UC Riverside

Title

Perturbation analysis of TK method for harmonic retrieval problems

Permalink

https://escholarship.org/uc/item/19k5s4w4

Journal

IEEE Transactions on Signal Processing, 36(2)
ISSN
1053-587X

Authors

Hua, Y
Sarkar, TK
Publication Date
1988-02-01
DOI
10.1109/29.1515

Peer reviewed

Perturbation Analysis of TK Method for Harmonic Retrieval Problems

Yingbo hua, student member, ieee, and TAPAN K. SARKAR, senior member, ieee

Abstract

This paper presents a first-order perturbation analysis of the Tufts-Kumaresan (TK) method used to estimate frequencies of complex sinusoids in small additive noise. Several fundamental properties are presented and proved. Further illustrations are provided through numerical examples.

I. Introduction

THIS paper is concerned with harmonic retrieval from a finite data sequence contaminated by additive noise. The data sequence y_{k} is modeled as

$$
\begin{equation*}
\hat{y}_{k}=\sum_{i=1}^{M} a_{i} e^{j \omega_{i} k}+n_{k}, \quad k=1,2, \cdots, N \tag{1}
\end{equation*}
$$

where a_{i} is the complex amplitude with unknown magnitude $\left|a_{i}\right|$ and phase $\phi_{i} \cdot \omega_{i}$ is the unknown angular frequency to be estimated. M is the number of complex sinusoids. n_{k} is the k th noise component. The hat ${ }^{\wedge}$ means that the corresponding variable is affected by noise or estimated under noise. For a noiseless quantity, the hat ${ }^{\wedge}$ is dropped. This notation will be used throughout this paper.
There are numerous methods [2] proposed by many authors in the past years to estimate ω_{i} (and even a_{i} and M for more general problems). Among them, the noniterative TK method [1] seems to have the second best performance next to the maximum likelihood (ML) method which is usually computed in an iterative way [3], [4] as it is a nonlinear optimization problem.

In this paper, we present the first-order perturbation analysis of the TK method for estimating frequencies ω_{i} (or $f_{i}=\omega_{i} / 2 \pi$) under relatively small noise. It is assumed that the number M of signals is known and $\omega_{i} \neq$ ω_{j} for $i \neq j$.
In Section II, the TK method is briefly described and discussed. In Section III, the perturbation analysis is performed, and various properties are shown. In Section IV, numerical examples are illustrated.

Some mathematical details are included in Appendixes.

[^0]
II. TK Method

Step 1: Form the FBLP (forward-and-backward linear prediction) data matrix $\hat{A}_{F B}$ and data vector $\hat{h}_{F B}$, respectively, as follows:

$$
\begin{align*}
\underset{(N-L) \times L}{\hat{A}_{F B}} & =\left[\begin{array}{c}
\hat{A}_{F} \\
\hat{A}_{B}
\end{array}\right] \tag{2}\\
\underset{(N-L) \times L}{\hat{A}_{F}} & =\left[\begin{array}{cccc}
\hat{y}_{L} & \hat{y}_{L-1} & \cdots & \hat{y}_{1} \\
\hat{y}_{L+1} & \hat{y}_{L} & \cdots & \hat{y}_{2} \\
\vdots & \vdots & & \vdots \\
\hat{y}_{N-1} & \hat{y}_{N-2} & \cdots & \hat{y}_{N-L}
\end{array}\right] \tag{3}\\
\underset{(N-L) \times L}{\hat{A}_{B}} & =\left[\begin{array}{cccc}
\hat{y}_{2}^{*} & \hat{y}_{3}^{*} & \cdots & \hat{y}_{L+1}^{*} \\
\hat{y}_{3}^{*} & \hat{y}_{4}^{*} & & \hat{y}_{L+2}^{*} \\
\vdots & \vdots & & \vdots \\
\hat{y}_{N-L+1}^{*} & \hat{y}_{N-L+2}^{*} & \cdots & \hat{y}_{N}^{*}
\end{array}\right] \tag{4}\\
\hat{h}_{F B} & =\left[\begin{array}{c}
\hat{h}_{F} \\
\cdots \\
\hat{h}_{B}
\end{array}\right] \\
& =\left[\hat{y}_{L+1}, \cdots, \hat{y}_{N} ; \hat{y}_{1}^{*}, \cdots, \hat{y}_{N-L}^{*}\right]^{T} \tag{5}
\end{align*}
$$

where * means complex conjugate; T means transpose; and L should satisfy $M \leq L \leq N-M / 2$ (according to Kumaresan) which will be discussed later.

Step 2: Form the coefficients vector \hat{g} of a polynomial of order L by

$$
\begin{equation*}
\hat{\boldsymbol{g}}=-\left[\hat{A}_{F B}\right]_{T}^{+} \cdot \hat{h}_{F B} \tag{6}
\end{equation*}
$$

where we call $\left[\hat{A}_{F B}\right]_{T}^{+}$the 'truncated rank M '' pseudoinverse of $\hat{A}_{F B}$, which is defined with the use of SVD [5] as

$$
\begin{equation*}
\left[\hat{A}_{F B}\right]_{T}^{+}=\sum_{i=1}^{M} \frac{1}{\hat{\sigma}_{i}} \hat{u}_{i} \hat{\boldsymbol{v}}_{i}^{H} \tag{7}
\end{equation*}
$$

where $\hat{\sigma}_{1} \geq \hat{\sigma}_{2} \geq \cdots \geq \hat{\sigma}_{M} \geq \cdots$ are singular values of $\hat{\boldsymbol{A}}_{F B} . \hat{\boldsymbol{u}}_{i}$ and $\hat{\boldsymbol{v}}_{i}$ are the corresponding right and left singular vectors, respectively; and the superscript " H " denotes the conjugate transpose.

It is clear that (for noiseless case) $\left[A_{F B}\right]_{T}^{+}=\left[A_{F B}\right]^{+}$, which is the pseudoinverse [7] (the one which satisfies the Moore-Penrose definition) of $A_{F B}$, since $A_{F B}$ has rank M.

Step 3: Find the zeros of the polynomial equation

$$
\begin{equation*}
1+\sum_{l=1}^{L} \hat{g}_{l} \hat{z}^{-l}=0 \tag{8}
\end{equation*}
$$

where \hat{g}_{l} is the l th element of \hat{g}.
The M zeros ($\hat{z}_{i}, i=1,2, \cdots, M$), which are the closest to the unit circle, are chosen as the estimates of zeros $z_{i}=\exp \left(j \omega_{i}\right)$.
Then the frequency estimates are

$$
\begin{equation*}
\hat{\omega}_{i}=\left[\operatorname{Im}\left[\ln \hat{z}_{i}\right]\right]_{\bmod [-\pi, \pi]} \tag{9}
\end{equation*}
$$

where Im means the imaginary part.
It is known that for the noiseless case, all the estimates are exact and the $L-M$ extraneous zeros are inside the unit circle as long as $A_{F B}$ has rank M. One can show that $A_{F B}$ has rank M if $M \leq L \leq N-M$. However, if $N-$ $M+1 \leq L \leq N-M / 2$ (which is part of the interval $M \leq L \leq N-M / 2$ proposed in [2]), or equivalently, $M / 2 \leq N-L \leq M-1, A_{F B}$ may have rank less than M in which case the TK method fails to work. For instance, as we show in Appendix A, $A_{F B}$ has rank $N-L$ ($\leq M-1$) if $N-L \leq M-1$, and frequencies ω_{i} and phases ϕ_{i} are such that

$$
\begin{align*}
& \left(\omega_{i}-\omega_{l}\right)(N+1)+2\left(\phi_{i}-\phi_{l}\right)=2 m \pi \\
& \quad \text { for all } i \neq l \tag{10}
\end{align*}
$$

where m is any integer. For details, see Appendix A.
Although $A_{F B}$ does have rank M for $M / 2 \leq N-L \leq$ $M-1$ in "most" cases (note that the chance for ω_{i} and ϕ_{i} to satisfy (10) is very small), the performance of the TK method will not be good if (10) is approximately true for all $i \neq l$. This situation was recently explained in [9] for the special case of one real sinusoidal signal (i.e., M $=2$).

The TK procedure utilizes both forward and backward linear prediction (FBLP). If we replace $\hat{A}_{F B}$ and $\hat{\boldsymbol{h}}_{F B}$ in (6) by \hat{A}_{F} and $\hat{\boldsymbol{h}}_{F}$, respectively, then we say that forward linear prediction (FLP) is used. Similarly for backward linear prediction (BLP), $\hat{A}_{F B}$ and $\hat{h}_{F B}$ in (6) are replaced by \hat{A}_{B} and $\hat{\boldsymbol{h}}_{B}$. Since FLP and BLP have the same performance, we will only mention FLP in comparison to FBLP. In the discussion, FBLP will be implied if FBLP or FLP is not stated explicitly. It is clear that for FLP we must assume $N-L \geq M$.

III. Perturbation Analysis

In this paper, we derive the first-order perturbation (due to noise n_{k}) in the estimated zeros and frequencies, and investigate their several fundamental properties. We denote perturbations by preceding the corresponding noisy quantity by Δ. The following theorem is important in our derivation, while the proof is given in Appendix B.

Theorem: Assume

$$
\begin{align*}
\hat{A} & =A+\Delta \hat{A} \tag{11}\\
\hat{A}_{T}^{+} & =A^{+}+\Delta \hat{A}_{T}^{+} \tag{12}
\end{align*}
$$

where A has rank $M . \Delta \hat{A}$ is a small perturbation matrix. \hat{A}_{T}^{+}is the "truncated rank M "' pseudoinverse of \hat{A} as defined by (7). A^{+}is the pseudoinverse of A of rank M. $\Delta \hat{A}_{T}^{+}$is the corresponding perturbation matrix.

Then we have

$$
\begin{equation*}
\boldsymbol{u}_{o}^{H} \Delta \hat{\boldsymbol{A}}_{T}^{+} \boldsymbol{v}_{o}=-\boldsymbol{u}_{o}^{H} A^{+} \Delta \hat{\boldsymbol{A}} A \boldsymbol{v}_{o} \tag{13}
\end{equation*}
$$

where \boldsymbol{u}_{o}^{H} is any row vector in the row space (span of rows) of $A . v_{o}$ is any column vector in the column space (span of columns) of A.

Using this theorem, we shall show the following. The perturbations in the estimated zeros and frequencies are

$$
\begin{align*}
\Delta \hat{z}_{i, \mathrm{FBLP}} & =\frac{-1}{\left|a_{i}\right|} \frac{\boldsymbol{p}_{i, F B}^{H} \Delta \hat{A}_{F B}^{\prime} g^{\prime}}{\sum_{l=1}^{L} \lg _{l} z_{i}^{-l-1}} \tag{14}\\
\Delta \hat{\omega}_{i, \mathrm{FBLP}} & =\frac{-1}{\left|a_{i}\right|} \operatorname{Im}\left[\frac{\boldsymbol{p}_{i, F B}^{H} \Delta \hat{A}_{F B}^{\prime} g^{\prime}}{\sum_{l=1}^{L} \lg z_{l}^{-l}}\right] \tag{15}\\
\Delta \hat{z}_{i, \mathrm{FLP}} & =\frac{-1}{\left|a_{i}\right|} \frac{p_{i, F}^{H} \Delta \hat{A}_{F}^{\prime} g^{\prime}}{\sum_{l=1}^{L} \lg z_{l}^{-l-1}} \tag{16}\\
\Delta \hat{\omega}_{i, \mathrm{FLP}} & =\frac{-1}{\left|a_{i}\right|} \operatorname{Im}\left[\frac{p_{i, F}^{H} \Delta \hat{\boldsymbol{A}}_{F}^{\prime} g^{\prime}}{\sum_{l=1}^{L} \lg g_{l} z_{i}^{-l}}\right] \tag{17}
\end{align*}
$$

where $p_{i, F B}^{H}$ is the i th row of the pseudoinverse $Z_{L}^{+}=$ $\left(Z_{L}^{H} Z_{L}\right)^{-1} Z_{L}^{H}$ in which Z_{L} is defined by (A.5) in Appendix A. $\boldsymbol{p}_{i, F}^{H}$ is the i th row of the pseudoinverse $Z_{L F}^{+}=\left(Z_{L F}^{H} Z_{L F}\right)^{-1} Z_{L F}^{H}$ in which $Z_{L F}$ is defined by (A.5). $g^{\prime}=\left[{ }_{g}^{1}\right]$; and $\Delta \hat{A}_{F B}^{\prime}$ and $\Delta \hat{A}_{F}^{\prime}$ are matrices filled with noise components, i.e.,

$$
\begin{align*}
\Delta \hat{A}_{F B}^{\prime} & =\left[\Delta \hat{h}_{F B}, \Delta \hat{A}_{F B}\right] \\
& =\left[\begin{array}{c}
\Delta \hat{A}_{F}^{\prime} \\
\cdots \\
\Delta \hat{A}_{B}^{\prime}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
n_{L+1} & n_{L} & \cdots & n_{1} \\
\vdots & & & \vdots \\
n_{N} & n_{N-1} & \cdots & n_{N-L} \\
n_{1}^{*} & n_{2}^{*} & \cdots & n_{L+1}^{*} \\
\vdots & & & \vdots \\
n_{N-L}^{*} & n_{N-L+1}^{*} & \cdots & n_{N}^{*}
\end{array}\right] . \tag{18}
\end{align*}
$$

To show (14) and (15), differentiating (8) yields

$$
\begin{equation*}
\sum_{l=1}^{L} \Delta \hat{g}_{l} \hat{z}_{i}^{-l}-\sum_{l=1}^{L} \lg _{l} z_{i}^{-l-1} \Delta \hat{z}_{i}=0 . \tag{19}
\end{equation*}
$$

Then

$$
\begin{align*}
\Delta \hat{z}_{i} & =\frac{\sum_{l=1}^{L} \Delta \hat{g}_{l} z_{i}^{-l}}{\sum_{l=1}^{L} \lg _{l} z_{i}^{-l-1}} \\
& =\frac{z_{i}^{H} \Delta \hat{g}}{\sum_{l=1}^{L} \lg _{l} z_{i}^{-l-1}} \tag{20}
\end{align*}
$$

where

$$
z_{i}^{H}=\left[z_{i}^{-1}, z_{i}^{-2}, \cdots, z_{i}^{-L}\right]
$$

Differentiating (6) yields

$$
\begin{equation*}
\Delta \hat{g}=-\Delta\left[\hat{A}_{F B}\right]_{T}^{+} \boldsymbol{h}_{F B}-A_{F B}^{+} \Delta \hat{h}_{F B} \tag{21}
\end{equation*}
$$

Since z_{i}^{H} is the i th row vector of Z_{R} defined by (A.4) in Appendix A, it is in the row space of $A_{F B}$; and $\boldsymbol{h}_{F B}$ is a linear combination of columns of Z_{L} so that it is in the column space of $A_{F B}$. Therefore, according to the theorem,

$$
\begin{align*}
z_{i}^{H} \Delta \hat{g} & =z_{i}^{H}\left[A_{F B}^{+} \Delta \hat{A}_{F B} A_{F B}^{+} h_{F B}-A_{F B}^{+} \Delta \hat{h}_{F B}\right] \\
& =-z_{i}^{H} A_{F B}^{+}\left(\Delta \hat{A}_{F B} g+\Delta \hat{h}_{F B}\right) \\
& =-z_{i}^{H} A_{F B}^{+} \Delta A_{F B}^{\prime} g^{\prime} . \tag{22}
\end{align*}
$$

It can be shown that the pseudoinverse of $A_{F B}$ as in (A.2) is

$$
\begin{align*}
A_{F B}^{+} & =Z_{R}^{+} \Lambda^{-1} Z_{L}^{+} \\
& =Z_{R}^{H}\left(Z_{R} Z_{R}^{H}\right)^{-1} \Lambda^{-1}\left(Z_{L}^{H} Z_{L}\right)^{-1} Z_{L}^{H} \tag{23}
\end{align*}
$$

where Λ and Z_{R} are defined by (A.3) and (A.4), respectively. Since z_{i}^{H} is the i th row of Z_{R} so that

$$
\begin{equation*}
z_{i}^{H} Z_{R}^{+}=[\underbrace{0, \cdots, 0}_{i-1}, 1,0, \cdots, 0]^{T} \tag{24}
\end{equation*}
$$

then

$$
\begin{equation*}
z_{i}^{H} A_{F B}^{+}=\frac{1}{\left|a_{i}\right|} p_{i, F B}^{H} \tag{25}
\end{equation*}
$$

Combining (25), (22), and (20) yields (14). Then (15) comes from (9) easily. Equations (16) and (17) can be shown similarly.
Based on (14)-(17), several fundamental properties of the TK method are shown next.
Property 1: For both FBLP and FLP, $\Delta \hat{z}_{i}$ and $\Delta \hat{\omega}_{i}$ are independent of the noise components n_{k} for $L+1 \leq k$ $\leq N-L$ given $L+1 \leq N-L$.

Proof: It suffices to show that $p_{i, F B}^{H} \Delta \hat{A}_{F B}^{\prime} g^{\prime}$ is independent of n_{k} for $L+1 \leq k \leq N-L$. Let $p_{i, m}^{*}$ be the m th element of the vector $\boldsymbol{p}_{i, F B}^{H}$. Then one can verify that, given $L+1 \leq N-L$,

$$
\begin{align*}
& \boldsymbol{p}_{i, F B}^{H} \Delta \hat{A}_{F B}^{\prime} g^{\prime} \\
&= \sum_{m=1}^{N-L} \sum_{l=0}^{L} p_{i, m}^{*} n_{L+m-l} g_{l} \\
&+\sum_{m=1}^{N-L} \sum_{l=0}^{L} p_{i, m+N-L}^{*} n_{m+1}^{*} g_{l} \\
&= \sum_{k=1}^{N}\left(n_{k} x_{i, k}+n_{k}^{*} y_{i, k}\right) \tag{26}
\end{align*}
$$

where

$$
\begin{gather*}
x_{i, k}=\left\{\begin{array}{c}
\sum_{l=L+1-k}^{L} p_{i, k+l-L}^{*} g_{l}, \\
1 \leq k \leq L \\
\sum_{l=0}^{L} p_{i, k+l-L}^{*} g_{l}, \\
L+1 \leq k \leq N-L \\
N-k \\
\sum_{l=0} p_{i, k+l-L}^{*} g_{l}, \\
N-L+1 \leq k \leq N
\end{array}\right. \\
y_{i, k}=\left\{\begin{array}{c}
\sum_{l=L}^{L} p_{i, N-L+k+l-L}^{*} g_{L-l}, \\
1 \leq k \leq L \\
\sum_{l=0}^{L} p_{i, N-L+k+l-L}^{*} g_{L-l}, \\
L+1 \leq k \leq N-L \\
N-K \\
\sum_{l=0}^{N} p_{i, N-L+k+l-L}^{*} g_{L-l}, \\
N-L+1 \leq k \leq N
\end{array}\right.
\end{gather*}
$$

where $g_{0}=1$ and g_{l} for $l>0$ is the l th element of g. Now we need to show that $x_{i, k}=y_{i, k}=0$ for $L+1 \leq k$ $\leq N-L$. Observing that $\sum_{l=0}^{L} e^{-j \omega_{i}} g_{l}=0$, we form the vectors

$$
\begin{align*}
& \boldsymbol{g}_{x, j}=\overbrace{[\underbrace{0, \cdots, 0}_{N-L}, g_{0}, \cdots, g_{L}, 0, \cdots, 0}^{j} \underbrace{0, \cdots, 0}_{N-L}]^{T} \tag{29}\\
& \boldsymbol{g}_{y, j}=[\underbrace{0, \cdots, 0}_{N-L}, \underbrace{j}_{\overbrace{N-L}^{0, \cdots, 0,} g_{L}, \cdots, g_{0}, 0, \cdots, 0}]^{T} \tag{30}
\end{align*}
$$

then it can be shown that $g_{x, j}$ and $g_{y, j}(j=0,1, \cdots, N$ $-2 L-1$) are orthogonal to all columns of Z_{L} as in (A.5). Since $p_{i, F B}$ is a vector in the column space of Z_{L}, then for
$L+1 \leq k \leq N-L$,

$$
\begin{align*}
& x_{i, k}=\boldsymbol{p}_{i, F B}^{H} \cdot \boldsymbol{g}_{x, k-L-1}=0 \tag{31}\\
& y_{i, k}=\boldsymbol{p}_{i, F B}^{H} \cdot \boldsymbol{g}_{y, k-L-1}=0 \tag{32}
\end{align*}
$$

Comment: This property implies that the estimated zeros and frequencies are more sensitive to the noise components in the first and last several data samples than in the middle data samples if SNR is moderately high (and $L+1 \leq N-L$).

Next we investigate the variances of $\Delta \hat{t}_{i}$ and $\Delta \hat{\omega}_{i}$. We assume that the zero mean noise n_{k} are uncorrelated and equally powerful, and the real and imaginary parts of each n_{k} are uncorrelated and have variance σ for each part. In other words,

$$
\begin{align*}
E\left\{n_{k}\right\} & =0 \tag{33}\\
E\left\{n_{k} n_{l}\right\} & =0 \tag{34}\\
E\left\{n_{k} n_{l}^{*}\right\} & =2 \sigma^{2} \delta_{k, l} \tag{35}
\end{align*}
$$

where $\delta_{k, l}$ is the Kronecker delta function.
Then one can verify from (14) and (16) that the variance of $\Delta \hat{z}_{i}$ is

$$
\begin{align*}
& \operatorname{Var}\left(\Delta \hat{z}_{i}\right)_{\mathrm{FBLP}}=\frac{1}{\mathrm{SNR}_{i}} \frac{\boldsymbol{p}_{i, F B}^{H} R \boldsymbol{p}_{i, F B}}{\left|\sum_{l=1}^{L} \lg _{l_{i}} z_{i}^{-l-1}\right|^{2}} \tag{36}\\
& \operatorname{Var}\left(\Delta \hat{z}_{i}\right)_{\mathrm{FLP}}=\frac{1}{\mathrm{SNR}_{i}} \frac{\boldsymbol{p}_{i, F}^{H} R_{g} p_{i, F}}{\left|\sum_{l=1}^{L} \lg _{l} z_{i}^{-l-1}\right|^{2}} \tag{37}
\end{align*}
$$

where

$$
\begin{gather*}
\mathrm{SNR}_{i}=\frac{\left|a_{i}\right|^{2}}{2 \sigma^{2}} \tag{38}\\
\underset{2(N-L) \times 2(N-L)}{R}=\left[\begin{array}{cc}
R_{g} & 0 \\
0 & R_{g}^{T}
\end{array}\right] \tag{39}\\
\left(R_{g}\right)_{i, j}=\left(R_{g}\right)_{i-j}=\left(R_{g}\right)_{j, i}^{*} \\
=\left\{\begin{array}{c}
\sum_{l=i-j}^{L} g_{l} g_{l-(i-j)}^{*} \\
0 \leq i-j \leq L \\
0 \quad i-j>L
\end{array}\right. \tag{40}
\end{gather*}
$$

In fact, $\left(R_{g}\right)_{i, j}$ is the correlation function of the coefficient sequence g_{l}. Now we can show the following.
Property 2:

1) $\operatorname{Var}\left(\Delta \hat{z}_{i}\right)_{\text {FLP }}$ is invariant to the phases ϕ_{j} for $j=1$, $2, \cdots, M$, while $\operatorname{Var}\left(\Delta \hat{z}_{i}\right)_{\text {FBLP }}$ is not, in general.

$$
\begin{equation*}
\text { 2) } \operatorname{Var}\left(\Delta \hat{z}_{i}\right)_{\mathrm{FBLP}}=\frac{1}{2} \operatorname{Var}\left(\Delta \hat{z}_{i}\right)_{\mathrm{FLP}} \tag{41}
\end{equation*}
$$

if any one of the following is true.

$$
\text { a) } \begin{gather*}
\left(\omega_{i}-\omega_{j}\right)(N+1)+2\left(\phi_{i}-\phi_{j}\right) \\
=2 m \pi, \quad \text { for all } i \neq j \tag{42}
\end{gather*}
$$

b) $\omega_{i}-\omega_{j}=\frac{2 m \pi}{N-L}, \quad$ for all $i \neq j$
c) $N-L \gg 1$
d) $M=1$, i.e., one signal case,
where m is some integer. Note that (42) is the same as (10), and for FLP, $N-L$ must be larger than or equal to M.

Proof: For FLP, one can show that $\boldsymbol{p}_{i, F}^{H}$ is independent of ϕ_{j} for $j \neq i$, but is proportional to the complex exponential $e^{-j \phi_{i}}$. So that $p_{i, F}^{H} R_{g} p_{i, F}$ and $\operatorname{Var}\left(\Delta \hat{z}_{i}\right)_{\text {FLP }}$ are independent of ϕ_{j} for all j.
To prove the second part, let us consider $Z_{L}^{+} R Z_{L}^{+H}$, of which the (i, i)th element is $p_{i, F B}^{H} R p_{i, F B}$ [the numerator in (36)]. From (A.6) in Appendix A,

$$
Z_{L}=\left[\begin{array}{l}
Z_{L F} \tag{44}\\
P Z_{L F} E_{N}
\end{array}\right]
$$

where P is the permutation matrix as in (A.7), and E_{N} is the diagonal matrix as in (A.8). Then one can show that

$$
\begin{align*}
Z_{L}^{+} R Z_{L}^{+H}= & {\left[Z_{L}^{H} Z_{L}\right]^{-1}\left[Z_{L F}^{H} R_{g} Z_{L F}\right.} \\
& \left.+E_{N}^{H} Z_{L F}^{H} R_{g} Z_{L F} E_{N}\right]\left[Z_{L}^{H} Z_{L}\right]^{-1} \tag{45}
\end{align*}
$$

with

$$
\begin{equation*}
Z_{L}^{H} Z_{L}=Z_{L F}^{H} Z_{L F}+E_{N}^{H} Z_{L F}^{H} Z_{L F}^{H} E_{N} \tag{46}
\end{equation*}
$$

where $P R_{g}^{T} P=R_{g}$ is used since R_{g} is the Hermitian and Toeplitz matrix.
If a) is true, then $E_{N}=I \cdot \exp \left[-j \omega_{1}(N+1)-j 2 \phi_{1}\right]$, where I is the identity matrix; and then

$$
\begin{align*}
Z_{L}^{+} R Z_{L}^{+H} & =\frac{1}{2}\left[Z_{L F}^{H} Z_{L F}\right]^{-1}\left[Z_{L F}^{H} R_{g} Z_{L F}\right]\left[Z_{L F}^{H} Z_{L F}\right]^{-1} \\
& =\frac{1}{2} Z_{L F}^{+} R_{g} Z_{L F}^{+H} \tag{47}
\end{align*}
$$

Substituting the (i, i)th element of $Z_{L}^{+} R Z_{L}^{+H}$ as in (47) into (36) for $p_{i, F B}^{H} R p_{i, F B}$ yields (41).
If b) or c) is true, all columns of Z_{L} are orthogonal so that $\left[Z_{L}^{H} Z_{L}\right]^{-1}=\frac{1}{2}\left[Z_{L F}^{H} Z_{L F}\right]^{-1}=[1 / 2(N-L)] I$. In a similar way, one can show that (41) is true.
If d) is true, then again $\left(Z_{L}^{+} Z_{L}\right)^{-1}=[1 / 2(N-L)] I$, so that (41) is true.
Comment: One can show that if the phase pair (ϕ_{i}, ϕ_{j}) satisfies (42), the regular inner product of the two corresponding columns of Z_{L} has the largest magnitude or, in other words, the two columns are the least orthogonal. Furthermore, one can show (see Appendix C) that the condition number of Z_{L} defined as the ratio of the largest singular value σ_{1} of Z_{L} over the smallest nonzero singular value σ_{M} of Z_{L} reaches maximum when (42) is true for all $i \neq j$. Therefore, one may expect that phase variables ϕ_{i} which satisfy (42) for all $i \neq j$ provide the worst situation (the largest $\left.\operatorname{Var}\left(\Delta \hat{z}_{i}\right)_{\text {FBLP }}\right)$ for FBLP, or more concisely,

$$
\begin{equation*}
\operatorname{Var}\left(\Delta \hat{z}_{i}\right)_{\mathrm{FBLP}} \leq \frac{1}{2} \operatorname{Var}\left(\Delta \hat{z}_{i}\right)_{\mathrm{FLP}} \tag{48}
\end{equation*}
$$

with equality when any of conditions a)-d) in property 2 is met. Although the proof of (48) has not been obtained, the numerical computations have supported this conjecture.

As for $\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)_{\text {FBLP }}$ and $\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)_{\text {FLP }}$, we cannot in general find such simple relationships as (41) or (48). They are much more complicated. However, we do have the following result relating $\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)$ and $\operatorname{Var}\left(\Delta \hat{z}_{i}\right)$.

Property 3:

1) For FLP,

$$
\begin{equation*}
\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)_{\mathrm{FLP}}=\frac{1}{2} \operatorname{Var}\left(\Delta \hat{z}_{i}\right)_{\mathrm{FLP}} \tag{49}
\end{equation*}
$$

2) For FBLP, if $L=M$, i.e., the order of polynomial is chosen to be the number of signals, then

$$
\begin{equation*}
\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)=\operatorname{Var}\left(\Delta \hat{z}_{i}\right) \tag{50}
\end{equation*}
$$

Proof: For FLP, one can see that $\Delta \hat{t}_{i}$ is a linear combination of $n_{k}(k=1,2, \cdots, N)$; so that with the assumption of (33)-(35) one can show that $E\left\{\left(\Delta \hat{z}_{i} / z_{i}\right)^{2}\right\}$ $=0$, and hence,

$$
\begin{align*}
\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right) & =\operatorname{Var}\left(\operatorname{Im}\left(\frac{\Delta \hat{z}_{i}}{z_{i}}\right)\right)=\frac{1}{2} \operatorname{Var}\left(\frac{\Delta \hat{z}_{i}}{z_{i}}\right) \\
& =\frac{1}{2} \operatorname{Var}\left(\Delta \hat{z}_{i}\right) \tag{51}
\end{align*}
$$

For FBLP and $L=M$, it is sufficient to show that

$$
\begin{equation*}
E\left\{\left(\frac{\Delta z_{i}}{z_{i}}\right)^{2}\right\}=-E\left\{\left|\Delta z_{i}\right|^{2}\right\} \tag{52}
\end{equation*}
$$

From (14),

$$
\begin{align*}
& E\left\{\left(\frac{\Delta \hat{z}_{i}}{z_{i}}\right)^{2}\right\}=\frac{1}{\left|a_{i}\right|^{2}} \frac{E\left\{\left(\boldsymbol{p}_{i}^{H} \Delta \hat{A}_{F B}^{\prime} g^{\prime}\right)^{2}\right\}}{\left(\sum_{l=1}^{L} \lg _{l} z_{i}^{-l}\right)^{2}} \tag{53}\\
& E\left\{\left|\Delta \hat{z}_{i}\right|^{2}\right\}=\frac{1}{\left|a_{i}\right|^{2}} \frac{E\left\{\left|\boldsymbol{p}_{i}^{H} \Delta \hat{A}_{F B}^{\prime} g^{\prime}\right|^{2}\right\}}{\left|\sum_{l=1}^{L} \lg _{l} z_{i}^{-l}\right|^{2}} \tag{54}
\end{align*}
$$

where $\boldsymbol{p}_{i}^{H}=\boldsymbol{p}_{i, F B}^{H}$ for notational simplicity. It is well known that $g_{l}=g_{L} g_{L-l}^{*}$ and $\left|g_{L}\right|=1$ (also $g_{o}=1$), since for $L=M$, all zeros are on the unit circle. Therefore,

$$
\begin{aligned}
\left(\sum_{l=1}^{L} \lg _{l} z_{i}^{-l}\right)^{2}= & \left(\sum_{l=1}^{L} \lg _{l} z_{i}^{-l}\right) \\
& \cdot\left(\sum_{l=0}^{L}(L-l) g_{L-l} z_{i}^{-(L-l)}\right) \\
= & \left(\sum_{l=0}^{L} \lg _{l} z_{i}^{-l}\right)
\end{aligned}
$$

$$
\begin{align*}
& \cdot\left(\sum_{l=0}^{L}(L-l) g_{l}^{*} z_{i}^{l}\right) g_{L} z_{i}^{-L} \\
= & -\left|\sum_{l=0}^{L} l g_{l} z_{i}^{--}\right|^{2} g_{L} z_{i}^{-L} \tag{55}
\end{align*}
$$

where $\Sigma_{l=0}^{L} g_{l}^{*} z_{i}^{l}=0$ is used. One can also write

$$
Z_{L}=\left[\begin{array}{l}
Z_{L F} \tag{56}\\
Z_{L F}^{*} E_{L}
\end{array}\right]
$$

where

$$
E_{L}=\left[\begin{array}{llll}
e^{j \omega_{1} L} & & & \tag{57}\\
& e^{j \omega_{2} L} & & \\
& & \ddots & \\
& & & e^{j \omega_{M} L}
\end{array}\right]
$$

so that $Z_{L}^{+}=\left(Z_{L}^{H} Z_{L}\right)^{-1}\left(Z_{L F}^{H}, E_{L}^{H} Z_{L F}^{T}\right)$, then the elements of the i th row vector p_{i}^{H} of Z_{L}^{+}satisfy the relationship

$$
\begin{align*}
& p_{i, l}^{*}=p_{i, N-L+l} \exp \left(-j \omega_{i} L\right) \\
& \text { for } 1 \leq l \leq N-L, \tag{58}
\end{align*}
$$

comparing the $y_{i, k}$ in (28) to the $x_{i, k}$ in (27) yields

$$
\begin{equation*}
y_{i, k}=x_{i, k}^{*} e^{-j \omega_{i} L} g_{L} \tag{59}
\end{equation*}
$$

From (26),

$$
\begin{align*}
E\{ & \left.\left(\boldsymbol{p}_{i}^{H} \Delta \hat{A}_{F B}^{\prime} g^{\prime}\right)^{2}\right\} \\
& =2 \sigma^{2} \sum_{k=1}^{N} 2 x_{i, k} y_{i, k} \\
& =2 \sigma^{2}\left[\sum_{k=1}^{N} 2\left|x_{i, k}\right|^{2}\right] e^{-j \omega_{i} L} g_{L} \\
& =E\left\{\left|p_{i}^{H} \Delta \hat{A}_{F B}^{\prime} g^{\prime}\right| e^{-j \omega_{i} L} g_{L}\right\} . \tag{60}
\end{align*}
$$

Substituting (60) and (55) into (53) leads to (52).
Comment: In general $(L>M)$, the relationship between $\operatorname{Var}\left(\Delta \hat{z}_{i}\right)$ and $\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)$ is very complicated for FBLP. Numerical computations have shown (see Fig. 7) that the ratio of $\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)$ over $\operatorname{Var}\left(\Delta \hat{z}_{i}\right)$ decreases (not completely monotonically) toward 0.5 as L increases.

For the special case $L=M$, the property implies that the perturbation in estimated zero tends to move along the unit circle without the radial variance (for FBLP).

For one signal case and $L=M=1$, properties 2 and 3 give that

$$
\begin{equation*}
\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)_{\mathrm{FBLP}}=\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)_{\mathrm{FLP}} \tag{61}
\end{equation*}
$$

this means that, for frequency estimation and the one signal Prony's case (i.e., $L=M=1$), FBLP does not introduce improvement over FLP. In fact, it can be shown [10] that FLP is the most efficient for one signal Prony's case and $N=2$ or 3 . Finally the last property is as follows.

Property 4: For either FBLP or FLP, Var ($\Delta \hat{z}_{i}$) and $\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)$ are

1) independent of $\left|a_{j}\right|$ for $j \neq i$ but proportional to $1 /\left|a_{i}\right|^{2}$ or $1 / \mathrm{SNR}_{i}$; and
2) invariant to the group shift of phases or/and frequencies, where by group shift of phases we mean that all phases are increased or decreased by a (additive) constant; similarly, group shift of the frequencies implies that all the frequencies are changed by a constant value.

Proof: The first part comes directly from (14)-(17). To show the second part, it is sufficient to consider FBLP, we denote the shifted frequencies and phases by

$$
\begin{align*}
& \bar{\omega}_{i}=\omega_{i}+C_{\omega} \tag{62}\\
& \tilde{\phi}_{i}=\phi_{i}+C_{\phi} . \tag{63}
\end{align*}
$$

All variables with - denote the ones after the shift.
Then, it is well known (easy to show) that $\tilde{z}_{i}=z_{i} e^{j C_{\omega}}$ and $\tilde{g}_{l}=g_{l} e^{j C_{\omega} l}$, so that

$$
\begin{equation*}
\sum_{l=1}^{L} l \tilde{g}_{l} z_{i}^{-l}=\sum_{l=1}^{L} \lg _{l} z_{i}^{-l} \tag{64}
\end{equation*}
$$

which is the denominator in (14) and (15). (Note that the extra z_{i}^{-1} in (14) does not contribute to the variance of $\Delta \hat{z}_{i}$.)

It is easy to show that

$$
\begin{equation*}
\tilde{Z}_{L}=E_{C} Z_{L} \tag{65}
\end{equation*}
$$

$$
E_{C}=\left[\begin{array}{l}
\exp \left[j C_{\omega}(L+1)+j C_{\phi}\right] \tag{66}\\
\ddots \\
\exp \left(j C_{\omega} N+j C_{\phi}\right) \\
\exp \left(-j C_{\omega} N-j C_{\phi}\right) \\
\ddots \\
\quad \exp \left[-j C_{\omega}(N-L)-j C \phi\right]
\end{array}\right] .
$$

Therefore,

$$
\begin{equation*}
\tilde{\boldsymbol{p}}_{i}^{H}=\boldsymbol{p}_{i}^{H} E_{C}^{-1} \tag{67}
\end{equation*}
$$

Then, one can verify that

$$
\begin{equation*}
\tilde{p}_{i}^{H} \Delta \hat{A}_{F B}^{\prime} \tilde{g}^{\prime}=p_{i}^{H} \Delta \hat{\tilde{A}}_{F B}^{\prime} g^{\prime} \tag{68}
\end{equation*}
$$

where $\Delta \hat{\tilde{\boldsymbol{A}}}_{F B}^{\prime}$ is the same as in (18) with n_{k} replaced by

$$
\begin{equation*}
\tilde{n}_{k}=n_{k} \exp \left(-j C_{\omega} k-j C_{\phi}\right) . \tag{69}
\end{equation*}
$$

Now it is clear that $\Delta \hat{z}_{i}$ is a linear combination of n_{k} and $n_{k}^{*}(k=1,2, \cdots, N)$ and $\Delta \hat{\tilde{z}}_{i}$ is the same linear combination [see (14), (64), and (68)] of \tilde{n}_{k} and $\tilde{n}_{k}^{*}(k=1$, $2, \cdots, N$); but both n_{k} and \tilde{n}_{k} satisfy (33)-(35) so that $\operatorname{Var}\left(\Delta \hat{z}_{i}\right)=\operatorname{Var}\left(\Delta \hat{\tilde{z}}_{i}\right)$. Similarly, Var $\left(\Delta \hat{\omega}_{i}\right)=\operatorname{Var}$ ($\Delta \hat{\bar{\omega}}_{i}$).

Comment: It is known [8] that the Cramer-Rao lower bound also has the same property. In fact, $\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)$ can be very close to the $\mathrm{C}-\mathrm{R}$ bound as will be seen next. In the next section, we show several examples of $\operatorname{Var}\left(\Delta \hat{f}_{i}\right)$ $=1 /(2 \pi)^{2} \operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)$ and the corresponding C-R bound.

IV. Numerical Examples

In this section we only consider examples for FBLP, since the feature of FLP is simpler than FBLP.
Based on (14) and (15) with (33)-(35), one can compute $\operatorname{Var}\left(\Delta \hat{z}_{i}\right)$ and $\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)$. Although (28) can be used to calculate $\operatorname{Var}\left(\Delta \hat{z}_{i}\right)$, Appendix D gives the detailed formula for computing both $\operatorname{Var}\left(\Delta \hat{z}_{i}\right)$ and $\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)$.
Examples 1 and 2 show the consistency between our theoretical results and the simulation results by Tufts and Kumaresan [1].
Example 1: As in [1], we assume that there are two signals present ($M=2$). The number of data samples is $N=25$. The frequency difference is $\omega_{1}-\omega_{2}=2 \pi\left(f_{1}\right.$ $\left.-f_{2}\right)=2 \pi(0.02)$ (instead of saying that $f_{1}=0.52$ and $f_{2}=0.5$), and the phase difference is $\phi_{1}-\phi_{2}=45^{\circ}$.

Fig. 1 shows the normalized inversed Cramer-Rao bound and the normalized inversed variance of the estimate $\hat{f}_{i}(i=1$ or 2 ; since the number of signals is two, the normalized variances and the bounds of \hat{f} and \hat{f}_{2} are the same) versus the order of the polynomial. That is,

$$
10 \log _{10}\left[\frac{1}{\text { Bound } \cdot \mathrm{SNR}_{i}}\right] \text { versus } L
$$

and

$$
10 \log _{10}\left[\frac{1}{\operatorname{VAR}\left(\hat{f}_{i}\right) \mathrm{SNR}_{i}}\right] \text { versus } L
$$

In this example, from the plot, the optimal order of the polynomial is $L_{\text {opt }}=19=0.76 \mathrm{~N}$.

Example 2: The same assumptions as in example 1 are given, except that $L=18$, which clearly is a good choice according to Fig. 1, and $\phi_{1}-\phi_{1}$ is varied. Fig. 2 shows the $\mathrm{C}-\mathrm{R}$ bound and the variance $\operatorname{Var}\left(\hat{f}_{i}\right)$ versus the phase difference $\phi_{1}-\phi_{2}$. That is,

$$
10 \log _{10} \frac{1}{\text { Bound } \cdot \mathrm{SNR}_{i}} \text { versus } \phi_{1}-\phi_{2}
$$

and

$$
10 \log _{10} \frac{1}{\operatorname{VAR}\left(\hat{f}_{i}\right) \cdot \mathrm{SNR}_{i}} \text { versus } \phi_{1}-\phi_{2}
$$

Examples 1 and 2 are consistent with the simulation results presented in [1] where $\mathrm{SNR}_{i}=15 \mathrm{~dB}$ (see Figs. 10 and 12 in [1]). However, our results are much smoother. Also note that in Fig. 2 the phase difference $\phi_{1}-\phi_{2}=$ 86.4° when $1 / \operatorname{Var}\left(\hat{f}_{i}\right)$ reaches minimum as predicted by (34).

Examples 3 and 4 demonstrate the dependence of the optimal order of polynomial on the phase difference.

Example 3: This example is the same as example 1, except that $\phi_{1}-\phi_{2}=86.4^{\circ}$ which satisfies (42), so that Z_{L} has the largest condition number (with respect to other phases). In Fig. 3, there are two humps. One is below L $=N / 2$ and the other is above $L=N / 2$. But they are not

Fig. 1. Performance and $\mathrm{C}-\mathrm{R}$ bound for $\phi_{1}-\phi_{2}=45^{\circ}$.

-10LOG (VAR (F1) *SNR) AND C-R BOUND Vs. PH1-PH2
$M-2 \quad \mathrm{~N}=25 \quad \mathrm{~L}=18 \mathrm{~F} 1-\mathrm{F} 2-0.02$
Fig. 2. Performance and C-R bound for $L=18$.
exactly symmetrical about $L=N / 2$. For this example, predicted by however, one may choose either $L_{\text {opt }}=15=0.6 \mathrm{~N}$ or L_{opt} $=10=0.4 \mathrm{~N}$.
Note that if we let $L=N-M / 2=24$ in this example, $\operatorname{Var}\left(\hat{f}_{i}\right)$ will be infinite (since the condition number of Z_{L} or $Z_{F B}$ will be infinite).
Example 4: This example is the same as example 3, except that $\phi_{1}-\phi_{1}=-3.6^{\circ}$ (or equivalently 176.4°)

$$
\begin{equation*}
\phi_{1}-\phi_{2}+\pi\left(f_{1}-f_{2}\right)(N+1)=\frac{\pi}{2} \tag{70}
\end{equation*}
$$

which, as one can show, causes the two columns of Z_{L} orthogonal to each other, i.e., Z_{L}, to be best conditioned. Note that, in general ($M \geq 3$), one cannot find such phases ϕ_{i} that cause all columns of Z_{L} to be orthogonal.

Fig. 3. Performance and $C-R$ bound for $\phi_{1}-\phi_{2}=86: 4^{\circ}$.

Fig. 4. Performance and $C-R$ bound for $\phi_{1}-\phi_{2}=3.6^{\circ}$.

In Fig. 4, the performance for $L \geq \frac{1}{2} N$ is better than that for $L<\frac{1}{2} N$.
Now we show an example that combines the different features caused by different phase differences.
Example 5: The parameters are assumed to be the same as in example 3 or 4 , except that $\phi_{2}-\phi_{2}$ takes values
from -3.6° to 86.4° in steps of 15°. The plot is the inversed efficiency in dB versus L, namely,

$$
10 \log _{10}\left[\frac{\text { Bound }}{\operatorname{Var}\left(\hat{f}_{i}\right)}\right] \text { versus } L .
$$

Note that if $\phi_{1}-\phi_{2}$ takes values from 86.4° to 176.4°,

Fig. 5. Efficiency (inversed).
the pattern of Fig. 5 will be repeated since, as one can show, for $M=2 \operatorname{Var}\left(\hat{f}_{i}\right)$ is a periodic function of $\phi_{1}-$ ϕ_{2} with period 180°.

Based on this example, one can assume that

$$
\begin{equation*}
L_{\mathrm{opt}}=17=0.68 N \tag{71}
\end{equation*}
$$

To show that the pattern of $\operatorname{Var}\left(f_{i}\right)$ follows the $\mathrm{C}-\mathrm{R}$ bound, we have the following example.

Example 6: This example is the same as example 2, except that $f_{1}-f_{2}=0.01$ instead of 0.02 . Fig. 6 shows that there are two extremes. The minimum of [1/Var $\left.\left(\hat{f}_{1}\right)\right]$ occurs at $\phi_{1}-\phi_{2}=133.2^{\circ}$ which is predicted by (42). The maximum of $1 / \operatorname{Var}\left(\hat{f}_{i}\right)$ occurs at $\phi_{1}-\phi_{2}=$ 43.2° which is predicted by (70).

The last example shows the complicated character of the ratio of $\operatorname{Var}\left(\hat{\omega}_{i}\right)$ over $\operatorname{Var}\left(\hat{z}_{i}\right)$.

Example 7: All parameters are given as in example 1. The plot shows

$$
\frac{\operatorname{Var}\left(\hat{\omega}_{i}\right)}{\operatorname{Var}\left(\hat{z}_{i}\right)} \text { versus } L .
$$

We see that the ratio is decreasing (but not completely monotonically) with L toward 0.5 . In fact, we have found numerically that, in most cases, the ratio is larger than 0.5 and approaches 0.5 when L is close to $N-M$.

V. Conclusion

The first-order perturbation analysis of the TK method is performed. Several fundamental properties are shown (and proved). Also, numerical examples are presented to illustrate some of the features.

Appendix A

Rank of $A_{F B}$

In this appendix, we discuss the rank of (noiseless) $A_{F B}$. As in (6), the noiseless coefficients vector g is

$$
\begin{equation*}
g=-A_{F B}^{+} h_{F B} \tag{A.1}
\end{equation*}
$$

where $A_{F B}^{+}$is defined as in (7) without the hat ${ }^{\wedge}$.
Clearly, the existence of $A_{F B}^{+}$requires that $A_{F B}$ has rank M. In fact, if and only if $A_{F B}$ has rank M, the M correct zeros $z_{i}=e^{j \omega_{i}} i(i=1,2, \cdots, M)$ can be extracted from the polynomial formed by the coefficients vector g given in (A.1).
The following decomposition is useful for our discussion:

$$
\begin{align*}
A_{F B} & =Z_{L} \Lambda Z_{R} \tag{A.2}\\
\Lambda & =\left[\begin{array}{cccc}
\left|a_{1}\right| & & & \\
& \left|a_{2}\right| & & \\
& & & \\
& & & a_{M} \mid
\end{array}\right] \tag{A.3}\\
Z_{R} & =\left[\begin{array}{cccc}
e^{-j \omega_{1}} & e^{-j \omega_{1} 2} & \cdots & e^{-j \omega_{1 L}} \\
e^{-j \omega_{2}} & e^{-j \omega_{2} 2} & \cdots & e^{-j \omega_{1 L}} \\
\vdots & & & \\
e^{-j \omega_{M}} & e^{-j \omega_{M 2}} & \cdots & e^{-j \omega_{M L}}
\end{array}\right] \tag{A.4}
\end{align*}
$$

$\mathrm{M}=\mathrm{Z} \mathrm{N}=25 \mathrm{~L}=18 \mathrm{~F} 1-\mathrm{F} 2=0.01$
Fig. 6. Performance and C-R bound for $L=18\left(f_{1}-f_{2}=0.01\right)$.

$$
\begin{aligned}
& Z_{L}=\left[\begin{array}{c}
Z_{L F} \\
-\mathbf{Z} \\
Z_{L B}
\end{array}\right]
\end{aligned}
$$

It is clear that Λ is nonsingular ($\operatorname{rank} M$), Z_{R} has rank M if and only if $L \geq M$, and Z_{L} has rank M if $L \leq N-$ M, so that $A_{F B}$ has rank M if $M \leq L \leq N-M$. It is also clear that $A_{F B}$ has rank less than M if $L \leq M$ or $L>N$ $M / 2$.

What about $N-M+1 \leq L \leq N-M / 2$, or equivalently, $M / 2 \leq N-L \leq M-1$, which are "valid" values for L proposed in [2]? It turns out that Z_{L} (or consequently $A_{F B}$) does not always have rank M for $M / 2 \leq$ $N-L \leq M-1$.

Notice that Z_{L} can be written as

$$
Z_{L}=\left[\begin{array}{l}
Z_{L F} \tag{A.6}\\
P Z_{L F} E_{N}
\end{array}\right]
$$

where

$$
P=\left[\begin{array}{ll}
& . \tag{A.7}\\
1
\end{array}\right]
$$

which is a permutation matrix;

$$
\begin{align*}
& E_{N}=\left[\begin{array}{llll}
e_{1} & & & \\
& e_{2} & & \\
& & \ddots & \\
& & & e_{M}
\end{array}\right] \tag{A.8}\\
& e_{i} \triangleq \exp \left(-j \omega_{i}(N+1)-j 2 \phi_{i}\right) . \tag{A.9}
\end{align*}
$$

In fact, if $e_{i}=e_{l}$ for all $i \neq l$, or equivalently, (10) is true for all $i \neq l$, then $E_{N}=I \cdot e_{1}$, where I is identity matrix so that

$$
Z_{L}=\left[\begin{array}{l}
Z_{L F} \tag{A.10}\\
P Z_{L F} e_{1}
\end{array}\right] \sim\left[\begin{array}{l}
Z_{L F} \\
Z_{L F}
\end{array}\right] \sim\left[\begin{array}{c}
Z_{L F} \\
0
\end{array}\right]
$$

where \sim means that one side is nonsingularly transformed from the other so that both sides have the same rank.

Fig. 7. Ratio of frequency variance over zero variance.

Clearly, Z_{L} above (or $A_{F B}$) has the same rank as $Z_{L F}$ which is of rank $N-L(\leq M-1)$ if $M / 2 \leq N-L \leq$ $M-L$.

More generally, we have the following theorem.
Theorem A.1: We partition the set $\left\{e_{1}, e_{2}, \cdots, e_{M}\right\}$ into groups $G_{1}, G_{2}, \cdots, G_{r}$, such that elements in each group are equal and elements from different groups are not. Let $N_{G j}$ be the number of elements in group G_{j}. Clearly, $\Sigma_{j=1}^{r} N_{G j}=M$. Without loss of generality, we let $N_{G 1} \geq N_{G 2} \geq \cdots \geq N_{G r}$.

Assume $M / 2 \leq N-L \leq M-1$; then

1) if $N_{G_{1}} \geq N-L+1$, then
$\operatorname{Rank}\left(A_{F B}\right)=\operatorname{Rank}\left(Z_{L}\right)$

$$
\begin{equation*}
=M-N_{G_{1}}+N-L \leq M-1 ; \tag{A.11}
\end{equation*}
$$

2) if $N_{G_{1}} \leq N-L$ and
a) if $M-N_{G_{1}}-N-L+1$, then
$N_{G_{1}}+N-L \leq \operatorname{Rank}\left(A_{F B}\right)=\operatorname{Rank}\left(Z_{L}\right) \leq M$;
b) if $M-N_{G_{1}} \leq N-L$, then

$$
\begin{equation*}
\operatorname{Rank}\left(A_{F B}\right)=\operatorname{Rank}\left(Z_{L}\right)=M \tag{A.13}
\end{equation*}
$$

Note that there is an inherent assumption that $N \geq \frac{3}{2} M$, otherwise, no choice of L can be used to estimate the M unknown frequencies.

Proof: Since $L \geq N-M+1 \geq M+1, Z_{R}$ has full rank M so that $\operatorname{Rank}\left(Z_{L}\right)=\operatorname{Rank}\left(A_{F B}\right)$. Changing the order of the last $N-L$ rows of Z_{L} leads to

$$
Z_{L} \sim\left[\begin{array}{l}
Z_{L F} \tag{A.14}\\
Z_{L F} E_{N}
\end{array}\right]
$$

Reordering the columns of Z_{L} according to G_{1}, G_{2}, \cdots, G_{r} yields

$$
Z_{L} \sim\left[\begin{array}{llll}
Z_{L F 1} & Z_{L F 2} & \cdots & Z_{L F r} \tag{A.15}\\
e_{G 1} Z_{L F 1} & e_{G_{2}} Z_{L F 2} & \cdots & e_{G_{r}} Z_{L F r}
\end{array}\right]
$$

where $e_{G_{j}}$ is an element in group G_{j}.
Multiplying the first $N-L$ rows by $e_{G_{1}}$ and subtracting it from the last $N-L$ rows yields

$$
Z_{L} \sim\left[\begin{array}{cll}
Z_{N_{G_{1}}} & Z_{L F_{1}} & \cdots \tag{A.16}\\
\underbrace{}_{L F_{r}} \\
0 & \left(e_{G_{1}}-e_{G_{2}}\right) Z_{L F_{2}} \cdots & \left(e_{G_{r}}-e_{G_{1}}\right) Z_{L F_{r}}
\end{array}\right]
$$

1) If $N_{G_{1}} \geq N-L+1$, then columns of $Z_{L F_{1}}$ span the complex vector space $C^{(N-L) \times 1}$ so that

$$
Z_{L} \sim\left[\begin{array}{cccc}
Z_{L F_{1}} & 0 & \cdots & 0 \tag{A.17}\\
0 & \left(e_{G_{1}}-e_{G_{2}}\right) Z_{L F_{2}} & \cdots & \left(e_{G_{r}}-e_{G_{1}}\right) Z_{L F_{r}}
\end{array}\right]
$$

Since $M \leq 2(N-L)$, then $M-N_{G_{1}} \leq N-L-1$ so that the last $M-N_{G_{1}}$ columns are independent. Also, Rank $\left(Z_{L F_{1}}\right)=N-L$. Therefore,

$$
\begin{equation*}
\operatorname{Rank}\left(Z_{L}\right)=M-N_{G_{1}}+N-L \leq M-1 \tag{A.18}
\end{equation*}
$$

2) If $N_{G_{1}} \leq N-L$ and
a) if $M-N_{G_{1}} \geq N-L+1$, then the last $M-$ $N_{G_{1}}$ columns of Z_{L} in (A.16) have rank at least $N-L$ (e.g., $e_{G_{2}}=\cdots=e_{G_{r}}$), or at most $M-N_{G_{1}}$ (e.g.,
$e_{G_{i}} \neq e_{G_{j}}$ for $2 \leq i \neq j \leq r$) so that

$$
\begin{equation*}
N_{G_{1}}+N-L \leq \operatorname{Rank}\left(Z_{L}\right) \leq M \tag{A.19}
\end{equation*}
$$

b) if $M-N_{G_{1}} \leq N-L$, then as can be shown similarly,

$$
\begin{equation*}
\operatorname{Rank}\left(Z_{L}\right)=N_{G_{1}}+\left(M-N_{G_{1}}\right)=M \tag{A.20}
\end{equation*}
$$

Comment: If ω_{i} and ϕ_{i} are independent (random) unknown parameters, it may be reasonable to say that Rank $\left(Z_{L}\right)=M$ in "almost'" all cases since e_{i} are unequal in "'almost'" all cases for $M / 2 \leq N-L \leq M-1$.

Appendix B

Perturbation in Truncated Pseudoinverse

In this appendix, we prove (13).
Proof: We rewrite (11)

$$
\begin{equation*}
\hat{A}=A+\Delta \hat{A} \tag{B.1}
\end{equation*}
$$

where A has rank $M . \hat{A}$ has rank $\hat{M} \geq M$; and, for the moment, $\Delta \hat{A}$ is not necessarily a matrix with very small elements.

One can verify the identity [6]

$$
\begin{align*}
\hat{A}^{+}-A^{+}= & -\hat{A}^{+} \Delta \hat{A} A^{+}-\left(\hat{A}^{H} \hat{A}\right)^{+} \Delta \hat{A}^{H} P_{A}^{\perp} \\
& +R_{\hat{A}}^{\perp} \Delta \hat{A}^{H}\left(A A^{H}\right)^{+} \tag{B.2}
\end{align*}
$$

where $P_{A}^{\perp}=I-A A^{+}$is the projector onto the orthogonal complement of the column space of $A . R_{\hat{A}}^{\perp}=I-\hat{A}^{+} \hat{A}$ is the projector onto the orthogonal complement of the column space of \hat{A}^{H}.

By SVD,

$$
\begin{align*}
\hat{A}^{+} & =\sum_{i=1}^{\hat{M}} \frac{1}{\hat{\sigma}_{i}} \hat{u}_{i} \hat{v}_{i}^{H} \tag{B.3}\\
\hat{A}_{T}^{+} & =\sum_{i=1}^{M} \frac{1}{\hat{\sigma}_{i}} \hat{u}_{i} \hat{v}_{i}^{H} \tag{B.4}
\end{align*}
$$

where $\hat{\sigma}_{i}, \hat{\boldsymbol{u}}_{i}$, and $\hat{\boldsymbol{v}}_{i}$ are defined as in (7).
Let $\hat{\boldsymbol{u}}_{o}$ be a vector from the space spaned by $\hat{\boldsymbol{u}}_{i}, \hat{\boldsymbol{u}}_{2}$, \cdots, \hat{u}_{M}. Clearly, as $\Delta \hat{A}$ approaches zero, this space approaches the column space of A^{H} so that $\hat{\boldsymbol{u}}_{o}$ approaches a vector, \boldsymbol{u}_{o}, from the column space of A^{H}; and \boldsymbol{v}_{o} is a vector from the column space of A.

Then, we know that

$$
\begin{align*}
& P_{A}^{\perp} \boldsymbol{v}_{o}=0 \tag{B.5}\\
& R_{\hat{A}}^{\perp} \hat{\boldsymbol{u}}_{o}=0 \tag{B.6}
\end{align*}
$$

and

$$
\begin{equation*}
\hat{\boldsymbol{u}}_{o}^{H} \hat{\boldsymbol{A}}^{+}=\hat{\boldsymbol{u}}_{o}^{H} \hat{A}_{T}^{+} \tag{B.7}
\end{equation*}
$$

Therefore, from (B.2),

$$
\begin{equation*}
\hat{\boldsymbol{u}}_{o}^{H}\left(\hat{A}_{T}^{+}-A^{+}\right) \boldsymbol{v}_{o}=\hat{\boldsymbol{u}}_{o}^{H} \hat{A}^{H} \Delta \hat{A} \boldsymbol{A}^{+} \boldsymbol{v}_{o} \tag{B.8}
\end{equation*}
$$

Now let $\Delta \hat{A}$ approach zero, so we have

$$
\begin{equation*}
u_{o}^{H} \Delta \hat{A}_{T}^{+} \boldsymbol{v}_{o}=-u_{o}^{H} A^{+} \Delta \hat{A} A^{+} v_{o} \tag{B.9}
\end{equation*}
$$

Appendix C Condition Number

In this appendix, we show the following theorem.
Theorem C.1: Let Z_{F} be a matrix of rank equal to the number M of its columns; let E be a unitary matrix; and let

$$
\begin{align*}
Z & =\left[\begin{array}{l}
Z_{F} \\
Z_{F} E
\end{array}\right] \tag{C.1}\\
Z^{\prime} & =\left[\begin{array}{l}
Z_{F} \\
Z_{F}
\end{array}\right] \tag{C.2}
\end{align*}
$$

Denote by σ_{1} and σ_{M}, respectively, the largest and smallest (nonzero) singular values of Z, and similarly, for σ_{1}^{\prime} and σ_{M}^{\prime}.

Then

$$
\begin{gather*}
\sigma_{1} \leq \sigma_{1}^{\prime} \tag{C.3}\\
\sigma_{M} \geq \sigma_{M}^{\prime} \tag{C.4}
\end{gather*}
$$

Therefore, the condition numbers k and k^{\prime}, of Z and Z^{\prime}, satisfy

$$
\begin{equation*}
k \triangleq \frac{\sigma_{1}}{\sigma_{M}} \leq k^{\prime} \triangleq \frac{\sigma_{1}^{\prime}}{\sigma_{M}^{\prime}} \tag{C.5}
\end{equation*}
$$

Proof: It is well known [5] that

$$
\begin{equation*}
\sigma_{1}^{2}=\max _{\|x\|_{2}=1}\left[x^{H} Z^{H} Z x\right] \tag{C.6}
\end{equation*}
$$

then

$$
\begin{align*}
\sigma_{1}^{2} & =\max _{\|x\|_{2}=1}\left[x^{H} Z_{F}^{H} Z_{F} x+x^{H} E^{H} Z_{F}^{H} Z_{F} E x\right] \\
& \leq \max _{\|x\|_{2}=1}\left[x^{H} Z_{F}^{H} Z_{F} x+x^{H} Z_{F}^{H} Z_{F} x\right] \\
& =\sigma_{1}^{\prime 2} \tag{C.7}
\end{align*}
$$

with equality when $E=I \cdot C$, where C is a complex number.

Similarly, we can show

$$
\begin{equation*}
\sigma_{M}^{2} \geq \sigma_{M}^{\prime 2} \tag{C.8}
\end{equation*}
$$

Appendix D

Computation of Var $\left(\Delta \hat{z}_{i}\right)$ and Var $\left(\Delta \hat{\omega}_{i}\right)$
This appendix gives the expressions of $\operatorname{Var}\left(\Delta \hat{z}_{i}\right)$ and $\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)$ for numerical computation.

One can verify that [from (14)]

$$
\begin{equation*}
\boldsymbol{p}_{i}^{H} \Delta \hat{A}_{F B}^{\prime} \boldsymbol{g}^{\prime}=\sum_{k=1}^{N}\left(n_{k} x_{i, k}+n_{k}^{*} y_{i, k}\right) \tag{D.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \int \sum_{l=L+1-k}^{L} p_{i, k+l-L}^{*} g_{l} \\
& x_{i, k}=\left\{\begin{array}{c}
1 \leq k \leq k_{1} \\
S_{L, N-L} \sum_{l=L+1-k}^{N-k} p_{i, k+l-L}^{*} g_{l} \\
k_{1} \leq k \leq k_{2} \\
\sum_{l=0}^{N-k} p_{i, k+l-L}^{*} g_{l} \\
k_{2}+1 \leq k \leq N
\end{array}\right. \tag{D.2}\\
& \left(\sum_{l=L+1-k}^{L} p_{i, N-2 L+k+l}^{*} g_{L-l}\right. \\
& y_{i, k}=\left\{\begin{array}{c}
1 \leq k \leq k_{1} \\
S_{L, N-L} \sum_{l=L+1-k}^{N-k} p_{i, N-2 L+k+l}^{*} g_{L-l} \\
k_{1}+1 \leq k \leq k_{2} \\
\sum_{l=0}^{N-k} p_{i, N-2 L+k+l}^{*} g_{L-l} \\
k_{2}+1 \leq k \leq N
\end{array}\right. \tag{D.3}\\
& k_{1}=\min (L, N-L) \tag{D.4}\\
& k_{2}=\max (L, N-L) \tag{D.5}
\end{align*}
$$

and

$$
S_{L, N-L}= \begin{cases}0 & L>N-L \tag{D.6}\\ 1 & L<N-L\end{cases}
$$

Note that, if $L=N-L$ or $L=\frac{1}{2} N$, there is no such k that satisfies $k_{1}+1 \leq k \leq k_{2}$, so that the second terms in $x_{i, k}$ and $y_{i, k}$ do not exist. Then from (14), (15), and (33)-(35),

$$
\begin{align*}
\operatorname{Var}\left(\Delta \hat{\omega}_{i}\right)= & \frac{1}{\operatorname{SNR}_{i}} \frac{1}{2} \sum_{k=1}^{N}\left[\operatorname{Im}^{2}\left(\frac{x_{i, k}+y_{i, k}}{D_{i}}\right)\right. \\
& \left.+\operatorname{Re}^{2}\left[\frac{x_{i, k}-y_{i, k}}{D_{i}}\right]\right] \tag{D.7}\\
\operatorname{Var}\left(\Delta \hat{z}_{i}\right)= & \frac{1}{\operatorname{SNR}_{i}\left|D_{i}\right|^{2}} \sum_{k=1}^{N}\left[\left|x_{i, k}\right|^{2}+\left|y_{i, k}\right|^{2}\right] \tag{D.8}
\end{align*}
$$

where

$$
\begin{align*}
\mathrm{SNR}_{i} & =\left|a_{i}\right|^{2} / 2 \sigma^{2} \tag{D.9}\\
D_{i} & =\sum_{l=1}^{L} l g_{l} z_{i}^{-1} . \tag{D.10}
\end{align*}
$$

References

[1] D. W. Tufts and R. Kumaresan, 'Estimation of frequencies of multiple sinusoids making linear prediction perform like maximum likelihood,'" Proc. IEEE, vol. 70, Sept. 1982.
[2] R. Kumaresan, "Estimating the parameters of exponentially damped/ undamped sinusoidal signals in noise," Ph.D. dissertation, Univ. Rhode Island, Kingston, Aug. 1982.
[3] R. Kumaresan, L. L. Scharf, and A. K. Shaw, "An algorithm for pole-zero modeling and spectral analysis," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, June 1986.
[4] Y. Bresler and A. Macovski, "Exact maximum likelihood parameter estimation of superimposed exponential signals in noise," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, Oct. 1986.
[5] G. H. Golub and C. F. VanLoan, Matrix Computations. Baltimore, MD: Johns Hopkins University Press, 1983.
[6] P. A. Wedin, "Perturbation theory for pseudo-inverse," BIT, vol. 13, pp. 217-232, 1973.
[7] T. L. Boullion and P. L. Odell, Generalized Inverse Matrices. New York: Wiley, 1971.
[8] D. C. Rife, "Digital tone parameter estimation in the presence of Gaussian noise," Ph.D. dissertation, Polytech. Inst. Brooklyn, Brooklyn, NY, June 1973.
[9] D. V. Bhaskar Rao, "An explanation to the limitation observed in the Kumaresan-Prony algorithm," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, Oct. 1986.
[10] Y. Hua and T. Sarkar, "Statistical analysis of three high resolution techniques for radio direction estimation," in Proc. ASSP Workshop. Spectrum Estimat. Model., Boston, MA, Nov. 1986.

Yingbo Hua (S '86) was born in Jiangsu, China, on November 26, 1960. He received the B.S. degree in control engineering from Nanjing Institute of Technology, Nanjing, Jiangsu, China, in January 1982, and the M.S. degree in electrical engineering from Syracuse University, Syracuse, NY, in December 1983. Currently he is a candidate for the Ph.D. degree in electrical engineering at Syracuse University.
He was a Graduate Teaching Assistant from 1984 to 1985, a Graduate Fellow from 1985 to 1986, and has been a Graduate Research Assistant since June 1986, all at Syracuse University. His research interests include various aspects of signal processing and system identification.

Tapan K. Sarkar (S'69-M'76-SM'81) was born in Calcutta, India, on August 2, 1948. He received the B.Tech. degree from the Indian Institute of Technology, Kharagpur, India, in 1969, the M.Sc.E. degree from the University of New Brunswick, Fredericton, N.B., Canada, in 1971, and the M.S. and Ph.D. degrees from Syracuse University, Syracuse, NY, in 1975.

From 1969 to 1971 he served as an Instructor at the University of New Brunswick. While studying at Syracuse University, he served as an Instructor and Research Assistant in the Department of Electrical and Computer Engineering. From 1976 to 1985 he was with Rochester Institute of Technology. From 1977 to 1978 he was a Research Fellow at the Gordon McKay Laboratory of Harvard University. Currently he is associated with Syracuse University. His research interests deal with numerical solution of operator equations arising in electromagnetics and signal processing.

Dr. Sarkar is an Associate Editor of the IEEE Transactions on Electromagnetic Compatibility, Associate Editor for feature articles in IEEE antennas and Propagation Newsletter, and he is on the Editorial Board of the Journal of Electromagnetic Waves and Applications. He is also the Vice Chairman of the URSI International Commission on Time Domain Metrology. He is a Professional Engineer registered with the State of New York, and a member of Sigma Xi and URSI Commissions A and B.

[^0]: Manuscript received January 23, 1987; revised July 6, 1987. This work was supported in part by Aeritalia Corporation and by the Office of Naval Research under Contract N00014-79-C-0598.

 The authors are with the Department of Electrical and Computer Engineering, Syracuse University, Syracuse, NY 13244-1240.

 IEEE Log Number 8718025.

