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INVESTIGATION

Distinguishing Among Modes of Convergent
Adaptation Using Population Genomic Data

Kristin M. Lee*"' and Graham Coop*-*
*Center for Population Biology and TDepartment of Evolution and Ecology, University of California, Davis, California 95616

ORCID IDs: 0000-0003-1748-4948 (K.M.L.); 0000-0001-8431-0302 (G.C.)

ABSTRACT Geographically separated populations can convergently adapt to the same selection pressure. Convergent evolution at the
level of a gene may arise via three distinct modes. The selected alleles can (1) have multiple independent mutational origins, (2) be
shared due to shared ancestral standing variation, or (3) spread throughout subpopulations via gene flow. We present a model-based,
statistical approach that utilizes genomic data to detect cases of convergent adaptation at the genetic level, identify the loci involved
and distinguish among these modes. To understand the impact of convergent positive selection on neutral diversity at linked loci, we
make use of the fact that hitchhiking can be modeled as an increase in the variance in neutral allele frequencies around a selected site
within a population. We build on coalescent theory to show how shared hitchhiking events between subpopulations act to increase
covariance in allele frequencies between subpopulations at loci near the selected site, and extend this theory under different models of
migration and selection on the same standing variation. We incorporate this hitchhiking effect into a multivariate normal model of
allele frequencies that also accounts for population structure. Based on this theory, we present a composite-likelihood-based approach
that utilizes genomic data to identify loci involved in convergence, and distinguishes among alternate modes of convergent adaptation.
We illustrate our method on genome-wide polymorphism data from two distinct cases of convergent adaptation. First, we investigate
the adaptation for copper toxicity tolerance in two populations of the common yellow monkey flower, Mimulus guttatus. We show
that selection has occurred on an allele that has been standing in these populations prior to the onset of copper mining in this region.
Lastly, we apply our method to data from four populations of the killifish, Fundulus heteroclitus, that show very rapid convergent
adaptation for tolerance to industrial pollutants. Here, we identify a single locus at which both independent mutation events and
selection on an allele shared via gene flow, either slightly before or during selection, play a role in adaptation across the species’ range.

KEYWORDS coalescent theory; composite likelihood; convergent adaptation; genetic hitchhiking; positive selection

CONVERGENT adaptive evolution, where selection inde-
pendently drives the evolution of the same trait, demon-
strates the impressive ability of natural selection to repeatedly
shape phenotypic diversity (Losos 2011). Many studies have
revealed cases of repeated adaptation resulting from changes
in the same molecular mechanisms across distinct lineages
(Wood et al. 2005; Stern 2013). Here, we use the term con-
vergence to define all cases of repeated evolution of similar
traits across independent lineages, and do not distinguish be-
tween convergent and parallel evolution (Arendt and Reznick
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2008). In some cases, these convergent adaptive changes are
identical at the level of the same orthologous gene or nucleo-
tide (Martin and Orgogozo 2013), suggesting adaptation may
be more predictable and constrained than previously appreci-
ated. Studying repeated evolution has long played a key role in
evolutionary biology as a set of replicated natural experiments
to help build comparative arguments for traits as adaptations,
and to identify and understand the ecological and molecular
basis of adaptive traits (Harvey and Pagel 1991).

While we often think of convergent evolution among
long-separated species, populations of the same (or closely
related) species often repeatedly evolve similar traits in
response to similar selective pressures (Arendt and Reznick
2008). Convergent adaptation at the genetic level among
closely related populations may arise via multiple, distinct
modes (see Stern 2013, for a recent review). Selected alleles
present at the same loci in multiple populations can have
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multiple independent mutational origins (e.g., Tishkoff et al.
2007; Pearce et al. 2009; Chan et al. 2010). Alternatively,
adaptation in different populations could proceed by means of
selection on the standing variation present in their ancestor
(e.g., Colosimo et al. 2005; Roesti et al. 2014), or a single allele
spread throughout the populations via gene flow (e.g., Song
et al. 2011; Heliconius Genome Consortium 2012). Understand-
ing the source of convergent adaptation can aid in our un-
derstanding of fundamental questions about adaptation.
Distinguishing among these modes may provide evidence
for how restricted the paths adaptation can take are to pleio-
tropic constraints, and if adaptation is limited by mutational
input (see Orr 2005, for review). Additionally, we can im-
prove our understanding of the role of standing variation
and gene flow in adaptation (Barrett and Schluter 2008;
Hedrick 2013; Welch and Jiggins 2014).

With the advent of population genomic data, it is now
possible to detect genomic regions putatively underlying
recent convergent adaptations. A growing number of stud-
ies are sequencing population genomic data from closely
related populations, in which some have potentially con-
verged on an adaptive phenotype (e.g., Turner et al. 2010;
Jones et al. 2012). Population genomic studies of conver-
gent evolution often take a paired population design, sam-
pling multiple pairs of populations that independently
differ in the key phenotype or environment. These studies
are usually predicated on finding large effect loci that have
rapidly increased from low frequency to identify the pop-
ulation genomic signal of selective sweeps shared across
populations that independently share a selective pressure.
Regions underlying convergent adaptations can poten-
tially be identified by looking for genomic regions where
multiple pairs of populations are strongly differentiated
(e.g., using Fsy) compared to the genomic background.
Another broad set of approaches identify convergent loci
by looking for genomic regions where the populations that
share an environment cluster together phylogenetically in
a way unpredicted by genome-wide patterns or geography
(e.g., Jones et al. 2012; Pease et al. 2016). While these
methods have proven useful in identifying loci involved
in convergent adaptation, currently there are few model-
based ways to identify the signal of convergence in pop-
ulation genomic data or to distinguish the different modes
of convergent adaptation. In the case where an allele is
shared due to adaptation from standing variation or mi-
gration, chunks of the haplotype on which the selected
allele arose and swept on will also be shared among the
populations (Slatkin and Wiehe 1998; Bierne 2010; Kim
and Maruki 2011; Roesti et al. 2014), providing a useful
heuristic for these modes to be distinguished from conver-
gent sweeps from independent mutations. We also note
there are a variety of approaches to detect introgression
(see Hedrick 2013; Racimo et al. 2015; and Rosenzweig
et al. 2016 for recent reviews). However, these methods
are not usually focused on detecting sweeps in both popu-
lations, but rather look for signatures of unusual amounts of
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shared ancestry between populations. Here, we present co-
alescent theory that leverages these signatures selection has
on linked neutral variation in a model-based approach. We
extend this to a statistical method that utilizes genomic data
to identify loci involved in, and that distinguish between,
modes of genotypic convergence.

Positive selection impacts neutral diversity at linked
loci due to hitchhiking (Maynard Smith and Haigh 1974;
Kaplan et al. 1989) and can be modeled as an increase in
the variance in neutral allele frequencies around their an-
cestral frequencies. We develop coalescent theory to show
how shared hitchhiking events between subpopulations
act to increase covariance in allele frequencies around
their ancestral frequencies at loci near the selected site,
and extend this theory under different models of migra-
tion and selection on the same standing variation. We
incorporate this hitchhiking effect into a multivariate
normal model of allele frequencies that also accounts
for population structure, allowing for the application to
data from many populations with arbitrary relationships.
Based on this theory, we present a composite-likelihood-
based approach (Kim and Stephan 2002; Nielsen et al.
2005; Chen et al. 2010; Racimo 2016) that utilizes geno-
mic single-nucleotide polymorphism (SNP) data to iden-
tify loci involved in convergence, and distinguish among
alternate modes of convergent adaptation. As these mod-
els are also specified by relevant parameters, it is possible
to obtain estimates for parameters of interest such as the
strength of selection, the minimum age and frequency
of a standing variant, and the source population of the
beneficial allele in cases of migration. We also present a
parametric-bootstrapping approach to help with model
choice and construct confidence intervals for our param-
eters as standard likelihood approaches are not applica-
ble to composite likelihoods.

This method should be of wide use with the increase in
population genomic samples from across the geographic
range of a species. Here, we illustrate the utility of our
inference method by applying it to genome-wide polymor-
phism data from two distinct cases of convergent adap-
tation. First, we investigate the basis of the convergent
adaptation observed across populations of the annual wild-
flower Mimulus guttatus to copper-contaminated soils from
two populations sampled near Copperopolis, CA (Wright
et al. 2015). We find selection has been acting on standing
variation shared between these populations for a tolerance
allele present prior to the onset of copper mining in this
region. To further exemplify the flexibility of our method,
we study a more complex population scenario: the rapid
adaptation of four populations of killifish (Fundulus heter-
oclitus) to high levels of pollution, sampled across the East-
ern seaboard of the United States (Reid et al. 2016). We
find that even at the level of a single gene, both convergent
mutation and selection on an allele shared via gene flow,
either slightly before or during selection, have played a
role in adaptation in this species.



Models

In the following section, we present models for the three
modes of genotypic convergent adaptation: (1) multiple in-
dependent mutations at the same locus, (2) selection on
shared ancestral standing variation, and (3) migration be-
tween populations spreading a beneficial allele (Figure 2).
Throughout this section, we compare our derived expecta-
tions to coalescent simulations using mssel—a modified ver-
sion of ms (Hudson 2002) that allows for the incorporation of
selection at a single site. This simulation program takes as
input the frequency trajectory of the selected allele for each
population. We simulate stochastic trajectories of the se-
lected allele in populations following our three modes of
convergence (see Appendix A.2 for simulation details). We
focus on a set of four populations as shown in Figure 1 where
populations 2 and 3 are adapted to a shared novel selection
pressure, and populations 1 and 4 are in the ancestral envi-
ronment. The average coancestry coefficient values across
simulations, estimated as described in Appendix A.1, are plotted
for 100 bins of recombination distance away from the selected
site, which occurs at distance 0. The results for all three models
are shown in dashed lines in Figure 3.

Null model

We aim to model the variances and covariances of the neutral
allele frequencies within and between populations due to
convergent sweeps. First, we must specify a null model that
accounts for population structure. Populations will have
some level of shared deviations away from an ancestral allele
frequency, €, due to shared genetic drift. Let x; represent the
present day allele frequency in population i (Figure 1). We
denote the deviation of this frequency from the ancestral
frequency by Ax; = x; — €. Genetic drift, in expectation across
loci, does not change the population allele frequencies
(i.e., E[Ax;] = 0), as an allele increases or decreases in fre-
quency with equal probability. Drift does, however, act to
increase the variance in this deviation across loci, with
this variance increasing as more time is allowed for drift.
The variance in the change of neutral allele frequencies
in population i is

Var[Ax;] = E[Ax] = e(1 - €)fii, @))

where f;; can be thought of as the genetic drift branch length
leading from the ancestral population to population i
(Nicholson et al. 2002), specifying how much allele frequen-
cies in population i deviate from their ancestral values (Fig-
ure 1). By rearranging Equation 1, f;; can be interpreted as the
population-specific Fsy for population i relative to the total
population, here represented by the ancestral population
(Wright 1943, 1951; Nicholson et al. 2002; Weir and Hill
2002).

Populations covary in their deviations from ¢ as some pop-
ulations are more closely related due to shared genetic drift
resulting from shared population history or gene flow. The
covariance in this deviation between populations i and j is

f £

fi2 f34

ORCACHD

Figure 1 Present day population allele frequencies at a given neutral
locus (x;—x4 for populations 1-4, respectively) are derived from ancestral
allele frequency &. Each population has a coancestry coefficient propor-
tional to the amount of drift experienced since the split from the ancestral
population. f11 is shown for population 1. Here, populations 1 and 2,
and 3 and 4 share drift relative to the ancestral population, and have
nonzero coancestry coefficients fi, and fs4, respectively. Blue diamonds
represent the novel selective environment, and red circles the ancestral
environment. Note that branch lengths are not proportional to time in
generations (unless there is no migration and the amount of drift is small).

Cov|[Ax;, Axj| = E[Ax;Axj] = €(1 — €)fy, (2)

where f;; is interpreted as the coancestry coefficient between
populations i and j, and can be thought of as the shared
branch length connecting i and j to the ancestral population
(Figure 1).

Other natural interpretations of f; and f;; follow from these
definitions. Specifically, these values are probabilities of a pair
of lineages being identical-by-descent relative to the ancestral
population, i.e., the probability two sampled lineages coalesce
before reaching the ancestral population (see Thompson 2013,
for a recent review). We briefly review this coalescent interpre-
tation in Appendix A.1. For f; these two lineages are sampled
both from population i. For f;, one lineage is sampled from
population i and the other from population j. We note that,
in practice, we do not get to observe the ancestral frequency,
nor may the history of our populations be well represented by a
tree-like structure (for instance the history of our populations
may be reticulated). However, for the sake of clarity, we pro-
ceed with these assumptions, and deal with these complica-
tions in the implementation of the method.

We define a matrix, F, for K populations as a K X K matrix
of coancestry coefficients. For example, for the four popula-
tions shown in Figure 1, this matrix takes the following form:

fir iz 0O O
fiz foo 0 O
0 0 fi3 fa
0 0 fag faq

F:

Populations i and j that split after the ancestral population
and share no additional drift (e.g., populations 1 and 3) have
fij = 0 by definition.

Incorporating selection

Positive selection impacts neutral diversity at linked loci due
to hitchhiking. As the beneficial allele increases rapidly in

Distinguishing Modes of Convergence 1593



Figure 2 Trajectories of the beneficial allele (red) for the three modes of convergent adaptation. Populations i and j are under selection with present-day
allele frequencies x; and x; at a neutral locus, derived from an ancestral population with allele frequency €. The populations share some amount of drift
proportional to f; before reaching the ancestral population. (A) Independent mutations model. Beneficial mutations, indicated by the orange triangles, occur
independently in the selected populations after they have become isolated. Selection begins, indicated by the blue triangles, once the beneficial allele is
present in the population. The beneficial allele sweep to fixation in t; generations. (B) Standing variant model. The beneficial allele is standing at frequency g
in the ancestral population. After the selected populations split, it is still standing at frequency g for t generations prior to the onset of selection. (C)
Migration model. The beneficial allele arises in population i and begins sweeping in population i. Meanwhile, there is a continuous low level of migration
from population i into population j. The beneficial allele establishes in j after § generations, where it is swept to fixation in t; generations.

frequency, so does the haplotype on which it arose. Neutral
alleles further from the selected site may recombine off
the selected background during the sweep, whose duration
depends on the strength of selection (s) and weakly on
the effective population size (N,). The effect of hitchhiking
on the changes of linked neutral allele frequencies is similar
to that of genetic drift. Hitchhiking does not alter the
expected frequency change of linked neutral alleles across
loci (i.e., E[Ax;] = 0) because the selected mutation arises
on a random haplotypic background. Moreover, hitchhiking
increases the variance in the deviation in neutral allele fre-
quencies away from their ancestral values (Var[Ax;]) at
linked sites (Gillespie 2000). Shared hitchhiking events
between subpopulations will act to increase covariance
in allele frequency deviations between subpopulations
(Cov[Ax;, Axj]) at loci near the selected site. This effect
of hitchhiking on linked diversity, within and among pop-
ulations gives us a way to distinguish among alternate
modes of convergent adaptation.

We define new matrices of coancestry coefficients that
incorporate selection in addition to drift as F'S). In the fol-
lowing section, we use a coalescent approach to derive
coancestry coefficients within and between populations,
fi<s) and fi§s)7 for the three modes of genotypic convergent
adaptation (Figure 2). In Supplemental Material S2 in File
S1, we derive some of the same results forward in time to
help guide the reader’s intuition. For all models, we assume
the beneficial allele has gone to fixation in all selected pop-
ulations recently. Note that all our models of selection are
phrased in terms of distortions to the neutral matrix F;
therefore, the precise source of the neutral population struc-
ture (e.g., whether its due to shared population history or
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migration) is relatively unimportant to our approach. A
deeper knowledge of the basis of this structure does add
to the interpretation of the results, as we explain in the
Discussion.

Independent mutation model: We first consider the case when
a beneficial allele arises independently via de novo mutations at
the same locus, or tightly linked loci, in both of the selected
populations. We expect hitchhiking to increase the variance in
neutral allele frequency deviations around the selected site in
both populations. However, as the sweeps are independent and
there is no gene flow between populations during or after the
sweep, we expect no covariance in the neutral allele frequency
deviations between these populations, beyond that expected
under neutrality due to shared population history prior to the
introduction of the beneficial allele.

Moving backward in time, sampled neutral lineages linked
to the selected site will be forced to coalesce if both lineages do
not recombine off the sweep. We define the probability that a
single neutral allele fails to recombine off the background of
the beneficial allele during the sweep phase asy, which we can
approximate as

y & e—rts/Z (3)

(Kim and Stephan 2002; Durrett and Schweinsberg 2004;
Nielsen et al. 2005), where r is the recombination rate
between the neutral locus and selected site, and t; is the
amount of time the sweep phase takes (Figure 2a). When
the beneficial allele arises from a new mutation and selec-
tion is additive, t; ~ 2log(4N,s)/s, where s is the selection
coefficient for the heterozygote, such that heterozygotes
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experience a selective advantage of s and homozygotes 2s
(Barton 1998; Gillespie 2000). The factor of 4N,s is due to
the fact that our new mutation, if it is to establish in the pop-
ulation, rapidly reaches frequency 1/(4N,s) in the population,
and then increases deterministically from that frequency
(Maynard Smith 1971; Barton 1998; Kim and Stephan 2002;
Kim and Nielsen 2004).

The coancestry coefficient in population i that experiences a
sweep, fi(is), is defined as the probability that two lineages sam-
pled from population i coalesce either due to the sweep phase, or
neutrally before reaching the ancestral population. With proba-
bility y2, both lineages fail to recombine off the beneficial back-
ground during the sweep, and they will be forced to coalesce. If
one or both lineages recombines off the sweep (with probability
1 —y?), they can coalesce before reaching the ancestral popu-
lation with probability f;;. Combining these, we find

A9 =y 4+ 1-y)fi 4

For convenience, in our inference procedure, we assume the
same strength of selection between our selected populations
and thus duration of the sweep is the same. So, fj](»s) takes the same
form as Equation 4, with its own neutral probability (f;) of co-
alescing. Given that we assume the sweeps complete recently and
have the same duration, the mutational events occur at approx-
imately the same time in each selected population. If we assume
there is no neutral migration among populations, Equation 4 will
hold regardless of where the sweep occurs on the branch leading
to i (but when migration occurs we need the sweep to be recent
so that lineages sampled from population i are found in popula-
tion i when the sweep occurs).

For the coancestry coefficient between two selected pop-
ulations i and j, we can calculate the probability two lineages,
one sampled from population i, and the other from popula-
tion j, coalesce. When the sweeps are independent, the line-
ages can only coalesce with probability f;; before reaching the
ancestral population, as they have no probability of coalesc-
ing during the sweep phases which have independent origins.
Thus,

£ = f )

Comparison to simulated data: In Figure 3a, we show the
case of convergence due to independent origins of the beneficial
allele. As we predicted, there is no additional coancestry between
the selected populations. Additionally, we show how the coan-
cestry within a selected population decays with distance from the
selected site for a range of values for the strength of selection.
These coancestry values decay to the neutral expectation at other
regions of the genome. With larger s, this decay is slower as the
sweep occurs more rapidly, and there are fewer chances for re-
combination to occur during this time.

Standing variant model: We turn now to the case of a sweep
shared between populations i and j due to selection acting on

shared ancestral variation (Figure 2b). Our model is appro-
priate for cases where the standing variation from which the
sweep arises was previously neutral, or was maintained in the
population at some low frequency by balancing selection. Let
the beneficial allele be standing at frequency g in the ancestral
population. We assume that the beneficial allele frequency does
not deviate much from that of the ancestral population such
that it is still g in the daughter populations prior to selection.
Selection favoring the beneficial alleles begins t generations
after the populations split, and the beneficial allele reaches fix-
ation in both populations after t; generations (see Figure 2b).
We assume t, g, and s are the same for all of our selected pop-
ulations. More work is needed to allow population-specific
parameters to relax these assumptions. We acknowledge all
selected populations starting from the same beneficial allele
frequency may be unrealistic in many cases, particularly if
t is long or if the populations experience bottlenecks at the
time of the split.

We first consider the coalescent process of two lineages
within a single selected population. Again, y is the probability
that a neutral lineage fails to recombine off the background of
the beneficial allele during the sweep phase. Given that the
beneficial allele is increasing from frequency g, y takes the
same form as Equation 3, where now t, ~ 2log(1/g)/s. If
both lineages fail to recombine off the beneficial background
during the sweep, there is a probability of coalescing during
the standing phase that is higher than the probability of two
neutral lineages randomly sampled from the population co-
alescing. Following from our assumptions during the stand-
ing phase, the rate at which two lineages coalesce within a
population is 1/(2N,g) per generation. Alternatively, a line-
age can recombine off in the standing phase onto the other
background with probability 7(1 — g) & r per generation. As
these are two competing exponential processes, the probabil-
ity two lineages coalesce before either recombines off the
beneficial background can be simplified to

1

P(coalesce in standing phase) = 15 4Norg (6)
e

as described by Berg and Coop (2015). If either neutral line-
age recombines off the beneficial background before they
coalesce, the probability of coalescing with the other lineage
before reaching the ancestral population can be treated as the
coancestry coefficient associated with that particular portion
of the population tree.

Taking these approximations into account, we derive a
coancestry coefficient for a neutral allele in population i that
experiences selection from standing variation as

f-(»S)Z _)’2 ( 1 4N,.rg

u 1 + 4N,rg

» 1 —v2)f
1+ 4Norg fu> +(1=y)fi D
The first term corresponds to both lineages failing to recom-
bine off the beneficial background during the sweep phase,
which puts them both on the same background as the bene-
ficial allele in the standing phase. Now, the two lineages can
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Figure 3 We calculated the average coancestry coefficient values across
1000 runs of simulations for each of 100 bins of distance away from the
selected site to compare our simulation results (dashed lines) to our the-
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der the independent mutations model (N = 100, 000) within a selected
population (population 2) with varying s. Also shown is the coancestry
coefficient between selected populations which in this case is 0, the
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either coalesce in the standing phase or recombine off of the
background of the beneficial allele where they can coalesce
neutrally before they reach the ancestral population. Alter-
natively, one or both lineages can recombine off during the
sweep phase, and again they can coalesce neutrally.

Populations that share a sweep due to shared standing
ancestral variation will have increased covariance in the
deviations of neutral allele frequencies around their ancestral
means around the selected site since they will have a shared
segment of the swept haplotype. From a coalescent perspec-
tive, this occurs because two lineages sampled from each
population have a higher probability of coalescing if they stay
on the beneficial background during the sweep and standing
phases than two lineages sampled randomly between the
populations.

The probability that a single lineage does not recombine off
onto the nonbeneficial background during the standing phase
for t generations can be approximated as

(1-re) = (1-r(1-g) =e ™ ®

The coancestry coefficient between populations i and j is now

© 2 Y 1 4Nerg
fi =y <(1 "o (1 TANerg " 1+ 4N, rgfj)

This derivation follows from that of fi(is) in Equation 7, but
now incorporates the additional probability (1—r,)* of both
lineages failing to recombine off the beneficial background
during their independent standing phases for time t.

This standing variation case represents a simple model of
selection on standing variation. However, we expect in many
cases that the beneficial allele has not been standing since the
ancestral population of the convergent population, but rather
has been moved among populations by migration before
becoming adaptive at some later time point. In these cases
we invoke a model where the standing allele spreading by
migration from some source population to recipient popula-
tions t generations in the past before the allele became fa-
vored. See Appendix A.4 for details. This model differs from
the migration model presented in the next section, in which
we assume a continuous rate of migration throughout the
duration of the sweep and that the variants sweep as soon
as they are established in the population. In this standing case

beneficial allele has been independently standing in populations (t). The
coancestry coefficient within a single population is also shown for t = 50.
For all, N = 10,000, g = 0.001, and s=0.01. (C) Coancestry coeffi-
cients under the migration model, within both selected populations
(source population 2 and recipient population 3) as well as between
source and recipient (2,3) and between recipient and a nonselected
population (1,3). Here, we show one set of parameters (s=0.01,
m = 0.001,and N = 10,000), as estimates do not vary dramatically
with changing m (see Figure S2 in File S1).
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with a source of the standing variant, moving backward in
time, we assume that the allele is standing for t generations in
a population after the sweep and before the beneficial lineage
migrates back instantly into a specified source population
(see Figure 11). Biologically, it naturally captures the case
where the allele is shared between the populations due to
migration, but is standing for sometime before it sweeps. For
data analysis, we default to using this more complex model,
where sampled selected populations are evaluated as possi-
ble sources of the standing variant.

Extending this models to allow for the source to be a non-
sampled population would be useful in studying the so-called
“the transporter hypothesis” (Schluter and Conte 2009; Bierne
et al. 2013; Welch and Jiggins 2014), where adaptive gene flow
is acting to introduction variation standing in another popula-
tion. Here, more work is needed to address issues related to
estimating coancestry coefficients for unsampled populations
(see Appendix A.4 for more information).

Comparison to simulated data: In Figure 3b we show com-
parisons of simulations to show the fit of our predictions to
simulations with adaptation from standing variation in the
classic sense. As the duration of the independent standing
phases, t, increases, the coancestry at linked neutral alleles
between selected populations decreases. Forward in time,
this has the interpretation that the longer the beneficial allele
is standing in the populations, the shorter the shared hap-
lotype between the populations will be due to independent
recombination events before selection begins. In the case
that the beneficial allele has been standing for a very long
time (t— o) before selection occurs, this additional covari-
ance will reduce to zero, as in the independent sweeps case
(Equation 5). We acknowledge this scenario is biologically
unrealistic. For large values of t at small g, we expect it
is likely that the allele would get either be lost or there may
be allelic turnover due to recurrent mutations of the benefi-
cial allele. However, it is useful here to gain intuition about
when our models overlap. Conversely, if the standing variant
is very young (t— 0), the decay in covariance between pop-
ulations takes the form of the variance within populations
(Equation 7), which, as we will see in the next section, looks
similar to the pattern generated under the migration model.

Migration model: We now consider the case where the
selected allele is spread across subpopulations by migration.
This scenario has been studied by anumber of authors (Slatkin
and Wiehe 1998; Santiago and Caballero 2005; Kim and
Maruki 2011; note, these all assume that the allele sweeps
in all of the populations), and our approach here follows lines
similar to those of Kim and Maruki (2011). Let there be a
single origin of the beneficial allele, which occurs in popula-
tion i. We assume a low, continuous level of migration during
the sweep, with a proportion m of individuals in population j
coming from population i each generation. Here, we are con-
sidering only unidirectional migration from population i
into population j. We say the sweep began in population j at
time t; generations in the past, and at time t; + & for population

i (Figure 2¢). Kim and Maruki (2011) found that the mean delay
time, 8, between the two sweeps can be approximated by

5~ llog(l +2). 10)
s m

The coancestry coefficient of the source population, fi@, fol-
lows that of a population experiencing an independent sweep
from new mutation (Equation 4). To derive the coancestry
coefficient of the recipient population, fjj(s), we first need to
consider the fate of two lineages sampled in population j at
the selected site. Two events can occur if we trace the line-
ages of two beneficial alleles back in time: either the two
lineages coalesce in population j, and a single lineage mi-
grates back into population i, or the two lineages indepen-
dently migrate back into the source population and coalesce
there. We define the probability of these two events as Q and
1—Q, respectively. We use the approximation

1

Q%1+4Nm

an
(see Pennings and Hermisson 2006). Assuming m is small,
such that a beneficial allele sampled at present day in pop-
ulation j migrates back into population i approximately ¢
generations in the past, the probability of a linked neutral
allele recombining off during the sweep phase in population
j can be approximated by y. If the lineage migrates back into
population i before it recombines off the beneficial back-
ground, there is an additional time & in population i for re-
combination to happen. So, there is an additional probability,
e ™ of recombination of our linked neutral allele off the
beneficial background.

Thus, the coancestry coefficient for the recipient popula-
tion is now

50 = QA+ (1% + 1 -0fy) + (1 - Q) (P>

+Y2(1—e ) fi + 21— y)fy + (1_.)/)2fjj)
(12)

The terms in this approximation correspond to the following
coalescent scenarios: first, if two lineages sampled in popu-
lation j coalesce before migrating (with probability Q), then
linked neutral alleles can coalesce either during the sweep if
neither lineage recombines off the beneficial background,
neutrally in population j if both lineages recombine off, or
neutrally shared drift phase of populations i and j if just one
lineage recombines off. Alternatively, if the two lineages fail
to coalesce before one or both migrates (w.p. 1 — Q), there
are four ways linked neutral alleles can coalesce:

1. Both lineages fail to recombine off the beneficial back-
ground during the sweep, and are forced to coalesce dur-
ing the sweep in population i. The factor e~2" represents
the additional opportunity for recombination when both
lineages have migrated back into population i.
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2. Both lineages stay on the beneficial background in popu-
lation j (w.p. y2), but one or both lineages recombines off
in population i (w.p. 1 — e~??) and they coalesce neutrally
in the source population with probability f; before reach-
ing the ancestral population.

3. Either lineage recombines off the beneficial background
while it is still in population j, and the two lineages co-
alesce neutrally in the shared drift phase of populations i
and j, with probability f; before reaching the ancestral
population.

4. Both lineages recombine off during the sweep phase while
they are still in population j, and they coalesce neutrally
with probability f;;.

When a beneficial allele is shared between populations i
and j via migration, there will be additional covariance in the
deviations of linked neutral allele frequencies from their an-
cestral means. In this case, there are three ways a lineage
sampled from population i and a lineage sampled from pop-
ulation j can coalesce. They are forced to coalesce during the
sweep if both lineages fail to recombine off the background of
the sweep, which occurs with probability y?e™"™. Alterna-
tively, the lineage sampled in population j can recombine
off the beneficial background before it migrates back to
source population i, in which case the lineages can coalesce
neutrally before reaching the ancestral population in their
shared drift phase, with probability f;;. Lastly, if the lineage
sampled in population j migrates back into population i,
then the two sampled neutral lineages can coalesce neu-
trally in population i with probability f; if the lineages do
not coalesce due to the sweep (i.e., either recombines off in
time tg or 8). Thus, in the case of continuous migration, the
coancestry coefficient between the source and recipient
population is

FP=y2e™ 4 (1=y)fy +y(1—ye ™) fi (13)
To fully specify the coancestry matrix with selection, we need
to take into account the effect migration has on nonselected
populations. Specifically, the coancestry coefficients between
recipient and nonselected populations are impacted since
there is some probability linked neutral lineages will migrate
from the recipient population into the source population
backward in time. Let population k be a nonselected popula-
tion. Now, the coancestry coefficient between populations j
and k can be expressed as
fj(s) = (1 =y)fix +Xf (14)
This is informative about the direction of migration. First,
there is no impact of selection on the relationship between the
source and nonselected populations. Additionally, the sweep
shared via migration will induce additional coancestry between
j and k if k is more closely related to our source population
(e.g., population 1 in Figure 1 if population 2 is the source).
The opposite is true if k is more closely related to our recipient
population (e.g., population 4). Now, there is a deficit in the
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background level of coancestry between populations j and k
near the selected site.

Comparison to simulated data: In Figure 3¢, we show our
results above compared to simulations with continuous mi-
gration during the sweep phase, for a single set of parameters
(s =0.01, m = 0.001). Here, we have migration occurring
from population 2 into population 3. We show the four rel-
evant coancestries as a function of distance from the selected
site: the covariance within source ( fz(g)), within recipient ( f§§>),
between source and recipient ( fg)), within recipient and a non-
selected population ( flg)). We see the coancestry within the
recipient population decays more rapidly than coancestry
within the source population. This fits our expectations as
there is some probability a lineage will, backward in time,
migrate back to the source population, decreasing the prob-
ability of coalescing before reaching the ancestral population
when m is small. As m increases, this relationship changes
(Figure S2 in File S1). We also see increased coancestry near
the selected site between the selected populations. The pat-
tern of decay varies from that observed in our standing var-
iation model, except for when t is small. Additionally, we see
increased coancestry between the recipient population and a
nonselected population that decays with recombinational
distance to their neutral expectation. Note, the reverse, coan-
cestry recovering to the neutral expectation with recombina-
tional distance is observed for populations that initially are
more related to the recipient population (i.e., population 4),
is also seen (Figure S3a in File S1). The coancestries between
the source population and nonselected populations are un-
affected (Figure S3b in File S1). Together, these observations
using information from nonselected populations help distin-
guish possible source populations.

Inference

We have described how selection at linked loci affects the
matrix of coancestry coefficients, allowing us to parameterize
the variance and covariance in neutral allele frequency devi-
ations within and between populations. To estimate the likeli-
hood of our data under convergent adaptation models, we
need a probability model for how allele frequencies depend on
these variances and covariances. Neutral allele frequencies
across K populations can approximately be modeled jointly as
a multivariate normal distribution around the ancestral allele
frequency, €, with covariance proportional to the coancestry
coefficients (Nicholson et al. 2002; Weir and Hill 2002;
Samanta et al. 2009; Coop et al. 2010). Specifically,

X ~ N(eT,e(l - e)F) (15)

where X is a vector of population frequencies, and F is the K
by K matrix of coancestry coefficients without selection.
Above, we demonstrated that we can generate coancestry
matrices F(® to explain the coancestry between multiple
populations due to neutral processes and various modes of con-
vergent adaptation. F® is a function of the neutral coancestry,
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(F) the model of convergence (M) and its parameters (®,,), and
the recombination distance a neutral site is away from a selected
site (r;). Thus, modeling neutral allele frequencies as multivar-
iate normal with covariance proportional to this new coancestry
matrix, we can calculate the likelihood of observed data a given
distance away from the selected site under a specific model of
convergence as

P(3|r, F. M, Oy) ~ N(a?z

e 1, (1 —e)F® (), F,M, ®M))
(16)

In practice, we do not know the true ancestral mean at a given
locus, €;, so we use the mean of the present-day population
allele frequencies and calculate likelihoods of mean-centered
allele frequencies and coancestry matrices (we account for this
mean centering in Appendix A.2.6). We also do not know the
true neutral coancestry matrix, F, but estimate it from devia-
tions of allele frequencies from sample means across the entire
genome. We also incorporate the effects of sampling into this
variance-covariance matrix. See Appendix A.1 for details.

Composite-likelihood framework

We calculate the likelihood of all data (D) in a large window
around the selected site (¢) under a given model of conver-
gent adaptation (M), with its associated parameters (0y,), as
the product of the marginal likelihoods for sites all distances
away from the selected site. This composite likelihood is used
as an approximation to the total likelihood of all sites, but is
not a proper likelihood as neighboring sites are correlated
due to shared histories. Moving Li.s sites to the left of the
proposed selected site and Lygy sites to the right,

Lieft

Lo(M, Oy Dy) = HP(

), F, M, @M))

Lright

x [ P(x)[F (5B M 00)) A7)
=1

where r; is the genetic distance from site i to ¢, and similarly
for r;. We can also obtain a composite likelihood of our data
under a neutral model (N), L¢(N;D,), which is only param-
eterized by F. This framework enables us to:

1. Identify the maximum likelihood location of the selected
locus in a region by varying the location of the proposed
selected site. For a given region and model of convergent
adaptation we vary the location of the selected site, taking
the maximum composite likelihood over a grid of parameters.
We take as our best estimate of the location under a given
model of convergence, the maximum composite-likelihood
location of the selected site (@ =arg max Lc(M, @M;D()).

Ou

2. Determine the parameter(s) that maximize our compos-
ite-likelihood estimates under a given model at a given
location of the selected site (/). We obtain these maxi-
mum composite-likelihood estimate (MCLE) parameters

by evaluating the composite likelihood across a grid of
parameters for a given location of the selected site

(@ =arg max Lc(M, @M;Df)).
Oy

3. Distinguish between modes of convergence, and neutral-
ity, in a genomic region by comparing the maximum likeli-
hood under various models of convergent evolution. At a
given location of the selected site (¢), we compare the
maximum composite likelihood of each model to the neu-
tral model (log (EC (M, Ou; D({) /Lc(N; D()) )

This composite likelihood ignores the correlation in allele
frequencies (linkage disequilibrium) between neutral sites so
the composite-likelihood surface will be too peaked. Anumber
of authors have taken composite-likelihood approaches to
inferring a range of population genetic parameters [e.g.,
Hudson (2001); see Larribe and Fearnhead (2011) and
Varin et al. (2011) for a broader statistical views on compos-
ite likelihood]. In the setting of inferring genome-wide pa-
rameters, e.g., parameters of neutral demographic models,
the MCLEs are known to be consistent in the limit of many
unlinked genomic regions (Wiuf 2006). While, in general,
composite-likelihood methods perform well, in all of these
settings typical measures of uncertainty of parameters (con-
fidence intervals) and model choice methods [e.g., Akaike
information criterion (AIC)] are undermined due to the over-
peakiness of the likelihood.

Composite-likelihood approaches have also been used in
the context of selective sweeps, starting with Kim and Stephan
(2002), who take a composite likelihood formed like Equa-
tion 17 of the product of marginal probabilities of allele fre-
quencies within a single population moving away from a
proposed selected site (an approach expanded on in Kim
and Nielsen 2004; Nielsen et al. 2005; Chen et al. 2010;
DeGiorgio et al. 2014; Racimo 2016). Our method is most
closely related to that of Chen et al. (2010) and Racimo
(2016), who look at allele frequencies across two or three
populations, respectively, and look for the signal of a sweep in
one of the populations [or, in the case of Racimo (2016), in
the ancestor of a pair of populations]. We note that we have a
further layer of abstraction over these previous composite-
likelihood methods. Extending Kim and Stephan (2002),
previous methods have calculated the likelihood of the sam-
ple frequency considering a binomial draw from some un-
derlying population frequency, which is naturally modeled
as being bounded between 0 and 1. We, however, use a
multivariate normal likelihood to model our sample fre-
quencies, which does not bound allele frequencies between
0 and 1. This further abstraction is justified by the fact that,
by using the multivariate normal approach, we are able to
handle arbitrarily large number of populations with arbi-
trary population structure, and to flexibly model different
forms of selection into an easily extendable form to the co-
variance matrix. Future work could potentially concentrate
on hybrid approaches, combining the flexibility of our ap-
proach with the realism of previous approaches.
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Figure 4 MCLEs calculated under model used for simulation. We vary the
true value of the parameter used for simulations along the x-axis, and
show the MCLE for each of 100 simulations (points). Crossbars indicate
first and third quartiles with second quartiles (medians) as the horizontal
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Inference method on simulated data

To test our method, we utilized the datasets generated using
mssel (as discussed above with details in Appendix A.2) to
see if we could recover the parameters and convergent mode
used for simulation. The neutral coancestry matrix F was
estimated using data from 1000 runs with no selection (as
described in Appendix A.1). We assume that the model pa-
rameters N, and r are known, and we set these at the values
used to generate the simulations. We calculated the compos-
ite log-likelihoods for each of the simulated datasets under
the following four models: neutral (no selection), indepen-
dent sweep model, standing variation model, and migration
model with the beneficial allele originating in population 2.
We calculate the likelihoods under a dense grid of selection
coefficients (s), migration rates (m), and standing times (t).
In the standing variation model, the standing frequency (g) is
held at 0.001. See Appendices A.2.4 and A.2.5 for details.
We repeat this procedure for each of 100 runs of all simulated
datasets. To compare between models, we calculate the com-
posite log-likelihood differences between the true model and
all other models including the neutral model, at the MCLE
obtained under each model.

Parameter estimation: Location of selected site: To explore
the ability of our method to localize the selected site, we vary
the true location of the selected site simulating under the
independent mutation model. We estimate the maximum
composite-likelihood location under the independent sweep
model over a fine grid of locations and selection coefficients.
The method is able to correctly identify the location of selec-
tion (Figure 4a), with higher accuracy when the true location
of the site is in the middle of the window. The method does
show an edge effect when the true location of the selected
site is at the edge of the region of interest perhaps because we
do not get to see the decay of coancestry on both sides of the
selected site. Additionally, we are able to correctly estimate
the strength of selection while allowing the location of the
selected site to vary (Figure Sla in File S1), and there is no
correlation between these joint parameter MLCEs (Figure
S1b in File S1).

Independent mutations model: To verify our ability to re-
cover the selection coefficient, we simulated under the in-
dependent mutation model for a range of values for s, holding
the location of the selected site at its true value. We are able

line. The true values of the parameters are marked with dashed, black
lines. (A) MCLE of the location of selected site for 100 simulations under
the independent mutation model (10 chromosomes per population, Ne =
100,000, and s = 0.05). (B) MCLE of the strength of selection (s) for
100 simulations under the independent mutation model (10 chromo-
somes per population, Ne = 100,000). (C) MCLE of the standing time
(t) for 100 simulations under the standing variant model (10 chromo-
somes per population, Ne = 10,000, s = 0.01, and g = 0.001). For scale,
we left out estimates of t >15,000 (2, 9, and 21 data points when ty . =
500, 1000, and 5000, respectively.)
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to recover the parameters used for simulation (Figure 4b).
The ability to correctly estimate s breaks down for large
enough s, given a fixed window-size around the selected site
and rpp, since we will not observe the full decay in coancestry.

Standing variant model: To explore our inference using the
standing variant model, we hold the location of the selected
site at its true location and take as our estimate of s and ¢ their
values at the joint maximum composite likelihood. Under the
standing variant model, we are again able to accurately esti-
mate s (Figure S6 in File S1). The inference of s and g simul-
taneously is somewhat more confounded (Figure 5). How the
signal of the sweep within populations decays, as we move
away from the selected site, is primarily determined by s and
g (see Equation 7). While a higher frequency of the standing
variant (g) can lead to a quicker decay, this can be partially
compensated for the strength of the sweep being stronger
(higher s and lower t;). This explains the J-shaped ridge in
the likelihood surfaces for s and g, seen in Figure 5. There-
fore, in practice, we can often infer a lower bound s and an
upper bound for g, but not find the precise values of each
when inference is performed under the standing variation
model. We are able to accurately estimate the time the ben-
eficial allele has been standing in the independent popula-
tions prior to selection, t, as shown in Figure 4c. Our inference
of t is relatively free of confounding with s and g, as t primar-
ily governs the decays in coancestry between populations,
making it separable from the scale of the sweep within
populations.

Migration model: We explored our inference under the
migration model of parameters m and s, again fixing the
location of the selected site and taking the joint MCLE. We
are able to correctly estimate s (Figure S4b in File S1). How-
ever, we obtain poor estimates of the rate of migration, m
(Figure S4a in File S1). This is perhaps unsurprising as the
coancestry coefficients under the migration model depend
only weakly on m. We obtain fairly bimodal estimates of m
that are usually either very low (107°-1072) or high (1). As
the true value of m increases, we see fewer estimates of small
m and more estimates of m = 1. These estimates of m seem to
be a true reflection of the patterns in the simulated datasets.
Specifically, this effect is mostly observed in the variance
within the recipient population, as Equation 12 depends on

Figure 5 Composite log-likelihood
surface of the strength of selec-
tion (s) and the frequency of
standing variant (g) for three sim-
ulations (with Ne = 10,000, t =
500, g = 0.001, and s=0.01)
to exemplify confounding of s
and g under the standing variant
model. Blue diamond pluses rep-
resent the true location of the pa-
rameters used for simulation. Blue
circles represent MCLE.
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m in both Q and é. High m estimates correspond to datasets
with lower empirical levels of coancestry within the recipient
than datasets where low estimates of m were obtained (Fig-
ure S5 in File S1). We believe that the bimodality results from
stochasticity in how many lineages ancestral to the sample
migrate before they recombine off the sweep in the recipient
population. While our estimates of m are noisy, the migration
model does capture key features of the spread of adaptive
alleles by migration, allowing it potentially to be distin-
guished from other modes of convergence. We now turn to
the performance of the method in distinguishing modes of
convergence.

Model comparison: To test the ability of our method to
distinguish between modes of convergence, we calculated
the maximum composite log-likelihood of 100 simulations for
each dataset generated under both the true model and all
other models with a fixed, fine-grid of parameter values. The
location of the selected site is fixed at its true location. The
results are summarized in Figure 6, which shows histograms
of the difference in maximum composite log-likelihoods cal-
culated under a given model relative to the true model used
for simulation. For example, in evaluating the independent
mutations model, we present the difference in the composite
log-likelihoods calculated for data simulated under the inde-
pendent mutations model for all other models and the com-
posite log-likelihood calculated for the true independent
mutations model. Thus, values <0 indicate that the correct
model has a higher maximum composite log-likelihood than
the true model. Conversely, values >0 indicate the incorrect
model of convergence has a higher composite log-likelihood
than the true model. For inference under the migration
model, we fix the source to be the true source of the selected
allele when simulating under the migration model, and to an
arbitrary one of the two selected populations when perform-
ing inference on simulations under other models.

Neutral model: We first compare the composite likelihoods
calculated for data generated with no selection. For the selection
models, we fix the location of the selected site. The distributions
of the resulting composite log-likelihood ratios are shown in
Figure 6a. As expected for a composite likelihood, the composite
log-likelihood ratio between a convergent selection model and
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Figure 6 Histograms of the differences in maximum composite log-
likelihoods calculated under a given model relative to the true model
used for 100 simulations. Parameter values used to simulate are noted,
varying along the vertical dimension. Values <0, marked with solid line,
indicate the true model has a higher maximum composite likelihood
than alternative model. Conversely, values >0 indicate the alternative,
incorrect model of convergence has a higher composite log-likelihood
than the true model. True models: (A) Differences in maximum com-
posite log-likelihoods under models relative to neutral model. (B) Dif-
ferences in maximum composite log-likelihoods under models relative
to independent mutations model with Ne = 100, 000. (C) Differences in
maximum composite log-likelihoods under models relative to standing
variation model with N, = 10,000, s = 0.01, and g = 0.001. (D) Differ-
ences in maximum composite log-likelihoods under models relative to
migration model with Ne = 10,000 and s = 0.01.

the neutral model with no selection are inflated compared to
those expected under the usual asymptotic y? distribution. How-
ever, these likelihood ratio differences are relatively small com-
pared to those we observed when simulating under alternative
models. This is because, when s — 0, in all models with selection,
the coancestries converge to our neutral expectations. Indeed,
when we look at the MCLE for the strength of selection (5) under
the incorrect models with selection, we see that, for nearly all
simulations, § is close to zero 0 (Figure 7a). Overall, this suggests
that our null model is reasonably well calibrated, given the
limitations of composite-likelihood schemes.

Independent mutations model: As shown in Figure 6b, we
are able to correctly distinguish between a neutral model of
no selection and the true independent mutation model by at
least 160 composite log-likelihood units, even for relatively
weak selection (s = 0.005). This difference increases as the
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true value of s increases. This same relationship is true when
comparing the migration model to the true independent mu-
tation model. Therefore, we have good ability to distinguish
the independent sweeps model from neutral and migration
model over a range of selection coefficients.

Our ability to distinguish between the standing variation
model and the true independent mutation model is less clear.
When the true s is small, the two models have comparable
composite log-likelihoods, with differences ranging from —3
to 20. This difference decreases, with higher likelihood for
the true independent mutation model more frequently, as s
increases. This result makes sense when we look into the
maximum likelihood estimate of the parameter t (Figure
7b). We obtain estimates of t approaching our highest value
on the grid (10%). Thus, we may not be able to distinguish
between the cases where the origins of the beneficial allele
are truly independent or whether selection has been on a
single variant that has been standing independently for a
long time as these two models converge for large t.

Standing variant model: Simulating under the standing
variation model, the picture is more complicated. Like the
other models, we can exclude the neutral model, although
note that this would become challenging when the allele has
been standing at high frequencies, g > 0 (Berg and Coop
2015). When the independent standing time, t, is small, we
see little difference in the composite log-likelihoods between
the true standing model and the migration model. As t in-
creases, we see a larger difference between these two models.
However, as t increases, the composite log-likelihood differ-
ence between the independent mutation model and standing
variation model tightens around 0. These results fit our ex-
pectations as we know the models look similar in the extreme
values of t, the migration model when the standing time is
small and independent mutation model when the standing
time is large, respectively.

Migration model: We are able to distinguish the migration
model from the neutral and independent sweeps model.
However, the standing variation and true migration model
are again somewhat confounded. The values of the compos-
ite log-likelihood differences range from —44 to 123 when
m = 1074, and this range narrows closer to 0 as m increases.
These results fit our understanding when we again look at
the MCLEs of t in the standing model. Now, the estimates are
at or close to 0 (Figure 7c), indicating it is hard to distinguish
between convergence that is due to migration or selection
on a shared standing variant that has only been standing for
a very short time, as they result in similar patterns in decay
of coancestries.

Summary: We can clearly distinguish the outcomes of the
migration and independent sweeps models from each other.
Both models are hard to distinguish from the standing vari-
ation case, but in very different regimes of the standing
variation model. The estimated time the variant has been
standing (t) for is a helpful indicator of the mode of conver-
gence, with very low estimates meaning that the standing
model is indistinguishable from the migration model, while
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Figure 6 Continued

very high estimates mean that the standing model is indistin-
guishable from the independent sweeps model. When data
are simulated under the standing model with intermediate
values of t, we can distinguish this from both independent
sweeps and recent migration models. This is because an in-
termediate value of t generates a covariance pattern not well
explained by either other model. Therefore, while comparing
the maximum composite likelihoods between models is use-
ful, the estimated value of t is useful in judging the different
models.

Evaluating properties of the estimators and models for
real datasets: Our use of a composite likelihood means that
we cannot rely on standard asymptotic properties of likelihood
estimators to construct confidence intervals or help with model
choice (e.g., AIC). Therefore, we take a parametric-bootstrapping
approach, simulating datasets under the MCLEs of various
models, matched for sample sizes and number of segregat-
ing sites and other qualities (recombination rate and size of
the region, N, and neutral F matrix), as the original data
(see Appendix A.3 for more details). From these simula-
tions, we generate a distribution of composite-likelihood
ratios. Specifically, we wish to understand if we have sup-
port for a model (j) as compared to a seemingly less likely
model (i); this could be a model with selection to one with-
out, or a model with, standing variation compared to one
with independent mutations. We simulate datasets under
one model (i), using the MCLE of that model applied to
the real data; we then estimate the maximum composite
log-likelihood of dataset k under this model (Ly;), and the
maximum composite log-likelihood under a second model j
(L), and form the distribution over our simulations of the
difference Lij — Ly;. We can then compare the value of the
composite log-likelihood ratio (Lp; — Lp;) obtained for our true
dataset D to this distribution to obtain the parametric-bootstrap
P-value for the comparison the alternative model (j) compared

to the null model (i). Additionally, we generate parametric-
bootstrap confidence interval for parameters of interest,
particularly t, the minimum age of the standing variant, as
this parameter is informative about the overlap of models as
shown above.

Applications
Copper tolerance in M. guttatus

The study of adaptation to toxic mine tailings is a classic case of
rapid local adaptation to human altered environments
(MacNair et al. 1993). We apply our inference method to
investigate the basis of the convergent adaptation seen be-
tween populations of the annual wildflower M. guttatus to
copper-contaminated soils near Copperopolis, CA. Wright
et al. (2015) sequenced pooled samples from 20 to 31 indi-
viduals from two mine and two off-mine populations from
two distinct copper mines in close geographic proximity
(all populations within 15 km of each other) to 34-72X
genome-wide coverage for each population. They observed
elevated genome-wide estimates of genetic differentiation
between mine and off-mine populations (Fsy M/OM = 0.07
and 0.14), with similar levels of differentiation between
the mine populations (Fs MM = 0.13). Only a small number
of regions had high levels of differentiation. Here, we focus on
the region with the strongest signature of differentiation be-
tween the two mine/off-mine pairs found on Scaffold8 by
Wright et al. (2015). They observed low genetic diversity
within each mine population in this region compared to off-
mine populations. When the mine populations are compared
to each other, they have elevated differentiation in this region,
except for in the center, where they share a nearly identical
core haplotype. This pattern suggests the sweeps may not have
been independent within each mine population, and that the
sweep is possibly shared either due to migration or selection of
shared standing variation.

We estimate the F matrix using SNPs from 12 scaffolds that
showed no strong signals of selection (shown in Table S6 in
File S1). Using all SNPs in the 169.3 kb Scaffold8, we apply
our inference framework to both identify the locus under
selection and distinguish between modes of convergence be-
tween the two mine populations. We move the proposed
selected site along this scaffold, and calculate the composite
likelihood under our three modes of convergent adaptation:
(1) both mine populations have had independent mutations
at the same locus; (2) the beneficial allele was standing in
one of the mine populations, and was spread via migration
into the other mine population, where it is still standing prior
to the onset of selection (as detailed in Appendix A.4); and
(3) the beneficial allele arose in one of the mine populations
and spread to the other via migration. We estimate the max-
imum composite likelihood over a dense grid of parameters
used to specify these models (Table S7 in File S1). For the
migration model, we allow both adapted populations to be
possible sources. We use an N, = 7.5 X 10, calculated from
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the observed pairwise diversity = = 4N, using a mutation
rate of w = 1.5X 1078 and rgp = 4.72 X 10~8 (Lee 2009).

In Figure 8a, we summarize the results, showing the dif-
ference in maximum composite log-likelihoods between a
given model of convergence, and the neutral model of no
selection as a function of the proposed selected sites along
the scaffold. We see the three likelihoods peaking when the
selected site is approximately at position 303-308 kb, and
that the model with the highest likelihood is selection on
shared ancestral standing variation.

To judge the significance of differences in the composite
log-likelihood between the standing-source model and the
other models, we used our parametric-bootstrap procedure.
We simulated 100 datasets under the independent and mi-
gration modes of convergent adaptation at their MCLE as well
as a neutral model with no selection (see Appendix A.3 for
details). For each simulated dataset, we calculate the com-
posite log-likelihood ratio comparing the standing source
model to the likelihood of each of the other models (for their
respective simulations), under the same parameter grid as
the original data (Table S7 in File S1), but holding the location
of the selected site, and, where relevant, the source population
constant at their respective MCLEs used for simulation. Our
observed composite log-likelihood ratio, comparing the stand-
ing source model to each of the others, was well outside the
range those obtained by simulation (implying a parametric-
bootstrap P-value of <1/100). The smallest difference is un-
der the migration model where the range of out 100 composite
log-likelihood ratios is [4.12, 749.45], while the observed ratio
is 945.95 (see Table S8 in File S1 for all results). These results
suggest that the nonstanding source models offer a signifi-
cantly worse fit to the data.

Focusing on the standing-source model at the most likely
selected site, we can obtain parameter estimates for the
strength of selection (s), standing frequency of the beneficial
allele (g), and the amount of time that the beneficial allele
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has been standing in both mine populations after they have
been isolated but prior to selection (t). The strength of
selection and starting frequency of the allele are con-
founded (Figure 8c) as expected. Our maximum compos-
ite log-likelihood parameter estimates suggest selection
was relatively strong (>0.02), and the allele was not
standing at very high frequencies ( < 10~*) when selection
began. We see the maximum composite log-likelihood is
obtained when the standing time (t) is ~646 generations
(Figure 8b). As the Copperopolis Mimulus are annual, this
corresponds to 646 years. We obtained 95% parametric-
bootstrap confidence interval of [364, 9525] generations
(years), by simulating under the standing-source at our
MCLE (see Appendix A.3). This time also has the interpre-
tation of the minimum age of the standing variant, as it has
been standing for at least this amount of time, and poten-
tially longer in the source population. As copper mining
started in 1861 in this region (Aubury 1902), this suggests
the tolerance allele was present prior to the onset of mining,
again consistent with the variant being a standing variant
when selection began.

There is little information about the source population of
the standing variant (we obtain identical likelihood surfaces
for either copper population as the source, see Figure S7ain
File S1). This is perhaps unsurprising, as there is relatively
little hierarchical structure among the populations. Addition-
ally, we tested the standing variant model with no source and
saw no difference in the likelihood surfaces over the proposed
selected sites (Figure S7a in File S1). The MCLE of ¢t is higher
for the models of standing variation with a source than the
simple model of standing variation (see Figure S7b in File
S1). This is likely because making one of the populations
a source of the standing variant increases the covariance
around the selected site among the selected populations,
as described in Appendix A.4, and so the model compen-
sates by increasing the rate of decay of this covariance.

Industrial pollutant tolerance in F. heteroclitus

We demonstrate how our method can be extended to more
complex population scenarios. Populations of the Atlantic
killifish, F. heteroclitus, have repeatedly adapted to typically
lethal levels of industrial pollutants (Nacci et al. 1999, 2010).
Reid et al. (2016) have sequenced 43-50 individuals from
four pairs of pollutant-tolerant and sensitive populations
along the US Atlantic coast (see Figure 9a), sequencing each
individual to 0.6-7X depth. The southern pair of populations
form a distinct clade relative to the northern populations,
consistent with a phylogeographic break centered on New
Jersey (Duvernell et al. 2008).

Reid et al. (2016) found that a number of the strongest
signals of recent selection are shared between all tolerant
populations, suggesting genotypic convergent adaptation.
We focus our method on their strongest signal of selection,
Scaffold9893 [the scaffold containing the aryl hydrocarbon
receptor interacting protein (AIP) gene], where all four pairs
of tolerant/sensitive populations sampled show high levels of
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Figure 7 Histograms of MCLE for parameters estimated under incorrect
models. (A) Histogram of MCLE of the strength of selection (s) under all
convergent models where the neutral model is true model used for sim-
ulations. (B) Histogram of MCLE of the standing time () under standing
variant model where the independent mutation model is true model used

differentiation. Here, we test the hypotheses that all four
tolerant populations show convergent adaptation due to
our three previous modes of independent mutation, migra-
tion, or selection on shared ancestral variation. For our stand-
ing variation model, we specified the source of the standing
variant (as described in Appendix A.4). We also test the hy-
potheses that there is an independent mutation in the south-
ern tolerant population while the three northern populations
share a sweep at this locus, either due to migration between
populations or selection on variation present in the ancestor
of the Northern populations. This latter set of hypotheses is
consistent with the fact that Reid et al. (2016) detect a shared
haplotype in the three northern tolerant populations, while a
different haplotype appears to have swept in the southern
tolerant population. We estimated the F matrix from four scaf-
folds that show no strong signal of selection, as shown in Table
S9 in File S1. We use N, = 8.3 X 10° and rgp = 2.17 X 10~8
(N. Reid, personal communication).

The results are summarized in Figure 9b. For all models
with migration or selection on standing variation, we plot the
maximum composite log-likelihood for the most likely source
at each location of the selected site (to reduce the number of
lines plotted, see Figure S9 in File S1 for the full figure). We
see the model with the highest composite log-likelihood is
when convergence is due to selection on shared standing
variation in the North, and an independent mutation in the
southern tolerant population. This occurs when the selected
site is at position ~1.96 Mbp on the scaffold.

To assess the significance in the composite log-likelihoods
of this model, and the other models tested, we simulate
100 datasets under each model at their MCLE (see Appendix
A.3 for details). We calculate the composite log-likelihood
ratio for each simulated dataset to compare the standing
variation in the North with an independent mutation in the
South model to the others models used for simulation. We
calculate the composite likelihoods under the same parame-
ter space as used for the original data (Table S10 in File S1),
holding the location of the selected site and the source pop-
ulation constant at their MCLEs used for simulation. For the
neutral model, and the three models where all four tolerant
populations have the same mode of convergence, the observed
composite log-likelihood ratio was far outside the range of
values obtained from the simulations (see Table S11 in File
S1 for all results), suggesting these models offer a significantly
worse fit to the data (parametric-bootstrap P-value < 1/100).
However, this is not true for the model where migration is
occurring in the three Northern selected populations,
while there is an independent mutation at the same locus
in the Southern tolerant population. Here, the range of
the difference in maximum composite log-likelihood for

for simulations (s = 0.01 and N, = 100,000). (C) Histogram of MCLE of
the standing time (t) under standing variant model where the migration
model is true model used for simulations (m = 0.001, s = 0.01, and N =
10,000).
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Figure 8 Inference results for M. guttatus copper tolerance adaptation on Scaffold8. (A) Composite log-likelihood ratio of given model relative to
neutral model of no selection as a function of the proposed selected site. We show likelihoods for the standing-source model maximizing over possible
sources, but all results can be seen in Figure S7a in File S1. (B and C) MCLE of parameters in standing variation model with position 308,503 as selected
site. (B) Profile composite log-likelihood surface for minimum age of standing variant, maximizing over other parameters, with peak at 646 generations
(C) Composite log-likelihood surface for strength of selection vs. frequency of standing variant. Blue circle represents point estimate of joint MCLE (5 =

0.034 and § = 1077). t is held constant at MCLE of 646 generations.

100 simulations is [—24,675, 38,997], while the observed
difference is 8121 (parametric-bootstrap P-value = 0.58;
Figure S10 in File S1). Thus, we are unable to discern
these models at their MCLEs.

Under the highest likelihood model of standing variation in
the North, and an independent mutation at the same locus in
the South, we obtain the maximum composite log-likelihood
estimate of the minimum age of the standing variant, t, of
eight generations (Figure 10a). From simulating under this
model at the MCLE, we obtain a 95% parametric-bootstrap
confidence interval for t of [5, 310] generations. Thus, under
the standing-source model, the allele has only been standing
for a very short time independently in the northern popula-
tions prior to selection. This is consistent with our observed
overlap for the standing variant model and migration model.
The confidence interval for t does not include 0, but that is
also consistent with simulations under the migration model,
where inferred standing times are often slightly above zero
(Figure 7c and Figure S12 in File S1). Together, these results
again suggest we are unable to differentiate between the
models where the southernmost tolerant population has an
independent mutation, and the three northern populations
are sharing the beneficial allele, either via migration or selec-
tion on the same young standing variant.

We see partial confounding of the strength of selection and
the frequency of the standing variant (Figure 10b), but our
results indicate selection has been very strong (> 0.3), and
the allele was initially at a very low frequency (< 10~°). For
the migration in the North model, we obtain similar MCLE of
s of 0.4. Lastly, both the standing variation or migration in the
North models has the highest composite log-likelihood when
the source population of the standing variant is T3, the south-
ernmost population sampled in the North (standing variation
composite log-likelihood = 547,060, migration composite
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log-likelihood = 537,744), but this model may not be dis-
tinguishable from that where the source is T2 (standing
variation composite log-likelihood = 545,580, migration
composite log-likelihood = 533,426).

Discussion

In this paper, we have presented a novel approach to identify
the loci involved in convergent adaptation, and to distinguish
among the three ways genotypic convergence can arise:
selection on (1) independent mutations, (2) a variant stand-
ing independently in the selected populations, and (3) ben-
eficial alleles introduced via migration. We leverage the
effects selection has on linked neutral sites via a coales-
cent-based model approach that captures many of the heu-
ristics that have been used in previous studies. This approach
also allow us to potentially distinguish between more subtle
models, such as the origin and the direction of gene flow of a
beneficial allele, since they are explicitly modeled in our
framework. Our approach takes advantage of information
among all of the population samples simultaneously, while
accounting for population structure. Therefore, it naturally
accommodates information from across multiple samples,
rather than just pairs of populations, and thus offers a
number of advantages in identifying the mode of conver-
gence over other approaches. We provide the relevant R code
for our approach in https://github.com/kristinmlee/dmc.

Distinguishing among models

We have demonstrated that our method is able to accurately
distinguish among modes of convergent adaptation, across a
relatively wide parameter space, in simulated data. However,
we do see some confounding of models in particular regions of
parameter space. In particular, we see the patterns generated
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Figure 9 (A) Map of sampled killifish populations with phylogenetic tree,
showing that the southern pair (T4, S4) are more distant than other
populations. Tree is estimated from genome-wide biallelic SNP frequen-
cies using Phylogeny Inference Package (PHYLIP) Gene Frequencies and
Continuous Characters Maximum Likelihood (CONTML) module [see Reid
et al. (2016) for more information]. (B) Inference results for Fundulus
heteroclitus pollutant tolerance adaptation on Scaffold9893. Composite
log-likelihood ratio of given model relative to neutral model of no selec-
tion as a function of the proposed selected site. Closed points represent
models where all four populations have same convergent mode, while
open points represent Southern population (T4) having an independent
mutation at the proposed selected site. We show likelihoods maximizing
over possible sources, but all results can be seen in Figure S9 in File S1.
The AIP locus position is marked by the vertical, dashed gray lines.

from a model of selection on ancestral standing variation can
look like our expectations for the other two modes of conver-
gent adaptation for extreme values of the parameter t, the
time the beneficial allele has been standing time independent
in the selected populations.

When t is small, we see confounding between the standing
model and a model of convergence due to gene flow. The two

models are very similar since in our standing variation model,
as t— 0, the covariance in the deviations of a neutral allele
between selected populations approaches the variance
within a selected population. The strong overlap in models
is especially true when we have a source for the standing
variant. Intuitively, this indicates that the beneficial allele is
on a haplotype that is mostly shared among the selected
populations. This can be due to a very young standing variant
shared among very closely related populations from an an-
cestral population, a standing variant that was shared by
gene flow before selection, or by the selected haplotype
quickly moving across populations by gene flow after selec-
tion began [which are all closely related models, see Welch
and Jiggins (2014), for additional discussion].

To illustrate distinguishing between these possibilities, we
now briefly revisit our applications. The Northern tolerant
killifish populations, under a standing variation model with
gene flow prior to selection, have a very low estimate of the
standing time t (eight generations with 95% CI [5, 310]
generations). However, given this very low estimate of ¢,
the allele cannot have been standing since the common
ancestral population of T1, T2, and T3 (which we estimate
to coalesce >800,000 generations ago, assuming no migra-
tion, using the estimation procedure outline in Appendix
A.3.1). Therefore, the allele must be shared by gene flow
among the three populations, and it seems likely that the
migration of the allele occurred either after selection began
in one of the populations, or very shortly before, with our
parametric-bootstrapping approach suggesting we are not
able to discern these two models. Interestingly, Reid et al.
(2016) find no clear signals of admixture from migration
elsewhere in the genome between Northern tolerant popu-
lations, suggesting that the migration of this allele might be
arare event, although we note that this may reflect a lack of
power to detect gene flow.

The case for adaptation from ancestral standing variation is
more clear for the Mimulus copper tolerance example. Here,
the estimate of t is much >0 (646 generations with 95% CI
[364, 9525] generations), and, indeed, older than the puta-
tive selection pressure (~150 generations ago). Additionally,
the standing variant model considerably outperforms the other
models, and the results of our parametric-bootstrapping ap-
proach support this. In this case, we again favor the model that
incorporates gene flow prior to selection on standing variation.
The level of neutral differentiation of the mine populations
very likely reflects much >646 generations of drift (see Ap-
pendix A.3.1); thus, it seems likely that this allele is shared
between the mine populations by gene flow, but that the allele
was standing in both populations for some time before selec-
tion began. Together, these applications show distinguishing
among models of convergence is possible in some cases, but
may require extra knowledge of population history to aid our
inference and understanding.

Conversely, when t is large, we see a collapse of our stand-
ing model onto a model of convergence due to independent
mutations in our selected populations. This intuition holds
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forward in time since as t — « generations, recombination in
our isolated populations independently breaks down the
similarity of the haplotypes carrying the beneficial muta-
tion. Thus, when selection for the standing variant begins,
even tightly linked, hitchhiking neutral alleles will not be
shared between populations more than expected by
chance. This is also the case when beneficial alleles arise
multiple times independently. For example, in the case of
the killifish, it is formally possible that the signal of in-
dependent selection in the Southern tolerant population
is actually due to a very old standing variant shared with
the Northern populations, where there is almost no over-
lap between the Southern and Northern tolerant popula-
tions in the haplotype, the selected allele is present on,
even close to the selected site. As the precise functional
variant(s) in this swept region are currently unknown
(Reid et al. 2016), it is hard to totally rule out this very
old standing variant hypothesis. In other cases, it may be
possible to rule out the standing variant hypothesis with
very large parameter estimates of t if we know more about
the population histories (i.e., our selected populations
split more recently than the standing time). Additionally,
it may be possible to totally rule out the standing variant
hypothesis in cases where if the functional variants can be
tracked down to clearly independent genetic changes
(e.g., Tishkoff et al. 2007). However, that degree of cer-
tainty may be difficult to achieve in many cases.

Extendibility and flexibility of our approach

We show the applicability of our method on two empirical
examples of convergent adaptation: the evolution of cop-
per tolerance in M. guttatus and of pollutant tolerance in
F. heteroclitus. The latter exemplifies the extendibility and
flexibility of our approach. As the number of selected pop-
ulations increase, our potential number of hypotheses
grows, since any grouping of two or more populations
could share selection due to migration or standing varia-
tion. Additionally, with more populations, we have more
potential sources of the beneficial allele in the migration
model. Our model could also be extended to have selec-
tion occurring in some of the adapted populations and the
neutral model in others, to identify genomic regions that
are not experiencing convergent adaptation among all pop-
ulations sharing the selected environment. These models
are all relatively easy to implement into our framework;
however, the sheer number of possible hypotheses as the
number of populations grows will likely call for some more
systematic way of implementing these models and explor-
ing their relationships.

Caveats and possible extensions

Studying repeated evolution has long played a key role in
evolutionary biology as a tool to help identify the ecological
and molecular basis of adaptation. It is worth noting that, with
this approach, we are able to identify sweeps in the same
region, and whether they appear to be shared or independent.
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face for strength of selection vs. frequency of standing variant. Blue
circle represents point estimate of joint MCLE (§=10.3, § = 1078). tis
held at MCLE of eight generations.



However, in the scale of an entire genome, it may be possible
for two, functionally unrelated sweeps to overlap. In the case
of adaptation via independent mutations across multiple
populations, it is especially hard to determine whether selec-
tion at the same site was acting on the same phenotype. It is
potentially more plausible to claim that the phenotype and
selection pressure are shared among populations in cases
where the swept haplotype is shared. Ultimately, in demon-
strating convergence, we will have to rely on a range of
evidence. Shared sweeps can offer one substantial piece of
evidence, particularly when we are studying recent adapta-
tion to a strong selective pressure that is distinct to the adapted
populations.

In addition to assuming that the same locus is under
selection in all adapted populations, we assume a single
selected change underlies the sweep within a population,
and that recombination is free to break down associations
between neutral alleles and this selected variant. If, for in-
stance, selection acts on an epistatic, haplotypic, combination
of allele that sweeps, a long haplotype could be shared be-
tween populations not due to recent migration but because
selection acts against recombinants breaking up the haplotype
(Kelly and Wade 2000). Convergent adaptations due to
shared inversions also violate the assumptions of our method.
Inversions can repress recombination across the entire inver-
sion [see Kirkpatrick (2010), for a recent review]. Inversions
significantly alter both neutral and selective model expecta-
tions (e.g., Guerrero et al. 2012) and could lead to long
shared haplotypes among populations even if the shared in-
version is old. It may be possible to use our approach to model
the decay in coancestries outside of the inverted region, but
this requires knowledge of the inversion and its break points
a priori and a detailed knowledge of recombination rates
surrounding the inversion.

Throughout this paper, we assume that the sweeps have
fixed recently, and it will be important to relax this assump-
tion. In these cases, models of migration that include selection
against maladaptive migrants (Barton and Bengtsson 1986;
Charlesworth et al. 1997; Roesti et al. 2014) will be important
to consider. Long-term selection against migrant alleles (i.e.,
due to local adaptation) lowers the effective migration rate at
linked neutral sites, and so will distort the covariance relation-
ships among populations (and may, in some cases, confound
the signal of the mode of convergence). These deviations could
be incorporated into our models, allowing us to perform
inference under these models. However, in practice, we
would likely be underpowered, as we only model segregat-
ing sites we cannot (in the current framework) fully account
for selection that deepens the absolute divergence among
particular populations.

Additionally, our framework could be extended both to
leverage more information and to model other biologically
relevant scenarios. Here, we analyze genomic regions that
we a priori assume to be under convergent selection. These
regions were identified on the basis of the phylogenetic rela-
tionships among the populations, with convergent populations

being non-sister. This approach, however, does not take
advantage of the flexibility of our framework. We are
working on extensions to efficiently scan genome-wide
data for genomic regions exhibiting convergence. In this
case, we can potentially identify regions shared among
populations that we may not have been able to previously
identify via traditional approaches. Additionally, if these
populations are sister to one another, our method can be
extended to test whether this is convergent or whether the
sister populations share an allele due to selection in their
ancestor (Racimo 2016).

Acknowledgments

We wish to thank members of the Coop lab for helpful
discussion and feedback on earlier drafts. We’d also like to
gratefully acknowledge Noah Reid, Andrew Whitehead, John
Willis, and Kevin Wright sharing their data and thoughtful
comments. We thank Nicolas Bierne, Joachim Hermisson, and
an anonymous reviewer for valuable suggestions on an earlier
draft. This work was supported by the National Science Foun-
dation Graduate Research Fellowship awarded to K.M.L.
(1148897) and by grants from the National Science Founda-
tion under grant no. 1353380 to John Willis and G.C., and
the National Institute of General Medical Sciences of the Na-
tional Institutes of Health (NIH) under award numbers NIH
R0O1 GM108779 awarded to G.C.

Literature Cited

Arendt, J., and D. Reznick, 2008 Convergence and parallelism
reconsidered: what have we learned about the genetics of ad-
aptation? Trends Ecol. Evol. 23: 26-32.

Aubury, L. E., 1902 The Copper Resources of California (No. 23).
Superintendent State Printing, Sacramento, CA.

Barrett, R. D., and D. Schluter, 2008 Adaptation from standing
genetic variation. Trends Ecol. Evol. 23: 38-44.

Barton, N., 1998 The effect of hitch-hiking on neutral genealo-
gies. Genet. Res. 72: 123-133.

Barton, N., and B. O. Bengtsson, 1986 The barrier to genetic exchange
between hybridising populations. Heredity 57: 357-376.

Berg, J. J., and G. Coop, 2015 A coalescent model for a sweep of a
unique standing variant. Genetics 201: 707-725.

Bierne, N., 2010 The distinctive footprints of local hitchhiking in a
varied environment and global hitchhiking in a subdivided pop-
ulation. Evolution 64: 3254-3272.

Bierne, N., P.-A. Gagnaire, and P. David, 2013 The geography of
introgression in a patchy environment and the thorn in the side
of ecological speciation. Curr. Zool. 59: 72-86.

Chan, Y. F., M. E. Marks, F. C. Jones, G. Villarreal, Jr., M. D. Shapiro
et al, 2010 Adaptive evolution of pelvic reduction in sticklebacks
by recurrent deletion of a pitx1 enhancer. Science 327: 302-305.

Charlesworth, B., M. Nordborg, and D. Charlesworth, 1997 The
effects of local selection, balanced polymorphism and back-
ground selection on equilibrium patterns of genetic diversity
in subdivided populations. Genet. Res. 70: 155-174.

Chen, H., N. Patterson, and D. Reich, 2010 Population differenti-
ation as a test for selective sweeps. Genome Res. 20: 393-402.

Colosimo, P. F., K. E. Hosemann, S. Balabhadra, G. Villarreal, Jr.,
M. Dickson et al., 2005 Widespread parallel evolution in

Distinguishing Modes of Convergence 1609



sticklebacks by repeated fixation of ectodysplasin alleles. Sci-
ence 307: 1928-1933.

Coop, G., D. Witonsky, A. Di Rienzo, and J. K. Pritchard, 2010 Using
environmental correlations to identify loci underlying local adap-
tation. Genetics 185: 1411-1423.

DeGiorgio, M., K. E. Lohmueller, and R. Nielsen, 2014 A model-
based approach for identifying signatures of ancient balancing
selection in genetic data. PLoS Genet. 10: e1004561.

Durrett, R., and J. Schweinsberg, 2004 Approximating selective
sweeps. Theor Popul Biol. 66: 129-138.

Duvernell, D. D., J. B. Lindmeier, K. E. Faust, and A. Whitehead,
2008 Relative influences of historical and contemporary forces
shaping the distribution of genetic variation in the Atlantic kil-
lifish, Fundulus heteroclitus. Mol. Ecol. 17: 1344-1360.

Ewens, W., 2004 Mathematical Population Genetics 1: Theoretical
Introduction, Interdisciplinary Applied Mathematics. Springer,
New York.

Gillespie, J. H., 2000 Genetic drift in an infinite population. The
pseudohitchhiking model. Genetics 155: 909-919.

Guerrero, R. F., F. Rousset, and M. Kirkpatrick, 2012 Coalescent
patterns for chromosomal inversions in divergent populations.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 367: 430-438.

Harvey, P. H., and M. D. Pagel, 1991 The Comparative Method in
Evolutionary Biology, Vol. 239. Oxford University Press, Oxford.

Hedrick, P. W., 2013 Adaptive introgression in animals: examples
and comparison to new mutation and standing variation as
sources of adaptive variation. Mol. Ecol. 22: 4606-4618.

Heliconius Genome Consortium, 2012 Butterfly genome reveals
promiscuous exchange of mimicry adaptations among species.
Nature 487: 94-98.

Hudson, R. R., 2001 Two-locus sampling distributions and their
application. Genetics 159: 1805-1817.

Hudson, R. R., 2002 Generating samples under a Wright-Fisher
neutral model of genetic variation. Bioinformatics 18: 337-338.

Hudson, R. R., and N. L. Kaplan, 1988 The coalescent process in
models with selection and recombination. Genetics 120: 831-
840.

Jones, F. C., M. G. Grabherr, Y. F. Chan, P. Russell, E. Mauceli et al.,
2012 The genomic basis of adaptive evolution in threespine
sticklebacks. Nature 484: 55-61.

Kaplan, N., R. R. Hudson, and M. lizuka, 1991 The coalescent
process in models with selection, recombination and geographic
subdivision. Genet. Res. 57: 83-91.

Kaplan, N. L., R. R. Hudson, and C. H. Langley, 1989 The “hitchhiking
effect” revisited. Genetics 123: 887-899.

Kelly, J. K., and M. J. Wade, 2000 Molecular evolution near a two-
locus balanced polymorphism. J. Theor. Biol. 204: 83-101.
Kim, Y., and T. Maruki, 2011 Hitchhiking effect of a beneficial
mutation spreading in a subdivided population. Genetics 189:

213-226.

Kim, Y., and R. Nielsen, 2004 Linkage disequilibrium as a signa-
ture of selective sweeps. Genetics 167: 1513-1524.

Kim, Y., and W. Stephan, 2002 Detecting a local signature of ge-
netic hitchhiking along a recombining chromosome. Genetics
160: 765-777.

Kirkpatrick, M., 2010 How and why chromosome inversions evolve.
PLoS Biol. 8: e1000501.

Larribe, F., and P. Fearnhead, 2011 On composite likelihoods in
statistical genetics. Stat. Sin. 21: 43-69.

Lee, Y. W,, 2009 Genetics analysis of standing variation for floral
morphology and fitness components. Ph.D. Thesis, Duke Univer-
sity, Durham, NC.

Lipson, M., P.-R. Loh, A. Levin, D. Reich, N. Patterson et al.,
2013 Efficient moment-based inference of admixture parame-
ters and sources of gene flow. Mol. Biol. Evol. 30: 1788-1802.

Losos, J. B., 2011 Convergence, adaptation, and constraint. Evo-
lution 65: 1827-1840.

1610 K. M. Lee and G. Coop

MacNair, M. R., S. E. Smith, and Q. J. Cumbes, 1993 Heritability
and distribution of variation in degree of copper tolerance in
Mimulus guttatus at Copperopolis, California. Heredity 71:
445-455.

Martin, A., and V. Orgogozo, 2013 The loci of repeated evolution:
a catalog of genetic hotspots of phenotypic variation. Evolution
67: 1235-1250.

Maynard Smith, J., 1971 What use is sex? J. Theor. Biol. 30: 319—
335.

Maynard Smith, J., and J. Haigh, 1974 The hitch-hiking effect of a
favourable gene. Genet. Res. 23: 23-35.

Nacci, D., L. Coiro, D. Champlin, S. Jayaraman, R. McKinney et al.,
1999 Adaptations of wild populations of the estuarine fish
Fundulus heteroclitus to persistent environmental contami-
nants. Mar. Biol. 134: 9-17.

Nacci, D. E., D. Champlin, and S. Jayaraman, 2010 Adaptation of
the estuarine fish Fundulus heteroclitus (Atlantic killifish) to
polychlorinated biphenyls (PCBs). Estuaries Coasts 33: 853-
864.

Nicholson, G., A. V. Smith, F. Jénsson, O. Gustafsson, K. Stefansson
et al., 2002 Assessing population differentiation and isolation
from single-nucleotide polymorphism data. J. R. Stat. Soc. Se-
ries B Stat. Methodol. 64: 695-715.

Nielsen, R., S. Williamson, Y. Kim, M. Hubisz, A. Clark et al.,
2005 Genomic scans for selective sweeps using SNP data. Ge-
nome Res. 15: 1566-1575.

Orr, H. A., 2005 The probability of parallel evolution. Evolution
59: 216-220.

Pearce, R. J.,, H. Pota, M.-S. B. Evehe, E.-H. B4, G. Mombo-Ngoma
et al., 2009 Multiple origins and regional dispersal of resistant
dhps in African Plasmodium falciparum malaria. PLoS Med 6:
€1000055.

Pease, J. B., D. C. Haak, M. W. Hahn, and L. C. Moyle,
2016 Phylogenomics reveals three sources of adaptive varia-
tion during a rapid radiation. PLoS Biol. 14: e1002379.

Pennings, P. S., and J. Hermisson, 2006 Soft sweeps ii—molecular
population genetics of adaptation from recurrent mutation or
migration. Mol. Biol. Evol. 23: 1076-1084.

Przeworski, M., G. Coop, and J. D. Wall, 2005 The signature of
positive selection on standing genetic variation. Evolution 59:
2312-2323.

Racimo, F., 2016 Testing for ancient selection using cross-population
allele frequency differentiation. Genetics 202: 733-750.

Racimo, F., S. Sankararaman, R. Nielsen, and E. Huerta-Sanchez,
2015 Evidence for archaic adaptive introgression in humans.
Nat. Rev. Genet. 16: 359-371.

Reid, N. M., D. A. Proestou, B. W. Clark, W. C. Warren, J. K. Colbourne
etal., 2016 The genomic landscape of rapid repeated evolutionary
adaptation to toxic pollution in wild fish. Science 354: 1305-1308.

Roesti, M., S. Gavrilets, A. P. Hendry, W. Salzburger, and D. Berner,
2014 The genomic signature of parallel adaptation from
shared genetic variation. Mol. Ecol. 23: 3944-3956.

Rosenzweig, B. K., J. B. Pease, N. J. Besansky, and M. W. Hahn,
2016 Powerful methods for detecting introgressed regions
from population genomic data. Mol. Ecol. 25: 2387-2397.

Samanta, S., Y.-J. Li, and B. S. Weir, 2009 Drawing inferences about
the coancestry coefficient. Theor. Popul. Biol. 75: 312-319.

Santiago, E., and A. Caballero, 2005 Variation after a selective
sweep in a subdivided population. Genetics 169: 475-483.

Schluter, D., and G. L. Conte, 2009 Genetics and ecological spe-
ciation. Proc. Natl. Acad. Sci. USA 106: 9955-9962.

Slatkin, M., and T. Wiehe, 1998 Genetic hitch-hiking in a subdi-
vided population. Genet. Res. 71: 155-160.

Song, Y., S. Endepols, N. Klemann, D. Richter, F.-R. Matuschka
et al., 2011 Adaptive introgression of anticoagulant rodent
poison resistance by hybridization between old world mice.
Curr. Biol. 21: 1296-1301.



Stern, D. L., 2013 The genetic causes of convergent evolution.
Nat. Rev. Genet. 14: 751-764.

Thompson, E. A, 2013 Identity by descent: variation in mei-
osis, across genomes, and in populations. Genetics 194:
301-326.

Tishkoff, S. A., F. A. Reed, A. Ranciaro, B. F. Voight, C. C. Babbitt
et al., 2007 Convergent adaptation of human lactase persis-
tence in Africa and Europe. Nat. Genet. 39: 31-40.

Turner, T., E. Bourne, E. V. Wettberg, T. Hu, and S. Nuzhdin,
2010 Population resequencing reveals local adaptation of
Arabidopsis lyrata to serpentine soils. Nat. Genet. 42: 260—
263.

Varin, C., N. Reid, and D. Firth, 2011 An overview of composite
likelihood methods. Stat. Sin. 21: 5-42.

Weir, B. S., and W. G. Hill, 2002 Estimating F-statistics. Annu.
Rev. Genet. 36: 721-750.

Welch, J. J.,, and C. D. Jiggins, 2014 Standing and flowing: the
complex origins of adaptive variation. Mol. Ecol. 23: 3935-
3937.

Wiuf, C., 2006 Consistency of estimators of population scaled param-
eters using composite likelihood. J. Math. Biol. 53: 821-841.

Wood, T. E., J. M. Burke, and L. H. Rieseberg, 2005 Parallel genotypic
adaptation: when evolution repeats itself. Genetica 123: 157-170.

Wright, K. M., U. Hellsten, C. Xu, A. L. Jeong, A. Sreedasyam et al.,
2015 Adaptation to heavy-metal contaminated environments
proceeds via selection on pre-existing genetic variation. bioRxiv.
doi: https://doi.org/10.1101,/029900.

Wright, S., 1943 Isolation by distance. Genetics 28: 114.

Wright, S., 1951 The genetical structure of populations. Ann. Eu-
gen. 15: 323-354.

Communicating editor: J. Hermisson

Distinguishing Modes of Convergence 1611



Appendix A
A.1 Coalescent Interpretation of Covariances and F-Matrix Estimation

Let x;; be the allele frequency of allele 1 in population i at locus [, and that the frequency of this allele in the ancestral
population is €;. Consider the covariance Cov(Ax;, Ax;;) over replicates of the drift processes at locus . We can write

COV[(XI'Z - El), (Xﬂ - 61)} =E [(xil - 61) (Xﬂ - El)} (A1)

=E |:Xl'llei| - 612, (A2)

which follows from the fact that E[x;] = E[x;] = ;. We can interpret E[x;x;] as the probability that we sample a single allele in i
and an allele in j, and that they both are of type 1. Taking that interpretation, assuming that there is no mutation, E[x;x;] is the
probability that, tracing back a coalescent lineage from i and a lineage from j, both lineages trace back to type 1 alleles in the
ancestral population. Let our pair of lineages drawn from i and j coalesce with probability f;;. If our lineages coalesce before
reaching the ancestral population, then they will be identical by descent, and share the ancestral choice of allele. Therefore, we
can write

E[Xil.x'ﬂ} = (1 —fij) 612 —|—fij€1 (A.3)

Then, we can rewrite the covariance
Cov (Axy, Axyy) = fyel(1 — ), A4

and, for the variance, we set i = j. Thus, under a model of genetic drift alone, we can interpret the entries of our covariance
matrix as expressions of the underlying coalescent probabilities.

Estimating F
In the main text, we assume that we have estimates of our neutral coancestry matrix F. We now describe how we obtain these.
From above, Equation A.3, the expectation of x;x; across loci is

E [Xizsz] =[ {(1 _fij) € +fij€z] (A.5)

Therefore, we can write estimate f;; as
2
By x| — B[ef]

Efe(1—e) (A.6)

fi=

We can obtain an unbiased estimate of E;[e?] and E;[€;(1 — )] using the sample allele frequencies from two populations on
either side of the root of the population phylogeny (see Supplement of Lipson et al. 2013). Let i’ and j’ be a pair of populations
that span the root of the population tree, then we can use the estimate

1 1
Eile(1—-¢)] =E {Exi’l(l —Xj'z> +§(1 —X;1) (Xj'z)} (A7)
Likewise, we use the estimate
1 1
2
Elef] =K {ixﬂl <X]z) +5 (1 =) (1 - Xj'z)} (A.8)

An estimate of the term E;[x;x;] can be obtained by using the sample frequency of allele 1 in populations i and j. However, as we
only have a sample from the population frequency, we need to account for the finite sampling bias within populations (i = j).
Let n be the sample size in population i, then
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Ey[x3] 2 — Eipel it — Ei[e?]
Ey[e(1 — )]

fi= (A9)

where our x are now sample frequencies. There is no finite-sample size correction for fj;, i # j, and Equation A.6 can be used
directly.

In our simulations to show the effect of selection on the coancestry coefficients (Figure 3), we estimate f;; in bins of fixed
recombination distance moving away from the selected site. We do this by approximating the expectations in the numerator
and denominators in Equations A.6 and A.9 by the average of the expression over all of the SNPs that fall in a given genetic
distance bin over all of the relevant simulations. To account for biases induced by defining the allele of interest, we randomize
the reference allele at each SNP.

A.2 Simulation Implementation Details

We perform coalescent simulations using mssel, a modified version of ms (Hudson 2002) that allows for the incorporation of
selection at single site (the code for this is provided in https://github.com/kristinmlee/dmc). The program allows the user to
specify the frequency trajectory of the selected allele through time across populations; this trajectory is then used to simulate
genetic data under the coalescent model conditioning on this trajectory [using the subdivided coalescent model (Hudson and
Kaplan 1988; Kaplan et al. 1991)]. We generate stochastic trajectories for the selected allele across populations, and describe
the simulation process below. We simulate multiple instances of the stochastic trajectories, and average our results across datasets
generated for these trajectories. We focus on a set of four populations with relationships as shown in Figure 1. Populations 2 and
3 are adapted to a shared novel selection pressure, and populations 1 and 4 are in the ancestral environment.

The original implementation of mssel assumes only a single origin of the selected allele, which occurs moving backward in
time when the frequency of the derived allele goes to zero in the final population it segregates in. We modified the mssel source
code directly to accommodate multiple origins of the selected allele as is necessary in the independent sweep model. We do so by
allowing an independent origin of the selected allele in any population where the frequency of the derived selected allele goes to
zero, if that population currently has a migration rate of zero to any other population containing the selected allele.

A.2.1 Generating stochastic trajectories for the selected allele

We generate stochastic trajectories for the selected allele to be used as input for mssel to generate sequence data for given
convergent adaptation scenarios. We simulate the allele frequency trajectory for the selected allele forward in time using a
normal deviate approximation to the simulation the Wright-Fisher diffusion. Specifically, given the frequency of the beneficial
allele at time t, X(t), we simulate its frequency at time t 4+ At according to

X(t+ At) ~ N(,us (X(t)) At, o (X(t)) At) , (A.10)

where ug( ) and o( ) are the infinitesimal mean and variance of the Wright-Fisher diffusion. We set At = 1/(2N), representing
one Wright-Fisher generation on the diffusion time-scale (2N generations). We set X(0) = g, the initial frequency of the
beneficial allele. When selection starts from a new mutation, g = 1/(2N).

For all our models, the infinitesimal variance is

a2 (X(t)) = X(£)(1 — X(t)), (A.11)

representing the effect of genetic drift.
For populations not impacted by migration, we condition our trajectory on the beneficial allele going to fixation forward in
time. To do this, we use the conditional infinitesimal mean

_ 2NsX(0)(1 — X(1))

us(X(t)) = tanh (2NsX (0)) (A.12)

(see Przeworski et al. 2005; Berg and Coop 2015, for previous applications). We simulate this process forward in time till
fixation is reached. Given that we are assuming the sweeps completely recently, we have fixation occur at time zero, so that the
time of a new mutation is determined by the time of the sweep.
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Migration model: In the case of our migration model, there is one way migration from population i intoj. The trajectory of X; is
simulated first forwards in time, conditioning on fixation, using the above approach. We then simulate the frequency in
population j starting from X;(0) = 0, with the infinitesimal mean

s (Xi(t)) = 2NsX;(t) (1 — X;(t)) + 2Nm (X;(t) — X;(¢)) (A.13)

(expanded from Ewens 2004). We simulate the process forward in time until the selected allele reaches fixation in both
populations. The first population to reach fixation is held at frequency 1 until the other population fixes for the beneficial allele.

Standing variation model: We define the standing variation trajectory as having three phases: the neutral phase, the standing
phase, and the selected phase. To specify a trajectory in which the beneficial allele has been standing at frequency g for time t, we
simply hold the allele frequency constant for this amount of time. We simulate a stochastic neutral trajectory of our beneficial
allele from frequency g to 0 backward in time according to

X(t—At) ~ N(uy(X(t))At, o(X(t))At) (A.14)
using the infinitesimal mean conditional of the neutral allele going to loss
py(X(1) = —X(t) (A.15)

(see Przeworski et al. 2005; Berg and Coop 2015, for previous applications). We simulate the selection phase forward in time
for 2log(1/g)/s generations. If the beneficial allele has reached fixation before this time, it is held constant at frequency 1 for
the remaining time. If not, the trajectory is simply stopped at this time. This allows for the interpretation of the standing time
and the time of the onset of selection to be the same throughout simulations. For the whole trajectory of a beneficial allele, we
paste together these three components: neutral increase of allele from frequency O to g, the standing phase at frequency g for
time t generations, and the selective phase. For populations not experiencing selection, the beneficial allele is kept at frequency
g for the entire length of the trajectory. We acknowledge this is an untested approximation, but think it has little impact on our
results. The frequency of the standing variant matters mostly for estimating the duration of the sweep within populations, so its
frequency during this standing phase is not as important as the frequency at the onset of selection. Additionally, we assume that
gis small, such that the probability of recombining off onto the other background during this phase is simply . The frequency of
the variant during the standing phase does impact the probability of coalescing before recombination (or vice versa) during this
phase, but only weakly.

A.2.2 Details of coalescent simulations
In this section, we give the details of the coalescent simulations. The mssel command lines can be found in Supplement S3 in File
S1. The mssel input can be interpreted as follows:

./msselnsam_totnrepsnsam_ancnsam der trajFile locSelSite—-to—-rpnsites-I
npops nAnc_poplnDerv_popl...nAnc_popinDerv_popi

For all of the simulations, we generate neutral allele frequency data for 10 samples from each of four populations. The
populations are related to each other as shown in Figure 1. Note, we did 1000 replications of the simulations for parameters
used to generate comparisons of average simulations coancestry coefficients compared to theoretical expectations; 100 repli-
cations were done for simulations used for parameter estimates and model comparisons. For simulations used for both, the first
100 runs were used.

Independent sweep model: We generated beneficial allele frequency trajectories under four different selection coefficients:
s =[0.005,0.01,0.05,0.1] under the independent sweep model, with N, = 100, 000. We set r, the per generation probability of
cross-over between ends of the simulated locus, to 0.005. The neutral mutation rate, u, for the entire locus is the same as r. We also
simulate, with ms the same population structure with no selection to generate data to estimate the neutral coancestry matrix, F.

Standing variation model: With s = 0.01 and g = 0.001, we generated beneficial allele frequency trajectories for standing
times ¢t = [50, 250,500, 1000, and 5000] generations under the standing variation model with N, = 10, 000. Our t references
the time that the populations have been independent. Therefore, we adjusted the split times to ensure that the t of interest
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corresponded to the duration of time that the selected populations had the standing variant prior the populations joining in the
ancestral population. The population split times were determined to ensure selection started after the populations were
completely isolated, and to maintain a similar ratio of time for four independent populations to two ancestral populations.
We again set r = u = 0.005. Again, neutral regions were simulated in ms using the same population structure (i.e., each
parameter set had its own neutral data generated).

Migration model: Lastly, we simulated under the migration model withm = [0.0001,0.001,0.01, and 0.1], holdings = 0.01
for N, = 10, 000. Again, we simulated 10 samples from four populations related to each other as specified in Figure 1. Now, in
mssel, we specify migration to start just prior to origin of the beneficial allele in the source population, and to continue until the
sweep has reached fixation (time zero in the past since we fix sweeps to complete at the end). We set population 2 to be the
source, and have 4N,m migrants from population 2 into population 3 each generation. We again set r = u = 0.005. Neutral
regions were again simulated using ms. Each set of parameters has its own neutral data generated as the migration rate impacts
neutral coancestry as well.

A.2.3 Interpreting mssel output

The output from mssel and ms is in the form of haplotypes for each of the sampled chromosomes at polymorphic sites in addition
to their positions on a scale of (0, 1). We use this to calculate sample allele frequencies at each site for each population. Prior to
performing further estimations or analyses with these neutral allele frequencies, we randomize the reference allele so that
there is no bias resulting from which allele was called ancestral or derived. We exclude sites where the average allele
frequencies across populations are <<5% or >95%.

A.2.4 Composite likelihoods of simulated data under all models details
We calculated the composite log-likelihoods of each the simulated datasets under all models, including the neutral model, with
the same parameter space shown in Table S1 in File S1.

A.2.5 Maximum likelihood estimate of parameters from simulated data under correct model

We also calculated the composite log-likelihoods of each the simulated datasets under the correct model used to generate the
data, now with a more dense grid of parameters to obtain better estimates of the MCLE of each parameter. We allowed g to varyin
the calculations of the MCLEs under the standing variation model. See Table S2, Table S4, and Table S5 in File S1.

A.2.6 Inference details: mean-centering allele frequencies and covariances, sample size correction, and speed-ups

Given that we do not know the true ancestral mean at locus [, €;, we use the mean of the present-day sample allele frequencies at this
locus, x; = 1/ kZ{(:lxiﬁl. When mean-centering, we lose a degree of freedom, so, in calculating the likelihood, it is necessary to drop
information from one population. Since the information from the dropped population is incorporated in the mean, the choice of the
dropped population is arbitrary. In matrix form, the mean-centered allele frequencies with one dropped population can be expressed as

X =TX; (A.16)

where T is an K — 1 by K matrix with K — 1/K on the main diagonal and —1/K elsewhere. Prior to mean-centering, we
randomize the reference allele at each SNP to account for biases induced by defining the allele of interest.

Now, we model the mean-centered allele frequencies as multivariate normal around mean zero, with covariance proportional
to a mean-centered parameterized covariance matrix (F)") as

X'~ N(W,fz(l —E)F“V) (A17)

where we use the average present day allele frequency across populations at the locus, X7, as an estimate of ¢; in the site-specific
term in the covariance. We note that x;(1 — X;) is a slightly downwardly biased estimate of €(1 — €), but, for our purposes, it
seems sufficient to include this term as a locus-specific adjustment to the expected covariance.

To obtain the corresponding mean-centered covariance matrix, dropping the same population, we can apply the following
matrix operations,

FO)'= TFOTT. (A.18)

this new matrix is K — 1 by K — 1 and full rank.
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Before mean-centering, F®), we apply a sample size correction to correct for the finite sampling bias. We add 1/n; to the
diagonal where n; is the sample size in population i. We take twice the number of diploid individuals sampled in populationi as
n; for data applications. In simulations, we use the number of chromosomes sampled in population i as n;. Note that both this
mean-centering and sample size correction is also performed on the neutral matrix, F before likelihood calculations under a
neutral model with no selection.

To decrease some of the computational time involved in our likelihood calculations, we precompute the mean-centered
covariance matrices with selection, F®)', for given bins of distance away from a putative selected site. We first divide our
distances in our window into 1000 bins, and take the midpoint of the distances in these bins to calculate F®)', as this matrix is a
function of distance. To avoid the costly step of recomputing the corresponding inverses, and determinants needed for likeli-
hood calculations, we do this step first, and use these values for all SNPs in a given bin, and store them and reuse them over all
locations of the selected site.

Thus, we calculate the likelihood of mean-centered allele frequencies, x; ', given our model M and its parameters @, a given

locus [ as
—_—
P(Xl’

where k = K — 1, the rank of matrix F®".

, -1
exp 45" (F) w1 —s) )

(A.19)
V27 (xi(1-5) ) det FS)

F<S),(rlvMa ®M)) =

A.3 Parametric Bootstrapping Approach Details

To carry out the parametric-bootstrapping approach, we again perform coalescent simulations using mssel for simulations with
selection and ms for neutral simulations. We specify the number of populations and the sample size for each populations
(twice the number of individuals sampled). Now, instead of specifying 6, we specify the number of segregating sites as the
number of SNPs in our window of interest. We also simulate with the same population-scaled recombination rate and
number of sites between which recombination can occur as the number of base pairs in our analysis window. To match the
population-scaled recombination rate, we take the genetic map of our region r and scale it to be 4N,r, assuming that
recombination is uniformly distributed over our region. We down-scaled the effective population size for computational
efficiency in the generation of the simulations, which impacts both p, and the times in the trajectories of the beneficial allele,
by a linear rescaling. Additionally, we specify the location of the selected site (¢) to be at the MCLE of the model used for
simulation.

While, in the rest of the paper, we make use of stochastic trajectories, for the parametric-bootstrap simulations, we generated
deterministic trajectories of the selected allele to be used as input for mssel. This is because we need to set our simulations up to
accommodate both the MCLE selection coefficient and the coalescent times within and between populations, which is somewhat
fiddly to automate with fully stochastic trajectories across all the models. Now, we fix the time of the sweep to be

Llog (Pts%) (A.20)
s °\qupo

where py, the frequency of the beneficial allele at time 0, is 1 /2N for a new mutation or g for the standing variant model, while
Dt,, the frequency of the beneficial allele at fixation, is set to 0.999. For the migration model, we start this trajectory (from
1/2N) after the delay time (Equation 10) for recipient population(s). We simulate with migration after é for a few genera-
tions. For the standing variant model with a source population, we start the selected allele trajectory (from frequency g) in the
recipient population(s) after t generations. We simulate with a brief burst of migration at time ¢t until the frequency of the
beneficial allele goes to 0 in the recipient population(s), at a very low rate. This forces an instantaneous coalescent event back
into our source population. The parameters (s, t, g, m, and the source population) are all set to the MCLE of the corresponding
model.

We simulate each convergent and neutral model 100 times, and interpret the output and calculate the likelihood of our
simulated data (as detailed in Appendix A.2) under the model used for simulations and the model with the largest composite
likelihood for the original data. The mssel command lines can be found in Supplement S4 in File S1.

A.3.1 Approximating demography given a neutral F matrix
For the parametric bootstrap, we need to simulate under a model of population structure that approximately matches that in our
data. To do so, we assume that our sampled populations are related through a bifurcating population phylogeny (with no neutral
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migration). While this is a crude approximation, it allows us a good match to the observed F matrix of the data, and
considerably simplifies the task of setting up the simulations. In practice, since our method works with these covariances,
and, inferring the details of population structure is not our primary concern here, we view this as an acceptable
compromise.

For simulating under the approximate population structure in our data, we need to estimate join times for population pairs.
We use

— [coal

fiml—e 5, (A.21)

where tl?joal is in coalescent time units to approximate the shared branch length between populations i and j, assuming no
migration. Migration will impact the coancestry coefficients, and, thus, our interpretations of the coalescent times. For
example, migration between two populations will increase their relatedness, and can make their shared branch length appear
longer. We also use this approximation to compare the split time between populations to the standing time for our adaptive
alleles t, to judge whether they could have been standing for a given time between two populations, or if migration must be
invoked.

To generate join times, we first solve for all tc"al using A.21 from an estimated neutral F matrix. We find populations i and j
with the largest t‘;oal We approximate the join tlme as the average of the differences between the total time associated with
each population (i.e., t° and t}}"al) and the time between them (tg."al). This follows from assuming that drift is acting additively,
such thatf; ~ f; + fi, where f; is the coancestry coefficient associate with population i in isolation (see Supplement S2 in File S1
for more). We then effectively join these two populations, updating all t&°#! and tco"‘l where k is any unjoined population to be
the average of tc"al where k, and l:C°al where k. We repeat this procedure, joining the two remaining populations with the largest
tc"al until all populatlons are Jomed From this, we are able to specify join times for simulations that capture the general
populatlon structure of a given F matrix.

The population structure used for simulation is now represented in a bifurcating tree, which may fail to capture of the
complexity represented in a given F matrix. Thus, when performing the composite-likelihood calculations, we use a modified F
matrix estimated using the procedure detailed in A.1 with neutral data simulated with these join times, to parameterize our
models.

Additionally, these estimates for the between-population coalescent times, assuming no migration and a bifurcating tree, can
give us insight that it is possible for the beneficial allele to have been standing for a given t since the ancestral population, or
whether it is necessary to invoke the model where migration has a role in spreading the beneficial allele prior to it standing. For
example, in our Mimulus analysis, we estimate our join time to be 0.050 in coalescent units. Our MCLE for t under the classic
standing model is 434 generations, or 0.00029 coalescent units, which is much shorter than the time in which our selected
populations coalesce. We caution against assigning too much value to these inferences, given the assumptions, but do find
these approximations to be broadly useful.

A.4 Standing Variant Model with a Source Population

When there are multiple selected populations, and they do not follow a bifurcating tree structure, it is necessary to
incorporate a model that has a source population for the standing variant to have self-consistent mean-centered covariance
matrices.

Let population [ be a selected population and the source of the beneficial allele. In all other populations, the beneficial
allele is standing for time t generations at frequency g before the lineage returns to the source population, where it still
standing at frequency g (see Figure 11). We can define pairwise coancestry coefficients for all pairs of populations under this
model. Let populations i and j represent populations that experience selection and population k be any unselected
population.

Since population [ is the source, its variance follows the same form as Equation 7.

flgs) _ 2( 1 4N,rg

1—y2 A.22
11 4Norg ' 1 +4Nergfu) + (=) (A-22)

All other selected populations have a modified variance since lineages that fail to recombine off the beneficial
background during the sweep, and fail to coalesce or recombine during the standing phase return to the source
population. Thus,
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Figure 11 Trajectories of the beneficial allele (red) for the standing variant model with a source population. Populations / and /i are under selection with
present-day allele frequencies x; and x; at a neutral locus, derived from an ancestral population with allele frequency €. The populations share some amount
of drift proportional to f; before reaching the ancestral population. The beneficial allele is standing at frequency g in the source population, /. It migrates into
population i from /, where it is standing at frequency g for t generations prior to the onset of selection, indicated by the blue triangles.
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(A.23)

There is additional coancestry between pairs of selected populations. This takes a different form than Equation 9, as there, since
if either lineage fails to recombines off the beneficial background during the sweep or standing phase, the lineage will be in
population [. For selected populations i and j, now

(5) _ (1—y)\2f, 1 ANerg =+ (L= (1= (1= (Fr 4 F
17 = P 4927 (o anrg gt ) + (1= =r) ¥y (1)1 = =) () o
+y1-y (20~ =)y + A -r(fa+f))
If either population is the source, [, this reduces to
1 4N,
77 =01 (v 0 (T Trgt) + -0 —rlf) 0y rfy (a29)

since, if the lineage fails to recombines off the beneficial background in population i, it is back in population l. If the lineage in [ is
still on the beneficial background after the sweep, and the initial ¢ generations of standing, they can coalesce during the
standing phase in population L. Else, the lineages will coalesce neutrally in population l. However, if the lineage sampled in

1618 K. M. Lee and G. Coop



population i does not return to the source population (i.e., it recombines during the sweep or standing phase of t generations),
the lineages can coalesce with neutral probability f;.

Lastly, we must incorporate the impact that linked selection has on the coancestry between lineages sampled from any pair of
nonsource selected population i and nonselected population k.

J‘l-<s)=y((1 —refu+(1-(1- rt))fik) + (1 =y)fi (A.26)

Since lineages that do not recombine off the beneficial background in population i go back into the source population [,
nonselected populations may now have more or less coancestry with population i depending on whether [ is neutrally has more
or less coancestry with population [, respectively.

It may be possible to extend these models to allow the source population to be an unsampled population, u. In this case, we
need information about how our unsampled source is related to our sampled populations. Specifically, we have f;, and f,,, terms
in the coancestry coefficients of any selected population i, as well as f,, fiu, and f,, for coancestry between any selected
population pairs i and j and f; for unselected populations k. More work is needed to address this problem. It is possible to use all
sampled populations, including nonselected populations, as proxies for the unsampled source to give us information about
which sampled population our unsampled source is more closely related to. Additionally, if we assume the unsampled
population is distantly related to our sampled populations, such that they span the root, the coancestry between u and any
other sampled population will be 0.

A.5 Migration Model: More than Two Nonsource Selected Populations

In the main text, we consider two selected populations i and j, where population i is the source of the beneficial allele. We need
to extend this model when we have more than two nonsource selected populations. Specifically, we need to define coancestry
coefficients between selected nonsource pairs. Now, let population [ be a selected population and the source of the beneficial
allele.

The coancestry between nonsource selected populations is affected by migration, as there is some probability or either or both
lineage failing to recombine off the beneficial background of the sweep and to migrate back into population I. Thus, for selected
populations i and j,

fP=y? e 1y (1-e ) fy +y(1-y) (fil +fﬂ) +y(1=ye ™®)fi + (1-)%f; (A.27)

If Lis either population i or j, this reduces to Equation 13, up to a factor of 28, as now only one population experiences the delay,
8, as the other is the source. Thus, Equation 13 is more accurate for defining the coancestry coefficient between the source and
selected populations. Equation 12 holds for the coancestry within all nonsource selected population, and Equation 14 for all
nonselected and nonsource selected population pairs. Lastly, again, we assume the source coancestry within the source
population [ follows that of an independent sweep from new mutation (Equation 4).

Similar to the standing variant model with a source population above, we can think about extending this migration model to
allow the source population to be unsampled. More work is needed to address the same issues related to estimating coancestry
coefficients for unsampled populations.
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