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Abstract

In order to develop a practical model of breast cancer, with in vitro and syngeneic-immune intact 

in vivo growth capacity, we established a primary cell line derived from a mammary carcinoma in 

the transgenic FVB/N-Tg(MMTV-ErbB2*)NDL2-5Mul mouse, referred to as “NDLUCD”. The 

line was adapted to standard cell culture and can be transplanted into syngeneic FVB/N mice. The 

line maintained a stable phenotype over multiple in vitro passages and rounds of in vivo 
transplantation. NDLUCD tumors in FVB/N mice exhibited high expression of ErbB2 and ErbB3 
and signaling molecules downstream of ErbB2. The syngeneic transplant tumors elicited an 

immune reaction in the adjacent stroma, detected and characterized using histology, 

immunophenotyping, and gene expression. NDLUCD cells also expressed PD-L1 in vivo and in 
vitro, and in vivo transplants were reactive to anti-immune checkpoint therapy with responses 

conducive to immunotherapy studies. This new NDLUCD cell line model is a practical alternative 

to the more commonly used 4T1 cells, and our previously described FVB/N-Tg(MMTV-

PyVT)634Mul derived Met-1fvb2 and FVB/NTg(MMTV-PyVTY315F/Y322F) derived DB-7fvb2 cell 

lines. The NDLUCD cells remained genetically and phenotypically stable over many generations, 

with consistent and reproducible results in immune intact preclinical cohorts.
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INTRODUCTION:

Mouse models are the primary preclinical models of human disease. Patient derived 

xenografts of human cancer and human cell lines are widely used in preclinical cancer 

research for targeted and cytotoxic therapies. However, these experimental models do not 

recapitulate the host’s normal and complex immune response. Thus, they are of limited 

value for studies of tumor-immune interaction or immunotherapy. Genetically engineered 

mouse models of cancer have intact immune function, but present practical limitations with 

respect to penetrance, latency, and heterogeneity [1]. We, and others, have pioneered the 

practical use of syngeneic transplants to generate nearly identical cohorts for preclinical 

comparisons and to investigate cancer in an immune intact host. In the face of the growing 

demand for experimental immunotherapy models, the available selection of syngeneic 

models of breast cancer is limited. The majority of mammary tumor-immunity studies utilize 

the “4T1” line, which develops as a rapidly growing, metastatic, mesenchymal-like 

phenotype, reflecting only a subset of human breast cancers [2]. In a study comparing six 

syngeneic cancer models, the 4T1 model did not respond to either anti-PD-1 or anti-CTLA4 

therapy, two primary immunotherapeutics. Only one model (CT26 colon cancer) showed 

sensitivity to anti-PD-1 therapy and only two (CT26 and RENCA) to anti-CTLA4 therapy 

[3]. Here, we describe a novel syngeneic HER2 positive model of breast cancer, NDLUCD 

which expresses PD-L-1 and is reactive to anti-PD-1 therapy [4] - and we provide a detailed 

pathologic description of the host immune reaction and molecular phenotype of the model.

The cell line, derived from a mammary carcinoma arising in an FVB/N-Tg(MMTV-

ErbB2*)NDL2-5Mul mouse, carries an in-frame deletion of the rat HER2/neu proto-

oncogene in the same region as the human Δ16 splice variant, resulting in disulfide-bond 

stabilized, constitutively active HER2 homodimers [5]. The Δ16 splice variant in humans 

skips exon 16, which forms part of the extracellular domain of the protein. This variant 

HER2 receptor forms constitutively activated homodimers, stabilized by disulfide bonds. 

The Δ16 splice variant is common in human breast cancers, present in 90% of HER2 tumors 

at a transcript frequency of 9% on average, with some evidence that some fraction of this 

isoform is required for transformation [6, 7].

Immune cell infiltration in breast cancers, especially in the more aggressive HER2 positive 

and triple negative subtypes, has been shown to correlate with better outcome (reviewed in 

[8]). Constitutively active HER2 is a prototype neoantigen and known to be immuno-

recognized [9]. HER2 reactive circulating T-cells are often present in HER2 positive breast 

cancer patients and the presence of HER2 reactive CD8 cells correlates with a better 

prognosis [10, 11]. HER2 positive tumors with more infiltrating lymphocytes have a greater 

benefit from anti-HER2 (trastuzumab) therapy [12] and the ErbB2Δ16 splice variant may 

specifically activate the tumor immune microenvironment [7]. The ErbB2Δ16-like/HER2 

expressing NDLUCD transplant is a suitable model to investigate these tumor-host 

interactions, particularly in the setting of novel combined immunotherapies.
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METHODS:

Animal care:

FVB/N mice were purchased from Charles River (Wilmington, MA), the FVB/N-

Tg(MMTV-ErbB2*)NDL2-5Mul mice were provided by William J. Mueller (McMaster 

University, Hamilton, Ontario, Canada) [5]. Mice were housed in a vivarium under NIH 

guidelines and all animal experiments followed protocols approved by the UC Davis 

Institutional Animal Care and Use Committee (IACUC).

Establishing the cell line:

Primary tumors, from FVB/N-Tg(MMTV-ErbB2*)NDL2-5Mul mouse, were washed in PBS 

(Invitrogen Carlsbad, CA) twice, and then dissociated in serum-free DMEM:F12 

(Invitrogen) buffered with HEPES (Invitrogen), supplemented with 0.5 mg/ml Penicillin/

Streptomycin (Invitrogen), 2% bovine serum albumin fraction V (Invitrogen), 5 μg/ml 

insulin (Sigma Aldrich, Saint Louis, MO), 10 ng/ml cholera toxin (Sigma Aldrich), and 3 

mg/ml collagenase (Worthington Biochemical Corp., Lakewood, NJ). The tissue was minced 

manually with enough serum-free digestion reagent to allow for complete coverage of the 

tissue. This mixture was digested in a sterile 50 mL tube with gentle agitation overnight at 

room temperature, then centrifuged at 80x g for 1.5 minutes, the cell pellet was washed with 

DMEM:F12 and centrifuged again at 80x g for 4 minutes. The remaining cell pellet was 

plated in DMEM supplemented with 10% FBS and 0.5 mg/ml Penicillin/Streptomycin.

Tissue culture:

Cells were maintained in DMEM supplemented with 10% FBS and 0.5 mg/ml Penicillin-

Streptomycin. Differential trypsinization was used to eliminate fibroblast contamination and, 

after passage five, a single cell suspension was labeled with CD49f (Integrin alpha6) and 

sorted in a Cytomation (Fort Collins, CO) MoFlo cell sorter to exclude all non-epithelial 

cells. For in vitro growth evaluation, 200,000 cell/3 ml media/well (approximately 6,667 

cells/ml) were plated in six well plates. Triplicate wells were harvested and three samples 

per well were counted with a hemocytometer each day for four days when cells reached 

confluency.

Cell line transplantation:

The cell line was transplanted into syngeneic FVB/N female mice by cell line injection into 

the mammary fat pad (orthotopically) as described previously [13, 14]. Briefly, the bilateral 

inguinal mammary fat pads of the mice were injected with 0.1-2 × 106 cells/20 μl PBS 

solution with a 25-gauge needle. Tumors were palpable 10-14 days after transplantation. 

Alternatively, serial transplantation of 0.5-1 mm3 frozen or fresh tumor tissue into the 

mammary fat pad or subcutaneous space reliably establishes new tumor grafts as described 

previously [13]. Growth of palpable tumors was measured with calipers.

Tail-vein injection:

To evaluate metastatic potential, tail-vein injections of the NDLUCD cell line were performed 

as described previously [13]. Six animals were injected with passage 15 NDLUCD cells. 
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Cells were trypsinized (Invitrogen) and washed with PBS, then 106 cells/100 μl PBS 

solution per animal were injected using a 25-gauge needle.

Immunohistochemistry (IHC)

Tissue removal, preparation and immunohistochemistry was performed as previously 

described [14, 15]. Slides were scanned on an Aperio AT2 ScanScope (Leica Biosystems, 

Danvers, MA). The image analysis for counting marker-positive cells was performed with 

QuPath [16]. Digital images were processed using Adobe Photoshop (Adobe Systems, San 

Jose, CA).

The antibodies and dilutions used were, anti-CD4 (4SM95) (eBioscience, Waltham, MA, 

dilution: 1:100); anti-CD8a (4SM15) (eBioscience, dilution: 1:400); anti-FOXP3 (FJK-16s) 

(eBioscience, dilution: 1:100); anti-PD-1 (EPR20665) (Abcam, Cambridge, UK, dilution:

1:500); anti-PD-L1 (E1L3N XP) (Cell Signalling Technology, Danvers, MA, dilution: 

1:200); anti-CK818 (20R-cp004) (Fitzgerald, Acton, MA, dilution: 1:2000); anti-F4/80 

(BM8) (eBioscience, 1:100); anti-B220 (RA3-6B2) (BD Pharmigen, San Jose, CA, dilution: 

1:800); anti-ER (MC-20) (Santa Cruz Biotechnology, Dallas, dilution: 1:1000); anti-KI67 

(RB-1510-P) (Thermo Fisher Scientific, Waltham, MA, dilution: 1:800); anti-PR (A0098) 

(Dako, Santa Clara, CA, dilution: 1:500); anti-ERBB2 (RM-2112-5) (Thermo Fisher 

Scientific, dilution 1:1000); anti E-cadherin (24E10) (Cell Signalling Technology, dilution 

1:1000).

CD3, PD-1 and ECAD were detected with multiplex IHC, performed with tyramide signal 

amplification (TSA)-based fluorescence color visualization according to the manufacturer’s 

protocol (PerkinElmer, Waltham, MA). Visualization of multiplexed images was performed 

with an LSM710 laser scanning confocal microscope (Carl Zeiss Microscopy, Oberkochen, 

Germany).

Western blot analysis:

Antibodies for western blotting analysis were, anti-ERBB3 (OP120) and anti-ERBB2 

(OP15) (EMD Millipore, Burlington, MA); anti-SHC (PG-797) (Santa Cruz Biotechnology, 

Dallas, TX); anti-CDKN1A (SXM30) (BD Biosciences); anti-PD-L1 (E1L3N XP) (Cell 

Signalling Technology) and anti-β-Actin (AC-15) (Sigma-Aldrich).

Total protein was extracted from cells using RIPA lysis buffer (50 mM Tris (pH 7.4), 150 

mM NaCl, 0.1% SDS, 1% TritonX-100, 0.5% NaDeoxycholate). After incubation on ice, 

cells were scraped from T25 flasks, lysates were vigorously vortexed and centrifuged at 

13,000 x g for 15 minutes. Lysate supernatants were placed into new microcentrifuge tubes 

and protein concentrations were determined using BCA kit (Pierce, Rockford, IL, USA). A 

unit of 20 μg of cell lysate was denatured in 6X Laemmli sample buffer ((50 mmol 1-1 Tris-

HCl (pH 6.8), 2% SDS, 10% glycerol, 0.25% β-mercaptoethanol and bromophenol blue (1 

mg/ml)) at 95°C for 5 minutes. 2X Laemmli sample buffer was added to samples to bring to 

a final volume of 40 μl. Samples were separated on an 8% or 15% SDS-polyacrylamide gel, 

and then transferred to nitrocellulose membrane (Millipore, Billerica, MA). Membranes 

were blocked with 5% non-fat dry milk in TBST (Tris-buffered saline containing 0.05% 

Tween 20), and incubated with specific primary antibodies overnight at 4°C, washed with 
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TBST, and detected with horseradish peroxidase-conjugated secondary antibodies for one 

hour at room temperature, and ECL (Pierce) chemiluminescence on an Alpha Innoteceh 

Digital Imaging Station. Blot images are a representation of three technical replicates.

RNA isolation:

Differential gene expression of the NDLUCD cell line was compared to two other mouse 

mammary carcinoma cell lines (Met-1fvb2[13] and SSM2UCD [17]). Cells were propagated 

in vitro and injected (0.1 – 2.0 × 106 cells) bilaterally into the uncleared mammary fat pads 

of 6- to 8-week-old female FVB/N mice. Tumors were harvested when they reached a 

maximum width of 5-10 mm and 1-2 mm sections were snap-frozen. RNA was isolated 

using the miRNeasy Mini Kit (Qiagen, Hilden, Germany). RNA concentration and purity 

were assessed with a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific) and 

quality assessments (e.g., RNA integrity) were made using an Agilent 2100 Bioanalyzer 

(Agilent Technologies, Santa Clara, CA). Three samples per line were then analysed with 

Affymetrix GeneChip Mouse Gene 1.0 ST Arrays (Thermo Fisher Scientific) (note: two 

Met-1fvb2 samples originated from different injection sites in the same mouse, all other 

samples were from individual recipient mice).

Microarray:

Microarray gene expression profiling was performed by the UC Davis Comprehensive 

Cancer Center Genomics Shared Resource (GSR) on Affymetrix Mouse Gene 1.0 Sense 

Target (ST) Arrays (Thermo Fisher Scientific). Biotinylated sense strand DNA targets were 

prepared from total RNA (100 ng) using the Ambion WT Expression Kit (Thermo Fisher 

Scientific) and Affymetrix GeneChip WT Terminal Labeling Kit. Briefly, double-stranded 

cDNA was prepared followed by in vitro transcription to generate antisense cRNA (aRNA), 

which was used as template for a second cycle cDNA synthesis in a dUTP-containing 

reaction mixture. The dUTP-containing cDNA was fragmented by treatment with uracil-

DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE1). DNA was then 

end-labeled with biotin using the DNA Labeling Reagent and deoxynucleotidyl transferase 

(TdT). All microarray processing procedures, including target hybridization, washing, 

staining, and array scanning were performe according to Affymetrix’s standard protocols.

Microarray data analysis:

The microarray data processing and statistical analyses were performed in the R language 

and statistical environment [18]. For the direct comparison of the tumors that arose from 

three mouse mammary carcinoma cell lines (NDLUCD, Met-1fvb2, SSM2UCD), raw files 

were background-corrected, summarized, and normalized using the Robust Multi-array 

Average (RMA) method with the “oligo” Bioconductor package (version 1.40.2) [19]. 

Quality was checked before and after processing with the “ArrayQualityMetrics” 

Bioconductor package (version 3.32.0) [4] and there were no outliers identified. The Rank 

Product statistics were used to identify differentially expressed genes in pairwise 

comparison (between NDLUCD versus SSM2UCD, and NDLUCD versus Met-1fvb2; the 

comparison of Met-1fvb2 with SSM2UCD was not performed in this study) (significance 

limit: pfp<0.05) with the “rankprod” Bioconductor package (version 3.2.0). For functional 

annotation of the significant gene lists DAVID 6.8 were used [24, 25], searching Gene 
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Ontology categories and relevant pathways in the KEGG pathways [20] database. Cluster 

3.0 [21] was used for clustering tasks. Hierarchical clustering with average linkage was 

performed. The clustering was visualized with Java TreeView [22].

RNA-Sequencing

For whole-transcriptome analysis (next-generation sequencing (NGS)-based RNA-

Sequencing (RNA-Seq)) total RNA-Seq sequencing libraries were prepared from snap-

frozen tumor samples. Briefly, rRNA-depleted RNA was prepared from total RNA input 

(1-5 μg) by Ribo-Zero rRNA Removal Kit (Epicentre, Madison, WI). Directional Total 

RNA-Seq libraries were prepared from rRNA-depleted RNA (50 ng) using the ScriptSeq v2 

RNA-Seq Library Preparation Kit (Epicentre) according to the manufacturer’s protocol. 

Briefly, 5’,3’-di-tagged cDNA was synthesized using tagged random hexamer-primed cDNA 

synthesis primers followed by annealing of 3’-terminal-tagging oligo (TTO) and extension 

with DNA Polymerase. cDNA was purified with Agencourt AMPure XP beads (Beckman 

Coulter, Pasadena, CA). Illumina adaptor sequences and indexes (barcodes) were 

incorporated during library amplification with the appropriate PCR primers and high-fidelity 

FailSafe PCR Enzyme Mix, and ScriptSeq v2 libraries were purified and quantitated with 

the Qubit fluorometer (Invitrogen) with insert sizes determined with the Agilent 2100 

Bioanalyzer. The molar concentration of PCR-competent sequencing templates in the 

libraries were determined by quantitative PCR with the KAPA Library Quantification Kit 

(Kapa Biosystems, Wilmington, MA). The libraries were then loaded on TruSeq paired-end 

flow cells for cluster generation with the cBot (Illumina, San Diego, CA) followed by 

sequencing (40-bp single-read) with the Genome Analyzer IIx (Illumina) using Illumina 

TruSeq SBS Kit v5-GA kitted reagents and according to the manufacturer’s protocols [23].

RNA-Sequencing data analysis

Image processing, base calling, and quality scoring (Phred) were executed by SCS 2.6/RTA 

1.6 software (Illumina). The TopHat-Cufflinks workflow was utilized for analysis of gene 

and transcript isoform expression [24]. For this, read alignment to the reference mouse 

genomic sequence (July 2007 NCBI37/mm9) and splice junction mapping were performed 

with TopHat [4] and allowing for a maximum of two mismatches. Cufflinks was used for 

transcript assembly, quantitation, and differential expression [5]. Transcript abundance 

values were expressed as fragments per kilobase of transcript per million fragments mapped 

(FPKM). Mapped sequence data was visualized using the Integrative Genomics Viewer [6].

Statistics:

Statistical analysis was performed with GraphPad Prism or R. Statistics of the gene 

expression analysis are discussed above under microarray data analysis. One-way ANOVA 

with two-stage step-up method of Benjamini, Krieger and Yekutieli [25] for controlling false 

discovery ratio was used to compare immune cell infiltration. Spearman’s rank correlation 

was used to assess correlation between the density of different immune cells in the tumor 

and the stroma. Significance limit was set as p<0.05, no multiple testing correction was 

performed.

Pénzváltó et al. Page 6

J Mammary Gland Biol Neoplasia. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Establishing the cell line

Primary tumor cell dissociation and adaptation to adherent cell culture was implemented, 

with purification utilized both traditional and flow sorting methods as described [13, 26] to 

eliminate non-epithelial cells. The cells grew in vitro, adherent to the dish surface, with a 

uniform epithelial phenotype that did not change or drift over many passages (more than 30).

Growth rate

In vitro and in vivo serial transplant growth rates were evaluated. The NDLUCD cell in 2D 

culture showed a slightly slower growth compared to many other frequently used mouse cell 

lines with an in vitro population doubling time of 1.18 days (in vitro growth of B16F10 

melanoma line = 0.49 days, 4T1 breast line = 0.95 days [27].) The in vivo doubling rate of 

NDLUCD tumors was 4.871 days (data used for calculating in vivo population doubling has 

been previously published [4]). In vitro growth (Figure1. a) h)) and in vivo growth (Figure1 

b)) are shown.

Pathology

Primary mammary carcinomas in the FVB/N-Tg(MMTV-ErbB2*)NDL2-5Mul mouse have 

a consistent “signature” phenotype (as described in [28] and [29]) characterized by a nodular 

growth pattern, with high vascularity, and minimal central necrosis. Three distinct structural 

zones have been described [30]. A zone of differentiation is located at the periphery of the 

nodules, approximately 3-5 cell layers in diameter. Immediately subjacent to this peripheral 

zone is a proliferative area which has the most intense ERBB2 membrane expression. In the 

innermost central zone, the cells remain epithelioid without metaplastic (spindled or 

squamous) features, but here the cells have smaller nuclei and less cytoplasm with lower 

levels of ERBB2 expression. The centers of larger tumors frequently have areas of necrosis.

The orthotopic mammary fat pad transplanted NDLUCD cells recapitulated the “signature” 

tumor phenotype described for the native transgenic tumors (Figure 1. e) H&E). These were 

solid, nodular carcinomas, well vascularized with the same zonation areas and the same 

proliferation rates, (Figure 1. g)), and ERBB2 expression levels (Figure 1. f)). The ER and 

PR immunoreactivity were weak (Figure 1. c) d)).

Metastatic potential

After tail vein injection of 106 NDLUCD cells into the syngeneic FVB/N female mice 

metastasis lesion were histologically confirmed in 3 out of 6 mice. The detected metastases 

invaded into the alveolar parenchyma, characteristic of “true” metastases as compared to 

intravascular embolic deposits [31]. (Figure 1. i) j) k)).

Erbb2 pathway activation

Erbb2 was highly expressed as detected by IHC, western blot, and mRNA expression 

analyses (microarray and RNA-Seq (average of 195 FPKM)) (Figure 2). Components of the 

Erbb2 activation pathway were highly expressed including Mapk1, Map2k1, Akt1, Erbb3, 
Nck1, Ptk2, Shc1, Map2k4, p27, p21, Ras and Src. Protein expression of ERBB2, ERBB3, 
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CDKN1A and SHC were validated in western blot from the 2D cultured cells. The protein 

expression pattern of these genes in Met-1fvb2, NDLUCD and SSM2UCD cultured cells 

reflected the RNA expression levels observed in tumor samples.

Immune cell infiltration

The host reaction in primary tumors from the parental Tg(MMTV-ErbB2*)NDL2-5Mul 

mouse and transplants from the NDLUCD cell line were analyzed and compared.

A significant host reaction was present in primary Tg(MMTV ErbB2*)NDL2-5Mul samples 

characterized as predominantly fibroblastic with collagen stroma replacing adipose adjacent 

to the in situ early tumors, increasing around larger masses. Syngeneic transplant NDLUCD 

tumors elicited a similar fibroblast component and collagen stroma (Figure 3). A scattered 

mixed inflammatory component was observed in the surrounding stroma, with 

predominantly macrophages and T-lymphocytes, and few B-lymphocytes. CD8 and CD4 

positive T-lymphocytes and occasional macrophages were found infiltrating the tumors. 

Scattered FOXP3 positive cells (regulatory T-cells) and B-lymphocytes were also present.

The differences between the host response to primary and transplant tumors and their 

respective tumor-immune phenotypes [32] were compared. The immune cell accumulation 

in the i) tumor adjacent stroma, defined as a band (250 μm wide) immediately adjacent to 

the periphery of the tumor; and in the ii) peripheral tumor, defined as the most peripheral 

area of tumor (250 μm wide) were evaluated. In each tumor, the surrounding tumor adjacent 
stroma had higher density of immune cells than the peripheral tumor infiltrating cells. This 

difference, however, was statistically significant only in the NDLUCD tumors, suggesting 

tumor cell/area immune suppression or the so-called “immune-excluded” phenotype [32]. 

The overall host reaction was more robust in the NDLUCD tumors compared to the primary 

tumors. Transplants had significantly higher CD4, CD8, FOXP3, B-cell and macrophage 

density in the tumor adjacent stroma than the primary tumors (Figure 3).

The spatial distribution of immune cell infiltrates around the tumors was not uniform but 

concentrated in discontinuous areas or “pockets”. The immunocytic stromal pockets 

corresponded with the highest density of immune cell infiltration into the tumor (Figure 4).

Significant deviations were observed within the same biological groups (transplants or 

primary tumors) in the measured immune cell densities as shown in Figure 3. We 

hypothesized that this deviation originated from individual variance between 

immunogenicity of the tumors (inter-tumoral heterogeneity of immune cell attraction). To 

investigate tumor to tumor immunogenicity, the correlation of the density of different 

lymphocytes throughout the six NDLUCD transplant tumors (from three animals) and three 

primary tumors (from three animals) was analyzed by Spearman’s rank correlation 

(correlation defined as p<0.05, multiple testing correction was not performed). The density 

of CD4 positive cells in the tumor adjacent stroma correlated with the T-reg and B-cell 

density in the tumor adjacent stroma as well as peripheral tumor infiltrating CD4 cell 

density. Meanwhile, tumor adjacent stroma CD8 density correlated with the tumor adjacent 
stroma T-reg and B-cell density as well as CD8 and T-reg peripheral tumor infiltration. 

Tumor adjacent stroma T-reg density correlated with stromal B-cell, CD4 and CD8 density 
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and peripheral tumor infiltrating CD4 and T-reg density. The tumor adjacent stroma 
macrophage density correlated with the peripheral tumor infiltrating CD4 and macrophage 

density. Between individual tumors there was a range of total inflammatory infiltrate, but the 

composition and relative proportions of different cell subsets were similar across all tumors.

PD-1 and PD-L-1 expression

NDLUCD cells were previously found to be reactive to anti-PD-1 [5]. Therefore, PD-1 and 

PD-L1 were evaluated using IHC. PD-L1 IHC documented membrane accentuated 

cytoplasmic immunoreactivity in NDLUCD tumor cells (Figure 5). Expression intensity 

varied by tumor zone, with enlarged cells with lower intensity of staining in the tumor edge, 

and stronger PD-L1 staining in the proliferative zone. The NDLUCD cells retained PD-L1 

positivity in vitro, demonstrated by both IHC (both nuclear and weaker cytoplasmic/

membrane immunoreactivity) and western blot of total cell lysates. PD-1 IHC showed 

scattered T-cells with strong positive staining, and no expression by tumor cells (Figure 5).

Gene expression

NDLUCD tumors were directly compared to two previously described mouse mammary 

carcinoma cell lines: SSM2UCD [17], derived from Stat1−/− estrogen receptor positive, 

luminal B tumors, and Met-1fvb2[13] derived from PyVT (Polyomavirus middle T-antigen) 

tumors, respectively. Pairwise comparisons with rank product statistics were performed 

comparing NDLUCD tumors to the two other cell lines. 483 genes were significantly 

overexpressed in NDLUCD over Met-1fvb2, 149 genes were significantly overexpressed in 

Met-1fvb2 over NDL(UCD). 426 genes were significantly overexpressed in NDLUCD over 

SSM2UCD and 111 genes overexpressed in the SSM2UCD over NDLUCD (at least two-fold 

expression change.) The full list of the significant differentially expressed genes is available 

in Supplementary Material 1. The identified gene lists were substantially overlapping with 

42.5% of the NDLUCD-Met-1fvb2 and 50.1% of the NDLUCD-SSM2UCD differentially 

expressed genes shared. Functional annotation of the differentially expressed genes were 

performed using DAVID Bioinformatics Resources (version 6.8) [33, 34], the identified GO 

(Gene Ontology) categories and KEGG pathways [20] (Benjamini<0.1) are listed in 

Supplementary Material 2.

The data suggest that drug metabolism through glutathione or cytochrome P450 was 

activated in the NDLUCD tumors compared to SSM2UCD or Met-1fvb2. Genes such as 

Cyp3a11, Gsta3, Gstt1, Gstt3, Gstm4, Gstm5, etc. were overexpressed in NDLUCD. The 

activation of these xenobiotic metabolism pathways can cause resistance to certain cytotoxic 

chemotherapeutics. Resistance against almost 20 anti-cancer drugs has been associated with 

elevated levels of glutathione S-transferases (Gst-s), including drugs widely used in breast 

cancer chemotherapy such as topoisomerase 1 and 2 inhibitors or carboplatin [35]. NDLUCD 

might be a model for studying chemoresistance through GST activation and overexpression. 

This is the subject of ongoing work in the lab.

Met-1fvb2 is a highly metastatic cell line, it’s in vitro phenotype is described by long thin 

pseudopodia and philophodia suggesting a high propensity for migration, which was also 

shown previously with a pore migration assay [36] [13]. NDLUCD cells showed less 
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migratory and metastatic potential, and these observations are supported by the gene 

expression results. The NDLUCD tumors were overexpressing many extracellular matrix-cell 

interaction molecules such as collagens (Col1a1, Col1a2, Col4a6, Col5a2), Integrin beta 8, 

Laminin gamma 2 and others. NDLUCD tumors were overexpressing Claudin 1, Claudin 3, 

Tight junction protein 2 and Occludin and other molecules involved in tight junctions. In 

contrast, genes which were identified in epithelial to mesenchymal transformation, cell 

migration, angiogenesis and metastatic phenotype were overexpressed in the Met-1fvb2 

tumors, such as Zeb1, Vegfa, Cdh2, Bmp2 and many others. A panel of tumor suppressor 

genes important in breast cancer [37] were also compared and visualized in Figure 2. e).

Several genes related to inflammation and immune processes were overexpressed in 

Met-1fvb2 and SSM2UCD compared to NDLUCD including several pro-inflammatory 

cytokines and cytokine receptors such as Il33, Il1rl1 (in SSM2UCD), Ccl12, Ccr2, Cxcl9,Il18 
(in Met-1fvb2). Key genes encoding enzymes of prostaglandin synthesis (Ptgs2, Hpgd) were 

also underexpressed in NDLUCD. These molecules are part of the chronic inflammatory 

environment which is a hallmark attribute of most cancers and is also characteristic of the 

SSM2UCD Stat1−/− model [38]. Inflammation can be tumor promoting in many contexts, and 

may correlated with poor prognosis [39]. NDLUCD compared to Met-1fvb2 and SSM2UCD 

showed lower expression of genes typically associated with a pro-tumor inflammatory 

environment.

When the samples were clustered according to a list of genes proposed to identify immune 

infiltration from gene expression data in humans [40] 47 out of the 60 listed human genes 

could be evaluated (13 genes do not have mouse ortholog). The NDLUCD and Met-1fvb2 

tumors clustered close together in terms of immune infiltration, while the SSM2UCD cells 

were more distant. Notably, this may reflect host strain (129SvEv) differences. For the 

purpose of the comparison, we show here only the NDLUCDand Met-1fvb2 lines, both grown 

in FVB/N immune intact strain background recipient mice (Figure 6.). The pan-leukocyte 

marker CD45 had lower expression in NDLUCD transplant samples. NDLUCDhad higher 

expression of genes characteristic of B-cells, dendritic cells, a cluster of cytotoxic cell 

markers, NK cells and T-cell markers.

DISCUSSION

The NDLUCD cell line has been used by colleagues working on mouse mammary carcinoma 

[4, 14, 26, 41-43] and the origin of the cell line has been briefly discussed in Miller et al. 

[26], However, a cohesive and comprehensive documentation of the in vitro and in vivo 
characteristics has not been previously published. Silvestrini et al. [4] established that the 

NDLUCD model is responsive to immunotherapy (combination of CpG and anti-PD-1 

effectively treats tumor bearing animals). To our knowledge there are no other syngeneic 

mouse models of breast cancer with sensitivity to anti-PD-1 therapy. This enhances the 

utility of the model and prompted this more complete characterization.

With rapid advances in tumor immunology and immunotherapy there is a growing demand 

for transplantable cancer cell lines which can be investigated in the immunocompetent 

syngeneic mouse [1]. These mouse models are essential for experimental immunotherapy 
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studies. Many common preclinical models, such as human tissue culture cell line xenografts 

and “patient derived xenografts” (PDX) mice must be grown in vivo in immunodeficient 

mouse strains. Meanwhile, genetically engineered mouse models (GEMM) develop tumors 

in a comparatively appropriate anatomic and histologic surrounding, with an intact tumor 

immune microenvironment. However, practical disadvantages of these models include 

variable penetrance and latency, as well as the multiplicity of tumor onset resulting from 

diffuse oncogene expression in the target tissue [44]. The effect of high tumor multiplicity 

on immunosurveillance/immunoediting is not well understood. Transplantable 

(subcutaneous or orthotopic) syngeneic mouse models present another option for studying 

immuno-oncology in an experimental setting. The number of mouse cancer cell lines is far 

smaller than the number of available human cell lines, with many, like 4T1, derived from 

carcinogen induced tumors and fewer from GEMMs (a legacy of the infamous Oncomouse 

patent [45]). Transplantable tumor models are usually fast growing, and have a lower cost 

than GEMMs, contributing to greater practical utility. Utilizing cell lines opens up numerous 

experimental possibilities such as transfection of expression constructs, editing of the 

genome, exposing the cells to carcinogens or radiation to study mutational heterogeneity, 

labeling the cells, etc. Despite the high demand for appropriate experimental models, the 

literature has only a few examples of detailed description of the immune landscape or 

reactivity to immune therapies in syngeneic mouse models. Among those studies the breast 

cancer model is almost exclusively the 4T1 model [46, 47], which is characterized by 

aggressive, metastatic tumors with a mesenchymal phenotype in vitro and spindle cell 

morphology in vivo. These are not typical attributes of most human breast cancers.

Even more importantly the 4T1 model proved to be resistant to both anti-CTL-4 and anti-

PD-1 therapies unlike our NDLUCD model [3, 46] which proved to be sensitive to combined 

intratumoral adjuvant (CpG) and anti-PD-1 checkpoint inhibition immunotherapy. This 

therapy induced an intense antitumor immune reaction in the NDLUCD tumors, but it was 

unknown at that time if the NDLUCD cells or any of the surrounding immune cells express 

PD-L1 [4]. PD-1 receptor is expressed primarily in T-cells and the ligand PD-L1 is primarily 

expressed in antigen presenting cells but may also be expressed in stromal cells. Some 

cancers aberrantly express PD- L1, a mechanism selected for immune evasion. Anti-

PD-1/PD-L1 checkpoint inhibitor therapies have proven to be highly effective in a variety of 

human tumors, particularly when PD-L1 is expressed by tumor cells in lung cancers and 

melanoma. PD-L1 epithelial expression in breast cancers was reported with frequencies 

ranging from 1.7% to 80% in IHC based studies depending on antibodies and different 

thresholds used [48], with cytoplasmic and membranous localization on tumor cells [49-59].

The NDLUCD cell line expresses cytoplasmic and membranous PD-L1 and therefore 

provides a suitable preclinical model for PD-L1 positive breast cancer. Anti-PD1 and PD-L1 

therapies showed around 20% response rate in various phase I clinical trials as single agents 

in triple negative breast cancer and the response rates are better when PD-L1 is expressed in 

the tumor [60]. In the first phase III trial conducted in triple negative breast cancer the anti-

PD-1 therapy in combination with chemotherapy significantly improved progression-free 

and overall survivals compared to chemotherapy alone, especially among patients with PD-

L1 positive tumors [61]. Combinational therapies for HER2 and luminal breast cancers are 
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currently under investigation. We suspect based on current and previous [4] results that 

HER2 positive patients would benefit from anti-PD-1 combination therapies.

Debate continues over the relative validity of primary tumors in GEMMs compared to 

syngeneic transplant for immunology studies. Although syngeneic transplants are fast and 

easy to use, some suggested that they might be more immunogenic than spontaneous tumors 

and their fast growth alters the immunologic burden on the host body [62]. Other studies 

failed to identify differences in immunogenicity when comparing transplanted and primary 

tumors [47]. Here, we documented through histologic/IHC quantitation that tumor 

surrounding and infiltrating lymphocytes are more abundant in the NDLUCD cell line 

transplants compared to the primary tumors in the genetically engineered mouse, but are 

similar in composition.

In summary, the NDLUCD cell line, an ErbB2 driven cell line, maintains a stable phenotype 

in vitro and in vivo as orthotopic transplants in the immune intact FVB/N mouse. The model 

expresses PD-L1 in cell culture and in vivo orthografts, with cytoplasmic and membrane 

expression similar to human breast cancers. We propose that NDLUCD is a useful model to 

study preclinical cancer-immunology, in particular for combination strategies to augment 

PD-1/PD-L1 checkpoint inhibition.
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Figure 1: 
In vitro and in vivo growth and phenotype of NDLUCD. a-b) Growth attributes of the 

NDLUCD cell line, a) In vitro growth rate in 2D culture. b) In vivo growth rate of 

transplanted NDLUCD tumor (this data has been previously published [4]). c-g) 

Immunohistochemistry of the NDLUCD transplant tumors; c) ER, d) PR, e) H&E, f) ERBB2, 

g) KI67. Arrows indicate normal mammary glands. h) In vitro 2D culture showing 

cobblestone epithelial phenotype. i-k) Lung metastasis, example of a lung showing high 

multiplicity of NDLUCD tumor outgrowth after tail-vein injection. i) Whole-mount 

photograph of a lung lobe with multiple NDLUCD outgrowths. j) high tumor multiplicity, 

arrow indicates tumor shown at a higher magnification in k). k) The lung outgrowths show 

characteristic NDLUCD phenotype.
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Figure 2: 
Expression of ErbB pathway molecules in the NDLUCD model. a) The ErbB pathway as 

presented in KEGG pathways [20] colored, based on the level of expression of the indicated 

molecule in the RNA-Seq analysis of NDLUCD transplant tumors (n=3). b) Expression 

values in the RNASeq analysis used for color coding in the “a” panel. c) Comparison of 

expression of ErbB pathway genes in three transplantable mouse models: NDLUCD, 

SSM2UCD, Met-1fvb2 (Gene expression profiling was performed with Affymetrix Mouse 

Gene 1.0 ST Arrays (n=6/each model)). Log2 transformed values were utilized for 

hierarchical clustering and the results are visualized with a heat map. d) Comparison of 

expression of main tumor suppressor genes in the NDLUCD, SSM2UCD, Met-1fvb2 models. 
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e) Western blot of ErbB2 pathway proteins from cell cultures of three transplantable mouse 

models (NDLUCD, SSM2UCD,Met-1fvb2) (MWM: Molecular Weight Marker).
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Figure 3: 
Immune cell distribution in syngeneic transplant of NDLUCD. a-f) Representative images of 

immunohistochemistry on an NDLUCD transplant tumor showing the same region: a) CD8A, 

b) CD4, c) F4/80, d) FOXP3, e) B220, f) H&E. g-k): Immune cell marker positive cells in 

the tumor adjacent stroma and in the peripheral tumor of transplanted NDLUCD tumors and 

primary tumors from the GEMM. n=6 transplant tumors from 3 animals (Tx) n=3 primary 

tumors from 3 animals (1°). * q<0.05, **q<0.01, ***q<0.001, ****q<0.0001
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Figure 4: 
Illustration of heterogeneity in immune cell infiltration. a-e) Distribution of immune cells in 

the peripheral tumor and the tumor adjacent stroma; a) CD4, b) CD8A, c) F4/80, d) B220, e) 

FOXP3. f) The analyzed area shown in the tissue overview, stromal area borders shown in 

red, peripheral tumor area borders shown in black. g) Example of an area of high CD8 

positive cell density in the peripheral tumor and in the tumor adjacent stroma. h) Example of 

an area with low CD8 positive cell density in the peripheral tumor and in the tumor adjacent 
stroma from the same tumor as g).
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Figure 5: 
PD-1 and PD-L1 expression in the NDLUCD model. a) b) PD-1, CD3, ECAD expression 

stained with multiplex IHC. c) d) PD-1 expressing immune cells. The arrows indicate PD-1 

positive cells. e) Positive PD-L1 staining, with typical zonal distribution of staining intensity. 

f) PD-L1 IHC on cell culture. g) PD-L1 western blot for cultured NDLUCD cells.
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Figure 6: 
Immune reaction-associated gene expression in two mouse models. Gene expression 

profiling of NDLUCD and Met-1fvb2 transplanted tumors was performed using Affymetrix 

Gene 1.0 ST Arrays. Samples were clustered using a homologous gene list based on 

identification of immune infiltration from gene expression data in humans [40]. Log2 

transformed and mean-centered values are illustrated.
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