
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Science Driven Supercomputing Architectures: Analyzing Architectural Bottlenecks with
Applications and Benchmark Probes

Permalink
https://escholarship.org/uc/item/19n9137d

Authors
Kamil, S.
Yelick, K.
Kramer, W.T.
et al.

Publication Date
2005-09-26

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19n9137d
https://escholarship.org/uc/item/19n9137d#author
https://escholarship.org
http://www.cdlib.org/

Science Driven Supercomputing Architectures:

Analyzing Architectural Bottlenecks

with Applications and Benchmark Probes

The Berkeley Institute for Performance Studies

S. Kamil, B. Kramer, L. Oliker, J. Shalf,
H. Shan, E. Strohmaier, K. Yelick

kayelick@lbl.gov

There is a growing gap between the peak speed of parallel computing systems and the actual
delivered performance for scientific applications. In general this gap is caused by inadequate
architectural support for the requirements of modern scientific applications, as commercial
applications and the much larger market they represent, have driven the evolution of computer
architectures. This gap has raised the importance of developing better benchmarking
methodologies to characterize and to understand the performance requirements of scientific
applications, to communicate them efficiently to influence the design of future computer
architectures. This improved understanding of the performance behavior of scientific applications
will allow improved performance predictions, development of adequate benchmarks for
identification of hardware and application features that work well or poorly together, and a more
systematic performance evaluation in procurement situations.

The Berkeley Institute for Performance Studies has developed a three-level approach to
evaluating the design of high end machines and the software that runs on them: 1) A suite of
representative applications; 2) A set of application kernels; and 3) Benchmarks to measure key
system parameters. The three levels yield different type of information, all of which are useful in
evaluating systems, and enable NSF and DOE centers to select computer architectures more
suited for scientific applications. The analysis will further allow the centers to engage vendors in
discussion of strategies to alleviate the present architectural bottlenecks using quantitative
information. These may include small hardware changes or larger ones that may be out interest
to non-scientific workloads. Providing quantitative models to the vendors allows them to assess
the benefits of technology alternatives using their own internal cost-models in the broader
marketplace, ideally facilitating the development of future computer architectures more suited for
scientific computations. The three levels also come with vastly different investments: the
benchmarking efforts require significant rewriting to effectively use a given architecture, which is
much more difficult on full applications than on smaller benchmarks.

1 Performance Requirements

1.1 Categorizing Scientific Algorithms for Scientific Computing
National supercomputing centers have to serve a very large and diverse users base. While the
field of scientific algorithms used in these different application areas is large and diverse, the
algorithmic methods fall into a modest set of categories, coined the "Seven Dwarfs" by Philip

Colella. We show a slightly modified version of his list together with their key performance
requirements:

1. Dense linear algebra: unit and strided memory accesses, high computational intensity

2. Sparse linear algebra (direct methods): indexed (scatter/gather) memory operations, low
computational intensity (for elliptic problems) and communication latency sensitivity due
to dependencies and load imbalance.

3. Unstructured meshes and iterative sparse methods: indexed (scatter/gather) memory
operations, and low computational intensity

4. Spectral methods: strided memory accesses and high bisection bandwidth needs for
global transpose operations in a parallel setting.

5. Particle methods: pointer-based data structures (trees), random memory accesses. This
include both particle-mesh and particle-particle methods.

6. Block-structured meshes, regular and adaptive: unit and strided memory accesses via
"stencil" operations, load imbalance (adaptive) and small messages.

7. Monte Carlo methods: random number generation independent parallelism.

While this list does not cover all algorithmic techniques, these methods and combinations of them
dominate many scientific applications. Some centers may find the sorting or search or other non-
numerical algorithms are important in their workload, and we have not studied Monte Carlo
methods in detail, because they seem to provide little insight into system requirements.

2 Performance Metrics

Performance metrics are an important aspect of any procurement. Instead of elaborating in detail
on specific metrics, we like to refer to the position paper about the NERSC SSP metric. The SSP
metric is based on the individual performance values of a set of application benchmarks and can
be used with any appropriate set of benchmarks, such as the one proposed in the following
section. The purpose of science-driven architecture is inform system designers by drilling down
into particular application needs through smaller, but related, benchmarks.

3 Potential Benchmark Codes
Application benchmarks for procurements are used to establish a common metric to normalize the
performance of supercomputing systems in order to make them comparable during a procurement
cycle. These benchmark suites typically attempt to reflect and model the anticipated workload of
a given system and are founded on a characterization of the target workload.

While application benchmarks greatly improve the quality of system procurements, they are of
limited benefit when considering technology alternatives or changes in the system balance that
can significantly improve the cost-effectiveness of a system. Any single metric based on
application performance alone only describes what the performance of the system is, but not why
it is so, or how to improve it. For instance, is application communication performance limited by
interconnect bandwidth or is it latency bound? Do communication libraries implementations
show performance anomalies? Could alternative programming models provide better
performance? These detailed questions are best answered by smaller kernel benchmarks or
application-independent architectural benchmarks. An example of the use of categorization to
identify applications and as well as kernel benchmarks is shown in the table below.

Category Representative Application Kernel/Probe Benchmark

Dense Matrices MADCAP Linpack

Sparse Matrices Nimrod, Omega3P SuperLU

Unstructured Meshes Overflow-D Bebop SPMV

Spectral Methods FVCAM, Paratec NAS FT, FFTW

Particle Methods PMEMD, GTC

Block-Structured Meshes LBMHD, Cactus NAS MG, Stencil Probe

Table 1: Application codes and parametric benchmarks that can be used to model their performance.

3.1 Application Benchmarks
The first component of our performance evaluation involves full application studies. The goal is
to select applications that reflect important scientific problems, port and tune them on a variety of
machines, and analyze the performance of emerging ultrascale computing architectures such as
the Earth Simulator, BG/L and the Cray X1. A subset of the BIPS application suite is shown in
Table 1, although we have not yet experiment with Omega3P and Nimrod. The applications
include: MADCAP, a simulation of cosmic microwave background which uses dense linear
algebra and has significant I/O requirements; FVCAM, the Community Atmosphere Model
with the finite-volume solver option for the dynamics; GTC, a magnetic fusion application that
uses the particle-in-cell approach to solve non-linear gyrophase-averaged Vlasov-Poisson
equations; LBMHD3D, a plasma physics application that uses the Lattice-Boltzmann method to
studymagneto-hydrodynamics; and PARATEC, a first principles materials science code that
solves the Kohn-Sham equations of density functional theory to obtain electronic wavefunctions;
Cactus, an astrophysics code that solves Einstein’s equations; OVERFLOW-D, a CFD production
code that solves the Navier-Stokes equations around complex aerospace configurations;
PMEMD, a Life Sciences Molecular Dynamics code that uses a Particle Mesh method;
SuperNova, an astrophysics simulation using Adaptive Mesh Refinement; Omega3P, an
accelerator modeling code uses sparse iterative and direct solvers; and Nimrod, a
magnetohydrodynamic fusion modeling code, uses sparse direct solvers. None of the
characterizations are complete: each fo these codes may use other methods in the list in addition
to the one lists. The point is that a relatively modest set of applications can cover the space of
many numerical methods. These codes represent candidate ultra-scale applications that have the
potential to fully utilize leadership-class computing systems and are detailed in a number of
papers [13,14,15,16].

The performance analysis of these codes has produced surprising results. For instance, both the
SX-6 and the Cray X1 employ vector architecture, the performance characteristics of the two
systems are dramatically different. This provides a caution to gross generalizations about code
performance based on high-level architectural model without regard to the full system
implementation. Likewise, the performance differences between systems could be dramatic. For
instance, the computation of boundary conditions for Cactus on many microprocessor based
systems is so inconsequential that it does not typically appear on performance profiles. However,
on the vector machines, the unvectorized boundary calculation was consistently one of the most
expensive routines in the application. The extracted kernel of the Cactus GR solver would have
missed this behavior – leading to some caution regarding the replacement of full application
benchmarks with extracted kernels. The nonlinear performance behavior exhibited by many of
the evaluated systems motivated the development of parametric probes that are capable of finding

these “performance cliffs” in modern parallel architectures. Such cliffs would be difficult to find
with microbenchmarks that produces a single-valued result.

3.2 Application and Parameterized Probes
The last column of Table 1 shows a set of application kernels, which are easy to understand and
can be used to study single architectural features in isolation from other system components.
Some of these are standard benchmarks from NAS parallel benchmarks suite, since some
applications are well-resented for either single processor or parallel performance.

A new class of parametric benchmark probes is being developed at BIPS, which have input
parameters designed to reflect critical aspects for the performance of algorithms. Through
variation of these characteristic parameters performance surfaces reflecting system behavior for a
variety of conditions can easily be generated and visualized. Due to their compact size these
probes are also easily usable with simulators for future systems. Overall, well designed
parametric benchmark probes provide an ideal complement to application benchmarks alone. We
give two examples here.

The Stencil Probe was developed as a proxy to applications such as Cactus and LBMHD that
perform nearest-neighbor calculations on a multidimensional grid. The main computational
kernel for these applications was extracted and built into an easily-modifiable probe that
functions as a proxy to the full applications, yielding similar performance and providing a
platform for developing optimizations without needing to port full applications. One
optimization we explored was cache blocking, which subdivides the grid into cache-sized
segments to improve memory hierarchy utilization. In the course of implementing cache
blocking in the Stencil Probe, we found that although we were able to lower the number of cache
misses, overall time-to-solution increased. We hypothesized that this optimization, while
reducing cache misses, resulted in a non-prefetch-friendly memory access pattern. This was
verified using an application-independent benchmark to measure prefetch behavior, which is
describe below.

The Bebop SPMV benchmark was designed to provide a realistic, synthetic sparse matrix
benchmark [18]. The benchmark performs a Sparse Matrix-Vector Multiplication, a key
component of most iterative methods. The NAS suite include a Conjugate Gradient benchmark
for this purpose, but uses a randomly generated sparse matrix which has led performance results
and algorithms designs that to not reflect the best practice for real applications. The Bebob
benchmark uses a set of randomly generated matrices, but they contain dense sub-blocks which
are controllable by a benchmark parameter. We have found that on single processor machines
this benchmark matches that of real matrices; work on the parallel benchmark is ongoing.

3.3 Generic Benchmarkings
Generic benchmarking probes explore features of the network, memory, and processor
architecture to show features and bottlenecks of the each machine. They can be used to compare
absolute performance across machines, as well as discontinuities in the performance profile that
may reveal challenges in tuning full applications for the machine. In the BIPS project we have
developed two such benchmarks, which complement many other in the literature.

3.3.1 APEX-Map
APEX-Map is a memory access probe that was developed as part of the Application Performance
Characterization (APEX) project [6]. The execution profile of APEX-Map can be tuned using a

set of input parameters to match the characteristics of a chosen scientific application --- allowing
it be used as a proxy for the performance behavior of the underlying codes.

Our initial work on APEX-Map focused mainly on the cache and main memory levels of a single
processor memory system. An underlying assumption is that the data access pattern of most
codes can be described as several concurrent streams of addresses, which in turn can be
characterized by a single set of performance parameters, including regularity, data-set size, spatial
locality, and temporal locality. Regularity refers to the data access patterns, where the two
extreme cases being random access and regular-strided access. Data-set size relates to the total
volume of memory accessed --- an increasingly important factor as the complexity of memory
hierarchies continues to grow in modern system architectures. The spatial locality parameter
controls the number of contiguous memory locations accessed in succession. Finally, temporal
locality refers to the average re-use of data items, and is defined independently of hardware
concepts such as cache size. Temporal locality is controlled in the probe using a novel approach
based on generation of a pseudo-random address stream, where increasing the probability of a
repeated address in the stream can increase the temporal locality.

Early experiments examined the validity and accuracy of the Apex-MAP approach on six
processors that are common in high end computing, including superscalar and vector processors
using five scientific kernels radix sorting, FFT, matrix multiplication, nbody simulation, and
conjugate gradient. The results showed that application performance could be captured to within
25% across the suite of application codes for a variety of memory sizes, using a few simple
parameters with up to two simulated memory streams [7]. An example for the performance
surfaces produces with APEX-Map on a single processor is show in figure 1. It compares an IBM
Power4 processor and a Cray X1 processor and the achieved bandwidth numbers clearly highlight
the different design principles for these two processors.

1 8

64

51
2

40
96

32
76
8

0.00
0.01

0.10
1.000.1

1.0

10.0

100.0

spatial (L)
 (a)

X1 Sequential

1.00-2.00

0.00-1.00

-1.00-0.00

Figure 1: Sequential Performance Surface generated with Apex-Map on an IBM SP Power4
processor and a Cray X1 system. Horizontal axes are L=vectorlength; a= characteristic exponent
for temporal locality; vertical axis is bandwidth in MB/s.

1 8

64

51
2

40
96

32
76
8

0.001
0.010
0.100
1.0000.10

1.00

10.00

100.00

1000.00

C
yc

le
s

spatial (L) (a)

Power4 Sequential

2.00-3.00

1.00-2.00

0.00-1.00

-1.00-0.00

We have also performed work showing that the ideas in APEX-Map can be directly extended to
include inter-process communication, thereby capturing the behavior of parallel systems. For
parallel execution the same basic definitions of temporal and spatial locality can be used. The
resulting code permits to explore the whole performance space of scientific applications and can
be used to generate characteristic performance surfaces on large-scale multiprocessors. Figure 2
shows an example of the parallel APEX-Map results on a IBM Power3 system, where bandwidth
varies dramatically, but smoothly, as temporal (the “a” axis) or spatial (the “L” axis) are varied.

Figure 2: Parallel Performance Surface generated
with Apex-Map on a 256 Processors IBM SP Power3.
Horizontal axes are L=vectorlength and temporal
locality; vertical axis is global bandwidth in MB/s.

Figure 3: STriad benchmark showing
memory bandwidth as a function of
stanza length (length of a unit stride run
between jumps in memory).

3.3.2 Stanza Triad
Our investigations into the stencil probe and mesh-based applications led to the development of
Stanza Triad, a smaller microbenchmark geared towards measuring prefetch effects. The Stanza
Triad measures how many consecutive elements must be accessed in a stream in order to reach
close to peak performance. The chart below shows that small numbers of consecutive accesses
results in poor performance; by chopping our grid into cache blocks, we were in fact reducing
overall performance by using a prefetch-unfriendly access pattern.

With the insight gained by our small architectural microbenchmark, we then implemented
cache blocking in the Stencil Probe but insured that the unit-stride dimension was not
blocked. As a result, the memory access pattern was much more prefetch-friendly due to
the long stride-1 accesses. This resulted in performance improvements over the non-
blocked stencil code. Finally, we then implemented cache blocking into our applications,
and, as the chart below shows, improved performance by an average of 21% in our test
cases.

4 References:
[1] NAS Parallel Benchmarks: http://www.nas.nasa.gov/Software/NPB/

[2] SPEC: http://www.spec.org/

[3] HPCC: http://icl.cs.utk.edu/hpcc/

[4] STREAM: http://www.cs.virginia.edu/stream/

[5] MAPS: http://www.sdsc.edu/PMaC/MAPs/maps.html

[6] APEX-Map: http://ftg.lbl.gov/twiki/bin/view/FTG/ApeX

[7] E. Strohmaier, H. Shan, Architecture Independent Performance Characterization and
Benchmarking for Scientific Applications. International Symposium on Modeling, Analysis and
Simulation of Computer and Telecom. Systems, Volendam, The Netherlands, Oct. 2004

[8] Gorden Griem, Leonid Oliker, John Shalf, Katherine Yelick, “Identifying Performance
Bottlenecks on Modern Microarchitectures using an Adaptable Probe”, 3rd International
Workshop on Performance Modeling, Evaluation, and Optimization of Parallel and Distributed
Systems (PMEO-PDS), 2004.

[9] Linpack: http://www.top500.org/lists/linpack.php

[10] Shoaib Kamil, John Shalf, Parry Husbands, Leonid Oliker, Kaushik Datta, Paul Hargrove,
Katherine Yelick, “Optimizing Stencil Computations on Modern Architectures,” MSP 2005.

[11] James Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet, Richard
Vuduc, R. Clint Whaley, Katherine Yelick. “Self-Adapting Linear Algebra Algorithms and
Software, Proceedings of the IEEE, Special Issue on Program Generation, Optimization, and
Adaptation, 2005, to appear.

[12] The Berkeley Institute for Performance Studies. http://crd.lbl.gov/html/bips.html

 [13] L. Oliker, J. Borrill, J. Carter, D. Skinner, R. Biswas, “Integrated Performance Monitoring
of a Cosmology Application on Leading HEC Platforms",International Conference on Parallel
Processing: ICPP 2005. (Nominated: Best paper award)

[14] L. Oliker, R. Biswas, “Parallelization of a Dynamic Unstructured Application using Three
Leading Paradigms”,Supercomputing '99, 1999. (Winner: Best Paper Award)

[15] L. Oliker, A. Canning, J. Carter, J. Shalf, and S. Ethier, “Scientific Computations on
Modern Parallel Vector Systems”, Supercomputing 2004. (Nominated: Best paper award)

[16] S.A. Kamil, J. Shalf, L. Oliker, D. Skinner," Understanding Ultra-Scale Application
Communication Requirements," IEEE International Symposium on Workload Characterization
(IISWC) Austin Texas, October 6-8, 2005.

[17] H.D. Simon, W.T. Kramer, W. Saphir, J. Shalf, D.H. Bailey, L. Oliker, M. Banda, C. W.
McCurdy, J. Hules, A. Canning, M. Day, P. Colella, D. Serafini, M.F. Wehner, P. Nugent,
"Science-Driven System Architecture: A New Process for Leadership Class Computing," Journal
of the Earth Simulator, vol 2, pp 2-10, March 2005.

[18] The Berkeley Benchmarking and Optimization Group. http://bebop.cs.berkeley.edu

