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Abstract 

A number of semantic space models from the cognitive 
science literature were compared by training on a corpus of 
child-directed speech and evaluating on three increasingly 
rigorous semantic tasks. The performance of families of 
models varied with the type of semantic data, and not all 
models were reasonably successful on each task, suggesting a 
narrowing of the space of plausible model architectures. 

Keywords: semantic space models; child-directed speech; 
lexical development 

Introduction 
Semantic space models have proven successful at 
accounting for a broad range of semantic data, in particular 
semantic priming (Jones, Kintsch, & Mewhort, 2006; Lowe 
& McDonald, 2000). Since all the models are successful at 
accounting for the semantic data in most cases, however, 
finding tasks where the models make different predictions, 
and narrowing the space of plausible models, has proven to 
be quite difficult.  

Semantic space models have traditionally been trained on 
adult language input. Further, the models are trained on very 
large corpora – in many cases, more data than humans 
experience. Finally, the models are usually only applied to 
modeling semantic data after processing the entire training 
corpus.  Each of these steps is problematic. 

The corpora semantic space models have been trained on 
range from Usenet postings (Burgess, Livesay, & Lund, 
1998; Rohde, Gonnerman, & Plaut, submitted; Shaoul & 
Westbury, 2006) to the British National Corpus (Bullinaria 
& Levy, in press; Lowe & McDonald, 2000) to the TASA 
corpus (Jones & Mewhort, 2007). These corpora vary 
widely in their content and representativeness of human 
experience. However, the rationale for using a particular 
corpus is rarely supported by an evaluation of its 
representativeness. For example, Burgess et al. (1998) 
motivate the use of Usenet by claiming that Usenet 
represents “everyday speech” and is “conversationally 
diverse” – without presenting an analysis of the corpus that 
would justify this claim. 

The training corpora for semantic space models are not 
only diverse, but large. The BNC totals 100 million words, 
the Usenet corpora used for HAL and HiDEX approach 300 
million words, while COALS is trained on more than 1.2 
billion words.  It has been estimated that at a rate of 150 
words per minute (a high estimate), reading 8 hours per day 

for 365 days of the year, it would take more than four years 
to read the full 100 million words of the BNC. This would 
make 12 years to encounter HAL’s 300 million words, and 
48 years to encounter all of the words COALS is trained on.  
At the very least, it would seem that these models are 
trained on the very high end of a scale of possible human 
input. 

For the most part, semantic space modelers have only 
assessed model predictions after the entire training corpus 
has been processed (the exceptions being LSA (Landauer & 
Dumais, 1997) and BEAGLE (Jones & Mewhort, 2007)). 
What is lacking is a consideration of the rate at which the 
model learned its representations – information which may 
be crucial for assessing model plausibility. 

In order to remove these potential advantages, in this 
study we compare a variety of semantic space models from 
the cognitive science literature using age-stratified child-
directed speech (CDS) from the CHILDES database.  For 
several reasons, CDS may offer us the important ability to 
decide between equally plausible models that perform 
comparably at a larger learning scale. First, CDS is arguably 
much more realistic than the adult corpora that semantic 
space models have been trained on: we know that children 
learn the meanings of words with this kind of input. Second, 
since the size of any corpus derived from the CHILDES 
database will be much smaller than other training corpora, it 
is more likely to be in the range of input for a human 
learner. Third, the caregiver speech in the CHILDES 
database can be divided according to the age of the target 
child. This allows the construction of training corpora that 
reflect changes in input over time, similar to what children 
are actually exposed to. 

Two previous studies have explored the behavior of 
semantic space models when trained on CDS. Li, Burgess, 
and Lund (2000) trained HAL on the caregiver speech in 
CHILDES, at the time 3.8 million words. Denhière and 
Lemaire (2004) derived an LSA space from a 3.2 million 
word French corpus that included both children’s speech 
and stories, textbooks, and encyclopedia articles written for 
children. However, it is not clear what is being modeled in 
these studies, as the training corpora aggregate a great deal 
of data from the linguistic environments of children of a 
variety of ages. The modeling target crucially affects the 
data on which the models should be evaluated. 
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Experimental Setup 
Corpus. Four corpora were constructed from caregiver 
speech in the American section of the CHILDES database, 
one for each of four broad age ranges of target child: 12-23 
months, 24-35 months, 36-47 months, and 48-60 months. 
The sizes of the corpora are listed in Table 11. The Age 1 
corpus represents all the American caregiver input to 12-24-
month-olds in CHILDES; the other corpora were chosen to 
be of an approximately equal size. 

Unlike previous studies that used CDS from the 
CHILDES database, the age group corpora used in this 
study were subjected to significant preprocessing. Given the 
small size of the corpora, the orthographic variation in 
CHILDES could potentially affect the semantic space 
models’ representations. First, more than 700 word forms 
were standardized to eliminate orthographic variation. 
Second, all corpora were stemmed and lemmatized using a 
version of the Snowball stemmer (Porter & Boulton, 2006) 
augmented to change irregular verb forms to base forms. 
Third, most proper names in the corpora were converted to a 
single generic marker. The reason for this was to avoid 
proper names appearing in the list of context words for 
some models (see below). 

 
Models.  Semantic space models may be classified into two 
families based on architecture and representational scheme. 
One family, exemplified by HAL, computes a word-by-
word co-occurrence matrix. In these models, words are 
more similar when they have appeared with the same 
neighboring words. Sahlgren (2006) dubs these 
“paradigmatic” spaces because of their tendency to 
emphasize paradigmatic relationships between words. 
Another family, exemplified by LSA, computes a word-by-
context matrix, where a context may be a sentence, 
paragraph, etc. In these models words are similar to the 
extent that they appear in the same contexts.  These spaces 
emphasize proximal relationships between words 
(“syntagmatic” spaces)2.  

Models of each family were selected for comparison 
(Table 2). The paradigmatic models included COALS 
(Rohde et al., submitted), HAL (Burgess et al., 1998), 

                                                      

                                                     

1 See Riordan (2007) for a list of the actual corpora used within 
each age range.   
2 Random indexing models use an alternative representational 
scheme in which a word’s vector is assigned a distributed 
representation (e.g., Jones & Mewhort, 2007; Sahlgren, 2006) and 
may approximate either paradigmatic or syntagmatic models.  

 

HiDEX (Shaoul & Westbury, 2006), a loglikelihood-
transformed model (McDonald & Lowe, 1998; Padó & 
Lapata, 2003), Lowe and McDonald (2000), and a model 
based on positive pointwise mutual information (Bullinaria 
& Levy, in press). The syntagmatic models were LSA and a 
corresponding model without dimensionality reduction. To 
explore the effect of the size of the context region in 
syntagmatic models, three versions of the full 
dimensionality model and two versions of the LSA model 
were compared. In total, 11 models were compared. All 
models were reimplemented for this investigation. 

Table 2: Semantic space algorithms compared in this 
study. 

Space Name Context 
Specification 

Lexical 
Association 
Function 

Similarity 
Measure 

“Paradigmatic” models 

COALS Window 
(ramped) Correlation Correlation 

HAL Window 
(ramped) 

Vector length 
normalization 

Inverse 
Euclidean 
distance 

HiDEX Window 
(ramped) 

Word frequency 
normalization 

Inverse 
Euclidian 
distance 

LLTR Window Log-likelihood 
coefficient Cosine 

Lowe & 
McDonald Window Positive log 

odds ratio Cosine 

PosPMI Window Positive mutual 
information Cosine 

“Syntagmatic” models 

Full 
dimensionality 

20, 200, 2000 
words 

Entropy-based 
(no SVD) Cosine 

LSA 200, 2000 
words 

Entropy-based 
and SVD to 300 
dimensions 

Cosine 

For the paradigmatic models, context words were selected 
using an automatic procedure that approximated a specified 
number (500) of content words, considering words from 
most to less frequent in the corpora (omitting stop words)3. 
The context window size was constant, and set at 10 
empirically (see Riordan (2007)). For consistency with the 
other models, the Euclidean distance metric used in HAL 
and HiDEX was converted into a similarity measure.  

 
Target words. Target words for this investigation were 
selected to be sufficiently frequent and reliable in the full 
age group corpus.  Reliability was determined through a 
procedure adapted from McDonald and Shillcock (2001).  
Words with a cumulative frequency of greater than twenty, 

Table 1: Sizes of the corpora constructed from the 
CHILDES database. 

 Corpus size (words) Cumulative corpus size 
Age 1  460,384  
Age 2  460,743 921,127 
Age 3  458,692 1,379,819 
Age 4  450,097 1,829,916 

 
3 The implementation of HAL used this context word selection 

procedure, rather than selecting the context words with the highest 
variance in the corpus, as in some HAL implementations.  Lowe 
and McDonald’s context word selection procedure was maintained. 
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plus all content words from the MacArthur CDI (Dale & 
Fenson, 1996) were included, for a total of 1892 targets. F ratio
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Program of evaluation. The models were subjected to three 
increasingly rigorous semantic tasks: discriminating related 
from random word pairs, modeling adult semantic data, and 
modeling age-of-acquisition data.  

 

Experiment 1: Word pair discrimination 
As a first test of the models’ abilities to derive adequate 
semantic representations when trained on CDS, we apply 
the models to the task of discriminating between, on the one 
hand, words that are known to be semantically related, and 
on the other, words that have been paired randomly. We 
assume that the distributional information available to a 
semantic space model should be sufficient for the model to 
locate related words in closer proximity than unrelated 
words in the high-dimensional space. 

Figure 1: Discriminative abilities of each of the spaces on 
the full 13,354 word pair set. 

The related word pairs for this task were drawn from the 
University of South Florida Word Association Norms (USF; 
(Nelson, McEvoy, & Schreiber, 2004). In Nelson et al.’s 
word association task, subjects were given a cue, to which 
they were asked to respond with the first word that came to 
mind that was “meaningfully related or strongly associated” 
(2004: 403).  Only one response was produced per cue.   

A subset of 49,362 USF pairs that were included in the 
Maki, McKinley, and Thompson (2004) database formed 
the pool of candidate related word pairs. Of these, words 
pairs were constrained to be made up of words that were 
included in the 1892 word target set4. A set of 13,354 word 
pairs met this criterion. Unrelated word pairs were created 
by randomly pairing each cue with a response word, with 
the following constraints: no cue-response pairs from the 
actual cue-response word pairs could occur; no cue-
unrelated response pair could occur more than once; no cue-
unrelated response pair could be comprised of the same 
word repeated. 

Similarities in each model were derived for each of the 
cue-response pairs and each of the cue-unrelated response 
pairs. These sets of scores were submitted to a oneway 
ANOVA. Models were deemed to have minimally 
discriminated between the sets of word pairs if the scores 
for the cue-response set were statistically greater than the 
scores for the cue-unrelated response set (indicating tighter 
clustering in the semantic space). The results for the 
ANOVAs for each of the spaces are shown in Figure 1. The 
ANOVAs for all spaces were significant, and in each case 
the average similarity score for the related word pair set was 
significantly greater than the unrelated word pair set. Thus, 
on average, each space located the related words closer in 

                                                      
4 Stemming the candidate word pairs further restricted the pool of 
candidates, since some cue-response pairs became 
indistinguishable as a result (because of plural words used as cues, 
etc.). 

 

semantic space than the unrelated words. At the same time, 
there was substantial variation in the degree to which related 
versus unrelated word pairs clustered in the spaces. 

 It should be noted that we cannot actually conclude from 
the size of the F-ratio in this task that one model is “better” 
than another. This is because we don’t know what the “real” 
discrimination of these pairs, either for a child or for an 
adult, would look like, since experimental data for humans 
on this task does not exist. 

 

Experiment 2: Modeling adult semantic data 
As a more rigorous test of the models’ representations and 
learning rates, we next compare the models on two related 
tasks where human data exists: modeling word association 
strengths, and modeling semantic distance in WordNet. 

The forward strength in the USF word association norms 
is the probability that a cue will elicit a particular response. 
Using the 13,354 word pairs from Experiment 1, the models 
were compared on their abilities to predict these forward 
strengths from representation similarity. In this experiment 
the age group corpora are organized cumulatively, so that 
the models are exposed to greater amounts of age-
appropriate speech (see Table 1). 

For each of the cumulative corpora, the similarities in 
each model were derived for each of the 13,354 cue-
response pairs. These similarities were entered into a linear 
regression to predict the forward strengths for the 
corresponding word pairs.  The forward strengths were 
drawn from the Maki et al. database. 

With increasing age-appropriate input, we expect the 
variance in the adult semantic data that is explained by the 
models to increase, as the models’ semantic representations 
become more “adult-like”.   More specifically, after training 
on each cumulative corpus there should be an increase in the 
correlations of the word-pair similarity scores derived from 
the models and the semantic similarity scores from the 
human data.  

 Figure 2 plots the change in correlation of each of the 
models’ similarity scores with both types of semantic data 
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  Figure 2: Correlations between the models' similarity scores and the semantic data. 

as more age-appropriate caregiver speech is encountered. 
The syntagmatic models generally explain more of the 
variance in the word association data than the paradigmatic 
models. They have higher average correlations with the data 
after the Age 1 corpus (.184 vs. .120) and after processing 
each of the corpora (.264 vs. .164). This may be related to 
the better match of the syntagmatic architecture with the 
word association data (see Sahlgren (2006)). On the other 
hand, the syntagmatic models are nearly uniform in their 
trajectory of improvement over time, while paradigmatic 
models tend to show more variation. 

In this task, even the best models only reached a 
correlation of about .3 with the word association data.  The 
models’ concomitant R2 was also low, explaining less than 
10% of the variance in the data.   

Despite the instructions in the word association task to 
consider “meaningfully related” responses (Nelson et al., 
2004), subjects often produce responses that are collocated 
with the cue but not necessarily semantically related. 
Although some researchers argue that distinguishing 
between semantic and associated relationships is futile 
(Nelson et al., 2004), other data regarding lexical semantic 
relatedness that focus more on semantic relationships do 
exist. Maki et al. (2004) derived semantic distances between 
word pairs in WordNet using the Jiang-Conrath distance 
measure (JCN). JCN is an information-theoretic measure of 
semantic distance in the WordNet hierarchy. JCN distances 
have been shown to correlate highly with human judgments 
of semantic similarity (Maki et al., 2004). 

Word pair similarities for the 13,354 word pair set were 
used to predict the corresponding JCN distances as reported 
in Maki et al. (2004). The lower half of Figure 2 plots the 
correlations for the paradigmatic and syntagmatic models on 
this task. Note that since the JCN measures are distances, 

not similarity scores, the models’ scores are negatively 
correlated with the distances. 

On this task, the paradigmatic models explain more 
variance in the adult data, reflecting the nature of the 
WordNet resource: WordNet is a hierarchical taxonomy 
split into noun and verb parts, and the links between words 
reflect paradigmatic relationships. In addition, the models 
that perform best on this task are not the same as those that 
performed the best in accounting for the word association 
data. For example, while the 200-word context syntagmatic 
models predicted the most variance in the word association 
task, here the 2000-word context model was the best.  This 
likely reflects the fact that more paradigmatic information is 
available in the larger context.  

The best models showed monotonically increasing 
correlations with the semantic data as they were exposed to 
more input, and relatively high correlations with the data in 
both tasks. Among the paradigmatic models, COALS and 
HAL met these criteria, while among the syntagmatic 
models only the 200-word context full dimensionality space 
did. HAL performed surprisingly well, especially given that 
the other paradigmatic models were designed to be 
improvements on its parameter choices.  The LSA models’ 
non-monotonicity and similar performance to the unreduced 
syntagmatic spaces indicate that dimensionality reduction 
does not automatically produce spaces that are more highly 
correlated with human semantic data.   

 

Experiment 3: Modeling age-of-acquisition 
Experiment 2 tested the models’ overall learning 
trajectories. Most of the models gradually explained more of 
the variance in the adult semantic data as they were trained 
on age-appropriate input. In this experiment, we focus more 
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closely on models’ learning rates by comparing the models’ 
abilities to model age-of-acquisition (AoA) data when 
trained on the cumulative input of the age group corpora.  
Models that more closely match AoA data may be said to 
have learning rates that more closely resemble those of 
children. 

Correlation
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For the purposes of this experiment, as a proxy for 
acquisition, we consider stabilization in the neighborhoods 
of words in semantic space.  We will define a word’s 
semantic neighborhood as the nearest n words in a given 
space.  At a given time, t, we can find the semantic 
neighborhood for a word.  At a later time, t+1, after the 
model has been exposed to more input, we can again find 
the neighborhood for the word, and compare it to the word’s 
neighborhood at time t.  As we continue this process, we 
will produce a record of the stabilization of a word’s 
semantic neighborhood over time.  We hypothesize that 
early-acquired words’ neighborhoods will stabilize more 
quickly than those of later acquired words. 

Figure 3: Correlations of the models’ average change 
coefficients with the Bird et al AoA norms 
(Neighborhood size = 10; sample points = 8). 

For age-of-acquisition (AoA) ratings, the norms of Bird, 
Franklin, and Howard (2001) were used.  After stemming, 
there were 689 words that overlapped between the Bird et 
al. norms and the target words.   

To compare semantic neighborhoods, we use a modified 
version of combinatorial similarity, originally proposed in 
Hu, Cai, Graesser, and Ventura (2005): 
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Here, S1, x, t is the top t neighbors of a word x in space 1. S1, 

x, t is composed of sets of si(x,y), the similarity scores of 
words x and neighbors y in space 1. The numerator here is 
simply the intersection of the top t neighbors, ignoring the 
similarity scores. Instead of dividing by the union of the 
neighbors in the neighborhoods as Hu et al. propose, we 
normalize by the number of neighbors in the neighborhoods 
being compared (e.g. 10). 

Sample points of even intervals are established across the 
age group corpus. At each sample point, the semantic 
neighborhoods of the target words are computed. The 
semantic neighborhoods of words at successive sample 
points are compared using the above measure of 
neighborhood overlap. Once the neighborhood change 
history for the target words is established, a change 
coefficient is calculated for each word. This is computed as 
the average of the absolute values of the differences in 
neighborhood overlap from point to point: 
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where p is the number of sample points and C’ is computed 
neighborhood overlap. Early-acquired words should have 
lower change coefficients, as their neighborhoods stabilize 
quickly. The neighborhood size was set at 10 and the 
number of sample points was 8. 

The correlations for the remaining models with the Bird et 
al. data are presented in Figure 3. Differences in the models’  
correlations were compared using Williams’ ratio for 
nonindependent correlations (see Steiger, 1980). Among the 
paradigmatic models, COALS, LLTR, and PosPMI were 
significantly more correlated with the AoA data than HAL 
and Lowe and McDonald (e.g. COALS vs. HAL: t(686) = 
2.15, p < .05; COALS vs. Lowe and McDonald: t(686) = 
3.92, p < .01). The syntagmatic models were comparable, 
with the exception of the 20-word context LSA model, 
which was significantly less correlated with the AoA data 
(e.g. 200 LSA r300 vs. 20 LSA r300: t(686) = 2.83, p < .01). 
However, the 200-word context full dimensionality model 
was significantly more highly correlated with the AoA data 
than PosPMI, the best paradigmatic model: t(686) = 2.26, p 
< .05. 

In this experiment, evidence of significant correlations 
between the stabilization patterns in the models and a set of 
AoA norms were found. While significant, however, the 
correlations of the models and the data were still rather low 
(all R2 values were less than .12). With a few exceptions, the 
better-performing models on the previous tasks also 
performed well on this task. 

 

Conclusion 
This study represents a first attempt to compare a number of 
semantic space models on a common corpus with common 
evaluation tasks.  The type of corpus used – CDS – was 
selected because it is more realistic than previous training 
corpora in terms of quantity and content.  

Using CDS from CHILDES also naturally allowed an 
examination of the models’ learning rates.  The learning rate 
is a crucial yardstick by which to measure models’ 
performance: if models are to be taken as models of both 
lexical acquisition and representation, as Landauer and 
Dumais (1997) and others have argued, they must perform 
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reasonably given a corpus that is an accurate representation 
of what children learn from. 

While all models showed significant discriminative ability 
between random and related word pairs, over the course of 
two further tasks, we discovered that some models did not 
have plausible acquisition rates (given our broad 
assumptions of what should constitute acquisition in a 
semantic space). We also found a great deal of variation in 
the representations that models derived from the same data, 
which in turn likely affected their learning rates. Because 
most models differed from each other on a number of 
parameters, further investigation of the parameters that are 
the sources of the variation in performance is necessary. 

At a wider angle, corroborating Sahlgren (2006), we 
found that certain families of models are better at certain 
semantic tasks: “syntagmatic” models better accounted for 
word association, a task that often emphasizes sequential 
relationships between words, while “paradigmatic” models 
better accounted for semantic data in the absence of 
association. It would appear difficult to maintain the notion 
that any one semantic space model is an optimal model of 
human semantic learning and memory. 

In general, the models’ abilities to explain the variance in 
the human data were low. There are many possible reasons 
for this: data sparsity in CHILDES, idiosyncrasy and noise 
in the semantic data themselves, as well as limitations on 
learning from co-occurrence data and lack of extra-linguistic 
information.  The relative contributions of these factors to 
model performance deserve further investigation. 
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