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ABSTRACT OF THE DISSERTATION
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Professor Sudipto Banerjee, Chair

Regional aggregates of health outcomes over delineated administrative units such as counties

or zip codes are widely used by epidemiologists to map mortality or incidence rates and better

understand geographic variation. Disease mapping is an important statistical tool to assess

geographic variation in disease rates and identify lurking environmental risk factors from

spatial patterns. Such maps rely upon spatial models for regionally aggregated data, where

neighboring regions tend to exhibit more similar outcomes than those farther apart. We

contribute to the literature on multivariate disease mapping, which deals with measurements

on multiple (two or more) diseases in each region. We aim to disentangle associations among

the multiple diseases from spatial autocorrelation in each disease.

We propose two Multivariate Directed Acyclic Graph Autoregression (MDAGAR) mod-

els using conditional and joint probability laws respectively to accommodate spatial and

inter-disease dependence. The hierarchical construction of conditional MDAGAR imparts

flexibility and richness, interpretability of spatial autocorrelation and inter-disease relation-

ships, and computational ease, but depends upon the order in which the diseases are modeled.
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To obviate this, we demonstrate how Bayesian model selection and averaging across orders

are easily achieved using bridge sampling. We compare our method with a competitor using

simulation studies and present an application to multiple cancer mapping using data from

the Surveillance, Epidemiology, and End Results (SEER) Program. We also develop a joint

MDAGAR model using latent factors, which avoids the disease ordering issue in conditional

modelling.

Based on multivariate disease mapping, one often seeks to identify “difference bound-

aries” that separate adjacent regions with significantly different spatial effects. We adopt

a Bayesian multiple-comparison approach for this problem, where we compare all pairs of

random effects between neighboring regions. We develop a class of multivariate areally-

referenced Dirichlet process (MARDP) models that endow the spatial random effects with

a discrete probability law. Within the MARDP framework, the joint MDAGAR model is

applied to accommodate spatial and inter-disease dependence for spatial components. We

evaluate our method through simulation studies and subsequently present an application to

detect difference boundaries for multiple cancers using data from the SEER Program.
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CHAPTER 1

Introduction

1.1 Disease mapping for areal data analysis

With increasing interest in analyzing and modelling spatial data, statistical models have

been developed to accommodate complex spatial dependencies to generate smoothed maps,

estimate model parameters, predict observations at unobserved locations, and test scientific

hypotheses [BCG14]. Spatial data can be broadly classified as point-referenced and region-

ally aggregated (or areal). Point-referenced data are also known as geostatistical data and

vary continuously over the domain. By specifying spatial association through structured

dependence, models are developed based on a stochastic spatial process and provide spatial

prediction (referred to as “kriging”) for the point-referenced data setting [BCG14].

Our dissertation focuses on the other type, regionally aggregated or areal data, comprising

regional aggregates of health outcomes over delineated administrative units such as states,

counties or zip codes. They are widely used by epidemiologists to map counts or rates

(e.g., incidence and mortality) and to better understand their geographic variation. Disease

mapping, as this exercise is customarily called, employs statistical models to investigate

environmental risk factors underlying geographic patterns and present smoothed maps of

rates or counts of a disease [Koc05]. Disease maps are used to highlight geographic areas

with high and low prevalence, incidence, or mortality rates of cancers, and the variability

of such rates over a spatial domain [WCX97]. They can also be used to detect “hot-spots”

or spatial clusters which may arise due to common environmental, demographic, or cultural
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effects shared by neighboring regions [Ban16]. Maps of crude incidence or mortality rates

can be misleading when the population sizes for some of the units are small, which results in

large variability in the estimated rates, and makes it difficult to distinguish chance variability

from genuine differences. The correct geographic allocation of health care resources can be

greatly enhanced by deployment of statistical models that allow a more accurate depiction of

true disease rates and their relation to explanatory variables (covariates). Many tasks critical

for successful cancer surveillance and control require new inferential methods to handle these

complex and often spatially indexed data sets. Since local sample sizes within each spatial

region are too low for design-based solutions to attain desired levels of statistical precision

[Sch13], much recent work in disease-mapping has been carried out within the context of

Bayesian hierarchical models [BCG14]. The body of scientific literature on modern methods

for geographic disease mapping is too vast to be reviewed here. Comprehensive reviews

of prevalent statistical disease mapping methods and their implementation using available

software can be found, among several other sources [BRT05, WC10, WG04, Law13].

For a single disease, there has been a long tradition of employing Markov random fields

(MRFs) [RH05] to introduce conditional dependence for the outcome of interest in a region

given its neighbors. The outcomes from region units closer to each other are more similar

than those recorded in regions farther away. Here, the spatial association across space is

constructed through the covariance or precision matrix of the distributions of region-specific

latent Gaussian random effects in a hierarchical regression model, which is based on adjacent

or neighboring structure of regions. A common approach to build the neighboring structure

is to use an undirected graph with the regions constituting the vertices and an edge between

two vertices if the corresponding regions share a geographical border as neighbors. Two

conspicuous examples are the Conditional Autoregression (CAR) [Bes74, BYM91] and Si-

multaneous Autoregression (SAR) models [KC08], which build dependence using undirected

graphs to model geographic maps.

For a geographic map of the region of interest (e.g., a particular state) delineated by n

2



distinct administrative regions (e.g., counties or ZIP codes) with clear boundaries separating

them, let yj denote the response related to the disease observed in region j, j = 1, . . . , n,

following a Gaussian distribution, i.e. yj = xTj β + wj + ej, where xj is a p × 1 vector of

explanatory covariates, β is the slope vector and ej
iid∼ N(0, τe) is the random noise with

precision τe. And w = (w1, w2, . . . , wn)> is a n× 1 vector consisting of spatially associated

random effects corresponding to each region j. The CAR model specifies the full conditional

distributions with precision τ 2
j ,

wj|w−j ∼ N(
∑
j′ 6=j

bjj′wj′ , τ
2
j ), (1.1)

where w−j denotes the vector of observations leaving out the jth one. Through Brook’s

Lemma [Bro64], the joint distribution of random effects is a multivariate Gaussian with

precision matrix D(I − B) and written as w ∼ N(0,D(I − B)), where B = {bjj′} and

D is diagonal with τ 2
j [BCG14]. Let M = {mjj′} be the binary adjacency matrix of the

geographic map, i.e. mjj′ = 1 if j ∼ j′ and 0 otherwise, and j ∼ j′ indicates regions j and j′

are neighbors. By setting bjj′ = mjj′/nj and τ 2
j = τnj where nj is the number of neighbors for

region j and τ is the precision scalar, the joint distribution becomes w ∼ N(0, τ(Dw−M))

where Dw is diagonal with nj. However, given (Dw −M )1 = 0, the joint distribution of w

is improper with singular precision matrix, referred to as the improper CAR (ICAR) model.

To resolve this issue, a parameter ρ is added to the model by generalizing the full conditional

mean to E(wj|w−j) = ρ
∑

j′ bjj′wj′ , and the joint distribution is redefined as a proper CAR

model w ∼ N(0, τ(Dw − ρM )) which is proper for a certain range of ρ. Nevertheless, the

interpretation of ρ is difficult since even very high values of ρ may lead to only modest spatial

correlation as discussed in section 2.2. The SAR model proceeds by simultaneously modeling

the random effects as

wj =
∑
j′ 6=j

bjj′wj′ + εj, εj
ind∼ N(0, τ 2

j ). (1.2)

3



Equivalently, the joint distribution of random effects can be written as (I−B)w = ε, where

ε ∼ N(0, D̃) and D̃ is the precision matrix with τ 2
j on the diagonal. Similar to CAR,

defining bjj′ = ρmjj′/nj, the joint distribution becomes w ∼ N(0, (I − B)D̃(I − B)>).

Here ρ is called an autoregression parameter and has the similar interpretation issue as the

CAR model [Wal04]. More recently, a class of Directed Acyclic Graphical Autoregressive

(DAGAR) models have been proposed as a preferred alternative to CAR or SAR models

in allowing better identifiability and interpretation of spatial autocorrelation parameters as

introduced in Section 2.2.

1.2 Multivariate analysis for disease mapping

For multiple outcomes observed over each unit, multivariate disease mapping is concerned

with the analysis of multiple diseases that are associated among themselves as well as across

space. It is appropriate when different diseases have been observed over the same spatial

units and when the diseases themselves are related to each other, say because they share

the same set of genetic and environmental risk factors [LFB17, JCB05, AMA18, SC04]. In

other words, we seek models to capture the spatial association for each disease as well as

the association between the diseases. When the diseases are inherently related so that the

prevalence of one in a region encourages (or inhibits) occurrence of the other on the same unit,

there can be substantial inferential benefits in jointly modeling the diseases rather than fitting

independent univariate models for each disease [GV03, Mar88, MBB17, Mar13, KB01, CB03,

HNF05, DDB08, MMG14]. While it has been assertively demonstrated that independent

models for diseases can lead to biased results because of unaccounted associations among

the diseases, the current literature is largely based on using CAR models for spatial mapping

[KST01, JCB05, JBC07, ZHB09].

Broadly speaking, there are two approaches to multivariate areal modeling based on

the CAR model. One approach emerges from hierarchical constructions [JCB05, DZZ06]
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where each disease enters the model in a given sequence as conditional structure. For in-

stance, the generalized multivariate CAR (GMCAR) model [JCB05] is discussed in a bi-

variate case for w1 and w2, where wi = (wi1, wi2, . . . , win)> is the spatial random effect

vector for disease i in n regions, i = 1, 2. By specifying the marginal distribution of w1,

w1 ∼ N(0, τ1(Dw − ρ1M)), and the conditional distribution for w2|w1, w2 = A21w1 + ε2

with ε2 ∼ N (0, τ2 (Dw − ρ2M )), the joint distribution for a bivariate spatial process is

w1

w2

 ∼ N

0,

τ1(Dw − ρ1M) + τ2A
>
21(Dw − ρ2M)A21 τ2A

>
21(Dw − ρ2M)

τ2(Dw − ρ2M )A21 τ2(Dw − ρ2M )

 ,

(1.3)

where A21 = η021I + η121M and parameters η021 and η121 are bridging parameters associ-

ating w2j with w1j and w1j′ , j 6= j′, i.e. associating the two different disease in the same

region as well as different regions. This bivariate case can be generalized to more dis-

eases. Alternatively, a different class builds upon a linear transformation of latent effects

[JCB05, GV03, CB03, Mar13, ZEY05, BHW15a], referred to as joint modelling structure.

For example, order-free multivariate CAR (MCAR) models [JBC07] specify the distribution

of w = (w>1 ,w
>
2 , . . . ,w

>
q )>,

w1 = a11f1; wi = ai1f1 + ai2f2 + · · ·+ aiifi, i = 2, . . . , q , (1.4)

where aih are coefficient parameters associating random effects for different diseases, h =

1, . . . , i. And f1, . . . ,fi are latent effects following CAR models.

While a large amount of multivariate models are developed based upon the CAR models,

some spatio-temporal models also utilize Moran’s I basis functions for dimension reduc-

tion within high-dimensional areal data [BHW15b, BHW18]. For greater interpretability

to the spatial autocorrelation parameter, conditional multivariate DAGAR models [GBD20,

GDB21] have been developed based on the univariate DAGAR model, which also indicates

better interpretation in the association across diseases.
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1.3 Difference boundary detection for areal data

Based on disease mapping, one often seeks to identify “difference boundaries” that separate

adjacent regions with significantly different spatial effects. The difference boundary is to

delineate regions with significantly different spatial random effects from their neighbors. In

public health, detecting difference boundaries is useful in exploring significantly different

disease mortality and incidence across regions, thus improving decision-making for disease

prevention and control, geographic allocation of health care resources, and so on. This

exercise has often been referred to as areal wombling [Wom51] in spatial data science.

For a single disease, several methods have been developed to detect the difference bound-

aries on maps. One method that takes on an algorithmic approach is the Boundary Like-

lihood Values (BLV) [JG03a, JG03b], which fails to adjust for some sources of uncertainty

such as the sparsity of data or low population size. Other methods include the Bayesian

Information Criterion approach [LBM11] and several model-based frameworks that use hier-

archical CAR models such as the LC method [LC05] and site-edge (SE) methods [MCB10]

that set priors on edges. For multiple diseases observed in the same spatial unit, a multivari-

ate areal boundary analysis was implemented using a deterministic algorithm to compare

posterior estimates from multivariate CAR (MCAR) models [CM07].

The approach we adopt here is to consider this problem as one of Bayesian multiple

testing, where we wish to formally evaluate the posterior probability that the spatial ran-

dom effects from a pair of adjacent regions are different. These posterior probabilities are

computed for all pairwise adjacencies on the map and subsequently controlled for (Bayesian)

False Discovery Rates (FDR) [MPR04]. In this approach, we will need to ensure that the

posterior probability P (wij = wi′j′ |Data, j ∼ j′) is meaningfully defined and can be non-

zero, where wij denotes the spatial effect corresponding to disease i in region j. This means

that we must endow the spatial effects with a discrete distribution.

Multivariate spatial models for continuous random effects [Mac18] have demonstrated
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the statistical benefits of jointly modeling multiple diseases across areal units. While such

models are often constructed using multivariate Markov random fields [Mar88], spatiotem-

poral models for areal data using Moran’s I basis functions for dimension reduction have

been developed [BHW15b, BHW18].

For discrete multivariate spatial distributions, one could build upon classes of paramet-

ric univariate discrete spatial moving average models (SMA) [BCL12]. However, inference

from such models are very sensitive to prior specifications. Instead, we expand upon a

demonstrably effective nonparametric approach for univariate boundary detection, i.e. the

areally-referenced Dirichlet process (ARDP) model [LBH15, HBL15] and extend them to an-

alyze multiple correlated diseases. More specifically, we achieve probabilistic estimation for

difference boundaries by embedding a multivariate areal model within a hierarchical Dirichlet

process model. We call this a Multivariate Areal Dirichlet Process (MARDP).

We remark that other authors have adopted different viewpoints on boundary detection

from ours. For example, an integrated stochastic process [QBN21] was proposed to infer

boundaries based upon continuous gradients as defined in curvilinear wombling [BG06].

While attractive for continuous random fields where a “wombling boundary” is defined as

one located in a zone with high directional gradients, our difference boundaries are a subset

of administrative boundaries defined on the basis of significantly different spatial effects. A

stochastic edge mixed effects (SEME) [GB19] model was used for unknown adjacencies and

detected the presence of edges by incorporating covariates. The detection of edges was only

used for the improvement of spatial effects estimation but not difference boundary detection.

Turning to FDR-based methods, we note the work for testing an uncountable set of

hypothesis tests on Gaussian random fields [PGV04] and the FDR smoothing approach

[TKP18] that exploits spatial structure within a multiple-testing problem. The former per-

tains to point-referenced data, while we focus on areal data. The latter focuses on identifying

regions with enriched local fraction of signals against the background, while we intend to

ascertain difference boundaries based upon the differences between latent spatial random
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effects after accounting for risk factors, confounders and other explanatory variables.

1.4 Contributions and dissertation outline

Directed Acyclic Graphical Autoregressive (DAGAR) models have been proposed to employ

directed acyclic graphs as a preferred alternative for univariate disease mapping [DBH19]. A

specific motivation for DAGAR models is that they impart greater interpretability to the spa-

tial autocorrelation parameter. In this dissertation, given the advantage of DAGAR models,

we develop multivariate DAGAR (MDAGAR) models for multiple disease mapping using the

two approaches, i.e. conditional and joint modelling respectively, and help epidemiologists

and spatial analysts better interpret the association across diseases. For multivariate differ-

ence boundary detection, we extend the ARDP model to a multivariate ARDP (MARDP)

framework and utilize the multivariate disease mapping models (MDAGAR and MCAR) to

incorporate disease dependence. This multivariate difference boundary analysis framework

renders probabilistic estimation for difference boundaries and deliver inference not only for

each disease individually but also cross diseases by incorporating association among diseases

for spatial components.

The balance of this dissertation proceeds by introducing the DAGAR model for model-

ing a single disease and different classes of multivariate DAGAR models in Chapter 2. As

a starting point of multivariate modelling, a Bivariate DAGAR (BDAGAR) using condition

structure is developed for two correlated diseases in practice. The BDAGAR is generalized

to conditional multivariate DAGAR models for more than two diseases and a simulation

study is conducted to compare with the GMCAR model. In addition, the joint multivari-

ate DAGAR model used for multivariate difference boundary detection is also included.

Chapter 3 illustrates the multivariate difference boundary analysis framework MARDP with

spatial components constructed by MDAGAR. Under the MARDP framework, we conduct

simulation study to demonstrate the robustness of multivariate disease mapping models for
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associated diseases. Chapter 4 concludes the dissertation with some discussion.
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CHAPTER 2

Multivariate disease mapping using DAGAR model

2.1 Introduction

There is a substantial literature on joint modeling of multiple spatially oriented outcomes,

some of which have been cited in Section 1.2. The greater interpretability of DAGAR to the

spatial autocorrelation parameter makes it a preferred alternative to CAR or SAR models.

While it is possible to model each disease separately using a univariate DAGAR, hence

independent of each other, the resulting inference will ignore the association among the

diseases. This will be manifested in model assessment because the less dependence among

diseases that a model accommodates, the farther away it will be from the joint model in the

sense of Kullback-Leibler divergence.

More formally, suppose we have two mutually exclusive sets A and B that contain labels

for diseases. Let yA and yB be the vectors of spatial outcomes over all regions corresponding

to the diseases in set A and set B, respectively. A full joint model p(y), where y =
(
y>A ,y

>
B

)>
,

can be written as p(y) = p(yA)×p(yB |yA). Let C1 and C2 be two nested subsets of diseases

in A such that C2 ⊂ C1 ⊂ A. Consider two competing models, p1(y) = p(yA)× p(yB |yC1)

and p2(y) = p(yA)× p(yB |yC2), where p1(·) and p2(·) are probability densities constructed

from the joint probability measure p(·) by imposing conditional independence such that

p(yB |yA) = p(yB |yC1) and p(yB |yA) = p(yB |yC2), respectively. Both p1(·) and p2(·)

suppress dependence by shrinking the conditional set A, but p2(·) suppresses more than

p1(·). We show below that p2(·) is farther away from p(·) than p1(·).
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A straightforward application of Jensen’s inequality yields EB|C1

[
log

p(yB |yC1)

p(yB |yC2)

]
≥ 0,

where EB |C1 [·] denotes the conditional expectation with respect to p(yB |yC1). Therefore,

KL(p‖p2)−KL(p‖p2) = EA,B
[
log

(
p(y)

p2(y)

)
− log

(
p(y)

p2(y)

)]
= EA,B

[
log

p1(y)

p2(y)

]
= EA,B

[
log

p(yB |yC1)

p(yB |yC2)

]
= EB,C1

[
log

p(yB |yC1)

p(yB |yC2)

]
= EC1

{
EB |C1

[
log

p(yB |yC1)

p(yB |yC2)

]}
≥ 0 .

(2.1)

The equality EA,B[·] = EB,C1 [·] in the last row follows from the fact that the argument is a

function of diseases in B, C1 and C2 and, hence, in B and C1 because C2 ⊂ C1. The argument

given in (2.1) is free of distributional assumptions and is linked to the submodularity of

entropy and the “information never hurts” principle [CT91, Ban20]. Apart from providing

a theoretical argument in favor of joint modeling, (2.1) also notes that models built upon

hierarchical dependence structures depend upon the order in which the diseases enter the

model. This motivates us to pursue model averaging over the different ordered models in a

computationally efficient manner.

Regarding diseases with potential association, the incidence of adenocarcinoma of lung

and esophageal cancer have been found to share common risk factors including gastroe-

sophageal reflux disease (GERD), obesity and its associated metabolic syndrome (diabetes,

hypertension and hyperlipidemia) [AMA18]. In terms of metabolic mechanisms, it has also

been reported that cytochrome P450 2C19 (CYP2C19) may participate in the activation of

procarcinogen of both lung and esophageal cancer, and CYP2C19 poor metabolizers (PMs)

have higher incidence of two cancers [SC04]. Lung cancer appears to be among the most com-

mon second primary cancers in patients with colon cancer [KMW18]. Meanwhile, patients

with laryngeal cancer have also been reported to possess high risks of developing second

primary lung cancer [ABS10]. We extract the outcome for the incidence of these four can-
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cers: lung, esophagus, larynx and colorectal cancer, from the SEER∗Stat database using the

SEER∗Stat statistical software [Nat19]. We start with the analysis of only two cancers (lung

and esophageal) in Section 2.3.2 by applying a bivariate DAGAR without too much concern

about cancer ordering. Then all four cancers are analyzed using multivariate DAGAR with

model selection and averaging to resolve ordering problem for multiple cancers.

The reminder of this chapter is organized as follows. Section 2.2 gives an overview of

DAGAR model for single disease mapping. Section 2.3 develops a hierarchical conditional

multivariate DAGAR (MDAGAR) model including an application to bivariate case and in-

troduces a bridge sampling method to select the MDAGAR with the best hierarchical order.

A simulation study is conducted to compare the MDAGAR with the GMCAR model and

illustrates the bridge sampling algorithm’s efficacy in selecting the “true” model. At last,

the MDAGAR model is applied to the analysis of the incidence of four cancers and discusses

different cases with respect to predictors. Section 2.4 introduces another multivariate DA-

GAR model using joint modelling which solves the ordering issue of multiple diseases and

improves computational efficiency.

2.2 Overview of univariate DAGAR model for single disease map-

ping

Let G = {V , E} be a graph corresponding to a geographic map, where V = {1, 2, . . . , n} is

a fixed ordering of the vertices of the graph representing clearly delineated regions on the

map, and E = {(j, j′) : j ∼ j′} is the collection of edges between the vertices representing

neighboring pairs of regions. The DAGAR model builds a spatial autocorrelation model for

a single outcome on G using an ordered set of vertices in V [DBH19]. Let N(1) be the empty

set and let N(j) = {j′ < j : j′ ∼ j}, where j ∈ V \ {1}. Thus, N(j) includes geographic

neighbors of region j′ that precede j in the ordered set V . Let {wi : i ∈ V} be a collection of

12



k random variables defined over the map. DAGAR specifies the following autoregression,

w1 = ε1; wj =
∑

j′∈N(j)

bjj′wj′ + εj, j = 2, . . . , n , (2.2)

where εj
ind∼ N(0, λj) with the precision λj, and bjj′ = 0 if j′ 6∈ N(j). This implies that

w ∼ N(0, τQ(ρ)), where Q(ρ) is a spatial precision matrix that depends only upon a spatial

autocorrelation parameter ρ and τ is a positive scale parameter. The precision matrix

Q(ρ) = (I −B)>F (I −B), B is a n× n strictly lower-triangular matrix and F is a n× n

diagonal matrix. The elements of B and F are denoted by bjj′ and λj, respectively, where

bjj′ =

 0 if j′ /∈ N(j) ;

ρ
1+(n<j−1)ρ2 if j = 2, 3, . . . , n , j′ ∈ N(j)

and

λj =
1 + (n<j − 1)ρ2

1− ρ2
j = 1, 2 . . . , n , (2.3)

n<j is the number of members in N(j) and n<1 = 0. The above definition of bjj′ is consistent

with the lower-triangular structure of B because j′ /∈ N(j) for any j′ ≥ j. The derivation

of B and F as functions of a spatial correlation parameter ρ is based upon forming local

autoregressive models on embedded spanning trees of subgraphs of G [DBH19].

The parameter ρ is a measure of spatial correlation between neighboring areas with

the value between 0 and 1. Suppose N(j) = {j′1, j′2, . . . , j′m}, (2.3) renders a first order

auto-regressive (AR(1)) structure for the correlation matrix of
(
wj, wj′1 , wj′2 , . . . , wj′m

)
, i.e.

corr
(
wj, wj′k

)
= ρ and corr

(
wj′k , wj′t

)
= ρ2, k = 1, . . . ,m, t = 1, . . . ,m, k 6= t. For 0 ≤ ρ < 1,

all λi’s are positive ensuring a proper probability distribution of w with a positive definite

covariance matrix Q−1(ρ), while ρ = 0 indicates that all regions are independent. The

limiting case of ρ = 1 is equivalent to the improper prior with bjj′ = 1/n<j and λj ∝ n<j,

when using the parametrization λj = 1+(n<j−1)ρ2 and absorbing 1/(1−ρ2) into the marginal

variance of w. Compared to the proper CAR model, DAGAR resolves the issue of a lack
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(a) Path graph of length 100
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(c) 48 contiguous US states

Figure 2.1: Average neighbor pair correlations as a function of ρ for proper CAR and DAGAR
model. The solid gray line represents x = y line.

of meaningful relationship between ρ and spatial correlation. To illustrate the relationship

between ρ and the neighbor-pair correlations for the proper CAR and the DAGAR model,

we use two regular graphs and one irregular graph: a simple path graph with 100 vertices

which is analogous to a time-series, a two-dimensional 10×10 lattice or grid graph with edges

between vertically or horizontally adjacent vertices, and the state map of contiguous United

States with 48 states, where two states are said to have an edge if they share a common

geographic boundary.

The covariance matrices are generated corresponding to the two models for ρ ∈ {i/10 |

i = 1, . . . , 9}. Figure 2.1 plots the average neighbor-pair correlation c(ρ) as a function

of ρ, where c(ρ) =
∑

j′∼j cov(wj, wj′)/(2
√
var(wj)

√
var(wj′))/(

∑
nj), for proper CAR and

DAGAR models. For the path and grid graphs, the average neighbor pair correlation c(ρ)

for our model is exactly ρ. For the highly irregular United States graph, c(ρ) is much closer

to ρ for DAGAR than the proper CAR. For the CAR, even when ρ is close to one, c(ρ) is less

than 0.4. In fact, for all three graphs, the average neighbor-pair correlation for the proper

CAR model remains modest [DBH19].
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2.3 A Conditional Multivariate DAGAR (MDAGAR) model for

multiple disease mapping

Modeling multiple diseases will introduce associations among the diseases and spatial de-

pendence for each disease. Let yij be a disease outcome of interest for disease i in region j.

For sake of clarity, we assume that yij is a continuous variable (e.g., incidence rates) related

to a set of explanatory variables through the regression model,

yij = x>ijβi + wij + eij , (2.4)

where xij is a pi × 1 vector of explanatory variables specific to disease i within region j, βi

are the slopes corresponding to disease i, wij is a random effect for disease i in region j, and

eij
ind∼ N(0, (σ2

i )
−1) is the random noise arising from uncontrolled imperfections in the data.

Part of the residual from the explanatory variables is captured by the spatial-temporal

effect wij. Let wi = (wi1, wi2, . . . , win)> for i = 1, 2, . . . , q. We adopt a hierarchical approach

[JCB05], where we specify the joint distribution of w = (w>1 ,w
>
2 , . . . ,w

>
q )> as p(w) =

p(w1)
∏q

i=2 p(wi |w<i). We model p(w1) and each of the conditional densities p(wi |w<i)

with w<i = (w>1 , . . . ,w
>
i−1)> for i ≥ 2 as univariate spatial models. The merits of this

approach include simplicity and computational efficiency while ensuring that richness in

structure is accommodated through the p(wi |w<i)’s. In detail, the multivariate DAGAR

(or MDAGAR) model is constructed as

w1 = ε1; wi = Ai1w1 +Ai2w2 + · · ·+Ai,i−1wi−1 + εi for i = 2, 3, . . . , q , (2.5)

where εi ∼ N(0, τiQ(ρi)) and τiQ(ρi) are univariate DAGAR precision matrices with B and

F as in (2.3) with ρi. In (2.5), we model w1 as a univariate DAGAR and, progressively, the

conditional density of each wi given w1, . . . ,wi−1 is also as a DAGAR for i = 2, 3, . . . , q.

Each disease has its own distribution with its own spatial autocorrelation parameter.
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There are q spatial autocorrelation parameters, {ρ1, ρ2, . . . , ρq}, corresponding to the q dis-

eases. This ensures that spatial associations specific to each disease will be captured. Given

the differences in the geographic variation of different diseases, this flexibility is desirable.

Each matrix Aii′ in (2.5) with i′ = 1, . . . , i−1 models the association between diseases i and

i′. We specify Aii′ = η0ii′In + η1ii′M , where M is the binary adjacency matrix for the map,

i.e., mjj′ = 1 if j′ ∼ j and 0 otherwise. Coefficients η0ii′ and η1ii′ associate wij with wi′j and

wi′j′ . In other words, η0ii′ is the diagonal element in Aii′ , while η1ii′ is the element in the

j-th row and j′th column if j′ ∼ j. Therefore, for the joint distribution of w, if A is the

kq × kq strictly block-lower triangular matrix with (ii′)-th block being Aii′ = O whenever

i′ ≥ i and ε = (ε>1 , . . . , ε
>
q )>, then (2.5) renders w = Aw + ε.

Since I − A is still lower triangular with 1s on the diagonal, it is non-singular with

det(I−A) = 1. Writing w = (I−A)−1ε, where ε ∼ N(0,Λ) and the block diagonal matrix

Λ has τ1Q(ρ1), . . . , τqQ(ρq) on the diagonal, we obtain w ∼ N(0,Qw) for ρ = (ρ1, . . . , ρq)
>

with

Qw = (I −A)>Λ(I −A) . (2.6)

We say that w follows MDAGAR if w ∼ N(0,Qw).

Interpretation of ρ1, . . . , ρq is clear: ρ1 measures the spatial association for the first

disease, while ρi, i ≥ 2, is the residual spatial correlation in the disease i after accounting

for the first i− 1 diseases. Similarly, τ1 is the spatial precision for the first disease, while τi,

i ≥ 2, is the residual spatial precision for disease i after accounting for the first i−1 diseases.

We point out two important distinctions from the GMCAR model [JCB05]: (i) instead

of using conditional autoregression or CAR for the spatial dependence, we use DAGAR; and

(ii) we apply a computationally efficient bridge sampling algorithms [GSM17] to compute the

marginal posterior probabilities for each ordered model. The first distinction allows better

interpretation of spatial autocorrelation than the CAR models. The second distinction is
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of immense practical value and makes this approach feasible for a much larger number

of outcomes. Without this distinction, analysts would be dealing with q! models for q

diseases and choose among them based upon a model-selection metric. That would be

overly burdensome for more than 2 or 3 diseases.

2.3.1 Model Implementation

Let y = (y>1 , . . . ,y
>
q )> with yi = (yi1, yi2, . . . , yin)>, we extend (2.4) to the following Bayesian

hierarchical framework with the posterior distribution p(β,w,η,ρ, τ ,σ |y) proportional to

p(ρ)× p(η)×
q∏
i=1

{
IG(1/τi | aτ , bτ )× IG(σ2

i | aσ, bσ)×N(βi |µβ,V −1
β )
}

×N(w |0,Qw)×
q∏
i=1

n∏
j=1

N(yij |x>ijβi + wij, 1/σ
2
i ) , (2.7)

where β = (β>1 ,β
>
2 , . . . ,β

>
q )>, τ = {τ1, τ2, . . . , τq}, σ = {σ2

1, σ
2
2, . . . , σ

2
q} and η = {η2, . . . ,ηq}

with ηi = (η>i1,η
>
i2, . . . ,η

>
i,i−1)> and ηii′ = (η0ii′ , η1ii′)

> for i = 2, . . . , q and i′ = 1, . . . , i − 1.

For variance parameters 1/τi and σ2
i , IG(· | a, b) is the inverse-gamma distribution with shape

and rate parameters a and b, respectively. For each element in ηi we choose a normal prior

N(µij, σ
2
ηij

), while the prior N(w |0,Qw) can also be written as

p(w|τ ,η2, . . . ,ηq,ρ) ∝ τ
k
2

1 |Q(ρ1)|
1
2 exp

{
−τ1

2
w>1 Q(ρ1)w1

}
×

q∏
i=2

τ
k
2
i |Q(ρi)|

1
2 exp

{
−τi

2
(wi −

i−1∑
i′=1

Aii′wi′)
>Q(ρi)(wi −

i−1∑
i′=1

Aii′wi′)

}
, (2.8)

where det(Q(ρi)) =
∏n

j=1 λij, and wT
i Q(ρi)wi = λi1w

2
i1 +

∑n
j=2 λij(wij −

∑
j′∈N(j) bijj′wij′)

2.

We sample the parameters from the posterior distribution in (2.7) using Markov chain

Monte Carlo (MCMC) with Gibbs sampling and random walk metropolis [GL06] as im-

plemented in the rjags package within the R statistical computing environment. Ap-

pendix 2.3.7.1 presents details on the MCMC updating scheme.
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2.3.2 An application to bivariate case: Bivariate DAGAR (BDAGAR) model

for correlated areal data between two diseases

The MDAGAR in (2.5) can be simplified to a bivariate case by setting q = 2 and the

hierarchical model becomes

p(w1,w2) = N(w1 |0, τ1Q(ρ1))×N(w2 |A21w1, τ2Q(ρ2)) , (2.9)

where N(· |µ,Q) denotes a normal density with mean µ and precision matrix Q. The

coefficient matrix A21 is simplified to A21 = η0I + η1M . The joint distribution of w =

(w>1 ,w
>
2 )> is now derived from (2.9) as w ∼ N(0,Qw), where the precision matrix Qw is

Qw =

τ1Q(ρ1) + τ2A
>
21Q(ρ2)A21 τ2A

>
21Q(ρ2)

τ2Q(ρ2)A21 τ2Q(ρ2)

 (2.10)

and the covariance matrix Q−1
w is

Q−1
w =

 τ−1
1 Q−1(ρ1) τ−1

1 Q−1(ρ1)A>21

τ−1
1 A21Q

−1(ρ1) τ−1
1 A21Q

−1(ρ1)A>21 + τ−1
2 Q−1(ρ2)

 . (2.11)

We call a normal distribution with the above precision, or covariance, matrix, the BDAGAR

model.

The BDAGAR model is applied to analyze a data set including outcomes for 2 can-

cers, lung (ICD-O-3: C340-C349) and esophagus (ICD-O-3: C150-C159), extracted from the

SEER∗Stat database using the SEER∗Stat statistical software [Nat19]. The outcomes are the

5-year average crude incidence rates per 100,000 population in the years from 2012 to 2016

across 58 counties in California, USA, calculated from the software directly. County-level

explanatory variables for each cancer, that possibly affect the incidence rates, are available

and include adult cigarette smoking rates in percentage (smokeij), percentages of residents
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younger than 18 years old (youngij), older than 65 years old (oldij), with education level

below high school (eduij) , percentages of unemployed residents (unempij), black residents

(blackij), male residents (maleij), uninsured residents (uninsureij), and percentages of fam-

ilies below the poverty threshold (povertyij). All covariates, except adult cigarette smok-

ing rates, are county attributes extracted from the SEER∗Stat database [see] for the years

2012-2016. As a potential common risk factor for both lung and esophageal cancer, adult

cigarette smoking rates for 2014-2016 were obtained from the California Tobacco Control

Program [Cal18b].

We analyzed this data set using the Bayesian hierarchical model (2.7). The county-level

maps of the raw incidence rates per 100,000 population for the two cancers are shown in

Figure 2.2. The maps exhibit the evidence of correlation across space and between cancers.

Cutoffs for the different levels of incidence rates are quantiles for each cancer. For both

lung and esophageal cancer, in general, incidence rates are higher in counties located in

the northern areas than those in southern part. The four counties in the center including

Amador, Calaveras, Tuolumne and Mariposa have relatively high incidence rates compared

to the neighboring counties. Overall, counties with similar levels of incidence rates tend to

depict some spatial clustering.

Lung cancer

28−41
41−54
54−70
70−115

Esophageal cancer

0−3.6
3.6−4.7
4.7−6.7
6.7−16

Figure 2.2: Maps of 5-year average crude incidence rates per 100,000 population for lung
and esophageal cancer in California, 2012− 2016.
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For our analysis, we specified the following prior distribution,

p(η,ρ, τ ,σ,w) =
2∏
i=1

Unif(ρi | 0, 1)×
1∏
i=0

N(ηi | 0, 102)×
2∏
i=1

N(βi | 0, 103I)

×
2∏
i=1

IG(1/τi | 2, 0.1)×
2∏
i=1

IG(σ2
i | 2, 1)×N(w | 0,Qw(τ, ρ)) , (2.12)

where Unif(· | a, b) denotes the Uniform density over (0, 1) and Qw(τ ,ρ) is the BDAGAR

precision matrix of w given in [2.10].

We fit the BDAGAR model using the two different cancer orders, i.e. [esophagus] ×

[lung | esophagus] and the reverse ordering [lung]× [esophagus | lung]. We will refer to these

orderings simply as [lung | esophagus] and [esophagus | lung], respectively. To compare and

assess models, we use the Widely Applicable Information Criterion (WAIC) [Wat10, GHV14]

as defined in Section 2.3.7. Table 2.1 presents measures for model fit using the WAIC.

We also compare BDAGAR with the “Generalized Multivariate Conditional Autoregression

(GMCAR)” models [JCB05]. In both BDAGAR and GMCAR models, the conditional order

[esophagus] × [lung | esophagus] has a smaller WAIC (hence better fit to the data) than

the reverse ordering. Meanwhile, within each order, BDAGAR seems to excel over the

GMCAR with lower scores in both model fit and effective number of parameters, as seen in

the values of êlppd and p̂WAIC , respectively. The preference of WAIC for [lung | esophagus]

is also corroborated by the posterior distribution of η0 and η1 from BDAGAR shown in

Figure 2.3. In [esophagus | lung], the parameter η1 has posterior median of −1.94 and a

95% credible interval (−3.94,−0.58). This shows significant negative values that offset part

of the significant positive effect of η0 with a median of 7.58 and a 95% credible interval of

(2.82, 13.94). For [lung | esophagus], η0 is significantly positive with a median of 17.58 and

95% credible interval of (11.62, 27.84), while η1 tends to be positive with a median of 1.1

but with a 95% credible interval (−0.77, 2.73) that includes 0. Consequently, we present the

following results and analysis for [lung | esophagus] which seems to be the preferred model.
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Table 2.1: Model comparison using WAIC statistics for cancer data analysis.

Model lppd pWAIC WAIC
BDAGAR (esophagus | lung) -261.31 45.32 613.27
BDAGAR (lung | esophagus) -155.12 51.72 413.68
GMCAR (esophagus | lung) -264.51 46.09 621.19
GMCAR (lung | esophagus) -156.51 52.05 417.12
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Figure 2.3: Posterior samples of linking parameters η0, η1 from BDAGAR model.

Table 2.2 summarizes the parameter estimates from the BDAGAR model corresponding

to [lung | esophagus]. For fixed effects, the increasing percentage of residents younger than

18 years old significantly reduces the incidence rate for esophageal cancer, while the percent-

age of residents older than 65 years old has a significantly opposite effect for lung cancer.

Unsurprisingly, higher adult cigarette smoking rates significantly increase the incidence rates

for both lung and esophageal cancer. After accounting for these explanatory variables, the

residual random effects still exhibit spatial association patterns for both cancers. Turning

to spatial correlations, ρ1 measures the residual spatial correlation (posterior mean 0.08) for
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esophageal cancer after accounting for the explanatory variables and ρ2 measures the spatial

correlation (posterior mean 0.5) for lung cancer after accounting for the explanatory variables

and also the effect of esophageal cancer. The small point estimates and narrower credible

interval for ρ1 indicate greater confidence in weaker spatial correlation for esophageal cancer;

the moderate value of ρ2 and a wider credible interval suggest higher spatial correlation for

lung cancer. Turning to the spatial precision of random effects for each cancer, the estimates

of {τ1, τ2} are indicative of esophageal cancer having larger variability, although we must

keep in mind that τ2 is the conditional marginal precision for lung cancer after accounting

for esophageal cancer and, therefore, may not be directly comparable to τ1.

Table 2.2: Parameter estimates (posterior means) for the California cancer incidence rate
data from BDAGAR model. Numbers inside braces indicate the lower and upper bounds for
the 95% credible intervals.

Parameters Esophagus cancer Lung cancer
intercept 18.75 (4.55, 32.72) 7.19 (-47.07, 61.87)

smoke 0.27 (0.12, 0.41) 1.27 (0.28, 2.3)
young -0.23 (-0.45, -0.01) -0.75 (-1.94, 0.44)

old 0.14 (-0.03, 0.31) 2.61 (1.62, 3.61)
edu 0.02 (-0.1, 0.14) -0.25 (-1.04, 0.54)

unemp -0.07 (-0.26, 0.12) 0.52 (-0.79, 1.84)
black 0.16 (-0.08, 0.39) 0.8 (-0.82, 2.41)
male -0.04 (-0.19, 0.12) 0.14 (-0.95, 1.26)

uninsure -0.31 (-0.53, -0.09) -0.08 (-1.11, 0.94)
poverty 0.32 (-0.33, 0.96) 0.23 (-3.96, 4.48)
ρi 0.08 (0, 0.25) 0.5 (0.03, 0.97)
τi 2.72 (0.96, 6.69) 19.41 (2.47, 54.36)
σ2
ei 2.05 (1.39, 3.05) 0.93 (0.18, 3.87)

Figure 2.4 shows the estimated correlation between lung and esophageal cancer in each

of 58 counties. This map also seems to be consistent with the estimates of η. Correlations

between lung and esophageal cancers in all counties are significantly positive with large

means at around 0.97 − 1 which are due to the highly positive values in η0. This indicates

that esophageal cancer is highly correlated with lung cancer. However, in general, the

correlation between the two cancers increases slightly from the center to marginal areas,

22



especially for those with fewer counties in the neighborhood. Finally, Figure 2.5 provides

Correlation

0.970 − 0.979
0.979 − 0.982
0.982 − 0.985
0.985 − 0.996

Figure 2.4: Estimated correlation between lung and esophagus cancer in each of 58 counties
of California.

further visual corroboration of the goodness of fit for the BDAGAR mode corresponding to

[lung | esophagus]. Here, we see that the posterior mean of the incidence rates for lung and

esophageal cancer are very consistent with the raw incidence rates shown in Figure 2.2. Given

the significant effect of adult cigarette smoking rates on incidence rates for both cancers, the

higher fitted incidence rates in the northern areas are in accordance with higher smoking

rates in same counties as shown in Figure 2.12. Though the smoking rates are also high

in the middle part, the relatively lower fitted incidence rates may be due to the offset of

negative spatial random effects for these counties.

2.3.3 Model Selection via Bridge Sampling

It is clear from (2.5) that each ordering of diseases in MDAGAR will produce a different

model in terms of the conditional specifications. For the above bivariate case, it is convenient

to compare only two models (orders) by the significance of parameter estimates as well as

model performance. However, when there are more than two diseases involved in the model,
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Figure 2.5: Maps of posterior mean incidence rates per 100,000 population for lung and
esophagus cancer in California.

at least six models (for three diseases) will be fitted and comparing all models become

cumbersome or even impracticable.

Instead, we pursue model averaging of MDAGAR models. Given a set of T = q! candidate

models, say M1, . . . ,MT , Bayesian model selection and model averaging calculates

p(M = Mt|y) =
p(y|M = Mt)p(M = Mt)∑T
j=1 p(y|M = Mj)p(M = Mj)

, (2.13)

for t = 1, . . . , T [HMR99]. Computing the marginal likelihood p(y |Mt) in (2.13) is chal-

lenging. Methods such as importance sampling [PNT14] and generalized harmonic mean

[GD94] have been proposed as stable estimators with finite variance, but finding the required

importance density with strong constraints on the tail behavior relative to the posterior dis-

tribution is often challenging. Bridge sampling estimates the marginal likelihood (i.e. the

normalizing constant) by combining samples from two distributions: a bridge function h(·)

and a proposal distribution g(·) [GSW17]. Let θt = {βt,σt,ρt, τt,η2,t, . . . ,ηq,t} be the set of

parameters in model Mt with prior p(θt |Mt) as defined in the first row of (2.7). Based on
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the identity,

1 =

∫
p(y|θt,Mt)p(θt|Mt)h(θt|Mt)g(θt|Mt)dθt∫
p(y|θt,Mt)p(θt|Mt)h(θt|Mt)g(θt|Mt)dθt

,

a current version of the bridge sampling estimator is

p(y|M = Mt) =
Eg(θt|Mt)[p(y|θt,Mt)p(θt|Mt)h(θt|Mt)]

Ep(θt|y,Mt)[h(θt|Mt)g(θt|Mt)]

≈
1
N2

∑N2

i=1 p(y|θ̃t,i,Mt)p(θ̃t,i|Mt)h(θ̃t,i|Mt)

1
N1

∑N1

j=1 h(θ?t,j|Mt)g(θ?t,j|Mt)

(2.14)

where θ?t,j ∼ p(θt |y,Mt), j = 1, . . . , N1, are N1 posterior samples and θ̃t,i ∼ g(θt|Mt), i =

1, . . . , N2, are N2 samples drawn from the proposal distribution [GSM17]. The likelihood

p(y |θt,M = Mt) is obtained by integrating out w from (2.7) as

N(y |Xβ,
[
Q−1
w (ρt, τt,η2,t, . . . ,ηq,t) + diag(σt)⊗ Ik

]−1
), (2.15)

given that diag(σ) is a diagonal matrix with σ2
i , i = 1, . . . , q, on the diagonal, and X is

the design matrix with Xi as block diagonal where Xi = (xi1,xi2, . . . ,xik)
>. The bridge

function h(θt|Mt) is specified by the optimal choice [MW96],

h(θt|Mt) = C
1

s1p(y|θt,Mt)p(θt|Mt) + s2p(y|Mt)g(θt|Mt)
(2.16)

where C is a constant. Inserting (2.16) in (2.14) yields the estimate of p(y|M = Mt) after

convergence of an iterative scheme [MW96] as

p̂(y|Mt)
(t+1) =

1
N2

∑N2

i=1
l2,i

s1l2,i+s2p̂(y|Mt)(t)

1
N1

∑N1

j=1
1

s1l1,j+s2p̂(y|Mt)(t)

(2.17)

where l1,j =
p(y|θ?t,j ,Mt)p(θ?t,j |Mt)

g(θ?t,j |Mt)
, l2,i =

p(y|θ̃t,i,Mt)p(θ̃t,i|Mt)

g(θ̃t,i|Mt)
, s1 = N1

N1+N2
and s2 = N2

N1+N2
.
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Given the log marginal likelihood estimates from bridgesampling, the posterior model

probability for each model is calculated from (2.13) by setting prior probability of each model

p(M = Mt). For Bayesian model averaging (BMA), the model averaged posterior distribu-

tion of a quantity of interest ∆ is obtained as p(∆ |y) =
∑T

t=1 p(∆ |M = Mt,y)p(M =

Mt |y) [HMR99], and the posterior mean is

E(∆ |y) =
T∑
t=1

E(∆ |M = Mt,y)p(M = Mt |y) . (2.18)

Setting ∆ = {β,w} fetches us the model averaged posterior estimates for spatial random

effects as well as calculating the posterior mean incidence rates as discussed in Section 2.3.5.

2.3.4 Simulation

We simulated two different experiments to evaluate the performance of MDAGAR model

and model selection. The first experiment was designed to evaluate MDAGAR’s inferential

performance against GMCAR. The second experiment aimed to ascertain the effectiveness of

the bridge sampling algorithm (Section 2.3.3) in preferring models with a correct “ordering”

of the diseases in the model.

2.3.4.1 Data generation

We compare MDAGAR’s inferential performance with GMCAR [JCB05]. We chose the 48

states of the contiguous United States as our underlying map, where two states are treated

as neighbors if they share a common geographic boundary. We generated our outcomes yij

using the model in (2.4) with q = 2, i.e., two outcomes, and two covariates, x1j and x2j,

with p1 = 2 and p2 = 3. We fixed the values of the covariates after generating them from

N(0, Ipi), i = 1, 2, independent across regions. The regression slopes were set to β1 = (1, 5)>

and β2 = (2, 4, 5)>.
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Turning to the spatial random effects, we generated values of w =
(
w>1 ,w

>
2

)>
from a

N(0,Qw) distribution with the precision matrix defined in (2.10). We set τ1 = τ2 = 0.25,

ρ1 = 0.2 and ρ2 = 0.8 and take Q(ρi) = D(ρi)
−1, where D(ρi) = exp(−φid(j, j′)), φi =

− log(ρi) is the spatial decay for disease i and d(j, j′) refers to the distance between the

embedding of the jth and j′th vertex. The vertices are embedded on the Euclidean plane

and the centroid of each state is used to create the distance matrix. Using this exponential

covariance matrix to generate the data offers a “neutral” ground to compare the performance

of MDAGAR with GMCAR. We specified A12 using fixed values of η = {η021, η121}. Here,

we considered three sets of values for η to correspond to low, medium and high correlation

among diseases. We fixed η = {0.05, 0.1} to ensure an average correlation of 0.15 (range

0.072 - 0.31); η = {0.5, 0.3} with an average correlation of 0.55 (range 0.45 - 0.74); and

η = {2.5, 0.5} with a mean correlation of 0.89 (range 0.84 - 0.94). We generated wij’s for

each of the above specifications for η and, with the values of wij generated as above, we

generated the outcome yij ∼ N(x>ijβi + wij, 1/σ
2
i ), where σ2

1 = σ2
2 = 0.4. We repeated the

above procedure to replicate 85 data sets for each of the three specifications of η.

For our second experiment, we generated a data set with q = 3 diseases. We extended the

above setup to include one more disease. We generated yij’s from (2.4) with the value of x3j

fixed after being generated from N(0, I3), β3 = (5, 3, 6)> and σ2
3 = 0.4. Let [i, j, k] denote

the model p(wi) × p(wj |wi) × p(wk |wj,wi). For three diseases the six resulting models

are denoted as M1 = [1, 2, 3], M2 = [1, 3, 2], M3 = [2, 1, 3], M4 = [2, 3, 1], M5 = [3, 1, 2] and

M6 = [3, 2, 1].

Each of the six models imply a corresponding joint distribution w ∼ N(0,Qw) which

is used to generate the wij’s. Let the parenthesized suffix (i) denote the disease in the ith

order. For example, in M2 = [1, 3, 2], we write w in the form of (2.5) as

w1 ∼ ε(1); w3 = A(21)w1 + ε(2); w2 = A(31)w1 +A(32)w3 + ε(3) ,

27



where ε(i) ∼ N(0, τ(i)Q
(
ρ(i)

)
) with Q(ρ(i)) = D(ρ(i))

−1 as in the first experiment, and

A(ii′) = η0(ii′)I + η1(ii′)M is the coefficient matrix associating random effects for diseases in

the ith and i′th order. We set τ(1) = τ(2) = τ(3) = 0.25, ρ(1) = 0.2, ρ(2) = 0.8, ρ(3) = 0.5,

η0(21) = 0.5, η1(21) = 0.3, η0(31) = 1, η1(31) = 0.6, η0(32) = 1.5, and η1(32) = 0.9 to completely

specifyQw for each of the 6 models. For each Mi, we generated 50 datasets by first generating

w ∼ N(0,Qw) and then generating yij’s from (2.4) using the specifications described above.

2.3.4.2 Comparisons between MDAGAR and GMCAR

In our first experiment, we analyzed the 85 replicated datasets using (2.7) with

p(ρ)× p(η) ∝
q=2∏
i=1

{Unif(ρi | 0, 1)} ×N(η21 |0, 0.01I2) , (2.19)

where η21 = (η021, η121)> and Unif is the Uniform density. Prior specifications are completed

by setting aτ = 2, bτ = 8, aσ = 2, bσ = 0.4, µβ = 0, Vβ = 1000I in (2.7). Note that the same

set of priors were used for both MDAGAR and GMCAR as they have the same number of

parameters with similar interpretations.

We compare models using the Widely Applicable Information Criterion (WAIC)[Wat10,

GHV14] and a model comparison score D based on a balanced loss function for replicated

data [GG98]. Both WAIC and D reward goodness of fit and penalize model complexity.

Details on how these metrics are computed are provided in Appendix 2.3.7.2. In addition,

we also computed the average mean squared error (AMSE) of the spatial random effects

estimated from each of the 85 data sets. We found the mean (standard deviation) of the

AMSEs to be 1.69 (0.034) from the 85 low-correlation datasets, 1.47 (0.030) from the 85

medium-correlation datasets, and 2.35 (0.059) from the 85 high-correlation datasets. The

corresponding numbers for GMCAR were 1.83 (0.033), 1.59 (0.031), and 2.14 (0.050), re-

spectively. The MDAGAR tends to have smaller AMSE for low and medium correlations,

while GMCAR has lower AMSE when the correlations are high, although the differences

28



are not significant. We also computed the mean values of WAICs and D scores for each

simulated data set. Figure 2.6 plots the values of WAICs ((a)–(c)) and D scores ((d)–(f))

for the 85 data sets corresponding to each of the three correlation settings. Here, MDAGAR

outperforms GMCAR in all three correlation settings with respect to both WAICs and D

scores.

Figure 2.6: Density plots for WAICs and D scores over 85 datasets. Density plots of WAIC
for MDAGAR (blue) and GMCAR (red) models with low, medium and high correlation are
shown in (a), (b) and (c) respectively, while (d)–(f) are the corresponding density plots for
D scores. The dotted vertical line shows the mean for WAIC and D in each plot.

Figure 2.7 presents scatter plots for the true values (x axis) of spatial random effects

against their posterior estimates (y axis). To be precise, each panel plots 85× 48× 2 = 8160

true values of the elements of the 96×1 vector w for 85 datasets against their corresponding

posterior estimates. We see strong agreements between the true values and their estimates

for both MDAGAR and GMCAR. The agreement is more pronounced for the datasets cor-

responding to medium and high correlations. For the low-correlation datasets, MDAGAR

still exhibits strong agreement which is better than GMCAR.
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Figure 2.7: Scatter plots for estimates of spatial random effects (y axis) against the true
values (x axis) with 45◦ lines over 85 datasets: (a)–(c) are estimates from MDAGAR model
with low, medium and high correlation, while (d)–(f) are the corresponding estimates from
GMCAR.

We computedDKL(N(0,Qtrue)||N(0,Qw)) =
1

2

[
log

(
det(Qtrue)

det(Qw)

)
+ tr(QwQ

−1
true)− qk

]
,

which is the Kullback-Leibler Divergence between the model for w with the true generative

precision matrix (Qtrue) and those with MDAGAR and GMCAR precisions (Qw). Using

the posterior samples in the precision matrix, we evaluate the posterior probability that

DKL(N(0,Qtrue)||N(0,QMDAGAR)) is smaller than DKL(N(0,Qtrue)||N(0,Qw)). Figure 2.8

depicts a density plot of these probabilities over the 85 data sets. When correlations are low

and medium, the MDAGAR has a mean probability of around 69% to be closer to the true

model than the GMCAR, while for high correlations GMCAR excels with an average prob-

ability of 72% to be closer to the true model. These findings are consistent with the results

of AMSE, where the GMCAR tended to perform better when the correlations are high.
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Figure 2.8: Density plots for probability that the KL-divergence between the MDAGAR and
the true model is smaller than that between GMCAR and the true model with three levels
of correlation for two diseases: low (purple), medium (green) and high (red).

2.3.4.3 Analyses using different orderings for spatial units

The MDAGAR model in Section 2.3.4.2 is analyzed using an ordering of spatial units (coun-

ties) from the southwest to the northeast. Here, we repeat the analysis for the MDAGAR

model using three other orderings that start in the southeast, northwest and northeast, re-

spectively. We present results from these differently ordered DAGAR models using the 85

low-correlation simulated datasets. For the random effects, the mean (standard deviation)

of the AMSEs for three different orderings (southeast, northwest and northeast) are 1.61

(0.029), 1.28 (0.026) and 1.43 (0.027), respectively, without significantly differing from the

original ordering in Section 2.3.4.2.

Figure 2.9 plots the densities of mean WAICs, D scores and DKL(p(ytrue)||p(y)) over the

85 datasets for the MDAGAR model using three different orderings and the original ordering

in Section 2.3.4.2. In computing DKL(p(ytrue)||p(y)), we specify p(ytrue) = N(Xβtrue +

wtrue, diag(σtrue)⊗In), which is the density of the true y and p(y) = N(Xβ+w, diag(σ)⊗

In) is the density for y from MDAGAR. We find that the ordering does not have significant

impact on model fitting as the density plots for the four orderings almost overlap with each

other. These findings are consistent with results, theoretical and empirical, for univariate

DAGAR models that the ordering has little impact [DBH19].
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Figure 2.9: Density plots for WAICs, D scores and DKL(p(ytrue)||p(y)) over 85 datasets
for the MDAGAR model using four different orderings: northeast (red), northwest (green),
southeast (blue) and southwest (purple). The dotted vertical line shows the mean for each
plot.

2.3.4.4 Model selection for different disease orders

We now evaluate the effectiveness of the method in Section 2.3.3 at selecting the model with

the correct ordering of diseases. We used the bridgesampling package in R to compute

p(Mi |y(n)) = maxt=1,...,6 p(Mt |y(n)) for each of n = 50× 6 data sets generated as described

in Section 2.3.4.1. Table 2.3 presents the probability of each model being selected for different

true model scenarios. The probability of selecting the true model is shown in bold along

the diagonal. Our experiment reveals that bridge sampling is extremely effective at choosing

the correct order. It is able to identify the correct order between 78% to 90%, which is

substantially larger than any of the probability of choosing any of the misspecified models.

Table 2.3: Proportion of times (π(Mi)) bridge sampling chose the model with the correct
order out of the 50 data sets with that order.

True model π(M1) π(M2) π(M3) π(M4) π(M5) π(M6)

M1 0.90 0.00 0.10 0.00 0.00 0.00

M2 0.00 0.86 0.00 0.00 0.14 0.00

M3 0.14 0.00 0.86 0.00 0.00 0.00

M4 0.00 0.00 0.00 0.90 0.00 0.10

M5 0.00 0.22 0.00 0.00 0.78 0.00

M6 0.00 0.00 0.00 0.16 0.00 0.84
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2.3.5 Multiple Cancer Analysis from SEER

We now turn to analyzing an areal dataset using the MDAGAR model for all four different

cancers: lung, esophagus, larynx and colorectal. The dataset extracted from the SEER∗Stat

database consists of the four cancers, where the outcome is the 5-year average age-adjusted

incidence rates (age-adjusted to the 2000 U.S. Standard Population) per 100,000 popula-

tion in the years from 2012 to 2016 across 58 counties in California, USA, as mapped in

Figure 2.10. The maps exhibit preliminary evidence of correlation across space and among

cancers. Cutoffs for the different levels of incidence rates are quantiles for each cancer. For

all four cancers, incidence rates are relatively higher in counties concentrated in the middle

northern areas including Shasta, Tehama, Glenn, Butte and Yuba than those other areas.

In general, northern areas have higher incidence rates than in the south. This is especially

pronounced for lung cancer and esophageal cancer. For larynx cancer, while the highest

incidence rates are in the northwest (Del Norte and Siskiyou counties), the incidence rates

in the south are also at somewhat higher levels. For colorectal cancer, the edge areas at the

bottom also exhibit high incidence rates.

As an exploratory tool to assess associations among the cancers, we calculate Pearson’s

correlation for each pair of cancers by regarding incidence rates in different counties as

independent samples and find Pearson’s correlation coefficient between the incidence of lung

cancer and those of esophageal, larynx and colorectal cancers to be 0.55, 0.46 and 0.46,

respectively. Meanwhile, the correlation between esophageal and larynx cancer is 0.27. Next,

to explore the spatial association for each disease, we calculate Moran’s I based upon rth

order neighbors for each cancer and plot the areal correlogram [BCG14]. Defining distance

intervals, (0, d1], (d1, d2], (d2, d3], . . . , the rth order neighbors refer to units with distance in

(dr−1, dr], i.e. within distance dr but separated by more than dr−1. The distance is the

Euclidean distance from an Albers map projection of California. As shown in Figure 2.11,

lung, esophageal and colorectal cancers all present spatial patterns that initially diminish

with increasing r and eventually flatten close to 0. Overall, counties with similar levels of
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Lung cancer

22−41
41−45
45−51
51−80

Esophagus cancer

0−3.5
3.5−3.9
3.9−4.5
4.5−12

Larynx cancer

0−1.8
1.8−2.1
2.1−2.6
2.6−5

Colorectum cancer

24−34
34−36
36−38
38−50

Figure 2.10: Maps of 5-year average age-adjusted incidence rates per 100,000 population for
lung, esophagus, larynx and colorectal cancer in California, 2012− 2016.

incidence rates tend to depict some spatial clustering.

We analyze this data set and separate the spatial correlation for each cancer from asso-

ciation among cancers using (2.7) with the following prior specification

p(η,ρ, τ ,σ,w) =

q∏
i=1

Unif(ρi | 0, 1)×
q∏
i=2

i−1∏
j=1

N(ηij | 0, 0.01I2)×
q∏
i=1

N(βi | 0, 0.001I)

×
q∏
i=1

IG(1/τi | 2, 0.1)×
q∏
i=1

IG(σ2
i | 2, 1)×N(w |0,Qw) . (2.20)

We also discuss a “case 2” excluding the risk factor.

We include the same covariates as Section 2.3.2. Spatial patterns in the map of adult

cigarette smoking rates, shown in Figure 2.12, are similar to the incidence of cancers, es-

pecially lung and esophageal cancers, the highest smoking rates are concentrated in the

north. While some central California counties (e.g., Stanislaus, Tuolumne, Merced, Mari-

posa, Fresno and Tulare) also exhibit high rates, although there is clearly less spatial clus-
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Figure 2.11: Moran’s I of rth order neighbors for lung, esophageal, larynx and colorectal
cancer.

tering of the high rates than in the north.

Since the order of cancers in the DAG specify the model, we fit all 4! = 24 models us-

ing (2.7) and compute the marginal likelihoods using bridge sampling (Section 2.3.3). By

setting the prior model probabilities as p(M = Mt) = 1
24

for t = 1, 2, . . . , 24, we compute

the posterior model probabilities using (2.13). These are presented in Table 2.4. We obtain

Bayesian model averaged (BMA) estimates using (2.18) with the weights in Table 2.4. Among

all models, model M10 is selected as the best model with the largest posterior probability

0.577 and the corresponding conditional structure is [esophageal] × [larynx | esophageal] ×

[colorectal | esophageal, larynx] × [lung | esophageal, larynx, colorectal]. Table 2.5 is a sum-

Table 2.4: The posterior model probabilities for 24 models.

p(M1 |y) p(M2 |y) p(M3 |y) p(M4 |y) p(M5 |y) p(M6 |y) p(M7 |y) p(M8 |y)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

p(M9 |y) p(M10 |y) p(M11 |y) p(M12 |y) p(M13 |y) p(M14 |y) p(M15 |y) p(M16 |y)

0.000 0.577 0.000 0.000 0.000 0.000 0.342 0.079

p(M17 |y) p(M18 |y) p(M19 |y) p(M20 |y) p(M21 |y) p(M22 |y) p(M23 |y) p(M24 |y)

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002
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Smoke (%)

6.70 − 11.50
11.50 − 13.85
13.85 − 16.28
16.28 − 25.50

Black (%)

0.90 − 1.90
1.90 − 2.80
2.80 − 5.15
5.15 − 16.90

Uninsured (%)

0.0 − 0.6
0.6 − 0.9
0.9 − 1.4
1.4 − 3.8

Figure 2.12: Important county-level covariates with significant effects: adult cigarette smok-
ing rates (left), percentage of black residents (middle) and uninsured residents (right).

mary of the parameter estimates including regression coefficients, spatial autocorrelation

(ρi), spatial precision (τi) and noise variance (σ2
i ) for each cancer. From M10 and BMA,

we find the regression slopes for the percentage of smokers and uninsured residents are

significantly positive and negative, respectively, for esophageal cancer. The negative asso-

ciation between percentage of uninsured and esophageal cancer may seem surprising, but

is likely a consequence of spatial confounding with counties exhibiting low incidence rates

for esophageal cancer having a relatively large number of uninsured residents (see top right

in 2.2 and the right most figure in 2.12). Since esophageal cancer has low incidence rates,

this association could well be spurious due to spatial confounding. Percentage of smokers is,

unsurprisingly, found to be a significant risk factor for lung cancer, while the percentage of

blacks seems to be significantly associated with elevated incidence of larynx cancer. In addi-

tion, we tend to see that percentage of population below the poverty level has a pronounced

association with higher rates of lung and esophageal cancer.
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Table 2.5: Posterior means (95% credible intervals) for parameters estimated from M10 and
BMA estimates for regression coefficients only for the SEER four cancer dataset.

Parameters Model Esophageal Larynx Colorectal Lung

Intercept M10 16.76 (4.06, 29.56) 6.37 (-1.16, 13.89) 19.16 (-11.94, 49.72) 28.68 (-18.3, 74.93)

BMA 15.87 (2.92, 28.63) 6.85 (-0.71, 14.38) 18.21 (-14.03, 49.07) 28.25 (-18.12, 74.52)

Smokers (%) M10 0.25 (0.12, 0.37) 0.04 (-0.03, 0.12) 0.23 (-0.12, 0.57) 0.81 (0.08, 1.62)

BMA 0.23 (0.10, 0.36) 0.05 (-0.03, 0.12) 0.22 (-0.13, 0.58) 0.80 (0.08, 1.59)

Young (%) M10 -0.12 (-0.31, 0.07) -0.07 (-0.18, 0.04) 0.27 (-0.2, 0.76) -0.08 (-0.90, 0.74)

BMA -0.11 (-0.3, 0.08) -0.08 (-0.19, 0.03) 0.29 (-0.18, 0.78) -0.01 (-0.86, 0.82)

Old (%) M10 -0.11 (-0.25, 0.04) -0.05 (-0.14, 0.03) 0.10 (-0.28, 0.48) -0.09 (-0.81, 0.67)

BMA -0.10 (-0.25, 0.05) -0.05 (-0.14, 0.03) 0.10 (-0.29, 0.49) -0.08 (-0.79, 0.66)

Edu (%) M10 0.02 (-0.08, 0.12) -0.02 (-0.08, 0.04) 0.16 (-0.12, 0.43) -0.20 (-0.75, 0.31)

BMA 0.02 (-0.09, 0.12) -0.02 (-0.07, 0.04) 0.15 (-0.14, 0.42) -0.24 (-0.79, 0.27)

Unemp (%) M10 -0.13 (-0.29, 0.03) 0.01 (-0.08, 0.10) -0.09 (-0.54, 0.37) 0.60 (-0.47, 1.55)

BMA -0.12 (-0.28, 0.05) 0.01 (-0.08, 0.1) -0.08 (-0.54, 0.38) 0.61 (-0.43, 1.56)

Black (%) M10 0.14 (-0.06, 0.34) 0.14 (0.03, 0.26) -0.16 (-0.73, 0.39) 0.15 (-1.06, 1.29)

BMA 0.13 (-0.07, 0.33) 0.15 (0.03, 0.27) -0.18 (-0.75, 0.39) 0.14 (-1.02, 1.25)

Male (%) M10 -0.04 (-0.17, 0.09) 0.00 (-0.07, 0.08) 0.24 (-0.12, 0.60) 0.14 (-0.57, 0.79)

BMA -0.04 (-0.17, 0.09) 0 (-0.07, 0.08) 0.24 (-0.12, 0.62) 0.14 (-0.55, 0.82)

Uninsured (%) M10 -0.24 (-0.44, -0.04) -0.08 (-0.20, 0.04) 0.07 (-0.44, 0.58) 0.01 (-0.82, 0.86)

BMA -0.23 (-0.42, -0.02) -0.08 (-0.2, 0.04) 0.09 (-0.42, 0.61) 0 (-0.81, 0.82)

Poverty (%) M10 0.30 (-0.24, 0.84) 0.20 (-0.12, 0.51) -0.06 (-1.51, 1.45) 0.85 (-2.15, 3.85)

BMA 0.32 (-0.23, 0.87) 0.2 (-0.12, 0.51) -0.08 (-1.54, 1.42) 0.8 (-2.14, 3.75)

ρcancer M10 0.25 (0.01, 1.00) 0.33 (0.01, 0.96) 0.50 (0.03, 0.97) 0.52 (0.03, 0.99)

τcancer M10 25.27 (5.08, 61.57) 27.60 (8.05, 60.42) 19.97 (3.06, 55.61) 20.31 (1.77, 55.92)

σ2
cancer M10 1.67 (1.11, 2.47) 0.49 (0.28, 0.75) 8.22 (1.09, 14.23) 1.19 (0.18, 5.21)

Recall that ρ1 is the residual spatial autocorrelation for esophageal cancer after account-

ing for the explanatory variables, while ρi for i = 2, 3, 4 are residual spatial autocorrelations

after accounting for the explanatory variables and the preceding cancers in the model M10.

From Table 2.5 we see that esophageal cancer exhibits relatively weaker spatial autocor-

relation, while the residual spatial autocorrelations for larynx and colorectal cancers after

accounting for preceding cancers are both at moderate levels of around 0.5. Similarly for the

spatial precision τi, larynx appears to have the smallest conditional variability while that for

colorectal and lung are slightly larger.

For the posterior mean incidence rates and spatial random effects wij, we present esti-

mates from model M10 and BMA. Figure 2.13 (a) and (b) are maps of posterior mean spatial

random effects and model fitted incidence rates for four cancers obtained from BMA, while

Figure 2.14 (a) and (b) show maps of those from model M10. The posterior mean incidence

rates from BMA and M10 are in accord with each other, and both present DAGAR-smoothed
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versions of the original patterns in Figure 2.2. For posterior means of spatial random ef-

fects, in general, the estimates from M10 are similar to model averaged estimates, especially

for lung and colorectal cancers, exhibiting relatively large positive values in the northern

counties, where the incidence rates are high. However, for esophageal and larynx cancers we

see slight discrepancies between M10 and BMA in the north. The BMA estimates produce

larger positive random effects, ranging between 0.1 − 0.5, in most counties, while M10 pro-

duces estimates between 0 − 0.1 for esophageal cancer. More counties with random effects

larger than 0.1 are estimated from M10 for larynx cancer. We believe this is attributable,

at least in part, to another competitive model, M15 = [larynx] × [esophagus | larynx] ×

[lung | larynx, esophagus]× [colorectal | larynx, esophagus, lung] (posterior probability 0.342),

which contributes to the BMA. On the other hand, the effects of some important county-level

covariates play an essential role in the discrepancy between the estimates of random effects

and model fitted incidence rates for each cancer.

Figure 2.13: Maps of posterior results using BMA for lung, esophagus, larynx and colorectal
cancer in California including (a) posterior mean spatial random effects and (b) posterior
mean incidence rates.

Recall that η0ii′ and η1ii′ reflect the associations among cancers that can be attributed

to spatial structure. Specifically, larger values of η0ii′ will indicate inherent associations
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Figure 2.14: Maps of posterior results using the highest probability model M10 for lung,
esophagus, larynx and colorectal cancer in California including (a) posterior mean spatial
random effects and (b) posterior mean incidence rates.

unrelated to spatial structure, while the magnitude of η1ii′ reflects associations due to spatial

structure. Figure 2.15 presents posterior distributions of η for all pairs of cancers. We

see from the distribution of η043 that there is a pronounced non-spatial component in the

association between lung and colorectal cancers. Similar, albeit somewhat less pronounced,

non-spatial associations are seen between larynx and esophageal cancers and between lung

and larynx cancers. Analogously, the posterior distributions for η143 and η132 tend to have

substantial positive support suggesting substantial spatial cross-correlations between lung

and colorectal cancers and between colorectal and larynx cancers. Interestingly, we find

negative support in the posterior distributions for η121 and η142. The negative mass implies

that the covariance among cancers within a region is suppressed by strong dependence with

neighboring regions. This seems to be the case for associations between lung and esophageal

cancers and between lung and larynx cancers.

We also present supplementary analysis that excludes adult smoking rates from the co-

variates, which we refer to as “Case 2”. Excluding the risk factor adult cigarette smoking

rates, we only include county attributes described in Section 2.3.5 as covariates. Among
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Figure 2.15: Posterior distributions of η for all pairs of cancers.

24 models, model M16 exhibits dominated best performance with a posterior probability

of 0.999 and the corresponding conditional structure is [larynx] × [esophagus | larynx] ×

[colorectal | larynx, esophagus]× [lung | larynx, esophagus, colorectal]. Table 2.6 is a summary

of the parameter estimates for each cancer. From M16, we find that the regression slope for

the percentage of blacks and unemployed residents are significantly positive for larynx and

lung cancer respectively. The larynx cancer exhibits weaker spatial autocorrelation while

the residual spatial autocorrelation for the other three cancers after accounting for preced-

ing cancers are at moderate levels. For spatial precision τi, larynx random effects still have

the smallest variability while the conditional variability for colorectal and lung cancers are

slightly larger.

Figure 2.16 shows estimated correlations between pairwise cancers in each of the 58

counties. The top row presents the correlations including smoking rates (“Case 1”) as has

been analyzed here. The bottom row presents the corresponding maps for “Case 2”. In-

terestingly, accounting for smoking rates substantially diminishes the associations among
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esophageal, colorectal and lung cancers. These are significantly associated in “Case 2” but

only lung and colorectal retain their significance after accounting for smoking rates.

Table 2.6: Posterior means (95% credible intervals)for parameter estimated from M16 for
Case 2 (excluding smoking rates in covariates).

Parameters Larynx Esophageal Colorectal Lung

Intercept 6.75 (-0.58, 14.00) 11.14 (-1.70, 24.05) 18.89 (-10.37, 48.12) 24.18 (-22.71, 68.75)

Young(%) -0.09 (-0.20, 0.02) -0.09 (-0.29, 0.11) 0.27 (-0.19, 0.74) 0.04 (-0.75, 0.86)

Old(%) -0.04 (-0.12, 0.04) 0.00 (-0.15, 0.16) 0.13 (-0.23, 0.49) 0.15 (-0.49, 0.91)

Edu(%) -0.02 (-0.08, 0.04) -0.02 (-0.13, 0.09) 0.12 (-0.13, 0.38) -0.34 (-0.82, 0.15)

Unemp(%) 0.04 (-0.03, 0.12) 0.06 (-0.08, 0.20) 0.10 (-0.26, 0.45) 1.21 (0.55, 1.89)

Black(%) 0.15 (0.03, 0.27) 0.10 (-0.12, 0.32) -0.20 (-0.75, 0.33) 0.06 (-1.03, 1.13)

Male(%) -0.01 (-0.08, 0.07) -0.07 (-0.21, 0.06) 0.18 (-0.16, 0.52) 0.01 (-0.59, 0.60)

Uninsured(%) -0.07 (-0.19, 0.04) -0.13 (-0.33, 0.07) 0.10 (-0.37, 0.58) 0.11 (-0.70, 0.95)

Poverty(%) 0.21 (-0.11, 0.53) 0.40 (-0.20, 1.02) 0.03 (-1.38, 1.45) 0.84 (-2.14, 3.52)

ρi 0.25 (0.01, 0.91) 0.49 (0.02, 0.97) 0.43 (0.02, 0.94) 0.50 (0.03, 0.98)

τi 44.04 (15.89, 90.23) 24.55 (5.06, 61.33) 18.25 (1.39, 51.15) 19.68 (2.00, 55.07)

σ2
i 0.56 (0.37, 0.84) 1.52 (0.88, 2.36) 9.85 (6.48, 14.63) 0.93 (0.18, 3.63)

(a) case 1: esophageal cancer and colorectal cancer (b) case 1: esophageal cancer and lung cancer (c) case 1: colorectal cancer and lung cancer
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(d) case 2: esophageal cancer and colorectal cancer
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(e) case 2: esophageal cancer and lung cancer

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(f) case 2: colorectal cancer and lung cancer
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Figure 2.16: Estimated correlation between the incidence of pairwise cancers in each of 58
counties of California for Case 1 vs. Case 2: (a) case 1: esophageal and colorectal cancer,
(b) case 1: esophageal and lung cancer, (c) case 1: colorectal and lung cancer, (d) case
2: esophageal and colorectal cancer, (e) case 2: esophageal and lung cancer, (f) case 2:
colorectal and lung cancer. Maps (a)-(c) exhibit estimated correlations for Case 1, and (d)
- (f) are for Case 2. Yellow points indicate significant correlations. Note: Maps for larynx
cancer are not shown due to non-significant correlation with any of the other three cancers.
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2.3.6 Summary

This chapter developed a conditional multivariate “MDAGAR” model to estimate spatial

correlations for multiple correlated diseases based on a currently proposed class of DAGAR

models for univariate disease mapping, as well as providing better interpretation of the

association among diseases. An application to bivariate case using the BDAGAR model

analyzing incidence rates from lung and esophagus cancer retains the interpretation of DA-

GAR models clearly separating the spatial correlation for each cancer from any inherent or

endemic association between the two cancers. The BDAGAR model can still be efficiently

computed using MCMC algorithms. The analysis demonstrates the efficiency of BDAGAR

and its improved performance, as measured by WAIC, over existing alternatives such as the

GMCAR models. In fact, it has been reported that DAGAR tended to outperform CAR in

univariate models [DBH19]. It is, therefore, not unexpected that BDAGAR will outperform

the bivariate CAR models.

Then the example of BDAGAR is generalized to MDAGAR for multivariate disease

mapping. We demonstrate that MDAGAR tends to outperform GMCAR when associa-

tion between spatial random effects for different diseases is weak or moderate. Inference is

competitive when associations are strong. MDAGAR retains the interpretability of spatial

autocorrelations, as in univariate DAGAR, separating the spatial correlation for each disease

from any inherent or endemic association among diseases. While MDAGAR, like all DAG

based models, is specified according to a fixed order of the diseases, we show that a bridge

sampling algorithm can effectively choose among the different orders and provide Bayesian

model averaged inference in a computationally efficient manner. The data analysis for four

cancers reveals that correlations between incidence rates for different cancers are impacted

by covariates. For example, eliminating adult cigarette smoking rates produces similar spa-

tial patterns for the incidence rates of esophageal, lung and colorectal cancer. In addition,

the significant correlation between lung and esophageal cancer, even after accounting for

smoking rates, implies other inherent or endemic association such as latent risk factors and
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metabolic mechanisms. We also see that the MDAGAR based posterior estimates of the la-

tent spatial effects in Figure 2.13 (a) and 2.14(a) resemble those from an MDAGAR without

covariates (Figure 2.17), while the maps for the estimated incidence rates in Figure 2.13 (b)

and 2.14 (b) account for the spatial variability of the covariates.

Lung cancer

−20 − −10
−10 − 0
0 − 5
5 − 10
10 − 32

Esophageal cancer

−1.2 − −0.5
−0.5 − 0
0 − 0.1
0.1 − 0.5
0.5 − 1

Larynx cancer

−1 − −0.5
−0.5 − −0
0 − 0.1
0.1 − 0.5
0.5 − 1.1

Colorectum cancer

−5 − −3
−3 − 0
0 − 1
1 − 3
3 − 6

Figure 2.17: Maps of posterior mean spatial random effects (with no covariates) using the
same order as M10.

Future challenges will include scalability with very large number of diseases because, as we

have seen, the number of models to be fitted grows exponentially with the number of diseases.

One way to obviate this issue is to adopt a joint modeling approach analogous to order-

free MCAR models [JBC07] that build rich spatial structures from linear transformations

of simpler latent variables. For instance, we can develop alternate MDAGAR models by

specifying w = Λf , where Λ is a suitably specified matrix and f is a latent vector whose

components follow independent univariate DAGAR distributions as discussed in Section 2.4.

This will avoid the order dependence, but the issue of identifying and specifying Λ will need

to be considered as will the interpretation of disease specific spatial autocorrelations.
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2.3.7 Appendix

2.3.7.1 Model Implementation

We outline model implementation for (2.7) using Markov Chain Monte Carlo (MCMC).

We update {w,β,σ, τ ,η2, . . . ,ηq} using Gibbs steps, while the elements of ρ are updated

from their full conditional distributions using Metropolis random walk steps [RC13]. A

particularly appealing feature of our proposed MDAGAR model is that the spatial weight

parameters η = {η2, . . . ,ηq} render Gaussian full conditional distributions in addition to the

customary Gaussian full conditional distributions for β and w. As a matter of notational

convenience for the derivations that follow, we use N(µ,V ) to denote the normal distribution

with variance-covariance matrix V . This difference from our notation in the main manuscript

where we use the precision matrix in the argument of normal distribution.

Full Conditional Distributions The full conditional distribution for each βi is

βi|yi,wi, σ
2
i ∼ N(Mimi,Mi) (2.21)

whereMi =
(

1
σ2
i
X>i Xi + 1

σ2
β
Ipi

)−1

andmi = 1
σ2
i
X>i (yi −wi). Similarly, the full conditional

distribution of each σ2
i follows an inverse gamma distribution,

σ2
i |yi,βi,wi ∼ IG

(
aσ +

k

2
, bσ +

1

2
(yi −Xiβi −wi)

> (yi −Xiβi −wi)

)
. (2.22)

44



The full conditional distribution for wi for each i = 2, . . . , q − 1 is

p
(
wi |w1, . . . ,wi−1,wi+1,wi+1, . . . ,wq,yi,βi, σ

2
i ,ηi, . . . ,ηq, ρi, . . . , ρq, τi, . . . , τq

)
∝

q∏
n=i

exp

−τn2
(
wn −

n−1∑
i′=1

Ani′wi′

)>
Q (ρn)

(
wn −

n−1∑
i′=1

Ani′wi′

)
× exp

{
− 1

2σ2
i

(yi −Xiβi −wi)
> (yi −Xiβi −wi)

}
(2.23)

which is equal to N(wi |Gigi,Gi), where

Gi =

[
τiQ(ρi) +

q∑
n=i+1

τnA
>
niQ(ρn)Ani +

1

σ2
i

Ik

]−1

and gi = τiQ(ρi)
i−1∑
n=1

Ainwn +

q∑
n=i+1

τnA
>
niQ(ρn)

(
wn −

n−1∑
i′=1,i′ 6=i

Ani′wi′

)
+

1

σ2
i

(yi −Xiβi).

For i = 1 and q, we have

w1|w2, . . . ,wq,y1,β1, σ
2
1,η,ρ, τ ∼ N(G1g1,G1)

wq|w1, . . . ,wq−1,yq,βq, σ
2
1,ηq, ρq, τq ∼ N(Gqgq,Gq)

, where

G1 =

(
τ1Q(ρ1) +

q∑
n=2

τnA
>
n1Q(ρn)An1 +

1

σ2
1

Ik

)−1

,

g1 = τ2A
>
21Q(ρ2)w2 +

q∑
n=3

τnA
>
n1Q(ρn)

(
wn −

n−1∑
i′=2

Ani′wi′

)
+

1

σ2
1

(y1 −X1β1),

Gq =

(
τqQ(ρq) +

1

σ2
q

Ik

)−1

gq = τqQ(ρq)

q−1∑
n=1

Aqnwn +
1

σ2
q

(yq −Xqβq).
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The full conditional distribution of each τi is

τ1|w1, ρ1 ∼ G

(
aτ1 +

k

2
, bτ1 +

1

2
wT

1Q(ρ1)w1

)
,

τi|w1, . . . ,wi,ηi, ρi ∼ G

aτi +
k

2
, bτi +

1

2

(
wi −

i−1∑
i′=1

Ai,i′wi′

)>
Q(ρi)

(
wi −

i−1∑
i′=1

Ai,i′wi′

) ,

i = 2, 3, . . . , q

We now derive the full conditional distributions for the ηis. From (2.5) with i = 2, each

element in w2 can be written as w2j = η021w1j + η121

∑
j′∼j w1j′ + ε2j, where ε2j is the jth

element in ε2. To extract η21 = (η021, η121)> from the matrix A21, A21w1 is rewritten as

Z1η21 where Z1 = (w1, ζ1) and ζ1 =
(∑

j′∼1w1j′ , . . . ,
∑

j′∼k w1j′

)>
. In general, Aii′wi′ =

Zi′ηii′ with Zi′ = (wi′ , ζi′), where ζi′ =
(∑

j′∼1wi′j′ , . . . ,
∑

j′∼k wi′j′
)>

. Consequently, (5)

can be written as wi = δiηi + εi, where block matrix δi = (Z1, . . . ,Zi−1). If ηi ∼ N(µi,Vi),

then the full conditional distribution of ηi is

p(ηi |w1, . . . ,wi, ρi) ∝ exp
{
−τi

2
(wi − δiηi)>Q(ρi)(wi − δiηi)

}
× exp

{
−1

2
(ηi − µi)>V −1

i (ηi − µi)
}
. (2.24)

The above is equal to N(ηi |Hihi,Hi), where Hi =
(
τiδ
>
i Q(ρi)δi + V −1

i

)−1
and hi =

τiδ
>
i Q(ρi)wi + V −1

i µi. For our analysis we set µi = 0 and Vi = 1000I.

Metropolis within Gibbs Let γi = log( ρi
1−ρi ), γi ∈ R and γ = (γ1, . . . , γq)

>. The full

conditional distribution of γ is

p(γ|w,η2, . . . ,ηq, τ ) ∝ p(w|τ ,η2, . . . ,ηq,ρ)× p(ρ)|J |, (2.25)
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where p(w|τ ,η2, . . . ,ηq,ρ) = N(w |Gg,G), G = (Qw + Σ−1)
−1

, g = Σ−1 (y −Xβ), Σ =

diag(σ) ⊗ Ik and J =
∏q

i=1 ρi(1 − ρi). Using the formula of transformation, p(ρ)|J | is the

prior for γ and in the right-hand side, ρ can be substituted by γ given ρi = eγi
1+eγi

.

In our analysis, for each model we ran two MCMC chains for 30,000 iterations each.

Posterior inference was based upon 15,000 samples retained after adequate convergence was

diagnosed. The MDAGAR model in the simulation examples was programmed in the S

language as implemented in the R statistical computing environment. All other models were

implemented using the rjags package available from CRAN https://cran.r-project.

org/web/packages/rjags/.

2.3.7.2 Simulation

WAIC, AMSE and D score For the simulation studies in Section 2.3.4.2, let θ =

{β,σ,w}. The likelihood of each data point p(yij | θ) = p
(
yij | x>ijβi + wij, 1/σ

2
i

)
is needed

for calculating WAIC which is defined as

WAIC = −2
(
l̂pd− p̂WAIC

)
,

where l̂pd is computed using posterior samples as the sum of log average predictive density

i.e.
∑q

i=1

∑k
j=1 log

(
1
L

∑L
`=1 p

(
yij | θ(`)

))
, θ(`) for ` = 1, . . . , L being L posterior samples of

θ, and p̂WAIC is the estimated effective number of parameters computed as

q∑
i=1

k∑
j=1

V L
`=1

(
log p

(
yij | θ(`)

))

with V L
`=1

(
log p

(
yij | θ(`)

))
= 1

L−1

∑L
`=1

[
log p

(
yij | θ(`)

)
− 1

L

∑L
`=1 log p

(
yij | θ(`)

)]2

.

Turning to the D score, we draw replicates yij, y
(`)
rep,ij ∼ N(x>ijβ

(`)
i + w

(`)
ij , 1/σ

2(`)
i ) and

compute D = G + P . Here G =
∑q

i=1 ||yi − ȳrep,i||2 is a goodness-of-fit measure, where
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ȳrep,i is the mean vector with elements ȳrep,ij = 1
L

∑L
`=1 y

(`)
rep,ij and P =

∑q
i=1

∑k
j=1 σ

2
rep,ij is a

summary of variance, where σ2
rep,ij is the variance of y

(`)
rep,ij for ` = 1, . . . , L.

For AMSE, we use wij as the true value of each random effect and ŵ
(n)
ij is the pos-

terior mean of wij for the data set n. The estimated AMSE is calculated as ÂMSE =

1
Nqk

∑N
n=1

∑q
i=1

∑k
j=1

(
ŵ

(n)
ij − wij

)2

with associated Monte Carlo standard error estimate

ŜE(ÂMSE) =

√√√√ 1

(Nqk)(Nqk − 1)

N∑
n=1

q∑
i=1

k∑
j=1

[(
ŵ

(n)
ij − wij

)2

− ÂMSE

]2

.

Coverage Probability For the simulation studies in Section 2.3.4.2, Figure 2.18 plots

coverage probabilities of correlation between two diseases in the same region, given by

corr(w1j, w2j) = cov(w1j, w2j)/(
√
var(w1j)

√
var(w2j)), for MDAGAR and GMCAR. Let

Q(ρi)
−1 = {dijj′}, we obtain cov(w1j, w2j) = τ−1

1 (η021d1jj + η121

∑
j′∼j d1jj′), var(w1j) =

τ−1
1 d1jj and

var(w2j) = τ−1
1 [η021(η021d1jj + η121

∑
j′∼j

d1jj′) + η121

∑
j′∼j

(η021d1jj′ + η121

∑
j′′∼j

d1j′′j′)] + τ−1
2 d2jj.

The MDAGAR performs better in estimating disease correlations in the same region for all

scenarios, especially for low and medium correlations with CPs at around 95% in all states.

Figure 2.18: Coverage probability (%) of corr(w1j, w2j), i.e. correlation between two diseases
in each state, for MDAGAR (blue) and GMCAR (red).
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2.4 A Joint Multivariate DAGAR model for multiple disease map-

ping

Following the hierarchical construction of the order-free MCAR [JBC07], a joint multivari-

ate DAGAR model is developed to construct the spatial random effects wi by a linear

combination of latent factors f1, . . . ,fi for i ≥ 2 as (1.4), where each fi ∼ N(0,Q(ρi)) is

independently modeled as a univariate DAGAR and Q(ρi) are univariate DAGAR precision

matrices with B and F as in (2.3) with ρi. The joint distribution for w is constructed from

w1 = a11f1 and wi = ai1f1 + ai2f2 + · · ·+ aiifi for each i = 2, . . . , q, where aih, h = 1, . . . , i,

are coefficients that associate spatial components for different diseases. If F = (f>1 , . . . ,f
>
i )>

and A be a lower triangular with elements aih, the joint distribution of w is obtained in

matrix form using a n× n diagonal matrix In,

w =


a11I 0 . . . 0

a21I a22I . . . 0
...

...
. . .

...

aq1I aq2I . . . aqqI




f1

f2

...

fq

 = (A⊗ In)F

and the covariance matrix of w is

Σw = (A⊗ Ik)Cov(F )(A⊗ Ik)>

= (A⊗ Ik)

[
q⊕
i=1

Q−1(ρi)

] (
A> ⊗ Ik

)
(2.26)

With a shared ρi = ρ for all diseases, fi
iid∼ N(0,Q(ρ)), we obtain a separable covari-

ance matrix Σw = (AA>) ⊗Q−1(ρ) as the Kronecker product of Σ = AA> which corre-

sponds to disease dependence and Q−1(ρ) corresponding to spatial association. Henceforth,

when Σw is defined as in (2.26), we denote the distribution of w, i.e. w ∼ N(0,Σ−1
w ), by

MDAGAR(ρ1, . . . , ρq,Σ). This MDAGAR model is used to construct the spatial compo-
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nents in nonparametric hierarchical models for multivariate difference boundary detection in

Section 3. If Q(ρi) is specified using a proper CAR structure, the joint distribution of w is

presented as MCAR(ρ1, . . . , ρq,Σ), i.e. the order-free multivariate CAR model [JBC07].
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CHAPTER 3

Multivariate difference boundary detection using

nonparametric hierarchical models

3.1 Introduction

For multiple diseases, as shown in Section 2.3, part of the residual from the explanatory vari-

ables is captured by the spatial random effect wij in (2.4). For boundary detection, we define

difference boundaries by considering posterior probabilities such as P (wij = wij′|Data, j ∼ j′)

for each disease i and P (wij = wi′j′|Data, j ∼ j′, i 6= i′) across different diseases. If the wij’s

are continuous, the probabilities will always be 0 which do not work for boundary detec-

tion. To endow the spatial effects with a discrete distribution, two Bayesian nonparametric

models using areally-referenced spatial stick-breaking priors (ARSB) and areally-referenced

Dirichlet processes (ARDP) [LBH15] are proposed based on Dirichlet process priors for a

single disease. Both methods accommodate spatial dependence through DP and model spa-

tial random effects as discrete variables. When there is more than one disease of interest, we

also introduce associations among diseases through the nonparametric framework. Consid-

ering the computation efficiency and competitive performance, we focus on developing the

multivariate model based on ARDP which estimates fewer parameters compared to ARSB.

The ARDP model maintains the marginal distribution of each spatial random effect to

be a regular univariate Dirichlet process (DP), denoted as G(j)(wj), incorporating the spatial

dependence between these DPs. The spatial components γ1, . . . , γn are jointly distributed

as a CAR model and F (1)(·), . . . , F (n)(·) denote the cumulative distribution functions of
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the marginal distributions of γj. Marginally, each F (j)(γj) is uniform (0, 1) but they are

dependent through γ1, . . . , γk introducing spatial dependence between DPs defined below,

w = {wj}nj=1 ∼ Gn;Gn =
∑

u1,...,un

πu1,...,unδθu1
. . . δθun ;

πu1,...,un = P

(
u1−1∑
k=1

pk < F (1)(γ1) <

u1∑
k=1

pk, . . . ,
un−1∑
k=1

pk < F (n)(γn) <
un∑
k=1

pk

)
;

θ = (θ1, . . . , θK)
iid∼ N(0, τs); γ = {γj}nj=1 ∼ N(0, τ(Dw −M)) (3.1)

where δθk is the Dirac measure (point mass) located at θk and each θk, k = 1, . . . , K, is a ran-

dom sample drawn independently from a base distribution G0 = N(0, τs) with precision τs.

Subscripts u1, . . . , un are indices of θk’s sampled for n observations. Probability parameters

p1, . . . , pK comprises the regular stick breaking weights [Set94] constructed as

p1 = V1; pt = Vt
∏
k<t

(1− Vk), t = 2, . . . , K; Vk
iid∼ Beta(1, α); (3.2)

where α stochastically controls the number of distinct values among the K clusters. The

total number of DP clusters, K, truncates the stick breaking function. The infinite sum of

pk’s is 1. In practice, we simply choose a large enough value for K such that there exists

some empty components during the MCMC run. This model ensures that the marginal

distribution of G(j)(wj) for each region j follows an identical DP,

G(j)(wj) =
K∑
k=1

∑
u1,...,ui=k,...,un

πu1,...,ui=k,...,unδθu1
. . . δθui=k . . . δθun =

K∑
k=1

πkδθk , (3.3)

where πk = P (
∑k−1

t=1 pt < F (j)(γj) <
∑k

t=1 pt).

We extend this ARDP model to a multivariate ARDP (MARDP) framework for mul-

tivariate boundary analysis. Under the MARDP framework, we use the joint version of

MDAGAR model illustrated in Section 2.4 to construct spatial components, which avoids
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the order selection issue in conditional modelling for multiple diseases. The reminder of

this chapter is organized as follows. Section 3.2 develops a MARDP framework for discrete

spatial random effects based the hierarchical MDAGAR model for spatial components. Sec-

tion 3.3 illustrates the decision rule based on FDR for multivariate areal boundary analysis.

Section 3.4 presents a simulation study to assess the performance of different hierarchical

models in model fitting and difference boundary detection. Section 3.5 introduces a mul-

tivariate areal dataset for standardized incidence ratios (SIR) of four cancers in California

obtained from the SEER database, and analyzes and discusses difference boundary detection

for each cancer as well as across cancers.

3.2 The Multivariate Areally Referenced Dirichlet Process (MARDP)

Let N = n× q be the total number of observations and recall w =
(
w>1 , . . . ,w

>
q

)
denote the

random effects vector, where wi = (wi1, . . . , wi,n)>, i = 1, . . . , q. Let (1, 1), . . . , (1, n), (2, 1),

. . . , (2, n), . . . , (q, 1), . . . , (q, n) be the pairwise (i, j) indices corresponding to a vectorized

enumeration of the observations 1, . . . , n, n+ 1, . . . , 2n, . . . , (q− 1)n+ 1, . . . , N . Modeling w

jointly as an unknown distribution GN , which itself is modeled as a Dirichlet process (DP),

yields the Multivariate Areal DP (MARDP)

w ∼ GN ;GN |πu1,...,uN ,θ =
∑

u1,...,uN

πu1,...,uN δθu1
. . . δθuN ;

πu1,...,uN = Pr

(
u1−1∑
k=1

pk < F (1)(γ1) <

u1∑
k=1

pk, . . . ,

uN−1∑
k=1

pk < F (N)(γN) <

uN∑
k=1

pk

)
;

γ = {γ1, . . . ,γq} ∼ Nnq(0,Σ
−1
γ ) (3.4)

where u1, . . . , uN are indices of θk’s sampled for N the observations with respect to q dis-

eases in n regions, θ is defined in (3.1) and p1, . . . , pK are specified in (3.2). Spatial com-

ponents γi = (γi1, γi2 . . . , γi,n)> are dependent for each disease i, and γ1, . . . ,γq are mod-
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eled jointly by MDAGAR(ρ1, . . . , ρq,Σ) with covariance matrix Σγ as defined in (2.26),

incorporating both associations among the diseases and spatial dependence for each dis-

ease. Each F (1)(·), . . . , F (N)(·) (corresponding to F (1,1)(·), . . . , F (q,n)(·), respectively) denotes

the cumulative distribution functions of the marginal distribution of the corresponding γij.

Again, each F (i,j)(γij) ∼ Uniform(0, 1) but dependence is introduced through the γij’s.

As a result, spatial random effects w hold all properties that are in univariate ARDP.

The marginal distribution for the individual wij is given as G(i,j)(wij) =
∑K

k=1 πkδθk , where

πk = P
(∑k−1

t=1 pt < F (i,j)(γij) <
∑k

t=1 pt

)
. These DPs are dependent across regions as well as

diseases with dependent F (i,j)(γij)’s and through parameters p1, . . . , pK . Hence, the MARDP

framework is able to evaluate the difference in wij’s across diseases. The shared values of

θk’s make it possible to compare effects between diseases.

3.2.1 Model Implementation

We extend (2.4) to a Bayesian hierarchical framework with the posterior distribution

p (β,w,θ,γ,V ,σ, τs,ρ,A|y) ∝ p (β,w,θ,γ,V ,σ, τs,ρ,A)×
q∏
i=1

n∏
j=1

N
(
yij |x>ijβi + wij, 1/σ

2
i

)
(3.5)

where V = (V1, . . . , VK)>. We specify p (β,w,θ,γ,V ,σ, τs,ρ,A) as

K∏
k=1

{N(θk|0, τs)×Beta(Vk|1, α)} ×
q∏
i=1

{
IG(σ2

i | ae, be)×N(βi |0, 1/σ2
βIpi)× Unif(ρi | 0, 1)

}
× IG(1/τs | as, bs)×N (γ |0,Σγ(ρ,A))× IW

(
AA> | ν,R

)
×
∣∣∣∣ ∂Σ

∂aih

∣∣∣∣ , (3.6)

where
∣∣∣ ∂Σ
∂aih

∣∣∣ is the Jacobian 2q
∏q

i=1 a
q−i+1
ii transformation for the prior on AA> in terms of

the Cholesky factor A. We sample the parameters from the posterior distribution in (3.5)

using Markov chain Monte Carlo (MCMC) with Gibbs sampling and random walk metropolis
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[GL06] implemented in the R statistical computing environment. The Appendix 3.7 presents

details on the MCMC updating scheme.

3.3 Decision Rule Based on FDR for Selecting Difference Bound-

aries

Following [LBH15] we formulate difference boundary detection as a multiple comparison

problem, where a cancer-specific difference boundary is detected according to the tenability,

or not, of wij = wij′ for j ∼ j′. To adjust for the multiplicity arising from all pairs of neighbors

and, in our case, of diseases as well, a false discovery rate (FDR) is controlled [BH95]. We

adopt the Bayesian analogue of FDR [MPR04] in the following manner: We define an edge

(j, j′)i as a difference boundary for disease i if the posterior probability P (wij 6= wij′|y)

exceeding a certain threshold t. Denoting vi(j,j′) = P (wij 6= wij′ |y), we define

FDR =

∑
j∼j′ I (wij = wij′) I

(
vi(j,j′) > t

)
∑

j∼j′ I
(
vi(j,j′) > t

) ,

and the estimated FDR is obtained as the posterior expectation

FDR =

∑
j∼j′

(
1− vi(j,j′)

)
I
(
vi(j,j′) > t

)
∑

j∼j′ I
(
vi(j,j′) > t

) . (3.7)

We also compute FNR =
∑
j∼j′ v

i
(j,j′)

(
1−I

(
vi
(j,j′)>t

))
m−

∑
j∼j′ I

(
vi
(j,j′)>t

) to estimate the False Non-discovery Rate

(FNR), where m is the total number of edges (geographic boundaries). In terms of a bivariate

loss function L2R =
(
FDR,FNR

)
, the optimal decision minimizes FNR subject to FDR ≤

δ, i.e. the threshold t = t? is obtained as [MPR04]:

t? = sup
{
t : FDR(t) ≤ δ

}
. (3.8)
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The posterior probability vi(j,j′) in (3.7) is defined according to the type of difference

boundary. For instance, we use vs(j,j′) = P (wij 6= wij′ , wi′j 6= wi′j′|y) for shared boundaries

and vc(j,j′) = P (wij 6= wi′j′ , wi′j 6= wij′|y) , j < j′ for mutual cross-disease difference bound-

aries (i and i′ are two different diseases) instead of vi(j,j′) in (3.7).

3.4 Simulation

We present a simulation experiment to compare the performances of MDAGAR and MCAR

with two independent-disease models. All models were constructed using the MARDP frame-

work in Section 3.2 and differ only in their specification of Σγ .

3.4.1 Data Generation

We generate data over a California county map with 58 counties. We simulated our outcomes

yij using the model in (2.4) with q = 2, i.e., two outcomes, and two covariates, x1j =

(1, x1j2)> and x2j = (1, x2j2)>, with p1 = p2 = 2. We fixed values of x1j2 and x2j2 by

generating them from N(0, 1) independently across regions. The regression slopes were set

to β1 = (2, 5)> and β2 = (1, 6)>. We generated values of w =
(
w>1 ,w

>
2

)>
using (3.4) with

K = 15, α = 1, and τs = 0.25, while we generated values for γ from N(0,Σγ) with Σγ in

(2.26) specified by A =

1 0

1 1

, Q−1(ρi) is a spatial autocorrelation matrix with elements

ρ
d(j,j′)
i , ρ1 = 0.2 and ρ2 = 0.8, where d(j, j′) refers to the distance between the centroids of

the jth and j′th counties in California. The specification of A ensures corr(γ1j, γ2j) ≈ 0.7

between the two diseases.

Figure 3.1 shows the map for random effects for disease 1 on the left and disease 2 on

the right. There are five different levels in total for both diseases with values −2.67, −1.73,

−0.98, 0.42 and 0.77 ordered from the smallest to largest. As a result, we found 75 “true

difference boundaries” delineating clusters with substantially different values for disease 1
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and 78 “true difference boundaries” for disease 2. Moreover, there are 77 cross-disease

difference boundaries delineating random effects for disease 1 from disease 2 in neighboring

regions, i.e. w1j 6= w2j′ , j ∼ j′, and j < j′; there are 95 cross-disease difference boundaries

separating disease 2 from disease 1 in the neighboring regions, i.e. w2j 6= w1j′ , j ∼ j′, and

j < j′.

−2.67
−1.73
−0.98
0.42
0.77

Figure 3.1: A map of the simulated data for random effects for disease 1 (left) and disease 2
(right) showing five different levels, each with its own value. There are 75 boundary segments
that separate regions for disease 1 and 78 difference boundaries for disease 2.

3.4.2 Model Comparison

Fixing the values of w generated as above, we simulated 30 datasets for the outcome

yij ∼ N
(
x>ijβi + φij, 1/sigma

2
i

)
, where σ2

1 = σ2
2 = 0.1. We analyzed the 30 replicated

datasets using (3.5) with vague priors specified in (3.6) as as = 2, bs = 0.1, ae = 2, be = 0.1,

σ2
β = 1000, α = 1, ν = 2 and R = diag(0.1, 0.1). The same set of priors were used for

both MDAGAR and MCAR as they have the same number of parameters with similar inter-

pretations. The joint multivariate settings were compared with corresponding independent-

disease models for CAR and DAGAR respectively. For independent-disease models, spatial

components are assumed to be independent between diseases. Hence A =

a11 0

0 a22


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and Σγ =

a2
11Q

−1(ρ1) O

O a2
22Q

−1(ρ2)

 is block diagonal. We refer to the independent-

disease models by DAGARind and CARind according to whether Q(ρi) is specified by DA-

GAR and CAR, respectively. We used the same priors as for the joint models except for

A, which is now specified by a2
ii ∼ IG(av, bv), av = 2, bv = 0.1 for i = 1, 2. All models

were executed in the R statistical computing environment and inference was obtained from

5000× 2 (chains) = 10000 MCMC samples from (3.5) for each model.

We compared MDAGAR, MCAR, DAGARind and CARind using the Widely Applicable

Information Criterion (WAIC) [Wat10, GHV14] and a predictive loss criterion based on a

balanced loss function for replicated data sets [GG98]. For the latter, we drew replicates

y
(`)
rep,ij ∼ N

(
x>ijβ

(`)
i + w

(`)
ij , 1/σ

2(`)
i

)
for each posterior sample ` = 1, . . . , L and computed D =

G+P , where G =
∑q

i=1

∑n
j=1(yij− ȳrep,ij)

2 and P =
∑q

i=1

∑n
j=1 σ

2
rep,ij, ȳrep,ij =

1

L

L∑
`=1

y
(`)
rep,ij,

and σ2
rep,ij is the variance of y

(`)
rep,ij for ` = 1, . . . , L. Both WAIC and D reward goodness of fit

and penalize model complexity. Figure 3.2 plots values of WAICs (3.2a) and D scores (3.2b)

over the 30 data sets for the four models. Compared with the two independent-disease

models, the two joint models exhibit much better performance with lower WAIC and D

scores. This, unsurprisingly, indicates the benefits of capturing dependence among diseases

in terms of model choice. MDAGAR and MCAR perform comparably, although CARind

seems to be slightly preferred to DAGARind.

We also computed the Kullback-Leibler Divergence, DKL (p(ytrue)||p(y)), between the

true density p(ytrue) and the four models. Here, p(y) = N(y |Xβ +φ, diag(σ)⊗ In) is the

density from each candidate model and p(ytrue) = N (ytrue |Xβtrue + φtrue, diag(σtrue)⊗ In),

where diag(σ) is a diagonal matrix with σ2
i as i-th diagonal element, and X is a block diago-

nal design matrix withXi = (xi1,xi2, . . . ,xin)> as diagonal blocks. SinceDKL (p(ytrue)||p(y))

is a function of the model parameters, we can compute its posterior distribution given each

data set. We collect the posterior means from each dataset and plot them using a density-
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smoother in Figure 3.2c for the four models. These plots clearly show that the joint models,

MCAR and MDAGAR, have smaller KL divergences from the true model than have CARind

and DAGARind. We also evaluated parameter estimates from the four models as discussed

in Appendix 3.7.2.
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Figure 3.2: Density plots for WAICs, D scores and mean DKL(p(ytrue)||p(y)) over 30 datasets
as shown in (a), (b) and (c) respectively, using two joint models, MCAR (blue plot in CAR
panel) and MDAGAR (blue plot in DAGAR panel), and two independent-disease models,
CARind (red plot in CAR panel) and DAGARind (red plot in DAGAR panel). The dotted
vertical line shows the mean for each plot.

Turning to boundary detection, we computed P (wij 6= wi′j′|y) for i, i′ = 1, 2 and for

every pair of neighboring regions (j, j′). Given these posterior probabilities, we obtained the

corresponding boundary detection results (sensitivity and specificity) between and across

diseases over our 30 simulated datasets using our four models. Table 3.1 presents these

results. Given the true number of difference boundaries, sensitivities and specificities were

calculated by choosing difference boundaries as a fixed number T of edges ranked in terms

of highest posterior probabilities. This was repeated for T = 60, 65, 70, 75, 80, 85 for disease

1, disease 2 and disease 1 vs. 2, while T = 70, 75, 80, 85, 90, 95 were used for disease 2 vs.

1. Overall, the two joint models produce comparable detection results and outperform the
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two independent-disease models in terms of sensitivity and specificity under all scenarios.

In most scenarios, MDAGAR appears to outperform MCAR in terms of specificity and

sensitivity for disease 1, which may be attributed to the better estimation of autocorrelation

parameters in DAGAR when ρ is small (ρ1 = 0.2) [DBH19]. By choosing T close to the true

number of difference boundaries for each disease scenario, MDAGAR and MCAR are able

to detect about 85% of the true boundaries with specificity and sensitivity both around 85%

for disease 1, disease 2 and disease 1 vs. 2. When comparing diseases 2 vs. 1, MDAGAR and

MCAR detect about 82% of the true boundaries with specificity and sensitivity around 82%

when T = 85. In most of these scenarios, the disease-independent models are more likely to

be false positive, recognizing the null case (i.e. wij = wi′j′) as difference boundaries.

Table 3.1: Boundary detection results (sensitivity and specificity) in the simulation study
(30 datasets generated on the California map) within each disease and across two diseases
using MCAR, MDAGAR, CARind and DAGARind methods.

Disease 1 Disease 2 Disease 1 vs 2 Disease 2 vs 1

T Methods Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity T Methods Specificity Sensitivity
60 MDAGAR 0.951 0.781 0.953 0.744 0.917 0.774 70 MDAGAR 0.920 0.737

MCAR 0.924 0.783 0.935 0.751 0.928 0.756 MCAR 0.913 0.721
DAGARind 0.945 0.767 0.956 0.753 0.902 0.732 DAGARind 0.900 0.726

CARind 0.909 0.763 0.909 0.732 0.902 0.740 CARind 0.899 0.714

65 MDAGAR 0.923 0.816 0.933 0.786 0.891 0.803 75 MDAGAR 0.895 0.767
MCAR 0.900 0.814 0.918 0.791 0.903 0.788 MCAR 0.887 0.752

DAGARind 0.874 0.799 0.890 0.793 0.833 0.770 DAGARind 0.858 0.758
CARind 0.885 0.796 0.888 0.759 0.879 0.771 CARind 0.877 0.746

70 MDAGAR 0.886 0.846 0.898 0.818 0.854 0.828 80 MDAGAR 0.858 0.794
MCAR 0.870 0.845 0.884 0.822 0.876 0.824 MCAR 0.857 0.784

DAGARind 0.797 0.816 0.842 0.816 0.763 0.800 DAGARind 0.780 0.799
CARind 0.810 0.822 0.858 0.790 0.834 0.804 CARind 0.824 0.781

75 MDAGAR 0.839 0.869 0.854 0.847 0.812 0.851 85 MDAGAR 0.816 0.820
MCAR 0.826 0.864 0.849 0.852 0.838 0.850 MCAR 0.823 0.816

DAGARind 0.765 0.832 0.785 0.835 0.718 0.820 DAGARind 0.705 0.826
CARind 0.733 0.848 0.796 0.823 0.761 0.835 CARind 0.760 0.816

80 MDAGAR 0.781 0.884 0.803 0.872 0.767 0.871 90 MDAGAR 0.766 0.845
MCAR 0.776 0.882 0.804 0.876 0.785 0.871 MCAR 0.783 0.849

DAGARind 0.690 0.859 0.727 0.861 0.666 0.844 DAGARind 0.672 0.844
CARind 0.670 0.865 0.707 0.857 0.694 0.853 CARind 0.698 0.844

85 MDAGAR 0.701 0.904 0.749 0.893 0.715 0.890 95 MDAGAR 0.710 0.871
MCAR 0.720 0.899 0.750 0.895 0.728 0.886 MCAR 0.728 0.874

DAGARind 0.622 0.881 0.694 0.877 0.632 0.860 DAGARind 0.603 0.866
CARind 0.597 0.880 0.646 0.880 0.605 0.874 CARind 0.614 0.868

Note: The first column “T” is the number of edges fixed as difference boundaries in terms of highest
posterior probabilities.

Our methodology also allows us to detect “disease differences” within the same county,

i.e. P (w1j 6= w2j′ |y). This reflects difference in the random effects between two diseases

in the same county. There are 20 counties with true “disease difference” in Figure 3.1. Ta-
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ble 3.2 shows sensitivity and specificity for detecting “disease difference” in the same county

using the four models over 30 datasets. We chose T = 15, 20, 22, 25, 30 regions with the high-

est posterior probabilities as differences between diseases. Unsurprisingly, MDAGAR and

MCAR again excel over the two independent-disease models in all scenarios with a resulting

sensitivity and specificity of about 80% when T = 22. Moreover, DAGAR models tend to

have better detection than CAR models indicating better interpretation of the association

among diseases.

Table 3.2: Sensitivity and specificity in the simulation study (30 datasets generated on the
California map) for “disease difference” in the same region using MCAR, MDAGAR, CARind

and DAGARind methods.

T Methods Specificity Sensitivity T Methods Specificity Sensitivity
15 MDAGAR 0.914 0.690 20 MDAGAR 0.844 0.773

MCAR 0.900 0.672 MCAR 0.821 0.742
DAGARind 0.892 0.610 DAGARind 0.790 0.715

CARind 0.889 0.593 CARind 0.798 0.675

22 MDAGAR 0.807 0.795 25 MDAGAR 0.746 0.817
MCAR 0.760 0.772 MCAR 0.707 0.802

DAGARind 0.722 0.762 DAGARind 0.680 0.787
CARind 0.761 0.693 CARind 0.649 0.743

30 MDAGAR 0.646 0.857
MCAR 0.617 0.855

DAGARind 0.594 0.845
CARind 0.545 0.800

Note: The first column “T” is the number of edges fixed as difference boundaries in terms of
highest posterior probabilities.

3.5 Analysis of SEER Dataset with Four Cancers

3.5.1 Data Example

For the incidence of the four cancers: lung, esophageal, larynx and colorectal cancer, we

analyze a dataset including the observed counts of incidence (Yij) for each cancer i = 1, 2, 3, 4
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in each county j = 1, 2, . . . , 58 of California between 2012 and 2016. Given the population

Nj in county j, we calculated the expected number of cases, Eij =
∑58
j=1 Yij∑58
j=1 Nj

Nj, and plotted

the standardized incidence ratios (SIRij = Yij/Eij) on a California map showing the 58

counties for the four cancers, as shown in Figure 3.3. Cutoffs for the different levels of SIRs

are quintiles for each cancer.

Lung cancer Esophageal cancer

larynx cancer colorectal cancer

0−20%
20%−40%
40%−60%
60%−80%
80%−100%

Figure 3.3: Maps of standardized incidence ratios (SIR) for lung, esophageal, larynx and
colorectal cancer in California, 2012− 2016.

As an exploratory tool to assess associations among the cancers, we calculated Pear-

son’s correlation for each pair of cancers by regarding SIRs in different counties as inde-

pendent samples and found that the correlation coefficients between the incidence ratios for

all four cancers to be relatively high with values 0.5 − 0.9. Next, to explore the spatial

association for each cancer, we calculated Moran’s I based upon the rth order neighbors

for each cancer and plotted the areal correlogram [BCG14]. Defining distance intervals as

(0, d1], (d1, d2], (d2, d3], . . . , the rth order neighbors refer to units with distance in (dr−1, dr],
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i.e. within distance dr but separated by more than dr−1. The distance is the Euclidean

distance from an Albers map projection of California. Figure 3.4 reveals that spatial associ-

ations in lung, esophageal and colorectal cancers clearly diminish with increasing r, although

the pattern is less pronounced for larynx.
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Figure 3.4: Moran’s I of rth order neighbors for lung, esophageal, larynx and colorectal
cancer.

For an insight into difference boundaries for each cancer, we calculated the difference in

SIR between each pair of neighboring counties (139 pairs in total), i.e., |SIRij−SIRij′|, j ∼

j′. By ranking the differences from largest to smallest, we selected the first 70 pairs (half of

the total pairs) with the largest differences as the difference boundaries for each cancer as

shown in Figure 3.5. The four cancers exhibit similar patterns in boundary detection that

more boundaries are detected in the north and the borders of California. Counties along the

central corridor of California, ranging from central to south, tend to be in the same cluster.

3.5.2 Data Analysis

We analyzed the dataset mentioned in Section 3.5.1 using a Poisson spatial regression model,

i.e. Yij
ind∼ Poisson

(
Eij exp

(
x>ijβi + wij

))
, i = 1, . . . , 4, j = 1, . . . , 58. Applying prior spec-

ification as in the simulation study, we implemented MARDP as discussed in Section 3.2.1
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Lung Esophageal

Larynx Colorectal

Figure 3.5: Boundaries (in red) selected as the first 70 pairs with largest differences for lung,
esophageal, larynx and colorectal cancer.

using MDAGAR and MCAR. Posterior inference is based upon 10000 MCMC samples after

20000 iterations of burn-in for diagosing convergence.

Without accounting for covariates, we detected difference boundaries for SIR of each

cancer and across cancers. First, regarding boundary detection for each cancer, we set

up a threshold to control for FDR as in (3.8). Figure 3.6 plots the change of estimated

FDR with different numbers of edges selected as difference boundaries for the four cancers

individually using MDAGAR (3.6a) and MCAR (3.6b). In general, MDAGAR and MCAR

render similar trends in FDR curves, which are close to each other for esophageal, colorectal

and larynx cancers while lung cancer exhibits much smaller values. With MDAGAR the

FDR increases slightly faster for larynx. Apparently, under the same threshold value we will

detect more boundaries for lung and fewer boundaries for larynx cancer. Setting δ = 0.025 in

(3.8), Figure 3.7 shows difference boundaries (highlighted in red) detected by MDAGAR and

MCAR in SIR maps for the four cancers. Maps from MDAGAR and MCAR are consistent

with each other and the number of difference boundaries detected by the two models are also
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similar for each cancer, albeit with fewer boundaries (47 edges with posterior probabilities

above the threshold t? in (3.8)) detected for larynx under MDAGAR. For lung cancer 95

boundaries are detected in total, which is considerably higher than the other three cancers.
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Figure 3.6: Estimated FDR curves plotted against the number of selected difference bound-
aries for four cancers using MDAGAR and MCAR.

Table 3.3 provides an exhaustive list of the cancer boundaries detected by MDAGAR in

Figure 3.7. This “lookup table” contains the names of adjacent counties ranked in decreas-

ing order of P (wij 6= wij′ |y) for the four cancers, offering a detailed reference for health

administrators to identify substantial spatial health barriers. Around 80% − 90% of the

boundaries listed here are also detected by MCAR. For each cancer, we see some clusters

and islands (regions fully encompassed by difference boundaries with all neighbors within

California) in the map. For example, the northern counties of Siskiyou, Shasta, Tehama,

Glenn, Butte, Plumas and Trinity appear to form a cluster for all cancers. Similarly, the

central and southern counties of Santa Clara, Merced, San Benito, Fresno, Kings, Tulare and

Kern appear in the same cluster for esophageal, larynx and colorectal cancers. Lassen and

Inyo are islands (for all cancers) with substantially smaller and larger effects, respectively,

than their neighbors. San Luis Obispo is an island with larger effects for lung, esophageal

and colorectal cancers, while Lake is an island with larger effects for lung and esophageal

cancers. A California map with county names labeled is shown in Appendix Figure 3.12 for

65



reference.

Lung (T = 97) Esophageal (T = 73)

Larynx (T = 65) Colorectal (T = 68)

(a) MDAGAR

Lung (T = 95) Esophageal (T = 73)

Larynx (T = 47) Colorectal (T = 67)

(b) MCAR

Figure 3.7: Difference boundaries (highlighted in red) detected by (a) MDAGAR and (b)
MCAR in SIR map for four cancers individually when δ = 0.025. The values in brackets are
the number of difference boundaries detected.
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Table 3.3: Names of adjacent counties that have significant boundary effects from the MDA-
GAR model for each cancer when δ = 0.025. The numbers in the first column are ranked
according to P (φid 6= φjd|y). Note: Number 1 − 61 for lung cancer, 1 − 26 for esophageal
cancer and 1− 22 for colorectal cancer are ranked by initial letters with P (φid 6= φjd|y) = 1.

Rank Lung (95) Esophageal (73) Layrnx (47) Colorectal (67)

1 Alameda, Contra costa Butte, Sutter Merced, Tuolumne Alameda, Contra costa

2 Alameda, San joaquin Calaveras, San joaquin Mariposa, Merced Amador, San joaquin

3 Alameda, Santa clara Calaveras, Stanislaus Napa, Yolo Butte, Sutter

4 Amador, El dorado El dorado, Sacramento Lake, Yolo Calaveras, San joaquin

5 Amador, Sacramento Fresno, Inyo San joaquin, Santa clara Contra costa, San joaquin

6 Amador, San joaquin Inyo, Kern San mateo, Santa clara Fresno, Inyo

7 Butte, Colusa Inyo, San bernardino Inyo, Kern Inyo, Kern

8 Butte, Sutter Inyo, Tulare Madera, Tuolumne Inyo, Tulare

9 Calaveras, San joaquin Kern, San luis obispo Sacramento, Yolo Kern, Los angeles

10 Calaveras, Stanislaus Kings, San luis obispo Fresno, Inyo Kern, San bernardino

11 Colusa, Glenn Lake, Mendocino Calaveras, San joaquin Kern, San luis obispo

12 Colusa, Lake Lake, Napa Inyo, San bernardino Kern, Santa barbara

13 Contra costa, Sacramento Lake, Yolo Calaveras, Stanislaus Kern, Ventura

14 Contra costa, Solano Los angeles, Ventura Inyo, Tulare Kings, San luis obispo

15 El dorado, Sacramento Madera, Mariposa Santa clara, Stanislaus Lake, Yolo

16 Fresno, Inyo Madera, Tuolumne Orange, San diego Madera, Mariposa

17 Fresno, Madera Mariposa, Merced Madera, Mariposa Mariposa, Merced

18 Fresno, Tulare Merced, Tuolumne Orange, Riverside Merced, Tuolumne

19 Glenn, Lake Mono, Tuolumne Contra costa, Sacramento Monterey, San luis obispo

20 Imperial, Riverside Monterey, San luis obispo Napa, Solano Napa, Yolo

21 Imperial, San diego Napa, Yolo Lassen, Plumas San luis obispo, Santa barbara

22 Inyo, Kern Orange, Riverside Kern, San luis obispo Solano, Yolo

23 Inyo, Mono Orange, San diego Lassen, Shasta Sacramento, Yolo

24 Inyo, San bernardino San joaquin, Santa clara Merced, Stanislaus Inyo, San bernardino

25 Inyo, Tulare San mateo, Santa clara El dorado, Sacramento Lassen, Shasta

26 Kern, San luis obispo Stanislaus, Tuolumne Colusa, Glenn Santa clara, Stanislaus

27 Kern, Santa barbara Napa, Solano Butte, Colusa Monterey, Santa cruz

28 Kern, Ventura Merced, Stanislaus Santa clara, Santa cruz San mateo, Santa clara

29 Kings, San luis obispo Kern, Santa barbara Lassen, Modoc Calaveras, Stanislaus

30 Lake, Mendocino Lassen, Shasta Kings, San luis obispo Napa, Solano

31 Lake, Napa Santa clara, Stanislaus Stanislaus, Tuolumne Butte, Yuba

32 Lake, Sonoma Kern, Ventura Mono, Tuolumne Colusa, Lake

33 Lake, Yolo Lassen, Plumas Mariposa, Stanislaus Orange, Riverside

34 Lassen, Plumas Butte, Colusa Sutter, Yolo Colusa, Glenn

35 Lassen, Shasta Sutter, Yolo Lake, Sonoma Madera, Tuolumne

36 Los angeles, Orange Colusa, Glenn Humboldt, Siskiyou Sacramento, San joaquin

37 Los angeles, Ventura Solano, Yolo Colusa, Lake San joaquin, Santa clara

38 Madera, Mariposa Placer, Sacramento Inyo, Mono Alameda, Santa clara

39 Madera, Tuolumne Lake, Sonoma Amador, San joaquin Inyo, Mono

40 Mariposa, Merced Mariposa, Stanislaus Butte, Sutter Mariposa, Stanislaus

41 Mariposa, Stanislaus Los angeles, Orange Plumas, Sierra San francisco, San mateo

42 Merced, Stanislaus Sacramento, Yolo Riverside, San bernardino El dorado, Sacramento

43 Merced, Tuolumne Colusa, Lake Solano, Yolo Merced, Stanislaus

44 Mono, Tuolumne Inyo, Mono Sacramento, San joaquin Amador, Sacramento

45 Monterey, San luis obispo Lassen, Modoc Alpine, Mono Humboldt, Mendocino

46 Napa, Solano Mendocino, Trinity Madera, Merced Butte, Colusa

47 Napa, Yolo Amador, San joaquin Fresno, Madera Placer, Sutter

48 Orange, Riverside Alameda, Santa clara Colusa, Yolo

49 Orange, San bernardino Madera, Merced Lassen, Plumas
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50 Orange, San diego Santa clara, Santa cruz Lassen, Modoc

51 Riverside, San bernardino Alpine, Tuolumne Plumas, Yuba

52 Sacramento, San joaquin Mendocino, Tehama Monterey, San benito

53 Sacramento, Yolo San luis obispo, Santa barbara Riverside, San diego

54 San francisco, San mateo Nevada, Sierra Los angeles, Orange

55 San joaquin, Santa clara Orange, San bernardino Orange, San bernardino

56 San luis obispo, Santa barbara Glenn, Lake Orange, San diego

57 San mateo, Santa clara Fresno, Madera Sutter, Yolo

58 Santa clara, Stanislaus Fresno, Mono Humboldt, Trinity

59 Solano, Yolo Alpine, Amador Alpine, Mono

60 Stanislaus, Tuolumne Humboldt, Mendocino Mono, Tuolumne

61 Sutter, Yolo Placer, Sutter Fresno, Mono

62 Amador, Calaveras Kern, Monterey Plumas, Sierra

63 Alpine, Amador Sierra, Yuba Lake, Sonoma

64 Humboldt, Trinity Alameda, Contra costa Nevada, Yuba

65 Mendocino, Trinity Kings, Monterey Madera, Merced

66 Butte, Yuba Plumas, Sierra Alpine, El dorado

67 Madera, Merced Sutter, Yuba Mariposa, Tuolumne

68 Fresno, Kings Alameda, San joaquin

69 Lassen, Modoc Los angeles, San bernardino

70 Mendocino, Sonoma Nevada, Placer

71 Placer, Sacramento Del norte, Siskiyou

72 Alameda, Stanislaus Alpine, Calaveras

73 San mateo, Santa cruz Del norte, Humboldt

74 Fresno, Monterey

75 Mendocino, Tehama

76 Humboldt, Siskiyou

77 Plumas, Sierra

78 Nevada, Sierra

79 Alpine, Calaveras

80 Fresno, Mono

81 Colusa, Sutter

82 Placer, Sutter

83 Alpine, Mono

84 Modoc, Shasta

85 Modoc, Siskiyou

86 Del norte, Siskiyou

87 Alpine, Tuolumne

88 Sierra, Yuba

89 Colusa, Yolo

90 Plumas, Yuba

91 Kern, Los angeles

92 Kern, San bernardino

93 Kern, Tulare

94 Kern, Kings

95 San benito, Santa cruz

For difference boundaries between cancers, we considered the shared difference boundaries

and cross-cancer boundaries. Here, we only show results from MDAGAR (MCAR is similar).

The shared difference boundaries are defined as common boundaries detected for different
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cancers. Figure 3.8 exhibits the shared boundaries for each pair of cancers, i.e. P (wij 6=

wij′ , wi′j 6= wi′j′|y), i 6= i′. Consistent with results for individual cancers in Figure 3.7,

Lassen and Inyo are islands with shared difference boundaries within California for all pairs

of cancers. San Luis Obispo is a shared island for [lung, esophageal], [lung, colorectal]

and [esophageal, colorectal], while Lake is a shared island only for [lung, esophageal]. For

cross-cancer difference boundaries, we define a mutual cross-cancer boundary from P (wij 6=

wi′j′ , wi′j 6= wij′ |y), j ∼ j′, j < j′, which separates effects for different cancers mutually in

neighboring counties (see Figure 3.9). In conjunction with Figure 3.7, we observe that the

shared difference boundaries for each pair of cancers also tend to be mutual cross-cancer

difference boundaries for the same pair. This indicates high correlation between the SIR’s

for different cancers. This is consistent with the estimated average correlation of 0.7 − 0.9

between cancers in the same region.

Lung, Esophageal (T = 66) Lung, Layrnx (T = 45) Lung, Colorectal (T = 56)

Esophageal, Layrnx (T = 42) Esophageal, Colorectal (T = 49) Larynx, Colorectal (T = 36)

Figure 3.8: Shared difference boundaries (highlighted in red) detected by MDAGAR for
each pair of cancers in SIR map when δ = 0.025. The values in brackets are the number of
difference boundaries detected.
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Lung vs. Esophageal (T = 66) Lung vs. Layrnx (T = 44) Lung vs. Colorectal (T = 55)

Esophageal vs. Layrnx (T = 36) Esophageal vs. Colorectal (T = 47) Larynx vs. Colorectal (T = 28)

Figure 3.9: Mutual cross-cancer difference boundaries (highlighted in red) detected by MDA-
GAR for each pair of cancers in SIR map when δ = 0.025. The values in brackets are the
number of difference boundaries detected.

We also compare the two joint models with the two independent models. Table 3.4

presents the predictive loss criterion D score for the models. For Poisson regression, repli-

cates for each data point are replaced by y
(`)
rep,ij = Y

(`)
rep,ij/Eij, where Y

(`)
rep,ij ∼ Poisson(

Eij exp
(
x>ijβ

(`)
i + w

(`)
ij

))
. The D scores are calculated for each cancer and added up for

the four cancers to produce Dsum. Unsurprisingly, MDAGAR and MCAR are very com-

parable (MCAR having a slightly lower score). Both models clearly excel over the two

independent models according to Dsum, with prominent contributions from lower D scores in

lung, esophageal and larynx cancers. DAGARind and CARind detect fewer difference bound-

aries for each cancer under the same FDR threshold compared with MDAGAR and MCAR.

When δ = 0.1, DAGARind and CARind produce similar patterns with a similar number of

boundaries as detected by MDAGAR and MCAR with δ = 0.025 for lung, esophageal and

colorectal cancer (see Figure 3.7); fewer boundaries are detected for larynx. Detecting the
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shared boundaries between the three cancers pairwise using DAGARind and CARind under

the same setting (δ = 0.1) reveals fewer shared boundaries.

Table 3.4: Predictive loss criterion D score under four models: MDAGAR, MCAR,
DAGARind, CARind using SEER dataset. The D scores are calculated for each cancer indi-
vidually and added up to Dsum for all cancers.

Models Dlung Desophageal Dlarynx Dcolorectal Dsum

MDAGAR 2.49 26.72 45.20 2.27 76.68

MCAR 2.31 26.12 44.17 2.08 74.67

DAGARind 4.91 30.36 49.28 2.05 86.61

CARind 5.65 32.85 47.35 2.40 88.26

We explore the impact of risk factors in boundary detection by including a potential

common risk factor for cancers, adult smoking rates (smokingij), for 2014–2016 obtained

from the California Tobacco Facts and Figures 2018 database [Cal18a], and two county

attributes that possibly affect the SIR: percentages of residents older than 65 years old (ageij)

and unemployed residents (unemployedij). Both county attributes are common for different

cancers and extracted from the SEER∗Stat database [Nat19] for the same period, 2012–2016.

Maps of these three covariates are shown in Figure 2.12 using quintiles as cutoffs. Adding the

three covariates sequentially, Figure 3.10 shows difference boundaries detected by MDAGAR

after accounting for only “smoking” in Figure 3.10a; accounting for “smoking” and “age” in

Figure 3.10b; and accounting for all three covariates (“smoking”, “age” and “unemployed”)

in Figure 3.10c for all four cancers when δ = 0.025. Table 3.5 shows posterior means

(95% credible intervals) for regression coefficients and autocorrelation parameters estimated

without any of the covariates (only an intercept). Unsurprisingly, regression slopes for the

percentage of smokers are significantly positive for all cancers when accounting for “smoking”

only, while this effect is mitigated for colorectal and larynx cancer after introducing “age”

and “unemployed” sequentially. “Age” always has a positive association with incidence rates

for all cancers after controlling for “smoking” and even after accounting for “unemployed”.
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Finally, the percentage of unemployed residents is only significantly associated with elevated

incidence of colorectal cancer controlling for the other two covariates. We also find that the

spatial autocorrelation ρi corresponding to the latent factor fi varies considerably by cancer.

Larger estimates of ρi imply smoother maps and, consequently, fewer difference boundaries.

Lung (T = 94) Esophageal (T = 85)

Larynx (T = 39) Colorectal (T = 72)

(a) Smoking

Lung (T = 104) Esophageal (T = 21)

Larynx (T = 31) Colorectal (T = 19)

(b) Smoking, Age
Lung (T = 70) Esophageal (T = 7)

Larynx (T = 0) Colorectal (T = 34)

(c) Smoking, Age, Unemployed

Figure 3.10: Difference boundaries (highlighted in red) detected by MDAGAR after account-
ing for (a) smoking, (b) smoking and age, and (c) smoking, age and unemployed for four
cancers individually when δ = 0.025. The values in brackets are the number of difference
boundaries detected.

Compared to difference boundaries for SIR in Figure 3.7a without any covariates, we

tend to find lower numbers of boundaries detected with covariates included. This, too, is
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Table 3.5: Posterior means (95% credible intervals) for coefficients and autocorrelation pa-
rameters estimated by adding covariates (smoking, age, unemployed) sequentially

Parameters Lung Esophageal Larynx Colorectal
Intercept 0.220 (0.177, 0.262) 0.195 (0.141, 0.254) 0.201 (0.127, 0.277) 0.197 (0.132, 0.251)

ρi 0.548 (0.322, 0.779) 0.965 (0.895, 0.993) 0.527 (0.051, 0.961) 0.282 (0.040, 0.695)

Intercept 0.004 (-0.022, 0.032) -0.020 (-0.118, 0.036) -0.010 (-0.144, 0.102) 0.084 (0.043, 0.124)
Smoking 0.022 (0.020, 0.025) 0.023 (0.017, 0.029) 0.027 (0.018, 0.039) 0.011 (0.006, 0.015)

ρi 0.307 (0.181, 0.439) 0.914 (0.751, 0.988) 0.513 (0.348, 0.689) 0.301 (0.011, 0.708)

Intercept -0.064 (-0.080, -0.049) -0.260 (-0.317, -0.214) -0.239 (-0.335, -0.157) 0.013 (-0.015, 0.049)
Smoking 0.009 (0.006, 0.013) 0.010 (0.001, 0.021) 0.028 (0.016, 0.038) 0.003 (-0.003, 0.010)

Age 0.050 (0.046, 0.055) 0.065 (0.056, 0.074) 0.043 (0.033, 0.054) 0.042 (0.033, 0.048)
ρi 0.260 (0.073, 0.500) 0.589 (0.129, 0.846) 0.564 (0.025, 0.974) 0.721 (0.200, 0.960)

Intercept -0.080 (-0.100, -0.068) -0.28 (-0.351, -0.200) -0.181 (-0.269, -0.101) -0.031 (-0.047, -0.011)
Smoking 0.018 (0.005, 0.030) 0.018 (0.003, 0.033) 0.021 (-0.001, 0.040) 0.003 (-0.004, 0.009)

Age 0.048 (0.042, 0.055) 0.066 (0.056, 0.079) 0.044 (0.031, 0.055) 0.041 (0.033, 0.048)
Unemployed -0.003 (-0.013, 0.005) 0.001 (-0.021, 0.028) 0.013 (-0.016, 0.034) 0.012 (0.005, 0.019)

ρi 0.302 (0.081, 0.563) 0.799 (0.481, 0.978) 0.804 (0.263, 0.987) 0.387(0.190, 0.613)

not surprising as the covariates can absorb the differences between neighboring counties and

mitigate the residual effects. However, the dependencies among the cancers, the regions and

the covariates is complicated and one does not always see a clear pattern. The case for

“smoking” is pertinent. Figure 3.10a presents boundaries after accounting for “smoking”.

We see considerably fewer numbers of boundaries (eight fewer) for larynx but twelve more

boundaries for esophageal cancer. The reduction in boundaries in spatial random effects

can be attributed to the significant differences between smoking rates in those neighboring

counties, i.e. the difference of SIR in neighboring counties is explained by the difference

of smoking rates. For example, the smoking rate in Mariposa is 8.6% higher than that in

Madera (19.2% vs. 10.6%). Figure 3.11 for “smoking” reflects the elimination of boundaries

between the pairs of neighboring counties such as [Madera, Mariposa], [Inyo, Tulare], [Inyo,

Fresno] for Larynx cancer and [Nevada, Placer] for esophageal cancer. At the same time some

new boundaries appear after accounting for “smoking” including [Del Norte, Humboldt] for

lung cancer, [Tulare, Fresno], [Tulare, Kings], [Tulare, Kern] and [San Bernardino, Riverside]

for esophageal cancer, and [San Bernardino, Riverside] for colorectal cancer, to offset the dif-
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ference of smoking rates in those pairs of counties. It implies the opposite boundary effect of

other latent factors against smoking rates in those neighboring counties. Figure 3.10b reveals

a considerable decrease in difference boundaries for esophageal and colorectal cancers, and

to a slightly lesser extent for larynx as well, after accounting for “age”. The spatial pattern

for “age” in neighboring counties (see Figure 3.11) explains most boundaries for these can-

cers. Finally, Figure 3.10c depicts that the difference boundaries for esophageal and larynx

cancers are explained by “unemployment” in neighboring counties (referring to Figure 3.11),

and the number of boundaries detected for lung cancer also decrease substantially. Further

discussions about cross-cancer difference boundaries are supplied in Appendix 3.7.3 of the

supplementary materials.

Smoking (%)

6.70 − 11.04
11.04 − 12.60
12.60 − 15.30
15.30 − 18.10
18.10 − 25.50

Old (%)

9.07 − 12.05
12.05 − 13.21
13.21 − 15.63
15.63 − 20.66
20.66 − 26.07

Unemployed (%)

3.92 − 7.00
7.00 − 8.68
8.68 − 10.28
10.28 − 11.72
11.72 − 17.09

Figure 3.11: Maps of county-level covariates: adult cigarette smoking rates (left), percentage
of residents older than 65 years old (middle) and unemployed residents (right).

3.6 Summary

The “MARDP” detects spatial difference boundaries for multiple correlated diseases that

allows us to formulate the problem of areal boundary detection, or “areal wombling”, as

a Bayesian multiple testing problem for spatial random effects. Crucially, the MARDP

imposes discrete probability laws on the spatial random effects and we are able to obtain

fully model-based estimates of the posterior probabilities for equality of the random effects.

This, in turn, allows us to use a Bayesian FDR rule to detect the boundaries.
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Our data analysis on four cancers in California from the SEER database reveals that the

difference boundaries vary by cancer type under the same FDR threshold. Larynx exhibits a

smoother SIR map with fewer difference boundaries while more are detected for lung cancer.

Covariates also impact difference boundaries for residual spatial random effects for each

cancer as accounting for differences in risk factors among neighboring counties can mitigate

the differences in spatial random effects. These are clearly observed for esophageal, larynx

and colorectal cancers, while difference boundaries for lung cancer remain pronounced even

after accounting for risk factors.

3.7 Appendix

3.7.1 Algorithm for MCMC updates

The Algorithm 1 is referenced for model implementation in Section 3.2.1.

Algorithm 1: Obtaining posterior inference of {βi,θ,γ,V ,σ, τs,ρ,A} based on MARDP joint model

1. update βi|yi,wi, τi, τi = 1/σ2
i

p(βi|yi,wi, τi) = N

((
τiX

>
i Xi + 1/σ2

βIpi

)−1
τiX

>
i (yi −wi),

(
τiX

>
i Xi + 1/σ2

βIpi

)−1
)

where yi = (yi1, . . . , yi,n)> and Xi = (xi1, . . . ,xi,n)>.

2. update θk|β, τ , τs, k = 1, . . . ,K, τ = {τ1, τ2, . . . , τq}

p(θj |β, τ , τs) = N

∑q
i=1 τi

∑
j:uij=k

(
yij − x>ijβi

)
∑q
i=1 τi

∑n
j=1 I(uij = k) + τs

,
1∑q

i=1 τi
∑n
j=1 I(uij = k) + τs



3. update γij |β,θ, τi,A,ρ

(a) Sample candidate γ∗ij from N(γij , s
2
1)

(b) Compute the corresponding candidate u∗ij through uij =
∑K
k=1 kI

(∑k−1
t=1 pt < F (i,j)(γij) <

∑k
t=1 pt

)
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(c) Accept γ∗ij with probability

min

1,

exp
(
− 1

2
γ∗TΣ−1

γ γ∗
)
exp

(
− τi

2

(
yij − x>ijβi − θu∗

ij

)2
)

exp
(
− 1

2
γTΣ−1

γ γ
)

exp

(
− τi

2

(
yij − x>ijβi − θuij

)2
)


4. update Vk|β,θ, τi,γ

(a) Sample candidate V ∗k from N(Vk, s
2
2)

(b) Compute the corresponding candidate p∗ and u∗, where p = {p1, . . . , pK} and u = {u1, . . . , uN}

(c) Accept V ∗k with probability

min

1,

(1− V ∗k )α−1
∏q
i=1

∏n
j=1 exp

(
− τi

2

(
yij − x>ijβi − θu∗

ij

)2
)

(1− Vk)α−1
∏q
i=1

∏n
j=1 exp

(
− τi

2

(
yij − x>ijβi − θuij

)2
)


5. update τi|β,θ

p(τi|β,θ) = Γ

n

2
+ ae,

1

2

n∑
j=1

(
yij − x>ijβi − θuij

)2
+ be



6. update τs|θ

p(τs|θ) = Γ

(
K

2
+ as,

1

2

K∑
k=1

θ2
k + bs

)

7. update ρ|γ

(a) Let η = logit(ρ) and sample the candidate η∗i from N(ηi, s
2
3), then ρ∗i =

exp(η∗i )

1+exp(η∗i )

(b) Accept ρ∗ with probability

min

1,
|Σ∗γ |−

N
2 exp

(
− 1

2
γTΣ∗−1

γ γ
)∏q

i=1 ρ
∗
i (1− ρ∗i )

|Σγ |−
N
2 exp

(
− 1

2
γTΣ−1

γ γ
)∏q

i=1 ρi(1− ρi)


8. update A|γ

(a) Let zii = log(aii) and sample candidates z∗ii from N(zii, s
2
4)

(b) For off-diagonal elements aih, i 6= h, a∗ij are sampled from N(aih, s
2
5)
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(c) Accept A∗ with probability

min

1,
|Σ∗γ |−

N
2 exp

(
− 1

2
γTΣ∗−1

γ γ
)
p(A∗)

∏q
i=1 a

∗
ii

|Σγ |−
N
2 exp

(
− 1

2
γTΣ−1

γ γ
)
p(A)

∏q
i=1 aii



3.7.2 Evaluation of parameter estimates in simulation study

For the simulation study in Section 3.4, we evaluated parameter estimates from MAGAR,

MCAR, DAGARind and CARind models. Table 3.6 shows the coverage probabilities (CP)

defined as the coverage rates of the 95% credible intervals for each parameter over 30 datasets.

All the models appear to provide effective coverages between 90%−100% for slope parameters

β1 = (β11, β12)> and β2 = (β21, β22)>, and 100% coverage for τs. In terms of the variance

parameters for random noise, σ2
1 and σ2

2, MDAGAR and MCAR offer comparable coverages

at around 85%, while the two independent-disease models present much lower coverage

probabilities as they fail to acquire dependent spatial structures for random effects.

The 95% credible intervals for the spatial autocorrelation parameters ρ1 and ρ2 estimated

from CAR-based models are wide (nearly covering the entire interval (0, 1)). Therefore, we

computed the mean squared errors (MSE) (measuring the error between estimated values and

the true values) over 30 datasets instead. Table 3.7 shows estimated MSEs of ρ1 and ρ2 from

each model. Recall that the true values ρ1 = 0.2 and ρ2 = 0.8. Unsurprisingly, MDAGAR

delivers better inferential performance for ρ1, while MCAR is superior for ρ2. This finding

is consistent with the finding that (univariate) DAGAR delivers better estimates of the

autocorrelation parameters when ρ is not too high [DBH19].
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Table 3.6: Coverage probability (%) of parameters estimated from MAGAR, MCAR,
DAGARind and CARinsd

β11 β12 β21 β22 σ2
1 σ2

2 τs
MDAGAR 100 96.7 100 93.3 83.3 86.7 100

MCAR 96.7 96.7 100 90 90 83.3 100
DAGARind 100 96.7 100 96.7 26.7 26.7 100

CARind 100 96.7 100 96.7 56.7 66.7 100

Table 3.7: Estimated MSEs of autocorrelation parameters ρ1 and ρ2 estimated from MA-
GAR, MCAR, DAGARind and CARind.

Methods MSEρ1 MSEρ2

MDAGAR 0.034 0.173
MCAR 0.143 0.082

DAGARind 0.590 0.028
CARind 0.020 0.201

3.7.3 Impact of covariates on mutual cross-cancer difference boundaries

Figure 3.12 presents a map of California with the names and boundaries of each county.

Accounting for covariates also affects the detection of mutual cross-cancer difference bound-

aries for each pair of cancers. Figure 3.13 shows mutual cross-cancer difference boundaries

detected for each pair of cancers after accounting for only “smoking” in 3.13a, accounting

for “smoking” and “age” in 3.13b and acounting for all three covariates (“smoking”, “age”

and “unemployed”) in 3.13c when δ = 0.025. Accounting only for “smoking” does not alter

the cross-cancer difference boundaries as much. Most of the mutual cross-cancer difference

boundaries are explained by the spatial pattern of “age” in neighboring counties, especially

across esophageal, larynx and colorectal cancers where only very few boundaries between

pairwise cancers are evinced from the residual spatial random effects. This is consistent

with our findings from the individual cancer analysis as discussed in Section 3.5.2. Finally,

accounting for “unemployment” eliminates difference boundaries further across lung, larynx

and colorectal cancers, but increases the number of boundaries detected between esophageal

cancer and each of the other three cancers.
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Figure 3.12: California map with county names labeled
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Lung vs. Esophageal (T = 81) Lung vs. Layrnx (T = 32) Lung vs. Colorectal (T = 69)

Esophageal vs. Layrnx (T = 29) Esophageal vs. Colorectal (T = 58) Larynx vs. Colorectal (T = 25)

(a) Smoking

Lung vs. Esophageal (T = 23) Lung vs. Layrnx (T = 29) Lung vs. Colorectal (T = 32)

Esophageal vs. Layrnx (T = 8) Esophageal vs. Colorectal (T = 9) Larynx vs. Colorectal (T = 5)

(b) Smoking, Age

Lung vs. Esophageal (T = 72) Lung vs. Layrnx (T = 3) Lung vs. Colorectal (T = 21)

Esophageal vs. Layrnx (T = 54) Esophageal vs. Colorectal (T = 75) Larynx vs. Colorectal (T = 0)

(c) Smoking, Age, Unemployed

Figure 3.13: Mutual cross-cancer difference boundaries (highlighted in red) detected by
MDAGAR for each pair of cancers after accounting for (a) smoking, (b) smoking and age,
and (c) smoking, age and unemployed when δ = 0.025. The values in brackets are the
number of difference boundaries detected.
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CHAPTER 4

Discussion

In this dissertation, we introduce different hierarchical models for multivariate areal data

analysis when more than one outcome (disease) observed in regional units, including multi-

variate disease mapping and difference boundary detection, and we illustrate with simulation

studies and real data analysis using the incidence maps of California from SEER database.

In Chapter 2, based on univariate DAGAR, we developed multivariate DAGAR using

conditional modelling for multivariate disease mapping, which combined with model selection

approach (bridge sampling) to select the best order of MDAGAR as well as provide model

weights for model averaging inference. The new method is more generalized to multiple

diseases (more than two) with effective determination of the fixed order of diseases. Moreover,

it provides better interpretation for spatial autocorrelations and exceeds in performance

compared to GMCAR in most scenarios. However, the computation is cumbersome and

hard to realize with very large number of diseases. This issue is even outstanding when it is

embedded in other models like the nonparametric hierarchical models in Chapter 3. Instead,

we developed another multivariate DAGAR using joint modelling without the specification

of ordering for diseases.

Then in Chapter 3, we developed a multivariate nonparametric Bayesian framework

“MARDP” based on an existing univariate ARDP which permits the estimation of probabil-

ity that an edge being a difference boundary, and used a joint MDAGAR to construct spatial

components by incorporating associations across diseases as well as space. This multivariate

approach detects spatial difference boundaries not only for each disease individually but also
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across associated diseases with competitive detection rates. By controlling the FDR for mul-

tiple comparison problems, it also exhibits the impact of covariates in difference boundary

detection.

In the future, the direction of research will extend to the exploration of other models for

multivariate difference boundary detection. For example, we can develop another Bayesian

nonparametric model “MARSB” based on the areally referenced spatial sticking-breaking

prior (ARSB) model [LBH15]. The comparison of different multivariate models for difference

boundary detection will present a broader view on model fitting and detection efficiency.
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