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The Search for Invariance:  

Repeated Positive Testing Serves the Goals of Causal Learning. 

 

Elizabeth Lapidow & Caren M. Walker 

University of California, San Diego  

 

To appear in Childers, J.B., Graham, S.A. & Namy, L. (Eds). (2019). Learning 

Language and Concepts from Multiple Examples in Infancy and Childhood 

 

What is invariant does not emerge unequivocally except with a flux. The essentials 

become evident in the context of changing nonessentials.  – James Gibson, 1979 

 

Human learners are intuitively exploratory: We acquire new knowledge from the 

outcomes of our actions. However, in order for exploration to support learning, at least 

some of these actions must serve to evaluate our existing knowledge. Despite this need 

for informative ‘hypothesis testing’ in everyday learning, decades of research examining 

self-directed experimentation suggests that learners rarely choose informative tests. That 

is, instead of selecting actions to test whether their current hypothesis is correct, both 

children and adults tend to prefer ‘positive tests’: actions that will produce an effect 

assuming their current hypothesis is correct (see Klayman, 1995; Zimmerman, 2007).  

To illustrate, suppose you drop an ice cube on the floor and it shatters. As a 

learner, you might form an initial hypothesis that ‘impact with an unyielding surface 

causes ice to shatter.’ This hypothesis is also a causal explanation for your observation: 

indicating how one variable (X) makes a difference to the state of another variable (Y). 

According to traditional interpretations of Popper’s (1959) falsificationist approach, 

testing this hypothesis would require disconfirming its alternatives. That is, assessing 

whether ‘X is the cause of Y,’ requires ‘negative tests,’ or actions to determine whether Y 

occurs in the absence of X. Here, since Y is ‘shattering’ and X is ‘impacting an unyielding 

surface,’ you should drop an ice cube on a yielding surface (not-X), like rubber or cotton, 

to determine whether it will shatter.  

However, learners rarely choose this kind of disconfirming action during their 

exploration. Instead, they are much more likely to repeat the initial observation: e.g., to 

pick up another ice-cube and drop it on the same surface, or a similar one. This tendency 

to generate multiple positive examples is a puzzling characteristic of self-directed 

learning, since it does not initially appear to be informative. After all, these repeated 

demonstrations often produce the same evidence, and do not distinguish between the 

current hypothesis (i.e., impacting an unyielding surface) and potential alternatives (e.g., 

impacting any surface at a particular speed), since they are consistent with both. Why 

then, do self-directed learners consistently and repeatedly conduct positive tests?  

 In this chapter, we propose a novel answer to this question: the Search for 

Invarinace (SI) hypothesis, which suggests that observing muliple, positive examples 

may facilitate learning by allowing us to assess the invariance of our causal theories. 

That is, by repeatedly activating a hypothesized cause and checking if its anticipated 

effect occurs, positive tests generate information about the degree to which this 

relationship holds across time and contexts. Given that the majority of the causal 
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relationships we encounter are probabilistic and interdependent, determining the degree 

of invariance is important for utilizing causal knowledge as a basis for action and 

inference. In order to test whether and when X (e.g., impacting an unyielding surface) 

reliably brings about Y (e.g., shattering in ice) it is necessary to repeat X (e.g., dropping 

more ice on similar surfaces), and observe whether Y occurs again.  

 The aim of the current chapter is to unpack this claim that the tendency to engage 

in positive testing is motivated by (and serves) our goals as causal learners. First, we will 

outline the empircial evidence for the use of a ‘positive testing strategy,’ during 

exploratory learning, and review existing theortical accounts that have been proposed to 

explain it. We will then introduce the Search for Invariance (SI) hypothesis and explain 

its foundations within theories of causality. After establishing this background, we will 

aim to apply our novel account to reinterpret some of the primary examples of positive 

testing in exploratory learning, and address potential objections and misinterpretations 

(e.g., sufficiency).  

Positive Testing Strategy 

A variety of learning and reasoning behaviors have been linked to (and 

confounded with) the Positive Testing Strategy (PTS), so it is important to first establish 

a working definition of this term. For the purposes of the current discussion, PTS will be 

treated as a phenomenon of hypothesis testing, and defined as the tendency (or 

preference) to select actions with the highest probability of producing the expected effect, 

if the current hypothesis were correct.1 That is, we will focus on cases in which the 

learner assesses a hypothesis by examining its positive instances—either checking 

whether the expected effect occurs when the hypothesized conditions are met, or 

checking whether the conditions of the hypothesis are met when the event occurs 

(Klayman & Ha, 1987).  

We will therefore not address accounts that focus primarily on whether young 

learners are able to generate hypotheses and evaluate their fit to evidence more broadly 

(e.g., Carey, Evans, Honda, Jay, & Unger, 1989; Kuhn, 1989; Kuhn et al., 1988). This 

discussion is also not intended to address ‘confirmation bias,’ the failure to seek and 

consider (or even to avoid and distort) conflicting evidence, which is often presented 

alongside PTS in adult research2 (for reviews, see Klayman, 1995; Nickerson, 1998). 

While the ability (and willingness) to reconcile an existing theory with new evidence is 

critical for exploration to support learning, it simply falls outside our current focus on the 

generation of evidence through self-directed action.   

PTS in Scientific Reasoning 

Inhelder and Piaget (1958) were the first to experimentally examine the 

understanding and use of the principles of experimentation in children. Later researchers 

                                                      
1 As discussed below, there are many accounts of this behavior, not all of which use the 

term ‘PTS.’ Additionally, while the term has also been used to describe learners’ 

motivation for conducting positive tests, we will restrict our use of ‘PTS’ to refer to 

observable behavior. 
2 The exact nature of the relationship between PTS and confirmation bias differs between 

accounts.  PTS is variously suggested to be (a) an instance of (Nickerson, 1998; Wason, 

1962), (b) a source of (see Nickerson, 1998 for review), and (c) a departure from 

confirmation bias (Klayman, 1995; Klayman & Ha, 1987). 
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adapted their methodologies to assess and improve scientific reasoning (e.g., Kuhn & 

Angelev, 1976; Kuhn & Brannock, 1977; Siegler & Liebert, 1975), and a tremendous 

body of research has grown out of this initial work (see Zimmerman, 2000, 2007; 

Zimmerman & Klahr, 2018 for reviews). Studies typically present children with 

multivariate contexts and assess their ability to systematically combine and isolate these 

variables to reveal causal relationships. In some cases, participants are instructed to 

determine the variable(s) causally related to an outcome (e.g., which chemicals cause a 

color reaction when mixed; Kuhn & Phelps, 1982). In others, children are asked to 

determine whether and how variable(s) make a difference to a certain outcome (e.g., 

which features of a racecar determine its speed; Schauble, 1990). Another common 

approach is to indicate a variable of interest and ask participants to test hypotheses about 

its effect (e.g., the operation performed by a computer input command; Dunbar & Klahr, 

1989; Klahr & Dunbar, 1988; Klahr, Fay, & Dunbar, 1993).  

The bulk of this research finds the development of experimentation skills to be 

slow and error-filled (e.g., Dunbar & Klahr, 1989; Inhelder & Piaget, 1958; Klahr & 

Chen, 2003; Klahr et al., 1993; Kuhn, 1989; Tschirgi, 1980; Valanides, Papageorgiou, & 

Angeli, 2014). Importantly, many of these errors resemble PTS: Children tend to 

repeatedly choose actions and experiments that are expected to generate an effect (e.g., 

the color reaction, the fastest car), if their causal hypothesis were correct. This behavior is 

often interpreted as driven by children’s desire to ‘demonstrate the correctness’ of their 

hypotheses (e.g., Dunbar & Klahr, 1989; Inhelder & Piaget, 1958; Klahr et al., 1993; 

Kuhn & Phelps, 1982). Other researchers have viewed these explorations as evidence of a 

misplaced focus on an action’s tangible outcomes, rather than its informative potential 

(e.g., Kuhn & Phelps, 1982; Schauble, 1990; Schauble, Glaser, Duschl, Schulze, & John, 

1995; Siler & Klahr, 2012; Siler, Klahr, & Price, 2013; Tschirgi, 1980; Zimmerman & 

Glaser, 2001). That is, rather than trying to learn the relations between cause and effect, 

children seem to select experiments in order to reproduce positive outcomes and avoid 

negative ones.  

Tschirgi (1980) is perhaps the most cited example of PTS in scientific reasoning 

(see Croker & Buchanan, 2011; Klayman & Ha, 1987 for discussions). In this study, 2nd-, 

4th-, and 6th-grade children and adults were asked to choose an experiment to prove that a 

variable was causally responsible for either a positive or negative outcome. In one 

scenario, a character bakes a cake using one of two types of each of three ingredients (a 

flour, a sweetener, and a fat), and the cake comes out well. The character believes that the 

type of sweetener causes this outcome, while the types of flour and fat do not matter. 

Participants were then given a choice between three potential experiments and asked to 

select one to prove the character’s hypothesis. They could (1) change the suspected cause 

and keep the other two variables constant (‘VARY’), (2) change the other two variables 

and keep the suspected cause constant (‘HOLD’), or (3) change all three variables 

(‘CHANGE ALL’). According to Tschirgi, the VARY option, which isolates the 

suspected causal variable, is the only informative test of the character’s hypothesis. 

Interestingly, however, participants of all ages only preferred this option when the 

outcome of the initial scenario was negative (i.e., when the cake came out badly). 

Otherwise, learners preferred the HOLD option—keeping the variable of interest constant 

and changing the others. Tschirigi (1980) explains this finding as evidence that children 

and adults tend to select experiments based on practical, rather than ‘logical’, concerns. 
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PTS in Rule Learning 

There is also extensive evidence of PTS within adult’s hypothesis testing (see 

McKenzie, 2004 for review). The classic example of this behavior is the 2-4-6 task 

(Wason, 1960),3 which asks participants to determine the rule used to generate sequences 

of three numbers. At the start of the task, the experimenter provides an example of a 

sequence generated by the rule (e.g., “2, 4, 6”). Participants are then able to experiment 

by generating novel sequences and requesting feedback from the experimenter about 

whether they follow the rule. Notably, the predominant strategy is to test cases that fit the 

rule one has in mind: to test positive instances of one’s current hypothesis. For example, 

most adults, given the “2, 4, 6” example, form the hypothesis that the rule is ‘ascending 

even numbers.’ In gathering evidence, the majority of participants will test sequences that 

follow this rule (e.g., “10, 12, 14”, “-2, 0, 2”, “104, 106, 108”, etc.) and treat affirmative 

feedback from the experimenter as evidence serving to increase the strength of their 

belief in the accuracy of their hypothesis.   

The problem with using a positive testing strategy in this task is that it misses the 

correct (and more general) rule, ‘ascending numbers,’ and provides no evidence to 

suggest that an error has been made. Wason (1960) interpreted this as evidence of 

participants arriving at their hypotheses through a process of ‘enumeration’ rather than 

‘elimination.’ In other words, participants assume that confirming evidence alone is 

enough to justify their conclusions. While some participants do eventually discover the 

correct rule, most of them only do so after many positive tests of incorrect rules. Wason’s 

task, and his conclusion that learners have a general tendency to only consider 

verification (Wason, 1960; Wason & Johnson-Laird, 1972), have both been used 

extensively as evidence of adults’ biased hypothesis testing and reasoning (e.g., Gorman 

& Gorman, 1984; Mahoney & DeMonbreun, 1977; Tukey, 1986; Tweney et al., 1980; 

Wetherick, 1962). 

Theories of PTS 

 Given that PTS is a widespread and well-documented phenomenon, there have 

been numerous attempts to theoretically account for the behavior. These accounts may be 

roughly separated into two categories, depending on whether PTS is explained as a means 

of generating an outcome or as a means of generating evidence.  

PTS as a means of generating outcomes. 

As mentioned above, some have suggested that learners prefer PTS because their 

selection of actions is motivated by tangible outcomes, rather than information value 

(e.g., Kuhn & Phelps, 1982; Tschirgi, 1980). This interpretation is particularly prominent 

in explanations of the failures observed in early scientific reasoning that suggest that 

young learners begin with an incorrect intuition about the function of experimentation. 

Specifically, children are described as being preoccupied with ‘making events happen’ 

(e.g., making a good cake, producing a color reaction), rather than identifying the causal 

factors responsible for these outcomes.  

Based on this evidence, Schauble, Klopfer, and Raghavan (1991) proposed the 

‘science vs. engineering models’ of self-directed behavior: Individuals can adopt either a 

‘science goal’ (to determine causal relationships) or an ‘engineering goal’ (to generate or 

                                                      
3 Wason also created another classic task of hypothesis testing, the Selection Task (1968), 

which falls outside the scope of the current discussion. 
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reproduce a particular effect) in their interactions with their environment. According to 

the authors, children incorrectly approach scientific reasoning tasks using an 

‘engineering’ model, which is concerned with generating outcomes and stops whenever 

its target (or an acceptable approximation) is achieved. Schauble (1990) distinguishes this 

account of PTS from the one offered by Klayman and Ha (1987). In particular, the 

engineering model does not claim that learners are seeking falsification, or information of 

any kind. Instead of trying to determine the causal relationships between variables and 

outcomes, young explorers manipulate variables in an attempt to bring about desirable 

outcomes (Schauble, 1990). In other words, according to this theory, learners’ 

interventions are often uninformative because information is not their goal. The strongest 

version of this account implies that children do not differentiate between understanding 

an event and making it occur. Although later empirical work provides evidence against 

this claim (Sodian, Zaitchik, & Carey, 1991; see also Lapidow & Walker, 2019), the 

‘science vs. engineering’ explanation of PTS continues to be cited and used as a 

framework for understanding choice behavior within scientific reasoning (e.g., Siler & 

Klahr, 2012; Siler et al., 2013).  

Other researchers have made suggestions similar to the ‘science vs. engineering’ 

hypothesis, but concerning adult choice behavior (e.g., Friedrich, 1993; Schwartz, 1982; 

Vogel & Annau, 1973). These interpretations suggest we employ PTS because we value 

maximizing current over long-term gains. One early articulation of this idea comes from 

Einhorn and Hogarth (1978), who describe a conflict between acting in accordance with 

the current hypothesis (i.e., maximizing current success), and acquiring information to 

improve it (i.e., increasing long-term success). As a result, in contexts where the potential 

cost of false positives is more damaging than that of false negatives, learners may be 

entirely justified in gathering positive evidence.  

These ‘outcome-focused’ theories of PTS all point to the tension between 

‘exploitation,’ taking an action that is known to have a high likelihood of success, and 

‘exploration,’ taking a less certain (or less rewarding) action in order to improve one’s 

epistemic status. Schauble and colleagues (1990; 1991) suggest that this tension results 

from a lack of understanding on the part of the learner, while Einhorn and Hogarth (1978) 

and others point to situational factors that lead the learner to prioritize exploitation. 

Regardless of the source, this is a real tension in behavior, and has been shown to 

influence decision-making on a variety of tasks. For example, Heyman and Dweck 

(1992) report that an individual’s response to challenges and failures may be explained 

by whether they hold a ‘performance goal’ (to prove one’s competence) or a ‘learning 

goal’ (to improve one’s skills).4 A recent study has also shown that sensitivity to the 

distinction between production and investigation influences the actions of causal learners 

as a rational adaption to context demands (Yoon, MacDonald, Asaba, Gweon, & Frank, 

2018). However, regardless of whether it is due to lack of understanding or situational 

pressures, the tension between productive and informative actions is likely not the only 

factor responsible for PTS.   

                                                      
4 While this distinction resembles Schauble et al.’s (1991) notion of ‘science vs. 

engineering models,’ Heyman and Dweck’s (1992) account is agnostic about the 

immediate goal. You could, therefore, conceivably have either a ‘learning’ or a 

‘performance’ goal within either a ‘science’ or an ‘engineering’ model. 
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PTS as a means of generating evidence. 

The accounts reviewed above argue that positive tests reflect learners’ desire to 

bring about tangible effects. However, others accounts have suggested that PTS is an 

intentional (though not always valid) form of hypothesis testing. For example, Wason’s 

(1960; 1972) interpretation of adults’ behavior on the 2-4-6 task suggested that learners 

believe that their positive tests provided valid conclusive evidence. Wason based this 

analysis on the prescriptions for hypothesis testing laid out by Popper (1959) who argued 

that instances that verify a hypothesis are always ambiguous, since they can occur even if 

the hypothesis is ultimately incorrect. Learners should therefore aim to collect counter-

evidence when testing hypotheses, since falsifying evidence is always conclusive (i.e., 

observing a single black swan can overturn an entire lifetime of positive evidence that ‘all 

swans are white’). Further, this type of observation cannot be countered by positive 

evidence later on (e.g., no number of white swans observed after the single black one will 

make the statement that ‘all swans are white’ true). Popper’s prescription for scientific 

hypothesis testing is therefore to make the falsification of alternatives—not the 

generation of positive evidence—the primary goal of experimentation. By comparing 

participants’ behavior to this standard, Wason concluded that PTS is a logical or 

cognitive failing of our intuitive hypothesis testing, and many others have echoed this 

interpretation (e.g., Baron, Beattie, & Hershey, 1988; Devine, Hirt, & Gehrke, 1990; 

Skov & Sherman, 1986; Wason & Johnson-Laird, 1972). 

Indeed, hints of this perspective appear in the account of PTS suggesting that 

children aim to ‘demonstrate the correctness’ of their hypotheses during scientific 

reasoning tasks (e.g., Dunbar & Klahr, 1989; Inhelder & Piaget, 1958; Klahr et al., 1993; 

Kuhn & Phelps, 1982). For example, Klahr and colleagues (1993) gave 3rd- and 6th-grade 

children and adults either a plausible or implausible hypothesis for the operation of one 

input in a simple programming system. If the starting hypothesis was plausible, 

participants tended to go about generating positive evidence of its validity. When the 

starting hypothesis was implausible, however, participants were more likely to set up 

experiments to discriminate between this initial claim and self-proposed alternatives. 

Tellingly, these participants (and young children in particular) were often ‘sidetracked’ 

by generating positive evidence for their rival hypothesis (Klahr et al., 1993).  

In other accounts, PTS is not assumed to be driven by an error or illusion of 

validity, but is instead treated as one of several potentially useful inquiry strategies 

available to the learner. The classic form of this argument comes from Klayman and Ha’s 

(1987) analysis of the 2-4-6 task. These authors distinguish between the use of 

falsification as a goal versus as a method of hypothesis testing. The goal is what Popper 

(1959) prescribes, but the method is not necessary to achieve it. The two are confounded 

in Wason’s task because most participants begin with a hypothesis that is more specific 

than the correct one. As a result, testing negative instances of one’s hypothesis 

(falsification as method) is the only means of generating disconfirming evidence 

(falsification as goal). Klayman and Ha argue that this circumstance is neither necessary 

nor typical in real world learning. More often, correct hypotheses are a ‘minority 

phenomenon,’ so most tests of positive instances will result in negative responses 

(Klayman & Ha, 1987). Given this ‘rarity’, PTS is argued to be a more efficient means of 

seeking informative disconfirmation than negative tests, and therefore a reasonable 

hypothesis testing heuristic.  
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Klayman and Ha’s account has since been broadly adopted to explain PTS in 

adult learning (see Coenen, Nelson, & Gureckis, 2018), and similar arguments have been 

successfully applied to other instances of PTS beyond the 2-4-6 task (e.g., Oaksford & 

Chater, 1994). Navarro and Perfors (2011) have also extended this argument by 

demonstrating that PTS is a ‘near-optimal’ learning strategy in contexts where correct 

hypotheses are ‘sparse,’ and provide further justification for learners’ intuitive 

assumption of sparsity. Importantly, these accounts present PTS as a default heuristic 

approach to hypothesis testing. That is, in the absence of more specific information, 

learners employ PTS because it is cognitively inexpensive and often effective (Klayman 

& Ha, 1987). 

In contrast, other accounts have stressed that learners are sensitive to their 

learning context, and selectively employ PTS. For example, McKenzie and Mikkelsen 

(2000) show that manipulating participants’ beliefs about the rarity of events changes the 

degree to which they appeal to PTS. Furthermore, recent computational work finds that 

intervention choice is best captured by a model employing a mix of PTS and expected 

information gain in a way that is sensitive to task demands. Coenen, Rehder, and 

Gureckis (2015) modeled PTS in causal learning as a preference to intervene on variables 

with the greatest proportion of downstream effects, treating each consistent outcome as a 

point of positive evidence for the hypothesis. Their analysis compared this model, and 

one designed to favor interventions most likely to distinguish between competing 

hypotheses (i.e., with the highest expected information gain), to participants’ chosen 

interventions. A model that employed both strategies best captured the intervention 

choices of adult causal learners. Results also revealed that strategy selection was sensitive 

to the learning context: When the task feedback indicated that one strategy was 

insufficient for distinguishing the true causal structure, or when participants were placed 

under time pressure, they shifted flexibly between the PTS and information gain models. 

Thus, the most recent research suggests that PTS is not a default heuristic for generating 

evidence, but an adaptive and efficient hypothesis-testing strategy employed by context-

sensitive learners.   

Other accounts and overlapping evidence.  

While these two broad categories of accounts—positive tests as a means of 

generating outcomes and positive tests as a means of generating evidence—help to 

organize much of the existing literature, some prior accounts do not neatly conform to 

either category. For example, a recent ‘self-teaching’ model of active learning (Yang, 

Vong, Yu, & Shafto, 2019), proposes that PTS may be a by-product of the way that 

interventions are chosen. That is, although the ideal learner usually selects actions 

according to expected information gain, selections that deviate from this accord with 

PTS. In this context, PTS is not presented as a mistaken focus (e.g., Schauble et al., 1991) 

or a logical error (e.g., Wason, 1960), but it is also not presented as an adaptive learning 

tool (e.g., Coenen et al., 2015). 

It is also not always possible to distinguish between generating evidence and 

generating effects within a learner’s behavior. For example, in many cases of causal 

learning, the action that is expected to maximize the probability of the most likely 

hypothesis is also the action that is expected to have the most positive tangible 
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outcomes.5 For example, McCormack, Bramely, Frosch, Patrick, and Lagnado (2016) 

presented children with a three-variable causal system and three competing hypotheses: a 

common cause (activating component A causes components B and C to activate) or one 

of two causal chains (activating A causes B to activate, which causes C to activate, or 

activating A causes C to activate, which causes B to activate). Five- to six-year-olds 

preferred to repeatedly activate component A (the root node in all hypotheses). Although 

activating A is expected to activate all the other components in the system, it is not clear 

what motivates this positive intervention. This behavior accords with ‘generating effects’ 

theories of PTS, since turning on the root node of a system ‘makes the most things 

happen,’ but also with ‘generating evidence’, theories, since this action also tests the 

greatest proportion of downstream connections.  

A similar study by Meng, Bramley, and Xu (2018) tested 5- to 7-year-olds on a 

modified version of Coenen et al.’s (2015) task, and also found a preference for this type 

of intervention. Although children’s intervention choice was best captured by a model 

incorporating both PTS and information gain (as with adults), this mix was heavily 

skewed towards PTS (i.e., intervening on the node with the greatest proportion of 

dependent causal links), with the vast majority of children using PTS as their primary 

intervention strategy. Again, we observe evidence that young causal learners 

preferentially select positive tests, and again, the source of this preference remains 

unclear.  

The Current Theory: Positive Testing and Causal Learning 

 Rather than explaining PTS as an error, bias, or byproduct of our inquiry 

strategies, the current proposal (the Search for Invariance [SI] hypothesis) presents an 

alternative account that draws on evidence describing our strengths as self-directed 

causal learners. In contrast to the difficulties documented in the scientific and rule 

learning domains, we excel at exploratory causal learning from an early age.  

Considerable evidence shows that children spontaneously and preferentially 

explore what is most likely to be informative, given their current causal beliefs (see 

Schulz, 2012 for a review). Research in causal learning typically presents children (3- to 

6-year-olds) with evidence about a novel physical device, and then allows them to 

interact with it during a period of free-play. When the evidence is ambiguous or violates 

their current theories, children engage in significantly more exploration (Bonawitz, van 

Schijndel, Friel, & Schulz, 2012; Gweon & Schulz, 2008; Schulz & Bonawitz, 2007; 

Schulz, Standing, & Bonawitz, 2008). They are also more likely to take potentially 

informative actions during this exploration (Lapidow & Walker, 2019; Schulz & 

Bonawitz, 2007; van Schijndel, Visser, van Bers, & Raijmakers, 2015).  

For example, Cook, Goodman, and Schulz (2011) found that 4- to 5.5-year-olds 

select and even spontaneously invent informative interventions in their exploration of an 

ambiguous causal system. Children were introduced to a toy that played music when 

beads were placed on top of it. They were taught either that all beads caused the toy to 

activate, or that only some did, while the rest were inert. The beads could be snapped 

together to form two-bead pairs, and a snapped pair of novel beads was given to children 

during their free-play. This pair caused the toy to activate, but it was impossible to tell 

                                                      
5 See Bramley, Lagnado, & Speekenbrink (2015) for an in depth treatment of this overlap 

between expected probability gain and expected utility gain models of intervention.   
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from this observation alone whether both beads in the pair had the power to activate the 

toy, or only one. Faced with this ambiguity, children in the ‘some-beads’ condition took 

informative actions: pulling the pair apart and trying the beads on the toy in isolation, in 

order to disambiguate their causal status. In contrast, children in the ‘all-beads’ condition, 

for whom the pair was not perceived as ambiguous, did not produce these actions. 

Furthermore, when given an ambiguous pair that was permanently glued together, several 

children in the ‘some-beads’ condition spontaneously turned the pair on its end, 

conducting informative hypothesis tests to isolate the beads in a way they had never seen 

demonstrated.  

The fact that young children are such voracious and effective self-directed 

learners in these contexts raises the possibility that causal learners may have different 

information-seeking goals than those typically assumed in studies of scientific 

experimentation. This view of self-directed causal learners as ‘intuitive scientists’ 

(Brewer & Samarapungavan, 1991; Carey, 1985; Gopnik & Meltzoff, 1997; Karmiloff-

Smith, 1988) is the impetus for the SI hypothesis: that PTS is normatively motivated by 

the concerns of causal learning and an informative means of assessing causal invariance 

across the set of examples tested. In a causal world of predominately probabilistic and 

interdependent relationships, repeated generation and investigation of positive instances 

provides critical information about the reliability and consistency of our causal 

hypotheses. In other words, PTS is useful and informative because it allows learners to 

examine the degree to which a dependency between variables continues to hold over time 

and across contexts. In this way, the SI hypothesis suggests that our goals as causal 

learners might explain our behavior as intuitive scientists. 

Causal Invariance and Interventionism 

In order to more fully describe the SI hypothesis and establish its relevance for 

interpreting PTS, we will first situate the concept of invariance within theories of 

causality. 

Numerous theories of causality and causal explanation include a central idea that 

the function of causal knowledge is to highlight patterns of dependence that will 

generalize to future contexts (see Hitchcock, 2012 for details). A few notable examples of 

this include notions of ‘sensitivity’ (Lewis, 1974), ‘robustness’ (Redhead, 1987), ‘non-

contingency’ (Kendler, 2005), ‘exportability’ (Lombrozo & Carey, 2006), ‘insensitivity’ 

(Ylikoski & Kuorikoski, 2010), ‘portability’ (Weslake, 2010), and ‘transportability’ 

(Pearl & Bareinboim, 2011). Indeed, this sensitivity to regularities in variable input is 

critical for knowledge acquisition in other domains as well (e.g., see Wu, Gopnik, 

Richardson, & Kirkham, 2011).  

Although these accounts vary, Sloman’s (2005) description of ‘invariance’ 

provides a sense of the common ground among them. He argues that, in every domain, 

aspects that are invariant across instances hold the most valuable information for 

learners. These aspects represent the “stable, consistent, and reliable properties that hold 

across time and across different instantiations of a system” (Sloman, 2005, p. 15). 

Knowledge of invariance therefore allows learners to predict, explain, and manipulate 

events in the world. To clarify, the concept of invariance is not necessarily defined in 

terms of causality—for example, recognizing the invariant statistical regularities among 

syllables within streams of continuous speech supports early language learning (e.g., 

Saffran, Aslin, & Newport, 1996; Saffran, Johnson, Aslin, & Newport, 1999). However, 
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the causal relations that govern observable events are usually highly systematic and 

generalizable. Causal knowledge is therefore a key source of invariance, and stable causal 

principles are often the most reliable basis for inference and interaction available to us 

(Sloman, 2005). 

Much of Solman’s account is drawn from the interventionist perspective on causal 

explanation (e.g., Woodward, 1997, 2003, 2006, 2010), which defines a causal 

relationship in terms of the invariance between variables following some change. That is, 

if X causes Y, then intervening to change the value of X would result in a change to the 

value of Y. A causal explanation is therefore a true claim describing how some factors 

make a difference to others. To illustrate this, suppose that two variables, X and Y, are 

observed to co-occur. If an intervention changing the value of X maintains this correlation 

(that is, it leads to a corresponding change in the value of Y), then the relationship 

between X and Y is invariant (it continues to hold), under at least some interventions. 

This relationship is regarded as causal, and can be used as a basis for inference and 

manipulation. To make this idea more concrete, imagine that X is fertilizer and Y is plant 

growth. If the statement, “Fertilizer causes plant growth,” is an accurate causal 

explanation, we would expect changes to the amount of fertilizer (X) to lead to systematic 

changes in the growth of the plant (Y) (Woodward, 1997).  

Note that the interventionist concept of invariance outlined so far defines a causal 

explanation as representing a kind of counterfactual dependence: It indicates how 

changing the factors included in the explanation would lead to a difference in the 

phenomenon being explained (Woodward, 1997; 2003). For example: the hypothesis that 

‘impacting an unyielding surface causes ice to shatter’ provides a causal explanation for 

shattering, and implies the counterfactual that, in the absence of such an impact, 

shattering would not occur. Causal knowledge not only allows us to reason about how 

one factor makes a difference to another, but also to exploit those dependencies in our 

actions. Interventionism views causal learning and reasoning as rooted in our “highly 

practical interest” in manipulation and control of our environment (Woodward, 2003, p. 

10). As a result, the value of identifying causal relationships is inherently tied to the 

knowledge of the actions this information supports.  

In addition to its role in defining causal relationships, invariance is also 

highlighted as a quality that is expressed by causal relationships. While the former 

captures the continuity of causal relationships when related variables change, the latter 

emphasizes the ‘stability’ of those relationships across contexts and conditions. That is, X 

is a cause of Y, if and only if, an intervention on X changes the value of Y in at least some 

background circumstances b. These ‘background circumstances’ are aspects of a situation 

that are not explicitly represented by X or Y, but that are critical to the meaning and 

commitments of causal explanations (Blanchard, Vasilyeva, & Lombrozo, 2018). For 

example, “Fertilizer causes plant growth,” is only true if the plant is also getting water, 

sunlight, and oxygen. These are some of the background circumstances of the causal 

relationship between fertilizer and plant growth; these are both critically important to our 

understanding of the causal claim and not explicitly stated as part of the relation.  

Of course, for any causal relationship, there are changes to both the related 

variables and the background conditions under which the relationship will not hold. The 

interventionist definition of causality only requires a relationship to hold under at least 

some conditions (e.g., fertilizer is a cause of plant growth, because of the dependence 
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between them, even though this relationship will not hold if the plant is kept in the dark 

or the fertilizer is infested with harmful bugs). Our notion of invariance includes our 

understanding of these conditions. Vasilyeva and colleagues (2018; 2018) explain this 

‘stability’ component of invariance as a combination of ‘breadth,’ or generality (the range 

of background circumstances in which the generalization holds) and ‘guidance,’ or 

accuracy (the support a causal explanation provides for generalization to new 

circumstances). This dual consideration reveals the importance that causal learners place 

both on identifying causal relationships that are most reliable and knowing the contexts 

in which they may be relied on. Empirical evidence supporting interventionism’s role for 

invariance in our causal thinking comes primarily from studies looking at highly similar 

concepts, such as ‘explanation generality’ (e.g., Friedman, 1974; Gelman, Star, & Flukes, 

2002; Johnston, Sheskin, Johnson, & Keil, 2018; Kitcher, 1981; Strevens, 2009; Walker, 

Lombrozo, Legare, & Gopnik, 2014). Very recently, computational (Morris et al., 2018) 

and behavioral (Vasilyeva et al., 2018) studies have begun to look explicitly at 

interventionist invariance and find that it both reflects and influences our causal 

judgments.  

According to interventionism then, the purpose of causal learning lies in acquiring 

representations of counterfactual dependence between variables that generalize to guide 

future action and inference. However, learners are almost never in an epistemic position 

to form exception-less generalizations, which would require specifying every relevant 

contributing and enabling factor involved in causing an event. And, in fact, such an 

explanation would be severely limited in usefulness as it would be applicable to far fewer 

new situations than a less complete account. Instead, causal learners acquire causal 

explanations that are incomplete generalizations, and augment them with evaluations of 

their invariance over time and across contexts. Given this, it makes sense for causal 

learners to value information about invariance and to seek to uncover it through the 

exploration of multiple examples.6 This is the foundation of the Search for Invariance 

(SI) hypothesis. 

The Search for Invariance (SI) Hypothesis 

   The SI hypothesis proposes that the positive testing strategy (PTS) may provide 

a means of assessing this critical characteristic of causal invariance during exploration 

and hypothesis testing. Since no causal relationship is without exceptions or holds in all 

circumstances, knowing the extent and contexts in which relationships are invariant is 

critical for causal knowledge to guide action and reasoning. It is therefore incumbent 

upon causal learners to determine the invariance of putative causal relationships by 

asking, for example: Is this dependency reliable? Is it generalizable? And, if so, with 

what probability and in what contexts? Activating the hypothesized causal variable (or 

examining cases in which it has already been activated), allows the learner to assess 

whether the effect behaves as hypothesized in the current context. Repeating these 

interventions provides evidence for how consistently and extensively this relationship 

holds. Negative tests—while assessing whether an alternative cause might also bring 

about the effect in the current context—cannot, by definition, provide this information. 

                                                      
6 See also Casasola and Park, this volume, and Imai and Childers, this volume, for other 

instances of how the observation of multiple examples influences how learners generalize 

their knowledge.  
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Thus, positive tests are potentially informative for self-directed learners, regardless of 

their expectations about the sparsity or rarity of causal relationships, by providing 

evidence about their relative invariance. 

 To further illustrate this claim, the following sections will return to three key 

examples of PTS to demonstrate how reinterpreting these results in terms of the learner’s 

search for invariance provides a novel and more complete account of these behaviors.  

As an alternative to ‘engineering desirable outcomes’. 

Tschirgi (1980) provides an excellent example of how the SI hypothesis reframes 

the tendency to conduct positive tests to bring about desirable outcomes. Recall that when 

asked to select one of three actions to prove that the type of sweetener was the reason that 

the cake was good, and that the types of fat and flour did not matter, the majority of 

participants chose to HOLD the suspected causal variable and change the others, rather 

than VARY only the suspected cause (Tschirgi, 1980). 

From the perspective of the SI hypothesis, the HOLD option presents a valuable 

test of the circumstances under which the suspected causal dependency holds. Baking 

another cake in which the type of sweetener is kept constant, and all the other ingredients 

are changed, allows the learner to assess whether this relationship is invariant under 

different background circumstances7. Another example of this kind of hypothesis testing 

in scientific reasoning comes from Zimmerman and Glaser (2001), who asked 6th graders 

to test the claim that coffee grounds are good for plants. The authors found that the 

majority of students designed a series of positive tests—that is—they checked the 

outcome of adding coffee grounds to a variety of different plants, thereby testing the 

hypothesized effect of this intervention across a variety of background conditions. 

On the other hand, it might be argued that assessing invariance is illogical in a 

situation in which the causal status of the hypothesized relationship has not yet been 

conclusively established. Zimmerman (2007) makes precisely this objection, explaining 

that the participants in Tschirgi (1980) failed to first confirm the claim that the sweetener 

produces good cake in a controlled manner. However, it is not clear that this confirmation 

is necessary. The hypothesis presented in the task makes two distinct claims: (1) good 

cake is causally dependent on the sweetener, and (2) good cake is causally independent of 

the type of flour and fat. Tschirgi sees (1) as the only claim participants are being asked 

to test. However, there is nothing to stop participants from choosing to evaluate (2), 

which would make HOLD, and not VARY, the disconfirming test. This duality means 

that HOLD is just as valid a test of the hypothesis stated in the problem text as VARY. 

Further, HOLD has the additional attraction of also assessing the invariance of the causal 

relationship between the sweetener and good cake that was singled out by the prompt.8 

As an alternative to ‘seeking confirmatory evidence.’  

                                                      
7 In fact, since the scenarios only contained two values for each variable, the HOLD 

option tests invariance for all possible kinds (though not combinations) of other factors.  
8 This is not the only study in the scientific reasoning literature with such ambiguities. 

Assumptions about parameters—the number of causal variables, whether their effects are 

independent or interdependent, probabilistic, or deterministic—are regularly made by 

experimenters, but not conveyed to participants or considered when evaluating their 

behavior. Ongoing work in our lab aims to remove these ambiguities to better assess 

children’s intuitive experimentation. 
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The SI hypothesis also provides an explanation for participants’ repeated testing 

of instances that are consistent with their current hypothesis, as seen in Wason’s 2-4-6 

task. Again, learners are testing the invariance of their hypothesized rule, but it is not the 

same quality of invariance as the one tested in the previous example. In that case, the 

learner’s goal was to assess the range of background circumstances in which a causal 

claim holds; what Vasilyeva and colleagues (2018; 2018) call ‘breadth.’ In contrast, 

explorations in the Wason task are more concerned with ‘guidance,’ the accuracy of a 

causal hypothesis for developing expectations about novel circumstances. By checking 

multiple sets that are all consistent with their current hypothesis (e.g., ‘increasing even 

numbers’) across distinct instances, learners can determine whether the rule invariantly 

identifies sets with the target property. Further evidence for this interpretation is what 

Klayman and Ha (1987) call limit testing: Within their repeated positive tests, 

participants in the 2-4-6 task commonly select extreme or unusual instances of their 

hypothesized rule. For example, a participant considering the hypothesis ‘increasing even 

numbers’ might choose to test the set: -2, 0, 2 (Klayman, 1995; Klayman & Ha, 1987).  

Again, it might be objected that the current hypothesis has not yet been verified. It 

is true that evidence of the invariance of ‘increasing even numbers’ does not rule out the 

possibility that the rule is actually ‘increasing numbers.’ However, if any instance of the 

‘increasing even numbers’ rule ever fails one of these tests of invariance, the learner will 

know that neither hypothesis is correct. If learners were simply hoping to generate 

confirmatory evidence or produce affirmative responses from the experimenter, then we 

would not expect them to preferentially test their hypotheses at the regions of highest 

uncertainty (i.e., at the limits). Instead, these investigations serve as a stress test of the 

invariance of their hypothesis, even at its boundaries.  

Beyond evidence of sufficiency. 

Another likely objection to the SI hypothesis is to claim that invariance is not 

meaningfully distinguishable from sufficiency. A sufficient cause is adequate, but not 

required, for bringing about an effect (Klayman & Ha, 1987) and researchers have 

previously proposed the use of sufficient hypotheses as an explanation of PTS. These 

accounts tend to emphasize pragmatic motivations (e.g., a desire to achieve or avoid 

specific outcomes) over epistemic ones. For example, Friedrich (1993) suggests that 

human cognition, which was shaped by a drive to ensure survival, is better suited to 

identifying sufficient mechanisms than determining truth. Similarly, Schwartz (1982) 

explains PTS as a kind of error avoidance, motivated in part by the conditions of reward 

and reinforcement. In other words, once the learner identifies a sufficient cause, they may 

feel no compulsion to determine whether that condition is also necessary (Nickerson, 

1998).  

It is difficult to distinguish the SI hypothesis from this alternative account since 

the occurrence of PTS does not, in itself, indicate the motivation behind it. For example, 

in the 2-4-6 task, selecting sets that are sufficient (i.e., have a high probability of 

producing an affirmative response based on what is currently known) and selecting sets 

that test the invariance of the hypothesized rule can lead to the same actions. Despite this 

challenge, we maintain that invariance cannot be reduced to sufficiency.  

To explain this position, it is important to recognize that causal inference and 

rule-based inference involve different notions of sufficiency. Rule learning typically 

assumes that there is only one correct rule, which must be both sufficient and necessary 
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(Klayman & Ha, 1987). Further, these conditions are defined in terms of propositional 

logic (see Johnson-Laird & Byrne, 2002). For example, in the 2-4-6 task, any set that 

follows the correct rule will have the target property (the rule is sufficient), and all sets 

that have the target property will follow the rule (the rule is necessary). Causation, on the 

other hand, does not follow the rules of standard inference, and causal logic involves 

assumptions that cannot be captured by the principles of propositional logic (see Sloman 

& Lagnado, 2015; 2005).  

To illustrate this difference, consider these two pairs of hypotheses: (a) sets of 

numbers increasing by two have the target property, and (b) sets of increasing numbers 

have the target property, as opposed to: (c) sex causes pregnancy, and, (d) embryo 

fertilization causes pregnancy. Both (a) and (c) are cases in which the antecedents 

(‘increasing by two’ and ‘sex’) are sufficient, but not necessary for their consequents 

(‘having the target property’ and ‘pregnancy’). Sets of numbers increasing by two will be 

in the target set, and sex will (under certain background conditions) be a cause of 

pregnancy. However, the truth of the hypotheses (b) and (d) accounts for why the 

antecedents of (a) and (c) bring about their consequents, which makes them unnecessary. 

Sex is not necessary for pregnancy (which can also occur through in vitro fertilization), 

and increasing by two is not necessary for a set to have the target property (as all sets of 

numbers increasing by two are also sets of increasing numbers). 

 However, there is also an important difference here: (a) and (b) are hypotheses 

about rules, while (c) and (d) are hypotheses about causes. The domain of rule discovery 

requires that there be only one correct rule that is both necessary and sufficient for the 

target property. In contrast, the domain of causal reasoning allows for multiple possible 

causes to exist simultaneously. As a result, (b) being true means (a) cannot be the correct 

rule, but (d) being true does not mean that (c) cannot be a correct causal explanation. Put 

another way, the hypothesis that ‘the rule for the target property is numbers increasing 

by two’ is incorrect, but the hypothesis that ‘sex is a cause of pregnancy’ is not. The 

difference between propositional and causal logic means that the impact of one 

statement’s truth-value on another’s differs between the domains of rule and causal 

learning. Lack of necessity makes a rule false, but it does not make a cause false. That 

said, it does make it less invariant.  

 Judgments of necessity and sufficiency are critical to our reasoning in the causal 

domain, but in a way that is unique to the domain. Necessity captures our intuition that 

causal variables ought to make a difference to outcomes: We judge dropping an ice-cube 

on the ground as the cause of it shattering, since, in the absence of the first event, the 

second would not have occurred. Indeed, a wealth of evidence shows such evaluations 

are central in our causal judgments (e.g., Gerstenberg, Goodman, Lagnado, & 

Tenenbaum, 2014; Gerstenberg, Peterson, Goodman, Lagnado, & Tenenbaum, 2017; 

Icard, Kominsky, & Knobe, 2017; Morris et al., 2018; Wells & Gavanski, 1989).  

Causal sufficiency is also intertwined with the notion of necessity. For example, 

when we credit one event (e.g., dropping an ice-cube) as the difference-making cause of 

another event (e.g., shattering), we understand that the necessity of the first event for the 

occurrence of second is dependent on the context in which they take place. That is, 

dropping the ice-cube will only cause it to shatter under certain background conditions 

(e.g., gravity). We also understand that shattering might occur in other cases, even in the 

absence of dropping (e.g., if someone hits the ice-cube with a hammer).  
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Thus, unlike a rule, a single causal variable is never sufficient or necessary for 

bringing about an effect in and of itself (Mackie, 1974). In causal reasoning, these 

qualities exist only given certain background conditions in which the occurrence of the 

variable makes a difference to the outcome. Our knowledge of invariance, of the aspects 

of a situation must be in place for the cause to produce its effect, captures this. It thereby 

requires a consideration of necessity and cannot be reduced to assessment or employment 

of sufficiency.  

As an account of previously ambiguous evidence. 

 Finally, the SI hypothesis also provides a consistent interpretation of learners’ 

tendency to intervene on the root node in McCormack et al. (2016) and Meng et al. 

(2018).9 Recall that according to interventionism, the commitments a causal hypothesis 

makes about the potential for action and manipulation are central to our reasoning about 

it. In fact, according to Woodward, the difference between competing causal models is 

understood in terms of the difference in the predicted outcomes of interventions (2006, p. 

61). This suggests that a causal learner might not feel the need to distinguish between 

causal hypotheses that make the same predictions about the majority or more salient 

interventions on a system.  

 The problems used in McCormack et al. (2016) and Meng et al. (2018) place 

participants in precisely this situation. The competing possible causal structures all 

indicate the same variable as the root node of the system. Children’s preference for 

activating this node may therefore be interpreted as uninformative, since this intervention 

cannot distinguish between the competing hypotheses. Considered in light of the SI 

hypothesis, however, this choice need not indicate a weakness in self-directed hypothesis 

testing. All the hypotheses predict that intervening to activate the root node will lead to 

activation of the other variables in the system, and so the interventionist difference-

making perspective may not meaningfully distinguish between these causal structures. 

Thus, the primary concern for a causal learner would be to assess the degree to which 

manipulation of this putative root cause reliably leads to its predicted effects, rather than 

to disambiguate exactly how it does so, which fits the behavior seen in the task.   

Conclusion: Relationship to Truth 

The claim that we are ‘intuitive scientists’ in our exploratory learning is well 

established as part of the account of human inquiry (Coenen et al., 2018). However, the 

fact that self-directed learners often choose to conduct repeated positive tests of their 

hypotheses, rather than (apparently) more informative interventions has historically 

complicated this claim. Repeated positive testing is characteristic of exploratory behavior 

across development, yet it would seem to be at odds with the aims of self-directed 

information seeking. In this chapter, we introduced a novel account of this behavior—the 

Search for Invariance (SI) hypothesis—which suggests that seeking multiple positive 

examples may in fact serve the information-seeking goals of causal learning.  

To summarize, the SI hypothesis draws on the interventionist framework of causal 

reasoning, which suggests that causal learners are concerned with the invariance of 

                                                      
9 As a reminder, the ‘root node’ is the starting point for the causal model of the system. 

Here, the structure is either a common cause (activating component A causes components 

B and C to activate) or a causal chain (activating A causes B to activate, which causes C 

to activate, etc.) meaning component A is the root node in both cases.  
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candidate hypotheses. In a probabilistic and interdependent causal world, our primary 

goal is to determine whether (and in what contexts) our current hypothesis provides an 

accurate basis for inference and intervention—not to disconfirm alternatives. By 

recognizing the central role of invariance in causal learning, positive testing may be 

reinterpreted as a rational and necessary information-seeking strategy. The SI hypothesis 

therefore provides an explanation of PTS that accords with theories that portray self-

directed learning as intuitive science. Of course, empirical work is needed to establish the 

importance of invariance to learning, and to specify how learners form estimates of 

invariance from the multiple examples they generate, what type of examples are needed, 

and how many. By providing a novel approach to PTS, we hope that the SI hypothesis 

will serve as a promising theoretical foundation to guide future work. 

That said, by aligning PTS with theories of the intuitive experimentation, it is also 

important to acknowledge that the ‘learner-as-scientist’ approach typically emphasizes 

increasing the accuracy of current knowledge as the primary goal of self-directed 

exploration. Indeed, Gopnik and colleagues (e.g., Gopnik, 1998, 2000; Gopnik & Walker, 

2013) have variously asserted that the raison d’etre of our self-directed causal learning is 

to form veridical causal models of the world. According to this view, learning as an 

‘intuitive scientist’ ought to be characterized by movement towards more accurate 

knowledge—and the proposal that causal learners are more concerned with assessing the 

invariance of a causal explanation than whether it is more accurate than alternatives may 

seem initially incompatible.  

However, recall that the interventionist account of causality is inherently tied to 

action. As causal learners, we are concerned with refining the accuracy of our causal 

models, but only insofar as this meaningfully improves our ability to predict, explain, and 

manipulate the world. These goals do not require absolute accuracy; they require 

reliability. The SI hypothesis does not aim to imply that learners are disinterested in 

evaluating the truth of competing hypotheses, but that the concerns and priorities of 

causal learning will determine which aspects of these hypotheses are most informative to 

evaluate.  
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