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Perturbation Analysis of TK Method for Harmonic 
Retrieval Problems 

11. TK METHOD Abstract-This paper presents a first-order perturbation analysis of 
the Tufts-Kumaresan (TK) method used to estimate frequencies of 
complex sinusoids in small additive noise. Several fundamental prop- 
erties are presented and proved. Further illustrations are provided 
through numerical examples. 

Step 1 : Form the FBLP (fomard-and-backward linear 
prediction) data matrix aFB and data vector kFB, respec- 
tively, as follows: I 

I. INTRODUCTION 

HIS paper is concerned with harmonic retrieval from T a finite data sequence contaminated by additive noise. 
The data sequence yk is modeled as 

where ai is the complex amplitude with unknown magni- 
tude 1 ai I and phase 4; - w, is the unknown angular fre- 
quency to be estimated. M is the number of complex si- 
nusoids. nk is the kth noise component. The hat A means 
that the corresponding variable is affected by noise or es- 
timated under noise. For a noiseless quantity, the hat is 
dropped. This notation will be used throughout this paper. 

There are numerous methods [2] proposed by many au- 
thors in the past years to estimate wi (and even ai and M 
for more general problems). Among them, the nonitera- 
tive TK method [ 1 1  seems to have the second best perfor- 
mance next to the maximum likelihood (ML) method 
which is usually computed in an iterative way [3], [4] as 
it is a nonlinear optimization problem. 

In this paper, we present the first-order perturbation 
analysis of the TK method for estimating frequencies wi 
(or  5 = oi/27r) under relatively small noise. It is as- 
sumed that the number M of signals is known and wi # 
wj for i # j. 

In Section 11, the TK method is briefly described and 
discussed. In Section 111, the perturbation analysis is per- 
formed, and various properties are shown. In Section IV, 
numerical examples are illustrated. 

Some mathematical details are included in Appendixes. 
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was supported in part by Aeritalia Corporation and by the Office of Naval 
Research under Contract N00014-79-C-0598. 

The authors are with the Department of Electrical and Computer Engi- 
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A B  
(N- 

= [9L+1, * * . 9 9 N ;  E f ,  * 
9 %LIT ( 5 )  

where * means complex conjugate; T means transpose; 
and L should satisfy M 5 L 5 N - M/2 (according to 
Kumaresan) which will be discussed later. 

Step 2: Form the coefficients vector g of a polynomial 
of order L by 

g = - [ & B l ;  . 6 F B  ( 6 )  

where weAcall [ & I :  the “truncated rank M ”  pseudoin- 
verse of A F B ,  which is defined with the use of SVD [5] as 

( 7 )  
1 

r = l  ai 

M 

[ A F B ] ;  = ,x fijiry 

whye C1 1 ij2 1 - * 1 i?M 1 - * are singular values 
of A F B .  tii and iri are the corresponding right and left sin- 
gular vectors, respectively; and the superscript “ H ”  de- 
notes the conjugate transpose. 

It is clear that (for noiseless case) [ A F B I  T‘ = [ P i F B I  +, 
which is the pseudoinverse [7] (the one which satisfies the 
Moore-Penrose definition) of A F B ,  since A F B  has rank M .  

0096-3518/88/0200-0228$01 .OO O 1988 IEEE 
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Step 3: Find the zeros of the polynomial equation 
L 

1 + c g , P  = 0 (8) 
I =  1 

where g1 is the lth element of g. 
The M zeros (4, i = 1 ,  2, * * ,  M ) ,  which are the 

closest to the unit circle, are chosen as the estimates of 
zeros zi = exp ( j w ; ) .  

Then the frequency estimates are 

(9) 

where Im means the imaginary part. 
It is known that for the noiseless case, all the estimates 

are exact and the L - M extraneous zeros are inside the 
unit circle as long as A F B  has rank M. One can show that 
A, has rank M if M I L I N - M. However, if N - 
M + 1 I L 5 N - M / 2  (which is part of the interval 
M I L I N - M/2 proposed in [2]), or equivalently, 
M/2 I N - L I M - 1 ,  A F B  may have rank less than 
M in which case the TK method fails to work. For in- 
stance, as we show in Appendix A, A F B  has rank N - L 
( I M  - 1) if N - L I M - 1, and frequencies ui and 
phases Cpi are such that 

(w i  - o l ) ( N  + 1 )  + 2(Cpi - S I )  = 2m7r 

for all i # 1 (10) 
where m is any integer. For details, see Appendix A. 

Although A ,  does have rank M for M / 2  s N - L I 
M - 1 in "most" cases (note that the chance for ui and 
Cpi to satisfy (IO) is very small ), the performance of the 
TK method will not be good if (10) is approximately true 
for all i # 1. This situation was recently explained in [9] 
for the special case of one real sinusoidal signal (Le., M 
= 2). 

The TK procedure utilizes both forwa,rd and backward 
linear prediction (FBLP). If we replace A F B  and hFB in (6) 
by aF and hF, respectively, then we say that forward lin- 
ear prediction (FLP) is used. Similarly for backward lin- 
ear prediction (BLP), aFB and hFB in (6) are replaced by 
AB and hB. Since FLP and BLP have the same perfor- 
mance, we will only mention FLP in comparison to FBLP. 
In the discussion, FBLP will be implied if FBLP or FLP 
is not stated explicitly. It is clear that for FLP we must 
assume N - L 2 M .  

111. PERTURBATION ANALYSIS 

In this paper, we derive the first-order perturbation 
(due to noise n k )  in the estimated zeros and frequencies, 
and investigate their several fundamental properties. We 
denote perturbations by preceding the corresponding noisy 
quantity by A. The following theorem is important in our 
derivation, while the proof is given in Appendix B. 

Theorem: Assume 

~ = A + A A  (11)  

where A has rank M. AA is a small perturbation matrix. 
a; is the "truncated rank M" pseudoinverse of A as de- 
f i y d  by (7). A +  is the pseudoinverse of A of rank M. 
AA; is the corresponding perturbation matrix. 

Then we have 

u,"AA,+v, = -u,HA+AAAv, (13) 
where u," is any row vector in the row space (span of 
rows) of A .  v, is any column vector in the column space 
(span of columns) of A .  

Using this theorem, we shall show the following. The 
perturbations in the estimated zeros and frequencies are 

(14) 
- 1 PfFLiAakBg ' 

Afi ,FBLP = - 
la;( c l g l z ; l - l  

I =  1 
I- 1 

- 1 

_I 

where PFFB is the ith row of the pseudoinverse Z l  = 
( Z f Z L ) - ' Z F  in which ZL is defined by (A.5) in Appendix 
A. pFF is the ith row of the pseudoinverse 
Z& = (Z&ZLF)IIZg in yhich ZLF is defined by (A.5). 
g' = [ i]; and A A h B  and AA; are matrices filled with noise 
components, i.e., 

A& = [ A ~ F B ,  Ai,] 

nL+ 1 p 
4 - L  

To show (14) and (15), differentiating (8) yields 
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Then 

c 1glZ;l-l 
I =  1 

where 

( 2 0 )  

where 

Differentiating (6) yields 

Ag = - A  [a,] hFB - A;BA&FB. ( 2 1 )  

Since z r  is the ith row vector of ZR defined by (A.4) in 
Appendix A, it is in the row space of AFB; and hFB is a 
linear combination of columns of ZL so that it is in the 
column space of AFB. Therefore, according to the theo- 
rem, 

ZYAg = Zy[A&AdFBA,&hFB - A,&A&FB] 

= -Z:A,&(A&Bg + A&FB) 

= -ZFA;BmbBg'. ( 2 2 )  

It can be shown that the pseudoinverse of AFB as in (A.2) 
is 

A,& = Z i  A - ' Z l  

= Z,"(ZRZ,")-' h-'(ZFZL)-lZF ( 2 3 )  

where A and ZR are defined by (A.3) and (A.4), respec- 
tively. Since Z? is the ith row of ZR so that 

z:z; = [O, * * * ,  0, 1, 0, - * , 01 
i -  1 

then 

Combining (25 ) ,  (22 ) ,  and (20)  yields (14). Then (15)  
comes from ( 9 )  easily. Equations (16)  and (17)  can be 
shown similarly. 

Based on (14)-(  17),  several fundamental properties of 
the TK method are shown next. 

Property I: For both FBLP and FLP, A& and Ahi are 
independent of the noise components nk for L + 1 I k 
I N - L g i v e n L +  1 I N - L .  

Proof: It suffices to show that pft,,f&g' is inde- 
pendent of nk for L + 1 5 k I N - L .  Let p t m  be the 
mth element of the vector PFFB.  Then one can verify that, 
given L + 1 I N - L ,  

N - L  L 

L + 1  I k I N - L  1 N - k  

N - K  

Pi, N -  L + k + I -  LgL-1 > * 
N - L + l < k < N  

where go = 1 and gl for 1 > 0 is the lth element of g .  
Now we need to show that xi  k = yi k = 0 for L + 1 I k 
I N - L .  Observing that e-jdi1gl = 0, we form the 
vectors 

i 

N - L  N - L  

then it can be shown that g,,i and gy,j  ( j = 0 ,  1 ,  .-. , N 
- 2 L  - 1) are orthogonal to all columns of ZL as in (A.5). 
Since pi,FB is a vector in the column space of ZL, then for 
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L + l < k s N - L ,  

( 3 1 )  

( 3 2 )  

H 
x i , k  = Pi.FB * & , k - L - l  

y1.k = Pi,FB * gy,k-L-l = O .  

= 

H 

Comment: This property implies that the estimated ze- 
ros and frequencies are more sensitive to the noise com- 
ponents in the first and last several data samples than in 
the middle data samples if SNR is moderately high (and 

Next we investigate the variances of A i i  and A h , .  We 
assume that the zero mean noise nk are uncorrelated and 
equally powerful, and the real and imaginary parts of each 
nk are uncorrelated and have variance u for each part. In 
other words, 

L + 1 I N  - L ) .  

E { n k }  = 0 ( 3 3 )  

E(nkn/ }  = 0 ( 3 4 )  

E {  nkn:} = 2u26k,1 ( 3 5 )  

where 6k.i is the Kronecker delta function. 

ance of A& is 
Then one can verify from (14 )  and (16 )  that the vari- 

1 PfFBRPi,FB 
Var = - 

1 = 1  

1 P?FR,P;,F 
Var = - 

where 

la;12 SNR; = - 
2u2 

R = [R' 
2 ( N - L ) X 2 ( N - L )  O Rg' 

/ L  

O < i - j <  
= \  

L 
LO i - j > ~ .  

In fact, ( R,),,J is the correlation function of the coefficient 
sequence g l .  Now we can show the following. 

Property 2: 
1 )  Var ( A?, )FLp is invariant to the phases dJ for j = 1, 

2 ,  * , M, while Var ( Ail)FBLP is not, in general. 

2)  Var (AZ1l)FBLP = f Var (Ail)FLP ( 4 1 )  

if any one of the following is true. 

a) (a, - wj) (N  + 1) + 2 ( 4  - 4) 
= 2mn, for all i # j ( 4 2 )  

2mn 
b) w .  - w .  = - for all i # j 

J N - L '  

23 1 

( 4 3 )  

c ) N - L > >  1 

d) M = 1 ,  i.e., one signal case, 

where m is some integer. Note that (42 )  is the same as 
( l o ) ,  and for FLP, N - L must be larger than or equal to 
M .  

Proo$ For FLP, one can show that pFF is indepen- 
dent of dJ f o r j  # i, but is proportional to the complex 
exponential e-'@'. So that ~ f f ' ~ R , p , , F  and Var ( A i , )  FLP are 
independent of 4, for all j .  

To prove the second part, let us consider ZLRZIH,  of 
which the ( i ,  i )th element is p&Rp,,FB [the numerator 
in ( 3 6 ) ] .  From (A.6) in Appendix A, 

where P is the permutation matrix as in (A.7), and EN is 
the diagonal matrix as in (A.8). Then one can show that 

Z I R Z I H  = [ZFZL] - ' [Z;FR,~LF 

+ E:ZFFR,&EN][ZF&,-'  ( 4 5 )  

with 

z;zL = z ~ z L F  + E : Z ~ Z ; E ~  ( 4 6 )  

where PR:P = R, is used since R, is the Hermitian and 
Toeplitz matrix. 

If a) is true, then EN = Z - exp [ -jq( N + 1 ) - j 2 d l  I ,  
where Z is the identity matrix; and then 

= ~ Z ~ ~ R , Z ; / .  (47 1 
Substituting the ( i ,  i ) th  element of ZlRZ," as in (47 )  
into (36)  for pFFBRp,,FB yields (41 ) .  

If b) or c) is true, all columns of 2, are orthogonal so 
that [zF&,]-' = $[ZFFzLF]-' = [ 1 / 2 ( N  - L ) ] z .  In a 
similar way, one can show that (41)  is true. 

If d) is true, then again ( Z , f Z L ) - '  = [ 1 / 2 ( N  - L ) ] ] ,  
so that (41 )  is true. 

Comment: One can show that if the phase pair ( d,, 4,) 
satisfies (42 ) ,  the regular inner product of the two corre- 
sponding columns of 2, has the largest magnitude or, in 
other words, the two columns are the least orthogonal. 
Furthermore, one can show (see Appendix C) that the 
condition number of ZL defined as the ratio of the largest 
singular value u1 of 2, over the smallest nonzero singular 
value uM of 2, reaches maximum when (42 )  is true for all 
i # j .  Therefore, one may expect that phase variables 9, 
which satisfy (42 )  for all i # j provide the worst situation 
(the largest Var ( A 2, ) FBLp) for FBLP, or more concisely, 
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with equality when any of conditions a)-d) in property 2 

the numerical computations have supported this conjec- 
ture. 

AS for Var (A;,) FBLp and Var ( AGi) FLP, we cannot in 
general find such simple relationships as (41) or (48). 
They are much more complicated. However, we do have 
the following result relating Var (Ah, )  and Var (A?,). 

is met. Although the proof of (48) has not been obtained, . (k l = O  ( L  - z)g7z:)gLz? 

12 
z, = [zLF ] 

= - c Zg/z,’ g L Z y L  

where E?=.=, g?zj = 0 is used. One can also write 

Property 3: 
1) For FLP, Z&EL 

(55) 

where 
Var = $ Var (49) 1 

2 )  For FBLP, if L = M ,  i.e., the order of polynomial 
is chosen to be the number of signals, then 

Var (Ai&) = Var (A?,). (50) 

Proofi For FLP, one can see that A?, is a linear com- 
bination of nk ( k  = 1, 2, ’ * , N ); SO that with the as- 
sumption of (33)-(35) one can show that E{ (A?,/z,)~} 
= 0, and hence, 

SO that 2; = (zFzL)-l(zFF, EFz,&.), then the elements 
of the ith row vector p: of 2; satisfy the relationship 

P ~ T I  = P , , N - L + /  ~ X P  ( - .hL),  

for1  s € s N - L ,  (58) 
Var (A;,) = Var (Im (:)) = Var (:) comparing the yi,k in (28) to the X i , k  in (27) yields 

1 
2 

= - Var (A?,). 

For FBLP and L = M, it is sufficient to show that E { ( d A A k B g ’  ? } 
N 

From (14), 

(53) = E { I p:AAbBg‘ I e- jwiLgL).  (60) 

Substituting (60)  and (55) into (53) leads to ( 5 2 ) .  
Comment: In general ( L  > M),  the relationship be- 

tween Var (A?,) and Var (A;,) is very complicated for 

that the ratio of Var (A;,) over Var (A?,) decreases (not 
completely monotonically) toward 0.5 as L increases. 

For the special case L = M ,  the property implies that 
the perturbation in estimated zero tends to move along the 
unit circle without the radial variance (for FBLP). 

= 1 Properties 2 and 

(54) FBLP. Numerical computations have shown (see Fig. 7) 

where p: = pffFB for notational simplicity. It is well 
known that gl = g L g 2 - [  and I g, 1 = 1 (also go = 1 ), 
since for L = M, all zeros are on the unit circle. There- 
fore, 3 give that 

For one Signal case and L = 

Var (A;,)FBLp = Var ( 6 1 )  

this means that, for frequency estimation and the one sig- 
nal Prony’s case (Le., L = M = l ) ,  FBLP does not in- 
troduce improvement over FLP. In fact, it can be shown 
[lo] that FLP is the most efficient for one signal Prony’s 

L 

case and N = 2 or 3 .  Finally the last property is as fol- 
lows. 
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Property 4: For either FBLP or FLP, Var (A&) and 
Var (Ah , )  are 

1) independent of I uJ I for j Z i but proportional to 
l/la,I2 or l/SNR,; and 

2) invariant to the group shift of phases orland fre- 
quencies, where by group shift of phases we mean that all 
phases are increased or decreased by a (additive) con- 
stant; similarly, group shift of the frequencies implies that 
all the frequencies are changed by a constant value. 

Proof: The first part comes directly from (14)-(17). 
To show the second part, it is sufficient to consider FBLP, 
we denote the shifted frequencies and phases by 

5, = w, + c, (62) 

(63) 8, = 41 + c,. 
All variables with - denote the ones after the shift. 

and gr = gleJCW1, so that 
Then, it is well known (easy to show) that 2, = z1eJCw 

L L 

c 1g,2;/ = c 1g1z;' (64) 
I =  1 1 = 1  

which is the denominator in (14) and (15). (Note that the 
extra z,-' in (14) does not contribute to the variance of 
A?, .) 

It is easy to show that 

E, = 

Therefore, 

where A&B is the same as in (18) with nk replaced by 

f i k  = nk exp ( -jC,k - jc,). (69) 

Now it is clear that A$ is a linear combination of nk and 
nt  ( k  = 1, 2, , N )  and A i  is the same linear com- 
bination [see (14), (64), and (68)] of f i k  and fit ( k  = 1, 
2, - - - , N);  but both nk and f i k  satisfy (33)-(35) so that 
Var ( ~ 2 , )  = Var ( ~ f , ) .  Similarly, Var (A&,) = Var 
( A i , ) .  

Comment: It is known [8] that the Cramer-Rao lower 
bound also has the same property. In fact, Var ( AGl) can 
be very close to the C-R bound as will be seen next. !n 
the next section, we show several examples of Var ( A i )  
= 1 /( 2 ~ ) ~  Var (AQ,)and the corresponding C-R bound. 

IV. NUMERICAL EXAMPLES 
In this section we only consider examples for FBLP, 

since the feature of FLP is simpler than FBLP. 
Based on (14) and (15) with (33)-(35), one can com- 

pute Var (A?,) and Var ( Ah,) .  Although (28) can be used 
to calculate Var ( A2, ), Appendix D gives the detailed for- 
mula for computing both Var ( A i , )  and Var ( A;,). 

Examples 1 and 2 show the consistency between our 
theoretical results and the simulation results by Tufts and 
Kumaresan [ 11. 

Example 1: As in [ l ] ,  we assume that there are two 
signals present (M = 2) .  The number of data samples is 
N = 25. The frequency difference is w1 - w2 = 2 a (  f~ 
- f2) = 2 a (  0.02) (instead of saying that f l  = 0.52 and 
f2 = 0 . 5 ) ,  and the phase difference is 

Fig. 1 shows the normalized inversed Cramer-Rao 
boundn and the normalized inversed variance of the esti- 
mate f ,  ( i  = 1 or 2; since the number of sig!als is two, 
the normalized variances and the bounds of f  and f2 are 
the same) versus the order of the polynomial. That is, 

- cP2 = 45". 

] versus L 
lo log'' [Bound SNRi 

and 

In this example, from the plot, the optimal order of the 
polynomial is Lopt = 19 = 0.76N. 

Example 2: The same assumptions as in example 1 are 
given, except that L = 18, which clearly is a good choice 
according to Fig. 1, and - r#q is vafied. Fig. 2 shows 
the C-R bound and the variance Var ( fi) versus the phase 
difference - 42. That is, 

versus 4I - 42 
lo log'' Bound SNRi 

and 

versus - +*. 1 

lo loglo VAR ( A )  SNRi 

Examples 1 and 2 are consistent with the simulation re- 
sults presented in [ l ]  where SNR; = 15 dB (see Figs. 10 
and 12 in [l]). However, our results are much smoother. 
Also note that in Fig, 2 the phase difference 4,  - 42 = 
86.4" when 1 /Var ( A )  reaches minimum as predicted by 

Examples 3 and 4 demonstrate the dependence of the 
optimal order of polynomial on the phase difference. 

Exumple 3: This example is the same as example 1, 
except that 4I - 42 = 86.4" which satisfies (42), so that 
Z ,  has the largest condition number (with respect to other 
phases). In Fig. 3, there are two humps. One is below L 
= N/2 and the other is above L = N/2. But they are not 

(34). 
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E :  
N -  
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E :  

u :  

c :  
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A :  
R :  
I 25- 
A -  
N -  
c .  

+ + +  

+ 
+ 

+ 

28; 

25- 

22- 

19- 

16- 

C - R  BOUND + + + + + + + + + + + + + + + + +  
+ + + + + + + + + +  

+ + +  + + + 
+ 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

L-ORDER OF POLYNOMIAL 

-lOLOG(VAR(Fl)*SNR) AN0 C-R BWND VS. L 
11-2 N-25 Fl f2-0.02 PHl-PH2-45 

Fig. 1 .  Performance and C-R bound for 4, - @2 = 45". 

PHI-PH2 THE PHASE DIFFERENCE 

-10LOG (VAR (Fl) 4tSNR) AND C-R B O W  VS. PHI-PH2 
H-2 N-25 L-18 Fl-F2-0.02 

Fig. 2.  Performance and C-R bound for L = 18 

exactly symmetrical about L = N / 2 .  For this example, 
however, one may choose either Lopt = 15 = 0.6N or Lopt 
= 10 = 0.41. 

Not? that if we let L = N - M / 2  = 24 in this example, 
Var ( A )  will be infinite (since the condition number of 
2, or ZFB will be infinite). 

Example 4: This example is the same as example 3, 
except that 4,  - 4, = -3.6' (or equivalently 176.4') 

predicted by 

41 - 42 + T ( f i  - f , ) ( N  + 1) = 5 (70) 

which, as one can show, causes the two columns of ZL 
orthogonal to each other, i.e., ZL,  to be best conditioned. 
Note that, in general (M 1 3), one cannot find such 
phases 4l that cause all columns of 2, to be orthogonal. 
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45; 

40- 

235 

25- 

20- 

F 
R 
E 
0 
U 
E 
N 
C 
Y 

V 
A 
R 
I 
A 
N 
C 
E 

+ + + +  + + + + + +  + 
+ + 

+ + 
+ + 

+ + 

-1OLOG WAR (Fl) *SNR) AND C-R BOUW VS. L 
M-2 N-25 Fi-F2-0.02 PHl-PH2-86.4 

Fig. 3.  Performance and C-R bound for - & = 86.4". 

C - R  BOUND 
+ + + + + +  

+ + + + + + .c + + + + + .t + f + + + + + + '4 40 + + 
+ + + + + +  

20 

+ 

+ 
+ 

+ 
+ 

1 
I . . . .I-- '. I . . . . I . -l--v-T 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 16 19 20 2 1  22 23 

L-ORDER OF POLYNOMIAL 

-1OLOG (VAR ( F l )  +SNR) AND C-R BOUND VS. L 
M-2 N-25 F1-F2-0.02 PHl-PH2--3.6 

Fig. 4. Performance and C-R bound for +I - & = 3.6".  

In Fig. 4, the performance for L 1 fN is better than that 
forL < 4 N .  

Now we show an example that combines the different 
features caused by different phase differences. 

as in example 3 or 4, except that 4* - 42 takes values 

from -3.6" to 86.4" in steps of 15". The plot is the in- 
versed efficiency in dB versus L, namely, 

Bound 
10 loglo [-I versus L. 

Note that if 9, - qj2 takes values from 86.4" to 176.4", 
Example 5: The parameters are assumed to be the same Var ( 1 )  
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Fig. 5 .  Efficiency (inversed). 

the pattern of Fig. 5 wi!l be repeated since, as one can 
show, for M = 2 Var ( 5 )  is a periodic function of - 
42 with period 180”. 

Based on this example, one can assume that 

Lo, = 17 = 0.68N. (71 1 
To show that the pattern of Var (J; ) follows the C-R 

bound, we have the following example. 
Example 6: This example is the same as example 2, 

except that fi - f2 = 0.01 instead of 0.02. Fig. 6 shows 
th?t there are two extremes. The minimum of [ 1/Var 
( fi)] occurs at - 42 = 133.2” which is predicted by 
(42). The maximum of 1/Var ( A )  occurs at dl - 42 = 
43.2” which is predicted by (70). 

The last example shows the complicated character of 
the ratio of Var (hi) over Var (&). 

Example 7: All parameters are given as in example 1. 
The plot shows 

Var ( hi) 
Var (&) 

versus L. 

We see that the ratio is decreasing (but not completely 
monotonically) with L toward 0.5. In fact, we have found 
numerically that, in most cases, the ratio is larger than 
0.5 and approaches 0.5 when L is close to N - M. 

V. CONCLUSION 

The first-order perturbation analysis of the TK method 
is performed. Several fundamental properties are shown 
(and proved). Also, numerical examples are presented to 
illustrate some of the features. 

APPENDIX A 
RANK OF A F B  

In this appendix, we discuss the rank of (noiseless) A F B .  

As in (6), the noiseless coefficients vector g is 

where A& is defined as in (7) without the hat *. 
Clearly, the existence of A& requires that A F B  has rank 

M. In fact, if and only if A F B  has rank M, the M correct 
zeroszi = e’”i(i = 1, 2, - - e ,  M)canbeextractedfrom 
the polynomial formed by the coefficients vector g given 
in (A.1). 

The following decomposition is useful for our discus- 
sion: 

1 

e-jwiL 

e-jwiL 

- e - j W i  e-jwi2 . . . 
e - j ~ 2  e-jw22 . . . 1 , - jw e - J w ~ 2  . . . e - j w ~ L  
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-1OLOG (VAR (FI) MSNR) AND C-R BOUND VS. PHI-PH2 
M-2 N-25 L-18 FI-F2-0.01 

Fig. 6.  Performance and C-R bound for L = 18 ( f, - fi = 0.01 ). 

It is clear that A is nonsingular ( rank M ), Z ,  has rank 
M if and only if L 2 M ,  and Z, has rank M i f L  I N - 
M ,  so that A F B  has rank M if M I L I N - M .  It is also 
clear that AFB has rank less than M if L I M or L > N - 

which is a matrix; 

re, 1 
M / 2 .  

What about N - M + 1 I L I N - M / 2 ,  or equiv- 
alently, M / 2  I N - L I M - 1, which are “valid” 
values for L proposed in [2]? It turns out that Z, (or  con- 
sequently A F i )  does not always have rank M for M / 2  I ei exp ( -jwi(N + 1) - j 2&) .  (A.9) 

In fact, if ei = el for all i # 1, or equivalently, (10) is 
true for all i # 1, then E N  = I * e l ,  where I is identity 
matrix so that 

N -  L I M -  1. 
Notice that Z, can be written as 

(A.6)  
z, = iZLF ] - [“I [ y ]  (A. lO)  

P Z L F ~ I  zw where 
I- 1 

where - means that one side is nonsingularly trans- 
formed from the other so that both sides have the same 
rank. 

(A-7)  
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M-2 N-25 Fl-F2-0.02 PHl-PH2-45. 

Fig. 7 .  Ratio of frequency variance over zero variance. 

Clearly, ZL above (or AFB) has the same rank as ZLF 
which is of rank N - L ( I M - 1 )  if M/2  5 N - L I 

Reordering the columns of ZL according to G I ,  G2, 
G, yields 

* , 

M - L. 

' * * "" ] (A.15) 
zL - iZLF1 zLF2 

More generally, we have the following theorem. 
Theorem A.  I: We partition the set { e l ,  e2,  - 

eGlzLF1 eGzZLF2 ' * eGrzLFr - , e M }  
into groups G I ,  G2, * - - , G r ,  such that elements in each 
group are equal and elements from different groups are 
not. Let NGJ be the number of elements in group GJ. 
Clearly, El= I NcJ = M .  Without loss of generality, we let 

where eG, is an element in group GJ. 

it from the last N - L rows yields 
Multiplying the first N - L rows by e G l  and subtracting 

NGI I NG2 I . * * 2 NGr. 

1. * . ZLF~ 
zL - ["I zLF2 

AssumeM/2 I N - L I M - 1; then 
1) i fNGl  2 N - L + 1 ,  then ( e C ~  - eCz)ZLF2 * ' * ( e G r  - e G ~ ) z L F r  - 

Rank (AFB)  = Rank (2,) N G  I 

= M - NGI + N - L I M - 1; ( A . l l )  (A.  16) 

2) if NGI I N - L and 
a) if M - NG, - N - L + 1, then 

NGI + N - L I Rank (AFB) = Rank (Z , )  I M ;  

b) if M - NGI I N - L, then 
(A.  12) 

Rank (AFB) = Rank ( Z L )  = M. (A.13) 
Note that there is an inherent assumption that N z $ M ,  
otherwise, no choice of L can be used to estimate the M 
unknown frequencies. 

Proof: Since L I N - M + 1 1 M + 1, Z, has full 
rank M so that Rank (Z,) = Rank (AFB). Changing the 
order of the last N - L rows of Z, leads to 

z, - IZ'" 1. 
ZLFEN 

(A. 14) 

1 )  If NGI I N - L + 1, then columns of ZLF, span the 
complex vector space c"- L ,  I so that 

O 1. . . .  ZL I"' 0 
0 (eCl - eG2lZLF2 * * (eG, - e G ~ ) Z L F r  

( A .  17) 

Since M I 2 ( N  - L), then M - NGI I N - L - 1 
so that the last M - NGI columns are independent. Also, 
Rank ( Z L F l )  = N - L. Therefore, 

(A.18)  Rank (Z,) = M - NGI + N - L I M - 1 .  

2) If NGI I N - Land 
a) if M - NG, I N - L + 1, then the last A4 - 

NGI columns of Z, in (A.16) have rank at least N - L 
(e.g., eG2 = * * = e c , ) ,  or at most M - NGI (e.g., 
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eG, # eG, for 2 I i # j I r )  so that 

NG, + N - L I Rank (2,) I M, (A.19) 
APPENDIX C 

CONDITION NUMBER 

b) i f M  - N G ~  5 N - L, then as can be shown sim- 

(A.20) 

In this appendix, we show the following theorem. 
Theorem C. I: Let Z ,  be a matrix of rank equal to the 

number M of its columns; let E be a unitary matrix; and 
let 

ilarly , 

Rank (zL) = NG, + ( M  - NGI) = M .  
-_  

Comment: If w, and 4, are independent (random) un- 
known parameters, it may be reasonable to say that Rank 
(Z,) = M in "almost" all cases since ei are unequal in 
"almost" all cases for M/2  I N - L I M - 1. 

APPENDIX B 
PERTURBATION IN TRUNCATED PSEUDOINVERSE 

In this appendix, we prove (13). 
Proof: We rewrite (1 1) 

A = A + A A  (B. 1) 
where A has rank M. A has rank M 1 M ;  and, for the 
moment, A a  is not necessarily a matrix with very small 
elements. 

One can verify the identity [6] 

a+ - A+ - ~ + A A A +  - (AHa)+~aHpi  

+ R; A ~ ~ ( A A " ) +  03.2) 

where P i  = I - AA+ is the projector onto the orthogo@ 
complement of the column space of A. R$ = Z - A+A is 
the projector o?to the orthogonal complement of the col- 
umn space of A ~ .  

By SVD, 

1 
r = l  u, 

M 

a+ = ,z T d i 9 Y  03.3) 

M -  

Denote by u1 and uM, respectively, the largest and small- 
est (nonzero) singular values of 2, and similarly, for 
a; and uh. 

Then 

5 ai (C.3) 

UM 2 Uh. (C.4) 

Therefore, the condition numbers k and k', of Z and Z', 
satisfy 

(C.5) 
A 01 A 4 

OM 4 4  
k = -  I k ' = - .  

Proofi It is well known [5] that 

u: = max [X"Z"ZX] (C.6) 
Ilxllz= 1 

then 

a: = max [ x ~ Z ~ Z F X  + xHEHzPz,Ex] 
llxIlz= I 

I max [PzFzFx + x"z,"ZFx] 

= a ; 2  

IlxIlz= I 
where 3,, Ei, , and 9, are defined as in (7). 

Let ti, be a vector fr2m the space spaned by E i , ,  222, 

proaches the column space of AH so that ti, approaches a 
vector, uo, from the column space of AH; and v, is a vec- 

. . .  , dM. Clearly, as AA approaches zero, this space ap- (C.7) 

with equality when E = I * c, where c is a complex 
tor from the column space of A.  

Then, we know that 
number. 

Similarly, we can show 

and 

P f v ,  = 0 03.5) u& 1 a:. (C.8) 

RAEi, = 0 (B.6) 
APPENDIX D 

COMPUTATION OF VAR (A?;) AND VAR (A&,)  
&,Ha+ = &,"a,+ 

Therefore, from (B.2), 
This appendix gives the expressions of Var ( A & )  and 

03-71 

Var (A;;) for numerical computation. 
~if(a,+ - A + ) ~ ,  = & f A f f ~ a ~ + ~ , .  ( ~ - 8 )  One can verify that [from (14)] 

Now let AA approach zero, so we have N 

p?A&g' = c (nkxj,k + n ; ~ ; , ~ )  ( D . l )  u ~ A ~ , + v .  = - u ~ A + A ~ A + u , .  (B.9) k =  I 
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where 

%,k = { 
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1 1 k 1 k ,  
N - k  

s L , N - L  P z k t l - L g l  i = L t I - k  

kl I k 5 k2 
N - k  

l = O  P T k t l - L g l  

f L  

Y i , k  = ~ 

P ? k + i - L g l  
I = L + I - k  

l i k ~ k ,  
N - k  

s L , N - L  P ? N - 2 L + k + l g L - l  l = L + I - k  

k l +  1 I k I k2 
N - k  

P?N - 2 L  + k + I g L - i  1 i = o  

k2 + 1 I k I N  

k ,  = min ( L ,  N - L )  

k2 = max ( L ,  N - L )  

and 

0 L > N - L  

1 L C N - L .  
S L , N - L  = 
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