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Modified Firefly Algorithm for Solving Multireservoir
Operation in Continuous and Discrete Domains

Irene Garousi-Nejad, M.ASCE1; Omid Bozorg-Haddad2; and Hugo A. Loáiciga, Ph.D., P.E., F.ASCE3

Abstract: Reservoir systems are essential for water resources management. The application and development of optimization techniques for
optimal reservoir operation is therefore a valuable undertaking. This paper presents a modified firefly algorithm (MFA) and applies it to
optimally solve reservoir operation problems. Three well-known benchmark multireservoir operation problems are optimized for energy
production. The results of the MFA are compared with results obtained with other mathematical programming approaches, such as linear
programming (LP), differential dynamic programming (DDP), and discrete DDP (DDDP), the genetic algorithm (GA), the multicolony ant
algorithm (MCAA), the honey-bee mating optimization (HBMO) algorithm, the water cycle algorithm (WCA), the bat algorithm (BA), and
the biogeography-based optimization (BBO) algorithm. The MFAwas found to be more effective than alternative optimization methods in
solving the test problems demonstrating its strong potential to tackle multireservoir operation problems. This paper’s results indicate that
the MFA differed by 0.01 and 0.79% with the LP global optimal solutions of a continuous four-reservoir problem (CFP) and a continuous
10-reservoir problem (CTP), respectively. The objective function of a discrete four-reservoir problem (DFP) obtained with the MFA is equal
to the LP’s objective function. This paper demonstrates that the MFA is a competitive optimization method with which to solve a variety of
reservoir operation problems. DOI: 10.1061/(ASCE)WR.1943-5452.0000644. © 2016 American Society of Civil Engineers.

Author keywords: Optimization; Single objective; Benchmark multireservoir operation; Firefly algorithm; Continuous and discrete
domains.

Introduction

Water resources management is a very important and pressing
topic, particularly when dealing with reservoir operation issues.
A step forward in solving reservoir operation problems is to use
optimization methods, including mathematical programming ap-
proaches and evolutionary or metaheuristic algorithms. The fact
that mathematical programming approaches are time consuming
and cannot solve complex problems, in some cases (Bozorg-
Haddad et al. 2016), reinforces the need to resort to more reliable
algorithms. To achieve this goal, researchers have increasingly
resorted to evolutionary or metaheuristic algorithms because of
their effectiveness and versatility, instead of mathematical program-
ming approaches such as linear programming (LP) and dynamic
programming (DP).

Novel optimization techniques are commonly tested with well-
known benchmark problems whose optimal solutions are known.
A brief outline of several approaches that have been used to solve
well-known benchmark reservoir problems, namely, discrete

four-reservoir problem (DFP), continuous four-reservoir problem
(CFP), and continuous ten-reservoir problem (CTP), is presented
below.

The application of DFP was first reported by Larson (1968).
Subsequently, other researchers applied other optimization tech-
niques such as DP, differential DP (DDP), and discrete DDP
(DDDP) to solve DFP as reported by Heidari et al. (1971) and
Murray and Yakowitz (1979). The limitations of mathematical
programming techniques in solving complex real multireservoir
operation problems contributed to the rise of evolutionary or meta-
heuristic algorithms owing to their solution capacity and versatility.
DFP subsequently served as an example for the genetic algorithm
(GA) in research by Wardlaw and Sharif (1999) and HInçal et al.
(2011). Bozorg-Haddad et al. (2011) implemented the honey-bee
mating optimization (HBMO) algorithm to demonstrate its advan-
tageous performance over other optimization techniques in solving
multireservoir operation problem.

The second benchmark problem, CFP, was introduced by Chow
and Cortes-Rivera (1974) who applied LP and DDDP to solve
this problem. This problem was solved by several researchers
using mathematical programming optimization techniques such as
Murray and Yakowitz (1979). Mathematical programming optimi-
zation techniques exhibit several limitations. For this reason, CFP
has relied primarily on evolutionary and metaheuristic algorithms
as the optimization technique of choice, which replaced mathemati-
cal programming optimization techniques. As an example, Bozorg-
Haddad et al. (2011) applied the HBMO algorithm in solving the
CFP. Recently, Bozorg-Haddad et al. (2015a, b) evaluated the per-
formance of two new metaheuristic algorithms, including the water
cycle algorithm (WCA) and the bat algorithm (BA), in solving the
CFP. The latter two studies concluded that the WCA and the BA
perform better than the GA in solving the CFP. More recently,
Bozorg-Haddad et al. (2016) used biogeography-based optimiza-
tion (BBO) algorithm to reservoir operation problems, particularly
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CFP, and indicated that the application of BBO seems appropriate
and timely. The latter authors also compared BBO’s and GA’s per-
formances in the solution of CFP. Parameter-tuning for BBO is
easier and faster than GA, making it a user-friendly optimization
method.

The third benchmark problem, CTP, was introduced by Murray
and Yakowitz (1979), who showed that their modified DDP method
could solve large problems. However, owing to the realization that
evolutionary or metaheuristic algorithms are more reliable and sim-
pler for solving complex optimization problems than mathematical
programming ones, several researchers examined the performance
of the former optimization techniques in solving the CTP. Walrdlaw
and Sharif (1999) solved CTP using the GA and showed that the
results of the GA were satisfactory. Thereafter, Jalali et al. (2007)
and Bozorg-Haddad et al. (2011) used other modern optimization
algorithms in solving efficiently the CTP. The former authors pro-
posed multicolony ant algorithm (MCAA) to solve the CTP and
reported that the performance of the MCAAwas better in reaching
the near-optimal solution than those of other approaches previously
reported in the literature. The latter authors solved the CTP employ-
ing HMBO and showed the superior performance of HBMO by
comparing its results with those from different analytical and evolu-
tionary algorithms.

The firefly algorithm (FA) was introduced by Yang (2008). The
FA is a stochastic, nature-inspired, metaheuristic algorithm that has
gained acceptance and notoriety in several areas of optimization
problems over the last decade. Yang (2009) implemented the FA
to solve 10 multimodal optimization test problems and compared
FA with GA and particle swarm optimization (PSO) algorithm.
Yang (2009) demonstrated that the FA performs better than the
GA and the PSO algorithm in terms of the success rate in obtaining
the global solution of a variety of optimization problems. Yang
(2011) used chaos with the FA and compared the results with the
results of the standard FA obtained by solving the well-known
problem of the welded beam, and showed the relative effectiveness
of the proposed stochastic variant of the FA. Farahani et al. (2011)
stabilized the fireflies’ movements and increased the convergence
speed of the FA by reformulating by means of a Gaussian distri-
bution that moves the fireflies according to a random walk. The
proposed algorithm was tested with five functions, and the results
proved the better performance and greater accuracy of the proposed
algorithm than those of the standard FA. Yan et al. (2012) devel-
oped an adaptive FA (AFA) to overcome the inability of the stan-
dard FA in obtaining the global optima of large dimensional
problems. They concluded the greater accuracy of the AFA com-
pared with those of FA, differential evolution (DE) algorithm, and
PSO algorithm. Afnizanfaizal et al. (2012) attempted to improve
the searching accuracy of the FA by means of a technique named
hybrid evolutionary FA (HEFA) that combined the FA and DE al-
gorithms. The HEFA was applied to predict the parameters of a
complex, nonlinear, biological model of large dimensionality and
showed a better searching accuracy than those of the GA, the PSO
algorithm, and evolutionary programming (EP). Yang (2014) ap-
plied different stochastic distributions such as uniform, Gaussian,
levy flight, chaotic maps, and random sampling with a turbulent
fractal cloud to examine the performance of the FA. The latter au-
thor concluded that the performance of stochastic distributions
depends strongly on the type of problem solved. Thus, the proper
stochastic distribution should be selected based on the nature of the
problem being solved.

Previous research on the FA indicates that: (1) it can deal with
highly multimodal, nonlinear, optimization problems; (2) it avoids
premature convergence observed with the PSO algorithm; and (3) it
is capable of controlling its modality and adapt to a problem’s

landscape by means of its scaling parameters. The FA is, in fact,
a generalization of simulated annealing (SA) algorithm, the PSO
algorithm, and the DE algorithm (Fister et al. 2013).

The complexity of water resources management problems,
particularly in the field of optimal reservoir operation, makes math-
ematical programing approaches less efficient and enhances the
popularity of evolutionary or metaheuristic optimization algorithms
given their proven computational speed and convergence proper-
ties. One of the recently introduced metaheuristic optimization
algorithm is the FA, which has some limitations such as setting its
parameters, damping too quickly, and its low convergence speed in
solving reservoir operation problems. To overcome these limita-
tions, this study defines, implements, and tests a novel metaheur-
istic algorithm, namely, modified firefly algorithm (MFA), to derive
optimal operation policies for three well-known benchmark reser-
voir operation problems, namely, the DFP, CFP, and CTP. The
MFA developed in this study resulted in a more efficient reser-
voir-operation solving algorithm than the FA. It is shown that
the MFA has a high capacity to efficiently achieve a better solution
with a streamlined process for setting the model parameters, a
higher convergence speed, and without being damped quickly. This
paper shows that the results calculated with the MFA for three
benchmark reservoir problems are better than those reported by
previous studies measured in terms of the value of the objective
function values calculated with similar number of algorithmic eval-
uations. Also, the first obtained results from the MFA are presented
to encourage water-resources scientists and engineers to apply it in
various other fields.

Benchmark Multireservoir Operation Model

The objective function, constraints, and simulation equations of the
DFP, CFP, and CTP are presented first. It is worth noting that these
problems offer an opportunity to verify the performance of the
MFA against LP (global optimum) and other previous optimization
algorithms’ solutions published in the literature.

The objective function of the three benchmark reservoir prob-
lems is to maximize the total benefit from the hydropower produc-
tion over 12 operating periods expressed as

MaximizeB ¼
XR
r¼1

XT
t¼1

brðtÞRerðtÞ ð1Þ

in which B = total benefit of the benchmark multireservoir system;
r = index for the reservoir number; R = total number of reservoirs;
t = index for the periods of reservoir operation; T = total number of
operation periods; brðtÞ = unit benefit of release from reservoir r
during period t; and RerðtÞ = reservoir release (the sum of release
and spill) of reservoir r during period t. The reservoir releases are
the decision variables.

The reservoir’s equation of water balance, or continuity equa-
tion, is written as follows:

Srðtþ 1Þ ¼ SrðtÞ þQrðtÞ − RCMR×RRerðtÞ
r ¼ 1; : : : ;R; t ¼ 1; : : : ;T ð2Þ

in which Srðtþ 1Þ = (water) storage of reservoir r at the beginning
of period tþ 1; SrðtÞ = storage of reservoir r at the beginning of
period t;QrðtÞ = net inflow (the net of river inflow, precipitation on
the reservoir’s surface, evaporation from the reservoir lake, and net
seepage on the reservoir bottom) to reservoir r during period t;
RCMR×R = R-order matrix of indexes of reservoir connections
with −1’s along the diagonal, þ1’s off-diagonal entries that

© ASCE 04016029-2 J. Water Resour. Plann. Manage.
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describe reservoir releases to a downstream reservoir, and zeros
elsewhere.

The reservoir releases and reservoir storages have lower and
upper bounds expressed as

ReminrðtÞ ≤ RerðtÞ ≤ RemaxrðtÞ r ¼ 1; : : : ;R; t ¼ 1; : : : ; T

ð3Þ

SminrðtÞ ≤ SrðtÞ ≤ SmaxrðtÞ r ¼ 1; : : : ;R; t ¼ 1; : : : ;T ð4Þ

in which ReminrðtÞ and RemaxrðtÞ = minimum and the
maximum allowable releases from reservoir r during period t,
respectively. Likewise, SminrðtÞ and SmaxrðtÞ = minimum and
the maximum allowable storages of reservoir r during period t,
respectively.

The last constraints of the benchmark problems specify the
initial and final storages of each reservoir

Srð1Þ ¼ Sinitialr r ¼ 1; : : : ;R ð5Þ

SrðT þ 1Þ ¼ Stargetr r ¼ 1; : : : ;R ð6Þ

in which Sinitialr and Stargetr = initial and the final storages of
reservoir r, respectively.

It is worth mentioning that the feasible results of reservoir
operation are those in which all the stated constraints are sat-
isfied. Penalty functions are required to specify constraints in
the evolutionary or metaheuristics algorithms. The penalty func-
tions produce solutions with negligible violations of the physical
constraints [Eqs. (2)–(6)]. The penalty functions of the cited bench-
mark problems are expressed as follows:

P1;t ¼
�
0 if SrðtÞ > SminrðtÞ
g × ½SminrðtÞ − SrðtÞ�2 Otherwise

ð7Þ

P2;t ¼
�
0 if SrðtÞ < SmaxrðtÞ
g × ½SrðtÞ − SmaxrðtÞ�2 Otherwise

ð8Þ

P3;t ¼
�
0 if SrðtÞ> StargetrðtÞ
g× ½StargetrðtÞ−SrðTþ 1Þ�2 Otherwise

ð9Þ

with r ¼ 1; : : : ;R; t ¼ 1; : : : ; T, P1;t, P2;t, and P3;t = the penalties
imposed on the violation of constraints stated in Eqs. (4)–(6), re-
spectively, during period t. Additionally, g = the penalty constant
which is considered equal to 40 for the DFP and CFP (Heidari et al.
1971) and 60 for the CTP (Wardlaw and Sharif 1999).

The above penalty functions are added to Eq. (1). Consequently,
the modified objective function of the problem that is solved is
expressed as follows:

MaximizeB 0 ¼
XR
r¼1

XT
t¼1

brðtÞRerðtÞ − P1;t − P2;t − P3;t ð10Þ

in which B 0 = modified objective function.

Methodology

This section is divided into two subsections. Subsection (1)
describes the FA, and subsection (2) describes the MFA.

Fireflyalgorithm (FA)

The FA is inspired by the behavior of fireflies in nature. Fireflies
emit their stored energy as a light to mate, hunt, or evade pesky
insects, and protect themselves. Thus, that fireflies produce attrac-
tiveness through the emission of light. This unique biologic phe-
nomenon served as the basis for the FA. Firefly behavior suggests
the following rules: (1) All fireflies are unisex and their attractive-
ness depends only on the amount of flashed light; and (2) the
attractiveness of fireflies is proportional to their brightness. Accord-
ingly, for any two flashing fireflies, the firefly which flashes less
intensely will move towards the firefly which flashes more
intensely. The longer the distance between fireflies, the lower their
attractiveness and brightness. The movement of fireflies continues
guided by rules (1) and (2) until there is not a brighter firefly in a
group. In this case, fireflies move randomly. Rule (3) states that the
brightness of a firefly is determined by an objective function.

According to Yang’s (2009) assumptions, the attractiveness of a
firefly is calculated by Eq. (11)

βð℘Þ ¼ β0e−γ℘
im

im ≥ 1 ð11Þ

in which βð℘Þ = and β0 denote the firefly’s attractiveness and the
attractiveness at a distance ℘ ¼ 0, respectively. Also, γ = light
absorption coefficient, and ℘ = the distance between any two
fireflies. Yang (2009) proposed the value of im equal to two.

As noted by Yang (2009), the distance between any pair of i
and j fireflies at the positions xi and xj, respectively, equals the
Cartesian distance and is computed with Eq. (12)

℘ij ¼ kxi − xjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXTD
d¼1

ðxi;d − xj;dÞ2
vuut ð12Þ

in which ℘ij = Cartesian distance between a pair of i and j fireflies;
‖ ‖ = distance norm between a pair of i and j fireflies in space;
d = index for spatial dimensions (decision variables); TD = total
number of dimensions (decision variables); xi;d = dth dimension
of the spatial coordinate of the ith firefly’s position; and xj;d =
dth dimension of the spatial coordinate of the jth firefly’s position.

Yang (2009) pointed out that the distance ℘ij defined above is
not limited to Cartesian (Euclidean) distance. Other formulations of
℘ij can be defined in the d-dimensional hyperspace, depending on
the type of problem.

The movement of firefly i towards a more attractive (brighter)
firefly j is determined by Eq. (13)

xnewi ¼ xi þ βð℘Þ · ðxj − xiÞ þ αεi ð13Þ

in which xnewi = and xi = new and the current positions of firefly i,
respectively, where firefly i is less bright than firefly j; xj = position
of firefly j, which is brighter than firefly i; α = randomized param-
eter; and εi = vector of random numbers drawn from a Gaussian
distribution or uniform distribution. Eq. (13) shows that the new
position of any firefly with low brightness is associated with
two factors. The first factor is the position of the firefly with more
brightness, and the second one is a random walk biased
towards the brighter fireflies. Given these factors, Eq. (14) is a re-
written form of Eq. (13) in which Eq. (11) is used instead of βð℘Þ
and (rand − 0.5) is used instead of εi

xnewi ¼ xi þ β0e
−γ℘2

ijðxj − xiÞ þ αðrand − 0.5Þ ð14Þ

© ASCE 04016029-3 J. Water Resour. Plann. Manage.
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in which (rand − 0.5) = the simplest form of εi, where rand is a
random number generator uniformly distributed in [0, 1].

Because the performance of the FA is sensitive to the parame-
ters’ values, there are recommended ranges for them. In accordance
with the Yang (2009) recommendation, it should be noted that in
theory, γ ∈ ½0;∞Þ, but in most practical applications it typically
varies from 0.1 to 10. However, the true range of this parameter
depends on the system that is optimized. Moreover, Yang (2009)
chose β0 ¼ 1 and α ∈ ½0; 1�.

The FA can be employed to solve complex problems with sta-
tionary or nonstationary objective functions, and continuous or dis-
crete structure. Yet, it may have limitations in some case studies.
For instance, Yang (2009) indicated that the distance ℘ij requires
specification based on the solved problem. Moreover, selecting the
proper value or determining the proper ranges for the parameters of
the FA is another issue that may hinder its performance. To address
these limitations, the authors modified the FA to produce a modi-
fied FA (MFA) that circumvents the cited limitations in solving
multireservoir operation problems.

Modified Firefly Algorithm (MFA)

Multireservoir operation is a complex and multidimensional prob-
lem. The implementation of FA to solve such problems requires
modifications with which the best solution can be calculated. Four
steps are used to achieve the MFA. Before describing those four
main steps, a predevelopment step is introduced.

Predevelopment Step: Determine the Range of β�℘�
Eq. (13) shows that the new position of a firefly with low bright-
ness is affected by two factors. The first factor [second term on the
right-hand side of Eq. (13)] plays a role of modification so that the
firefly with low brightness moves towards a brighter one. The sec-
ond factor [third term on the right-hand side of Eq. (13)] is a
random-movement operator. Thus, it is expected that the second
term focuses only upon modification. The value of βð℘Þ is a per-
centage of the vector describing the distance between two fireflies
and ranges from zero to one. If βð℘Þ ¼ 0, the position of the fire-
fly with low brightness is not modified, and it does not move to-
wards the firefly with more brightness. In such situations, the new
position of a firefly with low brightness is only affected by the
random operator in Eq. (13). If βð℘Þ ¼ 1, the new position of
the firefly with low brightness is equal to the position of the firefly
with more brightness. However, this first movement of the firefly
with low brightness is not complete because a random walk is
added to it and new positions are searched. If βð℘Þ > 1, the firefly
with low brightness can move towards the firefly with more
brightness according to equations that may include a random part
in the modification term. To recall a previous statement, the sec-
ond term of Eq. (13) simply modifies a firefly’s position without
imposing any random walk. Thus, the values of the predefined
parameters used in the second term of Eq. (13) cause βð℘Þ to
range between zero and one.

Modification Step 1—Change the Fireflies’ Positions under
All Conditions of Brightness
This modification increases the conditions under which solutions
are modified. This means that if firefly i is less bright than firefly
j, the first modification of the solution is applied and a random
walk is conducted. Otherwise, if firefly i is as bright as or brighter
than firefly j, a random walk is applied to the solution. This modi-
fies the FA, which does not impose movement under this condition.
This modification produces more new positions of fireflies in each
iteration of the MFA than in the FA.

Modification Step 2—Change the Application of the
Random Walk Operator
This is the key modification in the MFA. Recall that the random
walk is conducted by the third term of Eq. (13) in the FA. There-
fore, a value with a range between [0, 1] is applied to all the de-
cision variables of a firefly in each iteration as shown in Fig. 1(a).
Applying random walk in this manner is not appropriate when
the FA is used to solve a multireservoir operation problem. The
proof of this statement is that the values of the decision variables
in a multireservoir operation problem are mostly large values,
which indicates that in some cases one must apply random-walk
values larger than those in the range [0, 1] to the decision vari-
ables. The application of random walk operator in the MFA is as
follows:
1. The decision variables of a firefly are randomly placed in dif-

ferent classes. The number of classes is defined by the user after
a preliminary trial and error process. However, it is recom-
mended that further study be conducted about the number of
classes.

2. For each class, a different range from which a random value is
selected is defined. It should be noted that these ranges include
small and large ranges.

3. The ranges of classes with large ranges are decreased with
a decreasing (damping) coefficient. However, the ranges of
classes with small ranges remain unchanged. In other words, the
MFA has the opportunity of reaching more solutions in the de-
cision space in its first iterations. This is in contrast with the FA,
which uses an identical range in all iterations, and a smaller so-
lution space is searched. Thus, in some cases, the FA might be
quickly damped or stopped at local optima. Fig. 1(b) depicts this
modification.
The number of the classes used in this step depends on the type

of problem solved and can be determined after a quick trial and
error process.

Modification Step 3—Define the Distance between Fireflies
in the Case of Reservoir Operation Problems
According to Yang’s (2009) recommendation, the formulation of
the distance between a pair of fireflies should change based on
the problem. Any mathematical formulation of the firefly distance
that causes the better solutions can be used. In reservoir operation
problems, the values of decision variables cause the value of ℘ij to
become large so that the term e−γ℘2

, regardless of what the value of
γ is, becomes nearly zero. For this reason, the second term in
Eq. (14) vanishes, and the next movement of a firefly is conducted
randomly. Hence, the values of the objective that are primarily
in the range [0, 1] are used as expressed in Eq. (15) instead of

Decision variable
Solution Firefly

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 (rand 0.5)  1

13 8 1 16 5 21 17 24 9 19 2 4 14 20 22 3 15 10 7 18 11 6 23 12

1 (rand 0.5)  1
1

3 (rand 0.5)  3
2 10 (rand 0.5)  10

3
30 (rand 0.5)  30

4

Decision variable
Solution Firefly

(a)

(b)

Fig. 1. Manner of applying the random walk operator in (a) the FA;
(b) the MFA
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the values of decision variables to formulate the distance between
fireflies in MFA

℘ij ¼ OFj − OFi ð15Þ
in which OFi and OFj are the values of objective functions of the
ith and jth fireflies, respectively, where firefly i is less bright than
firefly j. Thus, the value of ℘ij in Eq. (15) is always positive in
maximization problems. It is noted that in minimization problems,
Eq. (15) changes to ℘ij ¼ OFi − OFj.

Modification Step 4—Select the Unique Final Solutions for
the Next Iteration
In all evolutionary or metaheuristic algorithms, the solutions at
the end of each iteration are sorted based on the objective function
values so as to be used in the next iteration. If some solutions are
similar so that the decision variables and the objective functions are
the same, each of them is considered as a separate solution. Thus,
repetitive solutions may appear in the process of selecting the best
sorted solutions. In such a situation, the number of repetitive so-
lutions is increased during the sequential iterations so that in the
last iterations the solutions that are transferred to the next iteration
are equal to each other. This issue causes the evolutionary or meta-
heuristic algorithms to be quickly damped, and the solutions do not
change significantly.

The fourth modification is concerned with selecting unique final
solutions for the next iteration. With this modification, the MFA is
not damped quickly.

Recommended MFA Parameters
The performance of the MFA is sensitive to the parameters’ values.
The following are ranges recommended by the authors for use with
the MFA:
1. β0: The value of this parameter is equal to one as Yang (2009)

suggested.

2. αn: The decision variables of a firefly need to be classified into
different classes randomly in the MFA. Thus, the number of ran-
domization parameters is equal to the number of classes, and for
each class n, a different range of the randomization parameter
(αn) is defined. αn may vary within a narrow range in some of
these classes (for instance from −1 toþ1) and in other classes it
may change in a wide range (−30 to 30). It is noted that damp-
ing the values of the randomization parameter causes the wide
ranges to change into narrow ranges during the implementation
of the iterative MFA.

3. γ: The proper values for this parameter depends on the type of
problem being solved. In other words, the values of γ depends
on ℘. Table 1 lists several values of ℘ and γ and the calculated
βð℘Þ. It is seen in Table 1 that the values of βð℘Þ and ℘ vary
from 0 to 1. In addition, the values of γ range from 0.0001
to 10,000, which covers the practical range recommended by
Yang (2009). Table 1 shows that βð℘Þ changes most when
γ ∈ ½0.1; 10�. Therefore, the value of γ recommended for the
MFA is [1, 5] according to Table 1.
The complete flowchart of the MFA is depicted in Fig. 2 in

which the development steps are shown with light gray rectangular
shapes. It is noted that the MFA is not a simple application of the
FA reported by Yang (2009). The four modifications detailed above
and Fig. 2 show that the MFA is a substantially improved FA
well suited for solving multireservoir optimization problems. On
the whole, the strength and novelty of the MFA in comparison with
FA consist of (1) the distance ℘ij has been specified based on the
characteristics of the reservoir problem in the MFA. This modifi-
cation contributes to enhance the convergence speed and searching
process; (2) the parameters of the MFA can be set more readily and
properly than in the FA, whose parameter specification is a time
consuming process; (3) whereas in the FA the fireflies’ positions
only change under specific conditions, the fireflies’ positions in the
MFA change under all conditions of brightness. This modification

Table 1. Values of βð℘Þ for Different Values of ℘ and γ

γ

℘

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1

0.0001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0005 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.005 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.01 1 1 1 1 1 1 1 1 1 1 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1
0.05 1 1 1 0.99 1 0.99 1 0.98 1 0.98 1 0.97 1 0.97 1 0.96 1 0.96 1 0.95 1
0.10 1 1 1 0.99 1 0.98 1 0.97 1 0.96 1 0.95 0.9 0.94 0.9 0.93 0.9 0.92 0.9 0.91 1
0.15 1 0.99 1 0.98 1 0.96 1 0.95 0.9 0.93 0.9 0.92 0.9 0.91 0.9 0.89 0.9 0.88 0.9 0.87 1
0.20 1 0.99 1 0.97 1 0.95 0.9 0.93 0.9 0.91 0.9 0.9 0.9 0.88 0.9 0.86 0.9 0.84 0.8 0.83 1
0.50 1 0.98 1 0.93 0.9 0.88 0.9 0.84 0.8 0.8 0.8 0.76 0.7 0.72 0.7 0.69 0.7 0.65 0.6 0.62 1
0.70 1 0.97 0.9 0.90 0.9 0.84 0.8 0.78 0.8 0.73 0.7 0.68 0.7 0.63 0.6 0.59 0.6 0.55 0.5 0.51 0
0.90 1 0.96 0.9 0.87 0.8 0.8 0.8 0.73 0.7 0.67 0.6 0.61 0.6 0.56 0.5 0.51 0.5 0.47 0.4 0.43 0
1 1 0.95 0.9 0.86 0.8 0.78 0.7 0.7 0.7 0.64 0.6 0.58 0.5 0.52 0.5 0.47 0.4 0.43 0.4 0.39 0
3 1 0.86 0.7 0.64 0.5 0.47 0.4 0.35 0.3 0.26 0.2 0.19 0.2 0.14 0.1 0.11 0.1 0.08 0.1 0.06 0
4 1 0.78 0.6 0.47 0.4 0.29 0.2 0.17 0.1 0.11 0.1 0.06 0 0.04 0 0.02 0 0.01 0 0.01 0
7 1 0.70 0.5 0.35 0.2 0.17 0.1 0.09 0.1 0.04 0 0.02 0 0.01 0 0.01 0 0 0 0 0
10 1 0.61 0.4 0.22 0.1 0.08 0 0.03 0 0.01 0 0 0 0 0 0 0 0 0 0 0
13 1 0.52 0.3 0.14 0.1 0.04 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0
15 1 0.47 0.2 0.11 0 0.02 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0
17 1 0.43 0.2 0.08 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0.37 0.1 0.05 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 1 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 1 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1,000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10,000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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produces more new positions of fireflies in each iteration of the
MFA and enhances the convergence speed; (4) the application
of the random walk operator in MFA is modified which leads to
search a wider decision space and a better movement of fireflies
until finding the best solution; and (5) selecting unique possible
solutions for the next iteration prevents the appearance of repetitive
solutions in the process of selecting the best sorted solutions.

Results and Discussions (Algorithm Application:
Benchmark Multireservoir Operation Systems)

Three reservoir benchmark problems, DFP, CFP, and CTP, were
chosen to test the capability of the MFA in solving multireservoir
operation problems (Appendixes I, II, and III). These problems offer
the opportunity to test the performance of MFA against LP (known
global) solutions and previous solutions published in the literature.

The data used with the DFP, CFP, and CTP can be found in the
studies of Larson (1968), Chow and Cortes-Rivera (1974), and
Murray and Yakowitz (1979), respectively. Nevertheless, this paper
compiled the complete datasets for the three reservoir benchmark
problems for clarity and reproducibility purposes (see Appendix).

Three benchmark problems of reservoir operation were evalu-
ated to test the performance of the MFA. The results of DFP, CFP,
and CTP obtained from LP, the FA, and the MFA are presented in
the next three subsections.

Results for the Discrete Four-Reservoir Problem (DFP)

The DFP was solved in this study with LP, the FA, and MFA. LP
was implemented with the Lingo 14.0 optimization software and
produced a value of the objective function equal to 401.3, the same
value as that reported by Larson (1968). TheMATLAB 12 software
was used to implement the FA and the MFA. The parameters for
the FA are the number of fireflies, the number of iterations, β0, γ,
and α, which were set equal to 50, 300, 2, 0.01, and 1, respectively,
according to the FA’s recommendations and preliminary trial and
error evaluation. Likewise, the parameters of the MFA, which are
the number of fireflies, the number of iterations, the number of
classes, β0, and γ were 50, 300, 10, 1, and 5, respectively, accord-
ing to the MFA’s recommendations and preliminary trial and error
testing. Setting the number of functional evaluations (reporting
the number of functional evaluations is more informative than

Fig. 2. Complete flowchart of the MFA (the modification steps are shown with light gray rectangular shapes)
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reporting the computational time because the number of functional
evaluations is independent of the computing equipment, thus pro-
viding a fairer comparison) equal to 15,000, the FA and the MFA
converged to the best objective function values equal to 395.90 and
401.3, respectively, in five independent solution runs. The objec-
tive function outputs from five runs of the FA and the MFA for
the benchmark problems are listed in Table 2, from which it is con-
cluded that the MFA reached the same result as LP in all five sol-
ution runs of the DFP. The best solution run of the FA differs
approximately by 1.4% from that of LP. Fig. 3(a) shows the
comparisons between FA and MFA in terms of their rates of con-
vergence over five solution runs for the DFP. For better interpre-
tation of the difference between FA and MFA, a narrower boundary
of the objective function value is illustrated in Fig. 3(b) for DFP
which highlights the difference between the FA and the MFA con-
vergence rates using narrow bounds. According to Fig. 3(b), it is

concluded that the MFA converges more rapidly than the FA in
15,000 functional evaluations, and yielded a better objective func-
tion value than that of the FA. Another important issue is that even
though the objective function values obtained from the MFA are the
same over five solution runs, four alternative solutions (solutions
with different decision variables values but the same objective func-
tion values) were obtained. In other words, one may notice that the
DFP has at least four other optimal alternative solutions that have
been determined in this study. Bozorg-Haddad et al. (2011) stated
that the HBMO detected at least two other optimal alternative so-
lutions. Thus, the MFA determined more alternative solutions than
any other previous study. Figs. 4 and 5 illustrate the monthly res-
ervoir releases and storages, respectively, obtained from the FA and
the MFA compared with those from LP. According to Fig. 4(a), re-
gardlessof thedifferences in releases schedule ofMFA, the samevalue
of 401.3 is obtained as the optimal value of the objective function.

Table 2. Objective Function Outputs from Five Runs of the FA and MFA for the Benchmark Problems

Run number

Discrete four-reservoir (DFP) Continuous four-reservoir (CFP) Continuous 10-reservoir (CTP)

FA MFA LP FA MFA LP FA MFA LP

1 388.80 401.3 401.3 304.72 308.26 308.2915 1,101.06 1,184.07 1,194.44
2 395.90 401.3 — 305.86 308.23 — 1,100.32 1,184.99 —
3 394.70 401.3 — 306.35 308.13 — 1,088.23 1,181.32 —
4 391.00 401.3 — 305.13 308.23 — 1,107.85 1,182.59 —
5 389.00 401.3 — 305.50 308.20 — 1,089.58 1,185.00 —
Best 395.90 401.3 — 306.35 308.25 — 1,107.85 1,185.00 —
Average 391.88 401.3 — 305.51 308.21 — 1,097.41 1,183.59 —
Worst 388.80 401.3 — 304.72 308.13 — 1,088.23 1,181.32 —
Standard deviation 2.9070 0.0000 — 0.6647 0.0503 — 8.0142 1.5177 —
Percentage difference of
the best run against LP

1.35 0 — 0.63 0.01 — 7.25 0.79 —

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

100 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000

O
bj

ec
ti

ve
 fu

nc
ti

on
 v

al
ue

Number of functional evaluations

FA MFA

359

364

369

374

379

384

389

394

399

404

3600 5100 6600 8100 9600 11100 12600 14100

O
bj

ec
ti

ve
 f

un
ct

io
n 

va
lu

e

Number of functional evaluations

FA MFA

249

259

269

279

289

299

309

100 10000 110000 210000 310000 410000

O
bj

ec
ti

ve
 f

un
ct

io
n 

va
lu

e

Number of functional evaluations

FA MFA

1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

1220

100 100000 200000 300000 400000 500000

O
bj

ec
ti

ve
 f

un
ct

io
n 

va
lu

e

Number of functional evaluations

FA MFA

(a) (b)

(c) (d)

Fig. 3. Comparisons of FA and MFA rates of convergence over five runs for (a) the DFP; (b) the DFP with narrower bounds for better interpretation;
(c) the CFP; (d) the CTP; highest curve is best for maximization
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Results of the Continuous Four-Reservoir Problem
(CFP)

The CFP was solved in this work with LP, the FA, and the MFA.
The LP was implemented with the Lingo 14.0 optimization soft-
ware which produced an optimal value of the objective function
equal to 308.2915, the same value reported by Bozorg-Haddad et al.
(2011). The MATLAB 12 software was used to implement the FA

and the MFA. The parameters for the FA are the number of fireflies,
the number of iterations, β0, γ, and α were set equal to 50, 10,000,
2, 0.1, and 1, respectively, according to the FA’s recommendations
and preliminary trial and error evaluation. Likewise, the parameters
for the MFA are the number of fireflies, the number of iterations,
the number of classes, β0, and γ were set equal to 50, 10,000, 10, 1,
and 5, respectively, according to the MFA’s recommendations
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Fig. 4.Monthly reservoir releases of the best run of five runs for DFP obtained from (a) the FA; (b) the MFA; for the CFP obtained from (c) the FA;
(d) the MFA
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and preliminary trial and error testing. The number of functional
evaluations (which is independent of the type of computer used)
was 500,050 (almost 0.5 million). The FA and the MFA converged
to the best objective function values equal to 306.35 and 308.25,
respectively, over five independent runs. It is worth mentioning
that this optimal value obtained with the FA (308.25) is larger
than those reported in previous studies by other authors. In fact,
with the same number of functional evaluations (0.5 million)
Bozorg-Haddad et al. (2015a) found the best value to be 308.20.
Moreover, Bozorg-Haddad et al. (2011) reported a value equal to
308.24 with 14 million functional evaluations, which is 28 times
the 0.5 million evaluations of the MFA and yielded a result inferior
to that of the MFA. The objective function outputs from five runs of
the FA and the MFA are listed in Table 2. From the values in
Table 2, it is concluded that the best objective function value of
the MFA differs approximately 0.01% from LP’s solution, whereas
the best objective function value of the FA differs approximately
0.63% fromLP’s solution. Fig. 3(c) shows the comparisons between
FA andMFA in terms of their rates of convergence over five solution
runs for the CFP. Based on Fig. 3(c), it is concluded that the MFA
converged quickly to an objective function better than that of the FA
with 0.5 million functional evaluations. Figs. 4 and 5 illustrate the
monthly reservoir releases and storages, respectively, obtained with
the FA and the MFA and compared with those calculated with LP.
According to Figs. 4(c and d) and 5(c and d), it is evident that the
releases and the storages obtained with the MFA are very close or
identical to those from LP in most periods. However, the results of
the FA differ significantly from those of LP.

Results of the Continuous Ten-Reservoir Problem (CTP)

The CTP was solved in this work with LP, the FA, and the MFA. LP
was implemented with the Lingo 14.0 optimization software and
calculated the best value of the objective function to be equal to

1,194.44, the same value reported by Bozorg-Haddad et al. (2011).
The MATLAB 12 software was used to implement the FA and the
MFA. The parameters for the FA are the number of fireflies, the
number of iterations, β0, γ, and α were set to 50, 20,000, 2, 0.01,
and 0.5, respectively, according to the FA’s recommendations and
preliminary trial and error testing. Likewise, the parameters for
MFA are the number of fireflies, the number of iterations, the num-
ber of classes, β0, and γ are considered as 50, 20,000, 10, 1, and 5,
respectively, according to the MFA’s recommendations and
preliminary trial and error evaluations. Setting the number of func-
tional evaluations (which is independent of the type of computer
used) equal to approximately one million, the FA and the MFA
converged to best objective function values equal to 1,107.85 and
1,185.00, respectively, over five independent runs. It is worth men-
tioning that this optimal obtained with the MFA (1,185.00) is larger
than that obtained by Bozorg-Haddad et al. (2011) with 1.32 million
functional evaluations. The objective function outputs from five
runs of the FA and the MFA are listed in Table 2, which shows
that the best objective function value of the MFA differs less than
1% from the LP’s best value of the objective function, while the
best objective function value of the FA differs approximately 7%
from the LP’s best solution. Fig. 3(d) shows the comparisons be-
tween FA and MFA in terms of their rates of convergence over five
solution runs for the CTP. Based on the displayed convergence
rates, it is concluded that the MFA converged more rapidly than
the FA and yielded a better objective function value. Figs. 6 and 7
illustrate the monthly reservoir releases and storages, respectively,
obtained with the FA and the MFA and compared with the LP so-
lutions. Figs. 6 and 7 demonstrate that the releases and the storages
obtained with the MFA are closer to those of LP than those calcu-
lated with the FA.

Apart from comparing the results of MFA with those of FA
and LP for three benchmark problems, this work compared its per-
formance with previous published results using different methods.
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Fig. 6. Monthly reservoir releases of the best run of five runs for the CTP obtained from (a) the FA; (b) the MFA
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Table 3. Comparison of Computed Objective Function from Various Mathematical Programming Approaches or Algorithms for the Benchmark Problems

Benchmark problem Study Method Number of functional evaluations Objective function value

Discrete four-reservoir (DFP) Larson (1968) LP — 401.300
Heidari et al. (1971) DDDP — 399.060

Murray and Yakowitz (1979) Modified DDP — 401.274
Wardlaw and Sharif (1999) GA 750,000 401.300

HInçal et al. (2011) New version of GA 25,000,000 401.300
Bozorg-Haddad et al. (2011) HBMO 1,100,000 401.300

Present study FA 15,000 395.900
Present study MFA 15,000 401.300

Continuous four-reservoir (CFP) Chow and Cortes-Rivera (1974) LP — 308.2665
Chow and Cortes-Rivera (1974) DDDP — 307.9800
Murray and Yakowitz (1979) Modified DDP — 308.2340
Bozorg-Haddad et al. (2011) LP — 308.2915
Bozorg-Haddad et al. (2011) HBMO 14,000,000 308.2400
Bozorg-Haddad et al. (2011) HBMO 1,100,000 308.0700
Bozorg-Haddad et al. (2015b) WCA 1,100,000 307.5000
Bozorg-Haddad et al. (2015b) BA 500,000 308.2000
Bozorg-Haddad et al. (2016) BBO 500,000 308.1200

Present study FA 500,000 306.35
Present study MFA 500,000 308.25

Continuous 10-reservoir (CTP) Murray and Yakowitz (1979) DDDP — 1,190.25
Wardlaw and Sharif (1999) LP — 1,194.00
Wardlaw and Sharif (1999) GA 500,000 1,190.25

Jalali et al. (2007) MCAA 3,000,000 1,192.39
Bozorg-Haddad et al. (2011) HBMO 14,000,000 1,192.54
Bozorg-Haddad et al. (2011) HBMO 1,320,000 1,156.79

Present study FA 1,000,000 1,107.85
Present study MFA 1,000,000 1,185.00
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Table 3 lists results of the comparison. It is evident in Table 3 that
the MFA solved the CFP with the lowest number of functional eval-
uations (15,000) compared with other solution algorithms. Not
only does it achieve the best solution equal to LP (global optimum),
but it also produces four alternatives. Thus, it is asserted that the
MFA can effectively solve discrete multireservoir operation prob-
lems with a reliability of 100% of obtaining the global solution.
Similarly, in CFP, it is concluded that MFA achieved the nearest
solution to the LP (global optimum) compared with all of the meth-
ods listed in Table 3. The results of Table 3 establish that the MFA
dominated the BA, BBO, and the FA with the same number of
functional evaluations (0.5 million). Therefore, it is concluded that
the MFA achieved the best solution for the CFP with the fastest
convergence among all the tested solution algorithms.

For the last benchmark problem, CTP, according to Table 3,
the MFA dominated the HBMO and the FA when using about
the same number of functional evaluations (1 million). The results
of Table 3 indicate that the MFA was not able to dominate the
GA with 1 million functional evaluations (see also results by
Wardlaw and Sharif 1999). Yet, the procedure of setting the param-
eters of the MFA is easier and faster owing to modifications
introduced in this paper’s methodology.

Although the MFA performance was illustrated for each problem
independently, a comparison of the algorithm’sperformance across
these problems is pertinent. The average convergence rate of conver-
gence of each problemwas normalized so that all the objective values
were divided by the LP result (global optimal solution). The three nor-
malized average convergence rates are displayed in Fig. 8, where is
shown in part a) the total range of objective function variation, and in
Fig. 8(b) the normalized range ([0,1] without the negative values)
for better comparison. It is concluded from Fig. 8 that as the number
of reservoirs increases, the number of functional evaluations required
to reach near-optimal solutions also increases. In addition, the algo-
rithm converges more slowly compared with the convergence rate at-
tained when the number of reservoirs (and of decision variables) is
smaller. In other words, convergence to the solution of the CFP is
faster and with a lower number of functional evaluations than that ob-
served for the CTP. It is also seen in Fig. 8 that convergence to the
CFP’s solution is faster than that obtained for the DFP’s solution.

Concluding Remarks

This paper has demonstrated that the MFA is a new metaheuristic
algorithm capable of optimally solving multireservoir operation

problems. Because of the limitations of FA to accurately solve
complex optimization problems, FA was modified and entitled
MFA. The MFAwas employed to solve three benchmark reservoir
operation problems. Based on the results of the first problem, the
DFP, it is concluded that the MFA could calculate the best value of
the objective function, equal to the global optimum achieved with
LP (401.3). Another substantial achievement of applying the MFA
to solve the DFP is that it identified four different alternative opti-
mal solutions that had not been reported before by other investiga-
tors using other techniques. This finding confirms the wide range of
the solution space searched by the MFA.

Concerning the CFP, the optimal solution obtained with the
MFA (308.25) is 99.99% of the LP solution (308.29), and is larger
than those reported by previous studies published in the literature
considering approximately the same number of functional evalu-
ations. This negligible difference reveals that the MFA is reliable
when applied to continuous multireservoir operation problems.
Concerning the results of the MFA for the third problem, the CTP,
the advantages and superior performance of MFA were highlighted
by solving the complex CTP reaching the best value of the objective
function (1,185.00) being 99.21% of the LP solution (1,194.44). It is
noted that this calculated value is larger than those obtained in pre-
vious studies published in the literature using approximately the same
number of functional evaluations.

This study’s results demonstrate that the MFA can efficiently
handle problems in continuous and discrete domains. Our evalu-
ation of the MFA’s solving capacity with well-known benchmark
problems indicates that it is reliable for optimizing multireservoir
operation problems.

Appendix I. Discrete Four-Reservoir System
Operation Problem (DFP) (Maximization)

The DFP system consists of four reservoirs with associated fluxes
illustrated in Fig. 9(a). In accordance with the layout of the DFP
shown in Fig. 9(a), the matrix of indexes of reservoir release con-
nections is expressed as

RCM4×4 ¼

2
66664

−1 0 0 0

0 −1 0 0

0 þ1 −1 0

þ1 0 þ1 −1

3
77775 ð16Þ
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Fig. 8. Normalized average rates of convergence over five runs for the DFP, CFP, and CTP obtained from the MAF: (a) total range of objective
function value; (b) smaller range of objective function value
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The water released from reservoirs is utilized for hydro-
power generation and for irrigation supply. Hydropower
generation is possible in each reservoir, and part of the release
from reservoir number 4 is diverted for irrigation supply. In
addition, the benefits of hydropower generation and irrigation
supply are quantified by linear functions of discharge.

Table 4 represents the net inflows to reservoirs, the maximum
allowable reservoirs storages, and the benefits data for the
DFP. Moreover, the minimum allowable reservoirs storages,
the initial reservoirs storages, the target reservoirs storages,
and the constraints imposed on reservoirs releases are listed
in Table 5.

Reservoir 1

Reservoir 2 Reservoir 3

Reservoir 4

Re1

Re2 Re3

Re4

Q2

Q1

Reservoir 1

Reservoir 2

Reservoir 3

Reservoir 4

Reservoir 5

Reservoir 6

Reservoir 8 Reservoir 9

Reservoir 7

Reservoir 10

Re1

Re2

Re3

Re5

Re6

Re8 Re9

Re4
Re7

Re10

Q1

Q2

Q3

Q5

Q6

Q8

(a)

(b)

Fig. 9. Layout of the benchmark multi-reservoir operation problem with its associated fluxes: (a) the four reservoirs system; (b) the 10 reservoirs
system

Table 4. Net Inflows to Reservoirs, the Maximum Allowable Reservoir Storages, and the Benefits Data of the DFP

Data Reservoir

Period

1 2 3 4 5 6 7 8 9 10 11 12

The net inflows to reservoirs (unit) 1 2 2 2 2 2 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3 3 3 3 3 3
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0

The maximum allowable reservoirs storages (unit) 1 10 10 10 10 10 10 10 10 10 10 10 10
2 10 10 10 10 10 10 10 10 10 10 10 10
3 10 10 10 10 10 10 10 10 10 10 10 10
4 15 15 15 15 15 15 15 15 15 15 15 15

The benefits (unit) 1 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4
2 1.4 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8
3 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 1.1
4 2.6 2.9 3.6 4.4 4.2 4 3.8 1.4 3.6 3.1 2.7 2.5
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Appendix II. Continuous Four-Reservoir System
Operation Problem (CFP) (Maximization)

TheCFP system is similar to theDFPwith the exception that the data
used are continuous, rather than discrete (that is, integer-valued).
Tables 6 and 7 list the required data and the constraints imposed
in the CFP.

Appendix III. Continuous Ten-Reservoir System
Operation Problem (CTP) (Maximization)

The CTP system consists of 10 reservoirs with its associated fluxes
shown in Fig. 9(b). Unlike the four-reservoir system, CTP is com-
plex in size and in the number of time-dependent constraints on
reservoir storages. This system comprises reservoirs in parallel
and in series whose matrix of indexes of reservoir release connec-
tions is as follows:

RCM10×10 ¼

2
6666666666666666666664

−1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 þ1 þ1 −1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

þ1 0 0 þ1 þ1 þ1 −1 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 þ1 −1 0

0 0 0 0 0 0 þ1 0 þ1 −1

3
7777777777777777777775

ð17Þ
In the CTP system the net benefit of the hydropower produc-

tion is maximized over 12 operating periods. Net inflows are

Table 5. Minimum Allowable Reservoir Storages, the Initial Reservoir Storages, the Target Reservoir Storages, and the Constraints Imposed on Reservoir
Releases of the DFP

Reservoir

Minimum storage
reservoir (unit)

Target storage
reservoir (unit)

Initial storage
reservoir (unit)

Minimum release
reservoir (unit)

Maximum release
reservoir (unit)

Smin Sinitial Starget Remin Remax

1 0 5 5 0 3
2 0 5 5 0 4
3 0 5 5 0 4
4 0 5 7 0 7

Table 7. Minimum Allowable Reservoir Storages, the Initial Reservoir Storages, the Target Reservoir Storages, and the Constraints Posed on Reservoir
Releases of CFP

Reservoir

Minimum storage
reservoir (unit)

Target storage
reservoir (unit)

Initial storage
reservoir (unit)

Minimum release
reservoir (unit)

Maximum release
reservoir (unit)

Smin Sinitial Starget Remin Remax

1 1 6 6 0.005 4
2 1 6 6 0.005 4.5
3 1 6 6 0.005 4.5
4 1 8 8 0.005 8

Table 6. Net Inflows to Reservoirs, the Maximum Allowable Reservoir Storages, and the Benefits Data of CFP

Data Reservoir

Period

1 2 3 4 5 6 7 8 9 10 11 12

The net inflows to reservoirs (unit) 1 0.5 1 2 3 3.5 2.5 2 1.25 1.25 0.75 1.75 1
2 0.4 0.7 2 2 4 3.5 3 2.5 1.3 1.2 1 0.7
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0

The maximum allowable reservoirs
storages (unit)

1 — 12 12 10 9 8 8 9 10 10 12 12
2 — 15 15 15 12 12 12 15 17 18 18 18
3 — 8 8 8 8 8 8 8 8 8 8 8
4 — 15 15 15 15 15 15 15 15 15 15 15

The benefits (unit) 1 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4
2 1.4 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8
3 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 1.1
4 2.6 2.9 3.6 4.4 4.2 4 3.8 4.1 3.6 3.1 2.7 2.5
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defined for each of the most upstream reservoirs as shown in
Fig. 9(b). Table 8 lists the net inflows to reservoirs, the maximum
allowable reservoir storages, and the benefits data of the CTP.
Moreover, the minimum allowable reservoir storages, the initial
reservoir storages, the target reservoir storages, and the constraints
imposed on reservoir releases are listed in Table 9.
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