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The Knotted Sky II: Does BICEP2
require a nontrivial primordial power
spectrum?
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bDepartment of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

E-mail: kevork@uci.edu, g.aslanyan@auckland.ac.nz, r.easther@auckland.ac.nz,
lpri691@aucklanduni.ac.nz

Abstract. An inflationary gravitational wave background consistent with BICEP2 is diffi-
cult to reconcile with a simple power-law spectrum of primordial scalar perturbations. Tensor
modes contribute to the temperature anisotropies at multipoles with l . 100, and this effect
— together with a prior on the form of the scalar perturbations — was the source of previous
bounds on the tensor-to-scalar ratio. We compute Bayesian evidence for combined fits to
BICEP2 and Planck for three nontrivial primordial spectra: a) a running spectral index, b)
a cutoff at fixed wavenumber, and c) a spectrum described by a linear spline with a single
internal knot. We find no evidence for a cutoff, weak evidence for a running index, and sig-
nificant evidence for a “broken” spectrum. Taken at face-value, the BICEP2 results require
two new inflationary parameters in order to describe both the broken scale invariance in the
perturbation spectrum and the observed tensor-to-scalar ratio. Alternatively, this tension
may be resolved by additional data and more detailed analyses.
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1 Introduction

The BICEP2 experiment [1, 2] has reported a detection of primordial B-modes in the cosmic
microwave background (CMB).1 The most natural explanation for a B-mode signal is a
stochastic background of long-wavelength gravitational waves, or tensor perturbations [4].
This constitutes strong prima facie evidence for an inflationary phase in the early universe,
the most widely-studied source for a stochastic background of gravitational waves. If the
observational data and theoretical explanation are confirmed, the B-mode signal will provide
unprecedented insight into the mechanism responsible for inflation.

The measured tensor-to-scalar ratio has a 68% confidence-interval (CI) of r = 0.20+0.07
−0.05

and differs from zero with a statistical significance of 5.9σ. However, the temperature data
from Planck [5–7], SPT [8], and ACT [9], combined with WMAP [10] polarization, yields
r . 0.11 at the 95% CI, in significant tension with the BICEP2 result.

There are several potential explanations for this discrepancy. The first is that the BI-
CEP2 analysis over-estimates the amplitude of the B-mode itself [11]. The second possibility
is that the primordial B-mode is accurately measured, but sourced by a mechanism unre-
lated to the standard assumptions for the primordial inflationary phase [12–21]. Conversely,
existing CMB data may have been misanalysed, although this appears unlikely given the
agreement of Planck with WMAP at large and intermediate scales and with ACT and SPT
at small scales.

Another suggestion is that the large-scale scalar power spectrum is suppressed relative
to that predicted by the best-fit ΛCDM scenario. Pre-BICEP2 constraints on the inflationary
gravitational wave background were driven primarily by the contribution of tensor modes to
the temperature-temperature (TT) anisotropies. This is illustrated in Fig. 1, which shows the
contribution to CTTl at low-l from a tensor background with r = 0.2. The tensor contribution
to individual CTTl is small, but systematically increases the TT multipoles for all l . 100.
However, to constrain the primordial tensor background using this signal we must have an
independent estimate of the contributions CTTl from scalar perturbations alone. Moreover,
the measured low-multipole CTTl typically lie below the best fit values for simple power-law
spectra, so the inclusion of a tensor background is likely to reduce the likelihood relative to
r = 0. Fig. 1 also shows a sample angular power spectrum derived from a primordial scalar
spectrum with a sharp cut-off in power at a comoving wavenumber k = 0.002 Mpc−1. This

1B-mode polarization from CMB lensing was detected earlier by the POLARBEAR experiment [3].
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Figure 1. The contribution to the (lensed) TT power spectrum from scalar and tensor modes
(r = 0.2). The left panel shows a standard power law primordial power spectrum with typical values
of the cosmological parameters. The right panel shows the same primordial power spectrum but
cut-off below k = 0.002 Mpc−1 (corresponding to l ∼ 30).

particular scenario has a very low likelihood relative to the Planck and WMAP datasets, but
provides an extreme illustration of how a scalar spectrum with a cutoff could compensate for
a tensor contribution to the CTTl for l . 100.

In this paper we focus on the implications of the BICEP2 result for the scalar power
spectrum ∆2(k), performing joint analyses of the BICEP2 and Planck datasets. We consider
three possibilities: (i) a running spectral index, (ii) a sharp cut-off in power at scale kcut,
and (iii) a discontinuity in the spectral index at scale kknot. The latter two scenarios are
implemented via the algorithm described by us in Ref. [22].

The BICEP2 analysis [1, 2] presents joint constraints from BICEP2 and Planck with
a running index, but focusses primarily on the polarization and B-mode amplitude and
does not discuss the issue in detail. We reproduce the BICEP2 constraints on a running
index, and compute Bayesian evidence (relative to ΛCDM) of ∆ logZ = 1.1 for the running
case. The cutoff spectrum does not give a significant improvement, since it suppresses the
scalar power by a factor far larger than the corresponding increase in power due to tensor
contributions. Finally, a break in the spectral index — implemented as a splined P (k) with a
single “interior” point at an arbitrary amplitude and location — provides the best fit to the
data. With a broad, uninformative prior we find the change in the logarithmic evidence ratio
is ∆ logZ = 1.6. However, using a prior that includes information from our investigation of
the Planck data alone, which disfavors knots at kknot & 10−2 Mpc−1 or dramatic changes in
amplitude, we infer an evidence ratio of ∆ logZ = 3.1, a “significant” to “strong” detection
according to conventional model selection criteria.

Consequently, this analysis would suggest that BICEP2 has actually made three signif-
icant discoveries about inflation: the first is to confirm its existence, and the second is to
show that it took place at a relatively high energy scale. Thirdly, these results also suggest
that the primordial scalar spectrum has a nontrivial structure which is inconsistent with
simple models of inflation. Alternatively, the tensor spectrum may differ from the “stan-
dard” inflationary form, due to either a variant model of inflation [23] or a mechanism that
is independent of inflation [12–14, 17, 20]. Of course, the conservative explanation of our
findings is that they point to tension between the Planck and BICEP2 datasets which will
be resolved by more complete analyses and/or additional data.
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2 Method

2.1 Likelihoods, priors, and Bayesian evidence

We combine the B-mode results from BICEP2 [1, 2] with temperature and lensing data
from Planck [5]. We use the Planck likelihood code [24] with Commander, CamSpec, and
lensing likelihood files for the data-likelihood evaluation. We use the COSMO++ library
[25] to combine the modified form of the primordial scalar power spectrum (Fig. 2) with the
Planck likelihood code and calculate the CMB angular power spectra with CLASS [26, 27].
We employ multimodal nested sampling for parameter estimation and the computation of
evidence, using the publicly available code MultiNest [28–30].

We use model posterior probabilities and Bayesian evidences to compare the statistical
significance of two competing reconstruction models. This approach penalizes models with
parameters for which the likelihood is large only in small regions of parameter space and pro-
tects against overfitting the scalar spectrum with too many knots or bins. This approach has
previously been employed for power spectrum reconstruction [31–36] and gives conservative
and robust assessments of possible physical features in the data.

We use the posterior probability P (M|Data) to assess the statistical significance of a
modelM. If two modelsMi andMj have the same prior probability, Bayes’ theorem yields
the relative betting odds between the models via the Bayes factor

Bij =
P (Data |Mi)

P (Data |Mj)
, (2.1)

where the Bayesian evidence (marginalized likelihood) is

P (Data |Mi) =

∫
P (θ |Mi)L(Data | θ)dθ (2.2)

for the model parameters θ. Here, L(Data | θ) is the data-likelihood and P (θ |Mi) is the
parameter prior probability. Equation (2.2) is a function of our choice of prior, so to be
conservative we allow the parameters that define the power spectrum features to vary over a
wide range of values in order to thoroughly search the parameter space [37]. Because there is
little likelihood for features at k & 10−3 Mpc−1, a model with more parameters must produce
a very large improvement in the likelihood relative to a featureless scenario for evidence to
yield “betting odds” that strongly support the more complex model. Consequently, we also
examine the improvement in fit (∆L) at the maximum likelihood point for each scenario.

We use uniform priors for all of the standard cosmological parameters Ωbh
2, Ωch

2, h, and
τ , as well as the 14 “nuisance” parameters in the CamSpec likelihood. For convenience, we
set the prior probability distribution for r to the posterior distribution obtained by BICEP2
[1, 2], which is equivalent to the direct evaluation of the underlying likelihood with a uniform
prior on r. Consistent with BICEP2, we assume a flat tensor power spectrum and a pivot
scale of k∗ = 0.05 Mpc−1 [1, 40]. We check that we recover the joint constraints on ns and r
and the marginalised posterior for the running index reported by BICEP.

2.2 Non–power-law scalar spectrum

We perform a complete marginalization of the Planck temperature and lensing likelihood,
varying the remaining ΛCDM variables and the full set of Planck “nuisance parameters.”
We calculate the Bayesian evidence ratios and combine this with the parameter posterior
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log (Posterior Odds) Jeffreys Scale Cosmology Scale

0.0 to 1.0 Not worth more than a bare mention

1.0 to 2.5 Substantial Weak

2.5 to 5.0 Strong Significant

> 5 Decisive Strong

Table 1. Rough guideline for Bayesian evidence interpretation with the Jeffreys scale [38] and the
more conservative “cosmology scale” from Ref. [39]. The posterior odds equal the Bayes factor when
the prior models odds are equal.

Broad Priors

Linear Spline Cutoff Running

−6 < log10 kknot < 0 −6 < log10 kcut < 0 −0.1 < αs < 0.1

−2 < log(1010∆2
knot) < 4

Informative Priors

Linear Spline Cutoff

−6 < log10 kknot < −2 −6 < log10 kcut < −2

2 < log(1010∆2
knot) < 4

Table 2. Priors for the non-standard scalar power spectrum: the location kknot of the knot, the
amplitude of the knot’s dimensionless scalar power spectrum ∆2, the running of the spectral index
αs, and the cutoff scale kcut. The values for r are drawn from the BICEP2 likelihood LBICEP2. All
cosmological parameters not listed above, as well as the amplitudes at the endpoints, have the same
priors as used in our previous analysis, Ref. [22].

probabilities to give a conservative model-selection guideline. We use a scale-invariant pri-
mordial tensor spectrum and draw r from a prior defined by the BICEP2 posterior, as noted
previously.

We summarize all power spectrum priors in Table 2. We reconstruct the primordial
scalar power spectrum in the range 10−6 Mpc−1 < k < 1.0 Mpc−1, using a generalization of
the “knot-spline” procedure, developed in Refs [22, 31–35, 41–44]. This process is illustrated
in Fig. 2. A complete discussion is given in Ref. [22], but it can be summarised as follows:

1. Fix the endpoints at kmin = 10−6 Mpc−1 and kmax = 1.0 Mpc−1, but allow their ampli-
tudes Amin and Amax to vary, with logarithmic prior, in the ranges −2 < A < 4, where
A = log(1010∆2

ζ).

2. Add a “knot” with logarithmic prior in k, between kmin < kknot < kmax and allow its
amplitude Aknot to vary in the same ranges as the endpoints in Step 1.

– 4 –
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Figure 2. (Left) The knot-spline model for the primordial scalar power spectrum with one knot.
The interior knot adds two degrees of freedom, while the endpoints add one each, for a total of four.
(Right) The standard power-law, the power-law cutoff at scale kcut, and a power-law with running.

3. Interpolate between the endpoints and the knot with linear-spline interpolation.

Varying the knot-location compensates for the “look-elsewhere” effect, as the knot can
move over the whole range of k. This permits the reconstruction of features in the scalar
primordial power spectrum that could appear at any scale in k. The broad ranges on the
priors for kknot and Aknot indicate that possible features are not restricted to large scales.
We call this the “broad” prior on the knot’s position and amplitude and it gives conservative
values for the Bayesian evidence.

We can also use the information gained during our Planck -only analysis [22] to update
the prior on the knot position and amplitude. The Planck data indicates that features should
only appear at large scales with kknot . 10−3 − 10−2 Mpc−1. This reduces the (logarithmic)
range of the knot position to two-thirds of the original volume. Furthermore, we know the
spectral index is red at large scales, and a low value of Aknot will generate a blue spectrum at
k & 10−3 Mpc−1, so we can further stipulate that 2 < Aknot < 4. This gives the Informative
Prior for the broken spectrum, which yields less conservative and more significant Bayesian
evidences. The Planck likelihood is almost zero in the excluded regions, so the evidence for
the informative prior relative to the broad prior is scaled by the ratio of the relative parameter
space volume, giving an increase of ∆ logZ ≈ 1.5. In what follows we report evidence values
with both priors.

We also analyze the standard power-law spectra with both (a) a sharp cutoff at kcut
and (b) a running spectral index, defined by

∆2(k) = As

(
k

k∗

)ns−1+ 1
2
αs log

k
k∗
, (2.3)

where αs = dns/d log k is the running. A running spectral index was considered in the
BICEP2 analysis [1]; we repeat this analysis both as a check on our inclusion of the BICEP2
results in our likelihood and in order to calculate Bayesian evidence for the running index.

These two forms of the power spectrum are also illustrated in Fig. 2. The pivot scale
for the power law is k∗ = 0.05 Mpc−1. The cutoff prior is from a logarithmic prior, kcut ∈
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Model ∆ logZBroad ∆ logZInformative 2∆ logLmax

No Knots — — —

1 Knot 1.6 3.1 6.2

Model ∆ logZBroad ∆ logZInformative 2∆ logLmax

ΛCDM + r — — —

Cutoff 0.2 0.6 1.9

Running 1.1 — 3.8

Table 3. Increase in Bayesian evidence, ∆ logZ, and best-fit likelihood, 2∆ logLmax, compared to
the standard power law case without running. The reported likelihoods Lmax are the product of the
Planck and BICEP2 likelihoods.

ΛCDM No knots 1 knot Cutoff Running

Ωbh
2 0.02225+0.00031

−0.00030 0.02232+0.00031
−0.00033 0.02225+0.00031

−0.00030 0.02223+0.00032
−0.00030 0.02266+0.00038

−0.00035

Ωch
2 0.1174+0.0029

−0.0029 0.1167+0.0030
−0.0029 0.1175+0.0030

−0.0030 0.1173+0.0028
−0.0028 0.1162+0.0032

−0.0032

h 0.690+0.014
−0.014 0.693+0.014

−0.014 0.689+0.014
−0.014 0.690+0.013

−0.013 0.698+0.016
−0.016

τ 0.092+0.030
−0.028 0.100+0.028

−0.028 0.101+0.031
−0.030 0.094+0.027

−0.028 0.118+0.035
−0.033

r 0.150+0.036
−0.032 0.149+0.038

−0.033 0.178+0.057
−0.044 0.149+0.037

−0.034 0.180+0.050
−0.043

ns 0.9679+0.0086
−0.0084 — — 0.9682+0.0083

−0.0082 0.9668+0.0099
−0.0096

As 3.086+0.054
−0.051 — — 3.090+0.048

−0.051 3.143+0.063
−0.062

αs — — — — −0.024+0.010
−0.010

log kcut — — — −10+2
−2 —

Amin — 3.428+0.069
−0.064 1.89+0.74

−1.50 — —

Amax — 3.010+0.071
−0.072 3.003+0.078

−0.077 — —

log kknot — — −5.38+0.69
−5.12 — —

Aknot — — 3.212+0.107
−0.063 — —

Table 4. 68% CI parameter constraints from the reconstruction with different models for the scalar
power spectrum. The pivot scale is k∗ = 0.05 Mpc−1. All of the A values are A = log(1010∆2).

[1.0 × 10−6, 1.0] Mpc−1 and we have a uniform prior on αs with the range αs ∈ [−0.1, 0.1].
Note that when the running becomes large the Taylor expansion in Eq. (2.3) can be an
inaccurate parametrization for the inflationary power spectrum [45]. As above, we also
use an Informative Prior for the cutoff spectrum based on the analysis in Ref. [22] with
kcut < 10−2 Mpc−1. We report the evidences for both priors, although this makes little
difference to the conclusions.
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Figure 3. (Left column) The reconstructed primordial power spectrum with (top) 0 and (bottom) 1
knot. (Right column) The power-law spectrum with a (top) cutoff and (bottom) running. The black
solid lines show the best-fit, the red lines are the 68% CI, and the light blue lines are the 95% CI.
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Figure 4. The posterior distributions for the tensor-to-scalar ratio r from the reconstruction with
different models for the scalar power spectrum. For comparison, we also show the BICEP2 [1, 2]
likelihood for r.
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Figure 5. The posterior distribution for the running of the spectral index.

3 Results

Figure 3 shows the reconstructed scalar power spectrum with a standard power-law (0 knots);
a power-law with a sharp cutoff; a power-law with a running spectral index; and a 1-knot
linear-spline model. The Bayesian evidences are given in Table 3, along with the improve-
ments in best fit improvements for each case. Although the linear spline with no knots is
equivalent to the standard power law case without running, the different parameterisations
lead to different prior volumes. Consequently, we report the Bayesian evidence for the cutoff
and running power spectra relative to the standard power law case with common priors for
As and ns, while we report the Bayesian evidence for the 1-knot model compared to the
0-knot power-law model.

In Figure 4 we show the posterior distributions for r obtained with these models, along
with the result obtained with the BICEP2 data alone. The posterior distribution for αs
derived for the running power spectrum is shown in Figure 5. Constraints for the standard
cosmological parameters and the power spectrum parameters are displayed in Table 4.2 As
noted previously while the spline model with no knots is equivalent to ΛCDM, the different
priors associated with the power spectrum parameterisations lead to small differences in
ranges for the standard cosmological parameters. Our 68% CI bounds for αs agree well with
those reported in the BICEP2 analysis (αs = −0.022± 0.010) [1].

The posteriors for the reconstructed power spectrum in Fig. 3 all recover the standard
power-law form at small scales k & 10−3 Mpc−1. This confirms the Planck -only analysis of
Ref. [22], indicating that the BICEP2 detection of r ∼ 0.2 does not further imply power
spectrum features at intermediate to small scales.

At larger scales (k . 10−3 Mpc−1) all the non-minimal models indicate a suppression
of power in the spectrum of scalar perturbations. The black lines in Fig. 3 are the most
likely power spectra, and these all decrease at small k. The increase in the likelihood for

2Although the no knots model is completely equivalent to the standard ΛCDM model in its functional
form, the parametrizations and subsequently the priors are different. For this reason the resulting posteriors
on all of the parameters could be slightly different, and we present the results for both cases.
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the best-fit power spectra are reported in Table 3, although we caution that cosmic variance
is important at these scales. Also, while a local feature at k ∼ 10−3Mpc−1 could also yield
posteriors with large-scale power suppression (as shown in Section 4 of Ref. [22]), we can be
more certain about the posteriors in Fig. 3: since the tensor contribution to CTTl is nearly
uniform for scales l . 100, offsetting this increase in power should require a compensating
decrease at all scales and not a local feature at intermediate scales.

The Bayesian evidences in Table 3 show some support for the 1-knot linear-spline model
and a running spectrum with ∆ logZ = 1.6 and 1.1, respectively. With the Planck temper-
ature and lensing data alone, the evidence for the 1-knot model is only ∆ logZ = 0.7 [22],
indicating that BICEP2 data contributes significantly to the increased evidence. While these
models give qualitatively similar spectra, the running power-law requires that there is less
power at scales k ∼ 10−3 Mpc−1 in order to achieve the same suppression of large-scale power
as the 1-knot model. The CTTl at these scales are well-explained by scalar contributions only,
but the increased likelihood due to large-scale suppression is partially off-set by the Planck
likelihood at l ∼ 15. This increases the Bayesian evidence for the 1-knot model compared
to the running. The cut-off model gives little overall improvement to the data, since a cut-
off causes a large decrease in the CTTl over all scales larger than the cut-off scale, as seen
in Fig. 1. The 1-knot model generalizes the cut-off at large scales, and thus gives higher
evidence values.

Overall, the Bayesian evidences with the broad, uninformative priors show only a mild
increase over the power-law ΛCDM + r prediction. The evidence computed for the 1-knot
model can be characterized as either “weak” or “substantial,” depending whether one uses
the Jeffreys or cosmology scale, as described in Table 1. However, the Informative Prior
obtained by incorporating the insight gained from our analysis of the Planck data on its own
has a significantly higher evidence due to the reduced parameter volume. This increases logZ
by ∼ 1.5, and the resulting evidence of 3.1 constitutes “strong” or “significant” evidence for
the suppression of power in the spectrum of primordial perturbations at large scales.

4 Discussion

Using data from Planck and BICEP2 we perform parameter estimates and calculate Bayesian
evidence in order to explore the implications of the BICEP2 result for different parameter-
isations of the primordial scalar power spectrum. In agreement with the BICEP2 analysis
we find that the posterior probability for a running spectral index excludes zero at the 95%
confidence interval. Similarly, a spectrum defined by a linear spline with one internal knot
shows a distinct preference for a suppression of power in the scalar spectrum at large angular
scales, k . 10−3 Mpc−1. For an informative prior incorporating the results of the Planck -
only analysis [22] the corresponding Bayesian model selection criteria show a pronounced
preference for a model with broken scale invariance, with ∆ lnZ = 3.6.

This paper extends the analysis of Ref. [22], which reconstructs the primordial scalar
power spectrum from Planck temperature data alone. In particular, Ref. [22] shows that the
evidence for extra structure in the scalar power spectrum is negligible and that this recon-
struction technique successfully recovers artificial signals injected into simulated temperature
maps. Consequently, these results quantify the impact of the additional information provided
by BICEP2.

If the scalar power spectrum is not well described by the usual power-law form, the
estimated values of other novel cosmological parameters may also be modified, including sum
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of the neutrino masses or the number of effective relativistic degrees of freedom, which can be
degenerate with features in the scalar power spectrum [44, 46–50]. Likewise, the BICEP2 data
does not put robust constraints on the tensor index nT . Generically, the expectation from
inflation is that nT = −r/8 to first order in slow-roll, so we assume a scale-invariant tensor
spectrum in this analysis. However, while a blue (or sharply peaked) tensor background
would also alleviate the tension between Planck and BICEP2, the physical processes that
generated this spectrum would at least be as radical as considering a non–power-law scalar
spectrum.

The recent BICEP2 result provides strong evidence for a primordial tensor background,
from which it is inferred that the very early universe underwent an inflationary phase. How-
ever, the results presented here imply that BICEP2 also suggests that this inflationary phase
yields a non-trivial scalar power spectrum, and that the underlying inflationary mechanism is
not well-described by a simple, smooth single-field potential. The inverse problem associated
with reconstructing the inflationary potential from data has been widely discussed [51–69]
and these methods would have at least three nontrivial input parameters in such a scenario.
Likewise, with a large negative running similar to the central value found here, simple infla-
tionary models typically yield an unacceptably small number of e-foldings, implying that the
running itself must be scale dependent [70].

Needless to say, this analysis takes both the current Planck and BICEP2 data-products
at face-value. The most conservative explanation for these result is that future analyses will
eliminate much of the apparent tension between BICEP2 and other cosmological datasets.
From this perspective our analysis quantifies the extent of that tension.
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