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ABSTRACT OF THE DISSERTATION

Entry Guidance and Navigation for High Elevation Mars Landing

By

Guangfei Duan

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine. 2019

Professor Kenneth D. Mease, Chair

One challenge driving Mars entry, descent and landing technology development is to

land at higher elevation sites without decreasing the horizontal landing accuracy relative

to that achieved in the 2012 Mars Science Laboratory (MSL) Mission. Higher eleva-

tion landing capability would allow missions to the southern highlands. A combined

multi-mode guidance and navigation strategy for high elevation landing is developed

and tested, building on previous work on reference trajectory planning and tracking and

on final position alignment. A new enhanced inertial navigation strategy is investigated

to reduce the state knowledge error especially for shallower, longer duration entries.

The new contributions to the high elevation entry guidance scheme are computa-

tionally efficient reference trajectory updating requiring the optimization of a single

parameter at a time and improved downrange performance in the final position guid-

ance. To reduce the error in the estimated vehicle state on which the guidance law

operates, unscented Kalman filter (UKF)-enhanced inertial navigation is proposed and



tested. The UKF-enhanced inertial navigation scheme accounts for the nonlinearity of

entry dynamics and factors in the modeling errors.

The performance of the multi-mode guidance algorithm, combined with the inertial

navigation system, is assessed for an MSL-type entry vehicle. Using the simulation

testing, the performance with realistic levels of vehicle modeling, atmospheric density,

inertial sensor, and entry delivery errors is characterized. A range of nominal entry

flight path angles is considered, encompassing the MSL value as well as shallower entries

that might be considered for future missions to reduce the peak acceleration and heat

rate to which the vehicle is subjected. The results show that, using the multi-mode

guidance and conventional inertial navigation, landing elevations as high as 1.5 km

relative to the Mars Orbiter Laser Altimeter (MOLA) reference are achievable for the

steep entry with −14o initial flight path angle. For shallow entry with −12o initial flight

path angle, the multi-mode guidance with UKF-enhanced navigation can achieve the

landing elevations above 0 km MOLA for 99% of the cases. For all the tested entry flight

path angles, the requirement of the horizontal accuracy within 10 km has been achieved

by the guidance and navigation system. For 1-2 km elevation landing, as required to

access more of the southern highlands, the IMU-based navigation error is too large and

modifications, possibly further improvement in the guidance and navigation algorithms

or the addition of navigation sensors, would be required.



Chapter 1

Introduction

Introduction In the 2012 Mars Science Laboratory (MSL) Mission, the Curiosity rover

landed with unprecedented accuracy for Mars landings by using entry guidance. For

perspective, the 99.7% confidence landing ellipses for previous unguided landings were

299 km x 45 km for the 1997 Mars Pathfinder [1] and 70 km x 5 km for the 2004 Mars

Exploration Rovers [1], where the major axis corresponds to downrange error and the

minor axis to crossrange error. The improvement in 2004 was due to greater accuracy

in the approach navigation and in the atmospheric entry state control. The 99.7% con-

fidence landing ellipse for MSL was 19.1 km x 6.9 km [2], primarily due to the active

control of the vehicle bank angle as commanded by the onboard entry guidance algo-

rithm operating on inertial sensor data. The Curosity rover landed at an elevation of

-4.4 km with a target miss distance of 2.4 km [3].

For future Mars missions, a goal is to land entry vehicles at higher elevations in

order to reach scientifically interesting sites in the southern highlands [4, 5]. For higher

elevation landing, the parachute must be deployed at higher altitude to provide suf-

ficient timeline for the subsequent descent and landing phases. Previously developed

guidance approaches have not addressed the objective of high elevation landing, with

the exception of the work [6, 7] on which the present work builds. MSL used a neighbor-
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ing guidance law which was initially developed for Apollo reentry at Earth. Based on

a pre-designed reference trajectory and a prescribed heading angle corridor, the entry

guidance consists of a feedback control law that commands the bank angle to compen-

sate for final range, drag acceleration, and altitude rate errors relative to the reference

values and bank reversal logic to stay within the heading corridor [9, 10, 11]. The MSL

parametrized bank angle profile was not designed to achieve high elevation landings,

and it has been shown that the MSL bank profile does not yield the maximum altitude

achievable, even when the parameters are optimized [6, 7, 8]. Predictor-corrector entry

guidance has been investigated during recent years [11, 12, 13, 14]. Instead of tracking

a pre-designed reference trajectory, a predictor-corrector generates bank angle com-

mands by recomputing the entire trajectory and bank angle profile repeatedly during

entry, based on the onboard measurements and the nominal entry dynamics, using a

parametrization of the bank angle profile, typically with only one parameter to adjust

[11]. The guidance accuracy can be improved relative to following a fixed reference

trajectory at the expense of increased onboard computation. However, the objective of

high elevation landing has not been addressed in predictor-corrector guidance research.

In order to achieve high elevation landing, a multi-mode guidance strategy has been

pursued. Given a pre-designed near-optimal reference trajectory, the guidance operates

in the modes of reference trajectory tracking, bank reversal execution, and final posi-

tion alignment. The reference trajectory pre-design [7] generates an entry trajectory

and bank angle profile that achieves nearly the highest parachute deployment altitude,

for which the vehicle is capable, above the specified target landing site. The optimal

bank angle profile is bang-bang with three switches in the bank angle sign. Using a

3-parameter profile allows the optimal control problem to be recast, approximately,

as a parameter optimization problem, making it more feasible for onboard usage. A

model predictive feedback law, developed in [15, 16], is used to track the near-optimal

reference trajectory. At a certain Mach number, there is a switch to final position align-

ment [17], an enhanced version of the MSL heading alignment algorithm that takes the



high-altitude objective into consideration as well as the heading error.

The goal of the research documented in this dissertation is to develop a combined

guidance and navigation strategy that enables high elevation landing, building on pre-

vious work described in the previous paragraph. The guidance and navigation strategy

is designed for an MSL-type entry vehicle with bank angle control and inertial sensor

based navigation for the more specific goal of determining the highest elevation landing

for which such a vehicle is capable. The guidance and navigation algorithms are imple-

mented in software and assessed via computer simulation against the requirement to

deliver the entry vehicle to within 10 km of the specified high elevation landing site with

at least the minimum surface-relative altitude of 6 km, and within the other constraints

for successful parachute deployment, descent and landing. The delivery error includes

both the guidance error and the navigation error. The delivery requirements, with the

exception of site elevation, are approximately the MSL entry guidance requirements.

Preliminary results [19] indicate that further development of the previously developed

multi-mode guidance is required to meet the delivery requirements. With the expecta-

tion that future entry missions will require, relative to the MSL entry, shallower entry,

in order to reduce the maximum g-load and peak heat rate [2], an enhanced inertial

navigation strategy is investigated to reduce the vehicle state knowledge error especially

for shallower, longer duration entries.

The specific objectives of the research are (i) to improve the guidance performance

without increasing significantly the onboard computation by showing that a few 1-

parameter updates to the reference trajectory are sufficient, when combined with track-

ing and final position alignment, to achieve the required guidance accuracy, (ii) to im-

prove the final position alignment by modifying it to reduce downrange errors, (iii) to

reduce navigation errors, especially for shallower, longer duration entries, through the

use of an unscented Kalman filter (UKF) to process the inertial sensor data, and (iv)

to determine via simulation testing whether or not the performance of the combined



multi-mode guidance and enhanced inertial navigation allows higher elevation landing

while meeting all the other delivery requirements.

Navigation schemes for Mars entry vehicles have been investigated since the first

two Viking missions [21] . Up to now, all the Mars landing missions, including MSL,

have used the IMU acceleration measurements during entry without other sensors pro-

viding information on the estimates of the trajectory state [2]. Most of the recent

research has focused on adding additional potential navigation information to improve

estimation accuracy [22, 23, 24]. With the objective of more accurate navigation with

only IMU sensors, the feasibility processing IMU data with an extended Kalman filter

was investigated in [21]; it was found that the navigation errors were not reduced suf-

ficiently, because of the density modeling errors and the linearization of the dynamics

[21]. Heyne proposed the use of an unscented Kalman filter [25] . A UKF was used

in the reconstruction of MSL trajectories [26, 27]. In [22, 28], UKF-based navigation

was studied for Mars entry, but extra measurements such as flight path angle rate or

range measurement were added to improve the performance. In that study, the UKF

propagated the state mean and covariance through the unscented transformation; the

uncertain parameters, which significantly affect the delivery error are not considered.

In this dissertation, we propose and evaluate a UKF-enhanced inertial navigation strat-

egy. The filter state vector is augmented to include uncertain model and sensor error

parameters, which has been shown beneficial for a system with nonlinear process and

measurement models, as compared with the standard Kalman filter [22].

This dissertation is organized as follows. The entry dynamics and modeling are

given in Chapter 2. In Chapter 3, the entry guidance problem is stated. The multi-

mode entry guidance algorithm is presented in Chapter 4, and UKF-enhanced inertial

navigation is covered in Chapter 5. In Chapter 6, the simulation testing conditions for

the guidance and navigation performance assessment are provided. The results of the

performance assessment are presented in Chapter 7, and the conclusions are given in



Chapter 8.



Chapter 2

Entry Vehicle Dynamics Modeling

Mars entry problem can be modeled using four coordinate frames. The translational

dynamics for a Mars entry vehicle are defined relative to a Mars-fixed coordinate frame

O −XmYmZm. This frame is rotating along the Zm axis with angular velocity ωp, the

Martian self-rotation angular velocity. The navigation frame (local horizontal frame)

O−XnYnZn is obtained by rotating around Zm axis with angle θ, vehicle longitude and

then rotating around Yn with angle −φ, vehicle latitude. It is centered at the center of

Mars, with Xn axis along the radial position vector, Yn pointing to the East, and Zn

pointing to the North, i.e., a UEN frame. Yn and Zn span the local horizontal plane.

The transformation from O −XmYmZm to O −XnYnZn is

Rm2n =


cos(−φ) 0 −sin(−φ)

0 1 0

sin(−φ) 0 cos(−φ)




cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1


Velocity frame M−XvYvZv is centered at the center of the vehicle. Yv is along with the

planet relative velocity vector, and Xv is aligned with the lift vector component in the

vertical plane. Zv completes the coordinate system. The transform from O −XnYnZn

19



to O −XvYvZv is

Rn2v =


cos(−γ) sin(−γ) 0

−sin(−γ) cos(−γ) 0

0 0 1




1 0 0

0 cos(ψ) sin(ψ)

0 −sin(ψ) cos(ψ)


where γ and ψ define the vehicle path angle and heading angle. The body frame

M −XbYbZb is defined along the axes of the onboard inertial measurement unit (IMU).

The directional cosine matrix, which transforms the body frame to the navigation frame

is

Cb2n =


q2
a + q2

b − q2
c − q2

d 2(qbqc − qaqd) 2(qbqd + qaqc)

2(qbqc + qaqd) q2
a − q2

b + q2
c − q2

d 2(qdqc − qaqb)

2(qbqd − qaqc) 2(qdqc + qaqb) q2
a − q2

b − q2
c + q2

d


where Q = [qa, q]T = [qa, qb, qc, qd]

T is the quarternion vector which defines the

attitude of the vehicle.

2.1 Three Degree-of-freedom Modeling

The three degree-of-freedom translational dynamics for a Mars entry vehicle are defined

relative to a Mars-fixed coordinate frame O−XmYmZm. In this three degree-of-freedom

modeling, we have assumed that the velocity frame and the body frame are aligned and

do not consider the vehicle attitude.

2.1.1 Equations of Motion

The entry vehicle radial position projected on the navigation frame is rnm = [r, 0, 0]T ,

where r is the distance between the center of the vehicle and the Mars center. Thus

the relative velocity to the Mars-fixed frame projected on the navigation frame would

be

V n
m =

drnm
dt

= ṙ · in + r · i̇n = V · in + r · (Ωmn × in) (2.1)



where Ωmn = θ̇ · (Rm2n ·km)− φ̇ · jn is the angular velocity of the navigation frame. The

relative velocity is defined in the velocity frame M −XvYvZv as V v
m = [0, V, 0]T . It is

transformed into the navigation frame as

V n
m = RT

n2v · V v
m =


VU

VE

VN

 =


V sinγ

V cosγcosψ

V cosγsinψ

 (2.2)

Combining Eqs.(2.1) and (2.2), we can get

ṙ = V sin γ

θ̇ =
V

r

cos γ cosψ

cosφ

φ̇ =
V

r
cos γ sinψ

(2.3)

Drag and lift expressed in the velocity-fixed frame are Dv = [0, −D, 0]T , Lv =

[Lcosσ, 0, −Lsinσ]T . Gravitational acceleration in the navigation frame is defined

as gnm = [−µ/r2, 0, 0]T , where µ = 42, 409 km3/s2 is the gravitational constant. Thus

the relative acceleration of the entry vehicle with respect to the Mars-fixed frame is

anm = RT
n2v · (Dv + Lv) + gnm (2.4)

The inertial acceleration of the vehicle is

a =
dV n

m

dt
=
d2rnm
dt2

(2.5)

And

a = anm − 2Ωim × V n
m − Ωim × (Ωim × rnm) (2.6)

where Ωim = [ωpsinφ, 0, ωpcosφ]T is the Mars angular velocity ωp projected on the

navigation frame. The centripetal acceleration, which is proportional to ω2
p, is negligible

and therefore is usually not included in the entry dynamics. Substituting Eq.(2.4) and



Eq.(2.5) into Eq.(2.6) yields

V̇ = −D − g sin γ

γ̇ =
1

V

L cosσ −
(
g − V 2

r

)
cos γ

+ 2ωp cosψ cosφ

ψ̇ = − 1

V cos γ

(
L sinσ +

V 2

r
cos2 γ cosψ tanφ

)
+ 2ωp (tan γ sinψ cosφ− sinφ)

(2.7)

Eq.(2.3) and Eq.(2.7) define the dynamics for a Mars entry vehicle, where x = [r, θ, φ, V, γ, ψ]T

is the state vector, (r, θ, φ) are spherical coordinates for the vehicle center of mass.

(V, γ, ψ) define the relative velocity vector by flight path angle and heading angle.

Heading angle is defined as a clockwise rotation angle with ψ = 0 for East. Bank angle

σ, the clockwise rotation angle between the lift vector and the vertical plane containing

relative velocity vector is considered as the control variable, with σ = 0 correspondings

to the full lift-up condition. The lift and drag accelerations are defined by

L =
1

2
ρV 2A

m
CL

D =
1

2
ρV 2A

m
CD

(2.8)

where ρ represents the Martian atmosphere density. A and m are the surface area and

the mass of the entry vehicle. CL and CD are the vehicle lift and drag coefficients.

Though the drag and lift accelerations are defined in the velocity-fixed frame, where

IMU measurements are defined in the body-fixed frame of the spacecraft, with the

simplified three degree-of-freedom modeling, we can assume these two frames are aligned

and directly use the outputs of IMU as the measurements of drag and lift accelerations.

2.1.2 Equations of Motion with Attitude Initialization Errors

The entry dynamics are propagated using measurements from the onboard inertial

measurement units (IMU) for lift and drag accelerations. When the IMU is initialized

prior to entry, some attitude initialization error may cause IMU misalignment. Assume

the attitude initialization error is εo around any random axis ~u = [ux uy uz]
T . Thus



the relative acceleration vector measured by IMU is rotated from the navigation frame

with a rotation matrix

∆R =


cos(ε) + u2

x(1− cos(ε)) uxuy(1− cos(ε))− uzsin(ε) uxuz(1− cos(ε)) + uysin(ε)

uxuy(1− cos(ε)) + uzsin(ε) cos(ε) + u2
y(1− cos(ε)) uyuz(1− cos(ε)) + uxsin(ε)

uxuz(1− cos(ε))− uysin(ε) uyuz(1− cos(ε)) + uxsin(ε) cos(ε) + u2
z(1− cos(ε))


Then the relative acceleration projected on the navigation frame becomes

anm = ∆R ·RT
n2v · (Dv + Lv) + gnm (2.9)

Substituting Eq.(2.9) into Eq.(2.6) yields the equations of motion with attitude initial-

ization errors.

2.2 Six Degree-of-freedom Modeling

The state vector, used in the modeling of the 6-DOF entry dynamics is usually expressed

in the navigation frame as Xnav = [p,V,q]. p = [h, θ, φ] and V = [VU , VE, VN ]

define the translational dynamics as in the 3-DOF modeling. q = [qa, qb, qc, qd]
T

is the quarternion vector which defines the vehicle attitude. The propagation of the

quarternion vector is given by

q̇a = −1

2
(qbwx + qcwy + qdwz)

q̇b =
1

2
(qawx − qdwy + qcwz)

q̇c =
1

2
(qdwx + qawy − qbwz)

q̇d = −1

2
(qcwx − qbwy − qawz)

(2.10)

where ωb = [wx, wy, wz]
T is the body rate vector, which can be obtained from the

IMU gyro readout. The propagation of the relative velocity is defined in the navigation

frame as

V̇ n
m = Cb2nfb − (2ωim + ωmn)× V n

m − ωim × (ωim × rnm) + gnm (2.11)



where fb is the readout from the IMU accelerometers. During the simulations, readouts

from IMU gyro and accelerometer are generated as

am = RT
v2n(Dv + Lv)

fb = (Cn2bam)

ωib = (Cn2b(ωim + ωmn) + ωnb)

(2.12)

where Rv2n = RT
n2v and Cn2b = CT

b2n, and ωnb is the angular velocity of the entry vehicle

expressed in the body frame

ωnb =


γ̇sin(σ) + ψ̇cos(γ)cos(σ)

σ̇ + ψ̇sin(γ)

−γ̇cos(σ) + ψ̇cos(γ)sin(σ)

 (2.13)

Finally, the propagation of entry vehicle position is defined as

ḣ = VU

θ̇ =
VE

r cosφ

φ̇ =
VN
r

(2.14)

Thus, Eqs. (2.10)-(2.14) define the 6 degree-of-freedom entry dynamics for the entry

vehicle.

2.3 System Models and Auxiliary Variables

2.3.1 Aerodynamic Models

Mars is assumed as a spherical planet with radius rp = 3397 km and angular velocity

ωp = 10−5 rad/s. The altitude of the center of the vehicle is computed as h = r − rp.

The nominal atmospheric density model is in the form of an exponential function

ρ(h) = ρ0 · exp
Ä
β1 · h+ β2 · h2 + β3 · h3 + β4 · h4

ä
(2.15)

where ρ0 and βi are constant coefficients that are curve-fitted from 500 MSL data

profiles [30]. The nominal density profile is shown in Fig. 2.1. The vehicle model of the



MSL type is assumed. The aerodynamic coefficients CL and CD are functions of Mach

number which are also curve-fitted from 500 MSL data profiles [30]. The MSL-type of

entry vehicle has a low lift-to-drag ratio around 0.24 - 0.31.
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Figure 2.1: Nominal density profile.

2.3.2 Trajectory Length and Specific Energy

Trajectory length is computed as the integration of the velocity projected on the local

horizontal plane

S =
∫ tf

t0
V · cosγ dt (2.16)

During the entry phase, the energy, defined as E = 1
2
V 2 − µ

r
is usually used as the

independent variable instead of the time. Because

Ṡ = V · cos(γ)

Ė = V V̇ +
µ

r2
γ̇

(2.17)

we can write
dS

dE
=
Ṡ

Ė
(2.18)

Substituting Eq.(2.17) into Eq.(2.18), we can get that dS
dE

= −cos(γ)/D. Therefore, the

relationship between trajectory length and the specific energy can be written

S = −
∫ Ef

E0

cos(γ)

D
dE (2.19)



If the vehicle is flying with a constant altitude, which means cos(γ) ≈ 1, we can further

simplify Eq.(2.19) to

S = −
∫ Ef

E0

1

D
dE (2.20)

This equation shows a direct relationship between the trajectory length and the drag

acceleration.

2.3.3 Downrange and Crossrange

Vehicle ground track points are expressed in downrange (DR) and crossrange (CR).

Downrange is defined as the distance along the great circle segment from the entry

state to the target and crossrange is defined as the distance normal to the great circle,

as shown in Fig. 2.2 [30].
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Figure 2.2: Downrange (DR) and crossrange (CR).

In Fig. 2.2, point A(θ0, φ0) denotes the vehicle position in the entry interface, and

point B(θf , φf ) is the vehicle current position or the target. Downrange and cross-

range segments intersect at point C. N is the north pole. According to the spherical



trigonometry

cosN̄B = cosN̄A · cosĀB + sinN̄A · sinĀB · cosα

sinφf = sinφ0 · cosĀB + cosφ0 · sinĀB · cosα
(2.21)

According to Fig. 2.2(b), ĀC is the downrange, B̄C is the crossrange, and

cosĀB = cosĀC · cosB̄C

sin
C̄R

rp
= sinζ · sinĀB

(2.22)

where ξ is the angle between the great circle crossing A and B and the great circle

crossing A and C, and ĀB denotes the angular distance between the two points defined

by longitude and latitude, which can be computed by spherical trigonometry relations,

as [30]

ĀB = 2rp · arcsin
 
sin2(

φf − φ0

2
) + cos(φf )cos(φ0)sin2(

θf − θ0

2
) (2.23)

Solving Eq.(2.21) and Eq.(2.22), we can get

ĀB = arccos(cos
D̄R

rp
· cosC̄R

rp
)

ζ = arcsin(sin(
C̄R

rp
)/sinĀB)

α = ζ − ψ0 + π/2

(2.24)

Using Eq.(2.24), given the initial point and required downrange and crossrange, we can

get the final position of the entry vehicle, and vice versa, i.e., given the initial point

and the target point, we can calculate the downrange and crossrange.



Chapter 3

Entry Guidance Problem

We consider the entry guidance objective to be delivering the vehicle to a parachute

deployment state that satisfies the deployment position and parachute requirements.

The entry guidance must accommodate dispersions (off-nominal values) in the initial

entry state, the atmospheric density, and the vehicle aerodynamics. We assume the

flight path can be modified by adjusting the direction of the lift force via changes in

the bank angle σ. The guidance logic issues bank angle commands to the reaction

control system (RCS). The bank angle commands should respect magnitude rate and

acceleration constraints |σ| ≤ σmax, |σ̇| ≤ σ̇max and |σ̈| ≤ σ̈max.

The final state x(tf ) = xf is constrained by the parachute deployment box and the

surface location of the targeted landing site. MSL used a single supersonic parachute

with 16 m diameter. It can be deployed at dynamic pressures between 300 and 800 Pa

and Mach numbers between 1.4 and 2.2. We assume the same parachute and converted

these constraints into the form of velocity and altitude constraints in order to efficiently

implement them in the parachute deployment trigger. In addition to these parachute

deploy constraints, we impose a minimum deployment altitude in order to avoid the

low-elevation deployments which might fail the mission. This is a timeline margin

requirement, allowing sufficient time to be spent on the powered descent and landing.

28



A minimum altitude of 6.0 km above the ground has been found necessary and 6.0 km

or more is preferred [2]. For the proposed guidance with the objective of high elevation

landing, we select the 6.0 km as the minimum deployment altitude. Fig. 3.1 shows the

parachute deployment box in the altitude-velocity plane.
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Figure 3.1: Parachute deployment box.

Future Mars landing missions expect that EDL sequence will lead the vehicle to

the target site elevations above 0 km relative to the Mars MOLA [18]. Deploying the

parachute at an altitude above 6.0 km, which leaves enough time and altitude for the

subsequent descent and landing phases, would enable a positive landing elevation [2].

Furthermore, the MSL mission required a touchdown ellipse of 19.1 × 6.9 km for the

site of scientific interest, which led to the requirement for parachute deployed within 10

km to the target. Therefore, the primary goal of the proposed guidance is to achieve

a parachute deployment elevation above 6.0 km and a total delivery error less than 10

km to the target for 99% cases, by tracking the reference trajectory under actual entry

conditions with all the above guidance constraints satisfied.



Chapter 4

Guidance Strategy

The proposed entry guidance for high elevation landing is multi-mode with switching

logic. The modes are as shown in Table 4.1. The guidance algorithm is initialized with

a pre-designed reference trajectory. It is tracked using the RT-mode until the switching

logic calls for a reference trajectory update using the PC-mode. During the updating,

the RT-mode tracks the current reference, and upon completion of the update, it starts

tracking the updated reference. The current reference trajectory dictates bank reversal

initiation times. At such a time, there is a switch to BR-mode until completion of the

reversal, then there is a switch back to RT-mode. There is a switch to DPA-mode in

the latter part of the entry. Each mode is introduced in one the following sections and

the multi-mode guidance logic is summarized in Section 4.5.

4.1 Reference Trajectory Generation

4.1.1 Pre-Mission Designed Reference Trajectory

The optimal reference trajectory is first generated pre-mission using numerical opti-

mization algorithms. A general-purpose MATLAB software program called General

Pseudospectral Optimal Control Software (GPOPS− II) is used as the programming

solver to solve the multiple-phase optimal control problems using variable-order Gaus-
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Table 4.1: Multi-mode guidance

Guidance Mode Description

Predictor-Corrector (PC-mode)

most computationally intensive,

used sparingly to update reference for consistency

with current state and data-based correction

of density model

Reference Trajectory Tracking (RT-mode)

MPC feedback tracking of reference,

follows drag profile, rather than altitude profile,

for robustness to density model errors

Bank Reversal (BR-mode)

minimum-time open-loop rotation,

through zero bank angle, to opposite sign of

current bank angle command, respecting constraints

on rate and acceleration

Deployment Position Alignment (DPA-mode)

nonlinear inversion feedback regulation of

heading with modifications for

parachute deployment position control

sian quadrature collocation methods. The software employs a Legendre-Gauss-Radau

quadrature orthogonal collocation method where the continuous-time optimal control

problem is transcribed to a large sparse nonlinear programming problem (NLP) [31].

During the optimization process, bank angle, bank angle rate, and bank angle ac-

celeration are constrained as |σ| ≤ 90o, |σ̇| ≤ 20o/s, |σ̈| ≤ 5o/s2. We have set the final

horizontal accuracy as a hard constraint, i.e., d = 0, while maximizing the final altitude

with a cost function

J = −hf (4.1)

The optimal bank angle profile, which is in the format of bang-bang control, typically

has three bank reversals, as shown in Fig. 4.1. Using GPOPS− II [31] as the solver

generates the reference trajectory with good performance, but yet is computationally
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Figure 4.1: Typical optimal bank angle profile generated by GPOPS− II

expensive. It cannot be implemented efficiently for onboard trajectory updating. There-

fore, a 3-parameter bank profile that captures the structure of the optimal bang-bang

profile allows the reference planning to be cast as a parameter optimization problem

[8].

4.1.2 Predictor-corrector (PC-mode)

The reference trajectory in the guidance algorithm is generated by a high elevation

trajectory planner [8] under nominal conditions, where a low-order parameterized bank

angle profile is used. The time t is the independent variable with t ∈ [0, tf ] and tf is a

free variable. The bank angle profile is parameterized with three bank reversal times

t1, t2, t3, as shown in Fig. 4.2. The boundary of the bank angle is set as 85o in order

to reserve some margin for lateral control during the RT-mode. For the same reason,

the first and last segments of the bank angle profiles are set as ±20o, instead of the 0o

as in the optimal trajectory. The same constraints as mentioned in Section 4.1.1 are

applied to bank angle rate and bank angle acceleration. During the bank reversal, bank

acceleration is set as its maximum value in order to finish the reversal process within

the shortest time.
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Figure 4.2: Parameterized bank angle profile.

In order to realize the objective of landing a vehicle with a low lift-to-drag ratio

on high elevation sites while keeping the horizontal accuracy required by MSL and

maintaining the control authority to correct for dispersion, compared with Eq.(4.1),

we add two terms representing the horizontal error and altitude control authority to

the cost function. Therefore, the performance index for this optimization problem is

a weighted combination of the vehicle horizontal error, final altitude and final control

authority at the parachute deployment level, as follow

J = −khhf + kdd+ kγγ
2
f (4.2)

where d is the horizontal distance between the vehicle final location and the target,

which can be computed from Eq. (2.23). The magnitude of final flight path angle, i.e.,

|γf | presents the altitude control authority. In the altitude acceleration

ḧ = −g −D sin γ +
V 2

r
cos2 γ + 2ωpV cos γcosψcosφ+ L cos γ cosσ (4.3)

the term Lcosγ determines the effect of the control input cos σ. As the magnitude of

lift vector decreases during the latter phase of entry, the primary mean of maintaining

the control authority would be keeping the magnitude of the flight path angle as small



as possible. Choosing the target with maximum landing elevation within the reachable

set for a given entry condition, this reference trajectory generated by this planner has

a final horizontal error around 200 m and a final altitude above 11 km. Both of the

horizontal and altitude performances of this reference trajectory are sufficiently good,

compared with the MSL requirements. The reference trajectory is stored prior to entry

as drag-vs-energy and trajectory length-vs-energy profiles that are to be tracked by

entry guidance.

The PC-mode generates new reference trajectory accounting for the current state

and a sensor-based adjustment of the density model. As mentioned before, an MSL-

like vehicle with low lift-to-drag ratio might not have enough capacity to adjust the

trajectory for a fixed reference trajectory.

However, the implementation of optimization during entry is time-consuming. If

more than two parameters are replanned, the optimization method for the PC-mode is

the same as the method used in planning, which is the Nelder-Mead simplex method [8].

This method takes more computational effort since it optimizes two or three parameters

in a two or three dimensional space. In addition, this method requires well-chosen initial

values. A poorly chosen set of initial values might not converge to a local minimum.

However, if only one parameter needs to be optimized during the PC-mode, a simple

line search such as the golden section method would search for the local minimum much

more efficiently. Take one trajectory as an example. Fig. 4.3 and Table 4.2 show the

optimization processes of the golden section and the Nelder-Mead methods. We can

see the number of the function evaluations of line search is much less than the that of

the Nelder-Mead method and the one dimensional search process greatly reduces the

optimization computational time .



Table 4.2: Comparison between Nelder-Mead and golden section methods.

Optimization Method Nelder-Mead Nelder-Mead Golden section

Parameters Optimized t1, t2, t3 t2, t3 t3

Number of Function Evaluations 82 61 13

Time cost(s) 4.56 2.68 0.78
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Figure 4.3: Optimization processes of golden section and Nelder-Mead methods.

Furthermore, in order to make adjustments to all the reversal times in each PC-

mode, even with only one parameter optimized, the intervals between any two bank

reversal times are kept constant. So if one reversal time is replanned, the other two

reversal times are translated correspondingly in order to keep the intervals unchanged.

This technique have all the three parameters adjusted in each PC-mode with only one

optimized, which reduces the computational time. The simulation testing in Chapter

7 shows the comparison of the PC-mode using Nelder-Mead with updating three pa-

rameters and the PC-mode using golden section with updating one parameter. And

the results show that one dimensional optimization is sufficient to achieve good perfor-

mance in reducing final delivery errors.



In order to reduce the impact of atmosphere modeling errors on the future trajectory,

the onboard planner takes into account perturbations when updating the drag profile.

This is done by using the coefficient kD

kD =
1

t− ta

∫ t

ta

D

Dexpected

dt (4.4)

where Dexpected is the drag under nominal conditions for the atmosphere profile. This

coefficient reflects the accumulated difference between the actual atmosphere and the

nominal condition from the entry state to the current moment. The drag and lift

profiles used in the PC-mode are multiplied by this coefficient to be corrected. This

assumes, in the PC-mode, the vehicle is flying through a thinner or thicker atmosphere

than expected based on the trajectory that the vehicle has flown so far. However, it is

not necessary to include all the perturbations from the entry interface. Fig. 4.4 shows

the boundary of 1000 density disturbances profiles, which are generated by the Mars

Climate Data (MCD). From this figure, we can see the atmospheric disturbances above

40 km can be as large as 24% of the nominal values, which are much larger than those of

lower altitudes. Using kD from high elevations would result to an inaccurate prediction

of the future atmosphere conditions. Thus ta in Eq. (4.4) is chosen as the time when

the vehicle altitude is around 40 km.
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Figure 4.4: Boundaries of one thousand profiles of density disturbances.

The timing and frequency to execute the PC-mode are important to guidance per-

formance. Possible initiation times of the PC-mode during the entry are: 1) when the



vehicle altitude is under 40 km; 2) when the vehicle just started the first bank reversal;

3) when the vehicle just started the second bank reversal; 4) when the vehicle just fin-

ished the second bank reversal; 5) when the vehicle just started the third bank reversal.

The PC-mode cannot be executed too frequently in order to save the onboard compu-

tational time. After the preliminary assessment, it is determined that the PC-mode are

initiated three times during the entry. Fig. 4.5 shows a comparison between scenarios

where the PC-mode are executed at different times.
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Figure 4.5: Comparison of the PC-mode executed at different times.

Fig. 4.5 shows the profiles of reference drag, updated drag in the PC-mode and

actual drag that the vehicle experienced for the same trajectory. In Fig. 4.5(a), up-

dating at 1), 2) and 3) are executed at an earlier time during entry, from which we

can see a significant difference exists between updated drag and actual drag profile.

This is due to the inaccuracy of the updating parameter in Eq. (4.4). Since multiple

PC-modes are executed during an earlier phase, the updating parameter only reflects

the atmosphere conditions in high elevations, which might be quite different from those

in a lower elevation. The updated drag profile can be an inaccurate reference to follow.

Figs. 4.5(b) and 4.5(c) show a consistency between updated drag and the actual drag.

In Fig. 4.5(c), the PC-modes are executed at a later time, and due to this fact, the

vehicle might not have enough control authority to adjust the trajectory. Even the op-

timal replanned trajectory might not be able to achieve a good performance. Thus the

PC-modes cannot be carried out too early or too late so that either the prediction for



future atmosphere is not accurate or the vehicle has not enough control authority left.

Finally, three times of updating, 2), 3) and 4) are chosen to be executed onboard during

entry. The first execution of the PC-mode can diminish the initial state errors and large

atmospheric disturbances in the beginning stage of entry. After the vehicle has flown a

certain range, the second and the third executions of the PC-mode can further adjust

the trajectory. Fig. 4.6 shows tracking errors between the actual drag that the vehicle

experienced and the profiles of reference drag and updated drag in the PC-mode for the

same trajectory. From Fig. 4.6 we can see three executions of the PC-mode gradually

reduce the tracking errors. Details of the PC-mode techniques are presented in [19].

The PC-mode minimizes the same cost function Eq. (4.2) of the final state based on the

current state. Therefore the early phase of tracking a newly replanned trajectory might

show significant tracking errors, as shown in the first replanned trajectory in Fig. 4.6,

but the tracking errors are reduced gradually as the vehicle is approaching the target.
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Figure 4.6: Difference between planned/replanned drag profiles and the actual drag

profile.

Entry vehicles might reach the entry interface with different flight path angles be-

cause of different mission requirements. For shallow entries, the entry will be of longer

duration, and guidance performance is degraded due to longer exposure to disturbances.



(Refer to Chapter 6.1 for more details.) Replannings the three bank reversal times is

not sufficient to reduce the final delivery errors under this circumstance. To adapt to

the actual atmosphere, we optimize the upper boundary for the bank angle. As shown

in Fig. 4.2, |σ2| and |σ3| are set as 850 to leave some margin for the RT-mode. In the

PC-mode, a finite difference method is used to update this upper boundary based on

its effects on the predicted downrange errors

A =
∆DR(σmax + δσ)−∆DR(σmax)

δσ

σmax = σmax + k
∆DR

A
, if A ≥ ε

σmax = sat[σmax, 75o, 90o]

(4.5)

where σmax is the upper boundary of bank angle and initialed set as σmax(0) = σ2.

∆DR(σmax) is the predicted downrange error based on current bank angle boundary

σmax. δσ is a small perturbation to the bank angle boundary. During the simulation,

we have set δσ = 0.5o. The updating is initiated if the change in downrange error is

greater than a certain threshold, which is represented by a small positive number ε in

Eq.(4.5). k = 0.9 is a scale factor to control the updating speed. The updated bank

angle boundary is saturated within a certain range to guarantee a positive bank angle

and sufficient control capability. This iterative updating scheme is terminated when the

predicted downrange error is less than a certain threshold. This updating scheme has

significant effects on the guidance performance, since it not only updates the reference

trajectory, but also changes the constraints on the tracking effort. Because the iterative

updating algorithm takes onboard computational time, it is only used for shallow entry

with entry duration longer than 300 seconds when the updating of bank reversal times

is not sufficient to improve the guidance performance.

4.2 Reference Trajectory Tracking (RT-mode)

The RT-mode starts when the drag first reaches 0.2 Earth g′s [2]. Initially the pre-

designed reference trajectory is tracked. When the reference trajectory is updated, the



RT-mode switches to track the updated reference. Due to the fact that drag can be

measured accurately onboard, and it is independent of the system model, drag is taken

as the primary variable for the RT-mode. The RT-mode is in the form of the model

predictive control (MPC) [15, 30]. Given an nonlinear system of the form

ẋ = F (x) +G(x, u)

y = C(x)
(4.6)

where x ∈ IR6 is the state vector, u is the control vector and y is the output vector. The

outputs used in the simulation are drag, drag rate and trajectory length, hence y ∈ IR3.

The objective is to track a reference output q(t) by minimizing the performance index

J =
1

2
e(t+ ∆t)TQe(t+ ∆t) +

1

2
u(t+ ∆t)TRu(t+ ∆t) (4.7)

where

e(t+ ∆t) = y(t+ ∆t)− q(t+ ∆t) =


D −Dr

Ḋ − Ḋr

S − Sr


t+∆t

and Q = diag{α1, α2, α3} ∈ IR3×3 is a diagonal positive definite matrix, R ∈ IR

is a positive number and ∆t is the prediction step size. Dr, Ḋr, Sr are the reference

drag profile and trajectory length profile that are stored during the trajectory planning.

Both y(t+ ∆t) and q(t+ ∆t) can be calculated by Taylor series expansion as functions

of y(t), q(t), ∆t and u(t), to the order determined by the relative degrees of the tracked

variables. For drag,

D̈ = a+ b · cosγ (4.8)

where

a =ḊV sinγ
dβ

dh
−Ddβ

dh
(D + gsinγ)sinγ −Dcos2γ

dβ

dh
(g − V 2

r
) +DV 2sin2γ

d2β

dh2
− 2Ḋ

V
(D + gsinγ)

− 2D

V 2
(D + gsinγ)2 − 2DḊ

V
+ 4

Dg

r
sin2γ +

2D

V 2
gcos2γ(g − V 2

r
)−Dcosγ(

2g

V
− V dβ

dh
)Cγ

b =−DLcosγ(
2g

V 2
− dβ

dh
)

(4.9)



For drag and drag rate, we have their relative degrees as η1 = 2 and η2 = 1, corre-

spondingly. For the trajectory length, we have e3 = ∆S = −
∫ t
0

∆D
Dr
V dτ , which gives us

η3 = 3, so we can write the tracking errors as

e1(t+ h) ≈∆D + h∆Ḋ +
h2

2
∆D̈

e2(t+ h) ≈∆Ḋ + h∆D̈

e3(t+ h) ≈∆S − h∆D

Dr

V − h2

2
(
∆Ḋ

Dr
V +

∆D

Dr

V̇ − ∆D

D2
r

V Ḋr)− ...

...− h3

3!
(
∆D̈

Dr

V + 2
∆Ḋ

Dr

V̇ − 2
∆Ḋ

D2
r

+
∆D

Dr

V̈ − 2
∆D

D2
r

V̇ Ḋr −
∆D

D2
r

V D̈r + 2
∆D

D3
r

V Ḋ2
r)

(4.10)

The control input is not optimized, instead, the upper boundaries of the bank angle and

its rate are set as hard constraints. Therefore, we can set R = 0 and the cost function

becomes

J =
1

2

3∑
i=1

αi · e2
i (t+ ∆t) (4.11)

The value of u that minimizes the performance index J is obtained in absence of con-

trol saturation by setting ∂J/∂u = 0[16]. This optimal solution, generated by the first

order necessary condition produces the analytical expression of the input variable. This

closed-form solution saves onboard computational time.

During the RT-mode, three bank reversals are executed based on the reversal times

from the reference trajectory. During each bank reversal, the minimum time reversal,

subject to the bank angle constraints mentioned above, is executed in open-loop fashion.

During the RT-mode, specific energy is the independent variable, which means within

each guidance cycle, the reference value and the actual value of the tracked variables

are compared at a specific energy value.



4.3 Deployment Position Alignment (DPA-mode)

The range-to-go is decreasing as the vehicle approaches the target during the entry. At

a certain Mach number, there is a switch from the RT-mode to the DPA-mode [17], a

generalization of the heading alignment logic used for MSL [2], in order to directly focus

on reducing the target position delivery error. The DPA-mode forces an exponentially

decaying heading error to achieve a better crossrange accuracy, which is similar to the

algorithm implemented in MSL. We define the heading angle error as the difference

between the current heading angle ψ(t) and the desired heading angle ψd(t) that leads

to the target following a great circle arc [17]

e(t) = ψ(t)− ψd(t) (4.12)

The desired heading angle ψd(t) is obtained using

sinψd =
sinφT − cos(Stogo) · sinφ

sin(Stogo) · cosφ
(4.13)

where φT is the target latitude and the vehicle range-to-go, Stogo can be computed by

Eq. (2.23). The equation for the heading dynamics can be approximated by

ψ̇(t) ≈ −L
V cosγ

sinσ (4.14)

Applying the feedback linearization and the exponentially decaying heading errors, we

can get the heading error dynamics

e(t) = e(0) · e−k1t (4.15)

Thus the heading error dynamics become

ė(t) = −k1e(t) (4.16)

By substituting Eq. (4.12) and Eq. (4.14) into Eq. (4.16), we can get the guidance law

becomes

sinσ = −V cosγ
L

[−k1(ψ(t)− ψd(t)) + ψ̇d(t)] (4.17)



Guidance algorithm switched to this heading alignment phase at a later time during

entry, where the atmosphere is significantly denser than the beginning phase. Thus a

focus on lateral control while leaving longitudinal dynamics and altitude uncontrolled

would potentially result in large delivery errors and low deploy altitude. In [30], the

final position alignment takes the altitude control into considerations by analyzing the

sensitivity of the final altitudes to the heading error dynamics and updating the dynam-

ics to achieve higher final altitudes. In the DPA-mode presented in this dissertation, a

different technique is implemented to account for downrange accuracy and the altitude

control is also taken into consideration.

First, the bank angle is constrained within a certain range based on the predicted

downrange errors. At each guidance cycle, a prediction of the final downrange is calcu-

lated using the current state. If the vehicle is in an undershoot position based on the

predicted downrange error, the magnitude of the bank angle will be constrained within

30o. If the vehicle is in an overshoot position, the bank angle would be constrained

within [30o, 90o]. Although the strategy for the overshoot case would potentially de-

crease the final altitude, it effectively avoids large positive downrange errors, and the

final altitude can be guaranteed to be above 6 km by the parachute deployment trigger

logic, which will be introduced in the following section. The second strategy is to dy-

namically choose the switch Mach number based on the downrange error of replanned

trajectory. Since the DPA-mode is implemented after the RT-mode, one important cri-

terion is the switch Mach number at which the DPA-mode is initiated. Due to the fact

that the DPA-mode focuses on lateral control, switching to the DPA-mode too early

might lead to large downrange errors that constraining the bank angle is not enough to

compensate, while switching too late will leave not enough control force to reduce the

crossrange error. Thus an appropriate switching time needs to be chosen depending on

different situations. The strategy used in the simulation is

Mswitch = 4 + ∆DRr[km]/4[km] (4.18)



where Mswitch is the Mach number at which the guidance switches to the DPA-mode

and ∆DRr is the downrange error of the last replanned reference trajectory. If the

replanned trajectory has a large downrange error, it means there is not enough control

force left to lead the vehicle in the current state to the target, even under the nominal

condition. Tracking this inaccurate replanned trajectory would lead to worse perfor-

mance. Instead, the enhanced DPA-mode uses control laws that reduce heading errors

and downrange errors to the actual target in a real-time fashion. An earlier switching

to the DPA-mode would be necessary under this circumstance. On the other hand,

when ∆DRr is small, tracking the replanned trajectory would be sufficient, and it is

not necessary to switch to the DPA-mode too early. In cases like this, a switching Mach

number to the DPA-mode between 4 and 5 could improve the performance at the end

of the entry.

4.4 Parachute Deployment Trigger

The entry phase is terminated when the parachute is deployed. The parachute is al-

lowed to deploy safely when the vehicle state is within the parachute deployment box,

as shown in Fig. 3.1. The guidance is designed to achieve a high elevation landing

with small horizontal errors. Thus those factors need to be taken into account at the

parachute deployment level. The trigger used in the guidance is similar to the velocity-

constrained range triggering strategy from [32], where the deployment is triggered on

the range when the vehicle velocity is below an upper limit Vhigh and above a lower

limit Vlow. In this trigger, instead of using constant upper limit and lower limit as

velocity constraints, we use the right and left boundary of the parachute deployment

box as shown in Fig. 3.1 as two constraints which are transferred from deploy Mach

number and pressure constraints. We also add a hard constraint of minimum altitude

to avoid low deploy altitude. This strategy takes all the concerns for safe deployment

into consideration, and the deploy box can be adjusted once the safety constraints are

changed. The details of the trigger logic are shown in Fig. 4.7.



ẋ = f(x)

Is h ≤ hmin = 6 km or

is the vehicle reaching

the left boundary?

Deploy

(Case B)

Is the vehicle within

the right boundary?

Is Stogo ≤ 1 km ?
Deploy

(Case A)

Yes

Yes
Yes

No

No

No

Figure 4.7: Parachute deployment trigger.

In Fig. 4.7, Stogo is the vehicle range-to-go to the target. It shows that once the

vehicle state is within the right boundary of the parachute deployment box, the trigger

begins to examine its altitude and range-to-go to the target. If the vehicle has a positive

range-to-go within 1 km or a negative range-to-go, the parachute will be deployed, and

the entry phase is terminated. Otherwise, the vehicle keeps flying until the conditions

mentioned above are met. The parachute is forced to deploy when the vehicle altitude

is lower than 6 km even the deploy constraints are not satisfied or when the vehicle

state reaches the left boundary or the deployment box. One kilometer range-to-go to

the target is chosen as the deploy threshold in consideration of achieving high elevation

landings. This value could be adjusted if more accurate horizontal errors are required.

Thus, with this trigger shown in Fig. 4.7, Case A will result in a higher altitude de-

ployment and horizontal error either within 1 km or more overshooting. Case B will

result in undershooting with lower altitude, which is the case that guidance should try

to avoid.



4.5 Multi-mode Guidance Logic

Multi-mode guidance starts with the RT-mode with the pre-designed reference and

drag tracking with a focus on the longitudinal control. During the entry, the PC-

mode is executed three times when the first bank reversal starts, when the second bank

reversal starts and when the second bank reversal is accomplished. In the PC-mode,

only one parameter is updated while the other parameters are adjusted correspondingly.

Once the first two PC-modes are accomplished, the guidance switches to the BR-mode,

while after the completion of the last PC-mode, the guidance switches back to the RT-

mode. The BR-mode is initiated three times, based on the updated bank reversal times.

After each BR-mode, the guidance switches back to the RT-mode. The DPA-mode is

triggered once the Mach number drops below a certain threshold, which is dynamically

determined by the updated reference trajectory. The DPA-mode is terminated by the

parachute deployment. The trigger to deploy the parachute considers the constraints

on the velocity, altitude and horizontal range-to-go. Once the constraints are met, the

parachute is deployed at the earliest time to achieve the high elevation deployment. The

multi-mode guidance operates in a single mode at a time, and each mode is designed

to achieve the two objectives of high elevation landing and small horizontal error using

different strategies.



Chapter 5

State Estimation

In this chapter, we investigate the use of a state estimator to reduce the navigation

error, without requiring additional navigation sensors beyond the IMU. In particular,

the unscented Kalman filter is considered [35]. The controllability and observability

is analyzed to understand the system composed of the dynamics, the control input,

and the measurements. Next the UKF is formulated. The performance of the UKF is

then assessed and compared with that of conventional inertial navigation and a particle

filter.

5.1 Controllability and Observability of the Linearized

Entry Dynamics

The entry dynamics, shown in Eq.(2.3) and Eq.(2.7), can be summarized as a nonlinear

and non-affine system

ẋ = f(x, u)

y = h(x)
(5.1)

By linearizing the model around the reference trajectory, we can get

δẋ = Aδx + Bδu

δy = Cδx
(5.2)

47



where δx = x − xr, δu = u − ur and δy = y − yr are the linearized errors. A =

∂f
∂x
|x=xr , B = ∂f

∂u
|x=xr and C = ∂h

∂x
|x=xr are Jacobian matrices of the dynamic model

and measurement model to the state vector and the input variable, evaluated at the

reference values. The linearized system is controllable and observable at time t0 if and

only if there exist t > t0 and the controllability and observability Grammians, as defined

as

P =
∫ t

t0
eAτBBT (eAτ )Tdτ

Q =
∫ t

t0
(eAτ )TCTCeAτdτ

(5.3)

are nonsingular. Based on the controllability Grammian and observability Grammian,

we would like to consider a basis where the system is balanced, such that we are able

to detect the state variable which is difficult to control and observe. We transformed

the two Grammians through balanced realization.

P̂ = TbalPT
T
bal

Q̂ = T TbalQTbal

(5.4)

where the balancing transformation Tbal can be computed as

P = UUT

UTQU = KΣ2KT

Tbal = Σ
1
2KTU−1

(5.5)

Applying the balancing transformation, we have obtained P̂ = Q̂ = diag(σ1, σ2, ..., σn).

For entry dynamics with x ∈ IR6, we would expect all the six eigenvalues of P̂ are pos-

itive to show full controllability and observability. Simulation testings are conducted

to generate the balanced controllability Grammian (P̂ ) for 200 trajectories, and the

histories of the eigenvalues of P̂ are shown in Fig 5.1.

All the results of the simulations shown in this section are run on a small sample

space of 200 trajectories. Preliminary results have shown that a sampling of 200 trajec-

tories is sufficient to generate similar results with the same conclusion as a large scale



sampling of 1000 trajectories that is used in the assessment of the guidance approach,

as shown in Chapter 7.
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Figure 5.1: Histories of eigenvalues of the transformed controllability Grammians.

Fig. 5.1 shows that the third to the sixth eigenvalues of the Grammians are close

to zeros. Therefore, we can conclude that with the linearized entry dynamics, the four

states φ, V, γ, ψ are, at the same time difficult to reach and observe. Based on the

numerical results, we can conclude that a linear or linearized estimator might not be

capable of inferring the values of the state vector and generating accurate estimates by

using only the measurements of drag and lift accelerations.

5.2 Nonlinear Controllability and Observability

In this section, the nonlinear controllability and observability of the entry dynamics have

been analyzed using the Lie algebra. For the nonlinear and non-affine entry dynamics

ẋ = f(x) + g(x, u) (5.6)



the system is locally controllable if the controllability matrix

C = [G, adFG, adF 2G, ..., adF (n−1)G] (5.7)

where F (x) = f(x)|x=xr + ∂g(x,u)
∂x
|x=xr and G(x) = ∂g(x,u)

∂u
|x=xr with x ∈ IRn has n

linearly independent columns [33], . The notation adFG stands for the Lie bracket of

f and g, which is another vector field defined by

adFG = [F, G] = ∇G · F −∇F ·G (5.8)

and

adFn+1G = [F, adFnG] (5.9)

The nonlinear system is locally observable if the observability matrix

O = [h, adfh, adf2h, ..., adf(n−1)h] (5.10)

has the rank of n [34]. For Mars entry dynamics with a six-dimensional system, the Lie

brackets and Lie derivatives up until the 5th order have to be computed. Calculating

high order Lie brackets is computationally expensive, especially for Mars entry dynamics

which is a highly nonlinear model. Therefore, the quadratic approximations of the Lie

derivatives are employed to reduce the complexity of the computations of controllability

and observability matrices [34]. For the observability matrix, the (n + 1)th order Lie

derivative can be approximated around the current state xr as

adf(n+1)h = adfnh + JnL(x− xr) +
1

2
(x− xr)

THn
L(x− xr) (5.11)

where JnL and Hn
L refer to the Jacobian and Hessian matrix of adfnh at the current

state xr, respectively. Moreover, the term f(x) is linearized as

f = fr + Jf(x− xr) (5.12)

in which fr is the evaluation of f at xr, and Jf is the Jacobian matrix of f at xr. Two

consecutive orders of the Lie derivative have the relationship as

adf(n+1)h = ∇adfnh · f (5.13)



Substituting Eq.(5.11) and Eq.(5.12) into Eq.(5.13), we can get the following equations

Jn+1
L = JnLJf +

1

2
([Hn

L + (Hn
L)T ]fr)

T

Hn+1
L =

1

2
[Hn

L + (Hn
L)T ]Jf

(5.14)

and the observability matrix can be computed as

O = [(J0
L)T , (J1

L)T , (J2
L)T , ..., (J

(n−1)
L )T ]T (5.15)

We can use Eq.( 5.14) to iteratively compute the Jacobian matrix and Hessian matrix

of the nth order Lie derivative, and use the Jacobian matrix as an approximation of the

Lie derivative. The same procedure is applied to the computations of the controllability

matrix. This 2nd order approximation has greatly reduced the computational time.

For entry dynamics with the state vector x ∈ IR6, rank(C) = 6 and rank(O) = 6 is

required for full controllability and observability. Two hundred trajectories are gener-

ated to compute the controllability and observability matrices using the 2nd order ap-

proximations. The results show that the controllability matrix has rank(C) = 6, where

the observability matrix has rank(O) = 5. This concludes that the entry dynamics are

locally controllable, but not completely observable. Given that the observability matrix

has the rank of 5, we can find the non-observable variable by removing a specific col-

umn in this matrix and calculating the rank of the reduced matrix [34]. By eliminating

the ith column in matrix O and observing the change of the rank condition, we have

determined that the non-observable variable is θ, the vehicle longitude.

A system is said to be observable if the current state can be determined in finite time

from the measured quantities. The IMU measurements of drag and lift accelerations,

as shown in Eq.(2.8) are functions of the vehicle altitude and velocity. Both of these

two state variables appear in the dynamics of the entire six state variables. Moreover,

the only non-observable state variable, the vehicle longitude does not influence the

dynamics of any of the state variables. This observability condition indicates that the



other state variables can be inferred from knowledge of its external outputs. Based on

the controllability and observability analysis of the entry dynamics, we conclude that a

state estimator such as the UKF which accounts for the nonlinearity of the dynamics

should be investigated and implemented.

5.3 Unscented Kalman Filter Enhanced Navigation

Scheme

The general unscented Kalman filter propagates the predicted mean and covariance

through an unscented transformation [35] and may produce a more accurate state es-

timate for a system with the nonlinear process and measurement models than the

extended Kalman filter. During entry, the disturbances the vehicle experiences such as

density modeling errors and aerodynamic coefficients uncertainties introduce errors in

the nonlinear entry dynamics, as well as in the nonlinear measurement models of drag

and lift. Thus the entry state is augmented with uncertain parameters and measure-

ment noise as xa = [x̃, w, v], where x̃ = xnav represents the estimated state vector

of the entry vehicle, and w = [∆ρ, ∆CD, ∆CL] represents the uncertain parameters

in the dynamics as process noise. Each of these parameters is modeled as a constant

percentage offset of the nominal value

ρ̃ = ρ(1 + ∆ρ)

C̃D = CD(1 + ∆CD)

C̃L = CL(1 + ∆CL)

(5.16)

v = [δD, δL] represents the measurement noise of drag and lift taken from the IMU.

With the three degree-of-freedom modeling, we have assumed that the IMU drift and

bias are negligible. (They are modeled in the six degree-of-freedom entry dynamics.)

And only the additive white noise contributes to the measurement noise. w and v are

assumed to be independent of each other and normally distributed [22]

E[wkw
T
j ] = Pwδkj, E[vkv

T
j ] = Pvδkj, E[wkv

T
j ] = 0 (5.17)



where Pw and Pv are covariance matrices for the uncertain parameters vector and

measurement noise vector. During each navigation cycle, the augmented state vector

and augmented covariance matrix are constructed as

x̃a
k = E[xa

k] = [x̃Tk 0 0]T

Pa
k = E[(xa

k − x̃a
k)(x

a
k − x̃a

k)
T ] =


Pk

Pw

Pv


(5.18)

Then the sigma points are calculated by the Cholesky decomposition of the covariance

matrix and combination with the mean

χa
k = [x̃a

k x̃a
k +
»

(n+ λ)Pa
k x̃a

k −
»

(n+ λ)Pa
k] (5.19)

where n is the number of state variables, and λ is the scaling factor for the sigma points,

which is calculated as

λ = α2(n+ κ)− n (5.20)

where α and κ are scaling parameters. α determines the spread of the sigma points

and is usually set to a small positive value. It can be tuned based on the propagation

of the state vector. κ is a secondary scaling parameter which is usually set to 0 [35].

The UKF can be separated into two steps as the prediction step and measurement

update. The prediction step is the propagation of the sigma points through the entry

dynamic model

χ̇x
k+1/k = f(χx

k , χ
w
k ) (5.21)

The uncertain parameters are modeled as white noise with zero means, therefore

they are assumed constant during the propagation of the sigma points and their covari-

ance matrix Pw is fixed and will not be updated during each navigation cycle. The mean

state and covariance during the prediction step can be calculated from the propagated



sigma points as

x̃k+1/k =
2n∑
i=0

W
(m)
i χx

i,k+1/k

Pk+1/k =
2n∑
i=0

W
(c)
i [χx

i,k+1/k − x̃k+1/k][χ
x
i,k+1/k − x̃k+1/k]

T

(5.22)

where W
(m)
i , W

(c)
i are weighting coefficients defined as

W
(m)
0 =

λ

n+ λ

W
(c)
0 =

λ

n+ λ
+ (1− α2 + β)

W
(m)
i = W

(c)
i =

λ

2(n+ λ)
, i = 1, 2, ..., 2n

(5.23)

where β is the scaling parameter used to incorporate prior knowledge of the distribution

of x. Then the estimated measurements are calculated by applying the predicted mean

state to the nonlinear measurement model

υk+1/k = h(χx
k , χ

w
k , χ

v
k)

ỹk+1/k =
2n∑
i=0

W
(m)
i υi,k+1/k

(5.24)

Since the uncertain parameters are shown in the nonlinear measurement models, χv
k

is considered in the calculation of the estimated measurements. For the measurement

update, the estimated state vector and covariance matrix are calculated as

Pyy =
2n∑
i=0

W
(c)
i [υxi,k+1/k − ỹk+1/k][υ

x
i,k+1/k − ỹk+1/k]

T

Pxy =
2n∑
i=0

W
(c)
i [χxi,k+1/k − x̃k+1/k][υ

x
i,k+1/k − ỹk+1/k]

T

Kk+1 = PxyP
−1
yy

x̃k+1 = x̃k+1/k + Kk+1(yk+1 − ỹk+1/k)

Pk+1 = Pk+1/k −Kk+1PyyK
T
k+1

(5.25)

Within each navigation cycle, the estimated state vector is propagated and updated

through these two steps.



Using the UKF, the estimation accuracy is expected to be improved in several as-

pects. First, other than purely propagating the estimated state variables, an estimation

of the non-addictive uncertainties represented by χw in Eq.(5.21), which is generated

by the decomposition of Pw, has been integrated into the nonlinear entry dynamics and

measurement models. Second, the sigma points have been propagated with the actual

dynamics without linearizing the dynamics, which improves the filter accuracy. Finally,

the state is updated by the measurements of drag and lift from onboard IMU system.

5.4 Analysis of the Unscented Kalman Filter

5.4.1 Bias Analysis

A bias analysis has been conducted for this UKF-based estimator. An estimator is said

to be unbiased if the expected value of an estimator is equal to the actual value, i.e.,

E(x̃) = x. In order to compute the expectation of different realizations, the simulation

testing of 200 trajectories is implemented. The expectations of each estimated state

variable are calculated and compared with the actual values. The time histories of the

biases, E(x̃i)− xi, i = 1, 2, ...7 are shown in Figs. 5.2 and 5.3.
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Figure 5.2: Time histories of the biases of state variables.
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Figure 5.3: Time history of the bias of trajectory length.

From Figs. 5.2 and 5.3 we can see there are non-zero biases during much of the

trajectory. Except for velocity, the biases of all the state variables exist until the end

of the trajectory, and some of them are increasing along the trajectory. In [36], the

author wrote “From a Bayesian perspective, the principle of unbiasedness is reasonable

in the limit of large samples, but otherwise it is potentially misleading.” Actually,

most Bayesians are rather unconcerned about the unbiasedness of their estimates. One

consequence of the biased estimate is that the Cramer-Rao bound (CRB) may not

accurately reflect the estimation accuracy. Therefore, the CRB of the UKF-enhanced

navigation is computed to verify this conclusion.

5.4.2 Cramer-Rao Bound

The Cramer-Rao lower bound states that for an unbiased estimator, under general

conditions, there is a matrix Pcr such that

P ≥ Pcr (5.26)

which means (P − Pcr) is a positive semidefinite matrix [40]. The CRB matrix Pcr is

defined as

Pcr = −{E(
∂2lnp(y,x)

∂x∂xT
)}−1 (5.27)



where the lnp(y,x) is the measurement log-likelihood function. However, for a biased

estimator, there might be a lower mean squared error than the CRB [40]. We can

compute the CRB using the Fisher information matrix (FIM). The FIM, which is

defined as [40]

J = −P−1
cr (5.28)

can be obtained numerically by the simulation testing using the simultaneous pertur-

bation method [39]. In this section, we only considered the perturbations in vehicle

altitude and velocity. Thus we can define δx = [δh, δV ]T as the perturbation vector,

which is sampled in the same distribution as the initial knowledge error. The FIM is

estimated as the negative average of the numerically computed Hessian matrix

H̄n =
1

2
{δG

2
[δh−1, δV −1] + (

δG

2
[δh−1, δV −1])T}

J = − 1

N

N∑
n=1

H̄n

(5.29)

where

δG = G(x + δx)−G(x− δx)

G(x± δx) =
L(x± δx + δx̃)− L(x± δx− δx̃)

2
· [δh−1, δV −1]

(5.30)

and L(x + δx) = lnp(yk|xk + δx) = −1
2
(yk − ȳk)TP−1

v (yk − ȳk) is the measurement log-

likelihood function where yk is the measurements of drag and lift accelerations given the

state vector x+ δx, and ȳk represents the mean of the measurement vector [40]. δx and

δx̃ are identically independently distributed. The Cramer-Rao bound Pcr can be then

computed using Eq.(5.28). Then the performance of the estimator can be assessed by

comparing the error covariance P of UKF-enhanced navigation with the Cramer-Rao

bound of the state vector P̄ , which can be calculated using the Pcr as

P̄ = (
∂f

∂x
)Pcr(

∂f

∂x
)T (5.31)

where ∂f
∂x

is the Jacobian matrix of the entry dynamics with respect to the perturbation

vector δx. We have again implemented the simulation of 200 trajectories to compute

the numerical approximation of P̄ , and the comparison of P̄ and P is shown in Fig. 5.4.
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Figure 5.4: History of the minimum eigenvalues of (P − P̄ )

Fig. 5.4 shows the history of the minimum eigenvalues of (P−P̄ ), from which we can

see the this UKF-based estimator has shown a smaller variance than the CRB, which

verifies the conclusions in Section 5.4.1 that this estimator for Mars entry dynamics is

biased and not consistent.

This biased UKF estimator is selected as the state estimator for the proposed Mars

entry guidance. As mentioned in Subsection 5.4.1, the estimator bias would not be

considered as a potential factor to degrade the estimation performance. Instead, the

mean squared error (MSE) is usually used to assess the quality of an estimator.

5.4.3 Comparison with Conventional Inertial Navigation (CIN)

The general Kalman filter is constructed by minimizing the mean squared error

MSE =
1

N

N∑
j=1

(ejk)
2 (5.32)

where eji = x̃ji −xji is the estimation error of the ith state variable in the jth simulation

run and N is the number of the samples. A comparison of the mean square errors

of the UKF-enhanced navigation and the conventional inertial navigation is shown in



this subsection. The time histories of the MSE of each state variable, using the same

simulation setup in the previous subsection are shown in Fig. 5.5, where the blue curves

represent the MSE histories of the CIN and the red ones represent the MSE histories

of the UKF-enhanced navigation.

Figure 5.5: Comparison of mean squared errors of CIN and UKF-enhanced navigation.

From Fig. 5.5 we can see that with the CIN, the MSE of the longitude, latitude,

flight path angle and heading angle are increasing along the trajectory. The MSE of

the altitude stays rather constant. The MSE of the velocity is reduced to a small value

at the end of the trajectory, but the errors in the middle of the trajectory impact the

estimation of other state variables, for that the velocity contributes to their dynamics.

Furthermore, we can see the UKF-enhanced navigation reduces the mean squared er-

rors of all the state variables. The improvement is particularly significant in the vertical

plane.

In order to determine the effects of the estimation error in one state variable on



other state variables, the correlations between the estimation of several state variables

with UKF-enhanced navigation are computed. The correlation coefficient between two

estimated state variables x̃i and x̃j are defined as

ρx̃i,x̃j
=

cov(x̃i, x̃j)

σx̃i
σx̃j

(5.33)

The correlation coefficients of the altitude and velocity and the altitude and trajectory

length are computed in particular to assess the correlations between the state variables

that define the vehicle vertical and horizontal performance. The average correlations

of the 200 trajectories are shown in Fig. 5.6, from which we can see that both mean

correlation coefficients stay within the range of 0 to 0.2. This indicates that there are

positive correlations between (r, V ) and (r, S). And as the entry vehicle approaches

the target, the correlations are increasing. This correlation between the horizontal and

vertical state variables indicates that the estimation error in one state variable can

affect the error of the other state variable. On the other hand, these state variables

have weak correlations, which implies that the estimation error in one state variable

would not have significant effects on the other one.
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5.4.4 Comparison with the Particle Filter Estimator

Particle filtering is a general Monte Carlo method based on particle representations of

the probability densities. Similar to the UKF, these points are all propagated through

the nonlinear dynamics. Therefore, this filter has been shown to give better performance

than a standard EKF for some problems [41]. The general particle filter algorithm

is shown in Table 5.1, where Ns is the number of particles, and each particle xi is

associated with a weight wi. q(xik|xik−,yk) is called the importance density. And

usually we choose the importance density to be the prior, wi
k = wi

k−1 · p(yk|xik) [41].

This is the most common choice of importance density since it is intuitive and simple to

implement. There are many other densities that can be used, and choosing the correct

one is a crucial design step in the design of a particle filter.

Table 5.1: Particle filter algorithm

· For i=1:Ns

-Draw xik = p(xk|xik−1)

-Assignment weight wi
k = wi

k−1 ·
p(yk|xi

k)p(xi
k|x

i
k−1)

q(xi
k
|xi

k−1
,yk)

·End for

·Normalize the weight wi = wi/
∑Ns
i=1 w

i
k

·Calculate the effective sample size N̂eff = 1∑Ns
i=1

(wi
k
)2

·If N̂eff < Nt

-Resampling using SIR

·End if

In the algorithm, N̂eff , the effective sampling size is approximated as the measure-

ment of the filter degeneracy. Whenever a significant degeneracy is observed, i.e., when

N̂eff is smaller than some threshold (Nt), a resampling is initiated to reduce the effects

of degeneracy.

The basic idea of resampling is to eliminate particles that have small weights and to



concentrate on particles with large weights. A set of new particles is selected based on

the sampling importance resampling algorithm, as shown in Table 5.2. This algorithm is

simple to implement since it only requires information from p(yk|xik). This also implies

the particles are updated without directly taking into account the information from

the measurements yk. A small scale simulation testing is implemented to assess the

Table 5.2: Sampling importance resampling (SIR) algorithm

·Construct the cumulated density function (CDF) of the weights

·For i=1:Ns

-Generate a uniformly distributed random number u ∼ U [0, 1]

-Find the first index j in the CDF of the weights that has a larger probability than u

-Select the jth particle as one of the new samplings

·End if

·wi = 1/Ns

performance of this particle filter estimator mentioned above in Mars entry guidance.

The preliminary results have shown some improvement in reducing navigation errors,

compared with the conventional inertial navigation. However, several techniques in

the filter design need to be explored before it can generate better performance. As

mentioned above, the selections of the importance density function and resampling

algorithm need to be tuned to match the special structure of the entry dynamics. A

more detailed assessment of the particle filter will be conducted in the future work.



Chapter 6

Guidance and Navigation Testing

Conditions

In the next chapter, the performance of the proposed entry guidance and navigation

strategy is assessed. In the present chapter, we describe the sensor, modeling, and

initial entry state errors that are considered in the simulation. Also the test cases are

given and the entry simulation procedure is indicated.

6.1 Entry Conditions and Targets

The Viking mission, launched in 1975, developed the 70-degree sphere-cone aeroshell

[42]. A scaled variant of the aeroshell has been employed on every subsequent Mars

landing mission due to its relatively high hypersonic drag coefficient. The MSL-type of

entry vehicle structure is designed for 15-g peak loads during entry [2]. Acceleration

loads are primarily determined by the initial entry flight-path angle. The vehicle will

experience higher acceleration loads for steeper entry. A comparison of g-loads for

entry flight path angles γ0 = −120 and γ0 = −14.150 are shown in Fig. 6.1. Except

for the entry flight path angle, both trajectories are generated under the same nominal

conditions using the high elevation trajectory planner. It shows that the steep entry,

employed in MSL, results in a higher peak g-load. Furthermore, the entry flight-path

63



angle has a similar impact on the heat rate. For future crewed entry vehicles, a smaller

g-load limit of 5-g is expected. Therefore, a shallow entry is one of the possible strategies

for future Mars missions to avoid exceeding the constraints on acceleration load and

heat rate. On the other hand, steeper entries result in shorter trajectories with better

landing accuracy. Until today, the U.S. robotic Mars missions have used different entry

flight path angles from −12o to −17o, with ballistic coefficients varying from 64 to 142

kg/m2 [43]. In this dissertation, the guidance approach is assessed for an MSL-type

of entry vehicle with the ballistic coefficient varying around 135 kg/m2, for a range of

entry flight path angles {−12o, −13o, −14o, −15o}.
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Figure 6.1: g-loads performance for different entry conditions

For each initial flight path angle, with the other initial conditions fixed and the

assumed vehicle model, there is a reachable set of potential parachute deployment states

[29]. The longitude-latitude boundary points for the surface projection of this reachable

set are generated by maximizing or minimizing the final longitude and latitude. For a

given [θ, φ] pair, there is more than one feasible trajectory within the reachable set.

We determine the maximum achievable altitude using GPOPS− II [44]. For each entry

condition mentioned above, the corresponding reachable set is generated. The results

are shown in Fig. 6.2.
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(a) Reachable set for γ0 = −12o
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(b) Reachable set for γ0 = −13o

650 700 750 800 850 900 950 1000 1050

Downrange [km]

-80

-60

-40

-20

0

20

40

60

C
ro

ss
ra

ng
e 

[k
m

]

7

7

7
7

7

77

8

88

8

8

8
8

88

9

9

9

9
9

9

9
10

10

10

10

10

11

11

11

11

12

12

12

12

13

13

13

14

14

14

7

8

9

10

11

12

13

14

A
lti

tu
de

 [k
m

]

(c) Reachable set for γ0 = −14o
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(d) Reachable set for γ0 = −15o

Figure 6.2: Reachable sets for four entry flight path angles.

Fig. 6.2 shows the boundary points in downrange and crossrange pairs (DR, CR),

as defined in Section 2, for four entry flight path angles, and the maximum achievable

altitude contours are indicated. The corresponding velocities are compatible with the

parachute box constraint. By comparing these four reachable sets, we can see that most

feasible trajectories are much longer for shallow entries than for steep entries. And from

the shallow entry to steep entry, the size of the reachable set decreases. For the entry

condition with γ0 = −15o, the feasible downrange only varies within 200 km.



The nominal MSL trajectory has a crossrange of -5 km. The targets for the different

flight path angles are chosen with the same crossrange. Furthermore, the target location

should not be too close to the edge of the reachable set. Otherwise, there would be

the possibility of the target being unreachable due to modeling errors. Therefore from

each reachable set, the crossrange is fixed at -5 km, and a downrange with a relatively

high elevation is chosen as the target point. The target downrange and crossrange for

the four entry angles are shown in Table 6.1. Fig. 6.3 shows a comparison between

two trajectories in the longitude and latitude plane with γ0 = −12o and γ0 = −14.15o.

The lengths of these two trajectories are 914 km and 755 km, and the durations of

the trajectories are 321 s and 285 s, correspondingly. Therefore we can see the shallow

entry results in a much longer trajectory.
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Figure 6.3: Trajectories with γ0 = −12o and γ0 = −14.15o

Table 6.1: Targets for different entry conditions

Entry flight path angle γ0 = −12o γ0 = −13o γ0 = −14o γ0 = −15o

Target downrange[km] 900 750 680 740

Target crossrange[km] -5 -5 -5 -5

Maximum final altitude[km] 13.8 14.2 14.9 14.5



6.2 Simulation Flow

Combining the actual state, estimated state, uncertain parameters and measurement

noise vector, the final state variable is defined as Xaug = [x, x̃, w, v]1×17, and

x̃ = [r̃, θ̃, φ̃, Ṽ , γ̃, ψ̃, S̃] represents the estimated state vector. The nominal initial

state is disturbed by control errors and knowledge errors

x0 = x0,nominal + ∆x0,control

x̃0 = x0 + ∆x0,knowledge

X0,aug = [x0, x̃0, 01×3, 01×2]

During entry, the IMU measures the drag and lift accelerations with white noise

D̃ = D + δD

L̃ = L+ δL

where D and L are the actual drag and lift accelerations. The guidance algorithm

described in Chapter (3) operates on the measurements and the current state estimation

to generate the commanded bank angle σc

arg min
cosσ

J = f(x̃, D̃, L̃)

Both of the actual state and the estimated state are integrated simultaneously

ẋ = f1(x, D, L, σc(x̃))

˙̃x = f2(x̃, D̃, L̃, σc(x̃), εo)

where f1 represents the entry dynamics with perfect onboard knowledge, as shown in

Eq.(2.3) and Eq.(2.7), f2 represents the entry dynamics with attitude initialization er-

rors εo, as shown in Eq.(2.3) and Eq.(2.9). The navigation frequency, which is dictated

by the IMU measurement frequency, is usually higher than guidance frequency. Within

each guidance cycle, there are multiple estimation cycles to generate estimates with

more accuracy.



At parachute deployment, which is considered the end of the entry phase, the vehicle will

have the actual final state xf and the estimated final state x̃f . Substituting them into

Eq.(2.24), we obtain the actual horizontal error (DR,CR) and the estimated horizontal

error (D̃R, C̃R), and the estimated horizontal error is the one of interest regarding the

guidance performance. The simulation flow is shown in the following chart

Initial state X0,aug

Integration of EoM

Ẋaug = f(Xaug, σc)

IMU measurements

of drag and

lift (D̃, L̃)

State estimation

using UKF

Are parachute

deployment con-

ditions satisfied?

Guidance algo-

rithm (MPC,

Final Position

Guidance, etc.)

Deploy parachuteNo Yes

σc

6.3 Simulation Environment Setup

Guidance performance is assessed on an MSL-type vehicle, with reference area s =

15.9 m2 and mass m = 2804 kg. The nominal aerodynamic coefficients profiles are

shown in Fig. 6.4. It shows the lift-to-drag ratio of a typical MSL-type vehicle is in the

range from 0.24 to 0.31.

During the RT-mode, bank angle and its derivatives are constrained by σmax =

90 deg, σ̇max = 20 deg/s and σ̈max = 5 deg/s2. The initial entry state, x0,nominal, used

for nominal conditions of the numerical results isï
r0 θ0 φ0 V0 γ0 ψ0

òT
=
ï

3520km −90.07o −43.90o 5.505km/s γ0 4.99o
òT

(6.1)

Three main contributors of modeling errors implemented in the simulation are at-
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Figure 6.4: Aerodynamic coefficients profiles.

mospheric density modeling errors, aerodynamics coefficients uncertainties and initial

delivery errors. A high-fidelity atmosphere model, the Mars Climate Database (MCD)

is implemented in the simulation. The MCD generates disturbance profiles in a com-

bination of large-scale and small-scale variability models. Large-scale variability model

uses randomly chosen sets of Empirical Orthogonal Functions, which represent envi-

ronmental quantities with larger variances that are extracted from the datasets over

several Martian years. The small-scale variability model is based on the propagation of

vertical gravity waves. The gravity wavelength is set as a fixed number for each simula-

tion and in total follows a uniform distribution within the range from 2 km to 30 km to

include all the possibilities. One thousand profiles are collected at the target location

at a fixed local time of a specific season when Ls = 0, where Ls is the Martian solar

longitude. Boundaries of one thousand profiles of the density disturbances are shown

in Fig. 4.4. One may use the MCD model by setting a different time or season for a

specific mission once the mission date is chosen, and the resulting disturbances might

be smaller or larger than the disturbances shown in Fig. 4.4. In this model, we have

generated the density disturbances under the average Martian atmospheric conditions,

which show similar distributions as the ones generated using the Mars-GRAM 2010 [45].

The aerodynamic coefficient uncertainties used in the simulation are constant during

each entry simulation. Since varying errors are considered in the density disturbances,



the total knowledge errors for each trajectory are the combination of constant errors and

a varying error. Drag and lift coefficients for one thousand trajectories are generated

with Gaussian distributions [45]

∆CD ∼ N(0, σ), 3σ = 10%

∆CL ∼ N(0, σ), 3σ = 10%
(6.2)

The initial control errors(x0,control) are shown in Table 6.2 with their 3σ values. They

are also generated with Gaussian distributions. Since the entry point is defined by the

vehicle reaching a certain altitude, the initial control error for altitude is set as zero.

Table 6.2: Entry state delivery errors.

∆x0 ∆r0 ∆θ0 ∆φ0 ∆V0 ∆γ0 ∆ψ0

3σ 0 0.3(deg) 0.03(deg) 3(m/s) 0.15(deg) 0.2(deg)

When navigation errors are considered, three more possible errors are included in the

simulations. For initial knowledge errors x0,knowledge, only initial position and velocity

errors are considered [46]

∆r0,knowledge ∼ N(0, σr), 3σr = 2 km

∆V0,knowledge ∼ N(0, σV ), 3σV = 1.5 m/s

Attitude initialization error is propagated through the entire trajectory and would result

in inaccurate measurements within each navigation cycle, and thus has a significant

effect on the final horizontal errors. The error is set as ε = 0.25o(3σ), the maximum

error to meet the MSL requirement [32]. IMU measurement noises for drag and lift

are generated by Gaussian distribution and smoothed by a low-pass filter with a time

constant of one second

δD ∼ N(0, σD), 3σD = 3%

δL ∼ N(0, σL), 3σL = 3%



Statistical Analysis Approach

At the entry interface, all the errors including the initial control error, initial knowl-

edge error and IMU attitude initialization error are generated following the multivariate

normal distribution, where Latin hypercube sampling is implemented to generate the

overall initial position distribution. During the entry, modeling errors and the IMU

measurement errors are integrated into the entry dynamics. At the parachute deploy

point, the delivery requirement is considered satisfied if 99% of the cases satisfy it.

Simulation testing of 1000 trajectories is run for each initial flight path angle. During

the simulation, guidance frequency is set at 1 Hz [22]. The nominal sampling rate of

the measurement data is 200 Hz [27]. Several navigation frequencies of 200 Hz, 100 HZ

and 10 Hz are tested in the simulation testing.

6.4 Simulation of Six Degree of Freedom Entry Dy-

namics

The simulation setup of the 6-DOF entry dynamics is shown in this section. The pre-

liminary simulation results are not shown in Chapter 7. Further assessment is required

to generate reasonable results.

When considering the 6-DOF entry dynamics, where the vehicle attitude is included,

simulations using Eqs. (2.10)-(2.14) are implemented. In this case, several errors sources

from by IMU measurements are considered. The measurements from IMU gyros and

accelerometers are generated by adding the sensor errors to the nominal values as

ω̃ib = (I + Sg +Mg)ωib +Bg +Wg

f̃b = (I + Sa +Ma)fb +Ba +Wa

(6.3)

Sg, Mg, Bg, Wg are the errors due to the scale factor, misalignment, bias stability and

white noise of the gyros. And Sa, Ma, Ba, Wa are the errors due to the scale factor,



misalignment, bias stability and white noise of the accelerometers.

The IMU configuration is modeled as the Honeywell Miniature Inertial Measurement

Unit (MIMU) used on the Mars 2005 entry vehicle. The sensor parameters are listed

in Table 6.3 [47]. The scale factor errors, misalignment errors, and bias stability errors

Table 6.3: Honeywell MIMU parameters (σ)

Scale factor Misalignment Bias stability White noise

Accelerometer 175ppm 5ppm 0.1mg 10µg

Gyro 5ppm 5arcsec 0.01o/hr 0.001o/
√
hr

are modeled as zero-mean, Gaussian-distributed random constants with standard devi-

ations shown in Table 6.3. White noise is modeled as a zero-mean, Gaussian-distributed

random walk

Wa(t+ δT ) = Wa(t) + ε (6.4)

where ε ∼ N(0,Σ), and Σ = diag(10µg) for the accelerometers and Σ = diag(0.001o/
√
hr)

for the gyros. δT is the navigation cycle period.



Chapter 7

Guidance and Navigation

Performance

7.1 Guidance Performance with Perfect Onboard

Knowledge

7.1.1 Reference Tracking Guidance (RT) Performance

The RT-mode is first tested under disturbed conditions with MPC as the only controller.

One thousand cases are tested using the control laws introduced in Chapter 4.1-4.2.

The RT performance is shown in Figs. 7.1 and 7.2. Fig. 7.1 shows the profiles for

bank angle, bank angle rate and bank angle acceleration, from which we can see all the

profiles satisfy their constraints. Fig. 7.2(a) shows the deployment footprint distribution

in the longitude-latitude plane. With only the RT-mode, the longitude and latitude

errors can be quite large under disturbed conditions. Fig. 7.2(b) shows the ground

tracks of the trajectories. It shows that a number of the trajectories do not converge

to the target due to large crossrange errors. This is due to the fact that the RT-mode

mainly focuses on longitude. Although bank reversals are executed during the RT-

mode to reduce the crossrange error, the reversal times from the pre-designed reference

73



trajectory may not be appropriate for disturbed conditions. Fig. 7.2(c) presents the final

altitude distribution with the parachute deployment box. Although all the constraints

are satisfied, some trajectories end with low altitude around 6 km.
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Figure 7.1: Bank angle profile of the RT.
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Figure 7.2: RT performance under disturbances.

7.1.2 Reference Tracking with Deployment Position Alignment

Guidance (RTA)

Performance of the guidance with both the RT-mode and the DPA-mode is shown

in Fig. 7.3. Fig. 7.3(a) and Fig. 7.3(b) shows that the crossrange errors are greatly



reduced during the final phase of the entry due to lateral control. However, Fig. 7.3(a)

still shows significant downrange errors. Furthermore, a number of trajectories end with

undershooting downrange errors, which results in trajectories with final altitude around

6 km, where the parachute is forced to deploy. Due to the large disturbances and control

saturations, vehicles with low lift-to-drag ratio do not have sufficient control authority

to adjust the trajectory to follow a fixed pre-designed reference trajectory. This implies

that with only the RT-mode or the combination of the RT-mode with DPA-mode, the

required landing accuracy cannot be guaranteed. Hence, the next investigation focuses

on the impact of updating the reference trajectory during entry.
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Figure 7.3: RTA performance under disturbances.

7.1.3 Reference Tracking, Predictor-Corrector and Deployment

Position Alignment Guidance (RUTA)

The complete guidance strategy with the RT-mode, the PC-mode and the DPA-mode

is tested in this section. The results of updating one parameter using the golden section

method and 3 parameters using the Nelder-Mead method in the PC-mode are compared

in Figs. 7.5, 7.4 and Table 7.1. From Figs. 7.5 and 7.4, ground track of trajectories

and the footprint show the downrange and crossrange are greatly reduced compared

with the RT and RTA guidance algorithms, and most of the trajectories reach a high



elevation at the parachute deployment level around 8 km-12 km.

Table 7.1 shows that 99% of the entry trajectories of the RUTA of different updating

strategies. By comparing the sub-figures of Figs. 7.5 and 7.4 and the statistical results

in Table 7.1, it concludes that updating one parameter is sufficient to achieve the

desired performance with high final altitudes and accurate horizontal footprint; 99%

of the entry trajectories are guaranteed to have a downrange error within ±2.0 km,

crossrange error within ±0.3 km and final altitude above 6.9 km. In particular, the

crossrange error is rather smaller than that of RUTA with updating 3 parameters.

As stated in Section 4.1.2, the Nelder-Mead optimization method requires well-chosen

initial values. During each execution of the PC-mode, a poorly chosen set of initial

values might not converge to a local minimum. The large crossrange error shown

in Table 7.1 has verified this statement in that bank reversal times mainly control the

lateral performance. Therefore, one-parameter updating is selected as the strategy used

in the PC-mode, and is implemented in the following simulations. The performance of

the proposed guidance strategy can be adjusted by choosing different range criterion

to trigger the parachute deploy to trade off between deploy elevation and horizontal

accuracy, to meet the objectives a particular mission.

Table 7.1: Statistical results of RUTA from the simulation testing

99% Trajectories Downrange Error(km) Crossrange Error(km) Final Altitude(km)

updating 3 parameters [-1.98, 2.63] [-3.39, 0.12] [7.1, 11.3]

updating 1 parameter [-1.99, 1.76] [-0.27, 0.16] [6.9, 12.1]

7.1.4 Comparison of the Different Guidance Strategies

The comparison of the three guidance strategies (RT, RTA and RUTA) in both the

horizontal plane and vertical plane are shown in Figs. 7.6 and 7.7. This comparison

shows that the complete guidance algorithm with the RT-mode, the PC-mode and the
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Figure 7.4: RUTA performance with optimizing three parameters under disturbances.

DPA-mode significantly improves the final performance by reducing the radius of the

horizontal circle to 2 km and increasing the deploy elevations of 99% trajectories to

be greater than 8 km. This performance implies that, under the assumption of perfect

knowledge of onboard state variables, the landing site elevations up to 2 km can be

achieved by the multi-mode guidance.
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Figure 7.5: RUTA performance with optimizing one parameter under disturbances.

7.2 Delivery Performance with Navigation Errors

In this section, navigation errors including initial knowledge errors, attitude initializa-

tion errors and measurement noise are considered in the entry guidance assessment.

The overall simulation environment includes all the disturbances mentioned in Section

6.3. Two navigation schemes, the conventional inertial navigation and UKF-enhanced

navigation are compared regarding the parachute deployment performance of the entry

vehicle. Based on the results of the test of different navigation frequencies, the final
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navigation frequency is set at 10 Hz to save the computational time, given that a larger

frequency does not improve the guidance performance.

7.2.1 Guidance with Conventional Inertial Navigation (RUTA-

CIN)

The RUTA approach is first assessed with conventional inertial navigation for the four

entry flight path angles mentioned in Section 6.1, considering all the disturbances de-

scribed in Section 6.3.
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Figure 7.8: RUTA-CIN performance for γ0 = −15o

Figures. 7.8 and 7.9 present that the total delivery errors for steepest entries with

γ0 = −15o and γ0 = −14o are almost within 1 km. For these steeper entries, the entry

trajectories are shorter in duration and there is less time for the navigation errors to

grow. Thus the vehicle final performance continues to meet the delivery requirements for

the entire range of disturbances considered. The RUTA-CIN strategy is compensating

effectively for the disturbances, and the chute deploy trigger effectively terminates most

of the estimated states with small horizontal errors. The horizontal errors for the
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Figure 7.9: RUTA-CIN performance for γ0 = −14o

actual states are larger than those of the estimated states due to the navigation errors.

However, the deviations between the actual states and the estimated states are less

than 3 km due to the short trajectories of steep entries. Figs. 7.8(a) and 7.9(a) show

that the radii of both circles of deployment locations are smaller than 4km. Figs. 7.8(b)

and 7.9(b) show the cumulative distributions of the deployment altitudes, from which

we can see the final altitudes of all the actual states and the estimated states are above

the minimum deploy boundary of 6 km. This deploy altitudes performance is desired for

the landing sites with elevations higher than 0 km MOLA, which satisfies the objective

of high elevation landing missions. Furthermore, for γ0 = −15o and γ0 = −14o, the

99% trajectories are terminated at elevations above 7 km and 7.5 km correspondingly,

and these two minimum deploy altitudes would guarantee the landing elevations above

1 km and 1.5 km MOLA, which are the desired performance for high elevation landings.

Figs. 7.10 and 7.11 show the RUTA-CIN performance of two shallow entries with

γ0 = −13o and γ0 = −12o. From Figs. 7.10(a) and 7.11(a), we can see that the circles of

deployment locations are larger than those for the steeper entries. The horizontal errors

can be as large as almost 30 km for the shallowest entry with γ0 = −12o. Furthermore,
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Figure 7.10: RUTA-CIN performance for γ0 = −13o
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Figure 7.11: RUTA-CIN performance for γ0 = −12o

significant deviations are shown between the actual states and the estimated states.

The deviations are particularly large in the altitude. Though the estimated states are

terminated by the chute deploy trigger to be above the 6 km, the actual deployment

altitude could be as low as 2 km due to the deviations between the actual and the

estimated states, as shown in Fig. 7.10. These low deployment altitudes will not leave

enough timeline for the subsequent powered descent and landing phases, and lead to



mission failure.

7.2.2 Guidance with UKF-enhanced Navigation (RUTA-UKF)

The RUTA guidance with UKF-enhanced navigation, henceforth referred to as RUTA-

UKF, for onboard state estimation during the simulations for shallow entries with γ0 =

−13o and γ0 = −12o. The following figures show the overall performance of these two

scenarios.
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Figure 7.12: RUTA-UKF performance for γ0 = −13o

7.2.3 Comparison of the CIN and UKF-enhanced Navigation

Figs. 7.12 and 7.13 show the RUTA-UKF performance for the two shallow entries with

γ0 = −13o and γ0 = −12o. Compared with Figs. 7.10 and 7.11, the horizontal errors for

both cases are significantly reduced. Fig. 7.14 presents the comparisons between the

CIN and the UKF-enhanced inertial navigation, showing the mean deployment point

and the 99% confidence covariance ellipses for the actual and the estimated states for

these two entry scenarios. These two figures indicate the improvement of the UKF-
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Figure 7.13: RUTA-UKF performance for γ0 = −12o

enhanced navigation in two aspects. One aspect is that the deviations between the

actual states and the estimated states have been reduced due to the UKF. The other

aspect is that the horizontal errors are reduced, compared with those of the CIN. Since

the state estimation has reduced the navigation errors, the total delivery errors are closer

to the guidance errors. The improvement of the RUTA-UKF approach is particularly

significant in the deployment altitude distributions. From Figs. 7.12(b) and 7.13(b) we

can see that the actual states and the estimated states have similar cumulative distribu-

tions. For γ0 = −13o, all the trajectories are terminated by the parachute deployment

above 6 km. For γ0 = −12o, the trajectories are terminated at altitude above 6 km for

99% tested cases.

The simulation results of the multi-mode guidance and navigation system for the 4

entry flight path angles are summarized in Table 7.2. This table concludes that using

RUTA-CIN, landing elevation up to 1.5 km MOLA is achievable for the MSL nominal

entry at γ0 = −14o; for γ0 = −15o , 1.0 km elevation is achievable. Using RUTA-

UKF, landing elevation up to 0 km MOLA is achievable for the shallower entry with.

γ0 = −13o and γ0 = −12o. With RUTA-CIN, horizontal accuracy within 10 km can be



met for γ0 = −15o and γ0 = −14o , but not for the shallower entries, while RUTA-UKF

meets the horizontal accuracy within 10 km for γ0 = −13o and γ0 = −12o . For 1-2

km elevation landing, as required to access more of the southern highlands, further

improvement in the RUTA-UKF algorithms, or the addition of navigation sensors,

would be required.
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Figure 7.14: Performance comparison of RUTA-CIN and RUTA-UKF for γ0 = −12o

and γ0 = −13o

The shallowest entry with γ0 = −12o results in a deployment circle with radius

around 10 km. This performance, though satisfies the horizontal accuracy requirement

mentioned in Chapter 3, may not be accurate enough for future missions with higher

requirements. For the future Mars landing missions such as crewed missions, a smaller

parachute deployment error ellipse would be required. Some missions also require pin-

point landings with landing accuracy of sub-kilometers [50]. Furthermore, the guidance

proposed in this dissertation is designed to achieve a landing elevation above 0 km. Fu-

ture missions may require landing elevations above 1 km or 2 km. These requirements,

though not addressed in this dissertation, are the objectives for the future research.



Table 7.2: Performance comparison of RUTA-CIN and RUTA-UKF

Max Horizontal Delivery

Error [km]

Max Deploy

Altitude [km]

Max Site

Elevation [km]

γ0 = −15o

RUTA-CIN 3.7 7.0 1.0

γ0 = −14o

RUTA-CIN 3.0 7.5 1.5

γ0 = −13o

RUTA-CIN 15.6 3.3 -3.3

RUTA-UKF 4.3 6.1 0.1

γ0 = −12o

RUTA-CIN 32.6 2.6 -4.6

RUTA-UKF 9.9 6.0 0.0

In general, two approaches can be explored to further improve the current guidance

performance. First, different configurations of entry vehicles from MSL could be de-

signed which allow for higher limits of peak g-load and heat rate, such that a steep

entry is a feasible entry condition. In this case, the proposed guidance algorithm re-

quires further verification in order to generate accurate landing performance for each

new configuration. Second, if a shallow entry is indeed required due to trajectory con-

straints, the guidance and navigation strategy would need to be further improved to

achieve better performance. Some recent research work has been focusing on adding

extra speed reduction capabilities to the entry vehicle such as the Supersonic Inflat-

able Aerodynamics Decelerator (SIAD) [48] or the Hypersonic Inflatable Aerodynamics

Decelerator (HIAD) [49]. With additional means of reducing the speed of the entry



vehicle, the guidance algorithm would have more control over the horizontal accuracy.

There would be an additional entry phase requiring an entry guidance component to

be developed and integrated into the overall strategy.



Chapter 8

Conclusions

A guidance and navigation approach has been developed and tested to achieve accu-

rate landing at higher elevation sites on Mars. The proposed guidance algorithm which

combines the RT-mode, the BR-mode, the PC-mode and DPA-mode is able to deliver

the entry vehicle to the maximum deploy altitude of 2 km with horizontal accuracy

within 2 km, under the assumption of perfect knowledge of onboard state variables.

When navigation errors are considered, in order to achieve the high deploy elevation

above 6 km and the total delivery error less than 10 km, the guidance approach was

further combined with a navigation scheme. The UKF was selected as the state estima-

tor based on the observability analysis of the entry dynamics. The combined guidance

and navigation algorithm has been assessed by simulation testing that accounted for all

the significant sources of error. A range of entry flight path angles was selected to in-

clude both shallow and steep entries, where shallow entry is of interest for lowering the

maximum acceleration and peak heat rate for which the entry vehicle has to be designed.

Results from the simulation testings have shown that for steep entries, the guidance

algorithm with the conventional inertial navigation is capable of generating trajectories

with the landing elevations up to 1 km for 99% cases and horizontal errors within

4 km. For shallow entries with longer trajectories, the UKF-enhanced navigation is
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necessary to obtain estimations of onboard state variables and significantly improves

the final performance by achieving the landing elevations up to 0.1 km and horizontal

errors within 10 km. In conclusion, the combined multi-mode guidance and navigation

approach has achieved the two objectives of high elevation landing up to 0 km MOLA

and deploy circle radius smaller than 10 km for an MSL-type of entry vehicle.
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