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Abstract

Reconstruction and Analysis of Interior Flows with Applications in Cardiovascular
Hemodynamics

By Sarah Loring Frank

Doctor of Philosophy in Engineering – Mechanical Engineering
University of California, Berkeley
Professor Shawn Shadden, Chair

Heart disease is the leading cause of death worldwide, killing 17.9 million annually. Blood
flow patterns in the heart have been shown to be associated with disease, but the adoption
of blood flow diagnostics in the clinic has been limited by the difficulty of imaging blood
flow inside the body. Color-Doppler ultrasound and 4D-flow Magnetic Resonance Imaging
(MRI) are currently the two main tools used to image blood flow. Color-Doppler ultrasound
is widely-accessible and relatively inexpensive, but traditional ultrasound only collects a
single component of velocity on a single plane. 4D-flow MRI collects all three components
of velocity in a 3D domain but is much more expensive and difficult to use. Here, we
use computational tools to improve image processing and analysis of blood flow in the left
ventricle for both color-Doppler ultrasound and 4D-flow MRI data. Specifically, we seek
to develop methods for de-noising and reconstructing interior flow fields and for calculating
kinetic energy and viscous dissipation as potential diagnostic tools from limited data.

First, we investigate tools to augment color-Doppler ultrasound data. We test multiple
methods to calculate a second, in-plane component of velocity from the available velocity
and geometry information. Previously, methods to reconstruct the second component of
velocity were developed using an assumption that through-plane divergence was negligible.
We introduce alternative methods to reconstruct the second component of velocity without
making the through-plane assumption. However, when compared to previous methods, these
alternative methods did not show an improvement in the accuracy of predicting the second
component of velocity.
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Following these results, we propose modifications to estimates of diagnostic measures from
color-Doppler ultrasound data. For many diagnostic measures calculated from color-Doppler
ultrasound data, the velocity is measured, a second component of velocity is calculated,
and a 2D evaluation of the diagnostic measure is performed. Instead, we propose a 1D
evaluation of diagnostic measures directly from the single, measured component of velocity.
We introduce this metric for kinetic energy and viscous dissipation rate in the left ventricle,
two measures that have been shown to be correlated with heart disease. Using computational
fluid dynamics simulation results to obtain a true measurement from all three components of
velocity in the entire ventricle, virtual ultrasound measurements were taken and the different
types of estimates were calculated from the virtual ultrasound. These reduced dimensional
estimates were then compared to the true, 3D values. Both the 1D and 2D estimates were
correlated with the 3D values and kinetic energy was more robust to noise and lower grid
resolution. These results indicate that 1D estimates, and kinetic energy especially, should
be continued to be explored for further use in the clinic.

Next, we explore a modal analysis method to de-noise and reconstruct 3D flow fields
that can be applied to 4D-flow MRI or color-Doppler ultrasound data. While many methods
have been introduced to de-noise 3D velocity fields, this modal analysis method provides
advantages because it results in a divergence-free flow field, satisfies necessary boundary
conditions, and can be applied to multiple types of data. To test the method, it was applied
to flow inside a cube, through a stenosis, around a cylinder, and inside the left ventricle using
data from computational fluid dynamics simulations. The modal analysis method was shown
to reduce noise from noisy velocity fields and to be able to adequately reconstruct velocity
fields with missing data points or missing components of velocity. These results are promising
for use with 4D-flow MRI data where a 3D flow field on a 3D domain is available. These
results are also promising for use with more recent advancements of color-Doppler ultrasound
that allow for measurements on multiple parallel planes and for developing capabilities of
color-Doppler ultrasound that allow for measurement of a second, in-plane component of
velocity.

Through reduced dimensional estimates of kinetic energy and viscous dissipation rate
in the left ventricle that can be measured using color-Doppler ultrasound data and the
introduction of a modal analysis technique to de-noise and reconstruct 3D flow fields, this
dissertation advances image processing and analysis tools for blood flow in the left ventricle.
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Chapter 1

Introduction

1.1 Motivation

Heart disease is the leading cause of death worldwide and in the United States. In the United
States, it contributes to 1 in 4 deaths and costs an estimated $200 billion each year [3]. Heart
disease includes many conditions that affect heart health, from the muscles of the heart, to
valves, rhythm, and narrowed or blocked blood vessels. Although commonly thought of as a
problem affecting older people in the developed world, heart disease is a prominent problem
for all types of people all across the world. Over three quarters of deaths due to heart disease
occur in low- and middle-income countries [4], and in the United States, in addition to being
the first leading cause of death for people aged 75 and over, heart disease is the fifth leading
cause of death for young Americans aged 1-9 and 15-34 [5].

In order for cardiovascular diseases to be effectively treated, they need to be diagnosed
early. Unfortunately, there are many aspects of heart disease that are not well understood,
frequently making both diagnosis and treatment difficult. Clinical measures have been de-
veloped to assess cardiac function and public health initiatives have been aimed at lowering
cholesterol and blood pressure. However, many current indicators of disease show up incon-
sistently in patients. For example, heart failure symptoms vary widely and certain treatment
options have only improved the prognosis for patients with certain sets of symptoms [6]. In
another study, flow patterns were shown to change quickly when pacemaker settings were
altered even though heart structure remained the same [7]. A more complete understanding
of both healthy and diseased heart function is necessary for improved diagnosis and treat-
ment of heart disease. In particular, several studies have linked blood flow inside the heart
to disease etiology. However, imaging intra-cardiac blood flow remains challenging, limiting
our understanding of heart failure and its hemodynamic consequences and our ability to
translate new knowledge easily into the clinic.

To this end, this dissertation focuses on methods to improve image processing of flow
data inside the heart. With improved imaging, researchers will be able to better study and
understand how flow is related to heart disease, and ultimately doctors will be able to use
these improved imaging methods to evaluate the quality of flow fields in the clinic.

1
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1.2 Background - The Heart

1.2.1 The Heart

The heart consists of four chambers (Figure 1.1) and pumps blood throughout the body. De-
oxygenated blood is returned from the body through the venae cavae to the right atrium.
Then, the blood goes through the tricuspid valve to the right ventricle. From the right
ventricle, it exits the heart through the pulmonary valve into the pulmonary arteries to the
lungs. The now oxygenated blood returns from the lungs through the pulmonary veins to
the left atrium. Then, it goes through the mitral valve to the left ventricle. From the left
ventricle, it exits the heart through the aortic valve into the aorta, and carries oxygenated
blood to the rest of the body.

Figure 1.1: The four chambers of the heart. Illustration by Eric Pierce [1]. Reprinted courtesy
of the Copyright Holder under a Creative Commons License CC BY-SA 2.0

1.3 Importance of Velocity Fields in the Heart

Heart disease is a broad category of diseases related to the function of the heart. Hemody-
namics, the study of blood flow, is an important field that has improved our understanding
of many of these heart diseases. Here we will give an overview of a few heart diseases in-
cluding heart failure, aortic regurgitation, heart attack, and some congenital heart diseases,
and discuss why blood flow is important for these diseases.

Heart failure is a condition where the heart is not pumping blood as efficiently as it
should be. This means that not enough nutrients are being pumped throughout the body
and the symptoms are fatigue and shortness of breath. Although there is not a cure, at
some stages heart failure can be managed with medication, but at other stages more serious

https://creativecommons.org/licenses/by-sa/2.0/
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medical attention is required. In addition, heart failure can affect the left and/or the right
side of the heart, but more frequently affects the left side [8].

Aortic regurgitation is a disease where instead of blood flowing directly out of the left
ventricle into the aorta through the aortic valve, some blood flows from the aorta back into
the left ventricle. As a result, the left ventricle is required to work harder, and depending on
the severity, aortic regurgitation can lead to heart failure. Often, the symptoms for aortic
regurgitation do not appear until after the patient has already experienced heart failure.
However, if changes in the flow patterns representative of aortic regurgitation are discovered
earlier, then proper treatment can help prevent heart failure.

A heart attack, or myocardial infarction, occurs when blood flow is blocked in a vessel
that brings blood to the heart muscles. The restriction of blood flow to the muscles is
referred to as ischemia, and damage to the muscle due to the lack of blood flow is referred
to as myocardial infarction. Damage to the muscle affects how blood moves inside the heart
and impairs the heart’s ability to pump blood throughout the body [9].

Many congenital heart diseases involve an atypical geometry of the heart. The altered
geometries mean that blood moves throughout these hearts differently than inside a healthy
heart, and often require surgical intervention. Often, the flow is not as efficient and can make
everyday activities more difficult, similar to symptoms of heart failure. Understanding flow
in these cases is important because it can inform any invasive procedures to help redirect
flow in a more efficient manner. For example, an atrioventricular septal defect is when there
are holes between the left and right sides of the heart. This means that some blood that
has already been oxygenated in the lungs will return to the lungs before going to the rest of
the body, and some blood that never makes it to the lungs will flow to the rest of the body,
lowering the oxygen concentration of blood flowing throughout the body. Fontan circulation
is another case that refers to a type of flow circulation where patients born with only a single
ventricle require surgery to redirect the flow from the veins directly to the lungs, bypassing
the heart. Tetralogy of Fallot is a congenital heart disease that is a combination of four
other geometric changes: an atrioventricular septal defect, the aortic valve is enlarged and is
located in one of the holes between the two chambers, a thickening of the right ventricular
wall, and a narrowing of the pulmonary valve.

Heart failure, aortic regurgitation, heart attack, and congenital heart diseases all involve
different changes in the geometry of the heart along with changes in blood flow patterns inside
the heart. Knowledge of both the geometry and the flow are important for understanding
how the disease progresses, and thus how it can potentially be treated.

1.3.1 The Left Ventricle

In many heart diseases, the left ventricle is the site of pathological changes that lead to
disease. The blood must travel from the left ventricle to the rest of the body, which requires
very large pressure gradients. Therefore, the left ventricle is where the blood experiences the
highest pressures. The effects of this are seen across heart diseases, in both the geometry of
the left ventricle and the flow fields inside the left ventricle. For example, in the majority
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of cases of ‘systolic’ heart failure, or failure caused by changes during the ejection phase of
the cycle, impaired left ventricular contractility is one of or the only contributing factor to
failure [10]. In ‘diastolic failure’, or failure caused by changes during the filling phase of the
cycle, there is an increase in left ventricular diastolic pressure that leads to disease [10].

While flow structures that appear inside the left ventricle are correlated with indicators
of heart disease, current diagnostic measures often focus on bulk transport variables and not
on intracardiac flow structures [11]. However, certain flow patterns apply characteristically
different loads on the heart that lead to heart disease or other complications such as thrombus
formation. In particular, vortices in the left ventricle have been shown to influence energy
losses and have been correlated with patient disease conditions [12, 13, 14]. Other measures
of transport such as residence time of blood in the ventricles or atria have also been identified
as causes for thrombosis and cardioembolism [15].

The challenge of imaging blood flow has impacted the extent to which blood flow patterns
in the heart are used in the clinic. As mentioned previously, current symptoms of heart
disease often show up inconsistently between patients, and an improved understanding of
blood flow in the heart could help resolve many of these inconsistencies.

1.4 Measuring Velocity in the Left Ventricle

1.4.1 Imaging

Lack of information about flow in the heart is largely due to the difficulty of measuring
blood flow in vivo. Similar to many biological tissues of interest in medicine, blood is an
opaque fluid found within opaque cavities, making it inherently difficult to image. However,
blood is additionally difficult to image because it is moving, and it is contained in cavities
that are also moving. At each point in space at each point in time, we are interested in
the magnitude and direction of blood. Currently, Magnetic Resonance Imaging (MRI), and
Doppler ultrasound are the main imaging methods used to examine blood flow throughout
the body.

MRI with phase-contrast velocity mapping, known as 4D-flow MRI is the current gold-
standard for examining cardiac flow data because it is the only non-invasive method that pro-
vides velocity information that has three components and is available on a three-dimensional
grid at multiple time points. Data is gathered throughout the cardiac cycle, providing the
fourth dimension of time.

MRI works by taking advantage of the fact that the spin of a proton is affected predictably
by an applied magnetic field. Atoms with an odd number of protons or neutrons have a
randomly aligned angular spin momentum that will align with the axis of a strong, external
magnetic field, causing a net ‘longitudinal’ magnetization. These spins precess about the
axis of the external field at a frequency proportional to the strength of that field. Then,
to measure a signal, energy is added to the system to ‘excite’ the spins, changing the axis
that they precess about. Receiver coils are used to measure this signal. Different tissues



5 Chapter 1

respond to the added energy in different ways, and imaging parameters can be adjusted to
highlight desired tissues. Certain sequences can also be used to measure the magnitude of
velocity in a specific direction because the velocity of an atom influences the phase of the
spin. Velocity is calculated by measuring the phase shift of the spins, and converting those
values to velocities [16]. An example is shown in Figure 1.2.

Figure 1.2: Example scans of the left ventricle produced using 4D-flow MRI. A shows velocity
visualized as pathlines, which are trajectories that particles follow over time. B-D show velocity
visualized as streamlines, which are lines tangent to the velocity vector at each point. Copyright
Dyverfeldt et al. 2015 [2]. Reprinted courtesy of the Copyright Holder under a Creative Commons
License CC BY 4.0

4D-flow MRI has been instrumental in developing today’s understanding of flow in the
heart, but it does not come without limitations. First, there is a direct trade-off between
the maximum velocity that can be encoded and the signal-to-noise ratio of the velocity
measurements [17]. In addition, the temporal and spatial resolution are low, making it
difficult to capture complex flow structures (which are commonly predicted in simulation-
based models), especially flow conditions close to the walls where thrombosis is thought
to occur. Patients with metal implants such as a pacemaker or left ventricle assist device
cannot undergo MR imaging. 4D-flow MRI is expensive, time-consuming, and is not widely

https://creativecommons.org/licenses/by-nc-nd/4.0/
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accessible. Due to its high costs and the effects of a strong magnetic field on magnetic
implants, visualizing flow with 4D-flow MRI is not available to all patients. While 4D-flow
MRI has been and continues to be instrumental in discovering more about blood flow in
the heart, at this time its costs motivate alternative, more widely-available clinical imaging
methods for routine evaluation and diagnosis of cardiac function.

Color-Doppler ultrasound, or color Doppler-echocardiography, is a method that uses ul-
trasound to measure the velocity magnitude parallel to the ultrasound beam. Color-Doppler
ultrasound is an easy-to-use, widely available diagnostic tool used to visualize flow in the
heart. It is much cheaper than MRI and it is becoming even more accessible with recent
developments in hand-held ultrasound systems [18]. Color-Doppler ultrasound converts fre-
quency shifts into velocity information, representing the flow speed using colors on top of a
grayscale anatomical image (Figure 1.3).

Figure 1.3: An example color-Doppler ultrasound scan of the left ventricle. The greyscale image
contains the anatomy of the ventricle and the velocity magnitude is overlayed in color. The velocity
magnitude represents the strength in the radial direction, where the ‘V’ represents the origin, i.e.
the transducer location. Velocities are only collected inside the white box region.

Traditional ultrasound detects tissues by producing an ultrasonic wave and measuring
the reflections of that wave. In order to measure velocities, multiple measurements are taken
and the phase shifts between subsequent echos are used to calculate a velocity [19]. Because
ultrasound works by sending and receiving sound waves, the gathered information is only
in the direction that the wave is moving. Therefore, the flow information is only available
in the beam direction, with the origin being the location of the transducer. The single-
component measurement of the flow can be adequate for assessing the mostly uni-directional
flow in vessels or through valves, but it is a significant limitation in assessing the highly
multidirectional nature of blood flow inside of the heart [11].

While MRI and ultrasound have limitations in terms of measuring velocity fields in the
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body, both have been instrumental in developing our understanding of heart disease and
both are currently used in the diagnosis and treatment of heart disease.

1.4.2 Simulations

Computational fluid dynamics simulations are an alternative to blood flow imaging. Instead
of imaging the movement of the flow directly, patient-specific simulations are produced by
imaging the blood flow domain, i.e. the walls of the heart and the vessels, and then solving
equations describing fluid movement to calculate the blood velocities throughout the domain.
Imaging of the walls is often performed using MRI or computed tomography scans.

Simulations can be performed on just the left ventricle or the whole heart and can also
include some vessels. The simulation results provide much higher resolution information for
blood flow in both the time and space domain compared to imaging. However, simulations
are computationally intensive and time consuming, and therefore their use in the clinic is
limited. In addition, they require tuning of multiple parameters to achieve a valid solution,
adding to their complexity and the difficulty of introducing them to the clinic.

In addition to higher resolution visualization, simulations also provide the ability to
‘test’ different situations. For example, multiple variations of a surgery can be modeled and
compared via simulations before it is actually performed in a patient. As the ability to
segment and mesh the geometry improves and necessary computation time shortens, these
simulations will become an important clinical tool when it comes to diagnosis and treatment
planning.

1.4.3 Evaluating Quality of Blood Flow in the Left Ventricle

Imaging is an important clinical tool for evaluating blood flow in the heart. For example, in
the clinic, color-Doppler ultrasound is regularly used to evaluate valve regurgitation in the
left ventricle and cardiac output [20]. Ultrasound, computed tomography, and cardiac MRI
are all currently used in the diagnosis and treatment of congenital heart disease. Due to the
versatility of MRI, including its ability to measure flow, Rajiah et al. argue the advantages
of cardiac MRI over the other modalities, although they note that ultrasound is more widely
accessible [21].

Outside of the clinic, imaging and simulations continue to be used to advance our un-
derstanding of heart disease. Some promising quantitative measures of flow quality include
flow volume, wall shear stress, and turbulent kinetic energy [22]. Vortex formation and vis-
cous energy loss have also been shown to be associated with health outcomes [14]. As this
research continues to advance, some of these quantitative and qualitative measures that are
both informative and implementable will be introduced to the clinic.
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1.5 Overview and Principal Contributions of this Dis-

sertation

This dissertation seeks to improve measurement and evaluation of blood flow in the heart
using computational tools. Chapters 2 and 3 focus on improving color-Doppler ultrasound
as a diagnostic tool. In Chapter 2 we seek to improve the calculation of a second, in-plane
component of velocity from color-Doppler ultrasound data. In Chapter 3 we evaluate the
ability of color-Doppler ultrasound to estimate two different diagnostic measures, kinetic
energy and viscous dissipation rate, and propose modifications to the estimates. The first
main contribution is introducing reduced dimensional estimates of kinetic energy and viscous
dissipation rates for color-Doppler ultrasound data, presented in Chapter 3. Chapters 4 and
5 present a new modal analysis method to de-noise and reconstruct velocity fields measured
from either 4D-flow MRI or color-Doppler ultrasound. The second main contribution is this
new method to process 3D flow fields. It is presented generally in Chapter 4 and specifically
for left ventricle applications in Chapter 5.

The first contribution is related to color-Doppler ultrasound, which is a very important
imaging modality for the treatment of heart disease due to its availability in the clinic. Recent
research has expanded the information available from traditional color-Doppler ultrasound
images by solving for an extra component of velocity. However, some of these methods are
developed from assumptions that are often not well satisfied and require multiple steps to
process. The work in Chapter 2 provides a look at methods developed to solve for an extra
component of velocity that avoid these assumptions. In Chapter 3, we introduce reduced
dimensional estimates of kinetic energy and viscous dissipation rates that allow us to study
diagnostic tools from color-Doppler ultrasound without having to perform extra steps to
calculate an extra component of velocity.

The second contribution is an improved method for filtering and reconstructing noisy
flow data from images. Due to the difficulty of imaging all types of flow, from blood flow
inside the body to flow in the ocean, methods used to image flow fields produce noisy data,
and a variety of different methods have been introduced to de-noise these datasets and fill in
missing information. The open boundary modal analysis method introduced in Chapter 4
and studied further in Chapter 5 provides a few advantages over these methods. First, open
boundary modal analysis enforces a divergence-free condition on the flow. Enforcing physical
constraints on the flow are important for further analysis and evaluation of the flow field.
Second, open boundary modal analysis enforces appropriate boundary conditions, which are
also important for further analysis of the flow field. The way the boundary conditions are
implemented also leaves room for the user to easily adjust boundary conditions based on
which aspects of the data are more reliable. In addition, open boundary modal analysis can
be used on a wide variety of data, from color-Doppler ultrasound data to 4D-flow MRI data
to data from other, non-biological, applications.

Together, the work presented here provides multiple steps towards improved measurement
and understanding of blood flow in the heart. As this research area continues to grow,
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improved imaging of the flow fields will enable further analysis of how flow patterns are
related to disease progression. Knowledge of these relationships will help doctors diagnose
and treat heart diseases earlier in their development and will allow doctors and engineers to
develop better tools for treatment, improving patient outcomes across heart diseases.



Chapter 2

Two-Dimensional Velocity Reconstruc-
tion from Color-Doppler Ultrasound

2.1 Introduction

In this chapter, we explore the estimation of a second, in-plane component of velocity from
color-Doppler ultrasound data as a way to improve the value of color-Doppler ultrasound
data in the evaluation of quality of blood flow in the left ventricle [23].

Color-Doppler ultrasound is a commonly used method to examine blood flow in the left
ventricle. It uses a sound wave to measure the flow velocity in the direction of the ultrasound
beam. This means that velocity information is only available in the direction parallel to the
beam. In other words, only one component of velocity, Vr, is known (Figure 2.1), and
the other two components are unknown. In order to have a better understanding of the
quality of flow in the heart, more information is needed. As a result, several methods have
been proposed to extract more information from the velocity field gathered by color-Doppler
ultrasound.

Many of these methods solve for a second, in-plane component of velocity, also called the
the azimuthal component of velocity, or Vθ. Figure 2.1 shows a simplified two-dimensional
plane of the left ventricle, similar to what is captured in color-Doppler ultrasound data. Only
the radial velocity field is measured from the ultrasound, and the azimuthal component is
estimated from the given velocity and geometry information.

The majority of these methods to reconstruct the azimuthal component of flow rely on
an assumption that the through-plane divergence is negligible, also known as the planar flow
assumption.

For example, Garcia et al. [24] use the planar flow assumption combined with wall mo-
tion data gathered from B-mode echocardiography to calculate the azimuthal component of
velocity. First, the gradient with respect to the radial direction of the radial component of
velocity is calculated. Then, boundary conditions are set using the movement of the walls.
Using the continuity equation, with the through-plane divergence set to zero, the azimuthal
velocity is calculated. They validated these methods using particle image velocimetry mea-

10
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Figure 2.1: Long-axis view of a simplified left ventricle, as it would appear in an ultrasound
image. The apex is located nearest the ultrasound transducer. Blood flows in through the mitral
valve and out through the aortic valve.

surements of the velocity field in an atrioventricular duplicator and with MR data. They
calculated relative errors of about 35% for the azimuthal velocity [24].

Uejima and Ohtsuki also used the planar flow assumption to reconstruct the azimuthal
component of velocity from the radial component. This method involves splitting the flow
field into a ‘basic’ component and a ‘vortex’ component. First, the ‘vortex’ component
is reconstructed based on the assumption that the vortices are bilaterally symmetric and
that there is no through-plane flow, and using the concept of a streamfunction. Then, the
measured flow field that does not contribute to the ‘vortex’ component is used to reconstruct
the ‘basic’ component. The two components are combined to build the full, two-dimensional
flow field [25, 26].

These reconstruction techniques have since been used to study flow conditions using ul-
trasound data in diseased and healthy hearts. After reconstructing the velocity field from
ultrasound data using Garcia et al.’s method, Hendabadi et al. used Lagrangian Coherent
Structures to study boundaries of blood entering the left ventricle during different cycles,
from residence time to general transport patterns [27]. Bermejo et al. also used the re-
construction to study vortex properties in the left ventricle in dilated cardiomyopathic and
healthy hearts [20], and Rossini et al. studied blood transport in patients undergoing cardiac
resynchronization therapy [28].

However, the validity of the planar flow assumption has come into question. It has been
found that the magnitude of the through-plane divergence is comparable to the magnitude
of the other components of divergence [29, 30]. To remedy this, Jang et al. proposed an
alternative reconstruction method that accounts for through-plane divergence. They solve
the Navier-Stokes equation for a changing, two-dimensional, left ventricle geometry over a
cycle, and they include a source term that accounts for through-plane divergence [30]. The
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measured radial velocity from the ultrasound serves as a constraint for the method.
The goal of this chapter is to investigate new methods to reconstruct the in-plane velocity

field from color-Doppler ultrasound data without assuming that through-plane divergence is
negligible.

2.2 Methods Overview

In this chapter, we develop and evaluate two new methods to calculate the second, in-plane
component of velocity from color-Doppler ultrasound data without using the planar-flow
assumption. The first method is 2D open boundary modal analysis (OMA). OMA projects
a series of ‘modes’, or velocity fields, that are derived based on the geometry to the known
velocity component onto the data in order to reconstruct a new, two-dimensional, flow field.
The second method is a weighting method that builds on the continuity method described
by Garcia et al. [24] by estimating the through-plane divergence and using this estimate in
the reconstruction of the azimuthal velocity.

2.2.1 Note on Color-Doppler Ultrasound Data

Because color-Doppler ultrasound data only has one component of velocity, it is not possible
to evaluate the success of the reconstruction methods using only this data. Instead, a data
set where the true velocity field is available, such as one from a computational fluid dynamics
(CFD) simulation can be subsampled to represent a color-Doppler ultrasound acquisition,
and the methods can be tested on this data. Then the results can be compared to the
true values from the simulation. For evaluation of LV flow fields, color-Dopper is usually
collected from the apical long-axis plane. The transducer is placed beyond the apex of the
left ventricle, so the imaging plane contains the apex at one end and goes through both the
mitral and aortic valves at the base on the other end (Figure 2.1). To generate synthetic data
set to represent color-Doppler ultrasound data, the apical long-axis plane is extracted from
the full data (e.g. CFD data) set using a radial coordinate system where the origin is located
where the transducer would be located in a typical ultrasound scan. The corresponding radial
velocities are then “measured” from the full (e.g. CFD) to represent color Doppler. The
azimuthal velocities are then computed from the “measured” radial velocity field using an
appropriate reconstruction method, and then compared to the true azimuthal velocities from
the original full data.

2.2.2 Data Sets Used

The reconstruction methods were tested on two types of data sets: results from a CFD
simulation and phase-contrast MRI data. The CFD data includes three components of
velocity on a 3D domain, so a single slice of the domain was selected to represent the slice
that would be acquired in a color-Doppler acquisition. The MRI data is from a single plane
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Patient Venc Contrast
Beat Period (s) Time Spatial

Resolution (s) Resolution (mm)
4 24 75 1.142 .057 0.94
4 30 100 1.142 .057 0.78
5 14 75 1.063 .053 0.86
8 11 75 0.684 .034 0.94
9 12 75 1.063 .053 0.94

Table 2.1: List of scan and patient parameters for PCMR data sets from UCSD.

but contains all three components of velocity. The reconstructions were performed based
on the in-plane radial velocity. For the CFD data, the errors in the reconstruction were
measured by comparing the in-plane radial and azimuthal components of velocity from the
reconstructed field to the in-plane velocity field from the data. For the MRI data, the
measured data is noisy so the results are compared qualitatively but not quantitatively.

The CFD simulation was performed by the Computational Technology Laboratory led
by Johan Hoffman at Kungliga Tekniska högskolan Royal Institute of Technology (KTH)
in Sweden. The geometry for the simulation was created from ultrasound measurements of
the inner wall of the left ventricle. An adaptive arbitrary Lagrangian-Eulerian space-time
finite element solver was used to solve the incompressible Navier-Stokes equations in the heart
[31]. This data is well suited for method validation because it consists of a three-dimensional,
divergence-free velocity field. Data from the apical long-axis plane was extracted to test the
reconstruction.

We then tested the reconstruction methods on a group of two-dimensional phase-contrast
Magnetic Resonance (PCMR) data sets (Table 2.1). These PCMR data sets were provided
by the del Álamo’s Research Group at University of California, San Diego. Again, the
apical long-axis plane was extracted, and two dimensions of in-plane velocity were available.
The slice thickness was 8mm and the left ventricle was segmented manually. Each patient
underwent multiple MR scans with different imaging parameters. The details can be found in
[23]. The scans presented in this report are the scans that produced the best results. Unlike
the CFD data, this data has noise in it and does not produce a divergence-free velocity field.
However, also unlike CFD data, this data does not rely on modeling assumptions.

2.2.3 Error Calculations

To evaluate the quality of the different reconstruction types, the error was calculated:

Ei =

∫
Ω
||Vi,true − Vi,reconstructed||dS∫

Ω
||Vi,true||dS

(2.1)

where Ω is the apical long-axis plane of left ventricle at a given time point, and i refers to the
type of error. For this data, the radial error, where i = r, the azimuthal error, where i = θ,
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and the velocity magnitude error, where i refers to the velocity magnitude, were calculated.
The error was then averaged at each point in time in the cycle and plotted as a function of
time. Error is displayed in figures as absolute error, as calculated by equation 2.1, but is
converted to a percent in the text.

2.3 2D Open Boundary Modal Analysis

Open boundary modal analysis is a method described by Lekien et al. to reconstruct sparse
and noisy flow data that we have adapted for flow in the left ventricle due to the similarity
of the two problems. The method was designed for sparse, 2D oceanographic flow data with
two types of boundaries - one where there is no flow on or through the boundary (‘closed’),
and one where there is flow through the boundary (‘open’) [32]. For oceanographic data,
the area of interest is often enclosed only partially by the coast. Therefore, the coastline
can be considered a ‘closed’ boundary and the rest of the edge of the domain where data is
collected can be considered an ‘open’ boundary. This is also similar to a left ventricle, where
the walls of the heart can be considered a ‘closed’ boundary and the valves can be considered
an ‘open’ boundary. We adapted this method to reconstruct a single plane of flow in the left
ventricle from ultrasound data.

In the oceanographic data, a domain is chosen such that the domain remains constant in
time, and only a single set of modes needs to be calculated even though data from multiple
time points is used. For the left ventricle, the domain is changing over time and a new set
of modes is calculated at each time step.

For the oceanographic data, the boundary is chosen somewhat arbitrarily, perhaps in-
fluenced by feasible measurement locations. A different set of modes would be calculated
if a different boundary was chosen. However, flow in the left ventricle is an ‘internal flow’,
where the domain is inherent to the problem and the flow field is strongly influenced by this
domain, making it a strong candidate for the 2D open boundary modal analysis method.

The following description of 2D open boundary modal analysis closely follows the work
of Lekien et al. found in [32] with the main differences appearing in the implementation of
the method.

2.3.1 Modal Analysis Methods

2D open boundary modal analysis is implemented by solving for two types of modes based
on only the geometry of the domain, and then projecting the modes onto the available
velocity data to get a new, reconstructed velocity field. The first type of mode is an ‘interior
mode’. Interior modes are based entirely on the geometry of the domain and have no-slip,
no penetration boundary conditions. The second type of mode is a ‘boundary mode’ and
allows for flow through the boundary. Once the modes are calculated, the available velocity
data is projected onto the modes using a least squares method. The resulting reconstructed
flow field is the sum of the modes, each multiplied by a constant, where the constants are
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calculated such that the reconstructed field is closest to the original data (measured in the
L2 norm).

General Theory

The Helmholtz decomposition theory states that a two-dimensional vector field, u, in the
x− y plane, can be written as the sum of an irrotational and divergence-free component:

u = uψ + uσ (2.2)

where
uψ = ∇× ψk̂ (2.3)

is divergence-free and k̂ points in the z direction, and

uσ = ∇σ (2.4)

is irrotational. Explicitly, u can be written:

u = ∇× ψk̂ +∇σ (2.5)

We can isolate ψ and σ by applying ∇× and ∇· to u, shown in equations 2.6 and 2.7:

∇× u = ∇× (∇× ψk̂) +∇×∇σ = −∆(ψk̂) + 0 = −k̂∆ψ (2.6)

∇ · u = ∇ · ∇ × ψk̂ +∇ · ∇σ = 0 + ∆σ = ∆σ. (2.7)

Boundary Conditions

In our problem with domain Ω, we have two types of boundaries. The ‘closed’ boundary
is the area where there is no flow through the boundary, and is denoted ∂Ω0. The ‘open’
boundary is the area where flow is allowed through the boundary and is denoted ∂Ω1. We
can separate the normal and tangent components of velocity on the boundary:

u · t̂ = t̂ · (∇× ψk̂) + t̂ · ∇σ
= n̂ · ∇ψ + t̂ · ∇σ

u · n̂ = n̂ · (∇× ψk̂) + n̂ · ∇σ
= −t̂ · ∇ψ + n̂ · ∇σ.

It is important to note that the decomposition of the flow, represented by equations 2.3
and 2.4, is not unique. A divergence-free or irrotational component could be added to each
component respectively, and still satisfy equation 2.2. Therefore, we choose that uψ does
not flow through the closed boundary, ∂Ω0: i.e.

0 = n̂ · uψ = n̂ · (∇× ψk̂) = −t̂ · ∇ψ. (2.8)

Since any constant can be added to ψ without changing the result, we choose that ψ = 0
on the closed boundary. This means that on closed parts of the boundary, t̂ · ∇ψ = 0 and
therefore that n̂ · ∇σ = 0.
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System Equations

This leads to the system of linear, partial differential equations:
∆σ = ∇ · u in Ω

n · ∇σ = 0 on ∂Ω0

n · ∇σ = gσ(s) on ∂Ω1

(2.9)

and 
∆ψ = −k̂ · (∇× u) in Ω

ψ = 0 on ∂Ω0

ψ = gψ(s) on ∂Ω1

(2.10)

where the functions gσ and gψ are dependent on the velocity field at the boundary. They
are discussed further in section 2.3.1.

From here, two types of modes, interior and boundary, are developed. These modes,
uψ and uσ, are a set of basis functions for our velocity fields that span the set of square
integrable velocities and satisfy all necessary boundary conditions [32]. Interior modes are
independent of type of boundary (‘open’ or ‘closed’) and boundary modes take into account
flow through the boundary.

Interior Modes

Interior modes do not take into account the different types of boundaries and are designed to
have no flow through the boundary. The interior modes are a set of eigenmodes that satisfy
the following equations: {

∆σi = λσi σi in Ω

n · ∇σ = 0 on ∂Ω
(2.11)

and {
∆ψi = −λψi ψi in Ω

ψ = 0 on ∂Ω
(2.12)

where σ and ψ are normalized: ‖σ‖ = 1 and ‖ψ‖ = 1.

Boundary Modes

Boundary modes take into account flow through the boundary and have differing boundary
conditions on the ‘open’ and ‘closed’ boundaries. The boundary modes are defined as follows:{

∆σb =
∫
∂Ω
gσ(s)ds in Ω

n · ∇σb = gσ(s) on ∂Ω
(2.13)

where s is the arc length along the boundary.
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Equation 2.13 does not inherently provide a set of modes, like the eigenvalue problem for
the interior problem does. Instead, for a known boundary condition, gσ(s), a single boundary
mode will be defined. Therefore, if gσ(s) was known, then only one boundary mode would
be necessary. However, gσ(s) is noisy and possibly sparse. Therefore, a basis is defined for
gσ(s) such that gσ(s) is a sum of basis functions. A single boundary mode corresponds to
a single basis function, gi(s), resulting in multiple boundary modes. The interior modes
corresponding to the basis functions, σbi , are defined as follows:{

∆σbi =
∫
∂Ω
gi(s)ds in Ω

n · ∇σbi = gi(s) on ∂Ω.
(2.14)

For this problem sinusoidal basis functions are used:

{gi(s)} = {1, ..., sin(
iπ

l
s), cos(

iπ

l
s), ...} (2.15)

where the arc length, s, ranges from 0 to l.

Velocity Field Reconstruction

The new, reconstructed velocity field is a sum of the interior and boundary modes, each
multiplied by a constant:

unew =

n1∑
i=1

αψi ∇× ψik̂ +

n2∑
i=1

ασi∇σi +

n3∑
i=1

αbi∇σbi (2.16)

where n1 represents the maximum number of ψ interior modes used, n2 represents the maxi-
mum number of σ interior modes used, and n3 represents the maximum number of boundary
modes used.

The constants (α) are determined by minimizing the difference between the measured
and reconstructed velocity fields in the L2 norm (or a least squares minimization), as shown
here:

min
α
‖udata − unew‖2

2

where udata contains the velocity data information.
Multiple different numbers of modes were tested. In each case, equal numbers of σ modes

and ψ modes, and double the number of boundary modes were used for each reconstruction.
Then, a ‘divergence-free’ reconstruction was performed where no σ modes were used so that
the resulting field satisfies the assumption used in the original method: that the through-
plane divergence is negligible. For these cases, if n ψ modes were used, then 2n boundary
modes were used.

2.3.2 Results

The open boundary modal analysis reconstruction method was tested on two different types
of data, described in section 2.2.
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Reconstruction from Computational Fluid Dynamics Simulation

First, the reconstruction method was tested on the CFD data. Reconstructions were per-
formed using multiple different numbers of modes. For most reconstructions, there are n
irrotational (σ) modes, n divergence-free (ψ) modes, and 2n boundary (σb) modes.

The reconstruction is calculated by minimizing the difference between the measured radial
velocity and in the reconstructed radial velocity. Therefore, as the number of modes used
in the reconstruction increases, the error of the reconstructed radial velocity error decreases
(Figure 2.2a). The error of the reconstructed radial velocity was on the order of about
10-20% but doubled about 40% of the way through the cardiac cycle during diastole, before
dropping back down about 60% of the way through the cycle. Ideally, increasing the numbers
of modes used would also correlate with a decrease in the error in the azimuthal velocity.
Unfortunately, this was not the case and average error of reconstructed azimuthal velocity
actually increased with increasing number of modes (Figure 2.2b). In addition, even the
lowest errors in azimuthal velocity averaged over 500% error, with most of the reconstructions
averaging over 1000% error.

(a) Average Vr error (b) Average Vθ error
(c) Average velocity magnitude
error

Figure 2.2: Relative average velocity errors at each time point over the cycle for different numbers
of modes for the open boundary modal analysis tested on KTH data.

Next, the reconstruction was performed using only the divergence-free modes and the
boundary modes. This is akin to making the ‘planar flow assumption’ - that the through-
plane divergence is negligible. Using only divergence-free modes significantly reduced the
azimuthal and magnitude error in all cases, but there were still errors of over 100% in almost
all of the cases (Figure 2.3). Like the previous version, the error peaked about 40% of the
way through the cycle.

To better understand what is happening in the divergence-free reconstruction, velocity
fields at two representative time points were examined (Figure 2.4). While similar structures
are captured at both time points, the average error is much lower during the earlier point
in the cycle (Figure 2.4b) than during the later part (Figure 2.4d). It appears that a large
portion of this error is due to the large overestimation of velocity at the inlet at the later
time point. Since OMA calculates a new radial velocity field in addition to a new azimuthal
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(a) Average Vr error
(b) Average Vθ error

(c) Average velocity magnitude
error

Figure 2.3: Relative average velocity errors at each time point over the cycle for different numbers
of divergence-free modes for the open boundary modal analysis tested on KTH data.

(a) Simulation result
at t/T = 0.1.

(b) OMA reconstruc-
tion at t/T = 0.1.

(c) Simulation result
at t/T = 0.5.

(d) OMA reconstruc-
tion at t/T = 0.5.

Figure 2.4: Snapshots of the velocity field at two different time points for the true KTH simulation
result and for the OMA reconstruction using 10 divergence-free modes and 20 boundary modes.

velocity field, the large overestimates are seen in both the radial and azimuthal directions,
even though the order of magnitude of error is one to two times less for the radial velocity
(Figures 2.3a, 2.3b).

Reconstruction from PCMR Data

Next, the open boundary modal analysis method was tested on five different sets of PCMR
data (Table 2.1). The five data sets are from four different patients. For one of the
patients, two data sets were acquired with different scanning parameters. Again, for all cases,
with increasing modes the error in radial velocity decreased, which is expected because the
projection of the data onto the modes is completed by minimizing the errors between the
original and new radial velocity fields. The error in azimuthal velocity did not follow the
same decreasing pattern and was orders of magnitude higher than the radial velocity errors.
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(a) Average Vr error

(b) Average Vθ error (c) Average velocity magnitude error

Figure 2.5: Relative average velocity errors at each time point over the cycle for different numbers
of modes for the open boundary modal analysis tested on MRI patient 4a. The black line represents
the results of the continuity equation described at the beginning of the weighted methods section
(i.e. assuming through-plane divergence to be negligible).

The average errors were over 100% at almost every time point, and averaged around 400%
for all cases (Figure 2.5).

Then, the PCMR data was reconstructed using only divergence-free and boundary modes.
The error was lower using the divergence-free reconstruction than using the original recon-
struction, with the azimuthal velocity error averaging around 100% for all cases (Figures 2.6
- 2.10). These resulting velocity fields were visually very similar to those that resulted from
the continuity method, and the error over the cycle followed similar trends to the error in the
continuity method. This is an expected result as both methods make the same assumptions
about the flow field.

Overall, the errors calculated for the CFD data were much higher than the errors for the
PCMR data, especially at their peak. This was true for both radial velocity and azimuthal
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(a) Average Vr error (b) Average Vθ error
(c) Average velocity magnitude
error

Figure 2.6: Relative average velocity errors at each time point over the cycle for different numbers
of divergence-free modes for the open boundary modal analysis tested on MRI patient 4a.

(a) Average Vr error (b) Average Vθ error
(c) Average velocity magnitude
error

Figure 2.7: Relative average velocity errors at each time point over the cycle for different numbers
of divergence-free modes for the open boundary modal analysis tested on MRI patient 4b.

velocity. Since the error was higher for the CFD data than the PCMR data for the radial
velocity, this indicates that the modes were able to more accurately represent the PCMR
data than the CFD data. The open boundary modal analysis method had difficulty with the
large velocities coming into the ventricle during diastole, and overestimated the magnitude
in the azimuthal and radial directions.
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(a) Average Vr error (b) Average Vθ error
(c) Average velocity magni-
tude error

Figure 2.8: Relative average velocity errors at each time point over the cycle for different numbers
of divergence-free modes for the open boundary modal analysis tested on MRI patient 5.

(a) Average Vr error (b) Average Vθ error
(c) Average velocity magni-
tude error

Figure 2.9: Relative average velocity errors at each time point over the cycle for different numbers
of divergence-free modes for the open boundary modal analysis tested on MRI patient 8.

(a) Average Vr error (b) Average Vθ error
(c) Average velocity magni-
tude error

Figure 2.10: Relative average velocity errors at each time point over the cycle for different numbers
of divergence-free modes for the open boundary modal analysis tested on MRI patient 9.
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(a) Collected MRI data.
(b) Reconstructed with nσ = 0,
nψ = 34, nσb = 68.

(c) Reconstructed with nσ =
34, nψ = 34, nσb = 68.

Figure 2.11: Snapshots of the velocity field using all types of modes or only divergence-free and
boundary modes for a single timepoint during systole for the KTH data.

2.4 Weighted Method

The weighted method of 2D velocity reconstruction from color-Doppler ultrasound data is
an extension of the method described by Garcia et al. [24]. In the original method, it is
assumed that the through-plane component of divergence is negligible. To implement this,
the ∂Vz

∂z
term in the continuity equation is taken to be 0. The weighted method does not

make the same assumption, and instead estimates the through-plane divergence and replaces
the ∂Vz

∂z
term with this estimate in the continuity equation.

2.4.1 Methods

Blood is assumed to be incompressible, and therefore satisfies the continuity equation:

0 =
Vr
r

+
∂Vr
∂r

+
1

r

∂Vθ
∂θ

+
∂Vz
∂z

. (2.17)

Since Vr is calculated in a specific plane by color-Doppler ultrasound, and therefore known,
∂Vr
∂r

can be estimated using a second order finite difference scheme, leaving two unknown
terms.

A 2D continuity method assumes that ∂Vz
∂z

is negligible, leaving only one unknown term.
To reconstruct the velocity field, r

(
Vr
r

+ ∂Vr
∂r

)
is calculated throughout the field. For a 2D

continuous flow field, this is eqaul to ∂Vθ
∂θ

. Then, Vθ is calculated across each arc in the
data, or across each row of constant r. On each wall of the left ventricle, the velocity is
estimated based on wall movements. From these estimates, two boundary conditions are
derived, providing two different solutions to Vθ. The results are averaged. This method is
described in detail by Garcia et al. [24] and has been used to evaluate multiple different
measures of cardiac function in other studies [11, 27, 28].

However, for this project, an estimate of ∂Vz
∂z

was calculated and included in the calculation
of Vθ.
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Calculating ∂Vz
∂z

The term ∂Vz
∂z

is estimated using a control volume analysis. The control volume used is a
single arc (or row with constant r) across the left ventricle. An example arc can be seen in
figure 2.12 and the control volume can be seen in figure 2.13.

Figure 2.12: A left ventricle with a single arc marked. The angle along with the two radii defining
the control volume are defined.

Figure 2.13: Control volume across an arc to calculate ∆Vz
∆z .

Throughout this section, V refers to the velocity of the fluid, VCS refers to the velocity
of the control surface, and W is the difference:

W = V −VCS. (2.18)

In a given control volume examined in this problem, the control volume is deforming
because the walls of the ventricle are changing position. However, the control volume does
not move in the r or z directions. There is no flow through the walls, but there is flow in
both the radial and z directions (Figure 2.13).



25 Chapter 2

The Reynold’s Transport Theorem states that for a given control volume (CV ),

DMsys

Dt
=

∂

∂t

∫
CV

ρd V– +

∫
CS

ρW · n̂dA = 0. (2.19)

For this particular problem,

∂

∂t

∫
CV

ρd V– =
∂

∂t

(
ρ(dz)π(r2

2 − r2
1)

Θ

2π

)
(2.20)

where r2 is the outer radius, r1 is the inner radius, dz is the depth of the control volume,
and Θ is the total angle of the control volume between the two walls of the left ventricle.
Θ is a function of time. Vr1 , Vr2 , Vz1 , and Vz2 are also functions of time, and are taken as
averages across the arc for a specific control volume. The next term is evaluated:∫

CS

ρW · n̂dA = ρ

(
Vr1Ar1 − Vr2Ar2 + (Vz1 − Vz2)Az

)
(2.21)

where Ar1 , Ar2 , and Az are areas of the bottom wall, top wall, and walls in the z plane
respectively. The areas are all functions of time, defined as follows:

Ar1 = r1Θ∆z (2.22)

Ar2 = r2Θ∆z (2.23)

Az = π(r2
2 − r2

1)
Θ

2π
=

1

2
(r2

2 − r2
1)Θ. (2.24)

Using this and defining ∆Vz = Vz1 − Vz2 , it follows that

0 =
∂

∂t

(
ρ(∆z)π(r2

2 − r2
1)

Θ

2π

)
+ ρ

(
Vr1r1Θ∆z − Vr2r2Θ∆z + (∆Vz)

1

2
(r2

2 − r2
1)Θ

)
(2.25)

Next, ∆Vz
∆z

is isolated by dividing by ρ since the problem is incompressible

∆Vz
∆z

= −

(
1
2
(r2

2 − r2
1) ∂
∂t

(Θ) + Vr1r1Θ− Vr2r2Θ

)
1
2
(r2

2 − r2
1)Θ

(2.26)

In equation 2.26, all the terms on the right hand side are known, but ∂
∂t

(Θ) is calculated
using a central difference scheme based on the locations of the wall at different time points.

∂Θ(t)

∂t
≈ Θ(t+ dt)−Θ(t− dt)

2dt
(2.27)

At this point, all the necessary terms in equation 2.26 have been calculated and can be
plugged in to solve for ∆Vz

∆z
.
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2.4.2 Results

Reconstruction from Computational Fluid Dynamics Simulation

The CFD ‘pointwise’ reconstruction created velocity fields with the lowest error and did the
best job at capturing many of the structures that were present in the simulation. Theoret-
ically, if the calculations for all the components of divergence and the boundary conditions
were exact, then the azimuthal component of velocity could be calculated exactly. How-
ever, the divergence calculations and the boundary conditions are discrete, which requires
voxel averaging and means that the divergence calculations and boundary conditions are not
exact. In addition, the reconstructed velocity fields have singular points of highly overesti-
mated azimuthal velocity (Figure 2.16b). This is likely caused by a very large w that is a
result of a very small radial divergence, since the radial divergence is on the denominator in
the calculation of w.

In addition, reconstructions were performed on both filtered and unfiltered data sets.
The results were much better when the radial velocity was filtered prior to reconstruction
(Figures 2.14, 2.15). Additionally, the method with an average ‘w’ used across each arc
performed the worst, with azimuthal errors averaging around 400% (Figure 2.14). These
data sets were left out of subsequent plots.

Figure 2.14: Relative average Vθ errors at each time point over the cycle for different methods of
the weighted reconstruction on the KTH simulation data. ‘Cont’ refers to the original continuity
method. ‘Pointwise’ refers to the pointwise reconstruction method. ‘Arc’ refers to the reconstruc-
tions where w was averaged across each arc. If there is no indication of whether the filter was
applied, then the filter was not applied. Coarse refers to the reconstructions that were performed
on a coarser grid.
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(a) Average Vθ error

(b) Average velocity magnitude error

Figure 2.15: Relative average velocity errors at each time point over the cycle for different methods
of the weighted reconstruction on the KTH simulation data. ‘Cont’ refers to the original continuity
method. ‘Pointwise’ refers to the pointwise reconstruction method. If there is no indication of
whether the filter was applied, then the filter was not applied. Coarse refers to the reconstructions
that were performed on a coarser grid.
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The ‘pointwise’ reconstruction, where the through-plane divergence was calculated at
each point and the azimuthal velocity was reconstructed based on this calculation, gave
the results with the lowest error of any method. However, when the weighting term was
averaged across the arc, the error was larger than the error for any of the other variations on
the method. The reason for this large increase in error is due to the large variations across
each arc. In some cases, there are values for w that are very large or very small at just one
point on an arc, so when w is averaged, the very small or large value dominates the averaged
term.

For the CFD data, results calculated from the coarse and the fine grid were comparable
to each other. The coarse grid was on the order of resolution of what is typically seen from
ultrasound data and the fine grid was 10 times more resolved in each direction.

(a) Simulation result.

(b) ‘Pointwise’
weighted reconstruc-
tion on a fine grid
without filtering.

(c) Continuity method
reconstruction without
filtering on a coarse
grid.

(d) Continuity
method reconstruction
without filtering on a
fine grid.

Figure 2.16: Snapshots of the velocity field using different reconstruction methods from a single
timepoint during systole for the KTH data.

Reconstruction from PCMR Data

Unlike for the CFD data, a ‘pointwise’ reconstruction could not be done for the PCMR
data because velocity data was only available in a single plane. Instead, the through-plane
divergence was estimated across each arc using the control volume analysis. This method
did not provide any improvement to the continuity method for the MRI data, which is a
result that follows directly from the poor results seen in the CFD data when w was averaged
across arcs for the reconstruction (Figure 2.17).

Notably, there were many areas of very large azimuthal velocity. This problem was seen
in the CFD data as well, where areas of small radial divergence cause an overestimate of
w, since radial divergence is on the denominator of w. To decrease the effects of this issue,
a slight variation on the method was implemented where there is a maximum value for w,
and if the magnitude of the calculated w was larger, it was reassigned to the lower, more
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(a) Average Vθ error (b) Average velocity magnitude error

Figure 2.17: Relative average velocity errors at each time point over the cycle for the weighted
method tested on MRI patient 4 for two different velocity encoding values. Solid lines represent
the results for patient 4, Venc = .24m/s and dashed lines represent the results for patient 4,
Venc = .30m/s.

physiological value. To test this, w was capped at 1 and at 5. When w is capped at a
magnitude of 1, the results are very close to those seen with the the regular continuity
method. Since this saw a lower error, it appears that it would be a waste of computational
time to try and estimate w when the results are the same as or worse than if the original
continuity method is used.

2.5 Conclusions

The purpose of this chapter was to explore 2D velocity reconstruction methods for color-
Doppler ultrasound data in the long-axis apical plane of the left ventricle that did not rely
on a divergence-free assumption, motivated by evidence that the divergence-free assumption
was often not well satisfied. Two methods were investigated, a ‘2D open boundary modal
analysis’ method and a ‘weighted’ version of the previously explored continuity method.
However, both methods produced results with relatively large errors, and these errors were
reduced when the divergence-free assumption was re-introduced into these methods.

The open boundary modal analysis method calculates a set of modes based on the ge-
ometry of the ventricle, and then projects the available data onto these modes. The large
errors in the velocity fields produced from this method are likely due to many local minimum
available in the projection of the data onto the modes. The under-constrained nature of the
problem suggests that additional constraints are needed to get an improved reconstruction.
One such constraint was the divergence-free assumption, the exact assumption that we were
seeking to avoid. When this assumption was re-introduced, the errors dropped to around
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the same values as using the original continuity method. While these errors were still higher
than desirable, we saw that this assumption was necessary to produce any sort of reasonable
results.

These results prompted an exploration of alternatives to the 2D divergence-free assump-
tion. One way that we approached this problem was by moving into the 3D domain. With
advancements in ultrasound, measuring 3D data is becoming more and more accessible.
With geometry and velocity information available in a 3D domain even with only the radial
component of velocity available, extra constraints are introduced to the problem. We explore
3D open boundary modal analysis in Chapters 4 and 5.

The weighted method was a modified version of the continuity method that introduced
an extra term to account for through-plane divergence. The extra term averaged through-
plane divergence across individual arcs. However, through-plane divergence often varied
greatly across individual arcs, meaning that the extra term was a poor representation of
the through-plane divergence at individual points. In many cases, ignoring through-plane
divergence produced a better result than the weighted method.

Through all of these methods, the main goals are related to improving our understand-
ing, diagnosis, and treatment of heart disease. Ultimately, we are interested in a method
that enables us to qualify or quantify heart health, even if our velocity field is not error-free.
Therefore, in Chapter 3 we explore different estimates of kinetic energy and viscous dissipa-
tion calculated from limited velocity information in the left ventricle. These estimates are
derived directly from the radial component of velocity, avoiding the divergence-free assump-
tion, and from reconstructed velocity fields that use the divergence-free assumption.

As technology advances and we continue to better understand blood flow in the body,
ultrasound remains a very important tool due to its low cost and high accessibility compared
to other imaging modalities. Information learned from studying 4D flow MRI data and
simulations can continue to be combined with measurements obtained from color-Doppler
ultrasound to improve the diagnosis and treatment of heart disease.
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Calculating Kinetic Energy and Vis-
cous Dissipation Rate from Color-Doppler
Ultrasound Data

3.1 Introduction

Characteristic flow patterns in the left ventricle have been shown to be associated with heart
disease, which has the potential to be leveraged to improve diagnosis and treatment of heart
disease [11], but there is still much to be understood about exactly how flow patterns are
related to disease and disease progression. Two metrics that have been linked to heart health
are kinetic energy and viscous dissipation rate of blood flow in the left ventricle. However, the
difficulty of imaging blood flow has contributed to difficulty in understanding the relationship
between flow structures and disease, so this chapter focuses on evaluating these metrics
from limited velocity information. In particular, this study focuses on our understanding of
these metrics from color-Doppler ultrasound data, where only one component of velocity is
measured on a single plane.

Figure 3.1: Kinetic energy (left) and viscous dissipation rate (right) mapped across a left ventricle
during diastole, with red corresponding to high levels of kinetic energy and viscous dissipation rate
and blue corresponding to low values.
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3.1.1 Kinetic Energy in The Left Ventricle

Many studies have shown that there are differences in kinetic energy levels in the left ventricle
between healthy and diseased patients, with the majority using 4D-flow magnetic resonance
imaging (MRI). In 2015, kinetic energy was shown to be higher in diseased tetralogy of
Fallot patients than healthy controls, although the difference was not statistically significant
[33]. In myocardial infarction patients, kinetic energy in the left ventricle was significantly
lower than in healthy patients, and flow patterns were also significantly different between
myocardial infarction patients with and without thrombus formation in the left ventricle
[34, 35]. In other studies, significant differences have been found in kinetic energy measures
taken at specific times in the cycle or normalized by various values. Systolic kinetic energy
was higher in heart failure patients than healthy controls, and three distinct patterns in
kinetic energy over time were identified [36]. Peak diastolic kinetic energy, when indexed
to stroke volume, was significantly lower in patients with Fontan circulation than healthy
controls [37]. Peak diastolic kinetic energy, indexed to ventricular volume, decreased with age
and peak diastolic kinetic energy of patients with left ventricular dysfunction was comparable
to the older healthy individuals [38].

In addition to a sum of kinetic energy calculated across the entire left ventricle, kinetic
energy in subsets of the ventricle have also been studied. In a comparison of the kinetic
energy measured throughout the ventricle versus in only the short-axis, base-to-apex plane,
it was found that the proportion of kinetic energy captured in the short-axis plane was the
same between controls and myocardial infarction patients without thrombus, but was higher
in myocardial infarction patients with thrombus than myocardial infarction patients without
thrombus [35]. In addition to 4D-flow MRI, echocardiographic particle image velocimetry,
which captures 2D velocity information in a single plane, was also used to measure kinetic
energy, with results showing that kinetic energy fluctuations over a cycle were an important
predictor of major adverse cardiac events in patients with chronic heart failure [39]. These
studies indicate that estimates of kinetic energy in subsets of the left ventricle are correlated
with kinetic energy in the entire ventricle and therefore have the potential to be used as
diagnostic tools.

3.1.2 Viscous Dissipation Rate in The Left Ventricle

Viscous dissipation rate, often referred to as kinetic energy loss or flow energy loss, has also
been shown to be lower in healthy than diseased patients using simulations and 4D-flow MRI,
which both provide a 3D velocity field. In 2005, the natural angle of the mitral valve was
shown to minimize flow energy losses in the left ventricle compared to other angles based
on the results of simulations [40]. Using 4D-flow MRI, it was found that viscous energy
losses were correlated with different types of vortices in the left ventricle, and viscous energy
losses were higher in atrioventricular septal patients than healthy volunteers [14]. Changes
in the vortex in the left ventricle associated with aortic regurgitation are correlated with
higher viscous energy dissipation [41]. In Fontan patients, energy losses evaluated using 4D-
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flow MRI were significantly elevated when compared to healthy controls [42]. These studies
showed that in healthy patients, viscous dissipation rates were lower than in diseased patients.
In many cases, the studies also explored the relationship between the vortex formation in
the left ventricle and patterns in viscous dissipation rates.

Other studies explored the reliability of measuring viscous dissipation rate. In 2018,
the scan-rescan reproducibility of diastolic kinetic energy and dissipation rates was shown
to be high for healthy patients when calculated from 4D-flow MRI [43]. In another study,
it was noted that calculation of viscous dissipation is dependent on image resolution, with
higher values calculated from finer resolutions. However, relative viscous dissipation rates
were maintained between patients [44]. While rate of viscous dissipation appears to be a
promising diagnostic tool, image resolution is machine dependent so the variation in viscous
dissipation with image resolution is an important consideration in further study of viscous
dissipation rate.

3.1.3 Measurements in 2D

Although these prior studies examine kinetic energy and viscous dissipation rate in 3D
using either simulations or 4D-flow MRI data, color-Doppler ultrasound is a more commonly
used, less expensive method for examining blood flow in the clinic. However, color-Doppler
ultrasound only measures a single, radial, component of blood velocity in a single plane.
Therefore, it is of interest to study estimates of kinetic energy and viscous dissipation rate
using this type of data.

Often, when using color-Doppler ultrasound data to evaluate blood flow, a second, in-
plane (azimuthal) component of velocity is calculated from the collected data. Then, di-
agnostic metrics can be estimated from two, in-plane, components of velocity, as discussed
in Chapter 2. However, the reconstruction of the second component of velocity relies on a
‘2D’ assumption where the through-plane component of divergence is taken to be negligible.
Some studies have shown that this assumption still allows for good reconstruction of the
in-plane velocity component [24] or calculation of diagnostic measures [28], but others have
shown that this assumption is over-simplified [29, 30], which is also discussed in Chapter 2.

A few groups have studied viscous dissipation rates using in-plane velocity data from
color-Doppler ultrasound, where the measured radial component of velocity is used and the
second, azimuthal component of velocity is calculated from the radial component. In 2013,
a vector flow mapping method was used to reconstruct the in-plane component of velocity
and flow energy losses were examined as a potential indicator of flow quality [45]. The same
method was used in 2015 to determine baseline values of flow energy losses in children for
future comparison [46], and in 2017 to determine baseline values of energy loss in adults
[47]. It was also noted that energy loss values were correlated with age and heart rate in the
healthy children [46]. In patients who had mitral valve surgery, ejection fraction and type of
surgery were shown to affect postoperative energy losses in the left ventricle [48]. In a study
on diabetic patients, diastolic dissipative energy losses were increased in diabetic patients
compared to healthy controls and systolic dissipative energy losses were increased in diabetic
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patients with uncontrolled blood glucose [49]. Energy losses have also been evaluated in dogs,
where energy losses measured from a single plane using color-Doppler ultrasound increased
when aortic regurgitation was present, and the diastolic energy losses were proportional to
the severity of regurgitation [50].

In these 2D estimates of viscous dissipation rate from color-Doppler ultrasound data, the
second component of velocity is calculated from the first component of velocity. To avoid
assumptions made in the calculation of the second component of velocity, in this study, we
propose 1D estimates of kinetic energy and viscous dissipation rate that rely on the single,
measured component of velocity collected from color-Doppler ultrasound. We expect that
because the 1D estimates do not rely on the same 2D assumptions, that the results will be
as valuable as a diagnostic tool as the 2D estimates of kinetic energy and viscous dissipation
rate, and much easier to calculate. We will compare the 1D estimates to 2D estimates in
synthetic vortices, and we will compare 1D and 2D estimates to the true 3D kinetic energy
and viscous dissipation rate in 3D flow fields in the left ventricle.

3.2 Methods Overview

In this section, we outline the 1D and 2D estimates of kinetic energy and viscous dissipation
rate. The measures are introduced in their polar forms because color-Doppler ultrasound in
the left ventricle is typically collected on a polar grid.

3.2.1 Kinetic Energy

Kinetic energy is defined as:

KE3D =
1

2
m‖u‖2 =

1

2
m(u2

r + u2
θ + u2

z). (3.1)

The 3D estimate is the sum of the kinetic energy at each point in the flow field integrated
across the ventricle:

KE3D =
1

2
ρ

∫
V

(u2
r + u2

θ + u2
z)rdθdrdz (3.2)

where ρ is the density of blood, which is constant across the ventricle, and V is the entire
ventricular volume.

For the reduced 1D and 2D estimates, we develop measures that can be calculated from
color-Doppler ultrasound data, where only a single plane of data is available. The resulting
estimates are:

KE2D =
1

2
ρ

∫
A

(u2
r + u2

θ)rdθdr

KE1D =
1

2
ρ

∫
A

(u2
r)rdθdr

where A is the extracted plane from the left ventricle.
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3.2.2 Viscous Dissipation Rate

The rate of dissipation of mechanical energy, per unit mass of fluid, is defined:
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∂uj
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))2

− 1

3
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)2]
(3.3)

where µ is the dynamic viscosity. The rate of dissipation of mechanical energy is equivalent
to an irreversible addition of heat to the fluid [51].

Blood is an incompressible fluid, meaning that ∂ui
∂xi

= 0. As a result, we can reduce viscous
dissipation rate to
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We consider the viscous dissipation rate across the entire ventricle in polar coordinates:
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The 2D estimate of viscous dissipation rate is achieved by considering only a single r-θ
plane and eliminating all terms with uz or with derivatives with respect to z. As a result,
viscous dissipation reduces to:
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This can be expanded and rewritten with each term labeled:
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For the 1D estimate, we still consider data in a single r-θ plane, but where only the radial
component of velocity is available. The uθ component of velocity is neglected and viscous
dissipation rate reduces to:
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where we keep terms a, d, and g.
Alternatively, we can also compare modified estimates where we assume that the planar-

flow assumption is appropriate. To do this, we assume that the through-plane divergence
is negligible and the 2D continuity equation holds, and then modify our viscous dissipation
estimate accordingly. The 2D continuity equation can be written:

0 =
1
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+
ur
r

+
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Therefore, we can rewrite our 2D estimate of viscous dissipation:
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Now, if the uθ component of velocity is neglected, 1D viscous dissipation reduces to:

φ1D,divergence−free =µ
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where we can see that we keep terms a and g.

3.2.3 Methods: Synthetic Vortices

In order to explore the efficacy of using 1D estimates of kinetic energy and viscous dissipation
rate compared to 2D estimates, the metrics were first evaluated using synthetic flow fields
with analytical solutions. Since the vortex formation in the left ventricle is tied to viscous
dissipation and heart health, analytical solutions for four different types of vortex flows were
chosen.

These synthetic vortices were placed and defined on a 2D grid, where the radius ranges
from rmin to rmax and the angle ranges from θmin to θmax. Then, 2D and 1D estimates of
kinetic energy and viscous dissipation rate were calculated. A variety of mesh resolutions,
vortex center locations, and vortex strengths were tested for each type of vortex. For each
type of vortex, 100 to 200 vortices were evaluated, and the vortex center location and strength
were randomly generated for each vortex. In addition, multiple grid resolutions were tested,
and µ

ρ
was taken to be 1 for simplicity. In the following descriptions, the center of each

vortex is defined at xcex + ycey + zcez = rcer + θceθ + zcez.
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Rigid-body Vortices

In a rigid-body vortex, angular rotational velocity, Ω, is uniform. The velocity field is

u =− Ω(y − yc)ex + Ω(x− xc)ey

=Ωrc(sin θc cos θ − cos θc sin θ)er + Ω(r − rc(sin θc sin θ + cos θc cos θ))eθ.

Irrotational Vortices

In an irrotational vortex, the velocity is inversely proportional to the center of the vortex:

u =− α(y − yc)((x− xc)2 + (y − yc)2)−1ex + α(x− xc)((x− xc)2 + (y − yc)2)−1ey

=
α

(r2 + r2
c − 2rrc cos(θc − θ))

(
rc sin(θc − θ)er + (r − rc cos(θc − θ))eθ

)
where α determines the strength of the vortex.

Lamb-Oseen Vortex

The Lamb-Oseen vortex is a vortex that decays over time due to viscosity. It is an exact
solution of the 2D Navier-Stokes equation and the radial component of velocity is zero when
the center is at r = 0:

vr =0

vθ =
γ

2πr

(
1− exp

(
− r2

c2(t)

))
where

γ = circulation contained in the vortex

ν = viscosity

c(t) =
√

4νt+ c2(0)

c = a parameter controlling the strength of the vortex.

When the center is at r = rc, θ = θc,

vr =
γrc sin(θc − θ)

2π(r2 + r2
c − 2rrc cos(θc − θ))

(
1− exp

(
− r2 + r2

c − 2rrc cos(θc − θ)
c2(t)

))
vθ =

γ(r − rc cos(θc − θ))
2π(r2 + r2

c − 2rrc cos(θc − θ))

(
1− exp

(
− r2 + r2

c − 2rrc cos(θc − θ)
c2(t)

))
.
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Hill’s Spherical Vortex

Hill’s Spherical Vortex is a relatively simple analytical description of a vortex ring. In 3D,
the velocity field within a Hill’s Spherical Vortex centered at (0, 0, 0) with radius c is:

vr =
3U

2c2
rz

vθ =0

vz =
3U

2c2
(c2 − 2r2 − z2).

The velocity field outside of the vortex centered at (0, 0, 0) with radius c is:

vr =
3c3U

2

rz

(r2 + z2)5/2

vθ =0

vz =− U − c3U

2

(r2 − 2z2)

(r2 + z2)5/2
.

For the purposes of a 2D examination of a vortex, we will look at the vortex in the x− z
plane, where y = 0. Therefore, the out-of-plane velocity goes to 0 and we are concerned with
the in-plane cartesian components vx and vz. In addition, we consider a vortex centered at
(xc, 0, zc). See appendix B for more details.

Inside the vortex, we get

vx =
3U

2c2
(x− xc)(z − zc)

vy =0

vz =
3U

2c2
(c2 − 2(x− xc)2 − (z − zc)2).

Outside of the vortex, the velocity is

vx =
3c3U

2

(x− xc)(z − zc)
((x− xc)2 + (z − zc)2)5/2

vy =0

vz =− U − c3U

2

((x− xc)2 − 2(z − zc)2)

((x− xc)2 + (z − zc)2)5/2
.

For simplicity, the analytical versions of radial and azimuthal components of velocity will
not be presented in this dissertation.
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3.2.4 Methods: Left Ventricle Data

To gain a better understanding of how these estimates would perform clinically, the estimates
were tested on the results of multiple computational fluid dynamics simulations of flow in
the left ventricle.

Results from a computational fluid dynamics simulation provide all three components
of velocity in a 3D domain. The true, 3D calculations of kinetic energy and viscous dis-
sipation rate were calculated in the entire ventricle, and compared to the reduced order
estimates. In order to evaluate the reduced order estimates, a single plane was extracted to
represent the type of data that would be collected in a color-Doppler ultrasound acquisition.
Then, the kinetic energy and viscous dissipation rate were calculated using the two, known,
in-plane components of velocity, called the ‘2D’ estimates. Then, the kinetic energy and
viscous dissipation rate were calculated where the radial component of velocity is known and
the azimuthal component of velocity was calculated from the radial component using the
reconstruction method developed by Garcia et al. [24]. This estimate is called the ‘2D recon-
structed’ estimate. Then, the 1D estimates were evaluated using only the radial component
of velocity, called the ‘1D’ estimate.

In addition, variations in transducer location were also considered. In reality, the trans-
ducer will not be placed in the exact same location for each patient, so it is important to
study the effects of transducer location on estimates of kinetic energy and viscous dissipation
rate. Figure 3.16a shows some of the transducer locations for one of the data sets used in
this study. In this figure, all measurements and calculations are made from the same plane,
but a different transducer location will result in different radial and azimuthal components
of velocity at each point. In addition to multiple transducer locations in the same plane,
multiple planes were also tested.

The CFD simulations were performed by Jonas Lantz and Tino Ebbers at Linköping
University. The simulations are a result of a fluid dynamics simulation where the geometry
of the heart was collected from Computed Tomography images.

3.3 Results: Kinetic Energy in Synthetic Vortices

The results of 1D and 2D estimates of kinetic energy for different types of synthetic vortices
are presented in this section. Numerical solutions are presented for all types of vortices, and
they are preceded by analytical solutions in some cases. Step-by-step analytical results are
presented in Appendix B.

For all types of vortices, we expect the 1D estimate of kinetic energy to be less than the
2D estimate because we are missing a positively valued term (i.e. v2

θ). We are interested in
whether or not the 1D and 2D estimates are correlated with each other. To examine this,
we focus on the coefficient of determination, or R2, as a measure of the correlation between
two variables, x and y. The coefficient of determination is equal to the proportion of the
variance in y that is explained by a linear relationship with x.
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3.3.1 Rigid-body Vortices

Kinetic energy can be evaluated analytically. In 2D we get

KE2D =
1

2
Ω2

∫
A

(
(sin θc cos θ − cos θc sin θ)2 + (r − rc(sin θc sin θ + cos θc cos θ))2

)
rdθdr.

In 1D we get

KE1D =
1

2
Ω2

∫
A

(sin θc cos θ − cos θc sin θ)2rdθdr.

The 1D estimate of kinetic energy is different by the term 1
2
Ω2(r − rc(sin θc sin θ +

cos θc cos θ))2. Close to the center of the vortex, this term goes to 0, and then it increases
in magnitude further away from the center. Since this term is integrated across the whole
area we expect the contribution of this term to be related to the strength (Ω) of the vortex.
However, the term that is contained in the 1D approximation is also multiplied by Ω2 and
so we would expect the 1D estimate to be correlated with the 2D kinetic energy.

On both a fine and a coarse grid we see that the 1D estimate of kinetic energy appears
to be correlated with the 2D kinetic energy (Figure 3.2), with an R2 value of 0.83 and 0.85
respectively. This high level of linear correlation is expected based on our analytical findings.
However, we do see that there are a few cases where the 1D estimate of kinetic energy is
much lower than expected based on the linear correlation of the other points.

(a) (b)

Figure 3.2: 1D estimate of kinetic energy (KE) versus 2D kinetic energy in a single plane for
rigid-body vortices on a coarse (a) and fine (b) grid.
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R2 R2

with 2D KE with 2D VDR
Vortex Grid

1D KE 2D VDR 1D VDR
1D divergence

b
Type Size -free VDR

Rigid-Body
100 x 100 0.83 0.53 0.94 0.99 0.78
10 x 10 0.85 0.46 0.92 0.99 0.67

Irrotational
100 x 100 0.81 0.71 0.82 0.81 0.88
10 x 10 0.68 0.95 0.68 0.61 0.96

Lamb-Oseen
100 x 100 0.97 0.32 0.99 0.99 0.95
10 x 10 0.92 0.83 0.89 0.90 0.87

Hill’s Spherical
100 x 100 0.99 0.83 0.94 0.94 0.93
10 x 10 0.99 0.50 0.96 0.96 0.76

Table 3.1: R2 between estimates of the 2D values of kinetic energy (KE) and viscous dissipation
rate (VDR) and the 1D reduced order estimates of kinetic energy and viscous dissipation rate.

3.3.2 Irrotational Vortices

Kinetic energy can be evaluated analytically. In 2D we get

KE2D =
α2

2

∫
A

1

(r2 + r2
c − 2rrc cos(θc − θ))

rdθdr.

In 1D,

KE1D =
α2

2

∫
A

r2
c sin2(θc − θ)

(r2 + r2
c − 2rrc cos(θc − θ))2

rdθdr.

The 1D and 2D calculations of kinetic energy are different by a factor of r2
c sin2(θc − θ).

This factor will vary with the location of the center of the vortex with respect to the origin,
which will influence the correlation between 1D and 2D estimates of kinetic energy. However,
if the strength of the vortex, α, is sufficiently strong, then we would still expect to see a
relationship between the 1D and 2D estimates of kinetic energy. Based on our numerical
results, it appears that the 1D and 2D estimates of kinetic energy are correlated (Figure
3.3b), with an R2 value of 0.81 for the fine grid. For the coarse grid, the coefficient of
determination drops to 0.68 (Figure 3.3a). This indicates that estimates of kinetic energy in
the irrotational vortex are not robust to grid resolution.
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(a) (b)

Figure 3.3: 1D estimate of kinetic energy versus 2D kinetic energy in a single plane for irrotational
vortices on a coarse (a) and fine (b) grid plotted on a log-log scale.

3.3.3 Lamb-Oseen Vortex

In 2D, kinetic energy is equal to

KE2D =
γ2

8π2

∫
A

(
r2
c + r2 − 2rrc cos(θc − θ)

)
(r2 + r2

c − 2rrc cos(θc − θ))2

(
1

− exp

(
− r2 + r2

c − 2rrc cos(θc − θ)
c2(t)

))2

rdθdr.

In 1D,

KE1D =
γ2

8π2

∫
A

(
r2
c sin2(θc − θ)

)
(r2 + r2

c − 2rrc cos(θc − θ))2

(
1

− exp

(
− r2 + r2

c − 2rrc cos(θc − θ)
c2(t)

))2

rdθdr.

Similar to the other vortices, the difference between the 1D and 2D estimates of kinetic
energy is a factor influenced by the location of the center of the vortex. We expect that like
the other vortices, the correlations between the estimates is influenced by the location of the
vortex, but that overall we will see a strong correlation between the 1D and 2D measures.
We see these results in Figure 3.4 and with strong coefficients of determination of 0.97 and
0.92 for the fine and coarse grids respectively.
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(a) (b)

Figure 3.4: 1D estimate of kinetic energy versus 2D kinetic energy in a single plane for Lamb-
Oseen vortices on a coarse (a) and fine (b) grid plotted on a log-log scale.

3.3.4 Hill’s Spherical Vortex

The kinetic energy for Hill’s Spherical vortex can also be evaluated analytically, but it is not
explored in this dissertation due to its complexity. However, we expect the general behavior
to be the similar to the other vortices. In fact, we see that the estimates for Hill’s Spherical
Vortex have a very high R2 of 0.99 between the 1D and 2D estimates of kinetic energy for
both the coarse and fine grids (Figure 3.5).

(a) (b)

Figure 3.5: 1D estimate of kinetic energy versus 2D kinetic energy in a single plane for Hill’s
Spherical Vortices on a coarse (a) and fine (b) grid.
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3.4 Results: Viscous Dissipation Rate in Synthetic Vor-

tices

The estimates of viscous dissipation rate for different types of synthetic vortices are presented
in this section. Numerical solutions are presented for all types of vortices, and they are
preceded by analytical solutions in some cases. Step-by-step analytical results are presented
in Appendix B.

3.4.1 Rigid-body Vortices

The viscous dissipation rate can be evaluated analytically. In 2D we get:

φ2D =0.

However in 1D, the viscous dissipation rate estimate yields a nonzero value:

φ1D =
µ

ρ

∫
A

(
Ωrc
r

)2(
1 + sin2 θc cos2 θ + cos2 θc sin2 θ

)
rdθdr.

The true viscous dissipation rate from a rigid-body vortex is equal to zero. Since the
rigid-body vortex is not a function of z, the calculated 2D viscous dissipation rates should
also be zero. However, the 1D estimate of viscous dissipation rate produces a positive result.
Yet, when we calculated the 2D and 1D estimates, both gave nonzero results due to the
numerical nature of the problem. The order of magnitude of the 1D results was much larger
than the 2D results, and the order of magnitude for the 2D estimate decreased with increasing
density of the grid. The results for 1D estimates are correlated with the 2D estimate (Figure
3.6), as they are heavily influenced by strength (Ω) and location in relation to the transducer
(Figure 3.7).

In Figure 3.8 we examine the contributions to each term in the viscous dissipation rate.
Many of the individual components appear to be correlated with the calculated 2D viscous
dissipation rate. There also appears to be more scatter in d than g or a, which explains why
for the rigid vortex, the 1D divergence-free estimate has a stronger correlation with the 2D
measure than the 1D estimate has with the 2D measure.
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Figure 3.6: 1D viscous dissipation rate estimates versus 2D viscous dissipation rate for the rigid
body vortex for a variety of different vortex locations on a coarse grid (left) and a fine grid (right).
Each red-blue pair of points represents a different velocity field that contains a single vortex.

Figure 3.7: For the rigid body vortex, viscous dissipation rate estimates versus vortex strength
(Omega) and vortex center (rcenter) for different grid sizes.
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Figure 3.8: Components of viscous dissipation rate for the rigid body vortex for a variety of
different vortex locations and grid sizes.

3.4.2 Irrotational Vortices

The viscous dissipation rate can be evaluated analytically. In 2D we get:

φ2D =

∫
A

8α2

(r2 + r2
c − 2rrc cos(θc − θ))2

rdθdr.

But in 1D:

φ1D =

∫
A

16r2 sin2(θc − θ)(r − rc cos(θc − θ))2

(r2 + r2
c − 2rrc cos(θc − θ))4

+

4

(
− r2 − r2

c + 2rrc cos(θc − θ) + 2r2
c sin2(θc − θ)

)2

(r2 + r2
c − 2rrc cos(θc − θ))4

rdθdr.

For irrotational vortices, there is a correlation between the 2D and 1D estimates of viscous
dissipation rate, with an R2 of 0.82 for the fine grid and 0.68 for the coarse grid (Figure 3.9).
While there are a few outliers, the correlation becomes especially clear in the log-log plot
due to how the results are distributed (Figure 3.10). Similar to the kinetic energy, reduced
order estimates of viscous dissipation rate were not robust to resolution for the irrotational
vortex. In addition, it is expected that the 1D estimate that takes into account the 2D
divergence-free assumption would give a similar result, which is seen with an R2 of 0.81 for
the fine grid and 0.61 for the coarse grid. The 2D measure of viscous dissipation rate also
is correlated to the vortex strength, as indicated by the analytical solution, but not by the
vortex location (Figure 3.11).
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Figure 3.9: 1D viscous dissipation rate estimates (left) and components of viscous dissipation
rate (right) versus 2D viscous dissipation rate for the irrotational vortex for a variety of different
vortex locations.

Figure 3.10: 1D viscous dissipation rate estimates (left) and components of viscous dissipation
rate (right) versus 2D viscous dissipation rate for the irrotational vortex for a variety of different
vortex locations plotted on a log-log scale. Each red-blue pair of points represents a different
velocity field that contains a single vortex.
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Figure 3.11: 2D viscous dissipation rate versus attributes of the vortex. On the left is 2D viscous
dissipation rate versus vortex strength and on the right is 2D viscous dissipation rate versus vortex
center.
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3.4.3 Lamb-Oseen Vortex

The viscous dissipation rate for Lamb-Oseen vortices can also be evaluated analytically, but
that is not explored in this paper. Overall, there was a strong correlation for both the 1D
and 1D divergence-free estimates of viscous dissipation with the 2D estimates of viscous
dissipation (Figure 3.12). For the fine grid, there was an R2 of 0.99 for both the 1D and 1D
divergence-free estimates, and for the coarse grid these coefficients reduced to 0.89 and 0.90
respectively.

Figure 3.12: 1D viscous dissipation rate estimates (left) and components of viscous dissipation
rate (right) versus 2D viscous dissipation rate for the Lamb-Oseen vortex for a variety of different
vortex locations and strengths on a fine grid.

3.4.4 Hill’s Spherical Vortex

The viscous dissipation rate for Hill’s Spherical vortices can also be evaluated analytically,
but it is not explored in this paper. Like all the vortices explored in this section, there is a
strong correlation between the 2D estimate of viscous dissipation and both the 1D and 1D
divergence-free estimates (Figure 3.13). The R2 between both the 1D and 1D divergence-free
estimate with the 2D calculation was 0.94 for the fine grid and 0.96 for the coarse grid.
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Figure 3.13: 1D viscous dissipation rate estimates (left) and components of viscous dissipation
rate (right) versus 2D viscous dissipation rate for the Hill’s Spherical vortex for a variety of different
vortex locations and strengths.

3.5 Results: Kinetic Energy in Left Ventricle Data

The kinetic energy was evaluated in 3 different patients. For each patient, multiple time
points and multiple transducer locations were tested. Overall, the results showed that re-
duced order estimates of kinetic energy were positively correlated with true, 3D kinetic energy
(Figure 3.14). Figure 3.15 shows the R2 values between all of the estimates and both true,
3D kinetic energy and true, 3D viscous dissipation rate. For kinetic energy, the coefficient
of determination was above 0.80 for all reduced estimates. With color-Doppler ultrasound,
the exact azimuthal component of velocity will not be known. Therefore, instead of using
the 2D estimate, it is of greater clinical use to examine the coefficient of determination for
the 2D reconstructed and 1D estimates, which are about equal to each other. This indicates
that the 1D estimate would be just as valuable clinically as the 2D reconstructed estimate.
The 2D reconstructed estimate is much more difficult to calculate, so if the 1D estimate is
just as informative, there is no need to calculate the 2D reconstructed estimate.

The true value of 3D kinetic energy is also positively correlated with 3D viscous dissi-
pation rate (R2 ≈ 0.80). This makes physical sense, as viscous dissipation rate is the sum
of velocity gradients, so higher values of viscous dissipation rate occur when there is a spa-
tial transition between high to low velocity magnitude (Figure 3.1). High values of kinetic
energy occur when there are high velocity magnitudes. In the left ventricle, the no-slip ve-
locity condition at the walls require that there are always regions of low velocity magnitude,
even when there are also regions of high velocity magnitudes. This means that when there
are high velocity magnitudes (i.e. high kinetic energy), there are also regions of low velocity
magnitude and therefore there will be large spatial transitions between high and low velocity
magnitudes (i.e. high viscous dissipation rate).
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Figure 3.14: Comparison of the reduced order estimates of kinetic energy when only the radial
component of velocity is measured to the true 3D measured kinetic energy for the left ventricle
data.

Figure 3.15: The R2 value for the relationships between either the true kinetic energy (KE,
yellow) or viscous dissipation rate (VDR, blue) and the reduced order estimates of kinetic energy
and viscous dissipation rates for all of the data sets. See Table 3.2 for label descriptions.
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3D KE,
true, 3D kinetic energy measured in the entire ventricle

KE3D
3D VDR,

true, 3D viscous dissipation rate measured in the entire ventricle
VDR3D

KE1D
1D estimate of kinetic energy, calculated using only the radial
component of velocity on a single plane

KE2D
2D estimate of kinetic energy, calculated using the available radial
and azimuthal components of velocity on a single plane

KE2Drecon
2D estimate of kinetic energy, calculated using the available radial
component of velocity and the azimuthal component of velocity that
is calculated from the radial component, on a single plane

VDR1D
1D estimate of viscous dissipation rate, calculated using only the
radial component of velocity on a single plane

VDR1Ddivfree
1D estimate of viscous dissipation rate, calculated using only the
radial component of velocity and assuming that the through-plane
divergence is negligible, on a single plane

VDR2D
2D estimate of viscous dissipation rate, calculated using the available
radial and azimuthal components of velocity on a single plane

VDR2Drecon
2D estimate of viscous dissipation rate, calculated using the available
radial component of velocity and the azimuthal component of velocity
that is calculated from the radial component, on a single plane

Table 3.2: Descriptions of labels used in bar charts for coefficients of determination between 3D
kinetic energy and viscous dissipation and reduced order estimates of kinetic energy and viscous
dissipation.

In Figure 3.16, we examine the different reduced order estimates for a single heart at
multiple time points at varying transducer locations, shown in Figure 3.16a. The strong
correlation between the true 3D kinetic energy and the 2D estimate is maintained in this heart
(Figure 3.16b). This 2D estimate is not strongly influenced by transducer location, which
is expected because for different transducer locations, the only difference between the 2D
estimates is that the grid resolution changes in different areas of the heart. The correlations
between the true 3D kinetic energy and the 2D reconstructed estimate and between the
true 3D kinetic energy and the 1D estimate are also maintained (Figures 3.16c and 3.16d,
respectively). When the transducer was located closer to the intraventricular septum, i.e.
shifts 2 and 5, the 1D estimates for kinetic energy were lower than when the transducer was
located at other locations. Shifts 1 and 4, toward the mitral valve, consistently produced
higher estimates than the other transducer locations. These changes in 1D kinetic energy
estimates with transducer location were consistent across the hearts examined in this study.
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(a) Transducer locations for one heart.

(b) Comparison of the 2D estimate of kinetic
energy when both radial and azimuthal com-
ponents of velocity are known to the true 3D
measured kinetic energy for one heart.

(c) Comparison of 2D reconstructed esti-
mate of kinetic energy when the radial com-
ponent of velocity is known and the az-
imuthal component is calculated from the ra-
dial component, to the true 3D measured ki-
netic energy for one heart.

(d) Comparison of the 1D estimate of kinetic
energy when both radial and azimuthal com-
ponents of velocity are known to the true 3D
measured kinetic energy for one heart.

Figure 3.16: Comparison of the reduced order estimates for kinetic energy for varying transducer
locations for a single heart on a single plane. Measurements were taken at multiple time points
throughout the cardiac cycle. The colors correspond to specific transducer locations.

Left Ventricle Data: Added Noise

When noise was added to the data, the coefficient of determination remained above 0.80
between the true 3D kinetic energy and all reduced order estimates of kinetic energy (Figure
3.17). Color-Doppler ultrasound data is noisy, and these results indicate that estimates of
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kinetic energy are robust to noise.

Figure 3.17: The R2 values for the relationships between either the true kinetic energy (KE -
yellow) or viscous dissipation rates (VDR - blue) and the reduced order estimates of kinetic energy
and viscous dissipation rate for all of the left ventricle data sets with artificial noise added. See
Table 3.2 for label descriptions.

Left Ventricle Data: Lower Resolution

At the lower resolution, the coefficients of determination between the true 3D kinetic energy
and reduced order estimates dropped by about 10-15% (Figure 3.18) compared to the higher
resolution data (Figure 3.15).
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Figure 3.18: The R2 values for the relationships between either the true kinetic energy (KE -
yellow) or viscous dissipation rate (VDR - blue) and the reduced order estimates of kinetic energy
and viscous dissipation rate for all of the left ventricle data sets at a reduced resolution. See Table
3.2 for label descriptions.

3.6 Results: Viscous Dissipation Rate in Left Ventricle

Data

The reduced order estimates of viscous dissipation rates were positively correlated with
the true, 3D viscous dissipation rate (Figure 3.19). The strongest correlation, with an R2

of about 0.85 was the 2D estimate. However, current measurements from color-Doppler
ultrasound data do not allow for this type of measurement so we are more interested in the
2D reconstructed, 1D, and 1D divergence-free estimates. Both the 1D and 1D divergence-
free estimates had R2 values of just above 0.80. The 2D reconstructed estimate had an R2

of about 0.70. The higher R2 values for the 1D estimates indicate that if we are trying to
acquire viscous dissipation rate information from ultrasound data, it is better to calculate
an estimate directly from only the radial component of velocity, rather than calculating the
azimuthal component in order to calculate the 2D reconstructed estimate.

Interestingly, the true, 3D viscous dissipation rate was strongly correlated with the 2D
and 2D reconstructed measures of kinetic energy, with higher coefficients of determination
than for the 2D reconstructed viscous dissipation rate. As mentioned previously, it makes
sense that viscous dissipation rate is correlated with kinetic energy, but it is not expected
for some estimates of kinetic energy to be more strongly correlated with viscous dissipation
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Figure 3.19: Comparison of the reduced order estimates of viscous dissipation rate (VDR) to the
true 3D measured viscous dissipation rate for the Linköping University data. See Table 3.2 for
label descriptions.

rate than estimates of viscous dissipation rate. However, all of our estimates only consider
estimates in a single plane and because viscous dissipation rate is more complicated to
calculate than kinetic energy, we see that some of the measures of kinetic energy are more
robust to the reduced order estimations than viscous dissipation rate.

Figure 3.20 compares the reduced order estimates for viscous dissipation rate to the
true 3D viscous dissipation rate for a single heart, for multiple different time points and
multiple different transducer locations (Figure 3.16a). Similar to the kinetic energy results,
there is a strong correlation between the 3D viscous dissipation and the true 2D estimates,
and the 2D is not strongly influenced by transducer location (Figure 3.20a). The strong
correlation indicates that the viscous dissipation in the long-axis apical plane is strongly
correlated with the overall viscous dissipation at each point throughout the cycle. Figure
3.20b demonstrates that while there is a positive correlation between the 3D and 2D estimate
of viscous dissipation when the second component of velocity is calculated from the first
component, it is not as strong of a correlation as the other estimates. For viscous dissipation,
we see that shifts 1 and 4, towards the mitral valve, provide larger scatter in the estimates
than the other transducer locations. The results for the 1D and the 1D divergence-free
estimates (Figures 3.20c and 3.20d respectively) both show very similar, strong correlations
between the 1D estimates and 3D values for viscous dissipation rate.
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(a) Comparison of the 2D estimate of vis-
cous dissipation rate when both radial and
azimuthal components of velocity are known
to the true 3D measured viscous dissipation
rate.

(b) Comparison of 2D reconstructed esti-
mate of viscous dissipation rate when the ra-
dial component of velocity is known and the
azimuthal component is calculated from the
radial component, to the true 3D measured
viscous dissipation rate.

(c) Comparison of the 1D estimate of vis-
cous dissipation rate when both radial and
azimuthal components of velocity are known
to the true 3D measured viscous dissipation
rate.

(d) Comparison of the 1D divergence-free es-
timate of viscous dissipation rate when both
radial and azimuthal components of velocity
are known to the true 3D measured viscous
dissipation rate.

Figure 3.20: Comparison of the reduced order estimates for viscous dissipation rate for varying
transducer locations for a single left ventricle on a single plane. Measurements were taken at
multiple time points throughout the cardiac cycle. The colors correspond to specific transducer
locations.

Left Ventricle Data: Added Noise

When artificial noise is added to the data, the R2 values between the true, 3D value of viscous
dissipation rate and the reduced order estimates of viscous dissipation rate are around 0.70
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(Figure 3.17). However, the coefficients of determination between the true, 3D value of
viscous dissipation rate and the 2D reconstructed and 2D estimates of kinetic energy are
around 0.70 as well. This suggests that reduced order estimates of kinetic energy have the
potential be helpful in evaluating viscous dissipation rate from color-Doppler ultrasound
data.

Left Ventricle Data: Lower Resolution

At a reduced resolution, the coefficients of determination between reduced order estimates
of viscous dissipation rate and 3D viscous dissipation rate were around 0.70 (Figure 3.18).
Again, at this reduced resolution, the coefficients of determination between the true, 3D
value of viscous dissipation rate and reduced order estimates of kinetic energy were also
around 0.70.

3.7 Discussion

Overall, the results show that reduced order estimates of kinetic energy and viscous dissi-
pation rate, such as those calculated in the left ventricle by color-Doppler ultrasound, are
correlated with true measures of kinetic energy and viscous dissipation rate. Due to the
vortices that appear inside the left ventricle, reduced order estimates were first explored on
synthetic velocity fields with analytical vortices. In most cases, coefficients of determination
of over 0.80 were seen between 1D and 2D estimates. Then, reduced order estimates of
kinetic energy and viscous dissipation rate on a single plane were examined in flow fields in
the left ventricle and compared to the true, 3D kinetic energy and viscous dissipation in the
entire left ventricle. The estimates with the highest coefficients of determination were the
2D estimates where both the true radial and azimuthal velocities are known. This indicates
that if reconstruction methods to calculate the azimuthal component of velocity were per-
fect, then using both components of velocity would be the best way to estimate the true 3D
measures. However, we don’t currently have access to measurements of both components
of velocity, so we must look to the other estimates. The estimates for 2D reconstructions
where the azimuthal components of velocity were calculated from the radial components had
similar levels of correlation with the true 3D values as the 1D estimates did with the true
3D values for kinetic energy, but lower correlation for the viscous dissipation rates.

The effect of noise was also studied on the estimates of kinetic energy and viscous dis-
sipation, and it was found that reduced order estimates of kinetic energy were more robust
to noise than viscous dissipation. The coefficients of determination between reduced order
estimates of kinetic energy and 3D kinetic energy all remained above 0.80. Coefficients of
determination between 1D reduced order estimates of viscous dissipation rate and 3D viscous
dissipation rate dropped closer to 0.70. However, the coefficients of determination between
2D estimates of kinetic energy and 3D viscous dissipation rate remained above 0.75, meaning
that for low resolution data estimates of kinetic energy may be a better predictor of true
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viscous dissipation rate than estimates of viscous dissipation rate.
Calculations of viscous dissipation rate are highly sensitive to grid resolution. This was

shown in [44], and was confirmed using the synthetic vortices. In addition, for the rigid
body vortex, it can be seen that the results are highly influenced by the discrete nature
of the problem. While zero viscous dissipation rate was expected, nonzero results (albeit
very small) were produced and the results increased with increasing vortex strength. In
addition, calculated viscous dissipation rates were orders of magnitude smaller on a finer
grid than a coarser grid. The influence of grid resolution is an important consideration when
evaluating viscous dissipation rate as a diagnostic tool as many different brands and types of
machines can be used to collect data. In addition, each machine often has adjustable settings
that could alter the resolution. It is important that diagnostic tools be consistent between
hospitals and patients, otherwise it would not be possible to compare viscous dissipation rate
between hospitals. For the left ventricle simulation data, we also saw that the coefficients of
determination between the reduced order estimates and the 3D values decreased on a coarse
grid. The 1D and 2D estimates for kinetic energy and viscous dissipation all dropped to
around 0.70.

Overall, reduced order estimates of kinetic energy and viscous dissipation measured by
color-Doppler ultrasound in the left ventricle are correlated with true 3D values of kinetic
energy and viscous dissipation and should be explored further for use in the clinic. Measures
of kinetic energy are more robust to noise and grid resolution than viscous dissipation. Since
there are correlations between kinetic energy and viscous dissipation, it may make sense to
focus on kinetic energy rather than viscous dissipation.

For the left ventricle, the 1D estimates appeared to give just as strong (for kinetic energy)
or stronger (for viscous dissipation) correlations with the 3D values than the 2D estimates
achievable with color-Doppler ultrasound, where the second component of velocity is cal-
culated from the first. The 1D values are much easier to calculate than the 2D estimates,
making them more clinically viable. If however, the reconstruction of the second component
of velocity improves, then it would be advisable to return to the 2D estimates of kinetic
energy and viscous dissipation rate, as the 2D estimates when both components of velocity
were known gave the strongest correlations.

In addition, we also saw that location of the transducer impacted the predictions of both
kinetic energy and viscous dissipation rate. Examining these relationships further can help
advise sonographers on ideal locations for the transducer when measuring kinetic energy and
viscous dissipation.

The effect of disease was not examined in this chapter, and that is ultimately what is
important in the clinic. The relationship between disease and kinetic energy or viscous
dissipation rates has been explored in other studies, especially in 3D using MRI, and in
some studies in 2D using color-Doppler ultrasound. This study suggests that 1D estimates
should be studied in disease states using color-Doppler ultrasound, and that kinetic energy
and viscous dissipation rate should be studied in tandem, to determine if there are cases
where they provide diverging information or if measuring just kinetic energy will provide the
valuable clinical information needed. Overall, this study showed that using color-Doppler
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ultrasound to evaluate flow fields in the left ventricle is a promising diagnostic avenue.



Chapter 4

Geometric Modal Analysis as a Three-
Dimensional De-Noising and Reconstruc-
tion Technique

4.1 Introduction

In addition to blood flow inside the body, a variety of applications require measurement
of three-dimensional flow fields, including oceanographic flows and flow around hydrofoils.
Tools to measure these flow fields are rapidly improving and becoming more widely available,
but the measured data is sparse and noisy, necessitating filtering techniques to de-noise these
flow fields. In this chapter, we introduce a modal analysis technique to filter flow fields from
a variety of applications. In Chapter 5 we explore this method applied to left ventricle
applications.

Four-dimensional flow magnetic resonance imaging (4D-flow MRI) is an important tech-
nique for visualizing flow fields inside the body. 4D-flow MRI captures three dimensional flow
information in space across multiple time points. It has been used inside the heart to study
how flow patterns are related to disease and disease progression [2, 13, 14, 20, 52], but the
data is noisy and the image acquisition is time consuming, decreasing its clinical effective-
ness. Acquisition parameters for 4D-flow MRI can be tuned to minimize errors in the data,
but higher resolution generally comes at the cost of increased acquisition time and other
sources of error such as aliasing or velocity-to-noise ratio [53]. A variety of post-processing
techniques have been developed to address different sources of error [54, 55].

Outside of the body, particle image velocimetry (PIV) and particle tracking velocimetry
(PTV) are two techniques to measure 3D flow fields that benefit from improved filtering
of the measured flow data [56]. Modified correlation and reconstruction algorithms have
been developed to speed up and improve flow fields measured from particle tracking [57, 58,
59]. However, the results are still noisy and not divergence-free. Therefore, post-processing
methods have been implemented to smooth the data after cross-correlation. These methods
include local mean, median and band-pass filtering, data convolutions, and a smoothing

61
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algorithm based on the discrete cosine transform for digital PIV [60, 61]. According to
the results of the 4th annual PIV challenge, optimizing imaging parameters is still an open
question for maximizing spatial resolution without losing accuracy [62], demonstrating that
filtering techniques can play an important role in the post-processing of PIV data as imaging
parameters and cross-correlation techniques continue to improve.

All of the different measurement devices discussed here are often used to investigate
incompressible fluids, and some filtering techniques that take into account incompressibility
have been proposed. For example, Schiavazzi et al. use a divergence-free linear filter to
de-noise three-dimensional velocity fields [63]. With a focus on turbulent flow, deSilva et al.
minimized the difference between the measured and filtered velocity fields while enforcing
a divergence-free constraint [64]. To reconstruct and de-noise blood flow data measured
with 4D-flow MRI, Song et al. used a projection operation into the space of divergence-
free vector fields [65], Busch et al. combined normalized convolution and divergence-free
radial basis functions [66], and Santielli et al. combined divergence-free wavelets and the
finite difference method to iteratively reconstruct the flow field by regularizing phase and
magnitude in alternative iterations [67]. Falahatpisheh et al. reconstructed a 3D flow field
from 2D data acquired on multiple planes while enforcing incompressibility [68]. In addition
to these methods that strictly enforce a divergence-free condition, other methods have been
proposed that penalize non-zero divergence rather than enforcing a strict divergence-free
condition, such as the wavelet transforms to account for inaccurate boundary conditions
used by Ong et al. [69] and the optimization method described by Assi et al [70].

In addition to the divergence-free condition, accurately quantifying the flow at the bound-
ary is often of importance in flow fields. For example, Lagrangian and particle analyses will
be inaccurate if there are particles flowing through the walls when there should be no-slip
boundary conditions. Wall shear stress is also an important indicator related to cardiovas-
cular diseases that cannot be properly evaluated when the flow field is not resolved at the
walls. To this end, we have developed a modal projection method to de-noise 3D velocity
fields such that the resulting field is divergence-free and satisfies no-slip and no-penetration
boundary conditions.

Modal analysis is a tool that can be used to filter data by identifying the dominant modes
of the system and filtering out other modes with smaller contributions [71]. In general,
modal analysis is used to decompose a flow field by identifying the main components of
the flow. For example, proper orthogonal decomposition and dynamic mode decomposition
are common data-driven methods to break down the flow into its main components. These
types of decompositions are data-based techniques because the modes are calculated based
on the velocity data. An alternate type of decomposition, and the type of decomposition
used in this paper, is geometry-based, where the modes are calculated based on the domain.
Some examples of geometry-based modal analysis methods are Lekien et al.’s geometry-based
modal decomposition to reconstruct noisy flow data in two dimensions [32] and Chu et al.’s
similar method in three dimensions [72].

Here, to de-noise three-dimensional velocity fields, we propose a modal projection method
that takes into account the incompressibility of the velocity field. The projection method
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works by first solving for a set of geometry-based modes, where each mode is a velocity
field. The modes are calculated by solving for velocity fields that minimize velocity gradient,
subject to specified boundary conditions, in order to produce smooth velocity fields. In
addition, a divergence-free condition is enforced for all modes. Each mode is calculated
using information about the geometry of the domain. This method is different than many
data-driven modal analysis methods where the modes are calculated from the velocity data
itself. By calculating the modes based on the geometry, we take advantage of velocity modes
inherent to the geometry. Then, the data is projected onto the modes to produce a new,
filtered velocity field.

In this chapter, we describe the method in detail and then apply it to three test cases:
flow inside a cube, through a stenosis, and around a cylinder. Multiple versions of the data
are used as inputs to the method to represent different imaging acquisitions, including the
data with artificial noise added and subsampled versions of the data. Reconstructed velocity
fields are compared to the true velocity fields to evaluate the method.

4.2 Theory

Measured velocity fields are reconstructed by calculating a set of divergence-free modes based
on the geometry of the domain at a specific time point, and then projecting measured data
onto the modes to produce a new, divergence-free velocity field. There are two sets of modes:
interior and boundary modes. The interior modes have a no-slip, no-penetration boundary
condition on all parts of the boundary and are described in section 4.2.1. These modes
capture flow structures based exclusively on the geometry of the domain. The boundary
modes have a non-zero velocity through specified parts of the boundary and are described in
section 4.2.2. The boundary modes capture flow structures that develop as a result of flow
through the boundaries. The optimal combination of modes to reconstruct the velocity field
is calculated using a minimization problem described in section 4.2.3.

For a case where the geometry stays the same over time, like the examples explored in
this chapter, only one set of modes needs to be calculated. The data can be projected onto
the same set of modes at each time point. For a case where the geometry is changing over
time, like the examples discussed in Chapter 5, a set of modes is calculated at each time
point, and the boundary conditions for the boundary modes can be adjusted to properly
capture the flow at the moving boundary.

Both sets of modes are based on minimizing the velocity gradient in a given domain
while enforcing specified boundary conditions and a divergence-free condition throughout
the domain. In order to de-noise the data, we want to have smooth modes, which motivates
the minimization of the velocity gradient. In addition, minimizing the velocity gradient
is equivalent to minimizing viscous dissipation in this formulation of the problem. See
Appendix A for an extended discussion of the minimization of the velocity gradient.
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4.2.1 Interior Modes

Interior Modes Problem Definition

Interior modes are calculated by minimizing the Frobenius norm of the velocity gradient
in a given domain, subject to a divergence-free constraint and no flow on or through the
boundaries. The problem is defined:

min

(∫
Ω

‖∇U‖2
FdV

)
such that

(
∇ ·U = 0

)
and

(
U = 0 on ∂Ω

)
and

(∫
Ω

|U|2dΩ = 1

)
(4.1)

where U = u1e1 + u2e2 + u3e3 is a mode over the domain Ω with boundary ∂Ω. Each mode
is a velocity field where ui represents the component of velocity in the ith direction. The(∫

Ω
‖U‖2

2dV = 1

)
constraint is required to avoid the trivial solution. The minimization of

the norm of the velocity gradient is equivalent to minimizing viscous dissipation (Appendix
A).

To solve the problem, we start by defining the functional to minimize, I:

I =

∫
Ω

( 3∑
i=1

|∇ui|2 + λ

( 3∑
i=1

|ui|2 − 1

)
+ µ

3∑
i=1

∂ui
∂xi

)
dV (4.2)

where λ and µ are Lagrange multipliers used to enforce two of the three constraints. The
Lagrange multiplier, λ is a constant because it multiplies an integral constraint and µ is
a function of x because it multiplies a differential constraint. The implementation of the
boundary condition, which is the third constraint, is described later.

Next, we take the first variation of our function with respect to our free variables, ui and
µ, and set them equal to 0 to find the minimum. The first variation of the functional with
respect to ui is

δuiI =

∫
Ω

(
2∇ui · ∇(δui) + 2λui · δui + µ

∂(δui)

∂xi

)
dV = 0 for i = 1, 2, 3. (4.3)

The first variation with respect to µ is

δµI =

∫
Ω

δµ

3∑
i=1

∂ui
∂xi

dV = 0. (4.4)

The variables δui and δµ can be considered test functions corresponding to ui and µ,
respectively. Then, this problem can be implemented using a finite element formulation.
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Implementation - Defining Matrices

To implement the finite element formulation, the trial (ui, µ) and test (vi, δµ) functions are
defined

ui(x) =
n∑
j=1

ûjiϕ
j(x), i = 1, 2, 3

δui(x) =
n∑
j=1

ϕj(x), i = 1, 2, 3

µ(x) =
n∑
j=1

µ̂jϕj(x)

δµ(x) =
n∑
j=1

ϕj(x)

(4.5)

where n is the number of nodes in the domain, ϕ is a basis function, and ûji and µ̂ji are scalar
functions of x. The stiffness matrix, K, is defined

Kij =

∫
Ω

∇ϕi · ∇ϕjdV

and the mass matrix, M, is

Mij = 〈ϕi, ϕj〉 =

∫
Ω

ϕiϕj dV.

The matrix D is defined

Dk,ij = 〈∂ϕi
∂xk

, ϕj〉 =

∫
Ω

∂ϕi
∂xk

ϕj dV, k = 1, 2, 3.

Together, the weak form of the problem is:

Kui + λMui + Diµ = 0, i = 1, 2, 3

DT
1u

1 + DT
2u

2 + DT
3u

3 = 0
(4.6)

where the first equation comes from equation 4.10, the second equation comes from 4.4, and

ui =
[
ui1, · · · , uin

]T
.

The full system is
K 0 0 D1

0 K 0 D2

0 0 K D3

DT
1 DT

2 DT
3 0



u1

u2

u3

µ

+ λ


M 0 0 0
0 M 0 0
0 0 M 0
0 0 0 0



u1

u2

u3

µ

 = 0
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which can be written in a compact form:[
K D
DT 0

] [
u
µ

]
= −λ

[
M 0
0 0

] [
u
µ

]
(4.7)

where

K =

K 0 0
0 K 0
0 0 K

 , D =

D1

D2

D3

 , M =

M 0 0
0 M 0
0 0 M

 , u =

u1

u2

u3

 .
4.2.2 Boundary Modes

Unlike the interior modes, the boundary modes allow flow through the boundary. The parts
of the boundary where flow goes through are known as ‘open boundaries’, and the parts
with no flow through are called ‘closed boundaries’. Each mode has a distinct boundary
condition on the open boundary. Below, the problem formulation is described, followed by
a description of how the boundary conditions on the open boundaries are chosen.

If the boundary is moving, there are many different ways to treat this boundary. One way
is to treat the moving boundary as an alternative type of ‘closed boundary’, where instead
of no flow at the wall, the velocity boundary conditions at the wall are defined based on wall
movement and conservation of mass. See Chapter 5 for a more detailed discussion of moving
boundaries.

Boundary Modes Problem Definition

The calculation of the boundary modes is formulated in the same manner as the interior
modes, beginning with the minimization of the velocity gradient. However, due to the
introduction of a non-zero Dirichlet boundary condition, it is no longer necessary to enforce
the norm of velocity to be equal to 1, meaning that this problem is not an eigenvalue problem.
The problem is defined:

min

(∫
Ω

‖∇U‖2
FdV

)
such that

(
∇ ·U = 0

)
and

(
U = Ub on ∂Ω

)
.

(4.8)

The velocity on the boundary, Ub, may be equal to 0 on some portions of the boundary,
denoted as the ‘closed boundary’, and may be non-zero on other parts of the boundary, de-
noted as the ‘open boundary’. Determining the appropriate boundary condition is discussed
in the next section.
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The functional Ib is defined:

Ib =

∫
Ω

( 3∑
i=1

|∇ui|2 + µ
3∑
i=1

∂ui
∂xi

)
dV (4.9)

where µ is a function of x because it multiplies a differential constraint. The first variation
of the functional with respect to ui is

δuiIb =

∫
Ω

(
2∇ui · ∇(δui) + µ

∂(δui)

∂xi

)
dV = 0 for i = 1, 2, 3. (4.10)

The first variation is also taken with respect to µ, yielding the same results as equation 4.4.
Using the same definitions as for the interior modes, the problem is written compactly:[

K D
DT 0

] [
u
µ

]
= 0 (4.11)

Determining the boundary condition

There are a few ways to determine the appropriate boundary conditions for the boundary
modes. If the boundary conditions are known exactly, a single boundary mode can be used
where Ub is equal to the known boundary condition. If the exact flow through the boundary
is not know, we must develop a set of boundary conditions, where each boundary condition
corresponds to one boundary mode. One method to accomplish this is to assume the flow
through the boundary, Ub, is perpendicular to the boundary, and then solve for a scalar set
of modes on the open boundary where the magnitude of the velocity on the boundary is
equal to the value of the scalar field at that point. Therefore, flow on the boundary satisfies

n ·Ub = gi(s) on ∂Ω (4.12)

where gi is set to 0 on the closed boundary. Any set of modes could be chosen for the open
boundary. In our case, we use the set of scalar modes, gi, that are the solution to the Laplace
eigenvalue problem on the open boundary:

∆gi = −λgi gi (4.13)

gi = 0 on ∂(∂Ω)

where ∂(∂Ω) is the edge of the open boundary. These scalar modes, gi, form an orthogonal
basis on our open boundary.

Modification: Single Boundary Mode

If the flow through the boundary is not perpendicular to the boundary and also has some
noise associated with it, a slight modification to the boundary mode method can be made.
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Each component of velocity through the open boundary can be projected on scalar modes,
to come up with a single boundary condition that is not necessarily normal to the boundary.
First, the scalar modes described in equation 5.1 are solved on the open boundary, just as
they would be in the previously described version. Then, a single new boundary condition,
Ub is defined where the magnitude of each component of velocity is reconstructed as a
weighted sum of the modes, gi:

Ub =ub,1e1 + ub,2e2 + ub,3e3

ub,1 =
∑
i

aigi

ub,2 =
∑
i

bigi

ub,3 =
∑
i

cigi

where ai, bi, and ci are constants.
These constants are determined by three least squares problems. The least squares prob-

lems seek to minimize the difference between each component of the reconstructed field and
the measured velocity field

min
ai,bi,ci

‖udata,j − ub,j‖2
2, for j = 1, 2, 3

where udata,j is the jth component of the measured velocity data on the boundary. The result
of this method is a single velocity field on the boundary, which yields a single boundary mode.

Implementation: Uzawa - Conjugate Gradient

To solve for boundary modes, a modified version of the Uzawa iteration algorithm with the
Conjugate Gradient method is implemented to solve the system of equations.

We start by rewriting the boundary problem as follows:
K 0 0 G1

0 K 0 G2

0 0 K G3

GT
1 GT

2 GT
3 0



u1

u2

u3

µ

 =


b1

b2

b3

bBC

 =


0
0
0
bBC


where

G1 =
[
D1 BCvx 0 0

]
,G2 =

[
D2 0 BCvy 0

]
,G3 =

[
D3 0 0 BCvz

]
and

bBC =
[
0 BCvx

]T
.



69 Chapter 4

We can then rewrite equations for ui

u1 = K−1(b1 −G1µ)

u2 = K−1(b2 −G2µ)

u3 = K−1(b3 −G3µ)

and define the Schur Complement

−(DT
1 K−1D1 + DT

2 K−1D2 + DT
3 K−1D3)µ =bBC −DT

1 K−1b1 + DT
2 K−1b2 + DT

3 K−1b3

=bBC

S =DT
1 K−1D1 + DT

2 K−1D2 + DT
3 K−1D3

To start the iterative process we initialize a few variables

µ̇ = 0

Ku̇1 = b1 −G1µ̇

Ku̇2 = b2 −G2µ̇

Ku̇3 = b3 −G3µ̇.

Then we solve for initial values for u̇1, u̇2, and u̇3.
To meet the LBB stability condition, either P2-P1 elements or a stabilization matrix C

can be used.

4.2.3 Projection of Data onto Modes

Once all the modes have been calculated, they are combined to form a new, reconstructed
velocity field. This reconstructed velocity field, Ur, is equal to the sum of the modes, each
multiplied by a constant:

Ur =

NI∑
i=1

αIiu
I
i +

Nb∑
i=1

αbiu
b
i =

N∑
i=1

αiui (4.14)

where uIi are interior modes, ubi are boundary modes, NI is the number of interior modes
available, Nb is the number of boundary modes available, and N = NI +Nb.

There are multiple methods that can be used to determine the coefficients, α. The most
straightforward way is to minimize the difference between the measured velocity field and
the reconstructed velocity field using least squares. More advanced ways can incorporate
more information, such as how the velocity field changes in time. However, in this chapter
we will only consider the least squares problem:

min
α
‖Utrue −Ur‖2

2 = min
α
‖Utrue − (

NI∑
i=1

αIiu
I
i +

Nb∑
i=1

αbiu
b
i)‖2

2

= min
α
‖Utrue −Aα‖2

2
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where each column of A contains information for one mode.
Since the reconstructed field is developed with a finite element formulation, the result is a

continuous velocity field. Another way to calculate the coefficients is to project the available
data onto a finite element function space and minimize the difference between the measured
and reconstructed velocity fields on this continuous space.

min
α

∫
Ω

(
Utrue −Ur

)2

dV

= min
α

∫
Ω

( n∑
i=1

ūiϕi −
N∑
j=1

αj

n∑
k=1

ûkϕk

)2

dV

= min
α

∫
Ω

( n∑
i=1

ūiϕi

n∑
j=1

ūjϕj − 2
n∑
i=1

ūiϕi

N∑
j=1

αj

n∑
k=1

ûkϕk

+
N∑
j=1

αj

n∑
k=1

ûkϕk

N∑
m=1

αm

n∑
n=1

ûnϕn

)
dV

= min
α
F (α, û, ū)

0 =
∂F

∂αi

=

∫
Ω

−2
n∑
i=1

ūiϕi

n∑
k=1

ûkϕk + 2
n∑
j=1

αj

n∑
k=1

ûkϕk

n∑
n=1

ûnϕndV

0 =−ATMUtrue + ATMAα

ATMAα =ATMUtrue

α =(ATMA)−1ATMUtrue

4.2.4 Error Calculation

To evaluate the quality of the reconstruction, the reconstructed velocity field was compared
to the true velocity field. The normalized root mean square error was determined:

Error =

√
1
n

n∑
j=1

3∑
i=1

(vji,true − v
j
i,reconstructed)

2

1
n

n∑
j=1

(√
3∑
i=1

(vji,true)
2

) (4.15)

where vji is the ith component of velocity at the jth point, and n is the number of points in
the velocity field.
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4.3 Application to Test Problems

Three different test cases were used to evaluate the quality of reconstructed flow fields using
this method. The first case is synthetic flow inside a cube with sinusoidal body forces.
The cube has no flow through any of the boundaries, so only interior modes are used to
reconstruct the velocity field. The second case is flow around a cylinder in a rectangular
channel with a Reynolds number of about 300. The diameter of the cylinder is c, and the
dimensions of the channel are 5c by 5c by 25c, with the cylinder located in the center of the
channel and a distance of 7.5c from the inlet. The third test case is flow through an idealized
stenosis.

4.3.1 Modes

First, modes were calculated for each type of geometry. Figure 4.1 and Figure 4.2 show
streamlines of the first few modes in the cube and stenosis geometry respectively.

Figure 4.1: Streamlines for interior modes inside a cube.
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Figure 4.2: Streamlines for interior modes inside a stenosis.

4.3.2 Reconstruction

To test the ability of the method to accurately capture flow structures in a given velocity field,
the reconstruction algorithm was first tested on known flow fields without noise. Below, we
will show that across all test cases, large flow structures were captured in the reconstructions
and increasing the number of modes used in the reconstruction decreased the error.

To test the potential performance of the reconstruction algorithm with experimental data,
artificial noise was added to the example flow fields to better represent what image data would
look like. Two types of noise were considered to represent different types of imaging data.
In the first type, random noise was added directly to the velocity field. Gaussian noise with
a zero average and standard deviation of 5%, 10%, 25% and 50% of the maximum velocity
component was added to each component of the velocity. In the second, ‘MRI type’, noise,
a signal was calculated using the five-point balanced flow-encoding method described by
Johnson and Markl, noise was added to the signal with varying magnitudes, and then the
velocity fields were re-calculated from the signal [73, 69]. Both types of noise were tested for
all test cases. We will show that geometric modal analysis successfully reduced the error in
the velocity field for both types of noise.

In addition, the results were compared to two other methods - the Finite Difference
Method (FDM) described by Song et al. [65] and the Radial Basis Function Method (RBF)
described by Busch et al. [66]. The reconstructions using FDM and RBF were implemented
using MATLAB code made available by Frank Ong [69]. The original data for the stenosis is
provided on an unstructured grid and the reconstruction method described in the paper was
performed on this unstructured grid. However, the comparison methods are implemented on
data that is interpolated onto a structured grid with a comparable mesh size for the FDM
and RBF reconstructions.
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Cube

First, the interior modes were tested on a synthetic flow field inside a cube. There is no
flow on or through the boundary, so only interior modes are used in the reconstruction.
The streamlines of the reconstructed velocity fields appear to match closely with the true
velocity field for a wide range of number of modes used to reconstruct the velocity field
(Figure 4.3A-C). It can be seen that increasing the number of interior modes decreased the
mean and median of the error (Figure 4.4).

Figure 4.3: Streamlines for synthetic flow inside a cube. (A) is the true velocity field. (B) is
the reconstruction from the true velocity field using 44 interior modes. (C) is the reconstruction
from the true velocity field using 500 interior modes. (D) is a noisy velocity field. (E) is the
reconstruction from the noisy velocity field in D using 44 interior modes. (F) is the reconstruction
from the noisy velocity field in D using 500 interior modes.
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Figure 4.4: Point-by-point error distribution for velocity field reconstructed directly from the
results of the simulation for synthetic flow in a cube. Each box represents a different reconstruction
using a different number of modes.

When noise was added to the original velocity field, increasing the number of interior
modes used in the reconstruction decreased the normalized root mean square error for almost
all levels of noise tested for Gaussian and MRI-type error (Figures 4.3 and 4.5). As the error
in the noisy field increased, the difference in the performance of the reconstruction between
the fewest number of modes and the most number of modes decreased. For very high levels
of noise, using the maximum number of modes available ceased to produce the lowest error.
For all levels of noise, the velocity field produced by the modal projection method described
here had lower root mean square error than the velocity fields produced by FDM and RBF
for high numbers of modes used to reconstruct the velocity field.
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Figure 4.5: Normalized root mean square errors in reconstructed velocity fields for the flow inside
a cube when Gaussian noise was added (circles and dashed) and when MRI-type noise was added
(triangles and solid). The results are compared to results from two other types of reconstructions.

Flow around a cylinder

For the flow through a channel around a cylinder, increasing the number of interior modes
decreased the error. This can be seen in Figure 4.6 where the x-value is 0, meaning that there
is no noise added to the velocity field that is input into the reconstruction algorithm. The
streamlines for the true field and two different reconstructions appear in Figure 4.7, where
we can see that increasing the number of modes helps straighten out the flow downstream
from the cylinder and better captures the recirculation region directly downstream from the
cylinder.
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Figure 4.6: Root mean square error for reconstructions of velocity fields with varying degrees of
noise in flow around a cylinder. Each point represents the root mean square error over an entire
velocity field. The x-axis is the root mean square error of the velocity field that is input to the
algorithm, and the y-axis is the root mean square error of the reconstructed velocity field output
from the algorithm. Multiple different numbers of modes are used to reconstruct the flow field,
which is indicated by color, and the results are compared to two other types of reconstructions.
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Figure 4.7: Streamlines of flow through a channel around a cylinder. (A) True flow through a
channel around a cylinder. (B) Flow through a channel reconstructed from true with 44 interior
modes and 48 boundary modes. (C) Flow through a channel reconstructed from true with 400
interior modes and 48 boundary modes.
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When noise was added to the original flow field, the reconstruction significantly reduced
the noise in the velocity fields and captured the main flow structures (Figure 4.8). The
number of modes that produced the best reconstruction depended on the amount of noise
added to the flow field (Figure 4.6). For reconstruction of velocity fields with a noise standard
deviation of 25% of the maximum velocity magnitude, for the different numbers of modes
tested, the lowest errors were achieved with around 200 interior modes and 48 boundary
modes. For reconstruction of velocity fields with a noise standard deviation of 25% of the
maximum velocity magnitude, improved reconstructions were achieved when fewer modes
were available. This is due to the fact that the flow structures are relatively simple and
when more modes are available, the reconstruction begins to capture the noise rather than
filtering it out.

Figure 4.8: Streamlines of flow through a channel around a cylinder. (A) True flow through a
channel. (B) Flow through a channel with artificial noise added with a maximum magnitude of
25% of the maximum velocity magnitude. (C) Noisy flow through a channel reconstructed with 84
interior modes and 48 boundary modes. (D) Noisy flow through a channel reconstructed with 400
interior modes and 48 boundary modes.

Stenosis

For the stenosis, increasing the number of interior modes decreased the mean of the error
(Figure 4.9). The overall trend of the results was very similar to those seen for the flow
around a cylinder. Streamlines for the original and two reconstructions are shown in Figure
4.10A-C.

For the reconstruction of noisy flow in an idealized stenosis, similar trends for noisy
reconstructions were observed (Figure 4.9). Streamlines for velocity fields reconstructed
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Figure 4.9: Root mean square errors in reconstructed velocity fields for the flow through a
stenosis when Gaussian noise was added (A) and when MRI-type noise was added (B). The results
are compared to results from two other types of reconstructions.

from a noisy velocity field are shown in Figure 4.10D-F. When noise with a noise standard
deviation of 25% of the maximum velocity magnitude was added to the stenosis velocity field,
the number of modes did not change the error of the reconstructed velocity field. For MRI-
type noise with a standard deviation of 25% of the maximum velocity magnitude, increasing
the number of modes decreased the error (Figure 4.9).
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Figure 4.10: Streamlines of the velocity field in an idealized stenosis. Colors represent velocity
magnitude. Flow is from bottom to top. (A) The true velocity field from the result of a simulation.
(B) Velocity field reconstructed from true with 84 interior modes and 64 boundary modes. (C)
Velocity field reconstructed from true with 300 interior modes and 64 boundary modes. (D) Noisy
field generated using MRI type noise. (E) Velocity field reconstructed from the noisy field with 84
interior modes and 64 boundary modes. (F) Velocity field reconstructed from the noisy field with
300 interior modes and 64 boundary modes.

Overall, we saw expected trends in the modal analysis projection onto the results of a
simulation when no noise was added to the velocity field, with errors of the reconstructed
fields decreasing with increasing numbers of modes. The median errors were below 10% for
the cylinder and the stenosis, and mean errors were below 20% for the cylinder and 30%
for the stenosis. One limitation to the test problems shown here is that the grids were very
coarse. We expect that with finer grids, the errors of the reconstructed velocity fields would
continue to decrease. However, the coarseness of the grids is more representative of what is
seen experimentally.

When looking at the distribution of error for different levels of noise added to the velocity
field, a few clear trends appear that are consistent between all types of flows seen here. For
very large levels of noise added, there is a clear reduction in error in the reconstructed field,
regardless of the number of modes used to reconstruct the flow field. For very small errors,
the error is small enough to start with that the error of the reconstructed flow field is larger
than the error of the original flow field. For other, intermediate levels of error, the noise is
significantly reduced in the reconstruction, and increasing the number of modes used in the
reconstructions decreases the errors present in the reconstructed flow field.
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4.3.3 Fitting to Sparse Data

The least squares projection of data onto modes was performed using only a subset of the
available true data to test the performance of the method on sparse data. To do this, only
every nth data point was made available to the reconstruction algorithm, where n was varied.
For the cube and the stenosis, n was set equal to 2, 3, 5, and 8. The sparse reconstruction
was tested on the original data, as well as the noisy data.

In the cube, when every 2nd and 3rd point was used (Figures 4.11a and 4.11b), the
results were very similar to when every point was used for all levels of noise tested (Figure
4.5). However, when the amount of data available was reduced further, higher errors in the
reconstructions were seen (Figures 4.11c and 4.11d). For fewer numbers of modes used in
the reconstructions, the error did not increase significantly, but for larger numbers of modes
used in the reconstructions, the increase in error was more noticeable. In particular, when
every 2nd and 3rd point was available, increasing the numbers of modes decreased the error,
but for every 5th and 8th point, the error initially increased with increasing modes until 124
modes, and then the error began to increase with increasing number of modes. For the most
part, these patterns held when noise was added to the original velocity field, although the
overall error was higher. Another interesting result was that the errors were higher in the
cube reconstruction when every 5th point was used than when every 8th point was used. This
is likely because the mesh on the cube is a structured grid with a multiple of 5 nodes in
each direction, so when every 5th point is used, the available data lines up in a few parallel
planes, whereas when every 8th point is used the points are distributed more evenly across
the whole cube.

The results for sparse reconstructions were very similar for the stenosis compared to
the cube. For the stenosis, for the lower levels of error in the initial velocity field, when the
reconstructions were completed using every 2nd and 3rd point, the error is not too much larger
than when reconstructed using every point (Figures 4.12a and 4.12b compared to Figure 4.9).
However, the error is higher in the reconstruction when the original field has higher levels
of noise in it. In addition, at these higher levels, increasing the number of modes used in
the reconstruction doesn’t always decrease the error. When the flow is reconstructed using
every 5th point, the error of the reconstructed field about doubles, and again for high levels of
initial noise, increasing the number of modes does not necessarily decrease error. When the
flow is reconstructed using every 8th point, the error in the reconstructed field is much higher
and the error does not decrease with increasing modes even for low levels of initial error.
Overall, for moderate levels of sparsity, the method was able to perform reconstructions with
relatively low levels of error, but at higher levels of sparsity, the reconstruction method does
not perform very well.



82 Chapter 4

(a) Normalized root mean square error for ve-
locity field reconstructed from every 2nd point
for flow inside a cube.

(b) Normalized root mean square error for ve-
locity field reconstructed from every 3rd point
for flow inside a cube.

(c) Normalized root mean square error for ve-
locity field reconstructed from every 5th point
for flow inside a cube.

(d) Normalized root mean square error for ve-
locity field reconstructed from every 8th point
for flow inside a cube.

Figure 4.11: Normalized root mean square error in reconstructed velocity fields for flow in a cube
when reconstructed with only a subset of the data.
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(a) Normalized root mean square error for ve-
locity field reconstructed from every 2nd point
for flow through a stenosis.

(b) Normalized root mean square error for ve-
locity field reconstructed from every 3rd point
for flow through a stenosis.

(c) Normalized root mean square error for ve-
locity field reconstructed from every 5th point
for flow through a stenosis.

(d) Normalized root mean square error for ve-
locity field reconstructed from every 8th point
for flow through a stenosis.

Figure 4.12: Normalized root mean square error in reconstructed velocity fields for flow in an
idealized stenosis when reconstructed with only a subset of the data. Each reconstruction uses 64
boundary modes, and a varying number of interior modes, indicated by color.
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4.3.4 Fitting to One and Two Components of Velocity

Next, the reconstruction for the cube and flow through a stenosis was performed with only one
or two components of velocity available. For the cube, when only one component of velocity
was available, the reconstructions were very poor. However, when two components were
available, the results were comparable to when three components were available (Figure 4.14).
These results follow naturally from the fact that we are reconstructing a divergence-free flow.
In a divergence-free flow field, if two components of velocity and boundary conditions are
known, the third component of velocity can be calculated.

For the stenosis it is important to note that the majority of the flow is in the y-direction,
through the stenosis. Fitting to only one component of velocity did not produce anything
meaningful, although when only the y component of velocity was used the errors were sig-
nificantly lower than using only the x or z component. When two components of velocity
were used, if one of these components was the y component then we saw expected patterns
with the reconstructions. However, when only the x and z components were used the errors
were very large.

Figure 4.13: Normalized root mean square errors for velocity fields reconstructed from limited
information for the cube - i.e. only one or two components of velocity. (A) shows reconstructed
from the x component of velocity, (B) shows the y component, (C) shows the z component, (D)
shows reconstructed from the x and y components, (E) shows x and z components, and (F) shows
y and z components.
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Figure 4.14: Normalized root mean square errors for velocity fields reconstructed from limited
information for a stenosis - i.e. only one or two components of velocity. (A) shows reconstructed
from the x component of velocity, (B) shows reconstructed from the x and y components, (C) shows
y and z components.

4.4 Discussion

A method to reconstruct noisy and sparse velocity fields from measurements was developed
and tested on coarsely-meshed test-problems. Overall, expected trends of decreasing error
for increasing modes at lower levels of noise, with the pattern reversing for very high levels
of noise, were seen, which is a promising initial result. The number of modes used to get the
best reconstruction of a flow field is dependent on the magnitude of the noise present in the
data and the complexity of the flow. Therefore, this reconstruction technique will need to
be tailored for each application that it is used for. In the future, we expect the method to
be even more successful and useful for ‘geometry-driven-flows,’ such as flow inside the heart.

An important consideration when developing de-noising and reconstruction methods is
the ability to test the quality of the method. In the examples presented in this chapter,
results from computational fluid dynamics simulations were used, where a true velocity field
is available. This method will ultimately be used on velocity fields where the truth is not
known, making it impossible to test the ‘success’ of the method. It is therefore important
to be confident in the method’s ability to de-noise and reconstruct velocity fields before
applying it to data where the truth is unknown. There are still improvements that can be
made to the method and with each adjustment, the results should be evaluated using velocity
fields where the ‘truth’ is available, before moving to more realistic applications.

In order to achieve better results, one possible adjustment is to incorporate other in-
formation during the projection. For example, many of the flows we are interested in are
changing in time. An extra term can be introduced in the least squares problem that pe-
nalizes changes in the contributions of each mode between time steps. This method has the
potential to be helpful when the change in time between images is small, meaning that the
flows at the two time steps are related to each other but the noise is not.

This method also has the potential to be used in cases where only one or two components
of velocity are available. Color-Doppler ultrasound is one such application, where only a
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single component of velocity, parallel to the ultrasound beam, is available. Traditional color-
Doppler ultrasound is only available on a single plane, but recent advancements have led to
the availability of multi-plane ultrasound where a single component of velocity, parallel to
the ultrasound beam, is available in multiple parallel planes, creating a three-dimensional
domain. The geometry of the heart can also be measured using multi-plane ultrasound,
making this method well-suited for this application.

Ideally, this method could be tailored to each application so that the optimal number
and types of modes are available to easily and accurately reconstruct a velocity field from
sparse and noisy data. For future work, one may consider investigating different types of
problems individually to determine the necessary types and numbers of modes required to
reconstruct the velocity fields for a given application with a typical level of noise. In Chapter
5, we apply this method to blood flow in the left ventricle.



Chapter 5

Geometric Modal Analysis: Left Ven-
tricle Examples

5.1 Introduction

In this chapter, we assess the ability of the modal projection method described in Chapter 4
to filter and reconstruct velocity fields in the left ventricle in multiple patient-specific geome-
tries. This method is applied as a post-processing step to flow fields representative of data
collected from 4D-flow Magnetic Resonance Imaging (MRI) and color-Doppler ultrasound.

While disease states have been linked to flow structures inside the left ventricle [12, 13,
14, 20, 22, 74, 75, 76], the use of quantitative measures of blood flow in the clinic are limited
by blood flow imaging technology. To measure blood flow in the clinic, the most common
tools are color-Doppler ultrasound and 4D-flow MRI. In general, in the clinic, color-Doppler
ultrasound provides a single component of velocity parallel to the ultrasound beam on a 2D
plane, although recent developments in research have expanded it to multiple components in
multiple planes [77, 78]. 4D-flow MRI can be used to measure and evaluate a full 3D blood
flow field in a 3D domain, but 4D-flow MRI data is noisy, and it does not satisfy physical
constraints, such as the divergence-free condition, complicating further analysis of the flow
field [2]. Both types of measured flow fields are noisy and have low spatial and temporal
resolution, and would benefit from improved filtering and reconstruction methods.

In order to improve the quality of the data collected from 4D-flow MRI, many techniques
have been developed to address different sources of error and make 4D-flow MRI easier
to use in the data acquisition stages. One of the main roadblocks to 4D-flow MRI being
widely used in the clinic is long acquisition times, which are typically on the order of 5 to
25 minutes [2]. In order to address this, many methods have been developed to decrease
acquisition time, even though this sometimes comes at the cost of the quality of flow data
[79, 80, 81, 82]. Other techniques have been developed that focus on tuning acquisition
parameters to improve the quality of the acquired data [54, 55, 73].

Other methods incorporate improvements in the post-processing stages by using infor-
mation about physiological conditions of flow to filter 4D-flow MRI data. In particular,

87
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the concept that blood is incompressible is enforced by introducing a divergence-free con-
dition to the measured flow field. Song et al. use a projection operation into the space of
divergence-free vector fields to reduce noise [65]. Busch et al. combine normalized convolu-
tion and divergence-free radial basis functions to de-noise 4D-flow MRI data [66]. Santelli
et al. combined divergence-free wavelets and the finite difference method to iteratively re-
construct the flow field by regularizing phase and magnitude in alternating iterations [67].
Schiavazzi et al. use a divergence-free linear filter to de-noise three-dimensional velocity
fields [63]. These methods all enforce a divergence-free condition, but in another approach,
Ong et al. enforces a ‘soft’ divergence-free condition using wavelet transforms to account for
inaccurate boundary conditions [69]. Ong et al. argue that due to the resolution of the data,
introducing a strict divergence-free condition results in unwanted boundary affects near the
edges if the segmentation of the domain is imperfect. Tafti et al. [83] and Bostan et al. [84]
use variational reconstruction algorithms that minimize a cost function that includes the
difference between the reconstructed and measured flow field and other measures that take
into account physical properties of flow. All of these methods have been shown to reduce
noise in different cases and they have also been evaluated by other groups. Sereno et al. [85]
recommend the methods by Song [65] and Ong [69] due to their quick computation times.
Loecher et al. [86] also recommends Song’s algorithm [65] over Busch’s algorithm [66] when
added to PC-VIPR 4D-flow data.

As evidenced by the range of these methods, the incompressibility of blood flow is an
important characteristic, but there are other aspects of blood flow that are also important to
capture in the post-processing stages. For example, accurate boundary conditions are very
important for further analysis of flow fields. In particle-tracking analyses, errors at the wall
will cause particles to flow through the wall, and clinically valuable measures such as wall
shear stress require physiological boundary conditions. Due to the importance of further
analysis of the flow fields for gathering diagnostic information, our method was designed
to enforce a strict divergence-free condition, in addition to satisfying specified boundary
conditions.

In this chapter, we use the open-boundary modal analysis method described in Chapter
4 to de-noise velocity fields in the left ventricle such that the resulting field is divergence-
free and satisfies appropriate boundary conditions. This method calculates a set of modes,
based on the geometry of the domain and specified boundary conditions, and then projects
the data onto these modes to produce a new velocity field. The modes are calculated by
solving for velocity fields that minimize velocity gradient, and there are two types of modes:
interior and boundary. Here, the boundary modes are modified for the specific left ventricle
application. Velocity gradient is related to viscous dissipation, so the method seeks velocity
fields that minimize energy losses through viscous dissipation. In the heart, the natural
vortex formation has been hypothesized to minimize kinetic energy dissipation [12, 40], and
healthy patients have been shown to have lower energy losses in the heart, measured as a
sum of velocity gradients, compared to diseased patients [14, 49].

In order to test the method using a dataset where the ‘ground truth’ is available, data
from computational fluid dynamics simulations were used. Noise was added to these data
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sets to represent imaging data. Reconstructions were performed on the original CFD data
and the noisy versions of the data. In addition, the reconstruction was tested on very sparse
versions of the data sets and data sets where only one or two components of velocity were
available.

5.2 Methods

A velocity field is reconstructed by projecting the measured velocity data onto a limited
number of velocity modes, where the modes are based on the instantaneous geometry of the
domain. The method is described in detail in Chapter 4. In this chapter, the boundary
modes are modified for the left ventricle application. This is described in section 5.2.1.
Multiple different data sets from multiple patients are tested, with varying amounts of noise
and sparsity. These are described in section 5.2.3. Figure 5.1 shows an overview of the
velocity field reconstruction process.

Figure 5.1: Overview of the modal analysis reconstruction process, from measuring the data to
producing the new, reconstructed velocity field.

Examples of interior modes and boundary modes for one of the left ventricule geometries
used in this Chapter are shown in Figures 5.2 and 5.3 respectively.
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Figure 5.2: Examples of five different interior modes for LV2 at the 13th time step, during diastole.
The color indicates velocity magnitude with red high and blue low. The lines are a line integral
convolution of the velocity field, where the lines are indicative of flow direction.

Figure 5.3: Examples of three different boundary modes for LV2 at the 13th time step, during
diastole. The color indicates velocity magnitude and the lines are a line integral convolution of the
velocity field, where the lines are indicative of flow direction. The mitral valve, which is at the top
right in these snapshots, is open. The velocity changes over the mitral valve between the modes,
whereas the velocity patterns on the rest of the walls stay the same between modes, although the
magnitude may vary.

5.2.1 Boundary Modes for the Left Ventricle

The boundary modes are the modes that allow flow through the boundary. There are two
main types of boundaries, one where the velocity is known exactly, known as a ‘closed
boundary’, and another where the velocity data in those areas is noisy or unknown, known
as an ‘open boundary’. It is possible to have more than one of each type of boundary.

Each boundary mode is associated with a single boundary condition. Multiple boundary
modes come from multiple boundary conditions. If the velocity field on the boundary is
known exactly, (i.e. is entirely a ‘closed boundary’), then only a single boundary mode is
needed. This boundary mode will have a boundary condition equal to the known velocity
information. For velocity data in the left ventricle, the flow on the boundary is noisy, and
therefore a set of boundary modes is needed in order to eliminate the noise.

Additionally, the boundary modes can be modified to include different types of boundary
conditions on different parts of the boundary. This can be used to leverage information
about the physics of the flow on and near the boundaries. Therefore, we tested two types
of boundary conditions to better understand the extent to which this information would
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be valuable in the reconstruction. The first type uses information about wall movement to
inform the boundary conditions, and the second type uses blood velocity data at the wall to
inform the boundary conditions.

Boundary Modes - Incorporating Wall Motion The first type of boundary mode
uses information about movement of the wall to determine velocity boundary conditions at
the walls. This is based on the assumption that because there is no flow through the walls
and there is a no-slip condition on the walls, that the velocity of the blood at the walls will
be proportional to the velocity of the wall. To implement this, the domain is split into two
parts. The first part contains the walls and the closed valve, where the boundary condition is
set based on the motion at the wall. All of the modes will have the same boundary condition
on this part of the boundary. The second part contains the valve that is open during that
part of the cycle. The set of modes comes from a set of boundary conditions on this part of
the boundary.

In order to determine the velocity of the walls, the change in location of the walls between
time steps is measured. Tracking this change in location is itself its own research problem
[87]. If the motion of the wall was available, we used this information. When this information
was unavailable, we used the method described by Myronenko and Song with code they have
made openly available [88] to determine the wall motion.

For the second part of the boundary, with the (single) open valve, the flow through the
valve is assumed to be perpendicular to the surface. A set of scalar modes, described below
in ‘Solving Scalar Modes on a Surface’, is calculated on the valve. For each scalar mode, at
each point on the surface, the velocity is set to be normal to the surface with the magnitude
of the scalar mode at that point.

For each mode, there is a unique boundary condition on the valve, and a single boundary
condition on the rest of the surface. In order to ensure conservation of mass, the magnitude
of the flow through the valve is adjusted to be equal and opposite the flow through the rest
of the surface. Each of these combined boundary conditions results in a single boundary
mode.

Boundary Modes - Incorporating Wall Velocity Data The second type of boundary
mode is based on the velocity data at the wall, in order to address the fact that our ability
to calculate wall motion is not perfect. Again, the boundary is split into two different parts,
the open valve and the rest of the wall. The boundary condition on the valve is calculated
the same was as it is in the previous type of boundary mode, but the conditions on the rest
of the walls are treated differently. Instead of the boundary conditions based on wall motion,
this time the velocity data at the wall is used.

However, the data at the wall is noisy, so it is not used as-is. Instead, a type of modal
analysis is used to smooth the velocity data at the wall. First, a set of scalar modes on
the wall are calculated, in the same way as for the valve, as described below in ‘Solving
Scalar Modes on a Surface’. Then, each component of velocity on the wall (vx, vy, and vz)
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is projected onto the set of modes, resulting in a single, de-noised, velocity field at the wall.
To ensure conservation of mass, for each scalar mode in the valve, the magnitude of the flow
through the valve is set to balance the flow through the walls.

Solving Scalar Modes on a Surface For ‘open boundary’ conditions, where the velocity
information is not known exactly, a series of scalar modes is developed for the boundary
conditions. This method is similar to the interior modes solved inside the domain, but
instead we are interested in a surface, and we are solving for a scalar field, not a velocity
field. The ith scalar mode, gi, is the result of the Laplace eigenvalue problem, where gi is set
to 0 on the edge of the surface (δΩ) and gi is a scalar field on the given surface:

∆gi = −λgi gi
gi = 0 on δΩ.

(5.1)

5.2.2 Projection of Data onto Modes

In almost all cases, the projection of the data onto the modes is performed by a least squares
optimization to minimize the difference between the data and the new reconstructed velocity
field, as described in Section 4.2.3. The least squares algorithm determines the coefficients,
α, for each mode that describe the contribution of that mode to the new, reconstructed
velocity field. The form for the reconstructed velocity field, Ur, is the same as before:

Ur =

NI∑
i=1

αIiu
I
i +

Nb∑
i=1

αbiu
b
i =

N∑
i=1

αiui (5.2)

where uIi are interior modes, ubi are boundary modes, NI is the number of interior modes
available, Nb is the number of boundary modes available, and N = NI +Nb.

In the case where the reconstruction was performed from only a single component of
velocity, an additional constraint was included where the least squares algorithm was mod-
ified to include ridge regression. In the ridge regression formulation, the coefficients, α, are
determined by solving this modified least squares problem:

min
α
‖Utrue −Ur‖2

2 = min
α
‖Utrue − (
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αIiu
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b
i)‖2

2 + γ‖
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αIi ‖2
2

= min
α
‖Utrue −Aα‖2

2 + γ‖αi‖2
2

where each column of A contains information for one mode, αi is a vector containing the
interior mode coefficients, and γ is an experimentally determined parameter, and in this case
was set equal to 106.

Table 5.1 describes the parameters available for modification in the reconstruction algo-
rithm.
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Parameter Forms (Details)/[Levels of Parameter]
Interior Modes [Any number of modes can be used,

up to the number calculated.]

Boundary Modes
Original (based on wall movement)/[Any number of modes

can be used, up to the number calculated.]
New (based on flow data)/[Any number of modes

can be used, up to the number calculated.]
Type of Projection [Least Squares, Ridge Regression]

Table 5.1: Summary of parameters that can be adjusted by the user in the reconstruction. In the
clinic, these parameters will be adjustable by the user.

5.2.3 Application to Data

The reconstruction was performed on multiple data sets, using a variety of noise levels and
different levels of sparsity of the data.

CFD Data from Linköping University

Results from computational fluid dynamics (CFD) simulations performed at Linköping Uni-
versity were used to test the method. CFD provides all three components of velocity in
a three-dimensional domain. Unlike image data, the results of a simulation satisfy the
divergence-free condition and also have a much higher resolution than images. The simula-
tions are a result of a fluid dynamics simulation where the geometry of the heart was collected
from Computed Tomography (CT) images at Linköping University. The simulations were
performed by Jonas Lantz and Tino Ebbers. Three different data sets were used, where each
is a left ventricle from a different patient, and are referred to as LV1, LV2, and LV3. A
snapshot of LV1 can be seen in Figure 5.4. For this project, the results of the simulation
were down-sampled to represent a 4D-flow MRI acquisition, and then different levels of noise
were added to the data.

Noisy Data

Two types of noise were considered to represent different types of imaging data. In the first
type, random noise was added directly to the velocity field. Gaussian noise with a zero
average and standard deviation of 0.1%, 1%, 10%, 20% and 50% of the maximum velocity
component was added to each component of the velocity, resulting in five different velocity
fields that could be input to the algorithm for each data set. In the second, ‘MRI type’,
noise, a signal was calculated using the five-point balanced flow-encoding method described
by Johnson and Markl, noise was added to the signal with varying magnitudes, and then
the velocity fields were re-calculated from the signal [69, 73].
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Sparse and Incomplete Data

The ability to reconstruct from sparse and incomplete data sets has applications in multiple
types of medical imaging. Here, we perform the velocity reconstruction using data from
a reduced number of points in the domain, and also using only one or two components of
velocity. In all types of reconstructions, the modes are calculated on the original meshes
that contain the entire domain. The projection of the data onto the modes is modified
to only include the limited velocity information. For the sparse data sets, or the reduced
number of data points, a specified percentage of the data points are excluded from the
projection. For limited components of velocity, all data points are available but only the
specified components of velocity are used in the projection.

The different possible inputs to the method are described in Table 5.2 and example input
velocity fields are shown in Figure 5.4.

Figure 5.4: Screenshots of examples of velocity fields that are inputs to the reconstruction algo-
rithm. Each screenshot is a slice of the left ventricle during filling. The color represents the velocity
magnitudes and the lines are a line integral convolution of the velocity field.

5.2.4 Reconstruction Summary

In order to test the abilities of the modal reconstruction algorithm, a variety of different types
of velocity fields are reconstructed using varying numbers of modes, as described above. The
general process, from measuring the data to a new, reconstructed velocity field is shown
in Figure 5.1. This process is executed for all data sets at each time point. There are
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Parameter Forms (Details)/[Levels of Parameter]

Noise Type and Level
None

Gaussian [0.01, 0.1, 0.2, 0.5]
MRI-type [0.01, 0.1, 0.2, 0.5]

Sparsity [All data available, 50% available, 20% available]

Incomplete
[All 3 components of velocity available,

2 components available, 1 component available]

Table 5.2: Summary of parameters describing the input data for the reconstruction. In the clinic,
these would not be adjustable. They are adjusted here to test the efficacy of the method and
explore different possibilities in the clinic.

multiple parameters used in the reconstruction that can be modified by the user to achieve
a better velocity field, including the number of modes used in the reconstruction and the
type of projection. These parameters are described in Table 5.1. A variety of different
parameter levels are explored here. For all test cases for a specific time point and geometry,
the interior modes are the same. For all cases except the ‘new boundary condition’, the
boundary conditions are as described in Section 5.2.1. For the ‘new boundary condition’,
the boundary modes are modified as described in Section 5.2.1. However, the number of
modes made available for the reconstruction was varied for each reconstruction to explore
how the number of modes affects the reconstruction.

To test the robustness of the method, a variety of different types of velocity data are
used as inputs into the method. They are outlined in Table 5.2. These alternative versions
of the fields replace the ‘velocity data’ (Figure 5.1) but the modes are unaffected. The
reconstructed field will be dictated by this input velocity field. The original velocity data
with no noise is used to test the ability of the method to capture a typical velocity field in
the heart.

5.2.5 Error Calculation

To evaluate the quality of each reconstruction, the reconstructed velocity field was compared
to the true velocity field. The error of a velocity field at a specific time point was calculated

El2 =

√
3∑
i=1

n∑
j=1

(
vji,true − v

j
i,reconstructed

)2

√
3∑
i=1

n∑
j=1

(vji,true)
2

(5.3)

where vji is ith component of velocity at the jth point, and n is the number of points in the
domain.
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The error was calculated for both the new reconstructed velocity field, and the velocity
field that is being reconstructed (i.e. the ‘noisy’ velocity fields). The ‘true’ velocity field has
an error of 0, and all other velocity fields (‘noisy’ and reconstructed) have a positive error.
In the following section, the error of the reconstructed velocity field is compared to the error
of the velocity field it was reconstructed from.

5.3 Results

For each data set, multiple reconstructions were performed. First, noise was added to the
original data, and then multiple different types of reconstructions were performed, each
with a varying number of modes used. Between 50 and 300 interior modes were used, and
between 10 and 42 boundary modes were used. If it is not specified, the maximum number
of boundary modes (42) were used in the reconstruction.

5.3.1 Application to Noisy Data

Overall, the observed trends aligned with what was seen in Chapter 4. In general, increasing
the numbers of modes used for the reconstruction decreased the error of the reconstructed
velocity field (Figure 5.5). This is expected because higher modes have more complex flow
structures, so increasing the number of modes used in the reconstruction increases the com-
plexity of flow features that can be captured. However, when the error of the ‘noisy’ field
(without reconstruction) was high initially, adding more modes did not necessarily decrease
the error of the reconstructed field. In these cases, the higher modes capture the noise rather
than eliminating noise. Although increasing the numbers of modes did not always decrease
error in these cases, all reconstructions with all numbers of modes had much lower error than
the original noisy velocity field. For low noise levels (including the ‘Original’ velocity field
with no noise added), the reconstructions had higher errors than the original field. This is
expected because there were not enough modes available in the reconstruction to perfectly
capture all the flow features. As the number of modes used for these reconstructions in-
creased, the error accordingly decreased. Overall, the error of the reconstructed field was
very consistent, regardless of the noise added to the velocity field. Figure 5.5 shows the error
of the reconstructed velocity fields plotted against the error of the fields being reconstructed
for two time points for LV2. The patterns discussed can be seen for these two time points
and were consistent across all of the datasets for all time points.
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Figure 5.5: Error of reconstructed field for LV2 at different time points. The x-axis is the error of
the velocity field that is being reconstructed, and the y-axis is the error of the reconstructed velocity
field. For example, ‘0’ on the x-axis corresponds to the ‘Original’ velocity field, and other points
further to the right indicate velocity fields with noise added. The solid dots show the standard
reconstruction type and the the stars show the reconstruction with the new boundary condition.
The different colors represent different numbers of interior modes (IM) and boundary modes (BM)
used in the reconstruction.

For the CFD data, the influence of the interior modes was observed to be much larger than
that of the boundary modes. This is evident because changing the number of interior modes
had a larger effect on the error for almost all cases (Figure 5.5). The biggest exception was
during systole for LV1. Upon further examination, it could be seen that the flow structures
inside the ventricle during systole were very small compared to the flow exiting through the
aortic valve. In the other example ventricles, LV2 and LV3, there appear to be non-negligible
flow structures during systole, meaning that the interior modes are more important than in
LV1 during systole.

In addition, the second type of boundary mode, which uses the measured velocity at
the wall to determine boundary conditions, decreased the errors in the reconstructions com-
pared to the original boundary mode, which uses wall movement information to determine
boundary conditions (Figures 5.5 and 5.6). However, the amount that the second type of
boundary mode improved the error varied with the different time points and different cases.
These discrepancies are likely caused by the fact that the algorithm to track wall changes in
time performed better at some time points than others. Flow fields at a few representative
time points are shown in Figures 5.8 and 5.9.
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Figure 5.6: Error of reconstructed fields at multiple time points for the different types of recon-
structions (colors) with varying number of modes used for the reconstruction when reconstructed
from a noisy velocity field with MRI-type noise.
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Figure 5.7: Error of reconstructed fields at multiple time points for the different types of recon-
structions (colors) with varying number of modes used for the reconstruction when reconstructed
from a noisy velocity field with regular noise.
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(a) True flow field.

(b) Flow field recon-
structed from the true
flow field with 300 in-
terior modes and 42
boundary modes.

(c) Flow field recon-
structed from the true
flow field with 300 in-
terior modes and 42 of
the new type of bound-
ary modes.

(d) Flow field recon-
structed using only two
components of veloc-
ity from the true flow
field with 300 interior
modes and 42 bound-
ary modes.

(e) Flow field with
MRI-type artificial
noise added.

(f) Flow field recon-
structed from the noisy
flow field with 300 in-
terior modes and 42
boundary modes.

(g) Flow field recon-
structed from the noisy
flow field with 300 in-
terior modes and 42 of
the new type of bound-
ary modes.

(h) Flow field recon-
structed using only two
components of veloc-
ity from the noisy flow
field with 300 interior
modes and 42 bound-
ary modes.

Figure 5.8: Snapshots of original and reconstructed flow fields of LV2 during systole. The color
indicates velocity magnitude and the lines are a line integral convolution of the velocity field, where
the lines are indicative of flow direction.
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(a) True flow field.

(b) Flow field recon-
structed from the true
flow field with 300 in-
terior modes and 42
boundary modes.

(c) Flow field recon-
structed from the true
flow field with 300 in-
terior modes and 42 of
the new type of bound-
ary modes.

(d) Flow field recon-
structed using only two
components of veloc-
ity from the true flow
field with 300 interior
modes and 42 bound-
ary modes.

(e) Flow field with
MRI-type artificial
noise added.

(f) Flow field recon-
structed from the noisy
flow field with 300 in-
terior modes and 42
boundary modes.

(g) Flow field recon-
structed from the noisy
flow field with 300 in-
terior modes and 42 of
the new type of bound-
ary modes.

(h) LV2: Snapshot of
flow field in LV2 at
t/T = 14/20 recon-
structed using only two
components of veloc-
ity from the noisy flow
field with 300 interior
modes and 42 bound-
ary modes.

Figure 5.9: Snapshots of flow fields in original and reconstructed flow fields of LV2 during diastole.
The color indicates velocity magnitude and the lines are a line integral convolution of the velocity
field, where the lines are indicative of flow direction.
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5.3.2 Application to Data - Sparse and Incomplete Data

Sparse and incomplete results were only evaluated for the original type of boundary modes.
The sparse results refer to reconstructions where only 50 or 20% of the data was available
to the reconstruction algorithm. The incomplete results refer to reconstructions where only
one or two components of velocity are available.

As expected, making less data available to the reconstruction algorithm increased the
errors in the results of the reconstructions. However, the error of the reconstructions with
only half the data were similar to the reconstructions with the full data. Once the data
was reduced to 20%, the errors increased more significantly (the purple and orange bars
in Figures 5.6-5.7). In addition, the errors for the reconstructions with sparse data were
higher during systole than diastole. During systole, the majority of the flow is flow exiting
the ventricle, whereas during diastole, there are more complex vortices forming inside the
ventricle. Because the algorithm emphasizes internal flow structures, as the amount of data
available is reduced, the algorithm has trouble capturing the more direct flow seen in systole.

For all cases, reconstructions using only a single, radial, component of velocity had very
poor reconstructions with errors that were orders of magnitude larger than when recon-
structed with all three components of velocity. The magnitude of the reconstructed velocity
field in these cases was orders of magnitude larger than the true velocity field. To address
this, we modified the projection of the data onto the modes by introducing a ridge regression
to penalize the L2 norm of the coefficients of the modes, which is equivalent to penalizing
large magnitudes of the reconstructed velocity field. The modified projection, denoted as ‘Vr
with condition’, significantly reduced the error in the reconstructed velocity fields from only
a single, radial component of velocity (the blue bars in Figures 5.6-5.7). These errors were
still higher than reconstruction with all three components of velocity, but were now on the
same order of magnitude.

Reconstructions performed from only two available components of velocity, the radial and
azimuthal components, performed comparatively well to the original reconstruction method
(the green bars in Figures 5.6-5.7). For example, the errors for a reconstruction from two
components of velocity with 200 modes was frequently lower than the errors for a recon-
struction from all three components of velocity with 100 modes. This is expected behavior
because for a divergence-free flow field, if two components of velocity are known, the third
component of velocity could be calculated from the divergence-free condition.

5.4 Discussion

The geometric modal analysis method was effective at reducing the noise in flow fields in the
left ventricle, and followed similar patterns to those seen in other example velocity fields in
Chapter 4. When the velocity field had high levels of noise, geometric modal analysis was able
to significantly decrease the noise in the velocity field. By taking advantage of the knowledge
of the geometry of the left ventricle, this method is very robust to noise and would likely
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be effective for other noisy internal flow fields. For velocity fields that had no noise or low
levels of noise initially, the reconstructed velocity field had higher errors than the field being
reconstructed when compared to the true velocity field. In these cases with low levels of noise
initially, the reconstruction was not able to capture all of the flow features because a limited
number of modes are available. The noise levels are low to begin with, so with flow features
missing, the error in the reconstructed velocity field is larger than that of the field being
reconstructed. If more modes were available, then we expect that the reconstruction would
improve. However, the number of modes available is currently limited by the computational
complexity of the problem. Moving forward, we are studying more efficient ways to solve
for modes that would enable us to use more modes in our reconstruction and decrease the
error, especially when we start with low amounts of error in the velocity field.

In addition, other expected trends and those seen in Chapter 4 were observed in the
reconstructions. For the lower levels of initial noise, increasing the number of modes in
the reconstruction decreased the error because the higher modes were able to capture the
flow structures that the lower modes could not capture. At higher levels of initial noise,
increasing the number of modes in the reconstruction increased the error because the higher
modes began to capture the noise in the data. For MRI and ultrasound data, estimates
of the amount of noise in the data are available, and the number of modes used in the
reconstruction could be adjusted based on those noise levels.

In addition to being robust to high noise levels, we saw that geometric modal analysis also
performed well with incomplete information. When only half of the data points were made
available to the algorithm, the reconstructions were still able to reduce the overall error. In
addition, when only two components of velocity were made available, the method was able to
give a good reconstruction. This makes sense in a 3D, divergence-free flow field because in an
error-free field, if two components of velocity are known, then the divergence-free condition
can be used to calculate the third component of velocity. This is promising for some forms
of color-Doppler ultrasound data where two components of velocity are available. When
only a single component of velocity is available, which is the case for the majority of color-
Doppler ultrasound, the original form of the method has trouble reconstructing the velocity
field. However, when the least squares projection algorithm is modified to penalize the L2

norm of the coefficients, a much better result is achieved. While still not as good as when all
components of velocity are known or when only 50% of the data but all three components are
available, this result is still promising for the analysis of flow from color-Doppler ultrasound
data in the clinic.

We saw that there is room for improvement in the quality of reconstructed velocity fields
in modifications of the boundary conditions and boundary modes. Changing the way the
boundary modes were calculated did much more to decrease the error in the reconstructed
velocity fields than increasing the number of boundary modes did, which could happen for
a few reasons. One reason is that the new boundary modes are derived from the available
flow at the boundary, and our measure of error is calculated with the ground truth being the
known velocity at the boundary. In comparison, the original boundary modes are calculated
by measuring the change in the wall position. We would expect the method that uses
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velocity data at the wall to have lower errors because we are using simulation data, so even
with noise added, the velocity data at the boundary is likely to be a better representation
of the actual velocity at the wall than the wall motion that is calculated from an algorithm.
When applying the method to measured data, this comes down to a discussion of which
type of data is more trustworthy, the flow data or the wall boundary and motion. With our
data, the wall data is more trustworthy because we are considering the velocity field from
the simulation to be the ‘true’ data. With actual data the answer is not as clear and depends
on the specific scenario and data measurement techniques used.

For future work, one may consider a few adjustments to the method. Two potential areas
of improvement, as discussed above, are altering the boundary conditions and the projection
of the data onto the modes. We saw that with only one component of velocity, introducing
ridge regression to the projection of the data onto the modes provided significant improve-
ment in the reconstruction. It is expected that other modifications to the projection method
may provide similar improvements. For example, between two time steps, the geometry
and many of the flow structures are similar, but the noise is not. Because the geometry is
similar, it is expected that the modes will be very similar between two time points as well.
It is possible to penalize changes in contributions of modes between adjacent time points to
improve the reconstruction algorithm.

Another important component of this work is evaluating the success of this method based
on diagnostic measures rather than on error in the velocity field. Ultimately, if diagnostic
information can be gathered from the resulting reconstructed velocity fields even if the
reconstruction does not perfectly match the true data, then that is more important in the
clinic than a true reconstruction of the velocity field. In future work, one could focus on
examining the flow in ways that inform about the health of the patient. This could be done
by evaluating the reconstructed field based on its ability to capture structures and the quality
of the flow field using Lagrangian Coherent Structures or by using bulk flow measurements
such as kinetic energy and viscous dissipation rates. Because this method was successful in
reducing the noise in noisy velocity fields in the left ventricle, it is expected that the method
should also be successful in identifying diagnostic information in velocity fields in the left
ventricle.

In Chapter 4 we saw that the geometric modal analysis method was a promising tool
for reducing noise in internal flows, and in this chapter we saw that the geometric modal
analysis method is a promising tool for reducing noise in velocity fields in the left ventricle.
Although there is room for improvement in multiple aspects of the method, we saw that
the method was robust to noise and provided accurate reconstructions for sparse datasets.
Future work can continue to explore this method as a tool for de-noising and reconstructing
velocity fields in the left ventricle in healthy and diseased states.
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Concluding Remarks

6.1 Summary

This dissertation sought to develop computational tools that will improve our ability to
understand blood flow in the left ventricle and how it relates to disease progression. To this
end we developed and studied reduced dimensional estimates of kinetic energy and viscous
dissipation rate in the left ventricle that can be measured using color-Doppler ultrasound
data and we introduced and evaluated a modal analysis technique to de-noise and reconstruct
3D flow fields.

In Chapter 1 we reviewed background and motivation for reconstruction and analysis of
3D flow fields in the left ventricle. In Chapter 2 we introduced and evaluated two methods
to reconstruct the second, in-plane component of velocity for color-Doppler ultrasound that
do not rely on the divergence-free assumption. Although this assumption has been shown
to be over-simplified [30], methods that use this assumption are still being used to evaluate
blood flow quality [20, 28]. The alternative methods without the divergence-free assumption
investigated here did not offer an improvement over methods that used the divergence-
free assumption. When evaluated based on accuracy of the reconstructed component of
velocity, all types of the reconstructions were not much better than assuming the second
component of velocity was zero everywhere. However, the accuracy of the second component
of velocity is not what is most important. What is important is if the velocity field can tell
us diagnostic information. Methods that use the divergence-free assumption have been used
to show differences in blood flow patterns in healthy and diseased patients and therefore the
methods continue to be used to research flow in the left ventricle.

The results of Chapter 2 motivated two different directions of research. The first was to
investigate if diagnostic tools could be calculated from only a single component of velocity
from color-Doppler ultrasound data, thereby avoiding having to make assumptions in order
to calculate the second component of velocity. This line of thought was pursued in Chapter
3. The second direction was to develop a reconstruction method for a 3D domain rather than
a single plane because ultrasound is now able to measure data in a 3D domain. This method
was introduced in Chapter 4 and can be used as a de-noising or reconstruction method.
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The method was applied to synthetic color-Doppler ultrasound and MRI data from the left
ventricle in Chapter 5.

In Chapter 3, reduced dimensional estimates of kinetic energy and viscous dissipation
rate were introduced as potential diagnostic tools, measurable from color-Doppler ultra-
sound data without having to reconstruct a second component of velocity. Using results
of computational fluid dynamics simulations of the left ventricle in three different patients,
virtual measurements were taken and 1D and 2D estimates were compared to 3D measure-
ments across the entire ventricle. Overall, the 1D estimates were correlated with the 3D
measurements. In many cases, the correlations of the 1D estimates were lower than when
both components of velocity were available for a 2D estimate, but higher than when a second
component of velocity was calculated from the first component for the 2D estimate. This
implies that in the clinic, 1D estimates of kinetic energy and viscous dissipation rate could be
valuable tools. When examined at lower resolution and with noise added to the velocity field,
reduced dimensional estimates of kinetic energy were much more robust than viscous dissi-
pation rate. In addition, reduced dimensional estimates of kinetic energy were actually more
strongly correlated than reduced dimensional estimates of viscous dissipation rate with the
measured 3D viscous dissipation rate. This finding indicates that while imaging in the clinic
is still noisy and has low resolution, using estimates of kinetic energy rather than viscous
dissipation rate could give a better prediction of true viscous dissipation rate. Only simula-
tion data was used in this dissertation, so it is worth further investigation into these reduced
dimensional estimates using color-Doppler ultrasound data from patient populations.

Chapter 4 was a transition back to reconstruction and de-noising methods, but this time
in 3D. An open-boundary modal analysis method was developed for 3D velocity fields. In
Chapter 4 this method is described in detail and tested on three example problems. The test
problems were the results of simulations so that the reconstructions could be compared to
a known velocity field. In open-boundary modal analysis, the modes are calculated directly
from the geometry, without any influence from the flow data. The flow data is introduced
by projecting the data onto the modes to get a new, reconstructed velocity field. Due to
how the method is implemented, it can be applied to a noisy but fully 3D velocity field, such
as those from MRI data, or to a sparse velocity field either missing data at certain points
or missing some components of velocity, such as those from color-Doppler ultrasound data.
The method was shown to be very robust to noise, and to perform well on some sparse data
sets, depending on how much and what type of information was available.

In Chapter 5 we applied the open-boundary modal analysis introduced in Chapter 4
to velocity fields from left ventricles. The data used were results of computational fluid
dynamics simulations so that the reconstructions could be evaluated against a true, known
velocity field. Similar results were seen for the left ventricle as with the example problems,
where the method was shown to be very robust to noise and for reconstructions to be
dependent on the number of modes used in the reconstruction and the velocity field available.
When only one component of velocity was available, similar to color-Doppler ultrasound data,
extra penalty terms were required to give adequate results. It is worth continuing to examine
extra conditions that could be applied to improve results for color-Doppler ultrasound data.
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Recent developments in color-Doppler ultrasound data have made a second component of
velocity available [77, 78], and when we started with only two components of velocity, the
method was able to give a good reconstruction, which is a promising result. While many
methods have been introduced to de-noise 3D velocity fields, this method provides advantages
because it results in a divergence-free flow field, satisfies necessary boundary conditions, and
can be applied to multiple types of data.

6.2 Future Directions

As this research continues to progress, it is important to remember that the ultimate goal
of this work is to improve diagnosis and treatment of heart disease by improving blood flow
imaging in the left ventricle. There are many possible directions for continuation of these
projects, but ease of implementation and understanding of results are very important factors
that help determine if a tool will be successful in the clinic.

For color-Doppler ultrasound based measurements, 1D estimates of diagnostic tools
should be pursued, especially in comparison to 2D estimates that are calculated using the
divergence-free assumption. Here, we examined reduced dimensional estimates of kinetic
energy and viscous dissipation rate, but there are other potential diagnostic measures that
could be investigated as well. For example, even with kinetic energy, different studies have
examined different versions of kinetic energy, by indexing to stroke volume [37] or ventricular
volume [38]. In addition, estimates of vortex location and strength based solely on radial
velocity magnitude and gradient of radial velocity could also be developed.

As image processing tools are advancing, the imaging tools themselves are also advancing.
Although not yet used in the clinic, developments in color-Doppler ultrasound have enabled
2D measurements, avoiding the need for 2D reconstructions [77, 78]. When these 2D mea-
surement techniques become widely available, the usage of reduced dimensional diagnostic
tools would need to be modified for this type of data. As both tools and processing meth-
ods continue to progress, it is important to evaluate which tools and methods are accurate,
provide useful diagnostic information, and are easily adaptable in the clinic.

Open boundary modal analysis is also a potentially valuable clinical tool that can continue
to be developed. Currently, one of the limiting aspects of the method is the number of modes
that can be calculated due to the computational complexity of the problem. In the future,
testing different solver methods and preconditioners or even modifying the formulation of the
problem could lead to a more efficient calculation of the modes, speeding up the process and
making the method more clinically viable. Also of importance is a deeper investigation into
the optimal number of modes for different problems. Here, we saw that the optimal number
of modes depended on the flow field, the amount of data available, and the level of noise
of the velocity field. In addition, fitting only a single component of velocity by introducing
extra constraints would be a valuable path to pursue because of its potential use with color-
Doppler ultrasound data. In this work, fitting only a single component of velocity using
traditional least squares led to poor, unusable results. However, introducing a penalty term
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on the magnitude of the coefficients of the modes reduced the error significantly, resulting
in reconstructed velocity fields that captured many of the flow patterns that were present
in the true velocity field. Continued research into methods to further and better constrain
the reconstructed velocity field when only a single component of velocity is available could
make this method viable for multi-plane color-Doppler ultrasound data, which is currently
becoming more widely available in the clinic.

For all parts of the research in this dissertation, an important next step is evaluating the
different methods with respect to clinical outcomes. For the most part, the methods were
evaluated compared to a ‘true’ value or velocity field. In the end, we are interested in how
these methods can be used to evaluate disease, so it is important to study how the estimates
of kinetic energy and viscous dissipation rate and how the reconstructions of the velocity
field perform when healthy cases are compared to diseased cases.

It is also important to note that there are a few qualifications for a tool to be adopted
into the clinic. It is not necessarily the most complex engineering tool used to solve the
most complex problem that qualifies a tool for the clinic. Instead, the tool must be easy to
use and easy to understand. For example, Bermejo et al. noted that spectral Doppler-based
techniques used to quantify the degree of valvular stenosis were quickly adopted in the clinic
due to the fact that they could take measurements non-invasively even though the technique
required highly oversimplified fluid dynamics approximations [20].

Regardless of how this field advances, it is important to always consider the balance be-
tween complexity and accuracy. Ideally, we would like to have the most accurate results with
the highest resolution. However, these tend to come at a high cost. If a simple measurement
can tell us diagnostic information, then that is the most valuable information. In summary,
while there is much work to be done, this thesis demonstrated we can develop tools to help
understand flow that can ultimately be used to improve our understanding of disease and
disease progression, leading to improved clinical outcomes.



Appendix A

Minimization of Velocity Gradient

Minimizing the velocity gradient is equivalent to minimizing multiple other quantities.

A.1 Comparison to viscous dissipation

Viscous dissipation is defined:
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For incompressible flow, ∂vi
∂xi

= 0. As a result, we can reduce viscous dissipation to
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We are concerned with the difference between minimizing viscous dissipation and mini-

mizing the velocity gradient, therefore, we are concerned about the function:

I =
∑
i

∑
j

∂vi
∂xj

∂vj
∂xi

(A.2)

To get the minimum, we will take the first variation and set it equal to 0. Here, we will
show the result of taking the first variation with respect to u1, but we will get the same
results when we take the first variation with respect to u2 and u3. The variation in the u1

direction is v1, and is equivalent to our test function in our finite element formulation.
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In our finite element problem, we will take the integral of δIu1 over a volume, so we can

use the divergence theorem to convert it to a surface integral. The surface integral is equal
to 0, since our test function v1 is equal to 0 on the boundary, as shown below:∫
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We will achieve the same result when we take the first variation with respect to u1 and
u2.

Therefore, minimizing viscous dissipation is the same as minimizing the velocity gradient.
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A.2 Comparison to enstrophy

Enstrophy is defined:
ε = |ω|2 = |∇ × u|2

We can rewrite this
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We are concerned with the difference between minimizing enstrophy and minimizing the

velocity gradient. The difference is

I2 = −
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)
This is the negative of the difference between velocity gradient and viscous dissipation. In
the previous subsection we showed that when we take the minimum, the term −I2 does not
contribute. We will get the same result for positive I2.
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Calculation of Kinetic Energy and Vis-
cous Dissipation Rate in Synthetic Vor-
tex Flows

The following section displays the steps for calculating kinetic energy and viscous dissipation
rate in vortex flow fields with analytical solutions.

B.1 Rigid-body Vortices

In a rigid-body vortex, angular rotational velocity, Ω, is uniform. The center of the vortex
is located at xcex + ycey + zcez = rcer + θceθ + zcez. The velocity field is

u =− Ω(y − yc)ex + Ω(x− xc)ey

=− Ω(r sin θ − rc sin θc)(er cos θ − eθ sin θ) + Ω(r cos θ − rc cos θc)(er sin θ + eθ cos θ)

=Ω(−r sin θ cos θ + rc sin θc cos θ + r cos θ sin θ − rc cos θc sin θ)er

+ Ω(r sin θ sin θ − rc sin θc sin θ + r cos θ cos θ − rc cos θc cos θ)eθ

=Ωrc(sin θc cos θ − cos θc sin θ)er + Ω(r − rc(sin θc sin θ + cos θc cos θ))eθ
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B.1.1 Kinetic Energy

Kinetic energy can be evaluated analytically. In 2D we get:
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In 1D we get
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B.1.2 Viscous Dissipation Rate

The viscous dissipation rate can be evaluated analytically. In 2D we get:

φ2D =0

However in 1D, the viscous dissipation rate estimate yields a nonzero value:
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B.2 Irrotational Vortices

In an irrotational vortex, the velocity is inversely proportional to the center of the vortex:

u =− α(y − yc)((x− xc)2 + (y − yc)2)−1ex + α(x− xc)((x− xc)2 + (y − yc)2)−1ey
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B.2.1 Kinetic Energy

Kinetic energy can be evaluated analytically. In 2D we get:
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B.2.2 Viscous Dissipation Rate

The viscous dissipation rate can be evaluated analytically. In 2D we get:
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=8α2 4(y − yc)2(x− xc)2 + (y − yc)4 − 2(y − yc)2(x− xc)2 + (x− xc)4

((x− xc)2 + (y − yc)2)4

=8α2 (y − yc)4 + 2(y − yc)2(x− xc)2 + (x− xc)4

((x− xc)2 + (y − yc)2)4

=8α2 ((y − yc)2 + (x− xc)2)2

((x− xc)2 + (y − yc)2)4

=
8α2

((x− xc)2 + (y − yc)2)2

=
8α2

((r cos θ − rc cos θc)2 + (r sin θ − rc sin θc)2)2

=
8α2

(r2 + r2
c − 2rrc cos(θc − θ))2

But in 1D:

φ1D =
16r2 sin2(θc − θ)(r − rc cos(θc − θ))2

(r2 + r2
c − 2rrc cos(θc − θ))4

+

4

(
− r2 + 2rrc cos(θc − θ)− r2

c cos2(θc − θ) + r2
c sin2(θc − θ)

)2

(r2 + r2
c − 2rrc cos(θc − θ))4
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B.3 Lamb-Oseen Vortex

The Lamb-Oseen vortex is an exact solution of the 2D Navier-Stokes equation.
When the center is at r = 0,

vr =0

vθ =
γ

2πr

(
1− exp

(
− r2

c2(t)

))
where

γ = circulation contained in the vortex

ν = viscosity

c(t) =
√

4νt+ c2(0)

In cartesian coordinates, we have

vx =− γ

2πr

(
1− exp

(
− r2

c2(t)

))
sin(arctan(y/x))

vy =
γ

2πr

(
1− exp

(
− r2

c2(t)

))
cos(arctan(y/x))

vx =− γ

2πr

(
1− exp

(
− r2

c2(t)

))
(y/r)

vy =
γ

2πr

(
1− exp

(
− r2

c2(t)

))
(x/r)

vx =− γ

2π(x2 + y2)

(
1− exp

(
− (x2 + y2)

c2(t)

))
y

vy =
γ

2π(x2 + y2)

(
1− exp

(
− (x2 + y2)

c2(t)

))
x
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When the center is at r = rc, θ = θc,

vx =− γ

2π((x− xc)2 + (y − yc)2)

(
1− exp

(
− ((x− xc)2 + (y − yc)2)

c2(t)

))
(y − yc)

vy =
γ

2π((x− xc)2 + (y − yc)2)

(
1− exp

(
− (((x− xc)2 + (y − yc)2)

c2(t)

))
(x− xc)

vx =−
γ

(
1− exp

(
− r2+r2c−2rrc(sin θ sin θc+cos θ cos θc)

c2(t)

))
2π(r2 + r2

c − 2rrc(sin θ sin θc + cos θ cos θc))
(r sin θ − rc sin θc)

vy =

γ

(
1− exp

(
− r2+r2c−2rrc(sin θ sin θc+cos θ cos θc)

c2(t)

))
2π(r2 + r2

c − 2rrc(sin θ sin θc + cos θ cos θc))
(r cos θ − rc cos θc)

In polar coordinates, we have

vr =

γ

(
1− exp

(
− r2+r2c−2rrc(sin θ sin θc+cos θ cos θc)

c2(t)

))
2π(r2 + r2

c − 2rrc(sin θ sin θc + cos θ cos θc))

(
− (r sin θ − rc sin θc) cos θ

+ (r cos θ − rc cos θc) sin θ

)

vθ =

γ

(
1− exp

(
− r2+r2c−2rrc(sin θ sin θc+cos θ cos θc)

c2(t)

))
2π(r2 + r2

c − 2rrc(sin θ sin θc + cos θ cos θc))

(
(r sin θ − rc sin θc) sin θ

+ (r cos θ − rc cos θc) cos θ

)

vr =

γ

(
1− exp

(
− r2+r2c−2rrc(sin θ sin θc+cos θ cos θc)

c2(t)

))
2π(r2 + r2

c − 2rrc(sin θ sin θc + cos θ cos θc))

(
rc(sin θc cos θ − cos θc sin θ)

)

vθ =

γ

(
1− exp

(
− r2+r2c−2rrc(sin θ sin θc+cos θ cos θc)

c2(t)

))
2π(r2 + r2

c − 2rrc(sin θ sin θc + cos θ cos θc))

(
r − rc(sin θc sin θ + cos θc cos θ)

)
vr =

γrc sin(θc − θ)
2π(r2 + r2

c − 2rrc cos(θc − θ))

(
1− exp

(
− r2 + r2

c − 2rrc cos(θc − θ)
c2(t)

))
vθ =

γ(r − rc cos(θc − θ))
2π(r2 + r2

c − 2rrc cos(θc − θ))

(
1− exp

(
− r2 + r2

c − 2rrc cos(θc − θ)
c2(t)

))
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B.3.1 Kinetic Energy

In 2D, kinetic energy is equal to

KE2D =
1

2

γ2
(
r2
c sin2(θc − θ) + r2 − 2rrc cos(θc − θ) + r2

c cos2(θc − θ)
)

4π2(r2 + r2
c − 2rrc cos(θc − θ))2

(
1

− exp

(
− r2 + r2

c − 2rrc cos(θc − θ)
c2(t)

))2

=
1

2

γ2
(
r2
c + r2 − 2rrc cos(θc − θ)

)
4π2(r2 + r2

c − 2rrc cos(θc − θ))2

(
1− exp

(
− r2 + r2

c − 2rrc cos(θc − θ)
c2(t)

))2

.

In 1D,

KE1D =
γ2
(
r2
c sin2(θc − θ)

)
8π2(r2 + r2

c − 2rrc cos(θc − θ))2

(
1− exp

(
− r2 + r2

c − 2rrc cos(θc − θ)
c2(t)

))2

.

B.3.2 Viscous Dissipation Rate

The viscous dissipation rate can also be evaluated analytically, but that is not explored
herein.

B.4 Hill’s Spherical Vortex

In 3D, the velocity field within a Hill’s Spherical Vortex centered at (0, 0, 0) with radius c is:

vr =
3U

2c2
rz

vθ =0

vz =
3U

2c2
(c2 − 2r2 − z2)

which in cartesian coordinates is

vx =
x√

x2 + y2

3U

2c2

√
x2 + y2z =

3U

2c2
xz

vy =
y√

x2 + y2

3U

2c2

√
x2 + y2z =

3U

2c2
yz

vz =
3U

2c2
(c2 − 2(x2 + y2)− z2)



119 Chapter B

The velocity field outside of the vortex centered at (0, 0, 0) with radius c is:

vr =
3c3U

2

rz

(r2 + z2)5/2

vθ =0

vz =− U − c3U

2

(r2 − 2z2)

(r2 + z2)5/2

which in cartesian coordinates is

vx =
x√

x2 + y2

3c3U

2

√
x2 + y2z

(x2 + y2 + z2)5/2
=

3c3U

2

xz

(x2 + y2 + z2)5/2

vy =
y√

x2 + y2

3c3U

2

√
x2 + y2z

(x2 + y2 + z2)5/2
=

3c3U

2

yz

(x2 + y2 + z2)5/2

vz =− U − c3U

2

(x2 + y2 − 2z2)

(x2 + y2 + z2)5/2

For the purposes of a 2D examination of a vortex, we will look at the vortex in the x− z
plane, where y = 0. Therefore, vy goes to 0 and we care about vx and vz. In addition, we
consider a vortex centered at (xc, 0, zc).

Inside the vortex, we get

vx =
3U

2c2
(x− xc)(z − zc)

vy =0

vz =
3U

2c2
(c2 − 2(x− xc)2 − (z − zc)2).

Outside of the vortex, the velocity is

vx =
3c3U

2

(x− xc)(z − zc)
((x− xc)2 + (z − zc)2)5/2

vy =0

vz =− U − c3U

2

((x− xc)2 − 2(z − zc)2)

((x− xc)2 + (z − zc)2)5/2
.

Now, we consider the results in a special version of radial coordinates, where y is taken
to be the azimuthal direction and the r-θ plane corresponds to the x-z plane. In these radial
coordinates the conversion of coordinates looks like:

er =ez cos θ + ex sin θ eθ =− ez sin θ + ex cos θ

ez =er cos θ − eθ sin θ ex =er sin θ + eθ cos θ
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Inside the vortex the velocity field looks like:

vr =vx sin θ + vz cos θ

=
3U

2c2
(x− xc)(z − zc) sin θ +

3U

2c2
(c2 − 2(x− xc)2 − (z − zc)2) cos θ

=
3U

2c2
(r sin θ − rc sin θc)(r cos θ − rc cos θc) sin θ

+
3U

2c2
(c2 − 2(r sin θ − rc sin θc)

2 − (r cos θ − rc cos θc)
2) cos θ

vθ =vx cos θ − vz sin θ

=
3U

2c2
(x− xc)(z − zc) cos θ − 3U

2c2
(c2 − 2(x− xc)2 − (z − zc)2) sin θ

=
3U

2c2
(r sin θ − rc sin θc)(r cos θ − rc cos θc) cos θ

− 3U

2c2
(c2 − 2(r sin θ − rc sin θc)

2 − (r cos θ − rc cos θc)
2) sin θ.
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Outside of the vortex the velocity field looks like:

vr =vx sin θ + vz cos θ

=
3c3U

2

(x− xc)(z − zc)
((x− xc)2 + (z − zc)2)5/2

sin θ −
(
U +

c3U

2

((x− xc)2 − 2(z − zc)2)

((x− xc)2 + (z − zc)2)5/2

)
cos θ

=− U cos θ +

(
c3U

2((x− xc)2 + (z − zc)2)5/2

)(
3(x− xc)(z − zc) sin θ

− ((x− xc)2 − 2(z − zc)2) cos θ

)
=− U cos θ

+

(
c3U

2((r sin θ − rc sin θc)2 + (r cos θ − rc cos θc)2)5/2

)(
3(r sin θ − rc sin θc)(r cos θ

− rc cos θc) sin θ − ((r sin θ − rc sin θc)
2 − 2(r cos θ − rc cos θc)

2) cos θ

)
vθ =vx cos θ − vz sin θ

=
3c3U

2

(x− xc)(z − zc)
((x− xc)2 + (z − zc)2)5/2

cos θ +
(
U +

c3U

2

((x− xc)2 − 2(z − zc)2)

((x− xc)2 + (z − zc)2)5/2

)
sin θ

=U sin θ +

(
c3U

2((x− xc)2 + (z − zc)2)5/2

)(
3(x− xc)(z − zc) cos θ + ((x− xc)2

− 2(z − zc)2) sin θ

)
=U sin θ

+

(
c3U

2((r sin θ − rc sin θc)2 + (r cos θ − rc cos θc)2)5/2

)(
3(r sin θ − rc sin θc)(r cos θ

− rc cos θc) cos θ + ((r sin θ − rc sin θc)
2 − 2(r cos θ − rc cos θc)

2) sin θ

)
.

The kinetic energy and viscous dissipation rate can also be evaluated analytically, but
they are not explored in this paper.
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