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Abstract 

A supersaturated design is a design whose run size is not enough for estimating all the main effects. It 

is commonly used in screening experiment, where the goal is to identify sparse and dominant active 

effects with low cost. In this paper, we study a variable selection method via Dantzig selector, 

proposed by Candes and Tao (2007), to screen active effects. A graphical procedure and an automated 

procedure are suggested to accompany with the method. Simulation studies show that this method is 

effective over the existing data analysis methods in the literature. 
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1. Introduction 

 As science and technology have advanced to a higher level nowadays, 

investigators are becoming more interested in and capable of studying large-scale 

systems. Typically these systems have many factors that can be varied during design 

and operation. The cost of probing and studying a large-scale system can be extremely 

expensive. Building prototypes is time-consuming and costly, even using the best 

computer system with the best algorithms. To address the challenges posed by this 

technological trend, research in experimental design has lately focused on the class of 

supersaturated designs for its run size economy and mathematical novelty. 

 The construction of supersaturated designs dated back to Satterthwaite (1959) 

and Booth and Cox (1962). The former suggested the use of random balanced designs 

and the latter proposed an algorithm to construct systematic supersaturated designs. 

Many methods have been proposed for constructing supersaturated designs in the last 

15 years, for examples, among others, Lin (1993, 1995), Wu (1993), Nguyen (1996), 

Cheng (1997), Li and Wu (1997), Tang and Wu (1997), Fang et al. (2000), Butler et al. 

(2001), Bulutoglu and Cheng (2004), Liu and Dean (2004), Xu and Wu (2005), 
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Georgiou et al. (2006), Ai et al. (2007), Bulutoglu (2007), Liu, Liu and Zhang (2007), 

Liu, Ruan and Dean (2007), Ryan and Bulutoglu (2007) and Tang et al. (2007). 

A common application of supersaturated designs is the screening experiment. 

There are usually a large number of factors to be investigated in the screening 

experiments, but it is believed that only a few of them will be active, or explicitly 

speaking, have significant influence on the response. This phenomenon is commonly 

recognized as effect sparsity (Box and Meyer 1986, Wu and Hamada 2000 section 

3.5). The purpose of screening experiments is to identify the active factors correctly 

and economically. The inactive factors will be discarded, while the active factors will 

be investigated further in some follow-up experiments. Supersaturated designs are 

particularly useful in the screening experiments due to their run-size economy (Lin 

1999). 

Some analysis methods were developed in recent years. Lin (1993) used stepwise 

regression for selecting active factors. Chipman et al. (1997) proposed a Bayesian 

variable-selection approach for analyzing experiments with complex aliasing. Westfall 

et al. (1998) proposed an error control skill in forward selection. Beattie et al. (2002) 

proposed a two-stage Bayesian model selection strategy for supersaturated 

experiments. Li and Lin (2002, 2003) proposed a method based on penalized least 

squares. Holcomb et al. (2003) proposed contrast-based methods. Lu and Wu (2004) 

proposed a modified stepwise selection based on an idea of staged dimensionality 

reduction. Zhang et al. (2007) proposed a method based on partial least squares. 

 In this paper, we consider searching active factors in the supersaturated designs 

via Dantzig selector, a new estimator proposed by Candes and Tao (2007). The 

Dantzig selector chooses the best subset of variables or active factors by solving a 

very simple convex program, which can be recast as a convenient linear program. 

Candes and Tao (2007) showed that the Dantzig selector has some remarkable 

properties under some conditions. Our simulation also demonstrates that the Dantzig 

selector is powerful for analyzing supersaturated designs. 

This paper is organized as follows. In Section 2, we introduce Dantzig selector, 

and discuss how to implement the Dantzig selector in practice. Section 3 suggests a 

graphical procedure, called Profile Plot, in analyzing the results from the Dantzig 

selector method. Three real-life experiments are used to examine the efficiency of the 

profile plots. The results show that the profile plot is efficient at identifying active 

factors in the experiments, even if there are mixed-level factors. Section 4 suggests an 

automatic variable selection procedure to accompany with the Dantzig selector 

method. A new criterion modified from traditional AIC is suggested. Real-life 

experiments are used again to show the efficiency of the numerical method. In section 

5, two simulations are performed to show how efficient Dantzig selector method is 
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when it is compared to existing approaches in the literature. A final conclusion is 

given in Section 6. 

 

2. Dantzig Selector 

Consider a linear regression model y = Xβ + ε where y is an n × 1 vector of 

observations, X is an n × k model matrix, β is the k × 1 vector of unknown parameters, 

and ε is an n × 1 vector of random errors. Assume that ε~N(0,ζ
2
In) is a vector of 

independent normal random variables. Candes and Tao (2007) proposed a new 

estimator called Dantzig selector to estimate the vector of parameters β under the 

situation of supersaturated experiments (i.e., the number of variables is greater than 

the number of observations). This estimator is the solution to the l1-regularization 

problem 

min
𝛽 ∈𝑅𝑘

 𝛽  
𝑙1

  subject to   𝑋𝑡𝑟 𝑙∞ ≤ 𝛿, 

where r is the residual vector 𝑟 = 𝑦 − 𝑋𝛽 , 𝛿 is a tuning parameter and for a vector a, 

 𝑎 𝑙1 =   𝑎𝑖  and  𝑎 𝑙∞ = 𝑚𝑎𝑥 𝑎𝑖 . In other words, an estimator with minimum 

complexity measured by the l1-norm is searched among all estimators that are 

consistent with the data. 

According to Candes and Tao (2007), there are some reasons to restrict the 

correlated residual vector 𝑋𝑡𝑟 rather than the size of the residual vector r. One of the 

reasons is that the estimation procedure using correlated residual vector is invariant 

with respect to orthonormal transformations applied to the data vector since the 

feasible region is invariant. Suppose an orthonormal transformation is applied to the 

data, giving y′ = 𝑈𝑦 , then  𝑈𝑋 𝑡 𝑈𝑦 − 𝑈𝑋𝛽  = 𝑋𝑡 𝑦 − 𝑋𝛽  , which shows the 

invariant. This implies that the estimation of β does not depend upon U. 

The Dantzig selector can be recast as a linear program 

𝑚𝑖𝑛 𝑢𝑖𝑖   subject to − 𝑢 ≤ 𝛽 ≤ 𝑢  and − 𝛿𝟏𝒌 ≤ 𝑋𝑡 𝑦 − 𝑋𝛽  ≤ 𝛿𝟏𝒌, 

where the optimization variables are u, 𝛽 ∈ 𝑅𝑘  and 𝟏𝒌 is a vectors of k ones. This is 

equivalent to the standard linear program 

𝑚𝑖𝑛 𝑐𝑡𝑥   subject to 𝐴𝑥 ≥ 𝑏 and  𝑥 ≥ 0, 

where 

𝑐 =  
𝟏𝒌
𝟎𝒌
 , 𝐴 =  

𝑋𝑡𝑋 −𝑋𝑡𝑋
−𝑋𝑡𝑋 𝑋𝑡𝑋

2𝑰𝒌 −𝑰𝒌

 , 𝑏 =   

−𝑋𝑡𝑦 − 𝛿𝟏𝒌
𝑋𝑡𝑦 − 𝛿𝟏𝒌

𝟎𝒌

 , 𝑥 =   
𝑢

𝑢 + 𝛽 . 

 Candes and Tao (2007) showed that under certain conditions on the model matrix 

X which roughly guarantee that the model is identifiable, the Dantzig selector can 

correctly identify the active variables with large probability. Unfortunately, the 
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conditions are too strong and most supersaturated designs in the literature do not 

satisfy these conditions.  

When X is an orthogonal matrix and has unit length for each column, the Dantzig 

selector 𝛽  is then the l1-minimizer subject to the constraint  𝑋𝑡𝑦 − 𝛽  
𝑙∞
≤ 𝛿. This 

implies that 𝛽  is simply the soft-thresholded version of 𝑋𝑡𝑦 at level 𝛿, thus 

𝛽 𝑖 =  
 𝑋𝑡𝑦 𝑖 − 𝛿 𝑖𝑓  𝑋𝑡𝑦 𝑖 ≥ 𝛿

 𝑋𝑡𝑦 𝑖 + 𝛿 𝑖𝑓  𝑋𝑡𝑦 𝑖 ≤ −𝛿
0 otherwise

  

where  𝑋𝑡𝑦 𝑖  is the i
th

 component of 𝑋𝑡𝑦. In other words, 𝑋𝑡𝑦 is shifted toward 

the origin if X is an orthogonal matrix. For arbitrary X’s, the method continues to 

exhibit a soft-thresholding type of behavior and as a result, may slightly 

underestimate the true value of the nonzero parameters. 

There are several simple methods to correct for this bias and increase performance 

in practical settings. Candes and Tao (2007) suggested a two-stage procedure. First, 

estimate 𝐼 =  𝑖: 𝛽𝑖 ≠ 0  with 𝐼 =  𝑖:  𝛽 𝑖  > 𝛾  for some 𝛾 ≥ 0 with 𝛽  as in the 

solution to the l1-regularization problem. Second, construct the estimator 𝛽 𝐼 =

 𝑋𝐼 
𝑡𝑋𝐼  

−1
𝑋𝐼 
𝑡𝑦 and set the other coordinates to zero. Hence, we rely on the Dantzig 

selector to estimate the model I by 𝐼 , and construct a new estimator by regressing y 

onto the model 𝐼 . Candes and Tao (2007) referred this variation as the Gauss-Dantzig 

selector. This estimator centralizes the estimates and generally yields higher statistical 

accuracy. 

The tuning parameter (δ) in the l1-regularization problem has a significant impact 

on the results of the estimates. If δ is set to be too high, or in other words, we allow a 

large range of residuals to take part in the regression equation, the residuals are able to 

explain all the variations of the response themselves without considering any changes 

in predictors. This leads to the insignificance of all predictors towards the change in 

response, so we drop all of the predictors. Oppositely, if δ is set to be too low, or in 

other words, we minimize the variation of the residuals, the variation of the response 

has to be explained by the predictors, so some inactive factors with small magnitudes 

of coefficients are falsely included to help explaining in the variation of the response. 

Therefore, an appropriate value of δ is essential to the active-factor identification. 

The threshold (γ) in the model selection may have a significant impact on the 

results of the final model. If γ is set to be too large, some true active factors are falsely 

identified as inactive, and then the final model is different from the true model 

because it misses some true active factors. If γ is set to be too small, some inactive 

factors are falsely identified as active, and then the final model is different from the 
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true model because it includes some inactive factors. Therefore, an appropriate value 

of γ is also essential to the active-factor identification. For convenience, we define the 

noise level to be the range between ± 𝛾. Unless specified, we select 𝛾 to be 
1

10
 of 

the largest  𝛽 𝑖   in the model when 𝛿 = 0. The choice 
1

10
 is arbitrary. 

 

3. A Procedure for Analyzing Supersatuated Designs 

Candes and Tao (2007) suggested the choice of 𝛿 = 𝜆𝜎 when X is unit length 

normalized, where 𝜆 =  2𝑙𝑜𝑔𝑘 and 𝜎 is the standard deviation of the random error. 

However, we do not know 𝜎 in practice. Furthermore, even if we know 𝜎 (as in 

simulation), the choice of 𝜆 =  2𝑙𝑜𝑔𝑘 is not appropriate for the supersaturated 

designs we consider. 

Here we propose a simple approach for analyzing supersaturated designs: 

1. Standardize data so that y has mean 0 and columns of X have equal length. 

2. Use linear program to obtain the Dantzig selector 𝛽  for a range of 𝛿. 

3. Make a profile plot of the estimates by plotting the 𝛽  against 𝛿. 

4. Choose a proper 𝛿 and the active effects according to the profile plot. 

5. Obtain new estimates by regressing y on the active effects selected in step 4. 

Here are three examples on real data. 

 

Example 1. Consider the cast fatigue experiment (Wu and Hamada 2000, section 7.1), 

a real data set consisting of 7 two-level factors. The design matrix and the response 

data are given in Table 1. We first consider the main effects model, where each 

column corresponds to a two-level factor. The profile plot (Figure 1) suggests that F 

does not decay to noise level even if we choose a large value of δ. In addition, D 

decays to noise level if we choose a small to medium value of δ. This implies that F is 

strongly significant and D is moderately significant. Our result is consistent to the 

analysis using half-normal plot in Wu and Hamada (2000, Figure 8.1) 

We further investigate potential active two-factor interactions. We consider a 

model with 7 main effects and all 21 two-factor interactions so that the model is 

supersaturated. The profile plot (Figure 2) suggests that there are three significant 

effects, F, FG and AE, which do not decay to noise range even if we select a large 

value of δ. Other effects decay to zero even though only a small value of δ is selected. 

Among these three factors, F and FG are strongly significant and AE is weakly 

significant when we entertain the two-factor interactions. This agrees with the result 

in Westfall et al. (1998). Note that the significance of AE without its parent main 
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effects violates the effect heredity principle (Wu and Hamada 2000, section 3.5), so 

one might accept a model with F and FG only, which is recommended by Wu and 

Hamada (2000). 

 

Example 2. Consider the blood glucose experiment (Wu and Hamada 2000, section 

7.1), a real data set consisting of 1 two-level and 7 three-level factors. The design 

matrix and the response data are given in Table 2. We first apply Dantzig selector to a 

main effects model with a 18 × 15 model matrix. The first column corresponds to 

the two-level factor A. The next 7 columns correspond to the linear contrast of the 7 

three-level factors from B to H. The last 7 columns correspond to the quadratic 

contrast of the 7 three-level factors. The coding of linear and quadratic contrasts is: 

Linear Contrast:  0 1 2 →  +1 0 −1 

Quadratic Contrast:  0 1 2 →  +1 −2 +1 
 

The model matrix X is normalized to have unit length for each column. The profile 

plot (Figure 3) suggests that Eq and Fq do not decay to noise level even if we select a 

large value of δ. Even though there are several factors that do not decay to 0 for large 

residual variations, it is difficult to distinguish them from the noise level. This implies 

that Eq and Fq are strongly significant. Our result is consistent to the analysis using 

half-normal plot in Wu and Hamada (2000, Figure 8.2) 

 We also include two-factor interaction terms in the analysis. We consider a 

model with 15 main effects and 98 two-factor interaction effects. The model matrix X 

is normalized to have unit length for each column. The profile plot (Figure 4) suggests 

that there are two significant effects, (BH)lq (the interaction between the linear 

contrast of B and the quadratic contrast of H) and (BH)qq (the interaction between the 

quadratic contrasts of B and H), that do not decay to noise range even if we select a 

large value of δ. Other effects decay to noise level even though a small to moderate 

value of δ is selected. Our result does not completely match Equation 8.10 of Wu and 

Hamada (2000), but it is consistent to the top model identified by a Bayesian 

approach in Wu and Hamada (2000, Table 8.3). 

 

Example 3. In this example, we apply Dantzig selector to the supersaturated design 

demonstrated first by Lin (1993). The design matrix and response data are given in 

Table 3. The profile plot (Figure 5) suggests that there is only one strong significant 

effect, X15, in this data. X17 is barely considered as a moderate significant effect, 

depending on the range of the noise level we set.  

Westfall et al. (1998), Beattie et al. (2002) and Li and Lin (2003) have done 

some analyses on the same design. The results of forward selection in Westfall et al. 

(1998) highlights X15, X12, X20, X4, X10 and X11 as important variables. Among them, 
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X15 is the only significant variable at 5% significance level, and X4 is marginally 

significant. Beattie et al. (2002) summarizes the important factors identified from 

different model selection method. Factor 14, which is our X15, is identified as 

important in every model selection. Li and Lin (2003) suggests X15, X12, X20, X4 and 

X10 as active effects. 

 We compare our result to the results obtained in the above methods. The 

difference is not surprising when we look at the trajectories of different 𝛽  in Figure 5. 

Almost all effects, except X15, are noisy and the magnitudes are small enough to be 

within the noise level. We agree with Abraham et al. (1999) that it is not clear the 

correct answers on which the active factors are, and different approaches may provide 

different answers on the list of active factors. X15 is probably the only active factors 

found in different approaches. 

 

4. Automatic Variable Selection 

Here is a general procedure to select an appropriate δ. For a fixed γ, we obtain a 

list of active factors 𝐼 =  𝑖:  𝛽 𝑖 > 𝛾  for different δ. Then we compare different 

linear models suggested by 𝐼  according to some criteria. The popular model selection 

criterion is the Akaike Information Criterion (AIC), which is equivalent to 

𝐴𝐼𝐶 = 𝑛𝑙𝑜𝑔  
𝑅𝑆𝑆

𝑛
 + 2𝑝 

for linear regression where 𝑅𝑆𝑆 =   𝑦𝑖 − 𝑦 𝑖 
2𝑛

𝑖=1  is the residual sum of squares and 

p is the number of parameters in the model. Traditional AIC does not work properly 

for supersaturated designs, so we suggest a modified AIC criterion for model 

comparison: 

𝑚𝐴𝐼𝐶 =
𝑛

𝑝
𝑙𝑜𝑔  

𝑅𝑆𝑆

𝑛
 +

2𝑝2

 𝑛
 

 The main differences between our criterion and the conventional version are as 

follows. First, we standardize the conventional AIC by dividing the number of active 

factors and include it in the first term. This minimizes the effect of the number of 

factors that commonly affects AIC. Second, we propose a penalized multiplier that 

includes both the model complexity and the number of observations, rather than either 

a constant or observational-dependent only. It is important because it is preferred to 

have small number of active factors in the screening experiment. The modification of 

the penalty makes our criterion more efficient than the conventional criterion. 

 We illustrate the above procedure on example 1. Automatic variable selection 

suggests that the model containing a strongly significant effect F has the minimum 

mAIC = -15.54 when δ is between 2.62 and 5.01 and 𝛾 is fixed at 0.0458. For the 
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model with the two-factor interactions, the model that contains two strongly 

significant effects F and FG has the minimum mAIC = -15.60 when δ is between 4.22 

and 4.95 and 𝛾 is fixed at 0.0416.  

 

5. Simulations 

In this section, we investigate the performance of the Dantzig selector approach 

via simulation. Example 4 compares the performance of the Dantzig selector method 

with four different approaches suggested in the literature, and they are (i) SSVS, the 

Bayesian variable selection procedure proposed by George and McMulloch (1993) 

and extended for supersaturated designs by Chipman et al. (1997); (ii) SSVS/IBF, the 

two stage Bayesian procedure by Beattie et al. (2002); (iii) SCAD, the penalized least 

squares approach proposed by Li and Lin (2003); and (iv) PLSVS, the partial least 

square regression technique by Zhang et al. (2007). Example 5 explores the 

performance of the Dantzig Selector method in a design with a large number of 

factors. All simulations are conducted using R codes. 

 

Example 4. To compare the performance of the Dantzig selector method with that of 

the four methods by simulation, we consider the same models as Li and Lin (2003). 

 Consider the design matrix X displayed in Table 3. We generate data from the 

linear model 

𝑦 = 𝑋𝛽 + 𝜀 

where the random error 𝜀~𝑁 0,1 . We consider the following three cases for 𝛽: 

 Case I: One active factor, 𝛽1 = 10, and all other components of 𝛽 equal 0; 

 Case II: Three active factors, 𝛽1 = −15, 𝛽5 = 8, 𝛽9 = −2 , and all other 

components of 𝛽 equal 0; 

 Case III: Five active factors, 𝛽1 = −15, 𝛽5 = 12, 𝛽9 = −8, 𝛽13 = 6, 𝛽17 = −2, 

and all other components of 𝛽 equal 0; 

 Simulation results for Dantzig selector based on 1000 replicates are summarized 

in Table 4 and are compared with the other four methods. In this table, “TMIR” stands 

for True Model Identified Rate, “SEIR” stands for Smallest Effect Identified Rate, and 

“Median” and “Mean” are the median and mean sizes of the models. In the simulation, 

we fix γ=1 and choose δ according to the mAIC criterion. 

 The Dantzig selector method identifies the true model with the highest 

probabilities among all five methods. In case I, the Dantzig selector shares 100% 

perfect identification rates with SCAD and PLSVS in identifying the smallest effect. 

In case II and III, the probability of getting the smallest effect with the Dantzig 

selector method is a little lower than that of the SCAD and PLSVS. In terms of the 



9 
 

model size, the Dantzig selector method performs better than others. The average 

model size is closer to the true model size than those resulted from the other four 

methods. In this sense our method is more efficient than the other four. 

 

Example 5. In this example, we consider a systematically generated design in Lin 

(1995). The design has 12 runs and 66 factors, which is bigger than the model in 

Example 4. We generate data from the same linear model as in Example 4, and we 

consider five different cases. There are i active factors in case i, where i ranges from 1 

to 5. The selection of active factors is random without replacement. The signs of the 

active factors are randomly selected from either positive or negative, and the 

magnitudes are randomly selected from 2 to 10 with replacement. For each case, 400 

trials are performed and each trial consists of 100 replicates. We fix γ=0.75 and 

choose δ according to the mAIC criterion. For each trial, we obtain the true model 

identification rate and the average model size of 100 replicates. Table 3 summarizes 

the results of 400 trials. In this table, “TMIR” and “Size” correspond to the true model 

identification rate and the size of the model under the optimal value of mAIC. The 

summary statistics of these two quantities are presented. 

 The Dantzig selector method is very efficient in identifying 1 active factor in the 

simulation. The probability of correctly identifying the active factors in true model is 

high (87 – 99%) and the average model size (1.01 – 1.15) is very near to the true 

number of active factors. The method is still efficient in identifying 2 to 4 active 

factors from 66 factors in the simulation. The probabilities of correctly identifying the 

active factors in true model are still reasonable with mean ranging from 46.9% to 

66.6% and the average model sizes are near to the true number of active factors. The 

method is not good in identifying 5 active factors. Even though the ability of 

identification decreases when the number of active factors increases, this method is 

still useful to identify small number of dominant active effects. 

 

6. Concluding Remarks 

This paper studies the Dantzig selector for selecting active effects in 

supersaturated designs. We suggest a graphical procedure and an automatic variable 

selection method to accompany with the Dantzig selector. A modified AIC criterion is 

proposed for model selection. Simulations demonstrate that the Dantzig selector 

method is efficient over the existing data analysis methods in the literature. This 

ability of active-factor identification raises tantalizing opportunities in various fields. 

Candes and Tao (2007) suggested several applications in biomedical imaging, analog 

to digital conversion and sensor networks. 
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The modified AIC criterion works for the simulations conducted here, but may not 

work well for other situations. Nevertheless, it demonstrates that supersaturated 

designs are useful when properly analyzed and that the Dantzig selector is a good 

tool. 

The advantages of Dantzig selector method are as follows. First, Dantzig selector 

method is relatively fast, easy and simple to use. It is basically a linear program, 

which is widely considered as a fast and efficient algorithm to perform massive 

computation. In addition, the linear programming algorithm is available in many 

software and packages, like R, Matlab, Mathematica, etc. The computation of this 

paper is done by using R package “lpSolve”. These software and packages make 

Dantzig selector easy to program and use.  

Second, Dantzig selector method is able to handle a large number of factors in 

two-levels, multi-levels and mixed-levels. Candes and Tao (2007) applied Dantzig 

selector to an experiment with up to 200 active factors among 5000 binary factors and 

1000 observations. In addition, Example 2 demonstrates that Dantzig selector is 

readily implemented for multi-level designs via the method of orthogonal contrasts.  

Third, Candes and Tao (2007) provides good theoretical justifications to Dantzig 

selector. When some uniform uncertainty conditions are fulfilled, they proved that 

Dantzig selector is able to perform an ideal model selection. 
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Figure 1. Profile plot for the cast fatigue experiment without interactions. The model 

includes 7 main effects. 𝛽 𝐹  and 𝛽 𝐷 decay slowly to noise level (γ=0.0458, dotted 

lines) when 𝛿 increases. 
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Figure 2. Profile plot for the cast fatigue experiment with interactions. The model 

contains 7 main effects and 21 two-factor interactions. 𝛽 𝐹 , 𝛽 𝐹𝐺  and 𝛽 𝐴𝐸  decay 

slowly to noise level (γ=0.0416, dotted lines) when 𝛿 increases. 
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Figure 3. Profile plot for the blood glucose experiment without interactions. The 

model contains 15 main effects. 𝛽 𝐸𝑞  and 𝛽 𝐹𝑞  decay slowly to noise level (γ=1.8384, 

dotted lines) when 𝛿 increases.  
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Figure 4. Profile plot for the blood glucose experiment with interactions. The model 

contains 15 main effects and 98 two-factor interaction effects. 𝛽  𝐵𝐻 𝑙𝑞  and 𝛽  𝐵𝐻 𝑞𝑞  

decay slowly to noise level (γ=1.8803, dotted lines) when 𝛿 increases. 
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Figure 5. Profile plot for the Lin (1993) data. The model contains 23 main effects. 

𝛽 15 decays very slowly when 𝛿 increases, and 𝛽 17 decays to noise level (γ=4.5214, 

dotted lines) when 𝛿 increases.  
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Table 1. Design Matrix and Response Data, Cast Fatigue Experiment 

Run A B C D E F G Response 

1 + + – + + + – 6.058 

2 + – + + + – – 4.733 

3 – + + + – – – 4.625 

4 + + + – – – + 5.899 

5 + + – – – + – 7.000 

6 + – – – + – + 5.752 

7 – – – + – + + 5.682 

8 – – + – + + – 6.607 

9 – + – + + – + 5.818 

10 + – + + – + + 5.917 

11 – + + – + + + 5.863 

12 – – – – – – – 4.809 

 

Table 2. Design Matrix and Response Data, Blood Glucose Experiment. 

Run A B C D E F G H Response 

1 0 0 0 0 0 0 0 0 97.94 

2 0 1 1 1 1 1 0 1 83.40 

3 0 2 2 2 2 2 0 2 95.88 

4 0 0 0 1 1 2 1 2 88.86 

5 0 1 1 2 2 0 1 0 106.58 

6 0 2 2 0 0 1 1 1 89.57 

7 0 0 1 0 2 1 2 2 91.98 

8 0 1 2 1 0 2 2 0 98.41 

9 0 2 0 2 1 0 2 1 87.56 

10 1 0 1 2 1 1 0 0 88.11 

11 1 1 2 0 2 2 0 1 83.81 

12 1 2 0 1 0 0 0 2 98.27 

13 1 0 2 2 0 2 1 1 115.52 

14 1 1 0 0 1 0 1 2 94.89 

15 1 2 1 1 2 1 1 0 94.70 

16 1 0 2 1 2 0 2 1 121.62 

17 1 1 0 2 0 1 2 2 93.86 

18 1 2 1 0 1 2 2 0 96.10 
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Table 4. Summary of simulation results in Example 4. 

Method TMIR SEIR Median Mean 

Case I: One Active Effect 

SSVS (1/10,500) 40.5% 99.0% 2 3.1 

SSVS (1/10,500)/IBF 61.0% 98.0% 1 2.5 

SCAD 75.6% 100% 1 1.7 

PLSVS (m=1) 61.0% 100% 1 1.5 

Dantzig Selector 99.0% 100% 1 1.01 

Case II: Three Active Effects: 

SSVS (1/10,500) 8.6% 30.0% 3 4.7 

SSVS (1/10,500)/IBF 8.0% 28.0% 3 4.2 

SCAD 74.7% 98.5% 3 3.3 

PLSVS (m=1) 76.4% 100% 3 3.3 

Dantzig Selector 91.3% 91.3% 3 3.01 

Case III: Five Active Effects: 

SSVS (1/10,500) 36.4% 84.0% 6 8.0 

SSVS (1/10,500)/IBF 40.7% 75.0% 5 5.6 

SCAD 69.7% 99.4% 5 5.4 

PLSVS (m=1) 73.6% 95.0% 5 5.2 

Dantzig Selector 89.9% 89.9% 5 5.02 

 

Table 5. Summary of simulation results in Example 5. 

Case 
 Average results for optimal mAIC 

 Min 1Q Median Mean 3Q Max 

I 
TMIR 87.0% 91.0% 93.0% 92.78% 94.0% 99.0% 

Size 1.010 1.060 1.070 1.076 1.090 1.150 

II 
TMIR 0.0% 17.0% 92.0% 66.6% 96.0% 100% 

Size 2.000 2.040 2.080 2.678 3.370 5.370 

III 
TMIR 0.0% 31.0% 42.0% 52.5% 90.5% 100% 

Size 2.570 3.000 3.340 3.409 3.760 5.650 

IV 
TMIR 0.0% 29.0% 44.0% 46.9% 60.0% 100% 

Size 2.640 3.340 3.650 3.622 3.913 5.240 

V 
TMIR 0.0% 2.0% 6.0% 10.7% 14.0% 100% 

Size 2.810 3.530 3.780 3.746 3.970 5.030 

 

 

 

 




