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ABSTRACT
This work presents the application of a new tool, Obiwan, which uses image simu-
lations to determine the selection function of a galaxy redshift survey and calculate
3-dimensional (3D) clustering statistics. This is a forward model of the process by
which images of the night sky are transformed into a 3D large–scale structure cat-
alog. The photometric pipeline automatically detects and models galaxies and then
generates a catalog of such galaxies with detailed information for each one of them,
including their location, redshift and so on. Systematic biases in the imaging data
are therefore imparted into the catalogs and must be accounted for in any scientific
analysis of their information content. Obiwan simulates this process for samples se-
lected from the Legacy Surveys imaging data. This imaging data will be used to select
target samples for the next-generation Dark Energy Spectroscopic Instrument (DESI)
experiment. Here, we apply Obiwan to a portion of the SDSS-IV extend Baryon Oscil-
lation Spectroscopic Survey Emission Line Galaxies (ELG) sample. Systematic biases
in the data are clearly identified and removed. We compare the 3D clustering results
to those obtained by the map–based approach applied to the full eBOSS sample. We
find the results are consistent, thereby validating the eBOSS ELG catalogs, presented
in Raichoor et al. (2020), used to obtain cosmological results.

Key words: cosmology:observations – large-scale structure of Universe.

1 INTRODUCTION

Galaxy surveys allow astronomers to measure how galaxies
cluster at different times in the past. These clustering statis-
tics provide a measure of the expansion rate of the Universe
and can answer many other fundamental questions about the

? E-mail: kong.291@osu.edu

Universe (Peebles 1980). Some of the most widely known
galaxy–redshift surveys include the CfA Redshift Survey
(Huchra et al. 1999; Falco et al. 1999), The Sloan Digital Sky
Survey (SDSS) I and II (York et al. 2000), The 2dF Galaxy
Redshift Survey (Colless et al. 2001), WiggleZ (Drinkwater
et al. 2010), The SDSS-III Baryon Oscillation Spectroscopic
Survey (BOSS) (Dawson et al. 2013), and The SDSS-IV ex-
tended BOSS (eBOSS) (Dawson et al. 2016). Images of the
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2 H. Kong et al.

night sky are transformed into a 2–dimensional large–scale
structure (LSS) catalog by passing them through a pipeline
that automatically detects and models galaxies and stars in
the calibrated images. This becomes a 3–dimensional catalog
by selecting galaxies that satisfy particular selection crite-
ria and obtaining spectra and measuring redshifts for them.
Redshifts are determined from spectra measured for a sub-
sample of these galaxies. The resulting 3D catalog of galaxy
angular positions and redshifts is then used to compute clus-
tering statistics suitable for the extraction of cosmological
parameters.

Removing biases and systematics due to the imaging
data (imaging systematics) is critical for measuring unbiased
clustering statistics. Map–based methods, such as template
subtraction and mode projection (Elsner et al. 2016), have
successfully removed imaging systematics from the SDSS,
WiggleZ, BOSS, and eBOSS surveys; however, it is unlikely
that these methods, in their current state, will be accu-
rate enough for future and on going galaxy surveys, such as
the Legacy Surveys. Map–based methods use a pixelization
scheme, such as HEALPIX (Górski et al. 2005), to subdivide
the sky into equal–area pixels and then compute various
per–pixel quantities. The number of galaxies in the LSS cat-
alog (data) occupying these pixels is compared to, e.g., the
average seeing, sky brightness, exposure time, etc. (imag-
ing meta–data) and Galactic foregrounds (e.g., the amount
of dust extinction) in each pixel. Correlations between the
data and non–data maps are assumed to be due to imaging
systematics and are turned into pixel weight maps (in con-
figuration space) or mode weights (in Fourier space). These
weights are used to model variations of the angular selection
function with imaging properties in the LSS catalogs (Elsner
et al. 2016).

The map-based methods can essentially be divided into
“template subtraction” (Myers et al. 2006a,b; Ross et al.
2011; Ho et al. 2012; Ross et al. 2012, 2017; Blake et al. 2010;
Delubac et al. 2017; Laurent et al. 2017; Prakash et al. 2016;
Myers et al. 2015; Elvin-Poole et al. 2017) and “mode pro-
jection” (Rybicki & Press 1992; Tegmark et al. 1998; Slosar
et al. 2004; Elsner et al. 2016; Leistedt et al. 2013). Tem-
plate subtraction is based on a model for variations of galaxy
densities with imaging systematics. Pixel weights are used to
correct for the galaxy density fluctuations. Weights can be
applied to randoms or their inverse to data. To avoid mod-
eling chance correlations, only the systematic maps with the
largest data cross correlation are included. Mode projection
treats the systematic maps as adding noise to each mode in
Fourier space or pixels in configuration space, so that values
in the data covariance matrix are increased for modes where
each systematic map is large. It robustly mitigates the im-
pact of the linear combination of the systematics, but does
not include non-linear effects.

The Dark Energy Spectroscopic Instrument (DESI;
DESI Collaboration et al. 2016a,b) recently saw first light.
It will collect an order of magnitude more galaxy redshifts
than are currently publicly available. New methods of data
analysis are likely required in order to optimally extract
the information while keeping systematic uncertainties sub-
dominant. The map-based methods mentioned above are
limited by the fact that even though there are dozens of
maps that can be created, there is no guarantee the relevant
quantities have indeed been mapped. Only the systematic ef-

fects known a priori can be modeled. Further, it is standard
practice to mask regions, e.g., near bright stars where the
imaging data has been corrupted. These masks are binary,
whereas the effect on the imaging is unlikely to be a step
function in terms of the data quality. The treatment of such
issues does not fit neatly into the map-based approach and
fully removing affected imaging data would remove unten-
ably large areas from the survey data. For DESI, there is a
further complication. It uses imaging data from the Legacy
Surveys (Dey et al. 2018), which is a joint analysis of im-
ages from three telescopes. Each telescope obtains multi–
and same–band images of the same part of the sky that are
separated by month to year time baselines.

We present a new method for removing imaging sys-
tematics at the individual exposure level from future and
ongoing surveys that does not require maps of imaging sys-
tematics, foregrounds, or other a priori knowledge (i.e. it is
non–parametric), and that corrects for biases and systemat-
ics in the software pipeline that produced the LSS catalog.
We apply our method to DECam data from the Legacy Sur-
veys using the Obiwan code (Burleigh 2018). We inject real-
istic emission line galaxies (ELGs) into the DECam images
used to create DR3–era Tractor catalogs, from which ELG
targets were selected by eBOSS (Dawson et al. 2016) for
spectroscopic follow-up (Raichoor et al. 2017). These pho-
tometric observations were released as part of SDSS data-
release 16 (Ahumada et al. 2019).

Here, we use Obiwan to perform Monte Carlo simula-
tions of how the Legacypipe/Tractor pipeline (Lang et al.
prep) detects and forward–models eBOSS ELG–like galax-
ies and we use the results to support those cosmological
analyses. Obiwan injects sources into coadded DECam im-
ages and builds a LSS catalog using Source Extractor . Al-
though the technique of injecting model sources into imaging
and recovering their photometry in the presence of noise has
been around for decades (e.g., Stetson 1987), only recently
has this method been used to account for the effect of imag-
ing systematics on measurements of the correlation function.
For example, BALROG (Suchyta et al. 2016) is used in the
Dark Energy Survey (DES Abbott et al. 2019) to correct
for imaging systematics. However, Obiwan is unique in that
it operates on individual exposures and (by virtue of Lega-
cypipe and Tractor) maximizes the likelihood of the data
to find the best model parameters for each detected source.
Benefits of using individual exposures and maximum like-
lihood (not heuristic) techniques are discussed in Burleigh
(2018).

Our goal is to apply Obiwan over one ‘chunk’ of the
eBOSS ELG data and use the results to compute the 3D
clustering statistics, comparing the results to those with no
correction and to the template-subtracted eBOSS results.
This is also a preparatory step towards future analyses of
the DESI galaxy samples, as DESI will select targets using
Legacy Surveys data and its five–year survey is significantly
more complicated than eBOSS (DESI Collaboration et al.
2016a,b).

This study helps support the coordinated release of the
final eBOSS measurements of BAO and RSD in the cluster-
ing of emission line galaxies (ELG (0.6 < z < 1.1); Raichoor
et al. 2020; Tamone et al. 2020; de Mattia et al. 2020). These
studies are supported by the mock catalogs described in (Lin
et al. 2020; Zhao et al. 2020) and the analysis of N-body
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simulations in (Alam et al. 2020; Avila et al. 2020). Analo-
gous efforts for the eBOSS Luminous Red Galaxies (LRG)
are presented in (Bautista et al. 2020) and (Gil-Marin et al.
2020), with N-body simulations described in (Rossi et al.
2020) ; and for eBOSS quasars (QSO) in (Neveux et al.
2020), (Hou et al. 2020), and (Smith et al. 2020). The cosmo-
logical interpretation of these results, in combination with
the eBOSS luminous red galaxy and quasar samples, past
SDSS galaxy samples, and in combination with other probes
is found in Collaboration et al. (2020)

This paper is structured as follows. In Section 2, we de-
scribe the imaging and spectroscopic data we use and the
eBOSS ELG target selection criteria. In Section 3, we sum-
marize how Obiwan and Tractor work and the algorithms
we use for image processing and removing imaging system-
atics. In Section 4, we describe the method we use to ana-
lyzing our output data, including the 1-point statistics and
the correlation function. In Section5, we present our Obi-

wan Monte Carlo simulations of the imaging data used to
select eBOSS ELGs, and the resulting density map, system-
atic maps and correlation functions. We conclude in Sec-
tion 6. The Appendix presents biases and systematics in the
Legacy Surveys image reduction pipeline, and the additional
information needed to reproduce our Obiwan Monte Carlo
simulations.

2 DATA

2.1 The DECam Legacy Survey

The DECam Legacy Survey (DECaLS) is one component
of The DESI Legacy Imaging Surveys1, which amasses and
processes imaging data over 14,000 deg2. DECaLS is a g,
r, z-band survey of 9,000 deg2 of the southern sky using
the Blanco 4-m telescope and DECam camera (Flaugher
et al. 2015) in Cerro Tololo, Chile. DECam has a field of
view of 3.18 deg2 and is a mosaic of 62 CCDs, each having
4096x2046 pixels, with pixel scale of 0.262′′ pixel−1. The
DECaLS depth is 1–2 mag deeper than the SDSS. For more
details see Dey et al. (2018); Burleigh et al. (2020). The
DR3 data release also includes some Non-DECALs survey
data which is also observed by the DECam camera.

The eBOSS ELG target selection (Raichoor et al. 2017)
applied in the region we study used a combination of DR32

Tractor catalogs and also a set of reprocessed DR3 Tractor

catalogs, processed by the eBOSS team. This extra data
included DECam images observed after the DR3 March 2016
cutoff, and, in order to include this cutoff, which required
some re-processing of images included in DR3. We will refer
to these reprocessed data as the DR3–plus catalogs. The list
of DECam CCDs used to create the DR3–plus catalogs is
available online3. Fig. 1 shows the locations of the CCDs we
study, with the CCDs processed for DR3 Tractor catalogs
shown in black and CCDs processed by the eBOSS team
shown in red.

1 http://legacysurvey.org/
2 http://legacysurvey.org/dr3
3 /global/cscratch1/sd/huikong/obiwan_Aug/repos_

for_docker/obiwan_data/legacysurveydir_dr3/

survey-ccds-ebossDR3.fits.gz

Figure 1. The eBOSS NGC ‘chunk 23’ footprint (coordinates

are J2000), as traced by the CCDs used for the imaging data.

The black points were processed to generate the DECaLS DR3
catalog and red ones were processed by the eBOSS team.

The model profiles produced from this era of DECaLS
data are point source (PSF), an exponential fixed at re =
0.45′′ (SIMP), exponential (EXP), de Vaucouleurs (DEV),
and a composited of EXP and DEV (COMP)4. Tractor fits
sources to each of these models and favors simpler profiles
(Lang et al. prep).

2.2 eBOSS

SDSS-IV Blanton et al. (2017) conducts multiple observ-
ing programs using the 2.5-meter Sloan Telescope (Gunn
et al. 2006) at the Apache Point Observatory in New Mex-
ico, USA. As part of this program, over a five year period
eBOSS collected spectra of quasars, luminous red galaxies,
and ELGs in order to make 3D maps of the structure of the
Universe.

The eBOSS observations obtained 1000 spectra per ob-
servation from fibers plugged into holes in pre-drilled alu-
minum plates. Spectra were obtained from each fiber using
the BOSS double-armed spectrographs (Smee et al. 2013),
covering the wavelength range 3600 to 10000 Å with R =
1500 to 2600. The eBOSS observations were divided into
non-overlapping regions denoted as ‘chunks’. Within each
chunk, the placing of plates was optimized in order to as-
sign the most fibers on targets (with constraints related to,
e.g., the minimum fiber separation within a plate being 62′′).
ELGs were observed eBOSS chunks 21, 22, 23 and 25. See
Dawson et al. (2016); Raichoor et al. (2020); Ross et al.
(2020) for more details. We study the ELG clustering in
chunk 23, but use redshift information from chunks 21 and
22.

2.2.1 ELG Target Selection

eBOSS selected ELGs from DR3–plus Tractor catalogs hav-
ing clean DECaLS photometry, locations outside bright star

4 http://legacysurvey.org/dr3/description/
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masks, sufficient g–flux to be [O II] emitters and star forming
galaxies, and g−r and r− z color associated with galaxies in
the desired redshift range of 0.6 – 1.1. The regions include
620 deg2 in the South Galactic Cap (SGC) and 600 deg2

in the North Galactic Cap (NGC). ELGs in the SGC are
selected using the following Tractor catalog cuts, intended
to
only keep sources touching ccds,

brick_primary == True (1)

select clean photometry,

decam_anymask[grz] == 0 (2)

select [OII] emitters,

21.825 < g < 22.825 (3)

and isolate sources to the desired redshift range,

−0.068 (r − z) + 0.457 < g − r < 0.112 (r − z) + 0.773 (4)

0.218 (g − r) + 0.571 < r − z < −0.555 (g − r) + 1.901 (5)

The NGC cuts are identical except for,

21.825 < g < 22.9 (6)

0.637 (g − r) + 0.399 < r − z (7)

Bright star masks are also applied. The NGC data includes
eBOSS chunks 23 and 25, while the SGC data includes
chunks 21 and 22. For more details see Raichoor et al. (2017).

2.2.2 Our selection of eBOSS data

We use eBOSS ELG data from the SGC in order to build a
model that we apply to the study of ELGs in eBOSS chunk
23. (We do not use data from eBOSS chunk 25.) All eBOSS
data used in this study is taken from the catalogs produced
by the eBOSS team described in Raichoor et al. (2020).

For selecting data and redshifts to build the Obiwan

model for the eBOSS population, we use data from the ‘full’
catalogs in the SGC. We select objects with good redshifts
and apply some additional cuts on photometric properties.
The full selection is described as

• !NGC
• z_ok == 1

• 0 ≤ redshift ≤ 2
• type , COMP
• rhalf < 5.0′′

rhal f is the half light radius of source profiles. We will be
using the SGC data in order to produce truth catalogs. Only
0.5% of the data has rhalf > 5.0′′and we expect these objects
to be the result of noise, rather than reflective of the true
profile of the population. We drop COMP sources because
they comprise less than 1% of the sample and present mod-
eling complications. This selection provides 113,386 eBOSS
ELG redshifts, with an area of 377 deg2. We describe how
these data are combined with data from other surveys that
have redshifts beyond the selection described above in order
to simulate a representative sample of chunk 23 ELGs in
Section

We study the performance of Obiwan using data from

eBOSS chunk 23. For clustering measurements, we use the
‘clustering’ catalog described in Raichoor et al. (2020). Obi-
wan allows us to estimate the angular selection function in a
different way than applied to the standard eBOSS catalogs,
which use template subtraction. In order to incorporate the
Obiwan selection function, an alternative catalog is produced
for chunk 23. We describe this further in Section 4.2.

2.3 Data from outside eBOSS

A significant component of fluctuations in the eBOSS ELG
target density is from varying amounts of targets whose
true photometry lies outside of the eBOSS selection cuts
but scatters in due to photometric noise. In order to more
fully understand the typical redshifts (and thus likelihood
of being included in the clustering analysis) of such data,
we require spectroscopic samples with selections from out-
side of the eBOSS criteria. First, we extend the DECaLS
selection to include all sources in the SGC region within 0.2
magnitudes of the color and magnitude selections defined
by eqns. 1-5. We denote this as the eBOSS ELG-like sam-
ple. We select the number of 0.2 magnitudes as a trade-off
between our desire to efficiently simulate the eBOSS ELG
sample (which motivates not including objects that have a
low chance of scattering into the selection) and our desire
to be complete (which motivates including everything with
a non-zero chance of selection).

In order to assign redshifts to the data outside of the
eBOSS selection bounds, we use data from the DEEP2
(Newman et al. 2013) and VVDS (Le Fèvre et al. 2005 Fevre
et al. 2014) galaxy redshift surveys, as each has overlap with
DECaLS DR3 data in the SGC. DEEP2 and VVDS surveys
are described described in more detail below.

2.3.1 The DEEP2 Galaxy Redshift Survey (DEEP2)

DEEP2 obtained about 50,000 high resolution (R ∼ 6000)
spectra of redshift ∼ 1 galaxies using the DEIMOS multi–
object spectrograph on Keck 2. The DEEP2 footprint is 2.8
deg2, split into four disjoint regions: Field 1 (14hr), Field 2
(16h), Field 3 (23h), and Field 4 (02h). We create a DEEP2
(DR4) and DECaLS DR3 matched table by finding the near-
est DR3 Tractor catalog source within a 1′′ search radius
of each DEEP2 spectrum. The DECaLS DR3 footprint does
not overlap Field 1, so our table only includes Fields 2–4.
We refer to it as the DR3–DEEP2 table and use it in Section
3.2. We obtain redshifts for 1065 EXP and 86 DEV galaxies
after matching to the eBOSS ELG-like catalog.

2.3.2 The VIMOS-VLT Deep Survey (VVDS)

VVDS contains three complementary surveys: The VVDS-
Wide, the VVDS-Deep and the VVDS-Ultra-Deep. We use
one field in the VVDS-Wide survey, the VVDS-22h field.
It has a total area of 4.0 deg2, and a total of 13291 iden-
tified objects around redshift of 0∼2. We create a VVDS
and DR3 matched table using the same procedure as for
the DEEP2 survey, see section 2.3.1. We refer to this as the
DR3–VVDS table. We also combine DR3–DEEP2 table with
DR3–VVDS table to form a combined table, and we call it
the DR3–DEEP2–VVDS table. We obtain redshifts for 786

MNRAS 000, 1–17 (2020)
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EXP and 65 DEV galaxies after matching to the eBOSS
ELG-like catalog.

2.3.3 DR3-DEEP2-VVDS sample

For the ELG-like sample we find that DEEP2 and VVDS
provide redshifts for about 30% of the DECaLS sources
within the overlapped footprint. The distribution of colors
and magnitudes for the DEEP2 and VVDS samples fully
overlap the ELG-like color/magnitude space and thus we
treat any incompleteness via re-sampling as described in
subsequent sections. We call our combined result the DR3–
DEEP2–VVDS sample. The final DR3–DEEP2–VVDS sam-
ple has obtained redshifts for 1,851 EXP and 151 DEV galax-
ies. With the combination, we get an adequate volume of
samples outside the eBOSS ELG selection box with reliable
redshifts. For each of these sources, we match to the near-
est eBOSS ELG-like source using a 1′′ matching radius. We
then apply the following cuts,

0 ≤ redshift ≤ 2 (8)

rhalf < 5.0′′. (9)

(10)

The DR3–DEEP2–VVDS galaxy sample fulfills the pur-
pose of providing redshifts to galaxies from outside the
eBOSS ELG selection cuts. This will allow us to later
characterize the type of objects we expect to scatter (e.g.
from Tractor measurement error) across the ELG selection
boundaries and into the eBOSS ELG sample.

3 Obiwan

3.1 Basic Methodology

Obiwan is fully described in Burleigh (2018). We repeat the
essential details here. We add simulated sources (inject),
with properties closely matched to the galaxies of interest,
to random locations in the imaging data within the relevant
survey mask. We uniformly inject sources over the footprint
of a given survey and measure their photometry using the
same pipeline as for the real data. The fluctuations in the
number of sources that pass the same selection as the given
survey thus trace its angular selection (with some Poisson
noise related to the density at which we sample a given area).
This selection function can be applied when calculating clus-
tering statistics.

Obiwan modifies the g, r, z images that Legacypipe op-
erates on by adding simulated sources to the individual expo-
sures and appropriately modifying the inverse variance im-
ages. These simulated sources are the same as model sources
that Tractor creates when fitting real sources. This means
that in the case of no noise added, the simulated sources will
be perfectly fit by Tractor, and thus any output parameter
of the fitted simulated source will match the input param-
eter. Our tests show that the changes between parameters
are subtle compared to the total changes in a simulation
run on a real image. The simulated sources include Poisson
noise from the source itself. The power of Obiwan is that the
injected sources inherit the sky background, systematics, or
whatever else is present in the data, so nothing more than

the simulated galaxy or star of interest is injected. Lega-

cypipe does not know the images have been modified and
source detection, model fitting, and model selection proceed
as usual.

Obiwan performs a Monte Carlo Simulation by injecting
the simulated galaxies at random right ascension (RA) and
declination (Dec), running Legacypipe, and repeating for
the same images as what are used to produce the eBOSS
ELG imaging data. Blending can occur between pairs of
real–real, real–simulated and simulated–simulated sources.
Our goal is to simulate effects involving galaxies, so we
prevent blending between simulated–simulated sources. We
temporarily set aside all simulated sources that would be
within 5′′ of another simulated source, and injected those
set–aside sources during the next Monte Carlo iteration.
Blending between real and simulated sources is allowed (and
needed to fully simulate the angular selection function). This
5′′ criterion only applies to pairs of simulated sources. The
initially random fluctuations in source density are modified
by the geometry of the footprint, source detection, measure-
ment, target selection, and any biases and systematics in
the Legacypipe pipeline. We will refer to these as Obiwan–
randoms, and the truly random galaxy positions (e.g. the
RA, Dec for all the sources we inject into the imaging data)
as uniform–randoms.

Fig. 2 compares real and simulated galaxies that have
exponential profiles and relatively bright g–band magni-
tudes. Their color and high signal-to-noise (S/N) are not
representative of the full distribution. In this sample, we
cannot tell the difference between the real and simulated
ELGs in the g band image, which is the band that we inten-
tionally set to be very similar. We naturally expect to have a
more difficult time telling the difference between renderings
at lower signal to noise.

3.2 Injecting Realistic eBOSS ELGs

This section summarizes how we generate the representative
sample of eBOSS ELG-like galaxies that we inject into the
images. The representativeness of our sample is crucial for
our method to be statistically unbiased. The representative
sample is a distribution of photometric properties, shapes
and redshifts. The photometric properties and shapes are
sampled from redshifts in order to determine the model pa-
rameters defining the random potential ELG targets that
are injected into the images.

We start the process by studying the properties of the
eBOSS SGC data. Morphologically, there are 5% PSF, 25%
SIMP, 58% EXP, 11% DEV, and 1% COMP galaxies. The
majority of the data can be described as having an EXP
profile. We assume that all sources that Tractor classifies
as type PSF are compact and/or unresolved galaxies. These
sources have a pixelized PSF profile, which is mathemati-
cally equivalent to an exponential profile having rhal f = 0, so
we reclassify them as such. We also reclassify SIMP sources
as EXP because SIMP are EXP galaxies with fixed rhalf of
0.45. After such consideration, we have 102,100 EXP and
11,286 DEV eBOSS galaxies with eBOSS redshifts. Com-
paring their properties in terms of redshift, shape, and g, r,
z flux, we find that DEV galaxies are systematically larger
and about 1 mag brighter than EXP in all bands (see Fig. 3).
Given these systematic differences, we model the two popu-

MNRAS 000, 1–17 (2020)
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Figure 2. A comparison between real and simulated galaxies that have exponential profiles and relatively bright g–band magnitudes.
The label for each image is on the left and its corresponding g magnitude is the number on the right. Each row is a single galaxy. The first

column is a three color jpeg for easy visualization. The remaining columns are the per–band full resolution coadds for the g, r , z images

and associated inverse variance maps. Consecutive rows of Real and Simulated (rows 1 and 2, 3 and 4, etc.) have similar g magnitude
for a fair comparison. Some color difference between corresponding panels is noticeable because they are matched by g magnitude only

(not by color).

lations separately and inject them into the true images such
that 90% of the injections are EXP.

We next develop a method to sample from the eBOSS
redshift distribution dN/dz using the DR3-DEEP2-VVDS
sample. Though this sample distribution does not repre-
sent the full population of eBOSS ELG-like galaxies, we
weight DR3-DEEP2-VVDS objects such that their redshift
distribution matches the one of the eBOSS ELG-like galax-
ies. Fig. 4 demonstrates that the photometric properties
of the redshift-weighted DR3-DEEP2-VVDS sample within
the eBOSS ELG box matches that of the full ELG sam-
ple. As discussed in Appendix B1, the photometric distri-
bution outside the eBOSS ELG selection box does not have
a perfect match. This is because the sampling with redshift
down weights bright sources. However, Fig. 5 shows that the
output Obiwan-ELG distribution share similar properties as
eBOSS ELGs, and this difference does not bias our result.

The redshift-weighted DR3-DEEP2-VVDS sample thus
represents a discrete distribution that can be sampled in
order to reproduce the properties of eBOSS ELGs. In order
to do the sampling, we first fit a 10 component Gaussian
mixture model (GMM) to the eBOSS dN/dz, clipped to be

in the range 0 < z < 2. This provides an analytic statistical
distribution that we can sample from.

For each random RA,DEC position, we first determine
whether the source will be EXP (with 90 per cent prob-
ability) or DEV (with 10 per cent probability). We sam-
ple a redshift from the GMM and then we find the nearest
redshift for an EXP or DEV source in the DR3–DEEP2–
VVDS distribution described above. If the color/magnitudes
of the matched DR3–DEEP2–VVDS galaxy lie within the
eBOSS target selection, we then find the nearest redshift in
the EXP or DEV eBOSS distribution and assign the source
the DECaLS model parameters of this same eBOSS ELG.
If it is outside the eBOSS target selection cuts, we use the
DECaLS model parameters from the original DR3–DEEP2–
VVDS source used for this target selection test. This method
thus returns a sample that simultaneously matches the dis-
tribution of photometric properties in the ELG-like sample
and the redshift distribution of the eBOSS sample. After
the model parameters are determined, the Obiwan source is
rendered and injected at the random RA,DEC position.
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Figure 3. The PDFs of the normalized distributions g, r , and z magnitudes (top row), the redshifts (bottom left), and rhalf (bottom
right) for eBOSS ELGs. The PDFs are split between sources that legacypipe applies de-Vaucouleurs (DEV; orange) and Exponential or

PSF (NOT DEV; blue) profiles to in order to determine the photometry. Galaxies fit with DEV profiles are systematically larger and

brighter than those fit with EXP/PSF profiles.

Figure 4. Comparison of DECaLS DR3 photometric properties of our eBOSS SGC ELG (”ELG SGC”) and our combined sample of
DEEP2 and VVDS galaxies selected pass the eBOSS ELG color/magnitude cuts (”DEEP2/VVDS ELG”). We split the samples into

those that Legacypipe fits with Exponential (EXP; left) de-Vaucouleurs (DEV; right) profiles. The DEEP2/VVDS ELG sample for DEV
galaxies is noisy because there are only 151 DEV galaxies in the sample.

3.3 Image processing with Obiwan

As described in the previous sub-sections, we use Obiwan

to inject simulated galaxies into the DECam CCDs used
to create the DR3-plus Tractor catalogs. We use the dr5
version of Legacypipe and not the dr3 version that actually
created the DR3-era Tractor catalogs. The dr3 version of
legacypipe has three sub-versions: dr3a, dr3c, dr3e. eBOSS
ELG chunk21,22 are produced by dr3a, dr3c, and eBOSS
ELG chunk23 is produced by dr3c, dr3e. The dr5 version is
very similar to to the dr3c, dr3e versions of legacypipe, so
we perform our simulation on chunk23 eBOSS ELG region.

This allows us to apply one version (dr5) of legacypipe to
obtain our results.

4 ANALYSIS

4.1 Maps and 1-point statistics

We use HEALPIX (Górski et al. 2005) to divide the sky into
12N2

SIDE
equal area pixels. This is a convenient way to map

the density of galaxies and compare it to the Obiwan predic-
tions.

We are also able to map observational parameters that
might modulate the target density (sys), such as the mean
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seeing or the total image depth in a given band. The HEALPIX
maps allow us to determine the mean densities of galaxies
and randoms as a function of these parameters. Defining the
ratio of the number of randoms to the number of galaxies
α = Nran,tot/Ngal,tot , we can determine the relative density
αNgal(sys)/Nran(sys), where 1 is the expected null result. In
practice sys will represent some range of values in the sys-
tematic map. We estimate an error on this assuming galaxy
and random counts are Poisson distributed

σ = α
©«

ngal(sys)
n2
ran(sys)

+
n2
gal
(sys)

n3
ran(sys)

ª®¬
1
2

. (11)

Naively, this ignores the cosmic variance component of
the galaxy fluctuations. However, it was demonstrated in
Ross et al. (2017) that if one weights galaxies and randoms
by wFKP when counting ngal(sys), one recovers approxi-
mately the same result as when deriving the uncertainty
from many realizations of the data with the same number
density and similar clustering properties (i.e., ‘mock’ galaxy
samples). We thus apply the wFKP provided in the ELG
LSS catalogs (Raichoor et al. 2020).

4.2 The Correlation Function

The correlation function is a statistic that measures the clus-
tering of galaxies, relative to a random distribution, for a
range of galaxy–galaxy separations (Peebles 1980; Hamilton
1993; Weinberg et al. 2013; Norberg et al. 2009; Sawangwit
et al. 2011; Favole et al. 2016). We determine the redshift-
space two point correlation function, ξ using the standard
Landy & Szalay (1993) estimator. In the following analy-
sis we assume a flat ΛCDM cosmological model with and
Ωm = 0.31.

ξ(s, µ) = DD(s, µ) − 2DR(s, µ) + RR(s, µ)
RR(s, µ) (12)

where s is the separation between two galaxies, and µ is the
the cosine angle between the pair of galaxies and the line-
of-sight. We calculate this function numerically in evenly
spaced bins of width 5h−1Mpc in s and 0.01 in µ. We trans-
form this 2-variable function into one variable by computing
the monopole (` = 0), quadrupole (` = 2) and hexadecapole
(` = 4), we project this correlation function onto the basis
of legendre multipoles L` following:

2ξ`(s)
2` + 1

=

100∑
i=1

0.01ξ(s, µi)L`(µi) (13)

In the linear model for redshift-space distortions (Kaiser
1987), these three multipoles contain the full clustering in-
formation.

The angular separation (θ) between a pair of points with
(RA1, Dec1) and (RA2, Dec2) is,

cos(θ) = cos(ψ1) cos(ψ2) cos(ϕ) + sin(ψ1) sin(ψ2), (14)

where cos(ϕ) is defined as:

cos(ϕ) = cos(φ1) cos(φ2) + sin(φ1) sin(φ2) (15)

where ψ = (−Dec + 90) π/180 and φ = RA × π/180. The s, µ

in correlation function ξ(s, µ) is defined as

s =
√

r2
1 + r2

2 − 2r1·r2·cos(θ) (16)

µ =
|r1 − r2 |

s
(17)

r1, r2 here are the distances from the galaxy to the observer.
The eBOSS team created a set of eBOSS ELG randoms

for computing clustering statistics of eBOSS ELGs. The full
details are provided in Raichoor et al. (2020). We use these
on chunk 23 for all ξ calculations. The eBOSS team also
provides a set of weights (again described in Raichoor et al.
2020) to be applied to the galaxies and randoms when deter-
mining pair-counts. These include: wsys, to correct for imag-
ing systematics; wCP, to correct for fiber collisions; wNOZ,
to correct for redshift failures; and wFKP, to more optimally
weight the information as a function redshift5. These weights
are simply multiplied by each other and the total weight is
applied each galaxy/random when counting pairs. We will
use Obiwan to produce and test an alternative to wsys.

We use EZmocks (Chuang et al. 2014) to compute error
bar for our correlation functions. EZmocks are fast mocks
that is used to accurately predict the variance of eBOSS
ELGs by making multiple realizations of the Universe. We
construct our covariance matrix with 1000 EZmocks. The
elements for our covariance matrix are defined as

Covi j =
1

999
Σ
k=1000
k=1 (ξik − ξi) ∗ (ξjk − ξk ), (18)

where ξik is the ith element in the kth EZmock correlation
function. ξi is the ith element of the average of 1000 EZ-
mocks. This ξ can be either monopole, quadrupole or hex-
adecapole. The EZmocks created for eBOSS DR16 analysis
are described in Zhao et al. (2020).

We will compare the consistency of results using χ2 val-
ues. Given a covariance matrix C for some data vector D and
a model data vector M

χ2 = (D − M)TC−1(D − M) (19)

The covariance matrix we use is either the diagonal matrix
described in equation 11, or the full covariance matrix pro-
duced by mocks in equation 18.

5 RESULTS

We inject 1.2M simulated galaxies, at a density of 3200 per
deg2 into the eBOSS CCDs for the NGC region. Due to the
removal of simulated galaxies within 5′′ of other simulated
galaxies, the mean becomes 3152 per deg2. About 20 per
cent, or 646 per deg2, of these injected galaxies have true
parameters that pass the eBOSS NGC ELG target selection.
The eBOSS ELG target density in the NGC is 200 per deg2,
so our injected sample (before source detection and Tractor,
measurement) has 3.2x the density of the real galaxy sample.
20.4% of the Obiwan-randoms passe our final ELG selection
function, so the total number of ELGs in Obiwan-randoms

5 In the catalogs, these columns are: ‘WEIGHT SYSTOT’,

‘WEIGHT CP’, ‘WEIGHT NOZ’, ‘WEIGHT FKP’.

MNRAS 000, 1–17 (2020)



Removing Imaging Systematics with Obiwan 9

(after source detection and Tractor, measurement) is very
similar to the total number of injected ELGs.

In the subsections that follow, we go through particu-
lar aspects of the eBOSS chunk 23 Obiwan results. We first
compare the color/magnitude distributions of the outputs
compared to eBOSS data and to the input truth. We then
study how well the Obiwan results predict the fluctuations
in target density. Finally, we apply the Obiwan results to the
clustering measurements.

5.1 Color/Magnitude distributions

Fig. 5 shows the degree to which Obiwan ouputs agree with
the eBOSS colour/magnitude/redshift distributions. Here,
Obiwan ELGs are Obiwan-randoms whose measured photom-
etry is within eBOSS ELG target selection box described
in 2.2. The joint magnitude and redshift distributions of
real and simulated targets are similar, implying our simu-
lated targets have similar properties to the real ELG tar-
gets. However the distribution of Obiwan ELGs rhal f (half
light radius) is quite different from eBOSS ELGs. The rea-
son is that the DR5 version of Legacypipe is biased towards
greater rhal f measurements. However, we find this effect is
minor compared to other sources of fluctuation in the re-
covery rate. Fig. 3 shows that de Vaucouleurs galaxies are
more extended than exponential galaxies. Fortunately, this
does not bias our results, as we find Legacypipe is equally
good at recovering exponential and de Vaucouleurs sources.
The injected galaxies are 90% exponential and 10% de Vau-
couleurs , and Legacypipe recovers 97% of the exponentials
and 96% of the de Vaucouleurs. Basically, rhal f is not an in-
fluential factor in eBOSS ELG properties, so it has a minor
effect in our final result. For more details see Appendix A.

Fig. 6 shows the g, r, and z mag histograms for the
Obiwan-ELG galaxies and the real eBOSS ELG galaxies.
We can see a slight difference in the photometric distribu-
tions, most significantly that of the g-band. This could be
an effect of a bias in this version of Tractor’s flux mea-
surement. This is studied further in the Appendix, where
Fig. A4 shows a slight correlation between g magnitude and
magnitude bias. Objects with faint magnitudes are measured
to be even fainter, resulting in a density decrease after ap-
plying the color cut. Another reason is that all of the true
magnitudes we use are within 0.2 magnitudes of the eBOSS
selection boundaries. Thus, it is not possible for objects with
g > 23.025 to scatter into our selection. At the faint end, we
find that 10% of the input sources have g-band magnitudes
that change by 0.2 magnitudes, and we are thus missing
these objects for which ∆ mag would be > 0.2. Despite this
imperfection, we will find that the Obiwan-ELG galaxies re-
produce the fluctuations observed in the real eBOSS ELG
galaxy sample.

We classify the sources in the catalog in three ways:
true positives, false positives, and true negatives. True pos-
itives (recovered ELGs) are simulated ELGs that remain
eBOSS ELGs using Legacypipe’s measurements for them.
False positives (contaminants) are simulated non–ELGs that
pass target selection after Legacypipe measures their mag-
nitudes. True negatives (lost ELGs) are simulated ELGs
that are either not detected (non–detections) or have suf-
ficient Tractor measurement error to fail target selection
(measurement–error).

Fig. 7 shows the g, r, z magnitude distributions
for the recovered ELGs, contaminants, and lost ELGs.
Measurement-error is the primary way that ELGs are lost.
ELGs lost to measurement-error are, on average, the faintest
of the simulated galaxies in g, r, and/or z. This is natural
due to the faintest sources having the greatest uncertainty
on their measured magnitudes. The issue is further exac-
erbated by the photometric measurement bias described in
Appendix A. Flux measurements are systematically smaller,
and there are a lot of ELGs at high g magnitude range,
so a lot of sources get cut off by the g magnitude cut at
faint end (Equation 6). Contaminants and ELGs lost to non-
detections are a minority of the sample and have similar g,
r, z mag distributions.

Fig. 8 shows the colors for recovered ELGs, contami-
nants, and lost ELGs. There are some striped patterns in
the ‘truth correct’ and ‘truth lost’ panels. This is due to
the discreteness of our dr3–DEEP2–VVDS sample. The top
right panel shows the eBOSS color box. We can see that most
contaminants start at top left of the color box and scatter
by ∼ 0.25 mag to redder r-z colors. This corresponds to a
redshift cut (Equation 7), which means that most contam-
inants come from low redshift sources. The colors of ELGs
lost due to non-detections are distributed over the lower left
corner of the ELG selection box. The redshifts in this region
are systematically higher. The ‘tractor contamination’ panel
shows that there are also a lot of sources scattering into this
corner. Combining with the histograms in Fig. 7, we know
that there are a lot more sources scattering into than outside
of this corner.

We inject ELGs with the appropriate correlations
among brightness, shape, and redshift. Fig. 9 shows how the
injected redshift distribution dN/dz is modified by Lega-

cypipe. The left panel shows that output Obiwan-ELGs are
systematically of lower redshift than input obiwan-ELGs.
The left panel shows that contaminants primarily enter at
the redshift range: 0 < z < 0.75.

5.2 Spatial fluctuations

Fig. 10 displays the number density distribution of Obiwan-
ELGs and eBOSS ELGs. One can see that they share similar
large-scale patterns. In particular, there is an increase in
density with RA. This is a visual demonstration of the power
of Obiwan . The maps share the same large-scale patterns
since they are extracted from the same images, and thus
share the same imaging systematics.

In Raichoor et al. (2020), a linear regression is per-
formed testing the eBOSS ELG density against a number of
maps of foregrounds and imaging properties that have the
potential to systematically bias the number of eBOSS ELGs
selected from the photometry. The coefficients of this regres-
sion produced the wsys to be used for clustering measure-
ments. If Obiwan works properly, it should predict the de-
pendency between the eBOSS ELG density and these maps.
We tested how well Obiwan does so by computing ratio of
the normalized total number of galaxies ngal(i) to either nor-
malized total number of Obiwan or uniform randoms nran(i),
in 10 bins of the value of each map. For a null result, we ex-
pect the value in each bin to be consistent with 1. We also
weight the ELGs by wsys instead. As the wsys values were
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Figure 5. 2-dimensional contour plots showing how redshift depends on g, r , z mag and rhalf for galaxies Legacypipe fits with an

Exponential (EXP) profile in the eBOSS (blue) and Obiwan (simulated eBOSS; red) samples. There is a clear mismatch in obiwan ELG
half light radius; as we desribe in the text, this does not have a strong correlation with ELG recovery rate, and will not strongly affect

our sample.

Figure 6. PDFs comparing the photometric properties and redshifts of eBOSS ELGs (blue) and the Obiwan ELGs (orange) meant to

simulate the eBOSS sample.

obtained already via a linear regression with these maps, we
expect a null result in this case.

Fig. 11 displays the raw results when using the ELGs
in chunk 23 and the uniform randoms (green), when using
Obiwan randoms (orange), and when applying wsys and us-

ing uniform randoms (blue with error-bars). From the χ2

test, we can see that Obiwan successfully predicted the de-
gree of correlation with many maps. Obiwan is able to handle
the complexities for imaging systematics like the correlation
between different properties. For example, there is a correla-
tion between stellar density and galactic extinction because
they both trace the structure of the Milky Way. Obiwan nat-
urally includes all correlations between the maps. In many
cases, e.g., the mean size of the point spread function of
across each CCD image contributing to a given location (psf
size), these maps have quantities that we hypothesize could

affect our ability to extract sources from the images. Obi-
wan naturally represents a superset of all possible maps and
removes the need to identify and classify multiple effects on
source detection and measurement.

The results when applying wsys naturally produce the

lowest χ2 values, as all of these maps were used in the regres-
sion that produced the wsys values. Using Obiwan represents
a simpler, and more complete, method for modeling system-
atic effects related to the detection and measurement of pho-
tometric properties of galaxies, and it gives an alternative
result for explaining how systematics work in the process.
However, the correlation with psf size is still strong when
applying Obiwan . There is a negative trend with increasing
psf size and a χ2/dof greater than 20/10 for each band. Cur-
rently, Obiwan uses the PSF file generated by Legacypipe

during its calibration stage as a truth PSF input, and it is
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Figure 7. Left: True color and magnitude histograms for the Obiwan sources. We display the following possibilities: ‘correct’ denotes that

both the true and output Obiwan photometry passes the eBOSS ELG cuts; ‘contaminated’ denotes that the output photometry passes
the eBOSS ELG cuts but the true photometry does not; ‘lost (not recovered)’ denotes that the source was not detected by Obiwan ; ‘lost

(fail TS)’ denotes that the output Obiwan photometry did not pass the eBOSS ELG cuts but the true photometry did. Right: The same

categories are shown displaying the ratio of each type of source to the input combined color or magnitude histogram. We observe that
ELGs lost to measurementâĂŞerror are, on average, the faintest of the simulated galaxies in g, r , and/or z. Contaminants and ELGs

lost to nonâĂŞdetections are a minority of the sample and have similar g, r , z magnitude distributions.

thus not able to trace any imperfections in PSF modeling
stage. This indicates that the initial PSF modeling stage
may not be perfect. This will affect Obiwan twice, as Obiwan
uses PSF both for modeling input galaxies and also fitting
for output galaxies. For the true measurements, only the
2nd stage is effected. Despite this imperfection, Obiwan is
clearly able to capture most of the effect of the PSF size, as
the χ2 improves significantly in each band, compared to the
uniform random case.

5.3 The Correlation Function

To compute the correlation function with and without Obi-
wan, we select galaxies and randoms from the eBOSS ELG
catalogs (described in Raichoor et al. 2020), restricted to
chunk 23. We compare results using wsys, no imaging sys-
tematic weight, and a weight constructed from the Obiwan

outputs.
We create the Obiwan weights as follows: We use a

healpix map at Nside = 128 resolution and count the number
of Obiwan-ELGs in each pixel. We divide this by the num-
ber of uniform randoms in each pixel and then normalize by
the overall ratio of uniform randoms to Obiwan-ELGs. The
inverse of this can then be used as a weight applied to each
eBOSS ELG in the same way as wsys. We denote this as
‘Obiwan-weight’. We then substitute Obiwan-weight for wsys
when determining ξ0,2,4. This provides a simpler compari-
son than if we were to attempt to directly use the Obiwan

outputs as randoms for the calculation of ξ.
The wsys weights are calculated by directly regressing

the ELG data against the template maps. Thus, the method
will artificially remove true clustering modes that align with

the templates by chance. This will slightly depress the clus-
tering. Obiwan is immune from this effect. We predict the
size of the effect using GLAM-QPM mocks generated for the
eBOSS ELG sample as described in Lin et al. (2020). We ap-
ply the regression to each mock to provide each with wsys,
without putting in any systematic trends, and calculate ξ0,2,4
with and without wsys. When comparing the eBOSS ELG ξ

results between using Obiwan and wsys, we subtract the dif-
ference we find in the GLAM-QPM mocks from the Obiwan

result in order to provide a fair comparison.6

Fig. 12 compares the multipoles of the redshift-space
correlation function of eBOSS ELGs for three cases: 1)
Obiwan-weights (the new method proposed in this paper);
2) no imaging systematic weights (denoted ‘uniform’); 3)
using the wsys weights included in the eBOSS ELG catalogs.
The Obiwan-weights correlation function agrees well with the
ELG correlation function generated using the wsys weights
(orange) Raichoor et al. (2020), while the uniform-randoms
monopole shows a considerable excess, especially at large-
scales. The quadrupole and hexadecapole display only minor
differences between the three cases. The error-bars in these
figures are the diagonal elements of the covariance matrix
constructed using the eBOSS ELG EZmocks, as described
in Section 4.2.

To investigate the significance of the difference between
the Obiwan and wsys results, we calculate the χ2 between
the two cases for each multipole. Taking the square-root of
this value can be considered as the ‘maximum possible dif-
ference’ in terms of standard deviations in calculating cos-

6 The conclusions we present would be unchanged if we ignore

this correction, but having calculated it, we apply it.
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Figure 8. Distributions of Obiwan sources split into recovered
ELGs, contaminants, and lost ELGs for the eBOSS color box,

using the same definitions as Fig. 7. The left-hand plot show the

true colors of the sources. On the right, we show the output Lega-
cypipe measured color.

mological parameters (i.e., if some parameter happened to
align perfectly with the difference in the correlation func-
tions). We determine the χ2 values for the measurements
with r > 24Mpc·h−1, as scales smaller than this are not
used in the cosmological analysis (Raichoor et al. 2020). For
the monopole, χ2=1.26, despite the fact that one can ob-
serve noticeably reduced clustering amplitudes in the range
75 < r < 150Mpc·h−1 for wsys compared to Obiwan-weight.
For the quadrupole and hexadecapole, we find differences
are even smaller; χ2 = 0.54 and 0.31, respectively, and no
features are apparent in the figures.

We do not find any contamination in the eBOSS ELG
chunk 23 clustering that is not already removed by wsys.
This is important as Obiwan is not available in the other
three eBOSS chunks. Our results suggests that any system-
atic issues that remain in the ELG catalogs would not be
discovered by Obiwan. The main noticeable difference be-

tween the Obiwan and wsys results is a slight excess in the
Obiwan monopole. The difference is possibly because of the
residual dependence we find with PSF size when using Obi-

wan. We plan to improve the modeling of the PSF in future
Obiwan work.

6 CONCLUSIONS

We have used the Legacy Survey Obiwan image simulation
tool (Burleigh 2018) to develop a method to remove the
effects of imaging systematics from 3D clustering measure-
ments. The idea is similar to Suchyta et al. (2016), with key
developments to allow efficient application to the 3D clus-
tering of redshift survey data. The method is intended for
application to the next-generation redshift survey DESI. We
take advantage of the fact that the eBOSS ELG sample was
targeted with Legacy Survey imaging data in order to test
our method. Our method is applied to one of the four chunks
of the eBOSS ELG sample and we compare our results to
the eBOSS ELG analysis that is applied over all four chunks.
Our results can be summarized as:

(i) We inject potential ELGs into the images and then de-
termine those that end up passing the eBOSS ELG sample
color/magnitude cuts. This allowed us to determine the g,
r, z–mag distributions for recovered ELGs (true ELGs that
remain ELGs after source detection and measurement), con-
taminants (non–ELGs that pass target selection after detec-
tion and measurement), and lost ELGs (ELGs that are not
detected, fail target selection after measurement, or overlap
CCD edges). We also investigated how much scattering oc-
curs (∼ 0.25 mag) into and out of the eBOSS ELG color box
and g–band limit. See Figs. 7 and 8.

(ii) Redshifts are applied to our injected potential ELGs
from a mixture of eBOSS, VVDS, and DEEP2 data, such
that the recovered distribution is a good match to the eBOSS
distribution (see Section 3.2). Thus, we can also estimate the
redshift distributions for recovered ELGs, contaminants, etc.
Fig. 9 shows that the contaminant redshifts are primarily
z < 0.75. This is consistent with the findings that the eBOSS
ELG dN/dz depends strongly on the imaging depth at z <
0.75 (Raichoor et al. 2020; de Mattia et al. 2020).

(iii) The angular fluctuations in recovered Obiwan ELGs
mimic those imparted by image properties that can be
mapped. Fig. 11 demonstrates that after correcting for the
density predicted by Obiwan the relative eBOSS ELG den-
sity vs. imaging properties is close to the null expectation.
A small residual trend is left with the PSF size, implying
this is an area where further improvements to the Obiwan

methods could be made.
(iv) We applied the angular selection function predicted

by Obiwan as a weight to correct for imaging systematics. We
compared 3D clustering results using this weight to those ob-
tained from the weights (based on linear regression) used in
the full eBOSS ELG sample cosmological analysis. We find
minor differences, plausibly consistent with the difference in
the residuals against PSF size. See Fig. 12. The differences
are such that, given similar results over the full eBOSS ELG
footprint, we expect minimal impact on the cosmological re-
sults. This is thus an important validation of the methods
applied to the full eBOSS ELG sample.
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Figure 9. Here we show how the process of measuring photometry with Legacypipe modifies the expected redshift distribution. The
left-hand panel displays the redshift PDF for injected Obiwan galaxies (blue) compared to the same after applying the eBOSS ELG

cuts to the Obiwan output photometry (orange). The right-hand panel displays the fraction of Obiwan sources with outputs passing the

eBOSS ELG cuts in each redshift bin that had input ‘true’ photometry passing the eBOSS ELG cuts (blue) and those that did not
(‘contaminants’; orange). Contaminants primarily enter at redshift range: 0 < z < 0.75

Figure 10. The density distribution of Obiwan ELGs (with out-
put photometry passing the eBOSS ELG cuts; upper-panel) and
eBOSS ELGs (lower-panel). Looking by eye, we observe similar
patterns, e.g., density increasing with RA. This implies that Obi-

wan is successfully predicting large-scale patterns in the recovered
ELG density.

(v) Finally, we identified numerous biases and systemat-
ics in the DR5 Legacy Surveys image reduction pipeline,
Legacypipe. The highest impact ones are that Legacypipe

underestimates the uncertainty on g, r, and z flux by a fac-
tor of 1.7–1.9, the uncertainty on rhalf by a factor of 2.3–3.9,
and the uncertainty on e1 and e2 by a factor of 4.1–4.4.
Many of these issues have been fixed in the DR8 version of
the pipeline. See Appendix A for more details.

DATA AVAILABILITY

The eBOSS ELG catalog data and the corresponding Obi-

wan outputs will be made available through the SDSS Sci-
ence Archive Server (https://sas.sdss.org/) after this work
is accepted for publication, with the exact location to be
determined.

ACKNOWLEDGEMENTS

Funding for the DEEP2 Galaxy Redshift Survey has been
provided by NSF grants AST-95-09298, AST-0071048, AST-
0507428, and AST-0507483 as well as NASA LTSA grant
NNG04GC89G.

This research uses data from the VIMOS VLT Deep
Survey, obtained from the VVDS database operated by Ce-
sam, Laboratoire d’Astrophysique de Marseille, France.

Funding for the Sloan Digital Sky Survey IV has been
provided by the Alfred P. Sloan Foundation, the U.S. De-
partment of Energy Office of Science, and the Participating
Institutions. SDSS-IV acknowledges support and resources
from the Center for High-Performance Computing at the
University of Utah. The SDSS web site is www.sdss.org.

SDSS-IV is managed by the Astrophysical Research
Consortium for the Participating Institutions of the SDSS
Collaboration including the Brazilian Participation Group,
the Carnegie Institution for Science, Carnegie Mellon Uni-
versity, the Chilean Participation Group, the French Par-
ticipation Group, Harvard-Smithsonian Center for Astro-
physics, Instituto de Astrof́ısica de Canarias, The Johns
Hopkins University, Kavli Institute for the Physics and
Mathematics of the Universe (IPMU) / University of Tokyo,
the Korean Participation Group, Lawrence Berkeley Na-
tional Laboratory, Leibniz Institut für Astrophysik Potsdam
(AIP), Max-Planck-Institut für Astronomie (MPIA Heidel-
berg), Max-Planck-Institut für Astrophysik (MPA Garch-
ing), Max-Planck-Institut für Extraterrestrische Physik
(MPE), National Astronomical Observatories of China, New

MNRAS 000, 1–17 (2020)



14 H. Kong et al.

Figure 11. The normalized number density at different photometric property bins for eBOSS ELGs for three treatments of the data:
1) applying the weights used in the full eBOSS ELG sample (‘weight systot’, which is referred to as wsys within the main text; blue;

Raichoor et al. 2020); 2) applying weights determined from Obiwan (‘obiwan’; orange); and 3) applying no weights (‘uniform’, blue). The

weights for wsys were determined directly regressing against these maps. The χ2 test quantifies how the total distribution deviates from
the black dashed reference line.
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Figure 12. Correlation functions of monopole (upper),

quadrapole (middle), and hexadecapole (lower), applying weights
as in the same three cases described in Fig. 11. We use 25 evenly

spaced r bins, centered between 0 and 200 h−1Mpc.
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Figure A1. Confusion matrix showing the fraction of true expo-

nential or de Vaucouleurs sources that Tractor models as type
PSF, SIMP, EXP, DEV, or COMP. Tractor is biased towards

EXP sources because 91% of true exponential sources are mod-
eled as exponential, while 23% of true de Vaucouleurs sources are

modeled as de Vaucouleurs.

APPENDIX A: BIASES AND SYSTEMATICS
(Legacypipe)

This section describes the biases and systematics that we
find in the DR5 version of Legacypipe after running Obiwan

on eBOSS chunk23 CCDs to reproduce eBOSS ELG data.
We expect significant improvement in the DR7 version of
Legacypipe (Dey et al. 2018). Fig. A1 shows that Tractor is
biased towards EXP sources. About 95% of true exponential
sources are modeled as exponential (PSF, SIMP are both
special cases of exponential galaxies), while 20% of true de
Vaucouleurs sources are modeled as de Vaucouleurs. The
other 80% of truly de Vaucouleurs sources are classified as
SIMP (45%), EXP (25%), and PSF (7%). The EXP bias is
surprising because Tractor model selection penalizes EXP
and DEV sources equally (see Burleigh 2018).

Fig. A2 shows the fraction of all sources recovered by
Legacypipe versus true rhalf . There is a characteristic size
(rhalf ∼ 1.5′′) after which the fraction recovered drops to, and
fluctuates about, 90%. This does not have a significant im-
pact on the final data sample because 90% the input galaxies
are within this characteristic size (rhalf ∼ 1.5′′).

Fig. A3 shows the number of standard deviations (Nσ)
away from truth of the Tractor measured g, r, and z–band
flux, rhalf , and ellipticity e1 and e2. There are very large
systematic offset in flux (∼ 0.25 mag in all bands) and rhalf
(∼1.5–2.4′′ for EXP and DEV sources), which we remove

Figure A2. (yellow) Fraction of all sources recovered by Lega-

cypipe versus injected rhalf . (red) Cumulative histrogram of in-
jected rhalf .

by subtracting the mean. Tractor fluxes are too faint while
Tractor rhalf is too large. There is no systematic offset for
the ellipticity e1 and e2 measurements. The least squares
fit Gaussians (solid black) are considerably wider than a
Normal Gaussian (dashed black). This suggests that all of
Tractor measurement errors are underestimated, by factors
of 1.75–1.9x for g, r, z flux, 2.3–3,9x for rhalf , and 4.1–4.3x
for ellipticity e1 and e2.

The measurement uncertainty is naturally dependent
on the level of signal. Thus, we constructed 2–dimensional
histograms of Nσ for g, r, z flux versus g, r, z flux, respec-
tively (Fig. A4, left panel); and magnitude residual versus g,
r, z magnitude (Fig. A4, right panel). The results are nearly
identical when only considering PSF, SIMP, EXP, or DEV
sources. We find the bias in the recovered magnitude does
increase as sources grow fainter but that it is nearly constant
as a 1σ bias in the flux.

APPENDIX B: INJECTING REALISTIC EBOSS
ELGS

B1 ELG-like Targets

As stated in section 2.3, we use ELG-like targets as our in-
puts. Fig. B1 (left) shows the g magnitude distribution of
DR3–DEEP2 sample and DR3–VVDS sample, as well as the
ELG–like sample in SGC. Before the redshift sampling (dis-
cussed in 3.2), the g magnitude distribution of DR3–VVDS
looks more like eBOSS ELG–like galaxies than DR3–DEEP2
sample. However, after the resampling, Fig. B1 (right) shows
that VVDS and DEEP2 sample looks quite similar. This is
because redshift sampling modifies redshift distribution, and
thus magnitude distribution also gets modified. We force
them to have the same redshift distribution. This redshift
distribution is sampled from using a a 10-component Gaus-
sian Mixture Model (GMM) fit to the ELG redshift distri-
bution in the SGC. This distribution is shown in Fig. B2.

The SGC ELG-like sample is different from the DR3-
DEEP2 and DR3-VVDS samples. This is because we do not
know the redshift distribution of all the SGC ELG-like sam-
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Figure A3. Number of standard deviations away from truth (input; Nσ) of the Legacypipe measured flux, rhalf , and ellipticity. The mean
of each distribution has been subtracted. The least squares fit Gaussians (solid black) are considerably wider than a Normal Gaussian

(dashed black). This suggests that all of Legacypipe measurement errors are underestimated. (Left) Nσ for g, r , z flux. (Middle) Nσ
for rhalf for sources Tractor classifies as EXP and DEV. (Right) Nσ for ellipticity e1 and e2 for sources Tractor classifies as EXP and

DEV.

ple, and its true redshift distribution is different from the
eBOSS ELG sample. We combine DR3-DEEP2 sample and
DR3-VVDS sample to form our final DR3-DEEP2-VVDS
sample of 1849 EXP galaxies and 150 DEV galaxies. Fig.
B3 shows the 50000 draws from DR3–DEEP2–VVDS sam-
pled galaxies. They do not have the same distribution as
the SGC ELG-like sample. This is due to the fact that we
have weighted the DEEP2 and VVDS galaxies such that the
eBOSS dN/dz is reproduced. Fig. 4 shows that after cut-
ting these 50000 draws based on the Obiwan outputs and
the eBOSS ELG color/magnitude selection, the color, mag-
nitude, and redshift distributions are a close match to the
eBOSS ELG ones.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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Figure A4. 2–dimensional histograms of Obiwan-input -- Obiwan-output residuals. (Left) Nσ for g, r , z flux versus g, r , z magnitude,
respectively. Yellow lines are the q25, 50, 75 percentiles. (Right) Magnitude residuals versus g, r , z magnitude.
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Figure B1. (left) g magnitude distribution of DR3–VVDS sam-
ple (blue), DR3–DEEP2 sample (orange) and eBOSS ELG–like

sample. (right) 50000 draws from redshift sampling (described in

Section 3.2) by DR3–VVDS sample (blue), DR3–DEEP2 sample
(orange). eBOSS ELG–like sample (green) is for reference.

Figure B2. The blue curve displays the normalized histogram
of eBOSS ELG redshifts in the SGC region. The filled-red region

is the same for 50,000 draws from the Gaussian Mixture Model

used to sample redshifts fro from the DEEP2/VVDS data.

Figure B3. The color and half light radius distribution of Ex-

ponential galaxies for two samples: the DR3-DEEP2-VVDS com-

bined sample (DEEP2/VVDS seed; blue) and the DR3 photo-
metric sample cut to the eBOSS ELG-like color box (sgc elg like;

orange).
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