢ = Ta ¢(E)

and

F(E) = =
¢ E, <E

! o ' - (3)
The effect of operating on ¢ with (H - c) may be calculated:
t — — 1
q) —(H'C)CI)‘Zai(Eif'c)\p(Ei)—Zai ¢(E1),

where we have :

v o _
o' = (Ei c)a.i
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By use of Eq. (3) with a; replaced by ai' one obtains the expfessionv
for ‘F¢;:(E) '
| 2 . 2l |2
F¢,(E)~ = Z"ai'l = Z(Ei-c) 'o.il
E <E E.<E

Thus the vector ¢' has in 1ts expansion the same component eigenfunctions
| ;.IJ(Ei)\ é,s the vector ¢ but they occur with different Weights unless ¢ e-
quals one of the Ei’ in which case this component is completely re-
moved.
. The standard deviation of this new vector ¢' can be computed,
and when expressed in terms of the moments Hn of the original 'vector

¢ ‘it becomes

2

2 -
c H2 - Zch, +H

: ; 2 ' 2
Ey"(c)‘ 2 H4 - 2H3c +H2c H3 - ZHZC _+H1c

"H, - 2H,c + H c

2 1 0 0
As [c approaches infinity 0'2 approaches
2
5 [H
H0 HO

or just o2, 1 |c

is very large all the components of ¢ are influ-
enced equally. _ _ |
The derivative of -E)‘ ! (c)j 2 with respect to ¢ may be computed

and is

1 .
‘(ii(g Lo 2 — E{OZH3 + 2H13 - 3H0H1H£} A
, (H, - 2H c + Hyc") ,

[ 2 2 2 3 ' 2 o 2
+ __S_HOHZ - 4H,H “ - H, ’H;l c” + |3HyH H, + 3H1%2 - 6H H,H, | ™

B
+4H1H

—

- : - 2 2
__ | + |HHH, +H,“H, - 2H1H3j } :

N

. 2 | , 2. . 3
2H3 + 2H0H3 = HOH2H4 - Z.Hl H4 - 3H2:l c
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The quantity (HZ - 2H,c +_H0c2') is always positive and its minimum
valu_e, which occurs at ¢ = Hl/HO’ is equal to GZHO, If it were zero)'
there would be no problem, ¢ would have been an eigenfunction of H.
. Thus the sign of d(O"'Z)/dc is determined by the term inside the braces.
Since the leading term is an even power of c,’ the derivative has the
same sign at both plus and minus infinity. Since 0'(+o0) = 0, the deri-
vative cannot always have the same sign. . As it has the same sign at
plus and minus infinity it must have the opposite sign for some. finite

values of c. Thus there are at least two real roots to the equation

d(o‘)2 -

dc 0

One of them is the abscissa of a vmax\imum and the other is the abscissa
of a minimum, : : . v . . |
If d(o"z)/dc is positivé at infinity, then 0 '(c) monotonically in-

: creases from o'(- ob"):, 0 to the relative maximum, and from the min-
imum it increases monotdnically to 0'(+ o0) = 0.  If the derivative is
negative at infinity then the reverse situation holds. In either event
the minimum value of 0' is smaller than 0, and choosing c to be this
optimum value produces a better vector ¢'.. If the equation has four
real roots the situation is unchanged.

. The procedure can now be repeated. Starting with ¢', a c' can
be found such that (H - c')¢' has a'smaller standard deviation than ¢'.
The procedure can thus be iterated and vectors of the type

b = (H-c)H-c ... (H-cié (4

n

are to have their standard deviations minimized with respect to C15Cys

> C - There are a variety of ways in which the sequence of
constants Cls €5 » « « -» C_ cCan be chosen. The process outlined
above essentially consists of choosing them one at a time on the basis
of the previous choices. A more efficient way of choosing them consists
in finding o, asa function of the c¢'s and then choosing all the c¢'s si-
multaneously. This leads to considerably more complicated equations

\
for the c's, but reduces the standard deviation more rapidly.

/
|
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Since all the factors in Eq. (4) commute it is clear that o is
also a function of the elementary symmetric functions in the c's, and

in fact ¢n can be written in terms of the n symmetric functions

o n n-1 n-1 . . 0
<1>n = (SOH -SlH _+_SZH 4. . . LH(-1) SnH ) b,

where the S's are the elementary symmetric functions,

S0 =1
S1 =c0’+_c1.+c2.+ .+c ,
sn:COCICZ .-

The c's are then the roots of the equation = (—.l)n-t St.ct = 0, and
using the S's rather than the c's avoids solving this equation.
The derivatives of 022 with respect to the symmetric functions

S1 and S2 are.

2 |
dloy ) | 2
ds 3

, 2 ‘ —
1 | (H4 - 28 H, + (S, + 2S,)H, - 28 S,H, +5,H)

| 3 2 5 2. 2 2] . 4
{EHOHle -2H® - Hy H;l 5,7 + EHl H, + H,“H, - SHOHZJ s,°s)

’ 2 ' | 2. 2 4
+ EHIHZ +4HHH, + H)H,H, - 10H “H; - H, H;‘ s,

1

| 2 3.2
+ _EHOHZH3 - 3HQH H, - 3H1H2] 5,8,

. 3 2 2 3
+ YL1_6H1H2H3 +2H H Hg - 10H,” - 4H “H, - 2H H,H, - H0H3] 5,75,

R v 2 . R, 2 2
+ L—11H1H2H4 + 6H2 H3 + 4H0H3H'4 + HOHlHé - 16H1H3~ - 4Hl .H5'
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. 3 3 Ty & } 2|lo 24 3.
- ZHOHZHQSZ + EH,Z -+ ZHl H4 + H0H2H4 - 4H1H2H3 - ZHOHJSZ Sl |

—

. ' 2 2. 2, ‘ . 2
+ EIOH3H4 +3H,"H, - 6H1HZI-Q 8,78, + [1:2H1HZH5 + 10H,H;"

2

, : i 2 2., .2
-+ 4H-1H3H4 - ZlH2 H4 - 2.H0H4 - ZHl- H6 - HOHZIQ S2 S1

. o 2. _ 3 2
+ EH.2H3H4:'+' 4H1H4 + 2H1H2H6 + HOH3H6 - 12H1H3H5 - SH?:J SZ

: 2 2 ' 4 2 2 3
-+ E—IIH3 - I_-I2 H3 - HIHZH;] SZSI + E{Z H4‘- 6H2H3 - Z.HIHZHESZS1

‘ 2 2 2
EfizHaHzx ¥ 3HHRH, - TH, Hy - 3H1H4:|5-251 ¥ EZHZHsHs

+

. 2 2 ; 2
-+ 6H1H4H5 + ZH3 H4v- 14H2‘H4 - 4H1H3H6.- ZH2 Hé—_lszsl

P \ ) 2]
PHaHy  + 2HH Hy & 2H HH, + HHH - 8Hy Hy - 2H)Hy ™ 1S,

—

' 3 2 1.4 2 2 2. 1.3
+ £H3 +H, H, - 3H2H3Ha 5, + E{4 H, - 4H,H," - H,"H, |5

————

2 ' 2 2 3
E{3 H, + 3H,H,H, - 6H2H51—£| s, + EH3H4H5 +2H,H." - 3H,

+

2 : : 2 2 '
- ZH3 -H6 - H2H4H;6—_‘ Sl' +, E—I'3H4H€) +H4 H5 - 2H5 H;}

2

as = - )
2 (H, - 25 H, +(s,

2. .3
+28,)H, - 28S,H, +5,°H,)

{EHI +;H0 H3 - 3H0H1Hﬂ S2 Sl.+ EHOHIH?: -'!-HOHZ - ZHl H2 |

N
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2 4 2 2 2.0 | 3¢ 2
- H, H;\sz + EIO,H.Z - 4H,°H, - H, H;ISZ s,

. 2. 2 ) ' o 3 o
-+ EHI H3 + ZHO H5 - 8H0H2H3 - ZHOHIHJ SZ' Sl

3 2. 2 3
- 4H HpHy < 2H Hy - Hy Hg ‘Hon@SZ

| + EHOH3 + 2H H,H; + 2H,

, ' 2 ' 2. 3
.\ + EHIHZ + 3H0H1H4 - 6HOH1HE| SZ S1

2 2

. . 2 ' » 2
+ E oH,H, + 6H H,“ + 3H,“ - 12H H,H, - 6H H, 35251

. 2 o | 2 2 2
+ E—IIH3 # 5H H H, + SHH Ho + 28 “Hy - 12HgHH, - 65, HQSZ S,

2 2
H4 - ()H1H3H4 - 3HOH-2Ha SZ |

(+ EIOHSHS + 3H2‘

| o 2 3 2 4
4 EH1H2H3 + 2H H,” - 3H,° - 2H “H, - 1+10H21+1;lszs1

2 2 o 2 3
+ E—Il H, + 6H, H, + 2H H,H, - 2H H,H, - 6H H,H, - 4HIH3szs1

e 2 2 2 : 2
+ EH1H3H4 +6H, H, + TH “H, - 8H,H,“ - 6H H,H, - 2H1 Hy

' 2 2 3 , .
H.H Hé—J 5,8, + EHIHZHé +4H H,  +8H,” + 2H H,H, - 6H H,H,

0772

' 2 ' 2 2 2 '
10H2H3H4 - 2H1H4] SZSl + E{ZH?:HS + ZI-‘IOH5 + ‘3H2H4 - 4H3. H4

. " 2 ’ 2 ' 2 5
2H1H4H5 - 2H,"H, - 1{0}141r1;_‘s2 + EZ H, + HHH, - 21+11H3]s1

| o2 | 4
E—IIH3H4 - 4m%H, - ZHIHZH;‘ 5,

-
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| 2., | . 2 2
+_,EH‘2 Hg + 2H H H, + HlHZH - THH ] + E12H4 + 4H,H,

+ 2H1H4H5 - 6H2H3H5 - ZI--I3 H4 - 2H1H3H5 - HZ H;_] Sl

' 2 2
+ EH3 H, + 2H,H,H, + H HH, - 4H H H, - 2H1H5 }+13H4:,s1

2,43 ’

‘

Since th{e'algebra is quitexomplicatedp as evidenced by the pre-
ceding two formulas, it is desirable to find an alternative mode of ap-
proach. The opportunity is provided by the third condition imposed on
F(I')(E), namely that it be cbnsFant for E< Emin’ and the utility is indi-
cated by the observation that in most physical problems it is the low-
lying eigenstates that are of greatest interest.. This can be taken ad-
vantage of by éonstructi‘ng‘from ¢ states with minimum energy rather
than minimum standard deviation. This process can lead to more than
‘one stite, since a minimum-energy state exists for each combination
of the auxiliary var1ab1es '

. The estimate of the energy E in the state is Just the mean value

of the distribution F¢(E),

fEdF (E’ _‘ H1
de - H0

E(¢)

The first improvement on this is found by considering the function

= (H - ¢)¢. This function has en'ergy "E'(c), which may be ex-
pressed in terms of the moments of ¢:
H 2cH, + 2H
3 ~ecHy ve )

‘ 2
H2 - ZCHl +c HO

CE'(e) =

Again this expression may be differentiated to determine the minimum

value, ' .
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- The derivative is

2, 2. 2
Z(HZH0 - Hl\) + Z(HZHI H3H0)c- + 2(H3H1. - sz)_ : (5)

(HZ' - 2§H1,+_Hoc' )

.'d_f"-(c) a
dc -

The sarne arguments used in discussing the standard deviation apply
again. That is, E' (xo0) = E and. d—ELC-L(:l: ) >0. Hence the deriva-
tive must be negative for some finite values of c, and there are two .
real roots corresponding to a maximum and a minimum of the expres-
sion for ?(c). The only difference is that the coefficient of cZ in the

derivative,. (HZH le), is positive, so that the E(c) is increasing

at both * oo and ?he minimum is given by the larger root. Again the
conclusion is that there‘ exists a c that reduces the energy.

The formulas for the iterated results can be developed, and are
somewhat less complicated than those for the si‘.andard deviation.
There is, however, an easier way to get at the results. ' If an estimate
is going to be made using n -c's then the moments HO,'HI,

H will have to be used. It is possible to find a umque distribution

2n+1
function. Fn(E) having n + 1 points of increase, which will have the
same first (2n + 2) moments as F¢(E). Then a5 long as no more than
the (2n + 2) moments H .. ..H are under consideration,

0’ 2n+l ‘
F(z)(E) and F¢(E) are indistinguishable. _Since there are n constants

c available it is clear that the way to minimize the final energy is to
choose the constants c at the n largest points of increase 6f f(E).
Then the modification of F((?(E) has a single point of increase, and this
smallest point of increase is an estimate of the eigenvalue, and the
correspoﬁding approximate eigenfunction can be found.

It can be .shown4 that the n + 1 points of increase of f(E} are the

n + 1 solutions, E of the equation

4 The proofs of this and the following statements are essentially con-
tained in J. V. Uspensky, Introduction to Mathematical Probability,
First Edition (McGraw-Hill, New York, 1937) Appendix II. He l.treats

the case in which the highést moment is even, i.e., HZn" The odd

case is slightly simpler and almost identical proofs apply.
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1 B . . . . . "™
HO H1 H2° e e e s Hn+1
H) Hy Hy. . . . . H, - 0.
Hy Hopr Hoggo o o 0 Hapg

This equation has (n+1) real distinct roots and they lie between
‘the smallest and largest eigenvalues represented in the distribution
function F (E). The appropriate c's are the n largest roots of this
equation, and the estimate of the enefgy is the smallest solution. In
this aspect the formula constitutes a generalization of the Rayleigh-Ritz

principle, which states that the solution E of the linear equation

lies between the least and greatest eigenvalues,

H,)
B € B < < B

max =
A simple interpretation of this statement is that the mean value of a
distribution is in its interior. '

The discussion of convergence is most advantageously carried
on from the point of view of orthogonal polynomials. Given the distri-

bution F¢(E) with moments H_, then the polynomials

1 . . . . g®
I ) 2
HO H1 H . n
P_(E) = %11 2 3 n+l

.

‘n_l o‘- o o o o ° . Znsl
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are known to be the orthogonal polynom1a1s assomated with the distri-

butlon F¢(E) > That is, they satisfy the relation
oo
[P (E) n' (E) d F (E) =" "nnv anl;ll ’
0 4

where 6nn' is the Kronecker delta, and-=Cnn.i is a normalization con-
stant. The determinental form is essentially the result of the Schmidt

orthog-onaliiation procedure applied to the functions 1, E, EZ,

with the weighf function d F¢(E-).-

The problem of convergence can now be stated as a problem on
the roots of the orthogonal polynomials Pn(E) associated with the dis-
. tribution function FqS(E)" The polynomial P'n'L'(E_) has n _;'eal distinct
roots, ,E’nl’ En’Z: cee .y E

E. . The sequence of smallest roots is
known to be a decr'easing sequence, that is, r

Ej, >E,; >Ez;>. . .>E

Since this sequence is bounded from below by the smallest eigenvalues
it is convergent. It can either converge to the smallest eigenvalue or
to some other value larger than the smallest eigenvalue. For ortho-
gonal polynomials in a finite interval it is known that the sequence of
smallest roots converges to the smallest point of incfease of the func-
tion F (E), i.e., to the smallest eigenvalue. = In the infiﬁ_ite interval
the result is that if the sequence of largest roots En'r1 has thbe property

lim
nn

n-+o0  _2

then the smallest roots approach the smallest eigenvalue. 7 This is of

o

5G Szego, Orthogonal Polynomials, Am. Math. Soc Colloquium
Pubhcatmns 23, 26 (1939). v ' '

5. Szegd,  Ibid, p. 107,

" IBid p. 108. See footnote 29.



-20-

little practical value for solving the physical probiem. It does indicate
that the difficulties may arise because the distribution function F¢(E)
does not become constant at infinity with sufficient rapidity.

Another more intuitive way to get at the same idea is to notice
that. the effect of operating on ¢ w1th (H. - Cl) (H - CZ) . (H-c )
is to multlply F¢(E) by (E - Cl) (JE -c 2

2) .
of F.near a c¢ is deemphasized, those remote from all c's are empha-

. {E -c ) -Any point

sized. The intent of the process is to increase the magnitude of. Fq')'(E)v
for very small values of E. The c's are chosen in the intermediate
range of values; this emphasizes the very small and the very large
values in F¢'(E). If F¢(E) is sufficiently constant for large valuejs of
E this accentuation of the high-E portions is unimportant. On the
other hand,,‘ if Fd’)(E) varies too rapidly for large E, then it will be
necessary for the c's to be anmore quickly increasing sequence in
ordef that.the high E values of. F¢

- However, as c¢ becorhes infinite the change in the energy becomes

(E) are not too greatly emphasized.

smaller, as pointed out earlier. This is because all points close to the
origin are treated equivalently. The result is that the minimum energy
estimate has a lower bound greater than the actual energy minimum. :
Thus not only must all the moments be finite, but they must not be too
rapidly increasing for the method to be successful.
| There probably is a minimum rate at which. F¢(E) must approach
F¢( oo ) as. E dpproaches infinity and this in turn causes a maximum’
rate of increase of the moments. . Either of these conditions is prob-
ably sufficient to cause the. moment seqhence and distribution to be in

a unique relationship..
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SOME APPLICATIONS OF THE METHOD OF MOMENTS

In this section three problems are treated by the method of mo-
ments.. The first two are not particularly interesting, but they do have
the virtue of being soluble. The third problem is difficult and has not
yet been solved by any fechnique. ‘

The first example is the case in which the initial state ¢ is a

linear combination of two eigenfunctions of the Hamiltonian
$ = aU(E)) +BU(E,)

So far as ¢ is concerned H is the two-by-two matrix,

E1 | 0 |
H = ' .
0 EZ . |

. The function F¢(E) has steps.of magnitude alz at E, and [3[2' at
: E2 The moments,bare given by |
5 !
' 2. n 2. n ‘
H = al—El +‘6. E,

The lowest-order approximation (Rayleigh - Ritz) would estimate

an eigenvalue by the solution of the linear equation

1 | E
|a|2.+,|5|2 , u|2~E1+[s'ZEZ -0 .

The root is

[o]?E, *IﬁIZ.Ez
[a]% + [8]®

E =

The second-order approximation requires a solution of the equa -

‘tion
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1 - E o
. 12. 2.2
o |* + |ﬁ|2 |of?, + IBI%EZ l“‘lef2 * lﬁ[ZEz
. ' . = 0.
12 2. 2.2 1.2 2 2.3 . ‘2 3
l“' Ey +|5| E, ol Bt Iﬁl E2 o B, + IFS 2

This reduces to
2( 12 2 2 21 12, 2 21 .12
M |5| (E)-E,) E »—|-a|._|f3| (E,-E;) (Elez)E:*lal lﬁl (E|-E,)E | E,

This 1s the characteristic equation of the two-by-two matrix provided
.a, B # 0, and E,; { E,. If either of these two conditions had been vio-
lated then ¢ itself would have been an eigenfunction, and this in turn
would have been indicated by the identical vanishing_of the above deter-

‘minant. The roots of the equation are E, and E,. Thus the first

modification of ¢ is ¢' = (H-Ez)ti)g

E. -E _ 0] |a (El-EZ)a
d)' = . ) ) = !

As'ekpected, ¢' is an eigenfunction and the E‘problern is solved.

As a second example consider the one-dimensional wave packet

~.

5 . 2
d(x) = ZmQZ/dk ealkx\llk/m' e»(ak) .
O ) -

The Hamiltonian of the system will be taken to be just the kinetic ener-

gy pZ/Zm ‘The moments of the Hamiltonian in this state are easily

o written

o, = (o|ue)

n

=0.
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: o ‘ 00
| 2 ikx [~ -(ak)® LA ~(ak")?
=\V2m a“[dx [ dk e k/m e dk' g I Vk'/me
Yo b o _ :
- . , . i
: 2 [\
= 20% [ dk e2(ak) k@-) ,
. | ™
o .

: ‘ 2
The integral is now simplified by the substitution E =1;—m . With this
change it becomes ' '
oo
2 2ma’E
H = 2ma” [ dE EP o0
/-

This can easily be converted into an integral with respect to a distri-

bution,

H :[En d {1 _ e=2ma“2.'v.E}
n _ |

With the moments in this form F (E) is obviously given by

¢

A

- 0 ‘ E<O0
F (E) =
o!F) =
0K E
This is a continuous distribution but, as has been indicated pre’vio{lsly,
the method of moments as deve'10ped is applicable since H0 -is finite.
Since every nonnegé.ttive value of E is a point of increase of Fd)(_E),.
the Hamiltonian %;1 has all the numbers from 0 to oo as eigenvalues.
The calculation can also be carried out in thev more routine fash-
¥ )

~ion. The integral above can be done giving the moments

1 \ n+l '
H = ( > n!
n 2 .
Zma |
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It should be noted at this point that the moment sequence above
and the sequencé n. are equivalent. In general, a constant or a con-
stant t'_o the nth power times the nth moment makes no difference in
the orthogonal polynomials calculated from the moments. . The inde -
pendence of the method from factors of this form is the justification
for the statement that the method of moments is independent of the size
of coupling constants. | | |

| In the above problem it is sufficient to take the moments as n. .
To borrow from prior knowledge, the orthogonal pzolynomia.ls associ-
ated with the disfribution function dF¢(E) = -Zma E dE are the Laguerre
polynornials Since the smallest root of the nth Laguerre polynomial

is of the order of 1/n and the lowest energy level is 0, the method is

convergent. The first several Laguerre polynomials, with their zeros,

are

Ly(E) = 1

L (E) = 1 -E I o ’ 1 .

L,(E) = 2-4E+ B’ - 0.58578643, 3.41421356

L,(E) = 24 - 60E + 24E° - 2E>  0.41577455, 2.29428036, 6.28994508

- These have been computed directly from the determinental form and
are not normalized. The largest roots are used as the c's and this
leads to thé modified distribution fuhctions. The first two modified

distributions based on L2 and . L3 are

dF ., (E) = (1.7071 - E + .1464 E%) e EdE,

' = (H - 3,4142) ¢,

dF i (E) = (2.6501 - 3.1527E + 1.3049E% - .21858> + .01273E%) e "FaE,

$¢" = (H - 6.2899)(H - 2.2943) ¢ .
- These functions hax}e been normalized. To indicate the rapidity of con-

vergence, Table I lists the smallest roots of the fourth through fifteenth

Laguerre polynomials.
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Table 1

Smallest roots of Laguerre polynomials

n ' S Smallest root

\ 4ocmmeeeee-----0.32254769
’ B e ememem - 0.26356032
U 0.22284660
S --0.19304368
P 0.17027963

9 e e eeen 0.15232222
10-ccc e 0.13779347
1lecmmccccceeaa=2-0.12579644
12----- ;__f_;__--\---0.11572212
T P 0.10714239
14 e m e 0.09974750

15 e ceeimmeaaa -0.09330781

The third example is an a‘pplication of the method 'ofvmoments to
the phonon-polaron problem. The motion of slow electrons in polar
crystals has been described by the motion of a polaron, a bare electron

surrounded by polarization waves (phonons). 8 The Hamiltonian fb_r this

system may be reduced to9
p’ 1
H = >m + wZ ap ?1?
H<k
O "y R
+ = (ap Vikl + ap Vlkl )
|q<1<

®H. Frohlich, Advances in Physics 3, 325, (1954).
9Lee; Low, and Pines, Phys. Rev. 90, 297 (1953)\.
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and

Vi i (4m>?/2'_1_

The usual commutatioﬁ rules 12 aé»], =8 apply, and pZ is the
operator -VZ._ The first two terms escribeythe noninteracting sys-
tems, free electrons, ‘and polarization waves.. The second part de-
scribes the ability of the electron to absorb or emit phbnons accom -

panied by recoil. - The problem is to find the minimum energy of the

system. v
The state ¢ treated consists of one electron with momentum p'
2 2
and no phonons; = P _p' L
ag =0, R ¢ g ¢ Egd -

The first four moments of the Hamiltonian H in this state are

0 = .l:
1 02 2 5
H, = + == L2 g,
2 0 ™
2muew
2 ' 2
B 3 w 2a ; 3 K
Hy = By + —= — K(2E, +_E0+_w+1/3 "_,zm)
me .

Equation (5) is employed to find the value of c. After some

‘simplification it becomes

2

' . 2 2
2 _ K™y o 1 1/3K w204 _
¢ -(2E0+w+1/32m')-cfE0(-EO+'w>+ Zm )-meT‘K = 0.
The sélutions éf this equation are
: 2 2 4, 2
_ 1K : _ 1K ,2 40w 2a
c =By + 1/2(w + 3 30 :l:_l/Z\/(w t357) —me——w K

The larger root is.the ‘¢ to be used in computing ¢', and the smaller

the estimate of the energy. For small o the estimate of the energy is
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K

E = E,-dw 2 Nemo
T KZ

1+

For large a the estimate becomes

E = E, - L—

0
2 )
v \/_m__ ZaK
V2me «

2
2 2 2 2
w__ 2o sl w26 . VK™ 1k
Voo ® 1/2 == o Blotggm) flets 7m )

These results sh'ould be compared with several earlier calcula-

tions. The perturbation theory treatment8 gives
E-= EO - aw

for small a. This is very similar to the result attained above for small
a. There are two differences, the constant multiplying o is 1 in per-
turbation theory compared with a number less than 1 from the moment
technique;- and secondly the perturbation result is valid only when a

is small, while the moment-technique answer is valid for all values of

a. Intermediate coiuxplingvﬂ:heory9 has also been applied to this problem

and yields the same answer as perturbation theory. However, the range

of validity is extended up to a. = 6 or 7. The same comparisons apply

to intermediate coupling as to perturbation theory.. The amount of work
involved in the perturbation-theory treatment is about equal to the mo-
ment technique, while the intermediate-coupling-theory method is an oi:-=
der of magnitude more difficult. The strongest results so far achievved
have been obtained by considering path integrals. 10 In this method terms
have been produced proportional to the higher powers of a. The first
two terms above are reproduced. The only drawback of this method is
its. apparent inability to construct the state vectors corresponding to

the energy estimate. The effort involved is again quite moderate in the
path-integral method. P

10

R. P. Feynman, Phys. Rev. 97, 660 (1955).
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: Ih higher orders of the moment method based on the initial state

- considered above, neither the linear dependence on a'vfor small a nor
the one-half-power dependence on o for large a is changed. This is
easily seen because each successive even moment is one power of a
higher than the preceding even one, whereas each of the odd moments .
is of the same order in a as thé preceding even moment. By entering
in the determinant either the highest or lowest power of a occurring
in.the moment the dependence of the successive orthogonal polynomials
on a for large and small a can be determined. As stronger results
are available, it would appear that the state chosen is not an appropri-

ate one.

| TIME-DEPENDENT METHODS

- There is.a series solution for the time.—depen‘dent Schrb'dingef
"Equation which is related to the preceding discussion of time-independ-
ent methods in that the approximation“‘to the actual temporal develop-
ment is the temporal development of a finite operator having its first |
n moments equal to the Hamiltonian in question. A state velqtorlcb(to)
is specified at an initial time tO’ and it is desired to know ¢ at a later
time t; the vector ¢ develops according to the time-dependent Schrodinger
equation, '

i—%%:mp. - (6)

In accordance with’;;revious work, Ho(t) is written as cé(t) + ¢' (t).
The equation can then be solved for ¢(t) in terms of ¢'(t), an unknown
state. It turns out that ¢'(t) again satisfies a Schrﬁdingér equation and
therefore the process m?.y be iterated., _

It is convenient to add certain factors to the notation suggested

-above. Thus ¢n(t) will be defined

& (¢t .._I_E__—__?Ll t)‘i(c 1°¢ Z)t (7)
Pplt) = c €. 1 ¢y (tle” -1 - :
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and ¢o (t) = ¢ (t). With these definitions each ¢ satisfies the time-de-
pendent SchrSdinger equation ' -
8o, (t)

i Y (H-c o (t). (=0 (8)

N

\

This may be proved by an induction.on n. For n =0, since (E_I,EO,’ this
is the Schrodinger Eq. (6), which was assumed. Assume the result is

true for n-1: i

.Ja q-)n-l (t)
1 ——

s s )6y ()

The unknown vector ¢ (t) is now introduced on the right-hand side:

3 f¢n

i

8t RIS Cn-Z) ¢n-l (t)

= (c " Cno2)t

H

n-1" Cn-Z) <l)n—l_('t) + (Cn "~ Cn- 1) ¢n.i(t_),e-i (Cn-i

where use has been . made of Eq. (7). This equation may now be integra-

-ted ¢n_1 (t)

t

= e e men o te) Lye Lo e e a2 g (e )de L (9)

: . . . N t
H-c , = : 0

If =—————— 1is now applied to both sides this reduces to Eq. (8), and
Ch " Cho1 . o o . D .

the induction is proved. ' ' )

Eqﬁation (9) may be used as the basis for a series expansion of

b, (t). Repeated application yields

. neN u
$(t) = T (-1)7 w(c. -c

t-(c_-c
._l)e n n
n=0 j:l J J

-1 o




tn-l t
n N —ic.t
dt exp(¢(-i X (c.-c, )t.\ + (-i) m (c.-c. ,) 0 dt
. -1 . 1 1
j=1 j=1 :
to %o
t N |
dt2 c e e dtN+l exp ( -1 jZ:I(cj—cj_l)tj ¢N+1(tN_+1) |
-.tO 0

“Again the proof follows easily by indudtion.

The integration over time can be carried out except for the un-

known function LPN‘+1 (tN-}-l-) . The resulting series is

N n . —1E t - _ )t
¢(t) = T (-0)" 7w (c;-c, j)e 0" * n""n- O_lq) (to)
o =1 3" :
n e-iEn_k colt +(c_ - k+1):l " N+l et
X b2 (C_ . +(1) Z(c-=c e %0
k=0 k6 j=1 -
ifn-k ‘
. B
N eflEN-k'Co)” (CN’CN-kH)tNﬂ
Zo 3 G — ¢t iy - (10)
N-k#i
to | Kt
) n
The magnitude of the term = (c.-c. l)¢ (to) can be found
R f j:l J J— n

_readily in terms of the moments. The magnitude of d)n (to_) is

( _ -
et ] - Jioo e[ 6, ()
This may be expanded"by use of the recursion relation for the ¢'s,

| (H-c__ 1)
(9, (k)| &, () ) = ‘%1 0)| | 6y )

nnl)
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| 2 2 | 2
_ (¢0(t0) (H--Cna].) (H-Cn_z) T .(H'Co) ¢0 (to))
- 2, 2 2 d
(ep=Cno1) g 1=Cqp) e - - (egmcp)
' n
so that the magnitude of 'wl (cj-cj_l)q)n(to) ‘becomes
J:

n
.17 (cj-cj-l)q)n(t())
J:l .

2 2 _ 2
_\/(4)0 I (H'Co) (H'Cl) A- .. (H-Cn—l) 4)0) ’
which is a polynomial in the moments. Since all the ¢'s satisfy the
.SchrSdinger equation, their magnitudes are time-independent. On the
basis of these results the magnitude of the remainder RN after N

terms is

N .

-(H‘Co)zl bl (t-tg) = ?T——?I

n-k=i

= \/(éol (H—cn_l)2 ('H-cn._z’);2

It is possible to minimize the entire expression invqlvihg c's, but to
do so again leads to complicated expressions. Minimizing just the mag- -
nitude of (¢0| (H-co)2 (H-cn)zl qao) 'is probably almgst as good, and
the problem can then be solved explicitly. Again it is easier to deal
with the symmetric functions in the c's rather than with the cv's them-
-selves. '
| "To minimize the magnitude of ¢n’ the symmetric functions in the
c's are chosen to satisfy the following linear equations:
n-1

- z (-1).
r=0

r+s s+1

Zn 1- r—ssr+1 = (- l) (s=1, 2,...n).

Zn-s’

This system always has a nonvanishing determinant. ! Again an
approximation is made to the actual Hamiltonian by the finite matrix
| having the identical first 2n moments, and all the comments of the pre-

ceding sec\t_ions'apply. ~Again the c's have to be the zeros of the asso-

llWidder,' loc. cit. p. 136. The same determinant, modified by the

transformation E goes to -E so that all the odd moments change sign,

~is shown to be positive.
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ciated orthogonal polynomials. Canceling the n points of increase of"
the function F‘(1> )(E) associated with the finite matrix having the same\
first 2n moments as H makes Fé )(E) identically 0. The equation
for the c's in terms of the S's
n n-1 - n. 0 _

_SOC -Slc AT .>,+(—1)-.-Snc_ = 0,
must be the characteristic equatlon of the finite matrix having the same
flrst 2n moments, since the eigenvalues of this matrix are the points
of increase of’ ngn) (E). Thus the time- dependent theory has led to the

same equations as the time.independent one. It should be noted that
the highest moment that appears. in the magnitude of ¢n., HZn disappears/

in the minimization criteria, emphasizing the analogy with energy minimi-
zation.

- If the other terms are considered in the fninimization_then more
complicated equati‘oﬁs are obtained, resembling the standard deviation
‘equation. They are slightly stronger results; there is no reason to be-
lieve this method will converge if the simpler methods fail. This follows
since convergence is intimately associated with whether or not the dis-
tribution with a finite number of points of increase will approach .the one
representing the physical problem. '

The transition from time-dependent back to time-independent
formalism can be made by observing that a solution ¢(t) of the time-
dependent equation may be expanded in a series of eigenfunctions;

= SW(E) [¢) (k) e’

This is an expansion in almost periodic functions, and if it is
multiplied by -elEt and averaged over time, a nonzero result occurs
only if E is an eigenvalue and the result extrac_ted is just the eigen-

function. For example:

T T

Li Et dt = 11 r 1 i(E-E.)t
Tinoo T pi)e™™" at - Ty T (WE) [o0(E, 7= [e™771 "at
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0 .E }E,

CX

"

Y(E,) E=E,

A more conventional averaging is
oo
lim iEt_ -et
e e
e=>0

0

d{t)dt

the result is the same. Formally applying an averaging process to the

series Eq. (10) for ¢ (t) yields the result

¢] : . E :it ¢
11 Et
Tl—r?oo T ¢ (tle : Ty ®on 1 . :
=T (ejme5q) n(ci-c.)¢n(°) E=g
n=1t J—-l i*j .

The series on the right is formally 'ar_l eigenfunction. The series con-
verges moderately well, but after it has been operated on with H it

seems to always diverge and hence is of no value unless it can be ex-

plicitly summed.



~34-

II. THE w-MESIC DISINTEGRATION OF THE DEUTERON
| Francis R. Halpern |
Radiation Laboratory
University of California

Berkeley, California

March 18, 1957

ABSTRACT

An investigation of the higher-order corrections to the mesic
disintegration of deuterons is considered. It is found that the correc-

tions are small, quite independently of the description.employed.
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II. THE w-MESIC DISINTEGRATIQN OF THE DEUTERON
" Francis R, Halpern

.~ Radiation Labbr-'atory
University of California
Berkeley, California

March 18, 1957

INTRODUGCTION

Among the earliest experiments carried out with w'mesoné were

' the slowing down and absorption of negative = mesons }n hyvdrogen-ra‘nd
deuterium. ! These experiments had originally. béensuiggested.as a.
means of determining the spin and parity of the meson and the nature

of its nuclear interaction. 2, Calculations had been c'arriied out which
indicated that the moderation time for negative meso%ns was small
compared with the w-p decay time, thus permitting an 'appr_ecia.bl'e frac-
tion of the mesons to reach the inner atomic orbits. 3 Many ‘survey cal-

culations of a semi-empirical nature were carried out to determine the

spin and parity of the me son4 from the _experimental results. These

! Panofsky, Aamodt, and York, Phys.. Rev. 78, 825 (1950);
Panofsky, Aamodt, Hadley, and Phillips, Phys. Rev. 80, 94 (1950);
Aamodt, Hadley, and Panofsky, Phys. Rev. 80, 282 (1950),
Panofsky, Aamodt, and Hadley, Phys. Rev. _8_1, 565 (1951). g

2 B. Ferretti, (Repor_t of a..Conference on Fundame’ntal Particles and
Low Temperatures, p.l 75 The Ph}r'sical Soc., London (1947).

3 A. Wightman, Phys. Rev. 77, 521 (1950).

*R. Marshak and A. Wightman, Phys, Rev. 76, 114 (1949);
. C. Marty and 7J. Prentki,J;p;hys‘. et radium X 156 (1949);
R. Marshak and A.. Wightman, Phys. Rev. 79, 220 (1950);
'S. Tamor, Phys. Rev. 79, 221 (1950); |

S. Tamor and R. Marshak, Phys. Rev. g_o_,'766 (1950);.
Marshik, Tamor and Wightman, Phys. Rev. 80, 765 (1950);
Brueckper, Serber and Watson, Phys. Rev. _8__1_, 575 (1951});
S. Tamor, Phys. Rev. 82, 38 (1951);

R. Marshak, Revs‘. Modern Phys. gﬁ’_, 137 (1951).
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experiments and calculations all tended to indicate that the meson is
captured from the K s_hell, and that the wm.-meson is a pseudoscalar
with .either pseudoscalar or pseudovector. coupling to the nucleon;. Later
experiments were conducted on the abs-orptionvof low-energy positive.
mesons by deuterium., 5 By use of detailed balancing arguments and the
_cross sections for the inverse processes, the spin of the w meson
was found to be zero.. _

The experimental work over the ensuing years tended .to indicate
that the dominant interaction of the moderate-energy wm meson with
nucleons was in the p. state. 6 Since, to the lowest order in the.coupling
constant, the nonrelativistic limits of both‘ pseudoscalar and pseudovec-
tor goupling‘are identical and describe p-wave mesons, 7 this commeon
limit was extensively investigated and has been found to give reasonable
agreement with the scattering, 8 pl;otoproductionc-), and other simple
properties10 of the meson-nucleon system up to several hundred Mev.

On the other hand there exist S-wave effects that are not negli-
gible. I As the relativistic meson-nucleon theory has never been sat-
isfactorily treated,.a'n_d as S-wave effects are absent from the nonrela-
tivistic limits, the significance of the S-wave interaction has remained -
obscure. Several attempts have been made to remedy this'.défect. In
the conventional reduction of the relativistic theory the nucleon-recoil
terms are usually dropped. The inclusion of these terms is necessary
to méke the interaction a Galilean _inva;‘iant, and does contribute S-wave

effects. For scattering, these effects tend to make the agreement be-

'5’Durbin, Loar, and Steinberger, Phys;.-Rev. 83, 646 (1951);

Clark, Roberts, and Wilson, Phys. Rev. 83, 649 (1951);

: Durbin, Loar, and Steinberger, Phys. Rev, §_f1_, 581 (1951).

% Anderson, Fermi, Martin, and Nagle, Phys. Rev. 91, 167 (1953).
7F. J..Dysdn, Phys. Rev. 73, 929 (1948)° ' a
8G. Chew and F. Low, Phys. Rev. 101, 1570 (1956);

G. Chew, Phys. Rev. 95, 1669 (1954). _

9G. Chew and F. Low, Phys. Rev. 101, 1579 (1956).

1OH. Miyazawa, Phys. Rev. 101, 1564 (1956). |
11H. Bethe and F. De Hoffman, Mesons and Fields, Vol. II Mesons

-

b.(Row Peterson, Evanston 1956).
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tween theory and experiment worse. 12 These terms were also used in
some of the earlier phenomenological calculations of the -rrt-deuteron

13, y14,and were found to be dominant for very low meson

interaction,
_energies.
Another aspect of the meson-nucleon absorption interaction was

the early récognition that some of the mesic interactions could give\ in-
formation about nucledr structure. Thus.the gamma rays emitted in
the reaction #° +d > n + n + y give informati(:;\n on the existence of a
dineutron. ) N |

A More recently w-mesic atoms have been made and their X-ray -
spectra have been measured. The nonelectromagnetic corrections to
the 1S level have been determined. 16 These offer additional informa-
tion on the S-wave interaction of the meson-nucleon system. The first
interpretation of the nonelectromagnetic level shift related these to vir-
‘tual scattering of the meson and thus to the S-wave meson-nucleon
scattering lengths. 17 This interpretation has been criticized because
it takes into account only elastic processes, whereas virtual inelastic
'provcesses,are also possible. 18 That this"rnust_ bé so is evident from
the fact that real absorption takes place; the spectral lines have a finite
width and the atoms a finite lifetime. The contribution of the inelastic
events to the level shift has been calculated in a phenomenological way, 18
and does, according to this calculation, make a substantial contribu;ion

to the level shift.

The basic inelastic process is the absorption of a negative meson
by a nucleon pair, and thus it appears valuable to investigate this event
more carefully. However, as in the earlier investigation of the deu-
terbn, 15 the situation .seefns to have turhe.d about. As will be shown,

the significant parameter in the ability of a nucleon pair to absorb a

12E.Henleya.nd M.Ruderman, Phys. Rev. 90, 719 (1953),
13 T

W. B. Cheston, Phys. Rev. 8_3_, 1118 (1951).
14.Chew,' Steinberger, Goldberger, and Yang, Phys. Rev. 84, 581 {(1951).
15K. Watson and R. Stuart, Phys,.bRev. 82, 738 (1951);
Aamodt, Hadley, and Panofsky; }';hys. Rev. 83, 1057 (1951).
1()Stearnss, De Benedetti, and Leipuﬁer, Phys. Rev, 2(1, 804 (1954).
1»7Deser, Goldberger, Baumann, and Thiring, Phys. Rev. 96, 774(1954).
118K. Brueckner, Phys. Rev. 98, 769 (1955),; -
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meson is the magnitude of the moméntum component in its wave function
- corresponding to the rest mass of the meson. As this number is poorly
known for complex nuclei and the deuteron, the experiment may be used
a‘s a momentum spectrometer within the limits of validity of -thye impulse
approx1mat10n |

In the lowest order of perturbation theory the relative momentum
component corresponding to the meson rest. mass is the only feature of
the nuclei which enters into the calculation, . The pui‘pose of this investi-
gation.is to seé to what extent this dependence is modified in higher-or-
der processes. |

The mesic disintegration of deu‘terium is .quite' closely related to
the photodisintegration of deuterium which has been more extensively

19,20 In a rece'nt éalculation/ the corrections introduced

investigated.
by virtual meson processes to the deuteron photod151ntegrat1on have
been calculated 20 by use of symmetric pseudoscalar meson,theory with
_cutoff pseudovector interactions. The calculation in this paper is, to a
large extent, patterned after the former in its treatment of the inter-

8,9, 10 the pseudovector form of.

med;at_e- states. As indicated earher,
meson theory appears to explain moderately accurately.the low-energy
meson-nucleon effects. The use of an S-wave coupling to accomplish
‘the absorption and then the neglAe_ct of virtual S-wave mesons in the in-
termediate state is rather artificial, It may be partly justified by the
conventional observation that the 'p=wa've effects are ‘1ar'ger..

The principal conclus1on of the calculation is that the absorption
of the meson at rest is quite insensitive to the effects of virtual mesons
in the intermediate states. This is to be expected because the large

p-wave effects generally occur at energles that are. about a meson mass

above thre shold.

19 J. Marshall and E.. Guth, Phys. Rev. 78, 738 (1950);

L Schiff, Phys,,Rev. 78, 733 (1950).
20 F. Zachariasen, Phys. Rev. 101, 371 (1956).
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‘THE ABSORPTION MATRIX ELEMENT

 The existence in the nonrelativistic limit of a meson-nucleon

coupling involving the nucleon velocity was noted in early work. 13, 14
It was also pointed out that the strength of .this term relative to the p-
wave term is determined by the requirement that the interaction be a

Galilean invariant. 12 Thus the form of the interaction is

1/2 f > = p,.—* | , :
~ (47) ! T NVineson ~ m Vnucleon! %

The difference in the gradients is the meson-nucleon relative velocity
and thus a Galilean invariant. The coupling conétant is taken as

f2 = 0.08, where . is the meson mass and m the nucleon mass. For
processes involving virtual mesons, the meson field is expanded in
plane waves, while vifor the absorption the meson‘fi'eld.is-expanded in
hydrogenic wave functions divided by \/Ep_ . The meson field is then

given by its value at the origin. This is

3..3\1/2
- [
$(0) ( ==

i for the ls orbit from which the meson is absorbed. The symbol @ is

used for the fine-structure constant to avoid confusion with the para-
meter a of the Hulthén wave function. The first portion of the inter-
‘action is the p-wave interaction that will be used to describe all virtual
mesons. The second portion is an S-wave coupling and will be used to
describe only the absorption of the external meson. The justification
for this is the observed predominance of ‘p-wave phenomena at low
energy. . |

. Since the theory is divergent a cutoff will be used where neces- _
, sziry. "The value chosen is the nucleon mass, since this value is about
that indicated by scattering theory. . The result is qui‘te‘insensi’tive to
cutoff, because the first two orders of perturbation theory are inde- |
- pendent of the cutoff. v . | »

Now that the form of the interaction to be used has been chosen,
it is necessary to decide which terms in the\perturbation expansion

are to be included. There are three considerations that govern this
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choice. First, in the spirit of the impulse approximation, the number

of virtual mesons exchanged between the nucleons is held to the minimum
necessary to achieve any process. That is, each process is considered
only with the least bossible number of exchanged mesons. Secondly,
from prior experience with low-energy meson theory, only the angular
momentum 3/2 isotopic spin>3/2 state is considered in higher-order
processes. Finally, in any possible sequence of processes, the exter-
nal vertex is valwa.ys chosen as near the start of the process as possible,
since this produces as many vanishing energy denominators as possible.
This means that absorption is always the secound process.

The exact expression for the transition operator desired can now
be reduced by formal arguments similar to those giveh for the phofo-
disintegration. 20 The result is that all possible meson exchanges be -
tween two nucleons, such that there is always at least one meson in the
field, should be considered. The external vertex should be joined to
these diagrams in all possible ways, and the matrix element taken be-
tween an initial deuteron state and a final scattering state. Figure 1
lists that subset of these diagrams selected according to the three rules
stated above which are to be calculated. The heavy dot on the nucleon
line indicates a virtual (3/2, 3/2) scattering of the meson. These dia-
grams will initially be calculated between plane-wave nucleon states
and then averaged over the deuteron and scattering states. The deuteron
will be repre svented by a Hulthén wave function, ' |

1/2
Zmze(m;@ _ (eharﬂe=ﬁr) )
o +B

YD

where the constants a and p have the values21

0.32738,
1.91844,

1]

p

in units of the reciprocal meson Compton wavelength. The final state

is taken as an undistorted expanding spherical wave.

1I\/Iasc‘) Sugawara, Handbuch der Physiké_‘)_ (to be published).
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Fig. 1. Interaction diagrams representing the nuclear absorption

of the negative 7 meson.
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The geheral form of the interaction Hamiltonian' has already been
given. The expansion of the usual pseudovector portion in plane waves
is _ '

| HI =H; +H,,

o - . 1)
(L) ., = g 1kr( 1 ;
T agr. 0'(1)?‘. ike | \/2—— +.comp1ex

“H, = aml/2L 5 .
M ‘conjugate.

k,1

~ The indices (1) refer to the coordiﬁates'or operators of nucleon (1).
H, is ident;cal except for the replacement of the (1)'s by (2)'s. The
aE», i (a];»9 . ) are the absorption (emission) operators for mesons of
momentum K and isdtopic spin i, This portion of the Hamiltonian is
used to describe the virtual mesons. The absorption of the real 1S
meson is described by the single term in the expansion of HI into hy-

drogenic wave functions,

20(0) (41/2 LoD (A 1B

H. =
““abs vr—zp 2

The isotopic spin operator has been replaced by the \/E-, since only
negative mesons are absorbed. Nucleon (1) will always be taken as.the
ﬁp‘.cleon-that absorbs the meson, and consequently Habs has no (2)‘por— '
tion. ' The only momentum that the ls meson can have is the transla-
tional momenturn of the center of gravity of the deuteron iD’/z that has
been subtra‘c,ted from the gradient of the nucleon wave function to main-
tain the Galilean invariance of the interaction. .7

The lowest-order contribution to the absorptidn is the matrix
element of Habs between the initial and final states. Because of the
simplicity of the operator the matrix element could be directly evalu-
ated between the exact nucleon states, but to be consistent with the
treatment of the higher-order processes, it will first be evaluated be-

tween the plane-wave nucleon states,

_ 1 .. n m
- 3 el(plrl + pzrz) Xl/z (2) Xl/z (1) 9

L (2w)



-43-

_ 1 i(p 'r +p5'r,)
¢f (2-")36 1 2 2 Xl/z(z)xl/z(l)

The 'X'I;lz (1) and X,iﬂ/z (2) are two component spinors for nu-

cleons (1) and (2) respectively.
The matrix element between the plane-wave states is

.Mif(l) = d_3r1d3r2 _._1_3_.'1(p1 1+p2 2)
' (2m)

x(x 17, )% )y (1] 31-.&(5’1 S @x

£ \2¢(0) 1
N (2m’

2 f \[E 1 1 -
;1 Tt 1@ x 17, (1) 3

x (\/—)1/'2

et (P17 *PpT5)

R AT

= 8(p-p;") 6 (py-Dy) (4n)

The transformations to the center-of-mass coordinates of the_ two nu-

cleons is convenient, and are contained in the formulas :

‘ . r,. +
->_—> — —>__ ]. 2
r=r; -Tr, _R—-——'——Z ,
p=1/2(p; -p,), P=p, +p, ,
plv: 1/2 (pll - pz') ’ . P'= p_ll +P2'

‘With these substi‘tut;i_ons the matrix element becomes

H(X 1/ (2)x{7;(1)|6’1- Sle‘/z @) x 17 (1) -
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The exact initial and final states are

The vectors K and K' are the initial and final momenta of the

_center of mass of the system. The matrix S = 1/2((—)?' +E)?2). The ex-

pression ES-:-T -S—;-I;Xml representsanormahzed 3 1' state ZZ»The

deuteron is taken as a S1 state. The D-state admixture is neglected.

Since it absorbs a pseudoscalar particle having zero orbital angular mo-
3

mentum its. final state must be Pl" The choice of constants requires

both radial functions to be normalized to one,

fo'e) Qo

(r)' Zar = r2‘¢F(r>

0

The matrix element MIF(I) between the deuteron and scattering states

can be expressed as

v W - 3 e,

s 35,3 235,43,
. b My (¢i|_¢1)d Pd’pd’P'd’p

A similar equation holds, of course, for é.ny of the other matrix ele-
ments. The transformation functions ( LpFl ¢f) and (¢, ’ Lp ) can be cal-
< culated, and are

R

1

g =8 (R’ﬁ)ﬁ(x‘f/zm X1/ mt x?)ﬁ—_ dr % o (pr) By (x)
(1)

22\ . Rarita and J. Schwinger, Phys. Rev. 59, 556 (1941).
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With the hélp of these, MFI“) becomes

M) _=,-(41f)1/2—f-‘/—?ﬂQl a’pa’pradpd’e GE’E"" + 1/2(?’-?"—_)]

FI m\/'z;

'—-—f"gll X2 () x T3 (1) /520 X1

0
. E’lx‘l‘/z (2)x 2 (D) (x5 (2) X7 (1) |xr1“) Vﬁjg—w §(K-B) 5 (R'-BY)

\/—;’;- ldrj, (pr) (r)f%- efdr ()i (p'r)

The integrals over the delta functions and the sum over the spins
can be easily carried out. After these operations have been performed,

the matrix element becomes

(1) _ 1/2 £ N2o(0) 1 [3 >
M. = -(4m)/ “— == 6 (K-K')
Fl " m \"Zp_v 4 8T

x  F et EE )5 e

The integrals over the angles of. ; can also be carried out without

specifying the radial functions ¢I and ¢F° This givés for the matrix
o /2 £ Y24(0) 1 5 &%
»MFI = -(4m) m 2 \Em \8w 5 (K-K')

CarS E* Y3 <5’1~5’.z_‘>ﬂxr?>

element

%‘ dpdrdr' p3r2vr'2'j0 (pr)§1(r)§F*(r')j1(Pr') .
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m
Xi):6 .

_ mm
before specifying the radial functions is

» - ‘ ' N - —>
T\his can be simplified f\urther, since ()(r;:1 , (o 1 0'2)

The final form for MFI

| | _ 1/2 £ \2a(0 8n o BR
- Mgy = -(4m) sz. \/411'\’8Tr T 8 (&R

2 | 3 2 2'. o
6mm'—1r- dpdrdr'p r ' JO(pr)§I(pr)§F ,('r')Jl‘(pr)

"

2 3.2 2. * .
=.M? dpdrdr'p r r Jo-(pr) §I(r’)§F (r’)Jl(pr? .

The constant M is used for

Zp SW\IZI 3 mm

which is also common to all the higher-order matrix elements.
It is now nécessary to make a choice of the functions EI and §F

If §F is chosen to be an expanding spherical wave

. N\
- 2 . | |
§F ‘f\}? Jl v(pr ) s
then it is not necessary to determine §I’ but on«1y the Fourier i:ransfo_rm

for one value of the momentum. With the above choice of §F the r'

integral becomes

Y

R Efare2optm mn = 2 ar e g, o) - e,

and with the aid of the delta function all but one of the remaiﬁing inte -

grals can be done:

~

2 3 &(p-D) . - 2.
Mp; = M[dpdrr?p ——‘iPTELJO(pr)EI(r) = MF[dre®i, (pr)F;(r)
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The remaining integral is just the expression for the momentum
‘component of the deuteron at the momentum p. The value of p is, of

course, determined by the energy-conservation condition

2
p = My
The absorption rate to first order, Rl’ is given by the usual for-
mula, |

J
R

1° :2"‘ MFI“)I “p(E) .

Two factors bf '8 (K-K') occur in the square of the matrix element.

The first of these gives unity when an integral is taken over an interval
of final states. The other factor 6{(K-K') is to be iﬁterp‘reted as the
volume of the region in which the reaction occuré. The quantity com -
puted without this factor of the volume is the transition rate per unit
volume, Since the wave functién for the center of mass of the deuteron
has been normalized to one deuteron per unit volume, this transition

. rate is actually the desired transition rate pef deuteron. The density

of st'ates is

S 2 .2 '
p(E) = Z |p“dp6(E-p) = [p“dp 8§(&=-p) = 1/2ymp m ;

1,m

the transition rate becomes

3/2

2 (mp)

L
m3-.

arr?j, (5r) T, (r)

~

" After wai is substituted for

¢(OA)' 2, this becomes

2

_ 8w (2 3.3 2 2. s |
‘R, = 5 \mp p’g ?l drr™j, (Pr) g (r)

e

'

 For the Hulthen wave function the integral is easily done, and gives

] 208 (a +B) .

ar=fjo Br) () g - o
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After the numerical values for the various constants are substituted,

R1 becomes, in units in which the meson mass is unity,

R 0.098 x 1078,

1

or in conventional units

Ry

2.1x 1014/sec.

The higher-order corrections can easily be included in the tran-
sition rate by multiplying R1 by the square of the ratio of the R matrix
to the already computed matrix element of the interaction. The factors.
M and the normalization constant for the Hulthén wave function are com-
mon to both and are dropped. If these factors are neglected the matrix

element of the interaction is

FI 2 2 2 2
a

Mo M P - P
+P B +P

This factor has the value 1.3049 x 10-_1/9 .
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RADIATIVE CORRECTIONS

The second-order processes are those for which there is one
meson exchanged between the nucleons while the absorption takes place.
For Mf (2 ) the exchanged meson must clearly be a neutral one. After
the absorption of the external negative meson, the absorbing nucleon
is a neutron, and must undergo an even number of Changes of charge.
to remain a neutron at.the end of the process. . It is clear that the nu-
cleon that did not directly enter the absorption process must have been
a neutron. Thus the exchanged neutral meson is both emitted and ab-
sorbed by neutrons. The isotopic spin contribution to the matrix ele-

ment is therefore one. Between the plane-wave states the matrix ele-

ment Mf.(z) 1s
1
M (2) = d3k d3r d r 1 e_i(;l.v?l-k_)é_)z).x (2) x (1)
fi | (2“)3 1 2 (217)3» \ /2 1/2
Oiek  ikr | > (= .p
(4m )1/‘2 Loopex ik 1 ypl/2L %ﬂ@lol-vl-i% —
@i oo - By b | "o By

O-'v + k >
AR —1kr2 _1 1(p1r1+p2 2)

N (2m)> ) XI/Z(Z)XI/Z(I) ;

is the nucleon recoil energy and is equal to H/Z The integrals

here:~Ek
over r, and r2 are easily carried out and g1ve
2| 43 ' .
(2) _ l/zL\]_» /2 f d’k O
Mg = e G 4 =5 6(p; +k - py')6(p,-k-p,’)
_ /] (2m) v _
1 -1 1

2o, @ tE_wtE - (xrll/z(z) xr?/z(l)l(o Q)i 1p1 2)(o k)lxl/Z(Z)xl/z 1))

Wlth the help of the & functlons the f1na1 integral is performed and,

2
after the transformation to center-of-mass coordinates is made, Mf ( )

becomes
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(2) _ VRS V2. 1/2 f 1
Mfi = \%OJ‘E4 ) J —_?6(P .ﬁ)‘z;; w;b;'.;_}.i

1

eyl b2 (@) X, (0| @ BB (0 18 (028 B X2 (1) X T 00):

As for the first-order contribution, this plane-wave matrix element
must now be averaged over the actual initial and final states.  The
transf‘ovrmation functions are the séme"’as used before Eq. (1).

After the 6-function integrals have been performed the matrix

element is

() 1/2 £ 1/2 f 3 1
M P = o (am) %QE) :] . —L 5 (k-x") | a’pa’p o

S'R'-’.—ﬁ——»—».—»».—-»'-—ﬂ m
57 10 1*P'-PHT o P)O e -P) Xy )

11 ,_3_ ’L( m!'
w—> — + — > 81 44 Xl
Pt E pp T

Zlare 5. (505 (') | dre?i)(er) () (3)

™ F 1 o 0 - *1
The substitution. ;—;’ =T is now introduced and the variables 1 and ;‘
retained. The Jac'ob.ian of the transformation is. +1. The angular
portion of the matrix element in the new coordinate system is how ex-
tracted. Itis ‘

J

r) .

a9y a0, (| EF) @ TG 54D @ B X7 s[5+

The direction of 1 is chosen as the polar axis in ;’ space. The azi-

muthal integral can be done;, and gives

™ o
dQ sin@_,d6_, ( 2w m&’ -T)((_I> -T)((_; -1—;
1 Ve TP X Z 1 1" 2
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.Y - p DiT+p") | :
+oop 50 10p) 11)2(1 ) ((71-1—7 ‘*7—‘ ._5 +mp |1 (——52115 )

Si(crl-l 0'11(0'201)-'—1——. (¢ 1'1 0'2‘1)

The summation conventmn is implied where repeated indices occur.

XT) Jo<[p +T.

After some 81mp11f1cat10n and inversion of the order of integration,

d -ﬁ(o ‘1)1p’ | DB, '2:1—"»'2 |
Ql 2 bip z [P 1
Ei (0 Doy (0,0 - (g'ﬁ(gz‘iil Jo ‘(l; ‘+—1,)

The integration over the angles of T can now be carried out, and yields
: ) _ : .

4172
= (Xl Z(SO' )lp +—x
'+ 22[ :,[ -0'2)0 - (S 0:’

after the subst1tut1on cos 8 = x.

this becomes

()(1 sm@ d6,

r)

. m
X7 ) -

Xl JO(\/p +Zp lx +1 r)

The commutation rules for the 0's can be employed to s1mp11fy
the term multiplied by 1- xz, and it becomes

(8T, - BT ).

It is clear from symmetry considerations that this vanishes. The ex-

pression thus reduces to
1

: 2 ‘
2,8 ; 2, . 2 \ 12 miz >
1" p ; dx (1x+p'»x )JO(\jp' +2p'lx. +17r) (Xl IS-GZ

-1

m
X1)

- Finally

XD = V2(3+ns
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The results are substituted into the earlier Eq. (3), and it becomes

MFI(Z) _ l} )1/2 j \/_/1 dlp’ dp/dx(1X+P x )— "‘LZ
' (2w )

dr rzjO (\,p“2 + 2p'1x‘+12)'§1(r) dr'r'2 ¢F#(r') jl (p'r)

It is now necessary to substitute in the initial and final radial-wave
functions. With these substitutions, and if we make use of the § func-

tion resulting from the r' integral, the matrix element becomes -

| , 1
M. B ooy am¥2 L] L[4y S 1 dx(lx + p'x’)
FI m ) )
(2w) 1 W -k '

4

1 1
o® +p'% 4 2p'lx + 1% 82 +p'% + 2p'1x + 1%

The normalization constant has been dropped in accordance with pre-

vious comments. The x integration can be easily performed, and

y1elds
1/2 £ 1 2,2 E2+§Z 12
M (4m) (a " +p =1 ) =
[ :] (Zw)z 4 1((.0 ) @ _ 4P
2 -2
e 1og izii}il))_z - J - (ﬁ + +1 ) L 10 E—M— g }-(4)
S oS B) "Bt p) |

This is as far as it is possible to go analyt1ca11y The remaining inte-

gral -has been carried out numerically.,

(3)

Identical methods suffice for the reduct1on of MFI to the form
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| 2 2 T 2,.2,.2
MFI(3) - (M) (4“)1/2 £ 1 1 1°d1 (d.-2+p2+12) E +P_ 41
I n 2 4 2 2 415
(2) ml(ml —4E )

Rt [ swnt ]

a +(1-p) B+ (1-P)

The final result for the one meson in the fiéld contribution is the sum

of Eqs. (4) and (5), and is

‘ . “ 2
(2) . (3) _(M) 1/2 _fZ] 2
M. + M = = l(4 )
TUFI FI D T b (4m)2

oo .
12 2
wl(wl “.41‘&.) a +(1 p)
o
- (‘3 +p l: +p +1 log a_’fil_‘f_ﬂ_
41p a +(1 p)
or
. : 2
2, 3 .M £
Mpp -t Mpp " =5 27 Do

The integral IO is dimensionless and has been evaluated numerically
(using Simpson's rule) with an asymptotic estimate of the remainder

for 1>100p., In terms of the matrix element,

(1), (2) , (3)
MIF A MIF , and MIF arer | N

(2) (3) - ‘ g (1)
M + M = 0.13¢ M

The transition.ra'te,R to the same order is then

R = 1.286 Ry = 2.67x 10 */sec.
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‘The higher-order processes involve the virtual scattering of

mesons. As has been.pointed out earlier, experience indicates that

' the state in which both the angular momentum and the-isotopic spin are

equal to 3/2 is the dominant state for low-ene.i-gy scattering. _T:his
then is the only state considered in the scattering .processes.. If a me-~
son is created on a nucleon it will bé necessary for it to scatter off the
other nucleon iﬁ order to scatter in the resonant state. _If a nucleon
emits a meson, the nucleon-meson pair rn‘ust be in a (]L_/Z, ,I/Z)state,
because the initial nucleon was. The absorption of the external pion
can not change this to (3/2, 3/2), since!the external meson has zero
angular moméntum. Similarly if a meson is scattered in a (3/2, 3/2)
state by a nucleon it must be absorbed by the nucleon by which it was

originally created. Thus only those scattering diagi‘ams enter in which

‘the meson crosses twice between the nucleons. Of these only the two.

illustrated in Fig. 1 are compatible with the last of the. conditions, that
is, that the absorption is the second process in the sequence.
To treat the scattering as realistically as possible, ‘it is necessary

to use the transition operator rather than the Born approximation for

. the scatterings. Since these scatterings are off the energy shell, there

is no direct way to compare them with experiment. However, a simple
integral has been suggested that agrees well with the scattering on the
energy shell. 23 This form for the virtua.lv‘sc'attering has also been used
with good results in the study of deuteron photodisintegration. 20 The

suggested form is

, - 2
—>--->l e —>.—->I N R ' . 81rf 1
R3/2 3/2 (k, k') = P, Ekk (o0ek')o kﬂ 3H2 SOSTTRNTS

at” (H—w—‘w')f - L4dL
L 1al 3mp , wL‘(u-wL)_(n-wwL’) (k-w=; )

- ,
Ltar 324212 1

(2“)3 3}*2 wp, (}L—wL)(p.-Zw'L). .

1 -

0

23 J. L. Gammel, Phys. Rev. 95, 209 (1954).
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where PII' is the projection operafor for the isotopic spin (3/2) st‘ate.

The recoil energy of the nucleons has been neglected in this ex-
pression since no very reasonable method of including it is available.
The effect of including any nucleon recoil energy would be to decrease
the results. The present results are an upper 11m1t for the matrix ele-
ment. That the nucleon recoil. effects are small has been verified by |
computing the second-order processes with and without recoil included
in the energy denominators.

The expression (6) for the transition operator can be consider-

~ ably simplified. First, the denominator of the term in brackets is in-

dependent of the k's and can be calculated numerically. Its value is.
1 -0.692 = 0.371. The numerator is a function of the variables w and
w'. By changing the variable of integration to wp = p.z + L% and

separating the denominator into partial fi‘actions one can bring it into

the form
47 81rf2 1 wtw' =i /dw J i (w +}-L) J -k (w +H)l
34 (2m)° Lt ’”)" +°° " J

The dependence on the variables w and w' i-nside the integral has been

separated. The function of a single variable

dw \/ - (w tp)
+w 1%

flw) =
L,

is easily evaluated as a function of w by numerical integration in the
range of interest 1 < w < m. It is graphed in Fig. 2. This curve

can be fitted exceedingly well by the parabola,

0.311 o® - 4.70 w + 28.99,

which is also graphed in Fig. 2. The parabola is then used for f(w)
and. Eq. (6) reduces to
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254
244
234
224 .

214

Paraboia .311w?-4.70w~28.99

(units of u2)

| 2 3 ‘ 4 5 6 7
w (in unit of u)

L

MU-12997 °

Fig. 2. A compérison of the function f(w) and the approximating

parabola. .
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8-rrfZ ‘_ 1 .
1 gt
‘3M2 Now' (p-w-w')

R3/p 3, (KUK = Py,
Ek'.k - (o.k-')(o.lil R ‘*’—”f—’”— (.430 - .0285 —‘%“")’ . (7')

This is the form finally taken for the off-the-energy-shell-scattering
amplitude. ' .

With this form for the scattering amplitude, téchniques similar

‘to those employed in the previous computation reduce the matrix ele-

ments to double integrals. = The chief difference is that, as might be
expected with gradient coupling, the integrals are divergent. A cutoff
of the virtual pion momenta at the nucleon mass is introduced. The

final re sults are

" (4) . (5) _  na
M |+ Mg = 053 M

The transition R is then

R = 1.408 R

0 =-2.9% 1014/sec.
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CONCLUSIONS
The order-of- magmtude agreement between the calculated value

R
calc
to be .due not so much to the model as to the circumstances that largely

2.9 x 10 14 and the measured value Rexp 7.0 x 10 /sec appear

divorce the numerical results from the underlying model. The failure.
to get closer agreement is undoubtedly due to the failure of the Hulthén
wave function to describe the high-momentum components of the deu-.
teron. The details of the model might be expected to be most vstrongl‘y

exhibited in the higher-order processes, but to the accuracy available

_in.both the theory and the experiment these make negligible contribu-

tions. Since the cutoff is used only in the highest-order term, the cal-"
culation is largeiy independent of the cutoff. Again, because the. scat-
tering of the virtual meson is remote from the scattering resonance,

the contributions from this source are small. This would be true wheth -

er the present form of the scattering operator or some other one were

- used. The deutéeron wave function appears principally through one num-

" ber, the value of its momentum component at the rest mass of the me-

son.
 The calculation becomes in effect a test of only two numbers,

the coupling constant and the indicated deuteron-momentum component.

. As the couphng constant is rather well-determined from scattering

,exper1ments, the results should be 1nterpreted as a failure of the Hulthén

function to describe the high-momentum gpectra of the deuteron. The
absorption of rﬁe sons by larger nuclei probably is accomplished by high-
energy pairs, and it seems reasonable that this calculation may be ex-
tended, .and the absorption rate of mesons by a nucleus taken as a mea-
sure of its high-momentum compenents.

Because the result is so independent of the details it is also
reasonably free of the errors inherent in the approximations used.
For exar‘hple, there might be serious doubts on the validity of using an
impﬁise Qapproximation treatment, but in view of the small size of the
contributions of the higher-order processes the use of this approxima-
tion would appear justified. The same remark applies"to the form of
the scattering operator employed for the virtual mesons.

The lowest-order calculatmn has also been carried out for a
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variety of other momentum distributions. In all these distributions it

is.of course necessary to specify a parameter, the mean momentum..

. For equivalent choices of this parameter the ..1owest-order contribution

to the matrix element is not particularly altered. As has been indicated
earlier, the absorption pfocess may be a step in a higher-order calcu-
lation leading to a level shift in a mesic afém, The level shift does dis-
tinguish more adeq>uatve1.y between the various wa\)e- fuhctions, as the
entire funéti.ovn rather than just a single Fourier component enters.:
Since it is not clear .éxperimentally what portion; of the level shifts in
mesic atoms is to be attributed to virtual absorptions no definite choice

of wave function can be made.
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