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ABSTRACT

Correlated Topological Materials

By

VSEVOLOD IVANOV

Doctor of Philosophy in Condensed Matter Physics

University of California, Davis, 2021

Professor Sergey Savrasov, Chair

In recent years, the number of materials known to host symmetry–protected topolog-

ical phases has grown dramatically. Although they were once considered exotic, it is now

known that these kinds of sytems are relatively common, and methods have been developed

to automatically discover and confirm these phases in non-interacting materials. Neverthe-

less, the interplay of strong correlations and topology remains largely unexplored, and it

is expected that this regime hosts a plethora of exotic phases which are not adiabatically

connected to those known for non-interacting systems.

This dissertation focuses on a number of specific examples in this regime exploring

the effect of topology in the context of heavy–fermion physics, metal–insulator transitions,

and superconductivity. For the class of cerium–based heavy–fermion superconductors, the

topological nodal lines in the normal state are used to explain the pairing symmetry of the

superconducting state. In UNiSn, an inverted metal–insulator transition is shown to be a

Weyl metal–topological insulator transition. The anomalous transport properties that arise

in topological semimetals are also discussed in the context of UCo0.8Ru0.2Al, in which a

collosal Nernst coefficient was recently measured. Finally, calculated exchange interactions

for the recently discovered superconductor Nd0.8Sr0.2NiO2 are discussed and compared to

the isostructural cuprate superconductors.
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Chapter 1

Introduction

The theoretical prediction and subsequent experimental verification of topological in-

sulators, set off a chain of similar predictions and discoveries of numerous other symmetry-

protected topological phases, Dirac, Weyl, and nodal line semimetals. These materials pos-

sess exotic surface states and quantized transport properties, a peculiarity which allowed

them to be naturally characterized and classified based on the topological invariants leading

to this quantization. There are various proposed applications for these macroscopic quantum

properties, in areas such as spintronics, quantum computing, and thermoelectric devices.

Initially it was thought that such materials were extremely rare, as searches for new

topological materials could only be guided by general symmetry principles. Because of this,

discoveries of new topological materials were largely serendipitous, and often led to high pro-

file publications. At time of writing, improved numerical methods for identifying topological

phases in real materials and concerted efforts involving high-throughput searches of materi-

als databases, have clarified this issue in several ways. Firstly, it has become apparent that

topological phases are quite abundant, with over one fourth of known materials displaying

some kind of topological phase. Secondly, a large number of high quality topological mate-
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rials has been identified; topological insulators with large band gaps as well as semimetals

with the minimal number of topological features and no trivial states exactly at the Fermi

energy. Such materials make ideal platforms for the experimental verification of predicted

phenomena, and designing devices for specific applications. Finally, any new material can be

quickly and easily checked for topological features, essentially solving this problem entirely,

at least when such a material is well-described by single-electron computational methods.

New symmetry-protected topological phases are still being discovered, involving in-

creasingly more exotic symmetry constraints, or generalizations and combinations of known

topological features. However, an important general question remains: what happens to

these topological features in the presence of electronic correlations?

This is an incredibly broad problem, and carries with it all of the difficulties that stem

from many-body physics. The most elementary interpretation is to consider how introduc-

ing strong electronic correlations will impact an existing topological phase. This can be

extended further to considerations of correlated topological phases that can emerge when

interactions are introduced to a topological system, or an even more exotic scenario, where a

topological order can emerge purely as a result of correlations within a many-body system.

An alternative way to consider this problem is to examine how the properties of topological

features can enhance our understanding of known strongly–correlated effects such as super-

conductivity, heavy-fermion behavior, and metal-insulator transitions. This dissertation will

consider several of these cases, using examples of real materials where both correlations and

topological phases compete or coexist.

The dissertation is organized as follows. Chapter 2 will provide a general introduction

to symmetry-protected topological phases, focusing specifically on topological insulators and

Weyl semimetals. Specific models for these topological phases will be presented, along with a

discussion of their requisite symmetries, associated topological invariants, and surface states.
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Chapter 3 will introduce some of the numerical methods that are used to identify

topological phases in real materials, where there is a critical limitation of finite k–grid size.

These methods will then be applied to three specific material examples. Firstly, they will

be used to identify Weyl points, triple points, and nodal lines in a class of materials with

the inversion–broken ZrNiAl–type structure. Secondly, they will be used to analyze the

properties of a class of inversion–broken heavy–fermion superconductors, and the relevance

of the topological features to the unconventional superconductivity in these materials will

be discussed. Finally, they will be applied to the strongly correlated material UNiSn which

displays an inverted metal–insulator transition. Here the computational methods will reveal

that this metal–insulator transition is in fact a Weyl metal–topological insulator transition.

In Chapter 4, the unusual transport properties of topological materials will be dis-

cussed. Specifically, expressions for the intrinsic anomalous Hall effect and intrinsic anoma-

lous Nernst effect will be derived for a magnetic material hosting Weyl points. A model of

tilted Weyl points will be presented to demonstrate how for a certain tilt, the transport prop-

erties will be significantly enhanced. This model is used to explain the recent observation of

a colossal anomalous Nernst response in UCo0.8Ru0.2Al.

Chapter 5 will focus on the magnetic exchange interactions in doped NdNiO2 which

was recently shown to superconduct at 15K. This material has a structure and electronic

properties similar to those of the cuprate high-temperature superconductors. Numerical

simulations will reveal that the physics of this material can be described by a minimal two–

band model, which is used to explain the development of magnetic moments upon doping

and the underlying Mott insulating state.

3



Chapter 2

Symmetry-Protected Topological

Phases

The Landau theory of symmetry breaking has been a paradigm for understanding

phase transitions in condensed matter systems for nearly a century. More recently, a variety

of phases have been discovered that cannot be described by local order parameters within the

framework of Landau theory, but can instead be associated with some topological invariant.

In such systems the topology manifests in the following way: physical observables such as the

Hall conductance are inherently quantized, and their values are unaffected by perturbations

or disorder, unless these changes to the system are strong enough to induce a quantum phase

transition.

This concept of topological order applies to correlated many-electron states, where

the topological invariants and associated quantization emerges from a long-range collective

behavior of the system. However, similar topological considerations can also be applied to

simpler systems which can be adequately described within a single electron band theory.

In this case, the states in these systems are called symmetry-protected topological phases

4



which require certain symmetries to exist, and possess an associated topological invariant.

In recent years numerous phases have been discovered, including topological insulators, Weyl

semimetals, nodal line semimetals, and triple points.

This chapter will introduce the concepts of symmetry-protected topological states,

going into more detail for the specific cases of topological insulators and Weyl semimetals.

The specific symmetries required for these phases will be discussed, as well as the topological

invariants with which they are associated.

2.1 Topological Insulators

The observation of a quantized integer quantum Hall quickly led to the discovery of

unusual insulating states with a gapped electronic structure that could not be continuously

deformed into a standard band-insulator without passing through a gapless phase[1]. This

way of classifying distinct insulating states was later reformulated within the framework

of Chern–Simons theory [2], showing that distinct classes of insulators could be associated

with a topological invariant. Furthermore, it was understood that these Chern insulators

also possessed distinctive surface states which directly corresponded to their bulk topological

property[3, 4]. As the classification expanded to include two [5, 6] and three dimensional

[7] topological insulators, the paradigms of topological invariants and bulk-boundary corre-

spondence continued to yield important insights into the physics of these unusual phases.

2.1.1 Chern insulators

When electrons in two dimensions are subject to a magnetic field, their energy levels

become quantized Landau levels, with energy ε = ~ωC(nL − 1/2), where ωC = eB/m is the

cyclotron frequency. If an additional electric field is introduced, these Landau levels become

5



tilted and cause the electrons to drift, resulting in a quantized conductivity σxy = ne2/h,

where n is the integer denoting the number of filled Landau levels. In fact, since there is a

gap ~ωC ∝ B between each Landau level, in the case of completely filled Landau levels the

bulk is completely insulating, so the current is carried entirely by the edge states. These

boundary states can be imagined as cyclotron orbits at the edge of the system, where the

electrons on the orbit hit the edge and reflect, skipping along the edge of the sample.

Since these edge states propagate in one direction around the sample, they are termed

“chiral”, and are therefore dissipationless, because there is no opposite state available to

scatter into. Hence the quantization of conductivity is just the physical manifestation of this

property; the number of chiral edge states that will cross the Fermi energy and connect the

valence and conduction bands is exactly the quantization parameter n.

A seminal paper by Thouless, Kohmoto, Nightingale and den Nijs [2], established how

this quantization is explicitly connected to topology. They demonstrated a classification

scheme for insulators, whereby any gapped Bloch Hamiltonians that could be connected

together by smooth deformations without closing the gap would be considered to be in an

equivalent class. They defined a Chern invariant in terms of the Berry curvature Ωm(k) =

∇k × 〈um(k)|i∇k|um(k)〉 of the Bloch wavefunctions[8, 9] |um(k)〉 of this Hamiltonian

nm =
1

2π

∫
dkΩz

m(k) (2.1)

which when summed over all occupied bands n =
∑

m nm, was shown to be equivalent to

the quantization parameter n.

These two characteristics of Chern insulators can be demonstrated using a two-dimensional

lattice model for a Chern insulator H(k) =
∑

k c
†
kH̃(k)ck[3, 10], where

H̃(k) = sin(kx)σx + sin(ky)σy + (m+ cos(kx) + cos(ky))σz. (2.2)

6
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Figure 2.1: Plot of the energy bands along the kx direction for the model in Eq. 2.2 solved
for a slab that is infinite in the x-direction, but finite in the y-direction. The red(blue) state
crossing the Fermi energy is chiral edge states on the top(bottom) surface. The three plots
correspond to (a) the topological Chern insulator phase, (c) the normal insulator phase, and
(b) the semimetalic gapless phase connecting the two.

The mass mσz controls the breaking of time–reversal symmetry in this model. For m < −2,

the model yields a trivial insulator. As the mass is increased, the gap closes for m = −2,

and reopens again in the Chern insulator state −2 < m < 0 (Figure 2.1). Thus the trivial

and topological phases are separated by a guaranteed gapless phase, which prevents them

from being connected through continuous deformation.

Furthermore, the topological property of the Chern insulator can be directly visualized

by evaluating this model on a slab geometry which truncates the periodic boundary condi-

tions along the y-direction. This reveals a pair of chiral edge states with linear dispersion

ε ∼ ±νFkx, which cross the Fermi energy to connect the valence and conduction bands.

Here, the slope νF is the Fermi velocity. These chiral states correspond to edge currents in

real space, which propagate in opposite directions on top and bottom surface of the slab.

2.1.2 2D and 3D topological insulators

Hall conductivity is odd under time reversal symmetry, and can only exist in a system

where time reversal symmetry is broken such as with a magnetic field in the Chern insulator

7



described above [8, 11]. When spin-orbit coupling is introduced, a different kind of topological

phase can emerge. This can be demonstrated using a quantum spin Hall model originally

proposed to study HgTe quantum wells [12, 7]

H =
∑
i,σ,α

εαc
†
iασciασ −

∑
iaσαβ

taσ,αβc
†
i+aασciβσ, (2.3)

where a labels the four nearest–neighbor sites on the square lattice, while σ = ± and

α, β = s, p are the spin and orbital indices respectively. The orbital indices s, p label the Hg-

6s valence and Te-5p conduction orbitals that can invert in the real material under various

strain or doping conditions. The hopping matrix in the second term can be written

taσ =

 tss tspe
+iσθa

tspe
−iσθa −tpp

 (2.4)

where θa is the angle between the nearest-neighbor bond and the x-axis. Here we take

t = 5tsp = tss = tpp as the energy scale. When εs−εp > 4(tss+ tpp), the system is in a normal

insulating state. For εs− εp < 4(tss+ tpp), the opposite parity bands become inverted around

k = 0, resulting in a two-dimensional topological insulator state[7].

This model can be solved for a strip geometry by constructing a finite supercell in the y-

direction and forbidding hoppings between opposite edges. The band structure for this model

is plotted in Fig. 2.2, with probability contributions from the edge states indicated with red

and blue color. Furthermore, a small term is added to break the Kramers degeneracy and

split the spin bands, allowing the individual surface states to be seen. Two pairs of states can

be seen crossing the Fermi energy, corresponding to spin currents propagating in opposite

directions at the edge of the sample.

Each spin filtered edge state carries one half of the current of the usual quantum Hall

edge state. These edge states propagate in opposite directions, so the net Hall conductivity

8
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Figure 2.2: The energy bands within the topological phase plotted along the kx direction.
The model in Eq. 2.3 is solved for a slab geometry that is infinite in the x-direction, but finite
in the y-direction. Spin filtered edge states cross the Fermi energy, which are separated by
adding a small symmetry breaking term. Red (blue) designates states on the upper(lower)
surface, with each pair of red/blue bands corresponding to a pair of opposing spin currents
propagating in opposite directions on each surface.

vanishes. However, applying an electric field will generate a spin current J↑x − J↓x = σsxyEy

characterized by a quantum spin Hall conductivity σsxy = e/2π. In fact, analogously to the

Chern insulator, we can define Chern integers n↑, n↓ for the counter–propagating spin states,

which due to T –symmetry must satisfy n↑ + n↓ = 0. Their difference nσ = (n↑ − n↓)/2[13]

can be used to define a Z2 topological invariant[5, 6]

ν = nσmod 2 (2.5)

which distinguishes the normal insulator (NI, ν = 0) and topological insulator (TI, ν = 1)

states.

It should be noted however, that this definition of the Z2 topological invariant is only

valid in a system which commutes with σz. A more general expression can be defined using
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the time reversal operator Θ = exp(iπσy/~)K, where K is the complex conjugation operator

and σy is the Pauli matrix acting within the spin subspace. One can define a unitary

matrix ωmn(k) = 〈um(k)|Θ|un(−k)〉 [4]. In the 2D Brillouin zone there are four special

time–reversal invariant points Γi=n1n2 = (n1b1 + n2b2)/2, (nj = 0, 1), at which k = −k and

ωmn(k) is antisymmetric. The Z2 topological invariant is defined as a product over these

points

(−1)ν =
4∏
i=1

δi =
4∏
i=1

√
Det[ω(Γi)]

Pf[ω(Γi)]
(2.6)

where, using the relationship between the Pfaffian and Determinant for an antisymmetric

matrix, we can see the possible values of the expression under the product can be δi = ±1.

This formulation can be generalized to three dimensions[7], where there are eight time–

reversal invariant points, Γi=n1n2n3 = (n1b1+n2b2+n3b3)/2, (nj = 0, 1), and a gauge freedom

allows for 16 invariant configurations of δi. These can be associated with four Z2 topological

indices (ν0;ν1ν2ν3)

(−1)ν0 =
∏

nj=0,1

δn1n2n3 (2.7)

(−1)νi=1,2,3 =
∏

nj 6=i=0,1,ni=1

δn1n2n3 (2.8)

2.1.3 Dirac Phase Connecting Trivial and Topological Insulators

In three-dimensional materials with both time-reversal T and inversion P symmetry,

the boundary between trivial and topological phases is marked by a Dirac phase with a

three-dimensional, four-fold degeneracy with linear dispersion[14, 15]. This transition can

be demonstrated using a simple model of a layered heterostructure of normal and strong

topological insulators[16, 17, 18]. By varying the thickness and hopping parameters of the

different layers, one can continuously simulate the transition between normal and topological
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insulating states.

The model is constructed as follows. The most general equation for a Dirac point comes

from a coupling of spin σ and momentum p ≡ −i~∇ degrees of freedom: −i~vFσ ·∇. In

a strong topological insulator, the Fermi surface encloses an odd number of Dirac points

on the surface. If we consider the case of a single point on the surface, the symmetry

restricts the spin components to be ∝ ẑ × σ, and the momentum is confined to the plane

k⊥ = (kx, ky). With the inclusion of hopping terms connecting adjacent layers, the tight-

binding Hamiltonian becomes:

H(k) =
∑
k⊥,i,j

[
vF τz(ẑ × σ) · k⊥δi,j + ∆Sτxδi,j

+
1

2
∆Dτ+δi,j+1 +

1

2
∆Dτ−δi,j−1

]
c†k⊥ick⊥j (2.9)

where the indices i, j label TI layers, vF is the Fermi velocity, taken to be the same for each

Dirac cone, and the units are taken so that ~ = 1. The Pauli matrices σ = (σx, σy, σz) act

on the spin degree of freedom, while τ = (τx, τy, τz) act on top/bottom surface layer degree

of freedom, and τ± = τx ± iτy. The parameter ∆S controls the hopping between the top

and bottom surfaces of the same TI layer, while ∆D controls the hopping between top and

bottom surfaces on different layers.

The heterostructure is built up in the z direction, with each pair of adjacent TI/NI

layers having a total thickness d. Therefore the momentum space Hamiltonian becomes

H(k) =



0 ivFk− ∆S + ∆De
ikzd 0

−ivFk+ 0 0 ∆S + ∆De
ikzd

∆S + ∆De
−ikzd 0 0 −ivFk−

0 ∆S + ∆De
−ikzd ivFk+ 0


, (2.10)

where k± = kx ± iky. H(k) can be diagonalized to find four bands, which are pairwise

11



degenerate as guaranteed by Kramer’s theorem for this T symmetric system:

ε±(k) = ±
√
v2
F (k2

x + k2
y) + (∆2

S + ∆2
D + 2∆S∆D cos(kzd)) (2.11)

The first term under the root disappears when kx = ky = 0, and while the second can

become zero for particular values of cos(kzd) when ∆S = ±∆D. In the case of ∆S = −∆D,

the second term can only become zero when cos(kzd) = 1, resulting in a single four-fold

degenerate Dirac node at |k| = 0. When ∆S = ∆D the equation is instead cos(kzd) = −1,

resulting in a Dirac node at the edge of the Brillouin zone, located at kz = ±π/d. For all

other values |∆S| 6= |∆D|, the band structure is gapped for all k.

The Dirac phase at |∆S| = |∆D|marks the critical point between topological and trivial

phases, similarly to the Chern insulator model shown in Figure 2.1. The regimes deviating

from the critical ratio can be deduced from a physical standpoint. When the TI layers are

thin compared to the NI layers, hopping between surfaces on the same layer will dominate

∆S > ∆D, and the system will behave like a trivial insulator. Conversely, a predominantly

topological heterostructure with TI layers thicker than NI layers, will be characterized by

∆D > ∆S.

The fourfold degenerate Dirac point is comprised of a pair of two-component Weyl

fermions with opposite chirality ±1. This can be shown explicitly by Taylor expanding the

Dirac Hamiltonian around k0 = (0, 0, π/d) for the case ∆S = ∆D ≡ ∆, and keeping terms

up to linear order in momentum δk = k−k0. This takes ∆S + ∆De
±δkzd → ∓iṽF δkz, where

12



ṽF = d∆. The low energy Hamiltonian near the Dirac point becomes

H(δk) =



0 ivF δk− −iṽF δkz 0

−ivF δk+ 0 0 −iṽF δkz
iṽF δkz 0 0 −ivF δk−

0 iṽF δkz ivF δk+ 0


. (2.12)

Performing a unitary transformation , H ′(δk) = U †H(δk)U , where U = (I+iτxσz)/
√

2,

block diagonalizes the low-energy Hamiltonian:

H ′(δk) =



ṽF δkz ivF δk− 0 0

−ivF δk+ −ṽF δkz 0 0

0 0 −ṽF δkz −ivF δk−
0 0 ivF δk+ ṽF δkz


=

H+(δk) 0

0 H−(δk)

 (2.13)

splitting it into two independent 2 × 2 blocks H±(δk) = vF δkyσx − vF δkxσy ± ṽF δkzσz,

describing Weyl fermions[19]. In this case, the presence T and P symmetries constrains

the two Weyl fermions to the same point in momentum space, making them topologically

unstable, so the Dirac node is eliminated by any perturbation of the ratio |∆S/∆D| away

from unity. In general, breaking these symmetries will separate the oppositely charged nodes

in momentum space, and produce a topologically stable Weyl semimetal phase, as will be

discussed below.

As an aside, it is noted that material realizations of Dirac semimetals fall into two

classes: nonsymmorphic Dirac semimetals and topological Dirac semimetals. In nonsym-

morphic Dirac semimetals, the four-fold degeneracy arises at high symmetry points in the

Brillouin zone, when the little group describing the point has a four-dimensional irreducible

representation. Alternatively, such three-dimensional Dirac points can arise on a rotation

axis in the presence of T and P symmetry, as the intersection point of pairs of eigenstates
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belonging to different representations of the Cn rotation axis little group. Such topological

Dirac semimetals can be classified in terms of eigenvalues of the rotation operator Cn for

n = 3, 4, 6, but are generally unstable, since a perturbation can remove the band inversion

without breaking any symmetries.

In the model described above, the four–fold degenerate point corresponds to a topolog-

ical Dirac semimetal phase. A topological Dirac semimetal phase can only exist in the pres-

ence of both time–reversal and inversion symmetry, and vanishes when perturbations break-

ing these symmetries are introduced. The semimetallic phase obtained by perturbatively

removing this Dirac point, can host either topological nodal lines[20] or Weyl points[19, 21],

depending on which symmetries remain. Nodal line semimetals can arise in several different

ways[22, 23]: protected by mirror symmetry [20], protected by a two-fold screw rotation[24],

or in the absence of spin orbit coupling [25, 26]. The existence of Weyl points on the other

hand, does not require any special symmetries, aside from the translation symmetry of the

lattice. The remainder of this chapter will focus on the theoretical description of the various

kinds of Weyl semimetals and their properties.

2.2 Weyl Semimetals

The touching of two non-degenerate bands defined by these two-component equations

can occur at general points in momentum space k0, when either the T or P symmetry spec-

ifying the Dirac Hamiltonian is broken[16, 17, 18]. As shown previously, the four-component

massless Dirac Hamiltonian in Eq. 2.13 decouples into a pair of 2×2 blocks, each describing

a two-component Weyl fermion with either left or right handed chirality. These are a special

case of the low-energy linear expansion around a generic degeneracy in momentum space:

HWeyl(δk) = v0 · δk +
∑
i=x,y,z

vi · δkσi (2.14)
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where v0,vx,y,z are the effective velocities describing the dispersion near the degeneracy. The

velocity v0 in the first term determines the tilting of the Weyl cones, controlling the transition

between between Type-I and Type-II Weyl semimetal phases, which will be discussed in a

later section. The remaining velocities define the chirality of each Weyl fermion, given by

C = sign(vx · vy × vz). In the special case described above, where H±(δk) = vF δkyσx −

vF δkxσy ± ṽF δkzσz, the C = ±1, confirming that a four-component Dirac node is indeed

composed of a pair of two-component Weyl nodes with opposite chirality.

The decoupling of the Dirac point into two oppositely charged Weyl nodes highlights

a more general property of these Weyl fermions. The Nielsen-Ninomiya theorem [27] guar-

antees that in a periodic Hamiltonian, each Weyl point must have a partner of opposite

chirality. This can be demonstrated by examining the topological nature of a Weyl node in

terms of the Berry phase near the degeneracy. In general, Weyl points are either sources or

sinks of Berry curvature, with the integral of Berry curvature
∮
∂V
Fn(k) · dS = 2πC, over a

closed surface V surrounding the node, yielding the chiral charge of the Weyl point. When

such a closed surface is extended to fill the entire Brillouin zone, periodicity mandates that

the Berry curvature flux through opposite surfaces must be equivalent, meaning the total

enclosed chiral charge must be zero. In order to guarantee this, each Weyl node must have

a partner of opposite chirality to cancel the total chiral charge in the Brillouin zone.

An important consequence is that unlike Dirac points, Weyl points cannot be removed

by introducing a gap through a finite mass perturbation. They can only be removed pairwise,

through a perturbation that moves two oppositely charged Weyl points to the same location

in momentum space and annihilates them. Additionally, Berry curvature is odd under time-

reversal T Fn(k) = −Fn(−k), and even under inversion PFn(k) = Fn(−k). A system

with both T and P symmetry must then necessarily have vanishing Berry curvature, and

consequently, one of the two symmetries must be broken in order for Weyl points to appear.

The particular symmetry that is broken also determines the number of Weyl points
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that are created. The momentum–space location of a Weyl point k0 is odd under both time-

reversal T (k0) = −k0, and inversion P(k0) = −k0. However, the chirality of the Weyl point

transforms differently with T and P . Inversion symmetry flips the chirality of a Weyl point,

so in a system which breaks T , the persisting inversion symmetry guarantees that each Weyl

point at k0 will have an opposite chirality partner at −k0, satisfying the theorem. On the

other hand T symmetry leaves the chirality unchanged, so P-breaking systems will have two

equal chirality Weyl points at ±k0. Each of these must have an opposite chirality partner

elsewhere in the Brillouin zone, making the total number of Weyl points in inversion-broken

systems a multiple of four.

Further features of T and P-broken Weyl semimetals can be demonstrated by breaking

the appropriate symmetries[16, 17, 18] in the model Hamiltonian defined in Eq. 2.9.

2.2.1 P-broken Weyl Semimetal

Inversion symmetry in the basis of the Hamiltonian defined in Eq. 2.9 is given by

τx, and it can be easily verified that the Hamiltonian is invariant under inversion, H(k) =

τxH(−k)τx. The simplest inversion symmetry breaking term that can be introduced is V τz,

which conveniently preserves the rotational symmetry around the z-axis. With this term

included, the Hamiltonian now becomes

H(k) =
∑
k⊥,i,j

[
vF τz(ẑ × σ) · k⊥δi,j + V τzδi,j + ∆Sτxδi,j

+
1

2
∆Dτ+δi,j+1 +

1

2
∆Dτ−δi,j−1

]
c†k⊥ick⊥j (2.15)

which can be diagonalized to find the dispersion

ε(k) = ±
√(

V ± vF
√
k2
x + k2

y

)2

+ (∆2
S + ∆2

D + 2∆S∆D cos(kzd)). (2.16)
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The bands are degenerate along the kz-axis, where kx = ky = 0. Away from this line, the

bands can touch if both terms under the root vanish. For the second term, the situation

is equivalent to when P is not broken, therefore ∆S = ∆D and kz = π/d. The second

term can become zero in the difference case, giving the condition V = vF
√
k2
x + k2

y. Taken

together, these constraints result in a continuous degeneracy along a circle radius V/vF in the

kz = π/d, called a nodal line (NL). As discussed previously, this kind of extended degeneracy

has its own topological properties, but its existence requires additional symmetries.

Since this band touching only occurs when ∆S = ∆D, just as the Dirac point discussed

before, it is not robust. In order to obtain a robust phase with topological Weyl nodes,

rotational symmetry around the kz-axis must be broken by making the hopping amplitudes

momentum dependent:

∆S = ∆
(0)
S + ∆

(1)
S (k)

∆D = ∆
(0)
D + ∆

(1)
D (k). (2.17)

As discussed previously, the minimal number of Weyl points in a periodic inversion-broken

system is four, which in this case will be confined to the kz = π/d plane. By preserving

the C2 rotational symmetry around the kz-axis, and the (xz) and (yz) mirror planes (also

sometimes labeled σv and σ′v), we can constrain those four points to be located at (±kx0,±ky0)

on a circle. Additionally, since this term must continue to preserve T symmetry, and must

therefore be quadratic in momentum. Simple k-dependent terms satisfying all of these

symmetries have the form

∆
(1)
S (k) = δSk

2
x = δS|k|2 cos2 θ

∆
(1)
D (k) = δDk

2
x = δD|k|2 cos2 θ (2.18)

where we have introduced a transformation to polar coordinates kx, ky → |k|, θ, and δS,
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δD are tuning parameters. With these momentum-dependent terms included, the vanishing

condition for the second term in Eq. 2.16 becomes ∆
(0)
S + δS|k|2 cos2 θ = ∆

(0)
D + δD|k|2 cos2 θ

in the kz = π/d plane. Using the trigonometric identity cos2 θ = (cos 2θ + 1)/2, this can be

rearranged to give

cos 2θ =
2(∆

(0)
S −∆

(0)
D )

|k|2(δD − δS)
− 1. (2.19)

This condition has four solutions only when 0 < (∆
(0)
S − ∆

(0)
D )/[|k|2(δD − δS)] < 1 corre-

sponding to the four Weyl points on the circle radius V/vF . It also clarifies the robustness

of this phase; unlike the previously required fine tuning of ∆S = ∆D, any small change of

the parameters ∆
(0)
S , ∆

(0)
D , δD, and δS will not destroy the Weyl nodes, and only shift them

in momentum space.

The different phases of this model can be scanned by decreasing ∆
(0)
S starting from the

NI phase with ∆
(0)
S > ∆

(0)
D and δD > δS, while keeping the remaining parameters fixed.

2.2.2 T -broken Weyl Semimetal

Another way that Weyl points can be realized within this toy model is by breaking

time-reversal symmetry. This can be achieved by introducing a T -breaking magnetization

term, bσz, perpendicular to the layers in the TI/NI heterostructure:

H(k) =
∑
k⊥,i,j

[
vF τz(ẑ × σ) · k⊥δi,j + bσzδi,j + ∆Sτxδi,j

+
1

2
∆Dτ+δi,j+1 +

1

2
∆Dτ−δi,j−1

]
c†k⊥ick⊥j (2.20)

This term introduces a Zeeman-like splitting that breaks the Kramer’s degeneracy of the

bands, splitting the Dirac cone, which is located at the edge of the Brillouin zone, at k =

18



(0, 0,±π/d), for ∆S = ∆D. The dispersion of the four bands is now given by:

ε(k) = ±
√
v2
F (k2

x + k2
y) +

(
b±

√
∆2
S + ∆2

D + 2∆S∆D cos kzd

)2

(2.21)

which exhibits several phases depending on the values of magnetization b, and the effective

mass splitting determined by ∆S and ∆D.

The prior condition for degeneracy, arising from the first term under the root, persists

for the T -broken case, constraining the Weyl points to kx, ky = 0. The second term vanishes

only for the negative root case, when b2 = ∆2
S + ∆2

D + 2∆S∆D cos kzd, which can be inverted

to find the locations of the Weyl points kz = π
d
± k0, where

k0 =
1

d
arccos

(
b2 −∆2

S −∆2
D

2∆S∆D

)
(2.22)

The [−1, 1] domain of the arccos function determines the extent of the Weyl semimetal

phase. As b is increased from zero, the system gap disappears when a band touching at

kz = ±π
d

first occurs for a value of b = |∆S −∆D|. With further increasing magnetization,

two Weyl nodes are created and propagate in opposite directions, merging at at k = 0, when

b = |∆S + ∆D|. For b > |∆S + ∆D|, the system is again fully gapped.

Since T -symmetry is broken, it is no longer possible to distinguish between normal and

topological insulating states. Nevertheless, our prior definition of Weyl points as topological

entities allows us to distinguish the various phases. In the Weyl phase (|∆S − ∆D| < b <

|∆S + ∆D|), each kx-ky plane for π
d
− k0 < kz <

π
d

+ k0 can be thought of as a 2D Chern

insulator, which is a direct result of the topological charges of the two Weyl points. Since

one of the Weyl points is a source and the other a sink of Berry curvature, there will be a

net Berry flux through any plane located between the two topological nodes. Therefore, the

initial phase at low b is a trivial insulator, and when the Weyl points merge, the stack of 2D
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Chern insulators spans the entire BZ, resulting in a 3D Chern insulator.

2.2.3 Physical properties of Weyl semimetals

The previous discussion summarized the momentum-space topological properties of

Weyl points, and showed how this topology can be conveniently understood by describing

them as monopoles of Berry curvature. As was the case for topological insulators, the

topology of Weyl semimetals manifests itself in various observables, including nontrivial

surface states and responses to applied fields.

One of the most striking consequences of the topological Weyl points is the Fermi arcs

that connect them at the surface of Weyl semimetals [21, 28]. The existence of such a surface

state can be proven using an argument similar to the reasoning used above for the T -broken

Weyl semimetal. For a slab constructed in the x-direction, the Brillouin zone of the surface

is parametrized by ky and kz. Between the Weyl points, for π
d
− k0 < kz <

π
d

+ k0, each

2D Chern insulator layer must have a corresponding linearly dispersing chiral edge mode

E ∝ νky, which is guaranteed to cross the Fermi energy[14]. Taken together, these form a

continuous Fermi arc surface state connecting the projections of the Weyl points within the

surface Brillouin zone.

These Fermi arcs can be derived explicitly using a minimal two-band lattice model of

a Weyl semimetal [29, 30, 31, 32, 33]. The momentum-space component of the Hamiltonian

H(k) =
∑

k

(
H̃(k)

)
αβ
c†kαckβ, can be expressed as:

H̃(k) =− [m(2− cos(ky)− cos(kz)) + 2tx(cos(kx)− cos(k0))]σx

− 2t sin(ky)σy − 2t sin(kz)σz. (2.23)

For the model in Eq. 2.23, T -symmetry is broken along the kx direction, resulting in two
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Weyl nodes at k = (±k0, 0, 0). The Fermi arc surface states can be revealed by constructing

a slab of this model along the z-direction and imposing finite boundary conditions between

the top and bottom surface, as shown in Figure 2.3. The bands for the slab calculation

−π −π/2 0 π/2 π
kx

−2

−1

0

1

2

E
/t

Figure 2.3: Plot of the energy bands along the kx direction for the model in Eq. 2.23
solved using a 100-unit-cell finite slab in the z-direction with the parameters k0 = π/2 and
tx = t = m/2. Surface states for the top/bottom surfaces are colored red/blue respectively.
The green line marks the Fermi energy EF = 0

are colored based on the probability density of each eigenstate at the surface. To avoid the

degeneracy of the Fermi arc states along the kx axis, an additional symmetry-breaking term

∝ cos(kx)σy must be included.

Materials in which T -symmetry broken, for instance by magnetism, will display an

extraordinarily large Hall conductivity even in the absence of an external magnetic field,

known as the anomalous Hall effect [11]. This can occur as a result of various mechanisms,

such as spin-dependent scattering, or intrinsically, as a result of non-trivial Berry curvature.

The topology of T -broken Weyl semimetals thus also has a direct effect on their transport,

resulting in a semi–quantized intrinsic anomalous Hall effect [34]. Once again, we can argue

this is the case by considering the layers between Weyl points as 2D Chern insulators. Each
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layer will contribute a factor of e2/h to the conductivity, meaning the total conductivity is

proportional to the separation q of the Weyl points in the Brillouin zone

σxy =
e2

2πh
q (2.24)

When multiple features are present, σxy and other transport properties can be computed

directly by taking an integral over the Berry curvature. The anomalous transport properties

of Weyl materials will be further explored in Chapter 4.

2.2.4 Type-II Weyl semimetals

One degree of freedom that has not yet been discussed for Weyl points is the tilting of

the Weyl cone itself. So far, we have discussed how the low energy excitations around topo-

logical Dirac and Weyl points have linear dispersions, similarly to Dirac and Weyl fermions,

their massless relativistic analogues in high–energy physics. High–energy physics has the con-

straint that particles must respect Lorentz symmetry, which forbids any terms that would

tilt their cone–like dispersion. However, unlike high–energy physics, particles are instead

constrained by the crystal space group symmetry, for which there is no such tilt constraint.

Such a tilting term can be written as follows

H0 =
3∑

i,j=1

~νijkiσj +
3∑
i=1

νiiaikiσ0 (2.25)

where νij is the general velocity tensor for an anisotropic Weyl point, and ai is a uniform

tilting parameter.

This kind of tilting can be visualized using the minimal lattice model provided above,

by adding an additional term ∼ γ(cos(kx) − cos(k0)) to tilt the Weyl cones [33]. When

γ > 2tx, the Weyl cones tilt below the Fermi energy, resulting in a Type-II Weyl semimetal
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phase, as illustrated in Figure 2.4.
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Figure 2.4: Plot of the energy bands along the kx direction for the model in Eq. 2.23 with
an additional term ∼ γ(cos(kx) − cos(k0)) controlling the tilt of the Weyl cones. Setting
γ = 0 yields untilted, Type-I Weyl cones (a), while γ = 2.5tx yields Type-II Weyl cones
tilted below the Fermi energy (b).

The possibility of a term that can tilt the dispersion of a Weyl cone has enormous

consequences. In particular, if a Weyl cone is so strongly tilted that the edge falls below the

horizontal, its intrinsic properties change dramatically. In such a case, if the Fermi level is

fixed to the Weyl energy, the Weyl point occurs at the touching point between electron and

hole pockets. This results in a finite density of states at the Fermi level, which can lead to a

significant enhancement of transport properties. This enhancement of anomalous Hall and

Nernst effects will be discussed further in Chapter 4.

Finally, it should be emphasized that this tilting has no effect on the chiral topological

properties of Weyl points. For instance, there can be unequal or odd numbers of Type-I or

Type-II Weyls in a material. However, the total number of Weyl points must be even, and

there must be equal number Weyl points with opposite chirality, regardless of their type.
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Chapter 3

Topological Phases in Real Materials

Chapter 2 described various topological phases and introduced the concept of topolog-

ical invariants that arise from integrals of the Berry curvature over closed surfaces. In real

materials hosting topological phases, these topological invariants lead to the quantization

of observable properties such as quantum Hall, quantum spin Hall, and quantum anoma-

lous Hall effects. Chapter 3 will discuss the numerical methods that have been developed for

identifying these topological phases in real materials, first demonstrating their application to

weakly-correlated materials, and then strongly correlated materials, including lanthanides

and actinides. Using specific material examples, we will examine how various topological

features inform our understanding of the physics in these complex systems.

The work described in this chapter was done in collaboration with Xiangang Wan and

Sergey Savrasov. It is published in Physical Review B [35], Physical Review B (Letters)

[36], and Physical Review X [37], and was presented at APS March Meeting 2019 and APS

March Meeting 2020.
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3.1 Link method for Topological Insulators

There has been recent surge of interest in topological quantum materials, motivated by

the robust electronic states which are insensitive to perturbations[1, 14] that exist in these

systems. A method has been proposed to detect the protected surface states in topological

insulators (TIs) [5] by computing the Z2 invariants, which for centrosymmetric crystals,

reduces to finding band parities of electronic wave functions at time–reversal invariant points

in the Brillouin zone (BZ)[7]. For a general case, the calculation of the Z2 invariant involves

an integration of Berry fields [4]

D =
1

2πi

[∮
∂B−
A(k)−

∫
B−

Ω(k)

]
, (3.1)

where the region B− is defined as the lower half-plane in the Brillouin zone [−π, π]⊗ [−π, 0],

and ∂B− – its boundary. A(k) = 〈un(k)|i∇k|un(k)〉 is the Berry connection, and Ωn(k) =

∇k × 〈un(k)|i∇k|un(k)〉 is the Berry curvature, which are defined in terms of the pe-

riodic part of the Bloch wavefunction |ψ(k)〉 = eik·r|un(k)〉 of the electron within the

crystal. The Berry curvature is often expressed in tensor form Ωn
µν , which is related to

the vector form through the Levi-Cività symbol Ωn
µν = εµνξ(Ωn)ξ. Using the identity

〈un(k)|∇kH(k)|un′(k)〉 = [εn(k)− εn′(k)]〈un(k)|∇k|un′(k)〉, where εn(k) are the eigenener-

gies of the Hamiltonian H(k), the Berry curvature can be expressed as the sum [11, 9]

Ωn
µν(k) = i

∑
n′ 6=n

〈un(k)|∂H/∂kµ|un′(k)〉〈un′(k)|∂H/∂kν |un(k)〉 − (µ↔ ν)

[εn(k)− εn′(k)]2

= i
∑
n′ 6=n

〈un(k)|vµ(k)|un′(k)〉〈un′(k)|vν(k)|un(k)〉 − (µ↔ ν)

[εn(k)− εn′(k)]2
. (3.2)

Here the second form can be obtained by using the definition of the velocity operator

v(k) =
1

i~
[r, H(k)] =

1

~
∇kH(k). (3.3)
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The expression for the Z2 invariant (Eq. 3.1) has been implemented in numerical

electronic structure calculations[38] using density functional theory. The implementation is

defined on the reciprocal lattice of the Brillouin zone with the translations Gν=1,2,3, which

is divided into N1 ×N2 ×N3 microcells spanned by the primitive vectors qν=1,2,3 = Gν/Nν .

A link variable can be defined between adjacent pairs of k-points on the grid,

Uq(k) =
det [〈k + qj′|eiqr|kj〉]
|det [〈k + qj′|eiqr|kj〉]| (3.4)

which represents a U(1) angle. Using this link variable, discrete analogues for the Berry

connection Aµ(k) ∼ A(k) and Berry curvature Fµν(k) ∼ Ωn
µν(k), can be introduced

Aµ(k) = lnUqµ(k)

Fµν(k) = ln
Uqµ(k)Uqν (k + qµ)

Uqµ(k + qν)Uqν (k)
. (3.5)

When arbitrarily fine grids are used for evaluation these analogues converge to the exact

values of the Berry connection and Berry curvature respectively. Moreover, an analogue of

the continuous relationship Ωn(k) = ∇k ×A(k) can be written using a discrete derivative

∆µf(k) = f(k + qµ)− f(k):

Fµν(k) = ∆µAν(k)−∆νAµ(k) + 2πinµν(k), (3.6)

where nµν(k) is an integer field that matches the complex logarithmic branches ∈ (−π, π) of

the two sides. As a result, the discrete version of Eq. 3.1

D =
1

2πi

[ ∑
k∈∂B−

Aµ(k)−
∑
k∈B−

Fµν(k)

]
= −

∑
k∈B−

nµν(k) (3.7)

is guaranteed to be an integer. Additionally, this form has been shown to be quite numerically

stable, yielding the correct values of topological indices even for relatively coarse 10× 10×
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10 k-point grids [38, 39]. The development of this method has allowed for high-throughput

searches to identify candidate materials hosting topological insulator phases [40, 41, 42].

3.2 Link method for Topological Points and Lines

Weyl semimetals (WSMs) are systems closely related to topological insulators and char-

acterized by a bulk band structure which is fully gapped except at isolated points described

by the 2x2 Weyl Hamiltonian [14]. Sometimes these Weyl points extend into lines in the

BZ giving rise to nodal line semimetals (NLSMs) [20]. Due to their intriguing properties

such as Fermi arc surface states [21], chiral anomaly induced negative magnetoresistance

[27], and a semi–quantized anomalous Hall effect [29, 16], the search for WSM materials

is currently very active. Unfortunately, their identification in infinite space of chemically

allowed compounds represents a challenge: there is no corresponding topological index char-

acterizing WSM phase, and the Weyl points may appear randomly in the bulk BZ. General

principles, such as broken time reversal or inversion symmetry, or emergence of the WSM

phase between topologically trivial and non–trivial insulating phases [21] are too vague to

guide their high throughput screening, and recent group theoretical arguments[43, 44] to

connect crystal symmetry with topological properties still await their practical realization.

The progress in this field was mainly serendipitous, although the ideas based on band inver-

sion mechanism[12] or analyzing mirror Chern numbers[45, 46] were proven to be useful in

many recent discoveries[47, 48, 49, 50, 51, 52], and computer oriented searches of topological

semimetals are beginning to appear [53, 54, 55].

Here we propose a straightforward method to identify Weyl semimetals by using a

well–known result that every Weyl point acts as a Dirac monopole [19, 56] producing a non–

zero Berry flux when it is completely enclosed by a surface in the BZ. The enclosed charge

is given by the chirality of the Weyl point similarly to Gauss’s theorem in Coulomb’s law.
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Figure 3.1: a. A typical cone dispersion relationship E(k)=±v|k− kWP | for the Weyl point
plotted within a rectangular area in k–space set by divisions of reciprocal lattice translations
G1 and G2 for a fixed value along the third translation G3. b. The Weyl point located within
a microcell set by the grid vectors q1,q2,q3 generates a Berry flux through each plaquette as
given by the (right handed) circulation of the Berry connection with sign convention defined
in text.

Rectangular grids of k–points that are widely employed in self–consistent electronic structure

calculations for the BZ integration either via special points (Monkhorst-Pack) technique [57]

or a tetrahedron method[58], are ideally suited for this purpose since they divide the volume

of the BZ onto microcells and the electronic wave functions are automatically available at

the corners of each microcell. It is thus a matter of rearranging the data to extract Berry

phases of these wave functions in order to recover the Dirac monopoles inside the BZ. While

there are some uncertainties connected to energy bands cutoffs used while defining Berry

fields for metallic systems, our method allows a subsequent refinement provided a signal

from a monopole is detected. The entire procedure resembles data mining technology used

in computer science as an intelligent method to discover patterns from large data sets in

a (semi–) automatic way so that the extracted data can subsequently be used in further

analysis.

Since we are dealing with grids, there is a chance that the grid microcell will enclose

both chiral positive and negative charges whose Berry fluxes cancel each other. Although
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Figure 3.2: ZrNiAl–type crystal structure (# 189 space group p6̄2m) of noncentrosymmetric
hexagonal compounds compounds studied in this work.

the resolution here is obviously adjustable by changing the grid size, and modern computers

allow thousands and even millions of k–points to be handled in parallel, trying to identify

Weyl points that are very close makes no sense from both practical and fundamental reasons.

Practically, properties such as anomalous Hall effect[29, 16] are proportional to the distance

between the Weyl points and so does the density of Fermi arc surface states[21]. Disorder,

electronic interactions, thermal broadening and Heisenberg uncertainty principle provide

fundamental limitations. Therefore, distances between the Weyl points need not be smaller

than a few percent of the reciprocal lattice spacing, and this does not require dealing with

very dense grids.

Now we will outline the method to evaluate the Berry flux due to a single Weyl point

appearing somewhere in the bulk BZ with the typical dispersion relationship E(k) = ±v|k−

kWP |, as illustrated in Fig.3.1a. Proceeding in the same way as we did for topological

insulators, we use the link variable Uq(k) on the edges of k-grid microcells into which the

BZ is divided.
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In Eq. 3.4, the matrix elements between the periodic parts of the wave functions are

cast into the form 〈k + qj′|eiqr|kj〉, which frequently appear in density functional linear

response calculations[59] and thus are straightforward to evaluate. The set of energy bands

j is spanned over occupied states and includes those that cross the Fermi level. However,

some uncertainty exists in this enumeration procedure because the Berry flux from the

negative and positive branches of the monopole (bands 1 and 2 for the example shown in

Fig.3.1a)will cancel each other. For the example being discussed, this means that either

band 1 or 2 (but not both) needs to be taken into account while evaluating Eq.3.4. In real

materials, this may result in contribution for some monopoles cancelling, but since we are

mostly interested in the Weyl points in the immediate vicinity of the Fermi level, varying

the upper cutoff value for j by one or two will resolve this problem. We also note that

the link field Uq(k) needs to be computed for the entire grid of k–points, where the group

symmetry operations help to generate the wave functions that are normally available within

only irreducible portion of the BZ.

We now evaluate the Berry flux through faces of each microcell of the N1 × N2 × N3

grid. This is illustrated in Fig.3.1b, where the flux Φi=1..6 through each plaquette with the

origin at particular k and spanned by a pair of vectors qµqν is conveniently encoded into the

following formula

2πΦ ≡ Im ln

[
Uqµ(k)Uqν (k + qµ)

Uqν (k)Uqµ(k + qν)

]
, (3.8)

which differs in convention from Eq. 3.5 by a factor of 2π. This procedure is similar to one

employed while evaluating Z2 invariants [38] on six two–dimensional tori introduced in Ref.

[60] but now the roles of the tori are played by the slices of the BZ spanned by each pair

of the reciprocal vectors GµGν with a fixed value along the third vector Gξ. We only need

to take care of the fact that the flux as given by Eq. 3.8 produces right (alternatively left)

handed circulation of the Berry connection but inner (or outer) normal should be chosen
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consistently for the total flux through each surface of the microcell. Thus, the total Berry

flux is given by

c = Φ1 + Φ2 + Φ3 − Φ4 − Φ5 − Φ6 (3.9)

Although the flux through each plaquette is generally non–integer, the total flux is guaranteed

to be an integer since individual contributions (3.8) from adjacent plaquettes cancel each

other in Eq.(3.9), up to an addition of 2πn. Therefore c returns ether the chiral charge of

the monopole or zero.

The entire algorithm is now viewed as an automated procedure that is either done

following the self–consistent band structure calculation or “on the fly”. We illustrate it on

the example of TaAs Weyl semimetal whose electronic properties are well documented in

recent literature [48]. We use a full potential linear muffin–tin orbital method (FP LMTO)

developed by one of us [61] and perform a self–consistent density functional calculation with

spin–orbit coupling using the Generalized Gradient Approximation [62]. We subsequently

set up a k–grid using 20 × 20 × 20 divisions of the reciprocal lattice unit cell. These types

of grids were previously shown to be sufficient for calculating Z2 invariants in topological

insulators[63]. For evaluating the link field, Eq. (3.4), the energy window is chosen to span

the entire valence band with the cutoff value corresponding to the band number that crosses

the Fermi level. It appears this is sufficient to recover all monopoles. The net result is that 24

out of 8000 microcells produce non–zero Berry flux and yield approximate positions for the

Weyl points. We take the coordinates of the corresponding microcells (only non–equivalent

by symmetry are needed; two for TaAs) and mine these areas of k–space by introducing

similar rectangular grids inside each microcell in order to refine the locations of the Weyl

points to the positions: (0.009, 0.506, 0), (0.019, 0.281, 0.579) in units 2π/a, 2π/a, 2π/c. This

is in agreement with the previous calculation [48].
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We also considered CuF, recently predicted to be a Weyl semimetal by one of us[52].

The exact same setup (20×20×20 divisions with the energy panel spanning up to the band

that crosses the Fermi level) returns 24 microcells that are all related by symmetry. Zooming

into one microcell returns the following location of the Weyl point: (0.281, 0.119, 0)2π/a,

consistent with our previous result [52].

3.3 Application to weakly correlated materials with

broken inversion symmetry

To demonstrate the predictive power of the method, we scanned several hundred non-

centrosymmetric hexagonal compounds in the p6̄2m (# 189) space group with the ZrNiAl

structure (see Fig. 3.2). Their complete crystallographic data can be found in Ref. [64].

Topological electronic structures in few of these systems have already drawn recent atten-

tion. CaAgP was predicted to be a line–node Dirac semimetal while CaAgAs was found to

be a strong topological insulator [65]. Similar properties have been discussed for NaBaBi

under pressure[66]. We perform self–consistent band structure calculations and subsequent

monopole mining procedure in exactly the same manner as we illustrated for TaAs and CuF.

The experimental lattice constants from Ref. [64] were used, and the discrepancies caused

by deviations from the theoretically predicted lattice parameters were found to be small.

As many of the compounds in this structure include rare earth elements with their f

electron states appearing in the vicinity of the Fermi level, we first provide a list of only

those compounds that do not explicitly include Lanthanides (see Table 3.1). These are the

systems for which density functional based calculations can be trusted in general. Quite a

few of them include magnetic elements (such as Fe) which can potentially develop a magnetic

order at low temperatures. Unfortunately, the literature contains very limited information
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about the existence of magnetism and the type of order (ferro, antiferro, incommensurate,

etc.), and at the absence of established theoretical procedures to search for the lowest energy

ground state in infinite space of possible magnetic configurations, all calculations reported

here assume a paramagnetic ground state.

We can also comment on the compounds that include Lanthanide elements. They

can be separated into two large groups. The first group includes the materials where the

narrow f–band appears crossing the Fermi level in the calculated band structures. This

would be an indication that a many–body renormalization of the single particle spectra

(such, e.g., as band narrowing, multiplet transitions, etc) is expected. Although modern

electronic structure approaches based on combinations of density functional and dynamical

mean field theories [67] allow handling such cases, those are outside the scope of the present

study, and we do not study topological properties of these compounds. The second group

includes the materials with either fully empty or fully occupied f band, namely f0 : LaAuCd,

LaAuIn, LaAuMg, LaCuIn, LaCuMg, LaInMg, LaIrSn, LaNiIn, LaNiZn, LaPdCd, LaPdHg,

LaPdIn, LaPdMg, LaPdPb, LaPdSn, LaPdTl, LaPtIn, LaPtPb, LaPtSn, LaRhIn, LaRhSn,

LaTlMg; f14: LuAsPd, LuAuIn, LuAuZn, LuCuIn, LuGaMg LuGeAg, LuGeLi, LuInMg,

LuIrSn, LuNiAl LuNiIn, LuNiPb, LuPbAg, LuPdIn, LuPdSn LuPdZn, LuPtIn, LuPtSn,

LuRhSn, LuSiAg, LuTlMg. These are the cases where static mean field description can in

principle capture single particle excitations (apart from the question whether the position of

the f–band is correctly predicted by such theory).

There are a few materials that include Sm ion with its non–magnetic configuration

f6 : SmAgMg, SmAuCd, SmAuIn, SmAuMg, SmCuAl, SmCuIn, SmIrIn, SmIrSn, SmNiAl,

SmNiIn, SmNiSn, SmNiZn, SmPdCd, SmPdHg, SmPdIn, SmPdMg, SmPdPb, SmPdTl,

SmPtIn, SmPtMg, SmPtPb, SmPtSn, SmRhIn, SmRhSn, SmSiAg, SmTlMg. Here j = 5/2

and j = 7/2 subbands appear below and above the Fermi level, respectively. The Coulomb

renormalzation in these compounds has a predictable effect by renormalizing the spin–orbit
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Table 3.1: List of noncentrosymmetric hexagonal compounds in the p6̄2m (# 189) space
group with the ZrNiAl structure studied in this work. The compounds containing a Lan-
thanide element are explicitly excluded from the Table.

Class X = Class X = Class X =
YXMg In, Au, Tl, Ga, Cu, Al ZrGeX Os, Zn XNiGa Hf, Zr
CrAsX Ti, Pd, Fe, Co, Ni, Rh XPtIn Sc, Y MnGeX Pd, Rh
ScGeX Fe, Rh, Cu, Os, Pd, Ru ZrCoX Ga, Sn HfXRu P, As
MnAsX Ti, Ni, Rh, Fe, Ru TiGeX Co, Pd CrPX Pd, Ni
YPdX Mg, Al, Tl, In, Zn XAsOs Hf, Zr XPdPb Ca, Y
YXIn Ni, Rh, Au, Cu TiPX Cr, Os, Ru ScPX Ir, Na
XSiRe Hf, Ta, Ti, Zr ZrXRu Si, As, P XSiMn Nb, Ta
HfGeX Fe, Os, Rh, Ru MnPX Rh, Pd, Ni ZrPX Os, Mo
FeAsX Ti, Co, V, Ni CaXCd Ge, Sn, Pb NbCrX Ge, Si
XPNi Fe, Mo, W, Co ScSiX Cu, Ru, Mn HfSiX Os, Ru
XGeMn Hf, Nb, Sc, Ta XNiAl Hf, Y, Zr CaXAg P, As
XAsPd Hf, Ti, Zr, Mn YXAg Pb, Si, Mg XBFe Nb, Ta
Other: YRhSn, YPtSn, YAuCd, YAuZn, YCuAl, YSiLi, YGeLi
BaBiNa, ScGeAg, ScSnAg, HfIrSn

coupling through a Hubard–type interaction, and the states in the immidiate vicinity of the

Fermi level are not affected.

Out of the compounds that we studied, we clearly identify 11 materials which show

WSM behavior, 1 NLSM and 1 hosting both Weyl points and nodal lines. The two NLSMs

also host topologically distinct triple fermion points [68]. Table 3.2 summarizes our results

for each compound , giving the locations of the non–equvalent low–energy Weyl and/or triple

points, their number and energies relative to EF in eV. We find both Type-I and Type-II

Weyl points in these systems, according to classification introduced in Ref. [69]. Complete

crystallographic and electronic structure data for these compounds is given in Appendix A.

Many of the Weyl semimetals that we predict in our work display remarkably sim-

ilar locations of their Weyl points. LaInMg[70], LuGeAg[71], YGeLi[72],YPbAg[73], and

YSiAg[74], exhibit 6 pairs (chiral positive and negative) of points, that are all symmetry re-

lated and are only slightly displaced from the kz = 0 plane. They are located along the ΓM

direction in the BZ. We illustrate their precise positions for LaInMg in Fig. 3.3a and refer
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Table 3.2: List of non–equivalent Weyl and triple points (in units 2π/a, 2π/a, 2π/c), their
number and energies relative to the Fermi level (in eV) recovered using the monopole mining
method for noncentrosymmetric hexagonal compounds in the p6̄2m (# 189) space group
with the ZrNiAl structure that are predicted to exhibit Weyl/nodal line semimetal behavior.
The typical appearance of the Weyl points in the Brillouin Zone is cited by referencing to
either sort A or B as illustrated in Fig. 3.3ab.

Compound Topological Points Sort # E (eV)
LaInMg (0.00000, 0.36868, 0.01123) Weyl-A 12 − 0.06
LuGeAg (0.00000, 0.42190, 0.00098) Weyl-A 12 − 0.23
YGeLi (0.00000, 0.27793, 0.00817) Weyl-A 12 − 0.13
YPbAg (0.00000, 0.40335, 0.03142) Weyl-A 12 − 0.09
YSiAg (0.00000, 0.37864, 0.00384) Weyl-A 12 − 0.09
HfPRu (0.46280, 0.06931, 0.02210) Weyl-B 24 + 0.06
ZrPRu (0.45982, 0.07532, 0.01698) Weyl-B 24 + 0.06
LaTlMg (0.00000, 0.38916, 0.03236) Weyl-A 12 − 0.13

(0.41450, 0.02567, 0.00724) Weyl-B 24 − 0.13
YTlMg (0.00000, 0.43303, 0.02319) Weyl-A 12 − 0.05

(0.44076, 0.02908, 0.00441) Weyl-B 24 − 0.11
LuAsPd (0.00000, 0.11481, 0.14140) Weyl-A 12 + 0.18

(0.00000, 0.12004, 0.13942) Weyl-A 12 + 0.19
ZrAsOs (0.47365, 0.02591, 0.04792) Weyl-B 24 + 0.02

(0.47406, 0.01215, 0.04789) Weyl-B 24 + 0.02
TiGePd (0.00000, 0.00000, 0.16495) Triple 2 + 0.14

(0.00000, 0.00000, 0.20775) Triple 2 + 0.12
VAsFe (0.00000, 0.00000, 0.32279) Triple 2 + 0.14

(0.00000, 0.00000, 0.47625) Triple 2 + 0.19
(0.00000, 0.38339, 0.17269) Weyl-A 12 + 0.09
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Figure 3.3: a. Positions of 6 pairs (cyan for chiral positive and magenta for chiral negative)
of low–energy Weyl points seen along the ΓM direction in the BZ for LaInMg and referenced
in Table 3.2 as sort A; b. Positions of 12 pairs of Weyl points that are shifted symmetrically
away from the ΓK line for HfPRu and referenced in Table 3.2 as sort B; c. A set of nodal lines
for TiGePd that is recovered by the monopole mining method presented in this work. The
color (cyan and magenta) distinguishes chiral positive and negative lines, respectively. The
zoomed area of the BZ is bounded by 0.15 ≤ 2πkz/c ≤ 0.22 and −0.03 ≤ 2πkx,y/a ≤ +0.03.
Also shown in yellow are the triple degenerate topological points [68].

to them in Table 3.2 as Weyl points of sort A. We find that HfPRu[75], and ZrPRu[70] show

another sort (referred to as sort B) of Weyl points, namely 12 pairs that are shifted symmet-

rically away from the ΓK line (see Fig. 3.3b). Interestingly, LaTlMg[76] and YTlMg[70] host

both sorts (A and B) of Weyl points. LuAsPd[77] shows two sets of sort A Weyl points (24

total), while ZrAsOs[78] shows two sets of sort B Weyl points (48 total). Their displacement

from the kz = 0 plane is much larger than that found in previous cases. For each reported

Weyl point, we also provide independent verification by calculating the band structures along

kx, ky and kz directions with the boundary vectors confining the Weyl point. These data can

be found in Appendix A.

Another interesting outcome of our high–throughput screening is the materials ex-

hibiting nodal lines and triple–point fermions. TiGePd[79] and VAsFe[80] both host 12 pairs

(chiral positive and negative) of nodal lines that are located very close to the ΓA direction

in the BZ. We illustrate this behavior for TiGePd in Fig. 3.3c by zooming into the area

of the BZ bounded by 0.15 ≤ 2πkz/c ≤ 0.22 and −0.03 ≤ 2πkx,y/a ≤ +0.03. Interestingly,
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the nodal lines start and end at triple degenerate points that have recently enriched our

classification of topological features [68]. These triple points are located along the ΓA line

of the BZ. We provide their coordinates for TiGePd and VAsFe in Table 3.2.

One of the most striking features of Weyl semimetals is the presence of the Fermi

arcs in their one–electron surface spectra[21]. Although computations of their shapes are

possible via a self–consistent supercell (slab) calculation of the surface energy bands, given

the number of compounds that we consider in this work, it is a computationally demanding

study. Nevertheless, since the arcs connect the Weyl points of different chirality, one can

expect that most of the materials that we list in Table 3.2 would have rather short arcs since

the distances between positive and negative chiral charges are quite small. One notable

exception is VAsFe which, as we list in Table 3.2, exhibits not only nodal lines and triple

points, but also a set of Weyl points which are well separated from each other. These

are expected to produce very long Fermi arcs for the (100) or (110) crystallographic types

of surfaces. We have recently shown [32] that long and straight Fermi arcs are generally

capable of supporting nearly dissipationless surface currents, therefore it could be interesting

to explore such possibility in VAsFe.

In conclusion, we presented an automated monopole mining method to identify Weyl

and nodal line semimetals. We tested the method by recovering the Weyl points in several

known systems as well as demonstrating its predictive power by high throughput screening

hundreds noncentrosymmetric hexagonal compounds in the p6̄2m (# 189) space group and

finding 13 materials whose locations of the topological nodal points and lines have been

reported. As we judge from our calculated energy bands, the WSMs identified in this work

exhibit regular Fermi surface states, while the Weyl points are not exactly pinned at the Fermi

level. This is similar to other recently discovered WSMs, such as TaAs[48], for which a large

negative magnetoresistance has been recently measured[81]. Despite the latter representing

a signature of the much celebrated chiral anomaly feature in Weyl semimetals, there exists
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an obvious problem of distinguishing contributions from the Weyl points and regular Fermi

states. In this regard, our automated approach should be helpful for scanning vast material

databases in identifying an ideal WSM with only nodal points at the Fermi level as it was

originally envisioned in pyrochlore iridates[21]

3.4 Application to a class of strongly correlated super-

conductors

Superconductivity (SC) in non-centrosymmetric compounds has received much atten-

tion due to their potential for hosting unconventional pairing states. The lack of inversion

symmetry permits antisymmetric spin-orbit coupling (ASOC), which splits the Fermi surface

(FS) and mixes spin-singlet and spin-triplet SC pairing states. This ASOC can also lead to

topological features. Here we apply the methods discussed in previous sections to identify

topological features in a class of inversion–broken superconductors and consider the effect of

topology on the superconducting state.

The CeTX3 (T = Co, Rh, Ir, X = Si, Ge) family of compounds crystallize in the

BaNiSn3-type structure (I4mm space group no. 107), which breaks spatial inversion sym-

metry. With the exception of paramagnetic CeCoSi3, their low-temperature phases are

anti-ferromagnetic (AF) at ambient pressure. Application of pressure suppresses the Néel

temperature to zero, where the magnetic ground state gives way to SC. The SC in this group

exhibits many unconventional features, including upper critical fields Hcw that far exceed

the Pauli limiting field Hp[T ] ∼ 1.86TC [K][82, 83, 84, 85, 86, 87, 88, 89] which has been

suggested as evidence of an odd parity SC gap function. Recent works argue that AF fluctu-

ations play a role in the development of SC, indicating the importance of the spin structure

to the unconventional physics in these compounds.
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The absence of inversion symmetry is also a necessary ingredient for the existence

of topological Weyl points. Since the role of ASOC and lack of inversion symmetry in

the development of the SC state is not well understood, we hope to shed some light by

investigating the topological properties of these materials. Furthermore, the narrow Ce-4f

band is sensitive to temperature and pressure, allowing Weyl points to be tuned without

introduction of chemical or site disorder. This feature makes these heavy fermion materials

promising candidates for the study of Weyl physics [90] in the proximity of SC and quantum

criticality.

Our electronic structure calculations are performed within the framework of the full

potential linear muffin–tin orbital method with spin-orbit coupling, using the experimentally

measured lattice parameters [91, 92, 93, 94]. The compounds are locked to the paramagnetic

state to mimic the experimentally observed suppression of magnetism by pressure. The

on-site interactions between the Ce-4f electrons must be treated with special care, as the

strong Coulomb repulsion narrows the bandwidth considerably. We handle renormalization

of quasiparticle bands through the LDA+Gutzwiller (LDA+G) method, taking Hubbard U

values of 5eV and 6eV[95]. The method is described in more detail in Refs. [96, 97, 98, 99,

100]

In LDA+G, the double-counting potential must carefully be chosen to account for the

Coulomb correction included in both the single-particle and interacting terms of the Hamil-

tonian. Specifically, for the electron self-energy correction, Σα(0)− VDC,α, there are several

options for the double counting potential VDC,α [96]. One such option is to set VDC,α = Σα(0),

which leaves the LDA FS intact. Another option is to compute the crystal-field modifications

self-consistently using an average over orbital self-energies, VDC,α = 1
N

∑N
α Σα(0).

For the CeTX3 compounds, the crystalline electric field (CEF) effect of the tetragonal

symmetry lifts the degeneracy of the J=5/2 total angular momentum state, splitting it into

three doublets. Magnetic susceptibility and inelastic neutron scattering experiments [101,
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102, 103, 104] have determined the ground state doublet to be Γ
(1)
7 with Γ6 and Γ

(2)
7 slightly

higher in energy. Our LDA calculation shows that the lowest energy doublet hybridizes with

the four bands crossing the Fermi energy (EF ), which are largely responsible for the shape

of the FS. This is consistent with prior works that show qualitative agreement between the

LDA FS and experimental de Haas-van Alphen measurements for CeRhSi3 [94]. In order to

best match the experimentally determined Fermi surfaces and mass enhancements we take a

phenomenological approach, selecting a hybrid double counting scheme which independently

treats the lowest energy doublets while the remaining states are shifted upward by 0.1Ry. In

Appendix B, we show that a different choice of shift parameter does not affect the states near

the Fermi energy, and does not change the conclusions of our work. An analogous energy

shift was used to find the FS of the isostructural LaTX3, which is presumed to be very similar

to that of the respective CeTX3 compounds since their Ce-4f electrons are highly localized

[105, 106].

Our LDA+G procedure yields band-dependent quasiparticle residues zα, which are

summarized in Table 3.3. It is worth noting that the Γ
(2)
7 doublet has been determined to

be the lowest lying state in CeRhSi3 [106]. However, our calculations place the Γ
(1)
7 doublet

at the lowest energy for all six isoelectronic compounds.

The trends in the CeTX3 series can be understood in terms of a Doniach phase diagram

Table 3.3: Quasiparticle residues zα for the lowest energy states for the members of the
CeTX3 series.

zLDA+G (U=5 eV) zLDA+G (U=6 eV)

Γ
(1)
7 Γ6 Γ

(2)
7 Γ

(1)
7 Γ6 Γ

(2)
7

CeCoSi3 0.59 0.57 0.87 0.54 0.52 0.82
CeRhSi3 0.43 0.41 0.86 0.37 0.36 0.81
CeIrSi3 0.43 0.42 0.86 0.38 0.36 0.81
CeCoGe3 0.38 0.36 0.85 0.33 0.32 0.78
CeRhGe3 0.16 0.14 0.92 0.12 0.10 0.89
CeIrGe3 0.15 0.14 0.93 0.11 0.09 0.91
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Figure 3.4: Band structures for CeCoGe3 using (a) LDA, and (b) LDA+G. Bands are labeled
with their character representations according to their mirror eigenvalue: Σ3/∆3 (blue) for
-i and Σ4/∆4 (green) for i within the mirror planes. Along the Γ − Z line, doublets Λ6

(orange) and Λ7 (magenta) form a DP. NL crossings and DPs are indicated by black and red
circles respectively.

arising from competing RKKY and Kondo interactions [107]. The tuning parameter in the

Doniach phase diagram is |Jcf |N(0) where Jcf is the magnetic exchange interaction and

N(0) is the density of states at the EF . Experimentally, this parameter can be tuned by

compressing the lattice using pressure, resulting in a greater hybridization of the conduction

and Ce-4f bands, thus decreasing the localization of the electrons. This is reflected directly

in the trend of Néel temperatures, with CeTGe3 compounds exceeding their Si counterparts,

(TN = 21K, 14.6K, 8.7K vs. 0K, 1.8K, 5.0K for T = Co, Rh, Ir), due to their larger lattice

constants [91]. The Néel temperatures of CeRhSi3 and CeIrSi3 are suppressed to zero at

relatively low pressures Pc ∼ 2 GPa, indicating their proximity to a quantum critical point.

The computed zα values follow a decreasing trend with increasing lattice volumes, and
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Figure 3.5: Selected NLs in CeCoGe3 for LDA (a), and LDA+G (b), with colored spheres
showing start (yellow)/end (purple) points for NLs plotted in Fig. 3.6.

qualitatively match the experimental trend of larger quasiparticle masses as the mass of the

transition metal atom increases. These imply a factor of ∼2−9-fold increase in Sommer-

field γ values, but experimental measurements on CeTX3 compounds in the high pressure

paramagnetic state are not presently available for comparison.

The bands crossing EF are predominantly Ce-4f in character, with a minor contri-

bution from the transition metal d-orbitals away from the Fermi level. When Coulomb

interactions are considered through the LDA+G calculation described above, their band-

width is narrowed and the Fermi level is pinned to the lower doublet due to the increased

density of states (Figure 3.4), changing the electronic structure and associated topologi-

cal features near EF . We emphasize that while the particular number and shape of the

topological features depend on the choice of double counting potential and magnitude of

Hubbard-U , their existence is guaranteed by symmetry and robust to correlations. Since the

CeTX3 compounds are isoelectronic, the general picture of their topological properties is the

same, with each compound hosting different sets of particular features based on the relative

band positions determined by the CEF splitting. For the remainder of this work we will

focus on describing the electronic properties of CeCoGe3, which hosts representative mem-

bers of each type of topological features found in the series, including Dirac points (DPs)

[15, 108, 109, 110, 111, 112], Weyl points (WPs) [21, 113, 114, 69], and nodal lines (NLs)
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[20, 25, 115, 26].

To locate and confirm the topological features, we use a one shot method for data

mining the bands [35]. We divide the BZ into an initial 20 × 20 × 20 k-grid, computing

the integral of Berry curvature fluxes through the surface of each k-cube to find sources

and sinks. The locations of these topological points are recursively refined by repeating the

procedure on a 4×4×4 grid within their k-cube until the desired precision is achieved, thus

resolving much finer details of the material topology.

We find two classes of WPs in CeCoGe3. The first appears in sets of eight confined to

the kz = 0 plane, while the second comes in sets of 16 which are additionally separated in

the kz direction. Table 3.4 shows selected WPs of CeCoGe3 listed along with their presump-

tive counterparts in LDA+G, which are shifted slightly in momentum space due to band

renormalization. In total, CeCoGe3 has seven (eight) non-equivalent Weyl points in LDA

(LDA+G); additional details can be found in Appendix B.

The most striking topological structure in the BZ is the set of nodal lines emerging

from the Dirac point in this material. The band inversion mechanism generating the DP

along the Γ−Z axis is similar to that responsible for the DP in the inversion broken Cd3As2

[109], which shares the C4v point group symmetry. Along the Γ−Z direction, compatibility

relations for the double group connect Γ7 → Λ7 and Γ6 → Λ6. When moving along Γ − Z,

the lowest lying Λ7 Kramer’s doublet switches with the Λ6 doublet. The DP formed by the

Table 3.4: Non-equivalent WPs of CeCoGe3, with columns: topological charge (C),
number of symmetry equivalent WP in this set (#), location (kWeyl) given in units of
(2π/a, 2π/a, 2π/c), and energy in meV (E). The Fermi energy is set to 0 eV.

CeCoGe3 LDA LDA+G
C # kWeyl E kWeyl E
+1 8 (0.097, 0.187, 1.000) -109 (0.161, 0.133 , 1.000) -49
−1 16 (0.118, 0.152, 0.556) -140 (0.131, 0.168 , 0.586) -110
+1 16 (0.235, 0.271, 0.676) +78 (0.167, 0.236 , 0.530) +33
−1 16 (0.057, 0.285, 0.996) +118 (0.083, 0.221 , 0.617) +37
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Figure 3.6: Renormalization of topological features in CeCoGe3 between LDA (violet) and
LDA+G (blue). (a) Renormalization of NL-1 and NL-2. Energy is plotted along the length of
each NL (normalized to unity), with start/end points as shown in Fig 3.5. (b) Plots of bands
around the first WP from Table 3.4. k-path is the straight line connecting kWeyl ± 0.1k̂y.

two doublets persists with the inclusion of band renormalizations, shifting from a position

kz = 0.6442π
c

in LDA to kz = 0.42852π
c

in LDA+G, closer to the Γ point, as shown in Figure

3.4.

Moving away from the Γ− Z axis within the σv (σd) mirror plane, compatibility rela-

tions dictate that the Λ6 and Λ7 doublets split into bands with Σ3/Σ4 (∆3/∆4) irreducible

representation. They can be distinguished by their mirror eigenvalue, with −i corresponding

to Σ3/∆3 and +i to Σ4/∆4. Intersecting bands belonging to different mirror plane irreducible

representations form a topologically protected continuous line of degeneracy called a Weyl

nodal line [22]. Such NLs are protected by mirror symmetry, and are robust against pertur-

bations. Verification of NL topology is further discussed in Appendix B.

A selection of NLs in CeCoGe3 are shown in Figure 3.5. In LDA, three NLs emerge

from the DP, with NL-2 and NL-3 forming loops within the σv plane and NL-4 forming a

loop in the σd planes. The two other NLs within the σd plane, NL-1 and NL-5, do not form

loops, instead connecting across the edge of the BZ. When correlations are considered, the
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Figure 3.7: Plots of the FS of CeCoGe3 within the kz = 0 plane for (a) the TB model, (b)
LDA and (c) LDA+G. Green (magenta ) arrows show the direction of spins projected into
the xy−plane for the upper (lower) band at each point. For LDA+G the energy is shifted by
-5meV to avoid FS distortion due to pockets created by a set of Type-II Weyl points located
just above Ef . Red circles highlight the spin distortion caused by the NLs in the normal
state, which indicates the existence of zeros in γ(k) and implies line nodes in the SC gap
function.

NL structure of CeCoGe3 changes dramatically. NL-3 mixes with other NLs (not pictured),

inverting to connect across the kz = 0 plane, nearly coinciding with NL-2, while NL-4 and

NL-5 are destroyed by correlations. On the other hand, the momentum-space structures of

NL-1 and NL-2 do not change much in LDA+G. We note that since NL-3 and NL-4 are

very small features and are strongly affected by correlations, it is unlikely that they can be

resolved experimentally. Appendix B contains the details of several additional NLs which lie

farther from EF , for a total of 15 (12) NLs in LDA (LDA+G).

As we have mentioned previously, the renormalization of quasiparticle bands by cor-

relations affects not only the momentum-space position of topological features, but also the

energy at which they are located. Coulomb interactions substantially reduce the width of

the Ce-4f bands and pin them to the Fermi energy due to the increased density of states.

A consequence of this renormalization is that any topological features formed by the Ce-4f

bands move closer to the EF , becoming more relevant for the SC physics.

We illustrate this by showing the renormalization of the first WP in Table 3.4 as well
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as NL-1 and NL-2 (Figure 3.6). Since the two NLs are formed from bands with a large

Ce-4f component, the renormalization of these bands by correlations has a twofold effect,

narrowing the energy dispersion of the NLs and move them closer to the EF . Likewise,

the Weyl point located at (0.097002π
a
, 0.187042π

a
, 1.02π

c
) is formed from bands that have

primarily Ce-4f character near this momentum. The correlations introduced by LDA+G

raise the energy by 60 meV, and shift the Weyl point to a new momentum space position

(0.161382π
a
, 0.132552π

a
, 1.02π

c
).

While SC in the CeTX3 compounds has been studied extensively, the nature of the

pairing state has not been settled. There are a number of good reviews on superconductivity

in non-centrosymmetric materials [116, 117, 118, 119], which we will briefly outline here.

The absence of inversion symmetry allows for an ASOC term,

HASOC =
∑
k

∑
αβ=↑,↓

γ(k) · σ̃αβc†kαckβ, (3.10)

where the Pauli matrices σ̃ = (σ̃x, σ̃y, σ̃z) act on the pseudospin basis states |k, ↑〉 and |k, ↓〉,

and c†kα(ckβ) are the corresponding creation (annihilation) operators.

The form of γ(k) explicitly determines the local spin structure in k-space. This places

a constraint on the superconducting gap function ∆(k), which in general can be expanded

in the basis of Pauli matrices as ∆(k) = [ψ(k) + d(k) · σ̃]iσ̃y, with even-parity scalar ψ(k)

(singlet) and odd-parity vector d(k) (triplet) components. For sufficiently strong ASOC,

|±k, ↑〉 states become non-degenerate, which suppresses the component of d(k) that is not

parallel to γ(k) [116, 117, 120, 121]. It then follows that the triplet component of the gap

d(k) can be infered directly from the spin structure at the Fermi surface. The symmetry of

the pairing gap has been studied in the context of anti-ferromagnetic spin-fluctuations near

the SC transition [122, 123]. It has also been suggested that CeRhSi3 and CeIrSi3 may be

topological Weyl superconductors [124, 125], and indeed our present study has identified a
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number Weyl nodes in the energy dispersion. However, the WPs found in our calculations

are Type-II, with a hyperbolic FS that does not enclose the node. Their contribution to the

FS topology is quite small, and most are too far away from Ef to be relevant for the SC

physics, even when taking band renormalization into account.

Instead we focus on the effect of topological NLs found in these compounds, which

occupy a significantly larger phase space. Figure 3.7 shows cross sections of the CeCoGe3 FS

in the kz = 0 plane for LDA and LDA+G, compared to a two band (TB) model (Figure 3.7a)

which reproduces the principal FS features of the CeTX3 family [122], showing a realignment

of the spins beyond the usual Rashba-type ASOC due to the topological nodal lines near

EF . In LDA, the Type-II nodal line NL-5 passes through the kxky-plane close to EF , and its

strongly tilted dispersion results in hyperboloid FS sheets around the X point in Fig 3.7b.

The spins along the surface rotate by an angle π in the vicinity of the NL, creating a vortex-

like defect which shrinks as the energy approaches the nodal line intersection. Exactly at

the nodal line energy this vortex becomes vanishingly small, but the spin texture remains

continuous due to the degeneracy of the bands. In LDA+G (Fig 3.7c), correlations shift the

NL away from EF , resulting in a gap between the Fermi surfaces, but leave the vortex-like

spin defect unaffected. This spin distortion at the σd planes is a direct consequence of the

topological nature of the NLs, making it distinct from spin structures beyond Rashba ASOC

which have been considered in other works [126, 127, 128].

It has been proposed that line nodes in the superconducting gap function could arise

as a result of a topological defect in γ(k), and that such a state would be dominated by spin-

triplet pairing and robust to perturbation[129]. The vortex-like defects in the spin structure

that arise from the topological nodal lines in the normal state of CeTX3 compounds can

therefore serve as a natural origin for line nodes in the superconducting gap. This result is

consistent with experiments that have found evidence of gapless line-node superconductivity

in CeRhSi3 and CeIrSi3 [130, 131, 89, 132]. Additional experiments are needed to clarify the
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form of the SC gap in this family of materials.

In summary, we have performed simulations of SC compounds in the CeTX3 series with

LDA and LDA+G, choosing the double counting potential in such a way that reproduces

the experimental Fermi surfaces. We characterized the topological properties of their energy

dispersion finding WPs and NLs, which are renormalized close to the EF by the strong

Coulomb interactions of the Ce−4f orbitals. These topological features in turn affect the

spin-structure at the FS in these materials, which we have used to make a first-principles

prediction of the superconducting gap structure.

3.5 Application to a correlated actinide system

Strongly correlated systems are known for a whole range of spectacular phenomena such

as, e.g., colossal magnetoresistance of manganese oxides[133], high–temperature supercon-

ductivity of cuprates[134] and iron arsenides[135] , enormous volume expansions in elemental

Cerium[136] and Plutonium[137], heavy electron–mass renormalizations in compounds con-

taining f and, sometimes, d electrons[138], etc. Recently, the theme of strong correlations

has come into play with the notion of topology in electronic band structures, whose robust

quantum states are insensitive to perturbations and are currently attracting a great inter-

est in materials such as Topological Insulators (TIs) [1] and Weyl semimetals (WSMs)[14].

Starting from an original proposal that pyrochlore iridates, subjected to a moderate Coulomb

repulsion of their 5d electrons, should exhibit a dispersion in the vicinity of the bulk Fermi

level characteristic of Weyl fermions in particle physics and the associated Fermi–arc surface

states[21], the field has been enriched by the discoveries of topological Kondo insulator[139]

behavior in SmB6[140] and filled skutterudites[141], Plutonium and Americium TIs based

on rocksalt structure [142], as well as heavy–fermion Weyl–Kondo semimetals [90]. These

systems, representing a merge between paradigms of correlations and topology, could serve
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as the basis for studying yet unknown electronic phases, transitions and functionalities, and

may lead to interesting applications in the future.

Unfortunately, identifying topological properties of correlated electrons represents a

challenge due to a well–known problem associated with redistribution of spectral weight

driven by the interplay between Coulomb repulsion and kinetic degrees of freedom for the

electrons. As a result, signatures of localized electronic states originating from atomic mul-

tiplet transitions, known as Hubbard bands, as well as strongly renormalized quasiparticle

bands in the vicinity of the Fermi level, often both appear in materials with strong cor-

relations. Such competition between localization and delocalization is at the heart of the

Mott transition problem [143] which has been well understood through the development of

the Dynamical Mean Field Theory (DMFT) [144]. This approach defies static mean–field

approximation as, e.g., implemented in Density Functional Theory (DFT) based electronic

structure calculations [145]. These methods have provided a single–particle framework for

computing topological indices[7, 5, 60, 38], and are currently playing a central role in iden-

tifying topological materials, using, in particular, a powerful method of high–throughput

screening that allows testing hundreds or even thousands of compounds [42, 54, 55, 35]. The

strongly correlated problem generally requires studying the topological character, such as

Berry phases, of many–body wave functions[5, 146, 147] and has been primarily addressed

on the level of many–body model Hamiltonians[148, 149, 150].

Nowadays, modern electronic structure approaches based on combinations of local den-

sity approximation (LDA)[145] and DMFT (LDA+DMFT method) [67] allow for a more

accurate treatment of Coulomb correlations via computations of local self–energies Σ(ω)

for the interacting electrons. This is achieved by treating a correlated atomic shell as an

impurity hybridized with the non–interacting bath which is then periodized and subjected

to self–consistency. Searches of correlated topological matter with the use of LDA+DMFT

would be advantageous as they incorporate the detailed chemistry and structure of a mate-
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Figure 3.8: a. Crystal structure of UNiSn showing antiferromagnetic type I ordering [151],
b. Effect of the cubic crystal field splitting on the 3H4 ground state multiplet of the U f2

two–electron state with its lowest non–magnetic Γ3 doublet as found experimentally[153].

rial into the calculation. It is the purpose of this work to demonstrate how the LDA+DMFT

method can be applied to uncover the rich topological behavior of actinide system UNiSn,

and provide a framework for studying other compounds where genuine many–body effects

need to be taken into account while searching for their topological properties.

An unusual phase transition at TN=43K between a higher temperature paramagnetic

semiconducting (PM–S) and low temperature antiferromagnetic metallic (AFM–M) phase

was discovered for UNiSn long ago[151]. This actinide compound was extensively studied

during last several decades owing to the unconventional (inverse) nature of this metal–

insulator transition with the gap opening above TN and the associated behavior of its strongly

correlated 5f electrons. It crystallizes in a cubic structure (MgAgAs–type) (see Fig. 3.8a)

and its paramagnetic semiconducting phase has an estimated energy gap of about 100 meV

[152]. Its antiferromagnetic structure was found to be of type I with the ordered U moment

1.55 µB oriented along the (001) axis [151].

The central issue in understanding the physical properties of actinides is the degree to

which their 5f electrons are localized. Due to the absence of any signatures of heavy fermion
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behavior in the specific heat data[152], the magnetic properties of UNiSn have been explained

[153] on the basis of a localized 5f2 (U4+) ionic state, whose ground state multiplet 3H4

(J = 4) subjected to a cubic crystal field is split into a doublet (Γ3), two triplets (Γ4,Γ5) and

a singlet (Γ1)[154]. Measured temperature–dependent susceptibility and magnetic entropy

analysis suggested that the non–magnetic doublet is the lowest lying state 180K below the

Γ4 triplet and 430 K below the Γ1singlet (see Fig. 3.8b). Since Γ3 has a quadrupole moment,

it was further proposed that tetragonal distortions and quadrupolar ordering exists below

TN [151]. The valence band photoemission spectra revealed a dominant 5f electron character

for the states in the vicinity of the Fermi level with a contribution from U 6d, Ni 3d and Sn

6p states [155].

Previous band structure calculations of UNiSn emphasized the role of relativistic ef-

fects and electronic correlations among 5f electrons [156]. Both PM–S and AFM–M behavior

have been captured correctly within the LDA+U framework[157], where on–site Coulomb

correlations among f electrons are treated via the introduction of the Hubbard U term and

subsequent static mean field approximation. Such a method is expected to work well in a

symmetry broken AFM state, but would be invalid for the genuine two–electron Γ3 doublet

represented by a mixture of Slater determinants. One can however, assume that paramag-

netism originates from the non–magnetic Γ1 singlet, for which LDA+U should be sufficient.

Within a single–particle picture this is interpreted as a doubly occupied Γ7 level that ap-

pears when a 14 fold degenerate manifold of 5f electrons subjected to spin–orbit coupling

and cubic crystal field is split into Γ7,Γ8 (for j=5/2) and Γ6,Γ7,Γ8 (for j=7/2) sublevels.

Detailed comparisons between theory and experiment revealed discrepancies in the position

of the occupied f–band with respect to the Fermi energy: –0.3 eV in the photoemission vs.

–1 eV in the LDA+U calculation[155].

In the present work we go beyond static mean–field approaches and utilize a modern

LDA+DMFT method in order to account for the interaction effect among 5f electrons more
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accurately. As our main result, we uncover that the two well–known phases of actinide

compound UNiSn, correspond to Topological Insulator (TI) and Weyl semimetal (WSM)

phases of topological quantum matter. Thus, the unconventional insulator–metal transi-

tion observed in UNiSn is also a TI–to–WSM transition. The ability to trigger changes in

topological phases by varying temperature is interesting both fundamentally and from the

point of view of applications, since metal–insulator transitions are very attractive in general

for making all kinds of electrical and thermal conductivity switches or optical modulators.

Using the magic of highly conductive coating in terms of disorder tolerant surface states that

exist in TIs and WSMs, can provide additional control in those applications, as for example,

Weyl semimetals thin films or nanostructures exhibiting ultra–high conductivities[32, 158].

Other functionalities could take advantage of very different responses to an applied magnetic

field relevant for magnetotransport or differences between spin textures of the Dirac cone

or Fermi arc states that could allow a temperature control of current–induced surface spin

polarization relevant for spintronics[159, 160].

An improved treatment of Coulomb interactions in UNiSn should include a frequency–

dependent self–energy Σf (ω) within the spin–orbit coupled space of the 5f electrons (di-

mension 14) which is incorporated into the single–particle LDA Hamiltonian describing all

other (weakly correlated) states. A family of approaches that allow such a combination of

the self–energy with LDA (the SELDA family) has been developed with help of projector

operators long ago[161]. The LDA+DMFT method [67] delivers Σf (ω) by iteratively solving

an auxiliary Anderson impurity model (AIM) that considers hybridization between 5f states

and other non–interacting electrons as a self–consistent function that changes during the

DMFT iterations. The charge density self–consistency is subsequently utilized in a man-

ner prescribed by DFT. The exact solution of AIM is possible in principle via a recently

developed Continuous Time Quantum Monte Carlo (CT–QMC) method [162], although ac-

counting for the full Hilbert space of interacting f electrons together with spin–orbit and

crystal field terms represents a challenge. In addition, the CT–QMC works on the imaginary
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time–frequency axis and obtaining the frequency dependence of the self–energy on the real

axis involves an analytical continuation algorithm which is known to be not very accurate.

In order to study the topology of correlated electrons in UNiSn here we take a prag-

matic approach and make the DMFT impurity problem numerically tractable by using the

experimental fact that the Uranium f electrons are localized in their 5f2 Γ3 ground state, from

which the one–electron multiplet transitions can be obtained by exact diagonalization. The

corresponding f–electron self–energies are subsequently expanded in the Laurent series which

allows us to replace the non–linear (in energy) Dyson equation by a linear Schroedinger–like

equation in an extended subset of “pole states” [163] (see Appendix for details). Remarkably,

the pole representation for the self–energy results in the appearance of many–body satellites

and multiplets in the spectra as effective band states, in general carrying a fractional occu-

pancy due to the spectral weight transfer. It is ideally suited for studying topological indices,

as the corresponding auxiliary wave functions representing the many–body features, carry

all the necessary information about the Berry phase of the interacting electrons[164].

For UNiSn, we carry out all calculations by treating the f–electrons in their 5f2 Γ3

ground state. The Coulomb interaction matrix elements needed for the exact diagonal-

ization procedure (F (0), F (2), F (4), F (6) Slater integrals) have been found from the atomic

5f–electron wave functions and scaled to account for screening effects. We cover a range

of these parameters: 2–4 eV for the Hubbard U = F (0) and 0–1 eV for the exchange

J = (286F (2) + 195F (4) + 250F (6))/6435, in order to make sure that our conclusions are

not altered by the lack of an accurate procedure for determining the screening. It has been

argued earlier that these values are typical for obtaining the best agreement between theory

and experiment for several Uranium compounds [155, 156]. The position of the bare f–level

is fixed by reproducing the experimentally observed f 2 → f 1 electron removal transition

at –0.3 eV [155]. The charge density self–consistency is carried out within LDA+DMFT

as implemented by one us earlier[165]. For PM calculation, the spin up and spin–down
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self-energies are forced to be equivalent which prevents developing a magnetic state. The

AFM instability is studied by first introducing a staggered magnetic field perturbation and

letting the self–consistent solution to converge. If sustainable, the spin–up and spin–down

self energies become different and the solution develops magnetic moments on corresponding

sites of the lattice.

We now present the results of our calculation for the paramagnetic phase of UNiSn.

Fig. 3.9 shows our calculated many–body electronic spectrum in the vicinity of the Fermi

level using a set of Slater integrals F (0) = 0.15, F (2) = 0.3, F (4) = 0.2, F (6) = 0.15 in Rydberg

units. Although cast into a conventional band structure plot, we stress that the 5f electron

states are treated here as true one–electron removal (f2 →f1) and addition (f2 →f3) processes

that come from exact diagonalization, and the corresponding “energy bands” carry non–

integer occupation. This can be seen by realizing that the multiplet transitions within the

j = 5/2 manifold (shown in this Figure by red and blue) are represented by 6 energy bands

that appear both below and above the Fermi level. These are the famous lower and upper

Hubbard bands within the Mott gap picture that acquire a significant dispersion due to

hybridization with U 6d and Sn 5p orbitals. The deduced value of the indirect energy gap

shows some dependence on the Slater integrals, but falls into the same range as experiment

(∼100 meV [152]).

We now turn to the prediction of topological properties for the paramagnetic semi-

conducting phase of UNiSn. First, we point out that the underlying crystal structure is

not centro–symmetric, therefore the Fu and Kane parity criterion[7] developed for insulators

with both time reversal and inversion symmetries does not apply. Nevertheless, given the

fact that the Uranium sites arrange themselves on an inversion symmetric face centered cubic

sublattice with their odd parity localized 5f electrons lying in close proximity to the Fermi

level, it is interesting to speculate whether the possibility of inversion with the even parity

U 6d band is taking place. Such an f–d band inversion was at the center of recent interest
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Figure 3.9: Calculated electronic structure of UNiSn using density functional theory com-
bined with dynamical self–energies for the Uranium f–electrons assuming experimentally
determined 5f2 Γ3 doublet as a ground state[153], The locations of energy panels with non–
zero Z2 invariants and corresponding gaps (∆L,∆F ,∆U) are indicated.
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for several topological Kondo insulator materials with 4f electrons[139], as well as in some

actinide systems such as AmC[142]. While the U 6d band is expected to be unoccupied, it

is very wide, with its lower portion hybridized with the Hubbard bands. The Fu and Kane

criterion would then imply the existence of topological Dirac cone states in UNiSn.

Figure 3.10: Band inversion mechanism applicable for UNiSn: a. In the periodic Anderson
model, hybridization between a wide d-band centered at k=0 Γ point and f–electron mul-
tiplet transitions (lower and upper Hubbard bands, LHB and UHB) results in three energy
panels (shown by black lines) and two gaps that are both topologically non-trivial. The
corresponding surface spectrum is shown by magenta color, where the spectral weight of the
Dirac cone is distributed between the two gaps. b. In UNiSn, the upper Hubbard band
is inverted with the wide 6d band of Uranium while the lower Hubbard band is inverted
with the 5p band of Tin, resulting in four energy panels and three gaps. With two such
band inversions, upper, ∆U , and lower, ∆L, the hybridization gaps are topological while the
fundamental bulk gap, ∆F , is not. c. The band inversion between U 6d and Sn 5p states
around zone boundary X point makes the fundamental gap ∆F topological. The topological
features of the gaps ∆U ,∆L are seen to disappear in the LDA+DMFT calculation, but this
is not a requirement within the considered model (Z2 invariants shown in parentheses are
expected).

To uncover the topological physics one needs to compute Z2 invariants [5] for the

occupied band manifold in the difficult regime of strong correlations. Fortunately, it was

recently proved that utilizing a pole representation for the self–energy[163], reduces this

problem to an effective non–interacting system in the extended set of pole states, whose

topological indices are exactly matched [164]. We develop and carry out this computation
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within the n–field approach[38] (see Appendix for details). However, some care should be

taken to define an appropriate energy panel because as it is seen from our calculations that

multiple gaps appear in the excitational spectrum of UNiSn (we show the panels by various

colors and denote the gaps between them as ∆L,∆F ,∆U in Fig. 3.9). For example, the six

dispersive features that represent the lower Hubbard bands (blue colored ”spaghetti” in Fig.

3.9 labeled as LHB) are completely gapped from the remaining band manifold everywhere

in the BZ. The same is seen for the six eigenstates representing the upper Hubbard bands

above the EF (red colored ”spaghetti” in Fig. 3.9 labeled UHB). Our computations of Z2

invariants for the four energy panels separated by ∆L,∆F ,∆U reveal their topological indices,

which we indicate on the right margin in Fig. 3.9. The energy panels below and above the

fundamental gap correspond to the indices equal to 1;(000) in the notations of Ref. [5] (we

denote this result by Z2 = 1 in Fig. 3.9). This proves that UNiSn is a strong topological

insulator and suggests the existence of protected Dirac cone states at its surface.

To understand which orbitals are responsible for the appearance of the topological

phase, we carry out calculations using a constrained hybridization approach[166]. In this

method, the energies of particular orbitals are shifted by applying a constant potential

constrained within the orbital space by projector operators. This is similar to the LDA+U,

LDA+DMFT and other SELDA families of methods, restricting the application of the self–

energy to the subspace of correlated orbitals. Utilizing this procedure, we are able to de–

hybridize various states, such as U-5f, U-6d, Ni-3d, Sn-5p, etc., by shifting their energies

away from the relevant energy window, and recompute Z2 invariants. The outcome of this

study is the existence of multiple band inversions in UNiSn: The upper Hubbard band is

inverted with the U 6d electrons around the Γ point of the BZ, while the lower Hubbard

band is inverted with Sn 5p electrons. On top of that, U 6d electrons at the very bottom of

the conduction band and Sn 5p states at the very top of the valence band are also inverted

around the X point of the BZ (see Fig. 3.9). These multiple band inversions are responsible

for the topological insulator behavior in UNiSn.
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Figure 3.11: (001) surface spectrum of UNiSn calculated along high symmetry lines of the
surface Brillouin Zone, Γ̄(000), X̄(100), M̄(1

2
1
2
0),using LDA+DMFT method, assuming a 5f2

Γ3 doublet as a ground state. a) Projected bulk spectrum is shown by magenta. b) Top
(green) and bottom (red) surface states are fattened according to the partial character of the
topmost (U-Sn) and bottommost (Ni) atomic plane of the slab. Inset provides close view of
the Dirac states near the Γ̄ point.
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To illustrate the emergent physical picture, we use the periodic Anderson model (PAM)

of strong correlations. It has been recently employed for developing the concept of topological

Kondo insulators where the Fermi level falls into the gap between a heavy fermion (f–like)

and non–interacting (d–like) bands[139]. It has also been recently used to describe Weyl–

Kondo semimetals via hybridization of a heavy–fermion state with non–interacting bands

containing the nodal points[90]. In our case the f–electrons are localized and their self–

energies behave similarly to the famous Hubbard I approximation: Σ(ω) = U2/4ω. The

solution of the PAM in this limit is schematically illustrated in Fig. 3.10a. Hybridization

between a wide d–band and f–electron multiplet transitions denoted as LHB and UHB results

in the appearance of two gaps in the spectrum and three energy panels (shown by black lines).

Both gaps are seen to be topologically non–trivial due to the d–f band inversion mechanism.

For a centrosymmetric lattice, this can be understood based on the Fu and Kane parity

criterion [7]: for the lower (upper) panel, the parities of the eigenstates are odd (even) at

the X and L time reversal invariant momenta (TRIM), but even (odd) at Γ. As a result,

the energy gap above (below) the panel is topological. For the central panel, the parities

of the eigenstates are odd everywhere, but this does not preclude having a topological gap

both below and above the panel, each with its own Dirac cone (the total number of cones

is even). We illustrate the corresponding surface spectrum in magenta. Note that since the

Hubbard bands carry no integer occupation, the spectral weight of the Dirac cones is also

re–distributed between the two gaps.

Now, in UNiSn, our constrained hybridization procedure reveals multiple band inver-

sions around different TRIM points in the BZ: First, as illustrated in Fig. 3.10b, the upper

Hubbard band is inverted with the U 6d at Γ. Due to the d–f band inversion, the topo-

logical Dirac cone is expected to appear inside the gap ∆U at the surface spectrum. Since

Uranium atoms occupy sites of the centrosymmetric face centered cubic lattice, this can be

understood based on the parity criterion [7]. For the lower Hubbard band, U 5f and Sn

5p orbitals are both odd, but belong to different irreducible representations which makes it
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possible to produce a strong topological insulator with a Dirac cone inside the gap ∆L. This

picture emerges when the bottom of the U 6d and the top of Sn 5p bands are not inverted

around the X point, making the fundamental gap ∆F not topological, as we show in 3.10b.

Realizing the band inversion between the U 6d and Sn 5p bands at the X point (see Fig.

3.10c) results in the fundamental gap ∆F becoming topological. Additionally, we monitor

the cancellation of the topological features inside the gaps ∆U ,∆L. This is apparently due to

a more complex overlap between various orbitals in the real calculation than the one assumed

in the simplified model illustrated in Fig. 3.10c where one would in principle expect all three

gaps to become topological (Z2 = 0 for the LHB and UHB, and Z2 = 1 for the lowermost

and topmost panels as shown in brackets in Fig. 3.10c).

To shed some additional light on the nature of the topological phase, we check the

one–electron spectrum for a slab that is oriented along 001 direction, and terminated at

the top by U–Sn atomic plane and at the bottom by Ni plane, where we expect to see the

topological boundary states originating from the two surfaces around the TRIM points of the

surface BZ where the band inversion occurs. We perform a real space transformation of our

LDA+DMFT Hamiltonian that is possible due to the use of a non-orthogonal tight–binding

LMTO representation, which can be interpreted as the unitary transformation of the linear

muffin–tin orbital basis set [167]. The slab size containing 48 original unit cells along z axis

provides a completely convergent surface spectrum. Our results are plotted in Fig. 3.11,

where we show both the projected bulk spectrum (Fig. 3.11a) and the top/bottom surface

states that are fattened according to the partial character of the topmost (U–Sn, green) and

bottommost (Ni, red) atomic plane (Fig. 3.11b). We find a clear evidence of the Dirac–cone

states that appear around the Γ̄ point of the surface BZ (see inset in Fig. 3.11b). Note

that because we are considering 001 surface, one bulk X point is actually projected onto the

surface Γ̄ point, therefore the appearance of the Dirac cone around the surface Γ̄ point is

likely due to the band inversion around the bulk X point. We also identify Dirac cones in

the immediate vicinity of the X̄ point. However, we see that they do not span across the

60



gap likely due to hybridization with other surface states that appear in this energy range.

Nevertheless, we can easily count that there is always an odd number of surface states that

crosses the Fermi level between the time reversal invariant momenta. For example, there are

3 “green” states and 3 “red” states that cross the Fermi energy shown in Fig. 3.11b between

Γ̄ and X̄. The emergent physical picture resembles the case of SmB6 [140] where the band

inversion between Sm 4f and 5d states around the bulk X point and the apparent lack of

trivial surface states for the 001 surface results in Dirac cones spanning across the energy

gaps around the surface X̄ and Γ̄ points.

We now turn to discussing the results of our calculation for the low temperature AFM

phase of UNiSn. The origin of magnetism has been explained earlier [153] based on a

molecular–field model, where owing to the second–order effect in the magnetic exchange field,

the Γ3 doublet is split into two levels with a deduced magnetic moment value of ∼ 2.6µB.

Here our exact diagonalization for the 5f states is almost identical to to the static mean

field solution, because the double degeneracy of Γ3 is broken and a single Slater determinant

description suffices. It has been also proven earlier that the LDA+DMFT method reduces

to the LDA+U in the Hartree–Fock limit[168]. Our calculation with Slater integrals F (0) =

0.15, F (2) = 0.3, F (4) = 0.2, F (6) = 0.15 in Rydberg units, converges to an antiferromagnetic

state with a total magnetic moment of 2.1µB (+3.2µB for its orbital and -1.1µB for its spin

counterparts) slightly larger than the experimentally deduced value of 1.55 µB [151]. This

is in agreement with previous works [155, 156] that also pointed out the inclusion of spin

fluctuations as a possible way to reduce these values. Our calculated spin density matrices

resemble those obtained from the molecular–field exchange model [153].

Fig. 3.12a shows our calculated band structure along the major high symmetry direc-

tions of the BZ. A few energy bands are seen to cross the Fermi level indicating the metallic

nature of the solution. Since both time reversal and inversion symmetries are now broken,

it is interesting to see if there are any Weyl points in close proximity to the Fermi level.
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Figure 3.12: Calculations for antiferromagnetic configuration of UNiSn. a. Energy band
dispersions along major high symmetry lines of the Brillouin Zone, b. Zoomed area along
the ΓZ direction of the BZ showing the locations of the Weyl points with their coordinates
kWP1 = (0, 0, 0.317)2π/a (chiral positive, energy relative to EF is -5meV) and kWP2 =
(0, 0, 0.492)2π/a (chiral negative, energy relative to EF is -42 meV) c. Brillouin Zone of the
AFM UNiSn with the positions of the Weyl points (magenta color refers to positive and cyan
color refers to negative chiral charges).

It is well known that the Weyl point acts as a Dirac monopole in k–space and produces a

non–zero Berry flux through an area surrounding it[19, 56]. We take advantage of this result

and utilize a monopole mining method developed by us recently[35] in order to search for

their locations. This search is rewarded by finding two Weyl points that appear exactly along

the ΓZ line of the BZ, serving here as the magnetization direction. The corresponding band

structure is shown in Fig. 3.12b. Despite the Weyl points aligning with ΓZ , their positions

along this line were found to be sensitive to the value of Hund’s rule J for 5f electrons used in

the calculation, as the latter controls the shape of the bands in this energy range. The WSM

phase begins to appear starting with J=0.2 eV and persists for higher values of J. Fig. 3.12c

shows the positions of these Weyl points in the Brillouin Zone for J=0.3 eV. Their precise

locations are given by the wave vectors kWP1 = (0, 0, 0.317)2π/a (chiral positive, energy

relative to EF is -5 meV) and kWP2 = (0, 0, 0.492)2π/a (chiral negative, energy relative to

EF is -42 meV). Unfortunately, in the absence of detailed knowledge about how the screen-

ing reduces the intra–atomic exchange interaction, these data can only serve as a guideline

for possible experimental verification. Nevertheless, it should be easy to locate these Weyl

points since they are expected to appear along the ΓZ line regardless of the inaccuracies
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in our predictions of their coordinates. Also, it would be interesting to check the value of

the longitudinal magnetoresistance whose negative sign could indicate that our predicted

WSM phase and the associated chiral anomaly exists. Negative magnetoresistance has in

fact been reported for this compound [169, 170] but the setup was related to measuring the

(transverse) Hall coefficient.

To understand the physical origin behind magnetization induced Weyl state in UNiSn,

we introduce a k · p model for two relativistic orbitals with an inversion breaking term.

The Hamiltonian reads

Heff =



A(k) + ∆1 0 Pkz + iV kxky Pk− + V kzk+

0 B(k)−∆1 Pk+ − V kzk− −Pkz − iV kxky
Pkz − iV kxky Pk− − V kzk+ C(k) + ∆2 0

Pk+ + V kzk− −Pkz + iV kxky 0 D(k)−∆2


(3.11)

where k± = kx ± iky and diagonal elements are parametrized as follows: A(k) = A0 +A1k
2,

B(k) = B0 +B1k
2−B2k

4, C(k) = C0 +C1k
2−C2k

4, D(k) = D0 +D1k
2 (we include quartic

terms to allow multiple Weyl points to exist). The parameter P controls the inversion

breaking. A similar model was previously used to describe topological insulator and Weyl

semimetal phases in zincblende–like structures[52]. Here we apply a Zeeman splitting by

setting the parameters ∆1,2 6= 0 along the magnetization (z) axis. Once the effective ”spin

up” and ”spin down” states cross, they produce Weyl points exactly along 001 direction in

the BZ while the gap between these bands is open for all other k–points. We illustrate this

behavior in Fig. 3.13a which shows the dispersion of the eigenvalues of Eq. 3.11, and the

existence of two Weyl points along kz axis. The parameters of the model are the following:

A0 = B0 = 0.24, A1 = B1 = 1, B2 = 3.376, C0 = D0 = −0.56, C1 = D1 = 0.3, C2 = 0.3, P =

0.9, V = 0.5,∆1 = 0.3,∆2 = 0.6.
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One of the most striking features of Weyl semimetals is the presence of the Fermi

arcs in their one–electron surface spectra [21]. Although computations of their shapes are

possible via a self–consistent supercell (slab) calculation of the surface energy bands, given

the variety of regular Fermi states that emerge from our AFM calculation together with the

fact that the Weyl points are not exactly pinned at the Fermi level, makes it hard to resolve

them in the actual surface spectrum of UNiSn. Nevertheless, since the arcs connect the Weyl

points of different chirality, one can expect the existence of long arc–like features in UNiSn

that should be protected from perturbations such as disorder[32].

To illustrate the shape of the Fermi arcs, we have performed the diagonalization for

the k*p model that is periodized on the cubic lattice with subsequent construction of the

Hamiltonian for the slab oriented perpendicular to the x axis. The results are shown in Fig.

3.13b where almost straight Fermi arcs stretched along kz axis are seen to connect the Weyl

points of opposite chirality. The parameters of the model are exactly the same as used in

Fig. 3.13a. If these numbers are tweaked a little to simulate the case seen in Fig.3.12b for

UNiSn so that one Weyl point sinks just below the Fermi level producing a small Weyl Fermi

sphere, the portion of the arc merging with this Weyl point rotates slightly away from the kz

axis and now merges into the Fermi circle originating from the projection of the Weyl sphere

to the surface BZ. At the end, we note that the limit of straight arc geometry was recently

found [32] to be remarkably disorder tolerant, making it capable of producing ultra–high

conductivities of WSM nanostructures [158]. The present physical picture could therefore

serve as one way to engineer such arcs and make a control of topological surface transport

possible.

In conclusion, based on a computational approach combining density functional theory

of electronic structure and dynamical mean field theory of strong correlations, we showed that

two topological phases of quantum matter, topological insulator and Weyl semimetal, ac-

company the unconventional insulator–metal transition in the 5f electron compound UNiSn.

64



Figure 3.13: a. Dispersion of eigenstates of a 4x4 k*p model used to illustrate the mag-
netization induced Weyl semimetal state in UNiSn. The band structure is gapped for all
k–points in the BZ except along the ΓZ line where the Weyl points are formed. b. Position
of the Weyl points in the BZ of the k*p model periodized on the cubic lattice as well as
shapes of the Fermi arc surface states for the slab geometry with the normal along the x
axis. Magenta color refers to positive and cyan color referes to negative chiral charges.

We uncovered the physical origin of its topological insulator behavior via the occurrence of

multiple band inversions between localized f–electrons and regular band states. We also con-

cluded that the magnetic ordering triggers the Weyl state with the nodal points appearing

along the magnetization direction.

Our study reveals interesting opportunities for finding other topological phase transi-

tions in strongly correlated systems. Of particular interest are some non–centrosymmetric

actinide compounds. A sister compound UPtSn is known to exhibit properties that are sim-

ilar to UNiSn[152]. Another series that has been studied in the past through transport, heat

capacity, neutron diffraction, and magnetic measurements is given by the Uranium com-

pounds in an expanded half–Heusler structure [MgCu4Sn–type, cF24-F43m, derived from

the cubic AuBe5 lattice.] Among those, UCu4Pd is one of the most heavily investigated

compounds owing to its strange dependence of the resistivity, magnetization and specific

heat, which scale as T1/3 for temperatures below 10K [171]. The quantum critical point and
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non–Fermi liquid behavior of this compound is fairly well understood, but the transition

between low and higher temperature phases has not fully been explained. Other famous

systems to mention here are UCu4Ni[172] and UPt4Au[173]. Understanding the interplay

between delocalized band electrons and correlated 5f–states known for their largest spin–

orbit coupling is expected to provide an ideal playground for studying topological properties

of interacting electrons.
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Chapter 4

Anomalous Hall and Nernst Effects in

Weyl Semimetals

A major consequence of the topological features found in electronic structures of ma-

terials, is that their presence is accompanied by non-trivial Berry curvature. This Berry

curvature becomes important when considering the dynamics of electrons within these pe-

riodic crystals, which can be described by Bloch states [9]. In fact, a careful treatment of

the semiclassical dynamics of Bloch electrons reveals that this geometric phase results in

an additional term in the equations describing transport properties of topological materials

[174, 175]. Analyses of this sort have been used to understand the quantum Hall effect [2],

spin transport [176, 177], electric polarization [178, 179], as well as the anomalous Hall ef-

fect (AHE) [180, 56, 181, 8, 11], and anomalous Nernst effect (ANE) [182]. This chapter

will derive the Berry curvature contributions to the AHE and ANE, and discuss how these

transport properties can be enhanced by certain features of correlated topological materials.

The work described in this chapter was done in collaboration with Tomoya Asaba, Sean

Thomas, Joe Thompson, Eric Bauer, and Filip Ronning of Los Alamos National Laboratory,
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with the supervision of Sergey Savrasov. It is published in Science Advances [183].

4.1 Berry curvature contribution to AHE and ANE

When a crystal with non–vanishing Berry curvature Ωn(k) is placed in a weak electric

and magnetic field, the semiclassical equations of motion for the Bloch electrons acquire an

additional term[175, 182]

ṙ =
1

~
∂εn(k)

∂k
− k̇ ×Ωn(k)

~k̇ = −eE(r)− eṙ ×B(r). (4.1)

Here, the Berry curvature Ωn(k) can be written as the curl of the Berry connection

Ωn(k) = ∇k × 〈un(k)|i∇k|un(k)〉 where |un(k)〉 is the periodic part of the Bloch wave-

function |ψ(k)〉 = eik·r|un(k)〉. The most straightforward way to proceed is to determine

how the evolution of the state variables (r,k) over time actually results in a change in the

phase-space volume of the system ∆V = ∆r∆k. This in turn leads to a modified density of

states in phase space, resulting in computed observables acquiring an additional term due

to the non-zero Berry curvature.

Inserting the equations (4.1) for the time evolution of the state variables into the

expression for the time evolution of the phase space volume (1/∆V )d∆V/dt =∇r ·ṙ+∇k ·k̇,

we find

1

∆V

d

dt
∆V =∇r · ṙ +∇k · k̇ = − d

dt
ln(1 + eB ·Ω/~). (4.2)
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Assuming an initial volume element ∆V0 at t = 0, this can be solved to find the evolution

of the volume element

∆V =
∆V0

1 + eB ·Ω/~ (4.3)

which becomes time-dependent as the state variables (r,k) change, since the magnetic field

can vary spatially, and the Berry curvature is generally k-dependent.

The number of states per volume element D(r,k)∆V should remain constant as the

system evolves. To satisfy this constraint in three dimensions, the density of states is modified

to be

D(r,k) = (2π)−3(1 + eB ·Ω/~), (4.4)

which can be integrated over the occupied states set by the Fermi-Dirac distribution f(k)

to yield the electron density

ne =

∫
dkf(k)D(r,k) =

∫
dk

(2π)3
f(k)(1 + eB ·Ω/~). (4.5)

By taking the derivative of the electron density with respect to the B-field, we can obtain

the Hall conductivity [184]: σxy = −e(∂ne/∂Bz)µ. This relationship can be understood

by considering a region of a metal slab exposed to a time-dependent magnetic field. The

changing flux generates electromotive force at the boundary of this region, resulting in a

Hall current which in turn changes the electron density inside this region. Evaluating this

derivative we recover

σxy = −e
2

~

∫
dk

(2π)3
f(k)Ωz(k), (4.6)

the well-known result for the intrinsic anomalous Hall effect.
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To derive an analogous expression for the intrinsic anomalous Nernst effect, we need

to compute the Berry curvature-dependent contribution to the magnetization M (r). The

current contribution arising from the magnetization must be subtracted from the current

density J to obtain the true transport current j = J−∇×M(r) measured by experiments

[182]. Starting from the grand canonical potential, we use the modified density of states we

derived previously to obtain

F = − 1

β

∫
dkD(r,k) ln

(
1 + e−β(εM−µ)

)
= − 1

β

∫
dk

(2π)3
(1 + eB ·Ω/~) ln

(
1 + e−β(εM−µ)

)
,

(4.7)

where β = 1/kBT and the energy εM = ε(k) − m(k) · B is found by subtracting the

perturbation arising due to the orbital magnetic moment m(k) from the original dispersion

of the material. Taking the derivative with respect to magnetic field B, we obtain the

magnetization

M (r) =

∫
dk

(2π)3
f(k)m(k) +

∫
dk

(2π)3

e

β~
Ω(k) ln

(
1 + e−β(ε−µ)

)
. (4.8)

The second term in M (r) is in fact the intrinsic contribution due to the non-zero Berry

curvature. Thus we find the intrinsic Berry curvature correction to the transport current

stemming from the magnetization

jin = −∇× 1

β

∫
dk

(2π)3

e

~
Ω(k) ln

(
1 + e−β(ε−µ)

)
. (4.9)

In the particular case of a temperature gradient driving this transport current, we can
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find:

jin,∇T = −∇T × d

dT

1

β

∫
dk

(2π)3

e

~
Ω(k) ln

(
1 + e−β(ε−µ)

)
= −∇T × e

~

∫
dk

(2π)3
Ω(k)

[
kB ln

(
1 + e−β(ε−µ)

)
+
ε− µ
T

1

1 + eβ(ε−µ)

]
(4.10)

Since the anomalous Nernst conductivity αxy is defined as jx = αxy(−∇yT ), the result

can be read off from the above expression:

αxy =
e

T~

∫
dk

(2π)3
Ωz(k)

[
kBT ln

(
1 + e−β(ε−µ)

)
+ (ε− µ)f(k)

]
(4.11)

which we can further simplify using integration by parts [182] to

αxy = −1

e

∫
dε
∂fn(k)

∂µ
σxy(ε)

ε− µ
T

(4.12)

where σxy(ε) is the T → 0 limit of Eq. 4.6:

σxy(ε) = −e
2

~

∫
dk

(2π)3
θ(ε− εk)Ωz(k) (4.13)

At low temperatures the anomalous Nernst conductivity is directly proportional to the

derivative of the anomalous Hall conductivity with respect to energy. This relation is known

as the Mott relation and has been shown to hold for both ferromagnets and non-magnetic

materials [185, 186, 182]:

αxy =
π2

3

k2
BT

e
σ′xy(εF ). (4.14)

The origin of this relationship can be seen from the previous result in Eq. 4.12. The integral

can be interpreted as a convolution with the weight function w(ε, T ) = ε−µ
T

∂fn(k)
∂µ

. The weight
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function w(ε, T ) looks approximately like the derivative of a gaussian, and thus approaches

δ′(ε) for low temperatures. Integrating a function over δ′(ε) will yield its derivative, which

gives the expected relationship αxy ∝ σ′xy.

4.2 Enhanced transport for critically tilted Weyl points

While the presence of Weyl points in a magnetic material necessarily generates a Berry

curvature which leads to intrinsic anomalous Hall and Nernst effects, there are particular

situations where these transport properties are especially enhanced. One such situation

occurs when a pair of tilted Weyl points lies close to the critical transition between Type-I

and Type-II. Near such such a Lifshitz transition, a logarithmic divergence in the slope of

αxy can result in the significant amplification of αxy [187]

We can illustrate this effect by considering an effective model that takes the tilt into

account [188]:

H(k)+ = +~C(kz −Q)− ~vσ · (k −Qk̂z)

H(k)− = −~C(kz +Q) + ~vσ · (k +Qk̂z). (4.15)

This model describes two Weyl points with chirality ±1 separated by a distance 2Q in

momentum space along the k̂z direction. In this sign convection, positive v describes a

negatively charged Weyl point at k = Q, and a positive Weyl point at k = −Q. Changing

the sign of v interchanges the two Weyl points. The parameter C controls the tilting of the

Weyl cones, with positive C describing a tilting of the Weyl cones inward towards kz = 0,

and negative C corresponding to both cones tilting outward, away from kz = 0: In the

Figure 4.1, the dashed lines denote untilted Type-I cones (second terms in equation 4.15).

Taking the C-dependent terms into account tilts the Weyl cones. By increasing C until it
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v > 0 , C > 0 (|v| > |C|)

kz
0

−vδkz

vδkz

(−v − C)δkz

(v − C)δkz

−Q Q

v > 0 , C < 0, (|v| > |C|)

kz
0−Q Q

Figure 4.1: Type-I Weyl points with inward (left) and outward (right) tilted Weyl cones.

v > 0 , C > 0, (|v| < |C|)

kz
0−Q Q

Figure 4.2: Type-II Weyl points tilted inward.

exceeds the Fermi velocity |C| > |v|, the Weyl cones can be tilted below the horizontal,

transitioning from Type-I to Type-II Weyl points.

For this model, the anomalous Hall contribution in the limit of zero temperature can
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be written[188]:

σxy =

− e2

8π2

∫ −Λ−Q

Λ−Q
dkz

[
sign(kz)θ(v

2k2
z − (Ckz − µ)2)

+
vkz

|Ckz − µ|
(1− θ(v2k2

z − (Ckz − µ)2))

]

+
e2

8π2

∫ −Λ+Q

Λ+Q

dkz

[
sign(kz)θ(v

2k2
z − (−Ckz − µ)2)

+
vkz

| − Ckz − µ|
(1− θ(v2k2

z − (−Ckz − µ)2))

]
(4.16)

where εW is the energy at which the Weyl point is located, θ(x) is the Heaviside step function,

and Λ is an effective momentum cutoff. The first integral in the expression is the contribution

from the Weyl at kz = Q, and the second is from the Weyl at kz = −Q. The terms in the

first integral can be understood as a contribution of vkz/|Ckz−µ| when −µ/(V −C) < kz <

µ/(V + C) and sign(kz) otherwise (flip signs for terms in the second integral).

To show how the tilted Weyl cones can enhance the Nernst effect, we rewrite Eq. 4.11

in a more convenient form:

αxy =
ekB
~

∫
dk

(2π)3
Ωz(k)

[
ln
(
1 + e−β(ε−µ)

)
+
ε− µ
kBT

f(k)

]
=
ekB
~

∫
dk

(2π)3
Ωz(k)

[
ln

(
1

1− f(k)

)
+ ln

(
1− f(k)

f(k)

)]
=
ekB
~

∫
dk

(2π)3
Ωz(k)s(β(ε− µ)) (4.17)

where s(β(ε−µ)) = −f(k) ln[f(k)]− [1−f(k)] ln[1−f(k)] is the entropy density. To change
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variables, we integrate this expression with
∫
dεδ(ε− ε(k)), obtaining

αxy =
ekB
~

∫
dε

∫
dk

(2π)3
Ωz(k)δ(ε− ε(k))s(β(ε− µ))

=
ekB
~

∫
dε
∂σxy
∂ε

(ε) s(β(ε− µ)) (4.18)

where we have recognized
∫

dk
(2π)3

Ωz(k)δ(ε − ε(k)) as the derivative of Eq. 4.13. This refor-

mulation explicitly shows the relationship between αxy and ∂σxy/∂ε, which reduces to the

Mott relation at low temperatures. Furthermore, the Dirac delta function δ(ε− εk) present

within the expression ∂σxy/∂ε ensures that only a partially occupied band at a given energy

will contribute to αxy. This opens up an additional route to increasing the magnitude of αxy

besides a larger Berry curvature; increasing the density of states.

Numerically evaluating Eq. 4.16 for various titled Weyl points reveals that the anoma-

lous Hall conductivity σxy develops a sharp peak when the Weyl cone is tilted close to the

transition between Type-I and Type-II (|C/v| ≈ 1). If the chemical potential is located at

the energy of the Weyl point (µ = εW ), this is exactly the Lifshitz point of the transition

between a Weyl semimetal with zero density of states, and a Weyl metal with finite density

of states. While it is possible to compute an exact expression for σxy using Eq. 4.16 for

certain model Hamiltonians of tilted Weyl points (See for instance [189]), this result is not

particularly illuminating, and in general this problem is not solvable analytically. Instead,

we will use a scaling argument to show how σxy and αxy generally behave near the Lifshitz

transition.

The relevant energy scale for the tilted Weyl point model in Eq. 4.15 is Ec = ~vQ, while

the proximity to the Lifshitz point can be captured by the parameter δ = 1 − C/v. From

Eq. 4.16, we see that σxy ∼ Q× e2/4π2, with the proportionality term being a dimensionless
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integral. We can therefore write the following scaling form [187]:

∂σxy
∂ε
∼ e2

4π2

Q

~vQ
→ ∂σxy

∂ε
=

e2

4π2~v
F

(
ε− εW
|δ|~vQ

)
(4.19)

where F (x) is a dimensionless scaling function. It can be shown that this scaling result leads

to a logarithmic singularity ∼ ln
(
ε−εW
|δ|~vQ

)
in the energy derivative of the Hall conductivity

∂σxy/∂ε[189]. Near the Weyl energy, when (ε − εW ) � ~vQ, the dominant contribution to

this divergence will be ∂σxy/∂ε ∼ ln
(
ε−εW
~vQ

)
, and away from this energy it will still experience

a cutoff determined by δ, ∂σxy/∂ε ∼ ln(|δ|). This in turn leads to a low temperature result

for the ANE, αxy ∼ T ln
(
ε−εW
~vQ

)
, which will also have a logarithmic divergence. Crucially, at

higher temperatures, the dependence becomes αxy ∼ T ln
(
kBT
~vQ

)
, violating the Mott formula

(Eq. 4.14), where αxy ∼ T . The temperature at which this occurs is determined by the

proximity of the chemical potential to the Weyl energy, so a specific tuning can result in a

violation of the Mott relation at arbitrarily low temperatures [187, 189].

4.3 Enhanced ANE in a correlated noncentrosymmet-

ric kagome ferromagnet

In the previous section we explicitly showed how αxy depends only on states near the

Fermi energy, and how it is enhanced in a material with critically tilted Weyl points, owing

to their non-vanishing density of states. This suggests additional routes for increasing the

magnitude of αxy by increasing the density of states. Strong electronic correlations are one

such option. As was discussed in Chapter 3, strong correlations can confine electrons to

localized orbitals, leading to narrow, renormalized bands at the Fermi energy, particularly

when considering the 4f orbitals of lanthanides.

Another mechanism that leads to flat bands with large density of states can occur in
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materials with specific kinds of lattice structures. Such a flat band occurs on the kagome

lattice, which is a network of corner sharing triangles (or hexagons) in two dimensions.

Solving a simple nearest-neighbor tight binding model on the kagome lattice results in two

dispersive bands and one dispersionless band, which corresponds to a state of alternating

positive and negative weight around the sites of each hexagon. It is clear that such a state is

completely localized; considering hoppings from this state to a nearest neighbor on another

hexagon, we that the two sites we can hop from will have hoppings of equal amplitude but

opposite weight. This leads to a cancelation overall, which confines the wavefunction to a

single hexagon and leads to a localized flat band.

This ideal construction breaks down when higher order hoppings are included, espe-

cially within a three-dimensional structure. Nevertheless, the presence of a kagome sublattice

could result in bands with little dispersion in some or all of the Brillouin zone, which would in

turn lead to enhanced transport effects if that band contained topological features. In fact,

large AHE and ANE have been observed recently in a number of materials with a kagome

sublattice [190, 191, 192, 193, 194].

Thus, in order to maximize the magnitude of AHE and ANE, a material must satisfy

several criteria. In order to have non-vanishing intrinsic anomalous transport, the material

must have strong spin-orbit coupling effects to produce topological features through the band

inversion mechanism, and also break time-reversal symmetry. In addition to this, an ideal

material will be strongly correlated and have a kagome sublattice, which will enhance the

intrinsic AHE/ANE due to the large density of states of the flat bands these effects produce.

Lanthanide and actinide compounds inherently satisfy many of these criteria, and indeed it

was recently discovered that UCo1−xRuxAl, which satisfies all of these criteria, has a large

AHE and colossal ANE for a doping x = 0.2.

UCo1−xRuxAl crystalizes in the inversion-broken ZrNiAl structure type which was pre-

viously discussed in Chapter 3. The uranium atoms in this structure form a distorted kagome
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lattice, where alternate corner sharing triangles are slightly rotated by opposite angles. The

inversion-broken structure gives rise to numerous pairs of Weyl points, however these do not

contribute to the AHE or ANE in the paramagnetic state. The endpoints in the doping se-

ries, UCoAl and URuAl are paramagnetic, but UCo1−xRuxAl is ferromagnetic for the doping

range x = 0.005 − 0.78 [195, 196], which splits these Weyl points and results in non-zero

AHE and ANE. Prior experiments measured a large AHE near the quantum critical point

x = 0.78 [196].

There is convincing evidence of strong correlations throughout the entire range of dop-

ings 0 < x < 1. Sommerfeld coefficients γexp extracted from heat capacity data are around

∼ 50 mJ/mol K2 for the whole doping series [196, 197, 198]. Specifically for UCo0.8Ru0.2Al,

the doping at which the large anomalous transport effects are observed, a value γexp = 41

mJ/mol K2 is measured. Comparing this to the theoretical values γthe = 9− 13 mJ/mol K2,

which are computed for a range EF ± 10 meV to account for the uncertainty in determining

the Fermi level, suggests a mass enhancement factor of ∼ 3 due to correlations. Correlations

have also been confirmed by photoemission and X-ray measurements [199, 200].

We will now summarize the main experimental results for UCo0.8Ru0.2Al [183]. The

resistivity ρxy is -11 µΩcm and -16 µΩcm at 2 K and 40 K respectively, with the former

corresponding to a conductivity of σxy = 980/Ωcm. These values are comparable with the

giant values AHE recently measured for Co2MnGa and Co3Sn2S2 [187, 196]. However, the

anomalous Nernst effect in UCo0.8Ru0.2Al exceeds any previously recorded value, reaching

reaching 23 µV/K at T = 40 K, exceeded even the αxy = 6-8 µV/K seen in Co2MnGa [187].

What is most striking about this result is the relative magnitude of αxy relative to σxy. It

has been argued that since αxy is related to entropy transport, and σxy is related to charge

transport, there is a natural upper bound αxy/σxy < kB/e = 86µV/K [201]. In UCo0.8Ru0.2Al

this ratio is 170µV/K at 47 K, which suggests that multiple bands are contributing to the

large ANE[183].
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To understand these experimental results, we compute the electronic structure of doped

UCo1−xRuxAl within the framework of the full potential linear muffin tin orbital method [61],

using the local spin density approximation (LSDA) which has been previously employed to

study uranium compounds with the ZrNiAl-type structure [202, 203, 204].

To examine the effect of doping on the electronic structure, we perform calculations

for the parent compound UCoAl, as well as doped at the x = 1/3, 2/3 and 1 levels, using

the experimental lattice parameters. The UTAl (T=Co,Ru) structure has two inequivalent

sites for atom T, T1 and T2, with Ru preferentially occupying the two T2 sites [205, 206].

Therefore calculations on the chemically ordered compounds UCo2/3Ru1/3Al, UCo1/3Ru2/3Al

with Ru at the T2 site will give a representative picture of the doping effects on the electronic

structure of UCo1−xRuxAl. The resulting band structures are shown below.
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Figure 4.3: Computed band structures for the stoichiometric compounds in the
UCo1−xRuxAl series, with x = 0, 1/3, 2/3, 1. Ef = 0 is the Fermi level corresponding to
the x = 0.2 doping.

Figure 4.3 shows that as Ru is substituted for Co, the band structure remains largely
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unchanged, aside from a downward shift in the Fermi level due to the removal of electrons.

The Fermi level Ef = 0 is set to the energy corresponding to the x = 0.2 doping level, which

will be used consistently throughout the supplement. These calculations indicate that a rigid

band approximation for doped UCo1−xRuxAl is appropriate.

The uranium f-orbitals reside on a kagome lattice. Thus, the effects of frustrated

hopping on such a lattice and the small spatial extent of the 5f orbitals will be intermixed.

Identifying specifc bands associated with the kagome structure is further complicated by the

multiorbital nature of uranium, the presence of ligand orbitals, and the three dimensionality

of the structure. Nevertheless, multiple flat bands can be observed in the bandstructure

plots of Fig. 4.3. One would expect the at bands near the Fermi energy to be renormalized

by electronic correlations present in this system.

For UCoAl, the computed orbital µl = 1.19µB and spin µs = −0.98µB magnetic

moments, which are similar to those found in prior calculations [207]. Experimentally

UCo1−xRuxAl is non-magnetic, developing a magnetic moment in the doping range x =

0.005− 0.78, with a maximum uranium magnetic moment µU = 0.6µB around x = 0.3[208].

Therefore, with the appropriate adjustment of Fermi level, our calculated electronic struc-

ture for UCoAl is a reasonable model to compare with experimental observations for doped

UCo0.8Ru0.2Al. It is important to note that our model is only valid at energies corresponding

to dopings within the magnetic range, and not for the paramagnetic end points. We further

emphasize that while details of the actual electronic structure may vary, the main observa-

tion of an abundance of topological features close to Ef will be insensitive to variations of

the electronic structure.
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4.4 Identification of Topological Features

To understand the origin of the large anomalous Hall and anomalous Nernst effects in

UCo0.8Ru0.2Al, we perform previously developed mining procedure [35] to find topological

features in the electronic structure of UCoAl. A density of states calculation revealed that

the Fermi level of the x = 0.2 doped case lies 41 meV below the Fermi level of undoped

UCoAl. Because the topological features closest to the Fermi level will be the most relevant

to the transport properties, we scanned the range of energies Ef ± 60meV for topological

features.

We divide the BZ into an initial coarse k-grid of 30×30×30 divisions, and compute the

Berry curvature flux through the surface of each k-cube. This grid is subsequently refined

by iteratively repeating the search procedure on a 2 × 2 × 2 grid within each k-cube until

the desired precision is achieved. This allows us to find the locations of sources/sinks of

Berry curvature flux, simultaneously confirming the topological nature of the features as

well as their positions in k-space. Our procedure reveals a number of topological features in

UCo0.8Ru0.2Al, including Weyl points, nodal lines, and triple points. The triple points[68]

only exist within the paramagnetic state, and therefore, will not be discussed further. Both

Weyl nodes and nodal lines exist in the ferromagnetic state.

The Weyl points we identify in UCo0.8Ru0.2Al are summarized in Table 4.1, and can be

classified into one of three general sorts. The main two sorts of Weyl points we term Weyl-A′

and Weyl-B′, due to their relationship to the Weyl-A and Weyl-B sorts of Weyl points we

have previously identified for compounds with the ZrNiAl-type structure [35].

For reference, Weyl points belonging to sort Weyl-A form six pairs found along the

Γ−M line, and separated along the kz direction. Weyl-B points are instead 12 pairs which

are found in sets of four, symmetrically displaced from the Γ−K line. The reason for 12 Weyl

points being the minimum number can be understood in terms of a symmetry argument.
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Band Location T # δkz v (Ry/k̂) C (Ry/k̂) E
71 ( 0.00000, 0.33057, 0.02756) A′ 6 0.0030000 -0.0418333 0.0183333 -63
71 ( 0.00000,-0.53900, 0.09977) A′ 6 0.0268000 -0.0549254 0.0107090 -30
71 ( 0.00000, 0.15877, 0.12084) A′ 6 0.0174000 -0.0427011 -0.0177299 -15
71 ( 0.00000,-0.45758,-0.12498) A′ 6 0.0317400 0.0811122 -0.0017171 -22
71 ( 0.00000, 0.55407, 0.22190) A′ 6 0.0178400 -0.0225897 0.0070348 -6
71 ( 0.61459, 0.05412,-0.12708) B′ 12 0.0304600 0.0391005 0.0207814 -51
71 ( 0.41976, 0.10908,-0.42260) B′ 12 0.0112000 0.0174554 -0.0062946 -32
71 ( 0.00000, 0.31823,-0.45537) A′ 6 0.0112000 0.0132366 -0.0018973 -44
71 ( 0.00000,-0.38203, 0.38948) A′ 6 0.0240000 -0.0208750 0.0056250 +2
72 ( 0.00000, 0.38736, 0.00434) A′ 6 0.0040000 -0.0842500 0.0823750 -51
72 ( 0.00000, 0.51091,-0.01959) A′ 6 0.0078000 0.0377885 -0.0377884 +26
72 ( 0.00000,-0.07528,-0.03239) A′ 6 0.0049560 0.0329903 -0.0069613 -23
72 ( 0.27505,-0.00369, 0.03266) B′ 12 0.0030000 -0.0510833 0.0505833 -32
72 ( 0.00000, 0.08053, 0.02120) A′ 6 0.0048000 -0.0233333 0.0063542 -28
72 ( 0.00000, 0.23693,-0.05635) A′ 6 0.0126000 0.1351587 0.1173413 -1
72 ( 0.00000,-0.18377, 0.09803) A′ 6 0.0130000 -0.1004615 0.0413462 +28
72 ( 0.40132,-0.13379,-0.13770) B′ 12 0.0130000 0.0300000 0.0206538 +59
72 ( 0.00000, 0.00000, 0.22577) kz 2 0.0210000 -0.0063095 0.0300238 +57

Table 4.1: Weyl points of UCo0.8Ru0.2Al series. The first column gives the lower band
number of two bands comprising the Weyl point. The second column gives the position of
one positive charge given for each symmetry-related set of Weyl points. The third and fourth
columns give the classification type (T) of the Weyl points as Weyl-A′ (A′), Weyl-B′ (B′),
or kz, and the number of symmetry-related Weyl points in the set. The remaining columns
give the momentum cutoff δkz, velocities v and C, and energy E, of each Weyl point in meV
relative to the Fermi energy. Wavevectors k̂ are given in units of 2π/a, 2π/a, 2π/c.

While Weyl points can arise due to the absence of either time-reversal T or inversion I

symmetries, here they exist due to broken inversion. Now, while T (k) = −k, the topological

charge of a Weyl point is invariant under T . This means that a positively charged Weyl

point located at k will have a positively charged partner at −k, each of which will have a

negatively charged partner across the σz mirror plane as shown in Fig 4.4a. In combination

with the three-fold symmetry of the BZ, this guarantees that each Weyl point belongs to a

symmetry-related set with a number of members that is a multiple of twelve.

In UCo0.8Ru0.2Al, the uranium magnetic moments break T -symmetry on top of the

already absent inversion symmetry of the lattice. This means that the inversion symmetry
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Figure 4.4: a) 4 Type-A Weyl points in UCo0.8Ru0.2Al in the absence of magnetism. b)
Turning on the magnetism breaks k ↔ −k symmetry, splitting the original set of Weyl
points into two sets of Type A’ or Type B’. c) Symmetries of Type A’ and Type B’ Weyl
points in UCo0.8Ru0.2Al within the kx–ky plane.

k ↔ −k in k-space is fully broken, splitting the Weyl A and Weyl B sorts each into two

sets of Weyl A′ or Weyl B′ sorts, with 6 and 12 members respectively (Fig 4.4c). This can

be understood as a direct consequence of the Zeeman-like effect shifting the bands, causing

the kz-separation between Weyl point partners to increase or decrease (Fig 4.4b). A similar

mechanism can create lone pairs of Weyl points along the Γ− A axis, separated only along

the kz direction [37]. Since this sort of Weyl point is pinned to the kz-axis, application of

point group symmetries does not yield any new symmetry-related members. Therefore these

sets have only two members, which is the minimum for materials with broken T -symmetry.

In addition to the Weyl points we find a number of topological nodal lines in the

electronic structure of UCoAl, shown in Figure 4.5a. This type of nodal line can arise at
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Figure 4.5: a) Nodal lines within the σz plane of UCoAl. b) Nodal lines plotted as a function
of energy. c) Paramagnetic band structure plot of UCoAl computed with LDA. Triple point
locations are indicated by black circles. Ef = 0 corresponds to the x = 0.2 doping level.

the intersection of two bands belonging to two different irreducible representations of the

mirror plane point group. In UCoAl, these nodal lines have different eigenvalues when acted

upon by the σz mirror plane. As a result the band degeneracy at their intersection point is

topologically protected against small distortions.

These nodal lines are located at least 50 meV above/below the Fermi energy (Fig 4.5b).

While they occupy a larger part of the topological phase space than the Weyl points, they

likely don’t make a significant contribution to the Berry curvature at the Fermi energy of

the x = 0.2 doped case. Specifically, the nodal lines lying within the σz mirror plane will

not contribute to Ωz
xy and hence will not impact σxy or αxy.

The UCoAl crystal structure belongs to the inversion broken p6̄2m (# 189) space group,

which can also host triple-points [68]. Our procedure was able to locate several pairs of such

triple points (Fig 4.5c). Like the nodal lines, these triple points are located far below the

Fermi level, at -272 meV, -158 meV, -141 meV, and -191 meV below Ef , respectively. Hence,

like the nodal lines, they would have a negligible effect on the Berry curvature calculation for

UCo0.8Ru0.2Al. More importantly, the existence of these triple points requires time-reversal

symmetry, which is broken in UCo0.8Ru0.2Al by the uranium magnetic moments.

The large number of topological features in UCoAl result in a dense population of
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singularities in the Berry curvature. This means that the standard approach for computing

anomalous Hall and anomalous Nernst effects would require dense k-grids that are too large

to be computationally tractable. Instead, we take a pragmatic approach by using the solvable

model (Eq. 4.15) we previously introduced to model each pair of identified Weyl points,

allowing us to practically compute the anomalous Hall effect (Eq. 4.16) at T = 0.

Using this model, the anomalous Nernst effect αxy can also be computed directly by

integrating the zero-temperature anomalous Hall using Eq. 4.12 [182]:

α(T, µ) = −1

e

∫
dε

(
∂fFD

∂µ

)
σ(0, ε)

ε− µ
T

= −1

e

∫
dε

e(ε−µ)/(kBT )

kBT (e(ε−µ)/(kBT ) + 1)
2σ(0, ε)

ε− µ
T

= − 1

eT

∫
w(
ε− µ
kBT

)σ(0, ε)dε (4.20)

where fFD is the Fermi-Dirac distribution, and w(x) = xex/(ex + 1)2 is a weight function

introduced to simplify the expression.

In turn, the anomalous Nernst effect can be computed from the zero-temperature

anomalous Hall through the following formula [182]:

α(T, µ) = −1

e

∫
dε

(
∂fFD

∂µ

)
σ(0, ε)

ε− µ
T

= −1

e

∫
dε

e(ε−µ)/(kBT )

kBT (e(ε−µ)/(kBT ) + 1)
2σ(0, ε)

ε− µ
T

= − 1

eT

∫
w(
ε− µ
kBT

)σ(0, ε)dε (4.21)

where fFD is the Fermi-Dirac distribution, and w(x) = xex/(ex + 1)2 is a weight function

introduced to simplify the expression.

The computed anomalous Hall effect for the Weyl points listed in Table 4.1 is shown

in Figure 4.6a. A large value of σxy appears just above the Fermi level, suggesting that

a collective contribution from several Weyl points could explain the large experimentally

observed values. This plot must be interpreted very carefully for a number of reasons.
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Figure 4.6: a) Anomalous Hall effect computed for all Weyl points in UCo0.8Ru0.2Al. b) The
anomalous Hall effect for set of Weyl points at +26 meV c) The anomalous Nernst effect as
a function of temperature computed with the chemical potential set at +26 meV.

Firstly, the anomalous Hall contribution for each pair of Weyl points depends on their kz

separation, which in turn depends on the uranium magnetic moments. As we have previously

mentioned, these are difficult to reproduce numerically. Secondly, while we take a relatively

dense initial grid of 30 × 30 × 30 k-points to search for topological features, the dense

distribution of the Weyl points we found suggests the possibility that some initial k-cubes

may contain multiple Weyl points, meaning there may be yet more additional Weyl points

missed by our procedure. Thirdly, this calculation does not include contributions from nodal

lines and other sources. Finally, UCo1−xRuxAl is magnetic for dopings x = 0.005− 0.78, so

outside of this range, our model would not apply.

We also draw attention to the anomalous Hall effect contribution coming from the Weyl

point located at (0.0, 0.51,-0.02) and 26 meV above the Fermi energy (and its symmetry re-

lated partners) (Fig 4.6b,c). The anomalous Nernst contribution of these points is computed

by setting the chemical potential at +26 meV and evaluating the above integral. This set

of Weyl points is close to a Lifshitz transition between Type-I and Type-II tilting. As has

already been shown, for tilted Weyl points near the Lifshitz transition, ∂σxy/∂ε diverges

logarithmically at the critical tilt, resulting in large anomalous Hall and Nernst effects, as

well as an amplification of αxy relative to σxy [187]. In UCo0.8Ru0.2Al, these Weyl points are

located +26 meV above the Fermi energy, corresponding to a doping of x = 0.07, and are
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sufficient to explain the large anomalous Hall (∼ 1200 [Ohm cm]−1) and large anomalous

Nernst (∼ 20 A/K m) observed in this material.

We reiterate again that the Weyl points in this material, along with their associated

Berry curvature and other observable properties, are highly sensitive to the uranium magnetic

moments. This means that in the undoped case, the absence of magnetism would guarantee

a zero anomalous Hall effect, even though Fig 4.6a suggests a large value near the Fermi

energy. Additionally, as it is difficult to exactly reproduce the uranium magnetic moment

µU , meaning that in the real material, this critical set of Weyl points may be located at a

lower energy corresponding to the x = 0.2 doping level.

A final consideration is that the magnetism in UCoAl disappears at higher temper-

atures, meaning the anomalous Nernst effect will rapidly go to zero as it approaches the

magnetic transition.

First principles calculations of the electronic structure of uranium compounds are no-

toriously challenging, and this is especially the case when very fine resolution of topological

features is necessary. To summarize, our calculations yield a large number of topological

features, including Weyl points, triple points, and nodal lines. Some Weyl nodes are suffi-

cient to explain the large anomalous Hall and anomalous Nernst observed in UCo0.8Ru0.2Al.

Additional calculations and measurements are needed to identify which features are most

responsible. However, we emphasize that the observation of a large number of Weyl points,

and hence large ANE and AHE, are independent of the details of the calculation. The colos-

sal ANE observed in UCo0.8Ru0.2Al is several times larger than any previously observed, and

is likely the result of kagome structure and strong correlations which drive the formation

of narrow bands and the enhancement of transport properties. We hope that this material

can serve as a blueprint for the future design and realization of topological materials for

thermoelectric applications.
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Chapter 5

Calculated Exchange Interactions and

Sensitivity of Ni Two-Hole Spin State

to Hunds Coupling in Doped NdNiO2

The discovery of high temperature superconductivity in cuprates[209] started an in-

credible effort to understand the superconducting mechanism. This effort is still ongoing to

this day, and has spawned many subfields and models, which while ultimately falling short

of a complete explanation of unconventional superconductivity in cuprates, have found ap-

plications in many other areas of condensed matter physics. The resonating valence bond

model was one such model first proposed by Anderson in 1973 to represent a so-called

“quantum spin liquid” that described the spin-1/2 Heisenberg antiferromagnet on the trian-

gular lattice[210]. This resonating valence bond model was again employed by Anderson in

1987, when he proposed that superconductivity might emerge upon doping a quantum spin

liquid[211]. It was soon realized that the physics of the ground states in the resonating band

model could be understood as a long range topological order [212, 213], which was later

described within the framework of Chern-Simons theory[214]. These early developments
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laid the groundwork for understanding topological states in condensed matter systems, and

served as the foundation for describing symmetry-protected topological states such as Chern

insulators, topological insulators, and topological semimetals.

There are a number of excellent reviews on the history of quantum spin liquids, their

connection to our understanding of high-temperature superconductivity, and the concept of

topological order [215, 216, 217, 218], which will not be discussed here. While this long-range

topological order is distinct from the short-range symmetry-protected topological states dis-

cussed in previous chapters, the study of unconventional superconductivity is deeply con-

nected with these topics, and is a generally important topic in the field of strongly correlated

condensed matter physics. This chapter will focus on the theoretical study of recently dis-

covered superconductor Nd1−xSrxNiO2, and will discuss these results in the context of the

structurally-similar cuprate superconductors.

The work described in this chapter was done in collaboration with Xiangang Wan,

Giacomo Resta, Ivan Leonov, and Sergey Savrasov. It is published in Physical Review B

[219], and was presented at APS March Meeting 2021.

5.1 Superconductivity in cuprates and nickelates

Since the discovery of high–temperature superconductors (HTSCs)[209], tremendous

theoretical and experimental efforts have been devoted to understanding the novel physics of

this family of compounds[220, 221, 218]. All HTSCs are comprised of quasi–two–dimensional

CuO2 planes separated by charge reservoir spacer layers, and their parent compounds have

antiferromagnetic (AFM) order with very strong in–plane magnetic exchange interactions,

belonging to the class of charge–transfer insulators[222]. Upon doping, holes occupy the

O–2p orbital, and due to the strong hybridization between Cu–3dx2−y2 and O–2p orbitals,
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a Zhang–Rice singlet is formed[223]. It has been widely accepted that the HTSCs can be

described by an effective single band t–J model, with different parameters explaining the

variation in Tc in different materials [224, 225].

Inspired by HTSCs, the search for possible novel superconducting behavior in nicke-

lates has been attracting significant attention, as their structure and electronic configuration

is similar to that of the cuprates [226, 227, 228, 229]. Unfortunately, the monovalent Ni

ion is strongly unstable and scarcely formed in mineral compounds, making, for example,

LaNiO2 difficult but possible to synthesize[227]. First–principles Local Density Approxi-

mation (LDA) based calculations revealed an important difference between LaNiO2 and its

sister infinite–layer HTSC compound CaCuO2 : the Fermi surface of CaCuO2 consists of only

one two–dimensional band, while LaNiO2 seems quite three–dimensional, with La–derived

5d states and Ni–3d states crossing the Fermi level[230]. Numerical calculations predicted

AFM magnetic order[230, 231], but magnetization and neutron powder diffraction observe

no long–range order in LaNiO2[228]. At high temperatures (150K < T < 300K), the sus-

ceptibility of LaNiO2 can be fitted by the sum of a temperature independent term, and a

Curie–Weiss S = 1
2

paramagnetic term with a large Weiss constant (θ = −257K), indicat-

ing a significant correlation between Ni spins[228]. LaNiO2 shows metallic behavior, but

resistivity increases at lower temperatures and no superconducting state has been observed

[226, 227, 228].

Recently, Nd0.8Sr0.2NiO2 thin films were synthesized on a SrTiO3 substrate using soft–

chemistry topotactic reduction, and superconductivity with considerably high Tc (up to

15K) was observed[232]. The superconducting phase displays a doping–dependent dome

for Nd1−xSrxNiO2 (0.125 < x < 0.25), which is remarkably similar to that of the cuprates

[233, 234]. Very recently, superconductivity has also been observed in doped PrNiO2[235].

These breakthroughs have stimulated large–scale theoretical efforts to understand the

nature of the superconductivity in rare–earth nickelates. LDA band structures [236] predict
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that both Nd–5d and Ni–3dx2−y2 orbitals contribute significantly to the Fermi surface of

parent compound NdNiO2. Most calculations treat the three 4f electrons in Nd3+ as core

electrons, although the role of Nd–4f has been emphasized recently[237]. Many–body pertur-

bative GW calculations result in almost no modification to the Fermi–surface topology and

its orbital composition[238]. Focusing on the Fermi surface, different minimal models have

been proposed to describe the low energy physics of this material using a Wannier function

approach, including: a three–band model with Ni-3dx2−y2 , Nd–5d3z2−r2 and an interstitial

s orbital[239]; a three–band model with Ni–3dx2−y2 , Nd–5d3z2−r2 and Nd–5dxy[240, 241]; a

two–band model with Ni–3dx2−y2 and Nd–5d3z2−r2 [242, 243]; and a four–band model[244].

The effect of topotactic hydrogen has been discussed as well[245].

Several works have addressed strong correlation effects among Ni 3d electrons [246, 247,

248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263]. Due to a large

energy difference between O–2p and Ni–3d levels, the undoped NdNiO2 has been suggested

to be a Mott insulator, and a coexistence/competition between low energy S=0 and S=1

states has been proposed for the hole doped case [246] where some Ni ions would acquire a

formal 3d8 configuration. The origin of these two–hole states has been discussed in a recent

literature[247, 248, 249, 250, 251, 252]. As it is commonly accepted that the undoped Ni

3d9 configuration corresponds to the hole of x2− y2 symmetry, the two–hole states produced

by doping can either end up as intraorbital singlets or interorbital triplets. It has been first

pointed out[246] that the S=1 state maybe incompatible with robust superconductivity, and

indeed exact diagonalization study of Ni impurity embedded into the oxygen environment

[246] as well as a number of many–body calculations using a combination of LDA with

Dynamical Mean Field Theory (DMFT)[247, 250] pointed to the formation of the intraorbital

singlets.

The first–principles physics of competing Ni-3dx2−y2 vs. Ni–3d3z2−r2 , and the connected

issue of having the Ni–3d3z2−r2 states at the Fermi level with hole doping has been first put
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forward in Ref. [251]. In addition, the role of Ni-3dx2−y2 and Ni-3d3z2−r2 orbitals has been

emphasized in Ref. [247]. A recent GW+DMFT work [253], highlighted Ni-3d3z2−r2 flat–

band physics as well as Ref. [254]. Furthermore, a variant of the t–J model with S=1

has been proposed and shown to exhibit d–wave superconductivity[249]. Symmetries of the

pairing states based on a two–orbital Ni-3dx2−y2/Ni-3dxy model Hamiltonian with competing

S=0 and S=1 two–hole states have been discussed[248]. DMFT calculations for the two–

orbital Ni–3dx2−y2/Ni–3d3z2−r2 system argued that a multiorbital description of nickelate

superconductors is necessary [252]. Excitations and superconducting instabilities have also

been explored by a random phase approximation [255]and by a variant of the t-J model[256].

Local spin, charge and orbital susceptibilities have been calculated using a combination of

DMFT with a local quasiparticle self–consistent GW method and emphasized the Hund’s

physics of Ni–eg electrons[257].

No sign of magnetic order has been observed in the original report on superconductivity

in NdNiO2[232], which may be attributed to defects, such as unwanted hydrides or hydrox-

ides that might form as by–products of the creation of the rare Ni+ oxidation state during

the synthesis of this compound. Another consideration is that LaNiO3 is close to an antifer-

romagnetic quantum critical point (QCP)[264], therefore it is reasonable to expect that with

lower dimensionality, NdNiO2 would pass the QCP and display magnetism. Very recently,

strong spin fluctuations and considerable AFM exchange interactions have been observed in

NdNiO2[265] as well as nuclear magnetic resonance (NMR) data [266] provided an addtional

evidence for quasi–static AFM order below 40 K and dominant spin fluctuations at higher

temperatures in Nd0.85Sr0.15NiO2 bulk materials. The exchange interactions have also been

discussed in several works [240, 267, 268, 269]. The calculated electron–phonon interaction

(λ ≤ 0.32) is too small to explain the 15K Tc in this material[239], meaning the spin excita-

tions, which are thought to be responsible for the superconductivity in HTSCs[220, 221, 218],

are worth careful investigation.
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In this work, based on a density functional LDA+U method and linear–response

theory[270], we perform detailed studies of exchange interactions for both parent and doped

NdNiO2. The method does not rely on a total energy analysis, and instead directly com-

putes the exchange constant for a given wave vector q based on the result of the magnetic

force theorem [271]. Our results show that although the Fermi surface of undoped NdNiO2

is quite three–dimensional, its magnetic exchange interaction J has a clear two–dimensional

feature with large in–plane J1 = 82 meV and much smaller out–of–plane Jz1. However, the

Ni–3d3z2−r2 band close to the Fermi level is quite flat, therefore within the LDA+U method

for a reasonable range of the values of Hubbard U above 4 eV, holes introduced by doping

preferentially occupy the Ni–3d3z2−r2 orbitals while Ni–t2g states remain remarkably inert.

The in–plane J1 remains largely unaffected by doping, but the magnetic moment of the

Ni–3d3z2−r2 orbital and the out–of–plane Jz1 both grow significantly in accord with recent

findings[254] Our calculation using a constrained–orbital–hybridization method [272] unam-

biguously demonstrates that while Nd–5d makes an important contribution to the Fermi

surface, it has almost no effect on the magnetic exchange interaction. It is expectable result,

since it is known that Nd-5d orbitals have negligible hybridization with Ni orbitals [239, 273].

This means the magnetic excitations in hole–doped NdNiO2 can be described by an effective

model including Ni–3dx2−y2/Ni–3d3z2−r2 orbitals whose role has been emphasized in many

recent works [236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,

252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263].

To gain additional insight, we discuss the solutions of such two–band model on the basis

of Dynamical Mean Field Theory using the parameters deduced from our band structure

calculations. In contrast to the static mean field description, such as LDA+U, where holes

occupying Ni–3d3z2−r2 states promote interorbital triplets, whether S=0 or S=1 state emerges

from our DMFT simulation depends on a precise value of the intraatomic Hund’s coupling

JH in the vicinity of its commonly accepted range of values 0.5–1 eV. This leads to very

different quasiparticle band structures. We thus propose that trends upon doping in magnetic
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exchange interactions and quasiparticle density of states can be a way to probe Ni 3d8

configuration.

5.2 Calculations of exchange interactions in doped NdNiO2

We perform our density functional based electronic structure calculations within the

full potential linear–muffin–tin–orbital (LMTO) method[61]. To take into account the effect

of on–site electron–electron interactions between Ni–3d orbitals we add a correction due to

Hubbard U using the so–called LDA+U approach[274]. Although, the experimental situa-

tion on magnetism in nickelates is still unclear, hinted by the cuprate physics, an assumption

of the AFM ordered state in the parent compound should be a good starting point for a the-

oretical modeling. Ultimately, if AFM spin fluctuations in the doped state are responsible

for superconductivity, the exchange interactions in the ordered state set the scale for those

fluctuations, which justifies this assumption and provides the basis for our static linear re-

sponse calculation of J’s. An alternative measure of those spin fluctuations would be a full

calculation of wavevector and frequency dependent spin susceptibility directly in paramag-

netic state. Although possible, in principle, it is a lot more involved and goes beyond the

scope of this work.

We vary the parameter U for Ni–3d between 4.0 and 8.0 eV, and find that the essential

properties and our conclusions do not depend on the value of U in this range[275]. Below

we report our results for exchange constants with U = 6 eV and Hund’s JH = 0.95 eV.

Experimental lattice parameters have been used[232].

The magnetic exchange interactions J(q) were evaluated assuming a rigid rotation

of atomic spins, using a previously developed linear–response approach [270]. This tech-

nique has been applied successfully to evaluate exchange interactions for a series of materi-
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Figure 5.1: Band structure of (π,π,0) AFM ordered NdNiO2 from LDA+U calculations with
U = 6.0 eV. (a) undoped NdNiO2 with Nd–5d oribtal character shown in red, (b) constrained
orbital-hybridization calculation for NdNiO2 with the Nd–5d band shifted up by 2 Ry. The
position of the Fermi level corresponds to 0.2 hole doping.
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Table 5.1: Calculated exchange interactions, J1, J2 (in-plane nearest, next-nearest) and Jz1,
Jz2 (out-of-plane nearest, next-nearest) in meV for various hole dopings x. Positive/negative
sign denotes AFM/FM interaction. We also list the calculated total magnetic moment at
the Ni site, Mtot, and magnetic moment at the Ni-3d3z2−r2 orbital, M3z2−r2 , (in µB).

x J1 J2 Jz1 Jz2 Mtot M3z2−r2

0.00 82.24 -4.84 -3.40 -23.00 0.97 0.17
0.05 71.84 -5.08 -21.40 -22.40 1.03 0.23
0.10 65.88 -5.68 -39.36 -18.48 1.07 0.27
0.15 64.60 -4.68 -59.04 -11.08 1.08 0.30
0.20 58.20 -4.16 -80.88 -5.56 1.15 0.35
0.25 57.36 -2.84 -97.36 -4.84 1.16 0.38
0.30 50.76 -2.16 -105.52 -2.88 1.23 0.44

als, including transition–metal oxides[270], HTSCs[276], Fe–based superconductors[277]; eu-

ropium monochalcogenides[278], orbital–ordered noncollinear spinel MnV2O4[279], and Dirac

magnon material Cu3TeO6[280]. We also use a constrained–orbital–hybridization method to

provide theoretical insights into the various contributions[272] to the exchange interactions

in hole doped NdNiO2. To avoid the effect of the very narrow Nd–4f bands, we shift the

three occupied Nd–4f orbitals downward while shifting the rest of the Nd–4f band upward

by using a constrained–orbital approach [272]. Since the obtained results do not depend on

the magnitude of the shifts, we display the results with the Nd–4f bands shifted by ±2.0

Ry.

Similarly to previously reported band structure calculations for LaNiO2[230, 239, 241,

244], there are two bands crossing the Fermi level in the LDA band structure of NdNiO2,

with one band primarily derived from the Ni–3dx2−y2 orbital and the other consisting of

predominantly Nd–5d character. Just as with LaNiO2[230, 239], there is a gap between

Ni–3d and O–2p bands (around -3.5 eV). Moreover, Ni–O bond length in NdNiO2 (1.96 Å)

is slightly larger than the Cu–O bond length in CaCuO2 (1.92 Å). Thus the bandwidth

of the Ni–3dx2−y2 band correspondingly smaller than that of the Cu–3dx2−y2 band. While

in both NdNiO2 and CaCuO2, the 3d3z2−r2 orbitals have very small dispersions along the

ZRAZ line, the dispersion of the Ni–3d3z2−r2 state along ΓZ is considerably larger than that
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Table 5.2: Calculated exchange interactions (in meV) for x=0.2 hole doped NdNiO2, with
Nd-5d shifted upward by various energies (in Ry).

Shift (Ry): J1 Jz1
0.05 64.28 -84.04
0.10 65.48 -83.76
0.50 69.68 -75.52
2.00 71.92 -78.96

of Cu–3d3z2−r2 . Moreover, compared to Cu–3d3z2−r2 , the Ni–3d3z2−r2 band lies closer to the

Fermi level. These two features are expected to significantly affect the magnetic behavior in

the hole doped NdNiO2.

We now perform the LDA+U calculation to examine magnetic exchange interactions

in undoped NdNiO2. Our results show that the exchange coupling is large for the nearest–

neighbor J1 within the NiO2 plane. The sign of this term is AFM, and thus the NiO2 layer

shows a (π,π) spin ordering. There is some debate about the magnitude of the exchange

interaction, with estimates ranging from much less than that of cuprates [246, 240, 267] to

comparable to the value of exchange interaction in CaCuO2[243, 268, 269]. Our calculated

value of J1 is 82.24 meV as referenced to the form of the Heisenberg Hamiltonian

H =
1

2

∑
ij

JijSiSj (5.1)

with S=1/2. The estimate of J1 =25 meV from the Raman scattering experiment of the

two–magnon peak [267, 265] is significantly smaller. Recent resonance X–ray scattering ex-

periments performed for trilayer nickelate La4Ni3O8 report this value to be 69 meV[281].

The in–plane J1 that we compute is only about 25% less than that found in CaCuO2[276].

We attribute it to a smaller Ni–3d and O–2p hybridization and larger energy splitting be-

tween Ni–3d and O–2p as has previously been pointed out[230]. Consistent with the result of

(π,π,0) spin ordering being slightly more energetically favorable than (π,π,π), our calculation

produces a small out–of–plane FM exchange interaction, with nearest neighbor J1z = −3.4
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meV and second nearest neighbor J2z = −23 meV, respectively. Our calculations reveal that

the magnetic moment at the Ni site (0.97 µB), residing mostly in the 3dx2−y2 orbital, is much

larger than that at Cu sites in HSTCs.

There exists a fairly flat band right at the Fermi level along the ZRAZ line, in the

band structure of the magnetic ground state configuration of NdNiO2, as shown in Fig.5.1(a).

This flat band has predominantly Ni–3d3z2−r2 character, and plays an important role when

hole doping is considered. The very small in–plane dispersion of the Ni–3d3z2−r2 band can

be understood as a consequence of the symmetry of the Ni–3d3z2−r2 orbital, which can only

weakly hybridize with the neighboring O–2p.

To examine the doping dependence we perform a series of hole–doped calculations,

varying the number of holes per unit cell from 0.05 to 0.30 by using the virtual crystal

approximation. These calculations show that the hole doping within this range does not

significantly change the shape of the band structure apart from shifting the Fermi level

downward. Regardless of the hole–doping concentration, the Ni–t2g band is almost fully

occupied and does not contribute to the magnetic moment. The magnetic moment of the Ni–

3dx2−y2 orbital is also unaffected by the hole doping. Instead, the holes preferentially occupy

the flat Ni–3d3z2−r2 band, and, as a result, the magnetic moment of this orbital increases with

doping as shown in Table 5.1. Noting the considerable Ni–3d3z2−r2 band dispersion along

ΓZ, and the formation of magnetic moments in this orbital, one can expect the emergence

of out–of–plane magnetic exchange interactions. This result has been confirmed by our

linear response calculation. As shown in Table 5.1, hole doping significantly enhances the

out–of–plane Jz1, while the in–plane J1 remains mostly unaffected.

The 5d orbital is spatially very wide, and can have a crucial effect on the magnetic

exchange interaction through 4f –5d hybridization, even though it is empty and located

above the Fermi level[278]. In NdNiO2, the Nd–5d band appears at the Fermi level, making it

important to understand the role of the Nd–5d orbital in magnetic exchange interactions. We
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address this issue by using a constrained–orbital–hybridization approach[272]. We perform

the calculations with the Nd–5d band shifted upward by various values. Fig. 5.1(b) shows

the band structure for the case where the Nd–5d band is shifted upward by 2 Ry. As one

can see, the AFM insulating state emerges from this calculation for the undoped case, while

hole doping vacates the Ni–3d3z2−r2 band within kz = π/c plane.

Our calculation shows that both in–plane J1 and out–of–plane Jz1 exchange interactions

are not sensitive to the position of the Nd–5d band as shown in Table 5.2, clearly indicating

that the effect of this orbital on the magnetic exchange interactions is negligible. A similar

calculation was performed for LaNiO2 to further confirm these findings[275]. While the

obtained values of the exchange interactions are slightly different, the key features discussed

above are the same.

We illustrate the effect of increasing out–of–plane exchange interactions in doped

NdNiO2, using an antiferromagnetic Heisenberg model, Eq. (5.1). Its linear spin–wave

dispersion is given by

ω(q) = S
√

[J11(q)− J11(0) + J12(0)]2 − [J12(q)]2

where J11(q)/J12(q) are the exchange interactions within the same/different sublattices. (A

quantum correction factor Zc ≈ 1.18 which is sometimes used [276] in front of this formula

is omitted here) We plot these dispersions in Fig. 5.2 for both undoped and 0.2 hole–

doped NdNiO2 in Fig. 5.2, along with those of CaCuO2 for comparison[276]. We utilize our

calculated exchange constants as a function of the wavevector for this purpose, and not their

nearest neighbor fits shown in Table 5.1. This procedure fully accounts for the long–range

effects of the interactions. Our model demonstrates some differences between the spin–wave

dispersions of NdNiO2 and CaCuO2. Notably, the peak around (1
2
, 0, 0) is reduced in NdNiO2

compared with CaCuO2, as a consequence of the smaller in–plane exchange couplings, and
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Figure 5.2: Calculated spin–wave dispersions for the undoped NdNiO2 (cyan), and 0.2 hole-
doped NdNiO2 (blue), with U=6eV. For comparison, we also plot the results of CaCuO2

(red)[276].

is largely unaffected by doping. In contrast, the out–of–plane exchange interactions strongly

depend on doping, which can be seen in the changing dispersion along ΓZ. In undoped

NdNiO2, an out–of–plane Jz2 dominates over the vanishing nearest neighbor Jz1. Doping

amplifies Jz1 while suppressing Jz2, resulting in the disappearance of the valley at (0, 0, 1/2) in

the dispersion. Thus, in contrast with HTSCs, our calculation of J ’s here predicts a strongly

doping dependent resonance that could in principle be observed in neutron experiments.

5.3 Two–band model

A minimal model for the electronic structure of NdNiO2 that emerges from the present

study should involve Ni–3dx2−y2 and Ni–3d3z2−r2 orbitals only. Their role has already been

emphasized in many recent works[236]–[263] and, as we argue here, their importance is based

on sensitivity of magnetic excitations to the position of various orbitals. The parameters of

the model can be obtained by tracing the orbital character of these states from the non–
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magnetic LDA calculation. We show this in red for Ni–3dx2−y2 and in green for Ni–3d3z2−r2

in Fig. 5.3(a). The derived two–band tight–binding model is illustrated in Fig. 5.3(b). In

the large U limit, such model at a quarter filling by holes (3 electron filling) is expected

to exhibit a Mott insulator for 3dx2−y2 band, with the lower Hubbard band placed below

3d3z2−r2 state. Its antiferromagnetic solution in the Hartree–Fock approximation will result

in the band structure very similar to the LDA+U result shown in Fig. 5.1(b), which also

assumes that the t2g states of Ni, although appear in the same energy range, are apparently

irrelevant. According to our LDA+U calculation with U ∼ 4 eV, doping sends the holes

primarily to the 3d3z2−r2 state promoting interorbital triplets. This is seen in Fig. 5.1(b)

where the Fermi level shifting downwards unoccupies the 3d3z2−r2 band in kz = π/c plane

which explains doping dependence of the orbital occupancies shown in Table 5.1.

The described picture should however be contrasted to the genuine strong correlation

effect that prompts to consider an additional hole to be injected into either Ni x2 − y2 or

3z2 − r2 orbital resulting either in an intraorbital singlet or interorbital triplet. This is

different from cuprates, where holes end up in low–lying O 2p band forming Zhang–Rice

singlet states[223]. Here, it is not the relation of Hubbard U to the crystal field splitting

∆ between x2 − y2 and 3z2 − r2 levels but the competition of the Hund’s rule JH and

∆ which should be examined to understand the origin of the two–hole state in the doped

case[246, 247, 250, 251, 252]. To illustrate the proximity of both (S=0 and S=1) solutions,

a simple diagonalization of the 3d8 shell with U=6 eV and our deduced from Fig. 5.1(b)

crystal field splitting ∆=2.2 eV reveals that the lowest energy state is S=0 for JH < 0.9 eV,

and S=1 otherwise. This value is well within the range of generally assumed Hund’s rule

exchange energies for transition metal oxides and highlights a delicate balance in extracting

the two–hole ground state configuration.

Although a number of full–fledge multiorbital LDA+DMFT calculations have been

recently carried out to understand the many–body physics of doped NdNiO2[247, 250, 260],
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Figure 5.3: (a) Non–magnetic LDA band structure of NdNiO2 with the orbital character of
Ni-3dx2−y2 and Ni-3d3z2−r2 states shown in red and green, respectively. (b) The correspond-
ing two-band tight–binding model[275].
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Figure 5.4: Calculated probabilites for the three electron S=1/2 and two–electron S=0 and
S=1 states as a function of Hund’s coupling JH using Dynamical Mean Field Theory and
Continious Time Quantum Monte Carlo Method for the two–band model of NdNiO2 corre-
sponding to doping by 0.2 holes (filling by 2.8 electrons in the model). An inverse temperature
of β = 40 is used in the calculations.
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a strong sensitivity of the solution to the input parameters, such as JH , is expected. This has

been already highlighted in the earlier work simulating two semicircular densities of states

with the crystal field splitting as a parameter [252]. To gain a further qualitative insight,

here we study our derived two–band model using Dynamical Mean Field Theory[67] and

Continuous Time Quantum Monte Carlo method[282]. The parameters U=6 eV and ∆=2.2

eV are fixed while JH is adjusted. The undoped case of Ni 3d9 S=1/2 state corresponds to

the electronic filling equal to 3 in this model, where we easily recover a paramagnetic Mott

insulating state with the gap of the order of U that opens up in the x2 − y2 band and with

the 3z2−r2 states that remain completely occupied. Doping this model with 0.2 holes (filling

by 2.8 electrons) results in finite probability to find either S=0 or S=1 states in addition to

S=1/2 that depends on JH . These probabilities extracted from the Quantum Monte Carlo

simulation are shown in Fig. 5.4 very close to our earlier estimate of 0.9 eV.

Our results for the k–resolved spectral functions are summarized in Fig. 5.5, where a

comparative study is presented for the two quasiparticle band structures corresponding to

S=0 state (JH is set to 0.6 eV, Fig. 5.5(a)) and to S=1 state (JH is set to 1 eV, Fig. 5.5(b)).

One can see from the calculated spectrum for JH =0.6 eV that the 3z2 − r2 state remains

completely occupied while the doping primarily affects the x2 − y2 band which now shows

a typical for DMFT three–peak structure with the two Hubbard bands appearing below

and above the Fermi level and a renormalized quasiparticle band that crosses EF . The k

dispersion for all three features is similar to the original dispersion of the x2 − y2 band.

A different picture emerges from the calculation with JH = 1 eV shown in Fig. 5.5(b).

In this case, renormalized quasiparticles of the 3z2 − r2 character appear at the Fermi level

which illustrate the formation of the interorbital triplet states. A very strong peak in the

quasiparticle density of state is expected to be present at EF due to the non–dispersive

portion of the 3z2−r2 band within the ZRA plane. At the same time, the x2−y2 band does

not develop a three–peak structure and is characterized by the two Hubbard bands as in
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the undoped case. A very similar behavior has been already predicted in a recent work[251]

where it was termed as the “Kondo resonance” property, carried by the Ni-3z2−r2 character.

Our previous LDA+DMFT calculations [260] performed for JH = 0.95 eV are in some-

what agreement with this result although the appearance of the flat band was detected by

us earlier only at a higher doping (˜0.4). The origin of this discrepancy may lie in a more

complex interplay between crystal fields and double counting effects in a self–consistent mul-

tiorbital simulation or in an analytical continuation of the QMC derived spectral functions

resulting in a smaller and/or more broadened spectral weight as compared to the result

of the model. We have additionally checked the probabilities of various spin states within

LDA+DMFT and they are mostly in line with what we observe in Fig. 5.4.

Since the Hund’s coupling JH of 0.8 to 0.9 eV is well within the range of commonly ac-

cepted values, we cannot make a definite conclusion about whether S=0 or S=1 scenario

is realized for doped nickelates. However, possible future angle–resolved photoemission

(ARPES) experiments may provide important insight since as illustrated by our calcula-

tions the quasiparticle band structure is very different between the two cases. Furthermore,

while ARPES spectra in the hole–doped HTSCs show waterfall–like behavior[283], we do

not expect waterfalls to appear here due to a lack of oxygen states at energies close to EF

and associated physics responsible for the formation of the low energy states[284].

In conclusion, using the LDA+U method, we have calculated magnetic exchange in-

teractions for the doped NdNiO2 novel superconductor. We find that the parent compound

is mostly two–dimensional, with large nearest neighbor in–plane, and small out–of–plane

exchange interactions. Upon doping, the out–of–plane coupling Jz1 was found to increase

dramatically, while the in–plane J1 is almost unchanged. To clarify the origin of these

trends, we analyzed the symmetry of the holes induced by doping which were found to be

primarily of the 3d3z2−r2 character promoting the formation of interorbital triplet as Ni 3d8

ground state configuration. We also investigated the role of the Nd–5d states, which con-
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Figure 5.5: Quasiparticle band structures of the two– band model of NdNiO2 obtained by
Dynamical Mean Field Theory and Continious Time Quantum Monte Carlo Method for the
doping level of 0.2 holes: (a) Calculation for Hund’s coupling JH = 0.6 eV that corresponds
to S=0 two–hole state; (b) Calculation for JH = 1 eV corresponding to S=1 two-hole state.
An inverse temperature β = 40 is used for the calculations.
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tribute substantially to the Fermi surface of NdNiO2. Shifting this band upward using a

constrained–orbital–hybridization method has little effect on exchange interactions, which

leads us to conclude that Nd–5d states have negligible effect on the spin fluctuations and

the superconductivity in NdNiO2. A minimal two–band model with active Ni–3dx2−y2 and

Ni–3d3z2−r2 orbitals has been further studied with DMFT to reveal an underlying Mott in-

sulating state which upon doping selects either S=0 and S=1 two–hole states depending on

the Hund’s coupling in the range of its commonly accepted values 0.8 to 0.9 eV. Should

S=1 state be valid, we rely on our LDA+U result to predict that upon doping the spin

susceptibility gains three dimensionality as it gets enhanced along ΓZ. This can be readily

observed in neutron experiments and can be one way to probe the two–hole configuration.

We also rely on our DMFT result to predict a formation of a strong quasiparticle peak at

the Fermi level detectable by ARPES experiments. A small anisotropy in Hc2 was indeed

discovered very recently [285] illustrating the three–dimensional nature of NdNiO2 which

starkly contrasts with the two–dimensional superconductivity in HTSCs. At the same time,

most recent x–ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering

(RIXS) experiments are found to be consistent with a d8 spin singlet state [286]. These

results should be important in future studies of nickelate superconductors.
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and Superconducting Properties of CeTX3 (T: Transition Metal and X: Si and Ge)
with Non-centrosymmetric Crystal Structure. Journal of the Physical Society of Japan,
77(6):064716, 2008.

[92] A. D. Hillier, D. T. Adroja, P. Manuel, V. K. Anand, J. W. Taylor, K. A. McEwen,
B. D. Rainford, and M. M. Koza. Muon spin relaxation and neutron scattering inves-
tigations of the noncentrosymmetric heavy-fermion antiferromagnet CeRhGe3. Phys.
Rev. B, 85:134405, Apr 2012.

[93] V. K. Pecharsky, O.-B. Hyun, and K. A. Gschneidner. Unusual magnetic properties of
the heavy-fermion compound CeCoGe3. Phys. Rev. B, 47:11839–11847, May 1993.

[94] T. Terashima, M. Kimata, S. Uji, T. Sugawara, N. Kimura, H. Aoki, and H. Harima.
Fermi surface in LaRhSi3 and CeRhSi3. Phys. Rev. B, 78:205107, Nov 2008.

[95] B. T. Thole, G. van der Laan, J. C. Fuggle, G. A. Sawatzky, R. C. Karnatak, and J.-
M. Esteva. 3d x-ray-absorption lines and the 3d94fn+1 multiplets of the lanthanides.
Phys. Rev. B, 32:5107–5118, Oct 1985.

[96] Ruanchen Dong, Xiangang Wan, Xi Dai, and Sergey Y. Savrasov. Orbital-dependent
electronic masses in Ce heavy-fermion materials studied via Gutzwiller density-
functional theory. Phys. Rev. B, 89:165122, Apr 2014.

[97] Y. X. Yao, C. Z. Wang, and K. M. Ho. Including many-body screening into self-
consistent calculations: Tight-binding model studies with the Gutzwiller approxima-
tion. Phys. Rev. B, 83:245139, Jun 2011.

[98] K. M. Ho, J. Schmalian, and C. Z. Wang. Gutzwiller density functional theory for
correlated electron systems. Phys. Rev. B, 77:073101, Feb 2008.

[99] XiaoYu Deng, Xi Dai, and Zhong Fang. LDA+Gutzwiller method for correlated elec-
tron systems. EPL (Europhysics Letters), 83(3):37008, jul 2008.

[100] XiaoYu Deng, Lei Wang, Xi Dai, and Zhong Fang. Local density approximation com-
bined with Gutzwiller method for correlated electron systems: Formalism and appli-
cations. Phys. Rev. B, 79:075114, Feb 2009.

[101] A. D. Hillier, D. T. Adroja, P. Manuel, V. K. Anand, J. W. Taylor, K. A. McEwen,
B. D. Rainford, and M. M. Koza. Muon spin relaxation and neutron scattering inves-
tigations of the noncentrosymmetric heavy-fermion antiferromagnet CeRhGe3. Phys.
Rev. B, 85:134405, Apr 2012.

115



[102] Yusuke Okuda, Yuichiro Miyauchi, Yuki Ida, Yuuji Takeda, Chie Tonohiro, Yasuhiro
Oduchi, Tsutomu Yamada, Nguyen Duc Dung, Tatsuma D. Matsuda, Yoshinori Haga,
Tetsuya Takeuchi, Masayuki Hagiwara, Koichi Kindo, Hisatomo Harima, Kiyohiro
Sugiyama, Rikio Settai, and Yoshichika Ōnuki. Magnetic and Superconducting Prop-
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C. Laubschat, A. P. Weber, J. Sánchez-Barriga, E. V. Chulkov, A. F. Santander-Syro,
T. Imai, K. Miyamoto, T. Okuda, and D. V. Vyalikh. Cubic Rashba Effect in the
Surface Spin Structure of Rare-Earth Ternary Materials. Phys. Rev. Lett., 124:237202,
Jun 2020.

[128] Rai Moriya, Kentarou Sawano, Yusuke Hoshi, Satoru Masubuchi, Yasuhiro Shi-
raki, Andreas Wild, Christian Neumann, Gerhard Abstreiter, Dominique Bougeard,
Takaaki Koga, and Tomoki Machida. Cubic Rashba Spin-Orbit Interaction of a
Two-Dimensional Hole Gas in a Strained-Ge/SiGe Quantum Well. Phys. Rev. Lett.,
113:086601, Aug 2014.

[129] Youichi Yanase and Manfred Sigrist. Superconductivity and Magnetism in Non-
centrosymmetric System: Application to CePt3Si. Journal of the Physical Society
of Japan, 77(12):124711, 2008.

[130] H. Mukuda, T. Fujii, T. Ohara, A. Harada, M. Yashima, Y. Kitaoka, Y. Okuda,
R. Settai, and Y. Onuki. Enhancement of Superconducting Transition Temperature
due to the Strong Antiferromagnetic Spin Fluctuations in the Noncentrosymmetric
Heavy-Fermion Superconductor CeIrSi3: A 29Si NMR Study under Pressure. Phys.
Rev. Lett., 100:107003, Mar 2008.

[131] H. Mukuda, T. Ohara, M. Yashima, Y. Kitaoka, R. Settai, Y. Ōnuki, K. M. Itoh, and
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Appendix A

Additional details of topological

features in compounds with the

ZrNiAl–type structure

Figures 1–13 provide complete data for for the topological materials predicted in this

work: the band structures near the Fermi level, energy panels used for defining non–Abelian

Berry connection, positions of low–energy topological nodal points in the Brillouin Zone as

well as energy band dispersions in the vicinity of the nodal points.
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Figure A.1: Results for HfPRu: a. band structure near the Fermi level; b. en-
ergy panel used for defining non-Abelian Berry connection; c. positions of low-
energy Weyl points as well as d. energy band dispersions in the vicinity of the
Weyl point kwp = (0.46280, 0.06931, 0.02210). Point notations are as follows:
K1x = (0.36280, 0.069310, 0.022100), K2x = (0.56280, 0.069310, 0.022100), K1y =
(0.46280,−0.17328, 0.02210), K2y = (0.46280, 0.17328, 0.022100), K1z =
(0.46280, 0.06931,−0.11050), K2z = (0.46280, 0.06931, 0.11050) in units 2π/a, 2π/a, 2π/c.
Lattice parameters used: a=12.1207 a.u., c/a=0.58513 [75].

Figure A.2: Results for LaInMg: a. band structure near the Fermi level; b. en-
ergy panel used for defining non-Abelian Berry connection; c. positions of low-
energy Weyl points as well as d. energy band dispersions in the vicinity of
the Weyl point kwp = (0.00000, 0.36868, 0.01123). Point notations are as fol-
lows: K1x = (−0.10000, 0.36868, 0.01123), K2x = (0.10000, 0.36868, 0.01123), K1y =
(0.0000, 0.26868, 0.01123), K2y = (0.0000, 0.46868, 0.011230), K1z =
(0.0000, 0.36868,−0.056150), K2z = (0.0000, 0.36868, 0.056150) in units 2π/a, 2π/a, 2π/c.
Lattice parameters used: a=14.789 a.u., c/a=0.61472 [70].
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Figure A.3: Results for LaTlMg: a. band structure near the Fermi level; b. energy panel used
for defining non-Abelian Berry connection; c. positions of low-energy Weyl points; d. energy
band dispersions in the vicinity of the Weyl point kwp = (0.00000, 0.38916, 0.03236).
Points notations are as follows: K1x = (−0.10000, 0.38916, 0.032360), K2x =
(0.10000, 0.38916, 0.032360), K1y = (0.0000, 0.28916, 0.03236), K2y =
(0.0000, 0.48916, 0.03236), K1z = (0.0000, 0.38916,−0.16180), K2z =
(0.0000, 0.38916, 0.16180) in units 2π/a, 2π/a, 2π/c as well as e. energy band dispersions
in the vicinity of the Weyl point kwp = (0.41450, 0.02567, 0.00724). Point notations are as
follows: K1x = (0.3145, 0, 0.02567, 0.00724), K2x = (0.51450, 0.02567, 0.00724), K1y =
(0.41450,−0.12835, 0.00724), K2y = (0.41450, 0.12835, 0.00724), K1z =
(0.41450, 0.02567,−0.0362), K2z = (0.41450, 0.02567, 0.0362) in units 2π/a, 2π/a, 2π/c.
Lattice parameters used: a=14.7644 a.u., c/a=0.61160 [76].

Figure A.4: Results for LuAsPd: a. band structure near the Fermi level; b. energy panel used
for defining non-Abelian Berry connection; c. positions of low-energy Weyl points as well as d.
energy band dispersions in the vicinity of the Weyl point kwp = (0.00000, 0.11481, 0.14140).
Point notations are as follows: K1x = (−0.10000, 0.11481, 0.14140), K2x =
(0.10000, 0.11481, 0.14140), K1y = (0.0000, 0.01481, 0.14140), K2y =
(0.0000, 0.21481, 0.14140), K1z = (0.0000, 0.11481, 0.0414), K2z = (0.0000, 0.11481, 0.24140)
in units 2π/a, 2π/a, 2π/c. Lattice parameters used: a=13.1733 a.u., c/a=0.55817 [77].
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Figure A.5: Results for LuGeAg: a. band structure near the Fermi level; b. energy panel used
for defining non-Abelian Berry connection; c. positions of low-energy Weyl points as well as d.
energy band dispersions in the vicinity of the Weyl point kwp = (0.00000, 0.42190, 0.00098).
Point notations are as follows: K1x = (−0.10000, 0.42190, 0.00098), K2x =
(0.10000, 0.42190, 0.00098), K1y = (0.0000, 0.32190, 0.00098), K2y =
(0.0000, 0.52190, 0.00098), K1z = (0.0000, 0.42190,−0.0049), K2z = (0.0000, 0.42190, 0.0049)
in units 2π/a, 2π/a, 2π/c. Lattice parameters used: a=13.2517 a.u., c/a=0.58948 [71].

Figure A.6: Results for TiGePd: a. band structure near the Fermi level; b. en-
ergy panel used for defining non-Abelian Berry connection; c. nodal lines and
positions of triple degenerate points. The zoomed area of the BZ is bounded by
0.15 ≤ 2πkz/c ≤ 0.22 and −0.03 ≤ 2πkx,y/a ≤ +0.03; d. energy band dispersions in
the vicinity of the triple point ktp = (0.00000, 0.00000, 0.16495). Points notations are
as follows: K1x = (−0.10000, 0.0000, 0.16495), K2x = (0.10000, 0.0000, 0.16495), K1y =
(0.0000,−0.10000, 0.16495), K2y = (0.0000, 0.10000, 0.16495) in units 2π/a, 2π/a, 2π/c; e.
energy band dispersions in the vicinity of the triple point ktp = (0.00000, 0.00000, 0.20775).
Point notations are as follows: K1x = (−0.10000, 0.0000, 0.20775), K2x =
(0.10000, 0.0000, 0.20775), K1y = (0.0000,−0.10000, 0.20775) in units 2π/a, 2π/a, 2π/c.
Lattice parameters used: a=12.4779 a.u., c/a=0.56032 [79].

134



Figure A.7: Results for VAsFe: a. band structure near the Fermi level; b. energy panel used
for defining non-Abelian Berry connection; c. positions of low-energy Weyl points; d. energy
band dispersions in the vicinity of the Weyl point kwp = (0.00000, 0.38339, 0.17269).
Points notations are as follows: K1x = (−0.10000, 0.38339, 0.17269), K2x =
(0.10000, 0.38339, 0.17269), K1y = (0.0000, 0.28339, 0.17269), K2y =
(0.0000, 0.48339, 0.17269), K1z = (0.0000, 0.38339, 0.07269), K2z = (0.0000, 0.38339, 0.27269)
in units 2π/a, 2π/a, 2π/c.; e. nodal lines with triple degenerate points. The zoomed area of
the BZ is bounded by 0.3 ≤ 2πkz/c ≤ 0.5 and−0.01 ≤ 2πkx,y/a ≤ +0.01.; f. energy band dis-
persions in the vicinity of the triple point ktp = (0.00000, 0.00000, 0.32279). Points notations
are as follows: K1x = (−0.10000, 0.0000, 0.32279), K2x = (0.10000, 0.0000, 0.32279), K1y =
(0.0000,−0.1000, 0.32279), K2y = (0.00000, 0.1000, 0.32279). in units
2π/a, 2π/a, 2π/c; g. energy band dispersions in the vicinity of the triple
point ktp = (0.00000, 0.00000, 0.47625). Point notations are as follows:
K1x = (−0.10000, 0.0000, 0.47625), K2x = (0.10000, 0.0000, 0.47625), K1y =
(0.0000,−0.1000, 0.47625), K2y = (0.00000, 0.1000, 0.47625). in units 2π/a, 2π/a, 2π/c.
Lattice parameters used: a=11.7352 a.u., c/a=0.56892 [80].
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Figure A.8: Results for YGeLi: a. band structure near the Fermi level; b. en-
ergy panel used for defining non-Abelian Berry connection; c. positions of low-
energy Weyl points as well as d. energy band dispersions in the vicinity of
the Weyl point kwp = (0.00000, 0.27793, 0.00817). Point notations are as fol-
lows: K1x = (−0.10000, 0.27793, 0.00817), K2x = (0.10000, 0.27793, 0.00817), K1y =
(0.0000, 0.17793, 0.00817), K2y = (0.0000, 0.37793, 0.00817), K1z =
(0.0000, 0.27793,−0.040850), K2z = (0.0000, 0.27793, 0.04085) in units 2π/a, 2π/a, 2π/c.
Lattice parameters used: a=13.3509 a.u., c/a=0.59915 [72].

Figure A.9: Results for YPbAg: a. band structure near the Fermi level; b. en-
ergy panel used for defining non-Abelian Berry connection; c. positions of low-
energy Weyl points as well as d. energy band dispersions in the vicinity of
the Weyl point kwp = (0.00000, 0.40335, 0.03142). Point notations are as fol-
lows: K1x = (−0.10000, 0.40335, 0.03142), K2x = (0.10000, 0.40335, 0.03142), K1y =
(0.0000, 0.30335, 0.03142), K2y = (0.0000, 0.50335, 0.03142), K1z =
(0.0000, 0.40335,−0.15710), K2z = (0.0000, 0.40335, 0.15710) in units 2π/a, 2π/a, 2π/c.
Lattice parameters used: a=14.140 a.u., c/a=0.59133 [73].
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Figure A.10: Results for YSiAg: a. band structure near the Fermi level; b. energy panel used
for defining non-Abelian Berry connection; c. positions of low-energy Weyl points as well as d.
energy band dispersions in the vicinity of the Weyl point kwp = (0.00000, 0.37866, 0.00385).
Point notations are as follows: K1x = (−0.10000, 0.37864, 0.00385), K2x =
(0.10000, 0.37864, 0.00385), K1y = (0.0000, 0.27864, 0.00385), K2y =
(0.0000, 0.47864, 0.00385), K1z = (0.0000, 0.37864,−0.0192), K2z = (0.0000, 0.37864, 0.0192)
in units 2π/a, 2π/a, 2π/c. Lattice parameters used: a=13.2623 a.u., c/a=0.59364 [74].

Figure A.11: Results for YTlMg: a. band structure near the Fermi level; b. energy panel
used for defining non-Abelian Berry connection; c. positions of low-energy Weyl points; d.
energy band dispersions in the vicinity of the Weyl point kwp = (0.00000, 0.43303, 0.02319).
Points notations are as follows: K1x = (−0.10000, 0.43303, 0.02319), K2x =
(0.10000, 0.43303, 0.02319), K1y = (0.0000, 0.33303, 0.02319), K2y =
(0.0000, 0.53303, 0.02319), K1z = (0.0000, 0.43303,−0.11595), K2z =
(0.0000, 0.43303, 0.11595) in units 2π/a, 2π/a, 2π/c. e. energy band dispersions in
the vicinity of the Weyl point kwp = (0.44076, 0.02908, 0.00441). Point notations are as
follows: K1x = (0.34076, 0.02908, 0.00441), K2x = (0.54076, 0.02908, 0.00441), K1y =
(0.44076,−0.14540, 0.00441), K2y = (0.44076, 0.14540, 0.00441), K1z =
(0.44076, 0.02908,−0.02205), K2z = (0.44076, 0.02908, 0.02205) in units 2π/a, 2π/a, 2π/c.
Lattice parameters used: a=14.1824 a.u., c/a=0.61272 [76].
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Figure A.12: Results for ZrAsOs: a. band structure near the Fermi level;
b. energy panel used for defining non-Abelian Berry connection; c. posi-
tions of low-energy Weyl points; d. energy band dispersions in the vicinity of
the Weyl point kwp = (0.47365, 0.02591, 0.04792). Points notations are as fol-
lows: K1x = (0.37365, 0.02591, 0.04792), K2x = (0.57365, 0.02591, 0.04792), K1y =
(0.47365,−0.12955, 0.04792), K2y = (0.47365, 0.12955, 0.04792), K1z =
(0.47365, 0.02591,−0.11980), K2z = (0.47365, 0.02591, 0.11980) in units 2π/a, 2π/a, 2π/c; e.
energy band dispersions in the vicinity of the Weyl point kwp = (0.474060.012150.047890).
Point notations are as follows: K1x = (0.37406,−0.01215, 0.04789), K2x =
(0.57406,−0.01215, 0.04789), K1y = (0.47406,−0.06075, 0.04789), K2y =
(0.47406, 0.06075, 0.04789), K1z = (0.47406, 0.01215,−0.11973), K2z =
(0.47406, 0.01215, 0.11973) in units 2π/a, 2π/a, 2π/c. Lattice parameters used: a=12.476
a.u., c/a=0.57467 [78].

Figure A.13: Results for ZrPRu: a. band structure near the Fermi level; b. en-
ergy panel used for defining non-Abelian Berry connection; c. positions of low-
energy Weyl points as well as d. energy band dispersions in the vicinity of
the Weyl point kwp = (0.45982, 0.07532, 0.01698). Point notations are as fol-
lows: K1x = (0.35982, 0.07532, 0.01698), K2x = (0.55982, 0.07532, 0.01698), K1y =
(0.45982,−0.18830, 0.01698), K2y = (0.45982, 0.18830, 0.01698), K1z =
(0.45982, 0.07532,−0.0849), K2z = (0.45982, 0.07532, 0.0849) in units 2π/a, 2π/a, 2π/c.
Lattice parameters used: a=12.2057 a.u., c/a=0.58492 [75].
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Appendix B

Computational details and topological

features of CeTX3 superconductors

B.1 LDA+Gutzwiller Method and Double Counting

Scheme

Ce

X

T

Ce

(a)

ky

kx

kz

Γ
X

P

Z
Y1N

Σ

(b)

Figure B.1: (a) The crystal structure of the CeTX3 compounds. (b) The bulk BZ, with the
σv (green) and σd (magenta) planes highlighted.

Here we provide a brief description of the LDA+Gutzwiller method; a more detailed
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can be found in Refs. [99, 100, 98, 97]. In the Gutzwiller method, the non-interacting wave-

function |Ψ0〉 is projected onto the Gutzwiller wavefunction |ΨG〉 using a local projector:

|ΨG〉 = P̂ |Ψ0〉 =
∏
i

(∑
Γ

λiΓm̂iΓ

)
|Ψ0〉 (B.1)

where the operators m̂iΓ = |iΓ〉 〈iΓ| project the state onto a particular configuration |Γ〉

at site i, and the variational parameters 0 ≤ λiΓ ≤ 1 adjust the weight of each many-

body configuration. Any operator Â acting on |ΨG〉, can mapped onto a corresponding

Gutzwiller operator ÂG = P̂ÂP̂ acting on |Ψ0〉. For a single particle operator such as

Â =
∑

ij,αβ 〈iα| Â |jβ〉 c†iαcjβ, the corresponding Gutzwiller operator is

ÂG =
∑
ij,αβ

√
ziα 〈iα| Â |jβ〉

√
zjβc

†
iαcjβ

+
∑
i,α

〈iα| Â |iα〉 (1− ziα)c†iαciα (B.2)

where the ziα are the orbital-dependent quasiparticle residues:

ziα =
∑
ΓΓ′

√
miΓmiΓ′

∣∣∣〈iΓ′| c†iα |iΓ〉∣∣∣√
niα(1− niα)

(B.3)

where miΓ = 〈ΨG| m̂iΓ |ΨG〉 and niα are the orbital occupation numbers.

In the same spirit as LDA+U and LDA+DMFT, we can write the Hamiltonian as

H = HLDA +Hint −HDC (B.4)

where the on-on-site interaction term Hint for the set of correlated Ce−4f orbitals, is layered

on top of the tight-binding Hamiltonian HLDA extracted from the LDA calculation. Since

the mean-field Coulomb interaction has already been included within the LDA calculation,
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Figure B.2: Band structure of CeCoGe3 calculated with (a) LDA and (b) LDA+G. The two

lowest doublets, Γ
(1)
7 and Γ6 are renormalized by correlations. Inset shows band crossings

leading to nodal lines near Γ.

we need to subtract the double counting term HDC.

We compute the electronic structure for the CeTX3 (T = Co, Rh, Ir, X = Si, Ge) series

with the BaNiSn3-type structure (Fig. B.1a). In order to best match the experimentally

determined Fermi surfaces for these compounds, we use a hybrid double counting scheme

VDC,β = Σβ(0) (B.5)

VDC,α = 0.1Ry +
1

N

N∑
α6=β

Σα(0), for all other states α 6= β (B.6)

which treats the lowest energy doublets β = Γ
(1)
7 ,Γ6, independently from the remaining

bands. The band structure results for the LDA+G calculation are shown in Figure B.2,

where the renormalization of the Cerium 4f band by correlations can be clearly seen.

We compare the spin structure extracted from our simulations (See Fig B.3) with a
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tight binding model which is commonly used for theoretical studies of the CeTX3 family:

H =
∑
k

εkc
†
kck + α

∑
k

c†kγ(k) · σ̃ck (B.7)

εk =− 2t1(cos kx + cos ky) + 4t2(cos kx cos ky)

− 8t3 cos(kx/2) cos(ky/2) cos(kz) (B.8)

where γ(k) = α(sin(ky),− sin(kx), 0) is a Rashba-like spin-orbit coupling. We use the param-

eters (t1, t2, t3, α) = (1.0, 0.475, 0.3, 0.4), which have been shown to reproduce the principal

features of the LDA FS[122].

Σ
Γ

Z

Σ

(a)

Figure B.3: The two bands forming NL-5 (red) in LDA, with the surface contours taken at
the energy of the NL at each kz. Arrows indicate the direction of the spins on the surfaces,
showing the spin inversion at the nodal line.

To verify the choice of the empirical 0.1Ry parameter, we additionally perform LDA+G

simulations with a shift of 1.0Ry. As seen in Figure B.4 below, the band structure near the

Fermi energy is mostly unaffected. There is a slight change in the quasiparticle residues zα,

with the residues corresponding to the Γ6/Γ
(1)
7 doublets decreasing slightly, and the residue

for the Γ
(2)
7 doublet approaching 1, which is expected since the upwardly shifted bands

hybridize less with the ground state doublets, and become unoccupied. The exact zα values

for this new shift are shown in Table B.1.
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Figure B.4: Band structure plot for CeCoGe3, computed with the Γ
(2)
7 doublet and J=7/2

manifold shifted upward by 1.0Ry, in the hybrid double counting scheme.
Table B.1: Quasiparticle residues zα for the lowest energy doublets for the members of the
CeTX3 series, computed with a shift of 1.0 Ry.

zLDA+G (U=5 eV)

Γ
(1)
7 Γ6 Γ

(2)
7

CeCoSi3 0.48 0.46 1.00
CeRhSi3 0.28 0.26 1.00
CeIrSi3 0.29 0.28 1.00
CeCoGe3 0.27 0.25 1.00
CeRhGe3 0.18 0.10 1.00
CeIrGe3 0.17 0.12 1.00

B.2 Determination of Mirror Eigenvalues and Irreducible

Representation Characters for Bands Forming Nodal

Lines

When spin-orbit coupling is considered, the symmetries of the CeTX3 compounds can

be described by irreducible representations of the C4v double point group. For points in the

BZ lying within the σv (green) or σd (magenta) mirror planes (Fig. B.1b), the states belong

to irreducible representations of the mirror symmetry little group, CS. The point group

tables[287] are given below for C4v, describing points along the Γ−Z line, Λ(0, 0, u), and for

CS, describing points within the σv (Σ(u, 0, 0)) and σd (∆(u, u, 0)) planes.

In particular, the compatibility relations for points along the Γ−X, Γ−Σ, and Γ−Z axes

(∆, Σ, and Λ respectively) are
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For convenience, we will also use the ∆ and Σ to label the bands at points away from the

kz = 0 lines, since all points within the mirror planes will have CS character. In the CeTX3

compounds, the spinful bands at points in the mirror planes must belong to either Σ3/∆3

or Σ4/∆4 irreducible representations. When two bands belonging to different irreducible

representations intersect, they will form Weyl nodal lines which are protected by the mirror

symmetry [22].

The representation to which a band belongs to can be determined from the eigenvalue

of the mirror symmetry operator σ = σd or σv acting on the eigenvector at that point. Within

the FP-LMTO formalism, the eigenvectors are constructed from the χk
κRlm(rR′) LMTO basis

states, where R denotes the atom positions, lm are the angular momentum quantum num-

bers, and κ is a subscript corresponding to the choice of tail energies[288, 61, 96]. Within

this eigenbasis, the mirror symmetries can be written:

σvχ
k
κRlm = (−1)m(−iσ2)χk

κRl−m

σdχ
k
κRlm = (i)m

i√
2

(σ1 − σ2)χk
κRl−m (B.9)

where σ1, σ2, σ3 are the Pauli matrices acting on the spin basis. The eigenvalues of these

operators distinguish between the two possible irreducible representations, with −i corre-

sponding to Σ3/∆3, and +i to Σ4/∆4.

Special care must be taken when computing the eigenvalues for the σd mirror symmetry,

C4v E C2 2C4(z) 2σv 2σd Ē Ē ⊗ C4(z)
Γ1/Λ1(A1) 1 1 1 1 1 1 1
Γ2/Λ2(B1) 1 1 -1 1 -1 1 -1
Γ3/Λ3(B2) 1 1 -1 -1 1 1 -1
Γ4/Λ4(A2) 1 1 1 -1 -1 1 1
Γ5/Λ5(E) 2 -2 0 0 0 2 0

Γ6/Λ6 2 0 -
√

2 0 0 -2
√

2

Γ7/Λ7 2 0
√

2 0 0 -2 -
√

2
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CS E σ Ē Ē ⊗ σ
Σ1/∆1(A′) 1 1 1 1
Σ2/∆2(A′′) 1 -1 1 -1

Σ3/∆3 1 -i -1 i
Σ4/∆4 1 i -1 -i

since it interchanges the X(2) and X(3) atoms within the CeTX3 structure, located at

(0, 1
2
, z) and (1

2
, 0, z) respectively. Therefore the basis states centered around these atoms

must be switched as well.

Figures B.6 and B.7 below show the nodal lines for CeCoGe3 in the LDA and LDA+G

regimes. In both cases, the nodal lines within the σv (Z − Γ − Σ) and σd (Z − Γ − X)

planes are shown in the top plot, and the remaining plots show the bands along the kz slices

indicated in the figure. These representative band plots demonstrate that each nodal line in

fact arises from the intersection of bands belonging to different irreducible representations,

and are therefore protected by mirror symmetry and robust against perturbations.

Besides the nodal lines, some other interesting features can be seen in the plots. Firstly,

the central axis in the band plots corresponds to points along the Γ−Z axis. The two pairs

of bands are therefore Kramers degenerate at these points, and must belong to either the

Λ6 or Λ7 irreducible representation. In both LDA and LDA+G, Λ7 starts below Λ6 at the

Γ point, and the order is switched at Z due to the Dirac point along the Γ− Z axis. While

Compatibility Relations
Γ6(2)→ ∆3(1)⊕∆4(1)
Γ7(2)→ ∆3(1)⊕∆4(1)
Γ6(2)→ Σ3(1)⊕ Σ4(1)
Γ7(2)→ Σ3(1)⊕ Σ4(1)

Γ6(2)→ Λ6(2)
Γ7(2)→ Λ7(2)

Table B.2: Compatibility relations between Γ and points along the ∆(u, u, 0), Σ(u, 0, 0),
and Λ(0, 0, u) high symmetry lines. The subscript denotes the irreducible representation in
the respective point group, and the number in parentheses-the dimension of the irreducible
representation.

145



away from the Γ − Z both irreducible representations split into Σ3 ⊕ Σ4 (or ∆3 ⊕ ∆4 ),

they can in fact be distinguished by the parity at the Γ point: for Λ7 the two irreducible

representations cross at the Γ− Z axis, while for Λ6 they touch without crossing.

Second, the plots at kz = 0.4712π/c for LDA, and kz = 0.9352π/c for LDA+G, high-

light the band structure near cusp-like features in some of the nodal lines. These cusps

appear to arise due to an accidental simultaneous crossing of three bands, as indicated by

red circles in Figures B.6 and B.7 below. However, such a crossing would require the bands

to belong to three different irreducible representations, and within the mirror planes, single

electron bands can only belong to one of two possible irreducible representations: Σ3/∆3 or

Σ4/∆4. Such a scenario is not ruled if multi-electron bands are considered. Careful inspec-

tion of the bands at these momentum points reveals that there is indeed a small energy gap

between the bands, as expected.

B.3 Details of Topological Features in CeCoGe3

For our choice of orbitals, the isoelectronic CeTX3 compounds have 31 electrons, and

the bands crossing the Fermi energy are numbered 29-32. These four bands have a number of

topological degeneracies found by our monopole mining method. In the following discussion,

we refer to each Weyl point and nodal line by the number of the lower band of the two

forming the topological feature.

The full list of Weyl points formed by the lowest lying Γ6 and Γ7 doublets (bands

29-32) in LDA and LDA+G for the representative compound CeCoGe3 are shown below in

Table B.3. For this compound we find seven (eight) non-equivalent Weyl points for the LDA

(LDA+G) simulation.

There are two classes of Weyl points that are expected from the C4v point group

symmetry. The first is confined to the kz = 0 (kz = 2π/c) plane, and appears in sets of
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Table B.3: The locations of non-equivalent Weyl points in the BZ of CeCoGe3, given in units
of (2π/a, 2π/a, 2π/c). The Fermi energy is set to 0 eV. The band number (B) refers to the
band forming the lower half of the Weyl cone, and C is the topological charge.

CeCoGe3 LDA
B Location C # E (meV)
29 (0.33860 , 0.39343 , 0.72781) +1 16 -831.80

(0.09700 , 0.18704 , 1.00000) +1 8 -109.28
(0.43351 , 0.22853 , 0.00000) +1 8 -976.38

30 (0.11761 , 0.15192 , 0.55611) -1 16 -140.22
(0.16536 , 0.20827 , 0.71579) +1 16 -105.69

31 - - - -
32 (0.23461 , 0.27132 , 0.67584) +1 16 +78.247

(0.05697 , 0.28530 , 0.99636) -1 16 +117.57

CeCoGe3 LDA+G
B Location C # E (meV)
29 (0.16695 , 0.11984 , 0.89380) -1 16 -57.63

(0.16138 , 0.13255 , 1.00000) +1 8 -49.08
30 (0.13129 , 0.16831 , 0.58602) -1 16 -110.14
31 (0.07098 , 0.17299 , 0.78441) -1 16 +54.06

(0.35171 , 0.19625 , 0.00000) -1 8 +1.23
32 (0.17352 , 0.52586 , 0.00000) +1 8 +26.92

(0.16677 , 0.23615 , 0.52961) +1 16 +32.71
(0.08304 , 0.22061 , 0.61719) -1 16 +36.76

eight. The effect of the σv and σd mirror planes is to flip the charge of the WPs, so that

WPs located at (kx, ky, 0), (−kx,−ky, 0), (ky,−kx, 0), and (−ky, kx, 0) have the same charge,

while those found at (−kx, ky, 0), (kx,−ky, 0), (ky, kx, 0), and (−ky,−kx, 0) have opposite

charge. The second class of WPs comes in sets of 16, which respect the same symmetries

about σv and σd, and are additionally separated in the kz direction, with Weyls located at

(kx, ky,±kz) having the same chirality.

Most of the Weyl points are strongly tilted Type-II, as they tend to occur at points

in momentum space where the bands have strong Co-3d character, and are more strongly

dispersing.

We identify a total of 15 nodal lines in the LDA case, labeled NL-A through NL-O, and
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12 nodal lines in LDA+G, labeled NL-A through NL-L. The nodal lines and their charges

are shown in Figure B.5. Just as with the WPs, we reference each NL by the lower band

number of the pair of bands forming the NL.

We will now describe the nodal line features in CeCoGe3 and how they are affected
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NL-I(+)
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(b) (c)
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Figure B.5: Nodal lines in CeCoGe3 from the touching of bands 29/30 (blue), bands 30/31
(green), and bands 31/32 (red), in the σv and σd mirror planes are plotted for LDA (a-
c) and LDA+G (d-f). Labeled two dimensional projections of the nodal lines in LDA (a)
and LDA+G (d) are provided for clarity, with the topological charge of each nodal line is
indicated in parentheses. Three dimensional plots of LDA nodal lines A-G in the σv plane
(b) and LDA nodal lines H-O in the σd plane (c). (e) shows the LDA+G nodal lines A-G in
the σv plane while (f) shows the LDA+G nodal lines H-L in the σd plane.

by band renormalizations. In LDA, three nodal lines emerge from the Dirac point, labeled

NL-D, NL-G, and NL-N. NL-D loops back within the Z − Γ − Σ (σv) plane, reemerging in

the Z−Γ−X (σd) plane as NL-O, which connects with itself through the top surface of the

BZ as shown in Fig B.5(b). NL-G instead curves downward, connecting with itself across

the xy-plane.

The remaining NLs are either loops or extended lines spanning the entire BZ. The features

lying close to the Fermi level are distorted dramatically by renormalization, while those

that are lower in energy remain largely unchanged. Within the σv plane, three band 29
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nodal lines, NL-C, NL-D, and NL-E, merge and permute their connections in LDA+G. For

instance, NL-C in LDA+G, which connects across Γ − Σ and loops around to exit the BZ

around the N point, is created from a merging of NL-C and NL-E found in LDA. A similar

merging of NLs takes place in the σd plane, where th NL-J loop merges with the left side of

the NL-H loop in LDA to form NL-H in LDA+G which spans the entire BZ. The introduction

of correlations completely destroys some features, such as NL-F of band 30 and NL-M, but

also creates the new NL-F loop in band 31 in LDA+G. Despite having predominantly Ce-4f

character and lying close to the Fermi energy, NL-A and NL-K are surprisingly robust to

renormalization. The remaining features, including the NL-B loop, NL-I, and NL-L remain

mostly unchanged as Ce correlations are turned on, since they are lower in energy and have

predominantly Co-3d character.

NOTE: The NL letter labels used here are different from the numbered NL labels used

in the Main Text. For clarity: NL-1 corresponds to NL-K, NL-2 to NL-G, NL-4 to NL-N,

and NL-5 to NL-M. NL-3 corresponds to NL-D in LDA, and NL-E in LDA+G, which is a

result of the shuffling of the connections between NL-C, NL-D, and NL-E.
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Figure B.6: Weyl nodal lines in LDA. Top plot shows the nodal lines for band 29 (dashed),
band 30 (dotted), and band 31 (solid). Remaining plots show bands plotted for the various kz
slices indicated by dashed colored lines in the nodal line plot, with bands 29-32 highlighted.
The color of each band denotes its irreducible representation: Σ3/∆3 - blue and Σ4/∆4 -
green. Black circles indicate mirror symmetry protected nodal line crossings, and the red
circle highlights a point where three bands approach closely but do not cross. kz coordinates
are given in units of 2π/c.
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Figure B.7: Weyl nodal lines in LDA+G. Top plot shows the nodal lines for band 29 (dashed),
and band 31 (solid). Remaining plots show bands plotted for the various kz slices indicated
by dashed colored lines in the nodal line plot, with bands 29-32 highlighted. The color of
each band denotes its irreducible representation: Σ3/∆3 - blue and Σ4/∆4 - green. Black
circles indicate mirror symmetry protected nodal line crossings, and the red circle highlights
a point where three bands approach closely but do not cross. kz coordinates are given in
units of 2π/c.
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Appendix C

Details of LDA+DMFT calculation

for UNiSn

Schematically, the LDA+DMFT method requires a self–consistent solution of the

Dyson equation

[ω1−H0(k)− Σ(ω)]G(k, ω) = 1 (C.1)

for the one–electron Green function G(k, ω). The poles of its momentum integrated function

Gloc(ω) contain information about the true local spectrum of excitations[67]. Here H0(k)

is the effective single–particle Hamiltonian while Σ(ω) is a local self–energy operator. To

improve the speed of the calculation we earlier proposed a representation of the self–energy

in terms of the Laurent series [163]

Σ(ω) = Σ(∞) +
∑
i

V +
i (ω − Pi)−1Vi (C.2)
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where weights V +
i , Vi and poles Pi are generally matrices. Such a form of the self–energy

allows us to replace the non–linear (over energy) Dyson equation by a linear Schroedinger–like

equation in extended subset of “pole states”. This is clear due to a mathematical identity

 ω −H0(k)− Σ(∞) V +

V ω − P


−1

=

 [ω −H0(k)− Σ(∞)− V +(ω − P )−1V ]−1 . . .

...
. . .

 (C.3)

which relates our original matrix inversion required to find G(k, ω) (first element in the

matrix from the right) to the matrix inversion in the extended “pole space”.

For the problem of UNiSn, we first exactly diagonalize the interacting Hamiltonian for

the atomic 5f electrons in the f1, f2 and f3 configurations using the set of Slater integrals and

the positions of the f levels described in the main text. Second, the f–electron self–energy

is extracted via the calculation of the atomic 5f Green function describing the one–electron

addition (f2 →f3) and removal (f2 →f1) processes to and from the Γ3 f2 ground state. Third,

the expansion (C.2) for the self–energy is utilized and the poles of the Green function matrix,

(C.3), are found by diagonalization. Fourth, the Fermi level is adjusted, the charge density

is calculated and the entire procedure is made self–consistent. Finally, the poles of the

self–consistent LDA+DMFT Green function, (C.3), are plotted in Figs. 3.9, 3.11, 3.12.

To study topological invariants, we take advantage of a recent proof [164] that utilizing

a pole representation (C.2) makes the topological indices Z2 of the interacting system [right

part of (C.3)], and the non–interacting one, [left part of (C.3)], equivalent. The corresponding

eigenstates of (C.3) behave as effective quasiparticles described by the Bloch waves |kj〉 and

can be used for Berry phase calculations as described in Chapter 3[35].
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