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ABSTRACT OF THE THESIS

Dose-Response and Viral Kinetics

Analysis of SARS-CoV-1

in Non-Human Primates

by

Philip Chan Lee

Master of Science in Bioinformatics

University of California, Los Angeles, 2023

Professor James O. Lloyd-Smith, Chair

Dose-response models are a key component of quantitative microbial risk assessment and

can be used to estimate the infectious and lethal doses of novel emerging pathogens to help

inform control and prevention measures. Unfortunately, obtaining estimates of infectious

and lethal doses in humans can be difficult due to ethical constraints and limited data

from experimental challenge studies of relevant animal models such as non-human primates

(NHPs). NHP challenge studies tend to have small sample sizes and there are often only one

or two dose levels within a single study, which makes dose-response modeling infeasible using

data from single studies. Here, by using Bayesian computational methods, we developed

an approach to aggregate NHP pathogen load data across multiple challenge studies in

order to simultaneously analyze the dose-response relationship and within-host kinetics. We

tested our approach by aggregating NHP viral load data across six SARS-CoV-1 challenge

studies, and we obtained the first-ever ID50 estimates for SARS-CoV-1 in NHPs. Our work

demonstrated the value in reusing previous data from animal experiments, and the modeling
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framework we developed can be applied to other pathogens, especially in cases where data

is limited within individual studies.
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1. Introduction

The past two decades have seen the emergence of several novel infectious pathogens. Many

of these emerging pathogens have zoonotic origins, and they have been responsible for sig-

nificant financial costs and loss of human life. Additionally, given recent changes in human

demographics and behavior, such as increasing urbanization, population sizes, and air travel,

as well as changes in patterns of land use, we should expect to continue seeing new emerging

diseases in the future. One of the major obstacles in controlling these novel emerging diseases

is data scarcity, especially during the early stages of an outbreak. Although there currently

exist many well-established modeling frameworks for studying between-host and within-host

spread of pathogens, without sufficient data it can be difficult to forecast disease burden

and determine proper intervention measures. Thus, there is a need for new methods that

can make the most of limited data across disparate sources in order to perform modeling

analyses.

Here we focus on dose-response models, which are a key component of the quantitative

microbial risk assessment (QMRA) framework. Dose-response models are used to quantify

the risk of a given response (e.g., infection or death) to given doses of pathogen [8]. These

models can be used to generate estimates of the infectious and lethal doses of pathogens,

which are the doses that are required in order to reliably cause infection or mortality in an

individual (e.g., the ID50 is the dose that produces infection in 50% of hosts). Obtaining

estimates of the infectious dose, such as the ID50, is especially useful for informing control

policies early in an outbreak. For example, a pathogen with a very low infectious dose might
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indicate high transmissibility between individuals and thus support the need for control

measures that reduce even brief exposures.

Unfortunately, obtaining reliable estimates for infectious and lethal doses in humans is

typically challenging due to limitations of the available data and the types of experiments

that can be performed. In cases where the pathogen of interest causes significant risk of

severe disease or death in humans (which makes controlled human infections unethical),

dose-response model estimates must primarily rely on data from animal experiments, often

using rodents or ferrets [10]. Although these small animal model experiments are more

feasible, and it is possible to obtain larger sample sizes which bolster statistical analyses,

there are clearly inherent limitations when trying to extrapolate results from these data to

human infections [3]. For example, early in the COVID-19 pandemic the best guess at the

infectious dose for SARS-CoV-2 in humans came from a study of SARS-CoV-1 in transgenic

mice, and the knowledge gap on human infectious dose was cited repeatedly as a limitation

in guiding control policy [25].

A natural route to obtain more human-relevant infectious dose estimates would be to

apply dose-response modeling approaches to data from animal models that are more closely

related to humans, such as non-human primates (NHPs). However, working with data from

NHP experiments is also challenging. Due to important ethical and logistical considerations,

NHP experiments tend to have small sample sizes, which makes it difficult to perform quan-

titative analyses using data obtained from a single experiment. Furthermore, NHP studies

often have goals other than dose-response modeling, such as studying disease pathogenesis or

countermeasures, so animals are usually inoculated with just one or two dose levels within a

single study. To perform dose-response modeling with NHPs in the absence of dose-response

experiments, data needs to be aggregated across multiple studies in a principled way.

A further complication involved in working with NHP experiment data – and particularly

in seeking to aggregate data across studies – comes from the variety and richness of the data

collected. After inoculation with a pathogen of interest, animals are often sampled at multiple
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time points in multiple different body locations (e.g., nasal/oral swabs, rectal swabs, blood

samples) and with multiple assays (e.g., immunological measurements, PCR results, culture

results). This can make it difficult to define what it means for an individual to be “infected”

or “non-infected.” However, there is also a great opportunity to leverage these data to learn

more about dose effects beyond just simple infectivity. Traditional dose-response models

require individuals to be classified via a binary infectivity scheme, either infected or non-

infected. However, there is clearly individual-level variation in responses to infection, and

there are many cases where it would be useful to define a continuum of disease responses.

In particular, for experiments that report quantitative measurements (e.g., CT or viral load

values for quantitative PCR results), there is the opportunity to investigate potential dose

effects on within-host viral kinetics.

Here, we developed an approach to aggregate and reuse data from experimental challenge

studies of NHPs to perform dose-response modeling, both to obtain estimates of the infec-

tious dose and to evaluate potential dose effects on within-host viral kinetics. To demonstrate

our approach, we collected virological data across six SARS-CoV-1 NHP challenge studies,

resulting in a dataset of 39 individuals. Our dataset represented four inoculation doses

(ranging from 103 TCID50 to 106.9 TCID50). We developed a joint dose-response and viral

kinetics framework, which included a mechanistic model to link dose-infectivity to the dy-

namics of viral RNA in the upper respiratory tract (URT) of NHPs. Our framework also

utilized Bayesian computational methods to flexibly integrate data and account for possible

between-study biases. By fitting our model to observed URT viral load measurements in our

dataset, we were able to simultaneously: (i) estimate the probability that each individual

NHP was infected, (ii) evaluate the effect of inoculation dose on the magnitude and timing

of the viral load trajectories, and (iii) generate the first-ever ID50 estimates of SARS-CoV-1

in NHPs. The work here represents the first-ever dose-response analysis of SARS-CoV-1

in NHPs, and it demonstrates the value in reusing virological data from previous animal

challenge experiments. Additionally, the framework presented here can be applied to other
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pathogens to investigate dose effects beyond infectivity, especially in cases where data is lim-

ited within studies or where it is difficult to classify individuals as infected or non-infected.
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2. Methods

2.1 Data Collection

We performed a comprehensive literature search for SARS-CoV-1 NHP challenge studies.

To be included in our analysis, an article was required to: (i) be a primary study involv-

ing experimental infection of rhesus macaques (Macaca mulatta) or cynomolgus macaques

(Macaca fascicularis) with a strain of SARS-CoV-1 that had not been genetically modified,

and (ii) report quantitative virological data. We found that the most common inoculation

procedure involved intranasal inoculation using nasal drops. For consistency, we only in-

cluded studies in our analysis that performed intranasal inoculation of NHPs and reported

viral load data from URT swabs (since intranasal inoculation with drops primarily leads

to URT infections) [28]. In total, six studies were included in our dose-response and viral

kinetics analysis (Table 2.1). Raw data was not published in any of the six studies, so viral

load values were manually extracted from the texts, tables, and figures. Data from figures

were extracted using the R package digitize (version 0.0.4) [20].

Our final dataset contained viral load data from 37 individuals inoculated with SARS-

CoV-1 intranasally and two individuals inoculated with SARS-CoV-1 via a combined in-

tranasal and conjunctival route (50/50 split of the inoculum between the nose and conjunc-

tiva). These last two individuals were included in our analysis because fluid deposited in the

eye largely drains to the nasal cavity via the nasolacrimal duct [2], and thus these individ-

uals should experience responses similar to individuals inoculated solely through the nose.
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Table 2.1: Summary of studies included in the dose-response and kinetics analysis. The
number in parentheses in the “Number of Individuals” column is the cumulative number of
viral load measurements taken from individuals in that study.

Study Strain Dose(s)
Macaque
Species

Swab
Type(s)

Number of
Individuals

Li et al.,
2005 [13]

PUMC01 105 TCID50 Rhesus Oral 8 (8)

Lawler et
al., 2006*

[12]
Urbani 6× 106 PFU Cynomolgus Nasal, Oral 2 (46)

Nagata et
al., 2007 [19]

HKU-39849
103, 106

TCID50
Cynomolgus Nasal, Oral 4 (38)

Chen et al.,
2008 [5]

PUMC01 105 TCID50 Rhesus Oral 11 (11)

Liu et al.,
2016 [14]

PUMC01 105 TCID50 Rhesus Oral 12 (72)

Liu et al.,
2019 [15]

PUMC01 105 TCID50 Rhesus Oral 2 (5)

*Individuals inoculated via a combined intranasal and conjunctival route

The 39 individuals in our dataset represented four unique inoculation doses (103 TCID50,

105 TCID50, 10
6 TCID50, 6× 106 PFU) and 180 viral load measurements from URT swabs

(nasal and oral swabs). Lawler et al. was the only study that reported inoculation doses in

units of PFU, so a conversion factor of 0.7 was used to convert the PFU dose to units of

TCID50: 6× 106 PFU / 0.7 ≈ 106.9 TCID50 [4].

2.2 Joint Dose-Response and Kinetics Model

We developed a framework to simultaneously perform a dose-response analysis as well as a

within-host kinetics analysis of SARS-CoV-1 in NHPs (Figure 2.1).
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Figure 2.1: Dose-response and viral kinetics model for SARS-CoV-1 inoculations in non-hu-
man primates. An individual NHP is exposed to a dose V0 of SARS-CoV-1 (A), which results
in a probability of infection given by the exponential dose-response curve (B). Given a suc-
cessful infection, viral RNA can be observed in URT swabs as measured viral load values,
which follow a pattern of exponential growth and decay (C).

2.2.1 Dose-Response Model

We used a single-hit, independent action, exponential dose-response model for the SARS-

CoV-1 infection process in NHPs following intranasal inoculation. In this model, if the host

is exposed to V0 virions, then the number of successful virions, Vs, is Poisson distributed

with mean kV0, where k is the hit probability (i.e., the per virion success probability) [8].

The probability that the host is infected (Vs > 0) after exposure to V0 virions is

P (V0) = 1− exp(−kV0)

2.2.2 Viral Kinetics Model

Following a successful infection, we modeled the within-host virus dynamics as exponential

growth up to a peak time and then exponential decay afterwards. Our model for the measured

viral load from URT swabs, N(t), was
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N(t) =


N0 exp(gt) t < tp

N0 exp(gtp − d(t− tp)) t ≥ tp

where N0 is the initial viral load established immediately following the inoculation, tp is the

time of peak viral load, g is the growth rate, and d is the decay rate.

2.2.3 Dose-Dependence of Kinetics

We included in our model the possibility that the initial viral load and time of peak viral

load vary in a dose-dependent manner. First, given that infection was successful (Vs > 0),

the expected number of successful virions is

V̄s =
kV0

1− exp(−kV0)

which is the mean of the zero-truncated Poisson distribution of Vs. Next, we encoded the

dependence of the initial viral load and time of peak viral load with log-log linear relation-

ships:

log(N0) = αN [log(V̄s)− log(V̄s,105)] + βN

log(tp) = αt[log(V̄s)− log(V̄s,105)] + βt

To improve the interpretability of the βN and βt parameters, we included a horizontal shift

of log(V̄s,105), where V̄s,105 is the expected number of successful virions given an inoculation

dose of 105 TCID50. By encoding the dependence in this way, we allowed for several possible

relationships between the viral kinetics parameters and the initial inoculation dose. The

magnitude and sign of the slope parameters, αN and αt, control the strength and direction

of the dose-dependence of initial viral load and time of peak viral load. The intercept

parameters, βN and βt, represent the log initial viral load and log time of peak viral load
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given an inoculation dose of 105 TCID50.

2.3 Fitting the Model to NHP Viral Load Data

We used Bayesian inference to fit our joint dose-response and kinetics model to our dataset

of non-human primate URT swab PCR measurements. Our dataset contained 180 total

measurements, and these measurements included both numeric viral load values (which are

always greater than 0) as well as binary values (i.e., detected or not detected, “+” or “−”).

Suppose an individual NHP had viral load measurements nt at various times t. There are

two cases to consider for the data likelihood: (i) the viral load measurements were observed

given the individual was infected and (ii) the viral load measurements were observed given

the individual was non-infected.

2.3.1 Modeling Successful Infections

Given that the individual was successfully infected, we modeled numeric values of nt around

our predicted values (i.e., values from the viral kinetics model) with a log-normal distribution:

log(nt) ∼ Normal(log(N(t)), σs)

where σs accounts for measurement variation.

For binary values, we integrated over the possible ranges of viral load values using the

same log-normal distribution for the numeric values. For an undetected measurement (−),

we integrated over the viral load range (−∞, log(L)], and for a detected measurement (+),

we integrated over the viral load range [log(L),∞), where L is the lower limit of detection

of the PCR assay.

Lawler et al. was the only study included in our analysis that reported a lower limit of

detection for their PCR assay. For the each of the remaining studies, we used the smallest
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reported viral load value from the study as the effective limit of detection.

2.3.2 Modeling Unsuccessful Infections

Given that the individal was not successfully infected, the probability of observing a numeric

or detected (+) value is pfalsepos, which is the false positive probability. This parameter

captures the possible (but unlikely) technical errors (e.g., sample contamination) that might

occur during the course of the experiments. If the measured value was undetected (−), then

the probability of observing the measurement (a true negative) is 1− pfalsepos.

2.4 Prior Distributions

Overall, we sought to set “weakly informative” prior distributions for our model parameters.

The goal was to rule out biologically implausible parameters values while at the same time

allowing a wide range of biologically plausible parameter values.

2.4.1 Infectious Dose and Hit Probability

For improved interpretability, we placed a prior on the ID50 rather than the hit probability,

where k = log(2)/ID50. We placed a log-normal prior on the ID50, with the ID50 in units of

TCID50:

log(ID50) ∼ Normal(log(104), log(10))

2.4.2 Viral Kinetics Parameters

For improved interpretability, we placed priors on the doubling and halving times (units of

days) of the viral load kinetics rather than the growth and decay rates. The doubling time

is t2 = log(2)/g, and the halving time is t 1
2
= log(2)/d.
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To account for the fact that not all studies used the same strains of SARS-CoV-1 and

macaque species, we added study-level hierarchy to these parameters, where t2i and t 1
2
i are

the doubling and halving times for study i. The log doubling times are distributed around

µt2 with standard deviation σt2, and the log halving times are distributed around µt 1
2
with

standard deviation σt 1
2
:

log(t2i) ∼ Normal(µt2, σt2)

µt2 ∼ Normal(log(0.5), 0.5)

σt2 ∼ PosNormal(0, 0.35)

log(t 1
2
i) ∼ Normal(µt 1

2
, σt 1

2
)

µt 1
2
∼ Normal(log(2), 0.75)

σt 1
2
∼ PosNormal(0, 0.35)

2.4.3 Dose-Dependence Parameters

For the initial viral load slope parameter, αN , we placed a prior on the difference between the

log initial viral load for 107 and 105 TCID50 inoculated individuals, log(N0,107)− log(N0,105).

Similarly, for the time of peak viral load slope parameter, αt, we placed a prior on the differ-

ence between the log peak time for 107 and 105 TCID50 inoculated individuals, log(tp,107)−

log(tp,105). The priors were:

log(N0,107)− log(N0,105) ∼ Normal(log(100), 1.5)

log(tp,107)− log(tp,105) ∼ Normal(0, 1)
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The slope parameters can then be calculated as

αN =
log(N0,107)− log(N0,105)

log(V̄s,107)− log(V̄s,105)

αt =
log(tp,107)− log(tp,105)

log(V̄s,107)− log(V̄s,105)

where V̄s,107 and V̄s,105 correspond to the expected number of successful virions given an

inoculation dose of 107 and 105 TCID50, respectively.

We placed normal priors on the intercept parameters, βN and βt. To account for between-

study variation (e.g., one study tends to measure higher viral loads than other studies),

we added study-level hierarchy to these parameters, where βNi and βti are the intercept

parameters for study i. The log initial viral load intercept parameters are distributed around

µβN with standard deviation σβN , and the log time of peak viral load intercept parameters

are distributed around µβt with standard deviation σβt:

βNi ∼ Normal(µβN , σβN)

µβN ∼ Normal(log(103), log(10))

σβN ∼ PosNormal(0, 0.35)

βti ∼ Normal(µβt, σβt)

µβt ∼ Normal(log(2), 0.5)

σβt ∼ PosNormal(0, 0.35)

2.4.4 Measurement Variation

We placed priors on the measurement variation parameters, σs. To account for between-study

variation, we added study-level hierarchy to these parameters, where σsi is the measurement
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variation for study i:

σsi ∼ PosNormal(0, 1)

2.4.5 False Positive Probability

We placed a log-normal prior on the false positive probability:

log(pfalsepos) ∼ Normal(log(10−4), log(1.5))

2.5 Computational Methods

We used Markov Chain Monte Carlo methods to estimate all of the model parameters. We

implemented and conducted inference in R using the Stan platform. Posterior samples were

drawn using Stan via the R interface RStan [24]. We used four Markov chains, each with

4000 iterations (including warmup). Convergence was assessed by checking the potential

scale reduction factor (PSRF) for each parameter.

Data preparation, analysis, and visualizations were completed in R using the packages

dplyr, ggplot2, and tidybayes [11, 26, 27].
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3. Results

3.1 Estimates of Infectious Dose for SARS-CoV-1 in Non-Human

Primates

We fitted our joint dose-response and kinetics model to URT viral load data collected from 39

rhesus and cynomolgus macaques that were intranasally or intranasally and conjunctivally

inoculated with SARS-CoV-1.

The posterior median ID50 was 10
3.57 TCID50 (95% credible interval: [101.97, 104.28]) (Fig-

ure 3.1A). The NHP SARS-CoV-1 challenge studies in our analysis represented four different

inoculation doses: 103 TCID50, 10
5 TCID50, 10

6 TCID50, and 6× 106 PFU (approximately

106.9 TCID50). Using the exponential dose-response curve corresponding to independent ac-

tion of the viral particles, these four doses had posterior median probabilities of infection of

0.168 (95% CI: [0.036, 0.999]), 1.000 (95% CI: [0.974, 1.000]), 1.000 (95% CI: [1.000, 1.000]),

and 1.000 (95% CI: [1.000, 1.000]), respectively. For individuals inoculated with doses greater

than 105 TCID50 our model predicted that successful infection was essentially guaranteed,

but for lower doses there was greater uncertainty in the estimate for infection probability,

with a much wider distribution of estimated values (Figure 3.1B).
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Figure 3.1: Estimated infectious doses and infection probabilities. (A) Inferred posterior
distribution of infectious dose 50 (ID50) values for SARS-CoV-1 infections in non-human
primates following intranasal inoculations. The black point represents the median ID50 value,
and the thick and thin black bars indicate the 66% and 95% credible intervals, respectively.
(B) Exponential dose-response curves for 200 sampled hit probabilities from the inferred
posterior distribution. The black curve shows the median estimated dose-response curve.
The dotted red vertical lines indicate doses used in the included studies.

3.2 Simulations of Viral Load Kinetics for SARS-CoV-1 in Non-

Human Primates

The viral kinetics component of our model allowed us to predict viral load trajectories in

URT swabs for each of the studies included in our analysis (Figure 3.2A). The posterior

predicted viral load trajectories further highlighted the fact that our model predicted indi-

viduals inoculated with a dose of at least 105 TCID50 had a very high chance of successful

infection and viral replication in the URT, while lower dose individuals had a greater chance

of escaping infection (many predicted failed infections for individuals that receive 103 TCID50

dose). Additionally, individuals that received larger inoculation doses were predicted to have

higher initial viral loads (Figure 3.2B), higher peak viral loads (Figure 3.2C), and greater

cumulative viral load (as measured by area under the viral load curve; Figure 3.2E). The

relationship between inoculation dose and duration of infection (i.e., total time spent with
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a viral load of at least 1) was less clear (Figure 3.2D). Overall, it appeared that larger in-

oculation doses resulted in longer durations of infection, but the distributions for the lower

doses had very long tails due to the sparsity of data to estimate decay rates.

For the high-dose individuals (inoculation dose of at least 105 TCID50), the predicted

viral load trajectories aligned reasonably well with the observed trajectories. In particular,

the 106.9 TCID50 dose individuals had many reported measurements at later time points,

so there was less uncertainty in the posterior estimates for the viral load decay rate in this

study. The predicted trajectories for the 106.9 TCID50 dose individuals clustered together

closely even at later times, which helped to explain the narrower distribution of infection

durations for this dosage (Figure 3.2D) and demonstrated the value of measuring extended

time series data.

The predicted 103 TCID50 trajectories (given that infection was successful) were clustered

less tightly than the predicted trajectories for high-dose individuals. This was expected

as none of the 103 TCID50 dose individuals had any detectable viral RNA, and thus the

predicted successful trajectories for this dosage had to be extrapolated from the higher dose

individual data. Furthermore, many of the predicted successful viral load trajectories for the

103 TCID50 dose individuals were below the effective limit of detection, so it was possible

that the 103 TCID50 dose individuals were successfully infected but had viral loads too low

to be detected by the qPCR assays. This fact combined with the small number (n = 2) of

103 TCID50 dose individuals accounted for the greater uncertainty in infection probability

for low-dose individuals (Figure 3.1B).

3.3 Dose-Dependence of SARS-CoV-1 Viral Load Kinetics in Non-

Human Primates

Our viral load kinetics model allowed us to assess the effect of inoculation dose on the

resulting viral load trajectories. In particular, we allowed the magnitude of initial viral load
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Figure 3.2: Results for predicted URT swab viral load trajectories. (A) Each panel shows
the observed viral load trajectories in URT swabs for individuals inoculated with a given
dose of SARS-CoV-1: 103 TCID50 (Nagata et al., 2007), 105 TCID50 (Liu et al., 2016 and
Liu et al., 2019), 106 TCID50 (Nagata et al., 2007), and 106.9 TCID50 (Lawler et al., 2006).
Each point represents a measured viral load value from an oral swab, and lines connecting
multiple points represent measurements taken from the same individual over time. Upside
down triangles plotted in the gray region below 100 indicate measurements below the limit
of detection (LOD). Horizontal dotted lines indicate the LOD (106.9 TCID50 dose plot) or
effective LOD (103, 105, 106 TCID50 dose plots) (i.e., smallest measured value from that
study). Semitransparent blue lines are 100 random draws from the inferred within-host viral
load kinetics (i.e., predicted viral load trajectories based on parameter sets drawn from the
joint posterior distributions), and lines that fall in the gray region indicate predicted failed
infections. (Note: observed data for nasal swabs were excluded for clarity. Data from Li
et al. and Chen et al. were also excluded for clarity). (B), (C), (D), (E) summarize the
distributions of various metrics of the simulated trajectories at each of the four doses.
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(viral load value immediately after inoculation, effectively at 0 dpi) and timing of peak viral

load (dpi when viral load transitions from exponential growth to exponential decay) to vary

in a dose-dependent manner.

Our model predicted a clear positive relationship between the initial viral load and in-

oculation dose (Figure 3.3A), i.e., larger inoculation doses lead to larger initial viral loads,

which is also visible in the simulated trajectories (Figure 3.2B). The median slope parameter

for the initial viral load (αN) was 1.07 (95% credible interval: [0.57, 1.53]). The fact that

the median value for αN was roughly one indicated that a linear relationship between the

inoculation dose and initial viral load is a highly plausible explanation for the patterns in

our dataset, which is consistent with the independent action hypothesis for microbial infec-

tions (i.e., no synergistic effects between individual SARS-CoV-1 virions). For example, the

median fold change in initial viral load after a 102-fold increase in inoculation dose (from

105 TCID50 to 107 TCID50) was 10
2.15 (95% credible interval: [101.14, 103.06]) (Figure 3.3C).

Conversely, our model did not predict a clear relationship between the timing of peak

viral load and inoculation dose (Figure 3.3B). The median slope parameter for the timing

of peak viral load (αt) was 0.03 (95% credible interval: [−0.27, 0.27]). The median fold

change in peak timing after a 102-fold increase in inoculation dose (from 105 TCID50 to 107

TCID50) was 10
0.07 (95% credible interval: [10−0.55, 100.55]) (Figure 3.3C). A highly plausible

explanation for the patterns of viral load kinetics in our dataset is that the inoculation dose

did not impact the timing of peak viral load. However, the alternatives where peak timing

is either positively or negatively associated with inoculation dose cannot be ruled out.

3.4 Sensitivity to Variations in Study Design

Across the six studies included in our analysis, there were two different NHP species (rhesus

macaques, cynomolgus macaques), two different swab types (nasal, oral), and three different

SARS-CoV-1 strains (Urbani, HKU-39849, PUMC01). To evaluate whether there were any
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Figure 3.3: Results for dose-dependence of viral kinetics parameters. Relationship between
the initial viral load (A) and time of peak viral load (B) with the inoculation dose. Semitrans-
parent lines are 100 random draws from the inferred posterior relationship. The non-linearity
of these inferred curves comes from the fact that we encoded the log initial viral load and log
peak time as functions of the mean of the zero-truncated Poisson distribution of the number
of successful virions (i.e., these plots were generated assuming that infection was successful).
Dotted red vertical lines indicate doses that were used in the selected non-human primate
challenge studies. (C) Inferred distributions of the effect of a 100-fold dose change (105 to
107 TCID50) on the initial viral load and time of peak viral load. The dotted black horizontal
line indicates no effect of inoculation dose on the viral kinetics parameters.
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issues with combining data across these studies, we repeated our model fitting procedure

with various subsets of the combined dataset.

Most of the URT measurements in our dataset were oral swabs (138/180 measurements).

We fitted our model to only oral swab data, which resulted in parameter estimates that were

very similar to the estimates obtained when we used the full dataset (results not reported

here). We also fitted our model to only nasal swab data, which resulted in similar parameter

results for the viral load kinetics (results not reported here). However, since the nasal swab

data did not include any 105 TCID50 dose individuals, the model predicted a higher median

ID50 of 104.16 TCID50 (95% CI: [102.49, 105.53]) (Figure 3.4A). This was expected as 33/33 of

the 105 TCID50 dose individuals had detectable viral RNA in their oral swabs and were thus

very likely successfully infected, providing strong information that the ID50 is well below 105

TCID50; without this data, the model had trouble rejecting larger ID50 values. Since the

model estimates did not differ in unexpected ways when fit to only oral swab data or nasal

swab data, it was reasonable to combine data across these two swab types for our analysis.

To investigate whether the results were different between NHP species, we fitted our

model to only data from cynomolgus macaques, which included data from Lawler et al. and

Nagata et al. Similar to when we fit our model to only nasal swab data, since Lawler et al.

and Nagata et al. did not have any 105 TCID50 individuals, the model predicted a higher

median ID50 of 10
4.16 TCID50 (95% CI: [102.71, 105.51]). We also fitted our model to data from

just Nagata et al. since this was the only study where NHPs were inoculated intranasally

with more than one inoculation dose. The median ID50 in this case was 104.14 TCID50 (95%

CI: [102.31, 105.61]). Again, the model estimates did not differ unexpectedly when we fit our

data to these subsets (Figure 3.4B).
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Figure 3.4: Results for sensitivity analysis. (A) Inferred posterior distributions of ID50 values
using data for different swab types in our dataset. (B) Inferred posterior distributions of
ID50 values using data from only cynomolgus macaques (data from Lawler et al. and Nagata
et al.). Since Nagata et al. included two dose levels, it was also possible to estimate the ID50

from this study individually.
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4. Discussion

In this study, we developed a joint dose-response and viral kinetics modeling framework to

analyze data from SARS-CoV-1 NHP challenge studies. Our model included study-level

hierarchy for several key parameters, which allowed us to aggregate NHP viral load data

across multiple studies in order to obtain a sufficient number of individuals and range of

inoculation doses to perform a dose-response analysis. From the dose-response component

of our model, we obtained a median ID50 estimate of 103.57 TCID50 for SARS-CoV-1 via

intranasal inoculations in rhesus and cynomolgus macaques. Additionally, the viral kinetics

component of our model allowed us to assess the impact of inoculation dose on viral load

kinetics in the URT following a successful infection. Our model predicted that larger in-

oculation doses resulted in higher initial viral loads, which means that infections resulting

from larger exposure doses tend to start with larger concentrations of detectable viral RNA.

However, there was no evidence that the timing of peak viral load (i.e., the time when the

concentration of viral RNA is at a maximum) was impacted by the size of the inoculation

dose.

Our estimate of the ID50 is the first-ever estimate for the infectious dose of SARS-CoV-1

in NHPs. Previously, a dose-response model for SARS-CoV-1 was developed by Watanabe

et al., where they estimated the infectious dose of SARS-CoV-1 in transgenic mice [25]. In

their model, Watanabe et al. used an exponential dose-response curve fitted to a combined

dataset, from transgenic mice (expressing human ACE2) challenged with SARS-CoV-1 and

unaltered mice challenged with the mouse virus MHV-1. They estimated an ID50 of 280

22



PFU, which was much lower than our estimate. The transgenic mice used in Watanabe et

al. have been shown to be highly susceptible to SARS-CoV-1, with infectious virus even

being detected in the brains of the mice following inoculation [6, 18]. It was thus likely

that the datasets used in Watanabe et al. overestimated the infectiousness of SARS-CoV-1

in humans. In another study, Roberts et al. performed 15 serial passages of SARS-CoV-1

through BALB/c mice and obtained a virus that had an LD50 of 10
4.6 TCID50 in mice, which

was higher than our estimate [22]. Even after the 15 passages through mice, it was possible

that the adapted virus still underestimated the virulence of SARS-CoV-1 in humans since

wild type SARS-CoV-1 does not result in death in unaltered mice. Our median ID50 estimate

falls between these previous estimates of infectious dose and lethal dose in mice, and, given

the greater relatedness and physiological similarities between NHPs and humans, is likely a

better estimate of the human SARS-CoV-1 infectious dose.

One of the main challenges of this analysis was developing a principled way to aggregate

and utilize data across the different studies. The most common data type collected and

reported in the NHP SARS-CoV-1 challenge studies was viral load data, as determined by

quantitative PCR, so we used these data in our analysis. However, incorporating additional

data types (e.g., serology, infectious virus titers) could help to tighten the bounds on our

parameter estimates even more. For example, there were very few low-dose individuals in

our dataset, so our model had difficulty refining the lower bound for the ID50 estimates. The

low-dose individuals were all from Nagata et al., and they reported that these individuals did

not seroconvert, had no detectable infectious virus or viral RNA (nasal, oral, rectal swabs)

up to 8 dpi, and had no detectable antibodies (by indirect fluorescence and neutralizing

antibody tests) up to 8 dpi, and they concluded that infection failed to establish in these

individuals [19]. This type of information can be easily incorporated into our model (i.e.,

the likelihood computation) and could help with tightening the ID50 estimates by increasing

the probability that the low-dose individuals were non-infected. Unfortunately, since these

additional measurements were not always reported in the other studies, it was not feasible
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to incorporate this information systematically into our model.

Another limitation of the NHP data was that many of the individuals lacked extensive

time series data. Out of the 39 individuals in our combined dataset, 20 individuals had

only a single viral load measurement. Additionally, only 10 of the individuals had viral load

measurements taken on or after 7 dpi. The lack of extensive time series data, especially

measurements for later times, made it more challenging to estimate decay rates and the

overall viral load trajectories. With a richer dataset with more time series data, a natural

extension to our current model would be to incorporate individual-level hierarchy. The two

individuals from Lawler et al. had the most time points (11 measurements taken from 2 to 28

dpi), and these data in particular highlight the fact that there are individual heterogeneities

in viral load kinetics (one of the individuals peaked earlier, and one of the individuals peaked

later). More extensive time series data could reveal such individual heterogeneities, which

represent differential responses to infection and are key to understanding phenomena such

as superspreading [1, 16, 21].

We sought to minimize the influence of study-level differences by using individuals from

studies with similar experimental procedures (similar species, PCR procedures, etc.), and by

developing a Bayesian hierarchical model to capture any systematic differences among stud-

ies, but we cannot rule out the possibility that some unwanted strain/species/lab differences

contributed to the patterns in our results. There is some evidence from previous studies

that cynomolgus macaques experience more severe infections than rhesus macaques follow-

ing SARS-CoV-1 inoculation [17, 23], but small sample sizes and differences in viral strains

in those studies prevented any definitive conclusions. In our case, fitting the dose-response

and viral kinetics model to only cynomolgus macaque data resulted in similar parameter

estimates except with wider credible intervals compared to when data from both cynomol-

gus and rhesus macaques were used. For the different SARS-CoV-1 virus strains, it was

difficult for us to assess whether there were any strain effects since the only studies that used

different strains also used different macaque species. The inferred posterior distributions for
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growth and decay rates across the studies and strains in our analysis were all relatively simi-

lar (results not reported here), which suggested that the virus strain differences were minor.

However, due to limitations in the available data, there was the possibility that our model

was unable to distinguish the finer differences in kinetics between the various SARS-CoV-1

strains.

Overall, our study proposes a new approach to studying dose-response relationships and

viral kinetics even when data are sparse, and presents the first dose-response analysis of

SARS-CoV-1 in NHPs. Despite some limitations in the available NHP SARS-CoV-1 data,

we were able to produce useful bounds on the ID50 in NHPs and to identify an effect of

dose on initial viral load. The joint dose-response and viral kinetics modeling framework we

developed is extremely flexible and could be expanded in various ways. In the current model,

we have only used viral load data from URT swabs to inform the likelihood, but it would

be easy to incorporate additional sources and types of data to compute the probabilities of

infection. The hierarchical aspect of our modeling approach allowed us to reuse virological

data from multiple previous challenge studies and draw additional insight from the valuable

quantitative measurements collected in those experiments. The approach can also be applied

to single studies that measure outcomes from multiple dose levels to make better use of the

rich data they collect and achieve greater statistical power than standard analyses that treat

infection as a binary outcome. This may be particularly valuable in instances where it is

unclear how to classify individuals as infected or non-infected. Our modeling framework can

be adapted readily to other host-pathogen systems and contributes to a growing movement

toward mechanistic analysis of dose-response relationships [7, 8], with the aim of maximizing

the scientific value derived from animal experiments and hence reducing the demand for

further experiments in line with 3Rs principles [9].
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