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Abstract 
In sequential diagnostic reasoning the goal is to determine the 
most likely cause for a number of sequentially observed 
effects. Potential hypotheses are narrowed down by 
integrating the cumulating observed evidence leading to the 
selection of one among several hypotheses. In the reported 
diagnostic reasoning experiment, thirty-eight participants 
were tested with quasi-medical problems consisting of four 
sequentially presented symptoms with four candidate 
diagnostic hypotheses. We used ambiguous sequences that 
could be equally caused by two chemicals to investigate 
possible order effects and explicitly highlighted alternative 
hypotheses by using a stepwise rating procedure that also 
enabled us to compare participants’ ratings with belief 
updating in a Bayes net. Even though alternatives were 
explicitly highlighted, participants were biased towards the 
initial hypothesis in a pair of equally supported hypotheses. 
We conclude that ambiguous symptom sets and non-
diagnostic symptoms invite biased symptom processing and 
can produce primacy effects even in a step-by-step procedure.  

Keywords: Diagnostic reasoning, Belief updating, 
Probabilistic inference, Order effects 

Introduction 
Diagnostic reasoning is a case of information integration. 
The task is to infer the most likely cause of observed 
symptoms. Often in medical diagnosis, the symptoms are 
probabilistic cues to their possible causes and do not suggest 
just a single diagnosis. Instead, symptoms usually have 
several possible causes and trigger the generation of 
multiple diagnostic hypotheses that are tested and updated 
during subsequent symptom processing (Thomas, 
Dougherty, Sprenger, & Harbison, 2008; Weber, 
Böckenholt, Hilton, & Wallace, 1993). The final diagnosis 
is the result of integrating symptom information. In the 
reported experiment, we studied the parallel updating of 
multiple diagnostic hypotheses during the processing of 
symptoms that each supported more than one diagnostic 
hypothesis. Symptom sequences that finally support two 
diagnoses equally should result in equal proportions of final 
diagnoses according to the normative standard of Bayesian 
belief updating. By collecting continuous belief ratings, we 
traced deviations from Bayesian updating and found 
evidence for symptom processing biased towards the 

leading hypothesis even in task conditions that are 
considered to induce no bias or an opposite bias (Hogarth & 
Einhorn, 1992). 

The initial hypothesis or the set of initial hypotheses 
triggered by early symptoms can bias the processing of 
subsequent symptoms (Hagmayer & Kostopoulou, 2013; 
Jahn & Braatz, 2014; Kostopoulou, Russo, Keenan, 
Delaney, & Douiri, 2012; Rebitschek, Scholz, Bocklisch, 
Krems, & Jahn, 2012). The support that later encountered 
symptoms provide for the focal hypothesis is emphasized 
and their support for alternative hypotheses is considered 
less than would be appropriate. Such biased symptom 
processing favors the hypothesis that is strongly supported 
by early symptoms and consequently strengthens the weight 
of early symptoms. A strong weight of early symptoms 
constitutes a primacy effect. 

Primacy effects have been observed in diagnostic 
reasoning with ambiguous symptom sequences. However, in 
a procedure that requires step-by-step belief ratings, there 
are reasons to expect unbiased integration or a recency 
effect rather than a primacy effect (Catena, Maldonado, 
Megías, & Freese, 2002; Hogarth & Einhorn, 1992; 
Rebitschek et al., 2012). The procedure of step-by-step 
belief ratings prompts ratings of the current status of 
diagnoses after each symptom presentation. Thus, 
participants are reminded of alternative diagnoses after each 
symptom. Second, the ratings prolong the retention interval 
for earlier symptoms and may interfere with the rehearsal of 
earlier symptoms. Consequently, the memory representation 
of later symptoms could be stronger and the relative weight 
of later symptoms could increase. Finally, with step-by-step 
belief ratings symptom integration cannot be delayed. An 
intermediate integration takes place after each symptom and 
the current status of diagnostic hypotheses could function as 
an anchor (Catena et al., 2002). The influence of a late 
symptom in adjusting an anchor could be stronger than the 
symptom’s contribution when it is part of a larger set of 
symptoms that are integrated. 

To summarize, these reasons to expect unbiased 
integration or recency effects – the saliency of alternatives, 
memory dynamics favoring late evidence, and contrast 
effects in anchoring and adjustment – postulate processes 
counteracting a known tendency to bias symptom 
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processing towards the initially leading hypothesis. We used 
a quasi-medical diagnostic reasoning task (Meder & 
Mayrhofer, 2013; Mehlhorn, Taatgen, Lebiere, & Krems, 
2011), with which a bias favoring the leading hypothesis 
had been demonstrated several times before (Jahn & Braatz, 
2014; Rebitschek et al., 2012), and tested whether step-by-
step belief ratings could overcome this bias.  

Experiment 
Participants were put in the role of a physician diagnosing 
which chemical had affected patients presenting with certain 
symptoms. First, they learned about four chemicals and the 
symptom categories that each could cause (Table 1 and 
Table 2). Then, they worked through a series of diagnostic 
reasoning items consisting of four symptoms each. There 
were non-diagnostic symptoms (x-symptoms) and 
symptoms that could be caused by two chemicals but with 
different causal strengths. Symptoms strongly suggesting 
one and weakly suggesting another chemical are denoted Ab 
(strongly suggesting A and weakly suggesting B) and Ba 
(strongly suggesting B and weakly suggesting A). 
Sequences with equal support for two chemicals are listed 
as item type AB in Table 3. 

After each symptom, participants rated the current 
probability of each chemical as the cause of the symptoms 
seen so far. These step-by-step belief ratings are compared 
with posterior probabilities computed in a Bayes net and can 
indicate biased symptom processing. Proportions of final 
diagnoses indicate biased symptom processing if they 
deviate from .5 for sequences with equal support. 

Method 
Participants. Thirty-eight students of the University of 
Greifswald (21 female, 17 male) with a mean age of 23.2 
years (SD = 3.2) took part in the experiment and were 
included in the analysis. Of eight additional participants, six 
did not complete the experiment and two produced 
disproportionately many errors (36% and 53% diagnoses 
that were not supported by any diagnostic symptom).  
Materials. In preparation for the diagnostic reasoning task, 
participants learned about four chemicals and the symptoms 
that each chemical could cause. There were six symptom 
classes each containing two symptoms that are listed in 
Table 1. We used symptom classes encompassing symptoms 
to limit the complexity of the causal structure to be learned 
while still ensuring a sufficient variety of symptom 
sequences to be constructed from symptoms. 

The strength with which a chemical caused symptoms 
from a certain class was either strong or weak. These levels 
of causal strength were communicated to participants as 
relative frequencies in verbal and pictorial form. For 
example, weak symptoms were presented as caused in “3 
out of 10 patients”. This relative frequency was additionally 
visualized by a row of stick-figures illustrating how many of 
10 patients being affected by the respective chemical show 
symptoms from the respective class: 3 red and 7 black. 

Table 1: Symptom classes and symptoms  

Symptom Class Symptoms  
Eyes Eyelid swelling  Lacrimation  
Respiration  Cough  Difficult breathing  
Skin  Acid burn  Rash  
Neurological  Paralysis  Speech disorder  
Circulatory Pr. Sweating Swoon 
Pain Twinge Sting 
Note. Original materials were in German. 

Each chemical had one strong and three weak symptom 
classes (see Table 2). These were presented in separate rows 
on a screen during the learning phase. For example, such a 
screen for the R chemical read: The chemical R is gasiform. 
It causes eyes-symptoms in 9 out of ten patients. <9 red 
stick figures, 1 black stick figure>. It causes respiration-
symptoms in 3 out of 10 patients. <3 red, 7 black>. It causes 
circulatory problems in 3 out of 10 patients. <3 red, 7 
black> It causes pain-symptoms in 3 out of 10 patients. <3 
red, 7 black> 

As apparent in Table 2, circulatory problems and pain 
were non-diagnostic symptom classes. Symptoms from 
these classes are denoted “x” in the following. The 
remaining four symptom classes were each caused strongly 
by one and weakly by a second chemical (columns 3 and 4 
in Table 2). For example, skin-symptoms were strongly 
caused by the W-chemical, but only weakly by the K-
chemical. Such symptoms are denoted “Ab” (strong for A, 
weak for B) or “Ba” (strong for B, weak for A) in the 
following. 

A single diagnostic reasoning item consisted of a 
sequence of four symptoms, for example: acid burn, 
paralysis, swoon, and speech disorder (Ab_Ba_x_Ba). This 
sequence belongs to the ABB item type because it contains 
one Ab-symptom and two Ba-symptoms. Table 3 shows the 
three item types (AAB, AB, and ABB) that each comprised 
three symptom sequences. 

 

Table 2: The chemicals and the symptom classes that each could cause 

Chemical Group In 9 out of 
10 patients 

In 3 out of 
10 patients 

In 3 out of 
10 patients 

In 3 out of 
10 patients 

R Gas Eyes Respiration Circulatory Pr. Pain 
B Gas Respiration Eyes Circulatory Pr. Pain 
W Fluid Skin Neurological Circulatory Pr. Pain 
K Fluid Neurological Skin Circulatory Pr. Pain 

Note. Original materials were in German. 
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The symptom sequences in Table 3 were used with each 
of the chemicals in the A-role and the remaining chemical 
from the same group in the B-role. All possible assignments 
of symptoms to item types were constructed with the 
restriction that no single symptom was repeated in a 
symptom sequence. 

 
Table 3: Item types and symptom sequences 

Item type Symptom sequence 

AAB Ab_x_Ab_Ba 
 Ab_Ab_x_Ba 
 Ab_Ab_Ba_x 
AB Ab_Ba_x_x  
 Ab_x_Ba_x 
 Ab_x_x_Ba 
ABB Ab_x_Ba_Ba 
 Ab_Ba_x_Ba 
 Ab_Ba_Ba_x 

 
Bayesian posterior probabilities. For comparing the 
sequential belief ratings with normative reference values, 
the causal structure of the scenario was implemented in a 
Bayes net. The causal model (Figure 1) reflects the structure 
presented in Table 2. The chemicals as candidates for the 
unknown root cause were defined as mutually exclusive. 
The four potential states of the unknown root cause spread 
to the diagnostic and non-diagnostic symptom classes. The 
symptom classes as the effects were mutually independent 
but not mutually exclusive. 

The node of the root cause was modeled with four states 
corresponding to the four chemicals R, B, W, K. The prior 
probabilities of the chemicals (states of the root cause) were 
set as equal and the probabilities of the symptoms’ 
presences given the different chemicals were fixed as 
depicted in the boxes in Figure 1. Under the specific 
parameterization, the posterior probabilities take on values 
of 0, .25, .5, and .75 (Figure 3). 

 

 
Figure 1. Bayesian causal model including the states of the 

root cause, the diagnostic and non-diagnostic effects 
(symptom classes), and respective parameter settings. 

 

Procedure. At the beginning of the learning phase, 
participants were instructed that their task would be to 
determine the cause of a patient’s symptoms. They were 
told that the patients are workers in a chemical plant that 
processes four chemicals. Each patient was affected by 
exactly one of those chemicals. Participants should 
determine which chemical most likely had caused a 
patient’s symptoms. 

First, they studied a screen explaining which symptoms 
belong to which symptom class (Table 1) and worked 
through test trials until the set of twelve symptoms was once 
assigned to symptom classes without errors. Then, 
participants were told that each chemical caused one of the 
six symptom classes almost always and a second symptom 
class occasionally. They were further told that two symptom 
classes are caused occasionally by all of the chemicals. 

Next, the chemicals R and B were studied on separate 
screens listing the symptom classes and their respective 
frequencies verbally and pictorially. Participants proceeded 
to testing when they felt ready. 

In each test trial of the learning procedure, a symptom 
class was presented together with a frequency (e.g. “Pain in 
3 out of 10 patients”) and participants responded with the 
letter of the chemical that causes this symptom with this 
frequency or with the letter “a” for all chemicals. All 
pairings of symptom classes and frequencies were tested in 
random order and the whole set was tested until it was once 
answered without errors. Then, the screens for the chemicals 
W and K were studied and tested and finally, all four 
chemicals were restudied and all symptom classes with 
frequency pairings were tested in random order until the test 
was completed without errors. Learning was completed 
within 16.4 min on average (SD = 4.5). 

Diagnostic reasoning. In each diagnostic reasoning trial, a 
sequence of four symptoms was presented. Each symptom 
presentation consisted of a fixation cross shown for 1s 
followed by a symptom that remained visible for 2s. Then, 
probability ratings were collected for all four chemicals on 
separate screens in random order. Each screen asked to enter 
a number between 0 and 100 to indicate in how many of 100 
patients presenting the symptoms seen so far the respective 
chemical would be the correct diagnosis. Participants 
entered a number and hit return to proceed to the next 
screen. Editing with backspace was possible and only 
numbers between 0 and 100 were accepted. When the 
probability rating for the fourth chemical had been 
completed, the presentation of the next symptom started 
with a fixation cross. After the ratings for the fourth 
symptom, participants indicated their final diagnosis with 
the respective letter and rated their confidence for the 
diagnosis with number keys from 1 (very unsure) to 7 (very 
sure). 

The first four trials were training trials and the very first 
trial was performed under supervision of the experimenter 
who ensured and explained that the ratings after each 
symptom should sum to 100 and that all symptoms seen so 
far should be considered. 
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After the training trials, each participant worked through 
the 36 possible combinations of chemicals with symptom 
sequences. The order of the 36 trials was pseudo-random 
and balanced across participants. For each trial, the actual 
sequence of symptoms was drawn randomly from the 
possible symptom assignments for this combination of 
symptom sequence and chemical in the A-role. 

After half of the trials, participants were encouraged to 
pause for a couple of minutes. The whole experiment took 
60 to 90 min in total.  

Results 
Trials that were responded to with a chemical that was not 
supported by any of the diagnostic symptoms (C- or D-
diagnoses) were not included in the following analyses 
(1.7% of all trials). Furthermore, trials were dropped, in 
which the likelihood ratings after one of the four symptoms 
did sum to less than 85% or to more than 115% (5.1% of all 
trials with A- or B-diagnoses).  
Diagnoses. The mean proportion of A-diagnoses for each 
symptom sequence is shown in Figure 2. Sequences of the 
AAB item type were mostly responded to with the A-
chemical and sequences of the ABB item type were mostly 
responded to with the B-chemical in line with the relative 
support for A and B. Sequences of the AB item type 
revealed a primacy effect in diagnoses: A-proportions were 
higher than .5 for AB-items, t(37) = 3.89, p < .001, d = 0.63, 
and higher if non-diagnostic symptoms delayed the Ba-
symptom in Ab_x_Ba_x and Ab_x_x_Ba sequences with ds 
of 0.52 and 0.59, respectively, than if the Ba-symptom 
immediately followed the Ab-symptom in the Ab_Ba_x_x 
sequence (d = 0.26). 

 

 
Figure 2. Mean proportions of A-diagnoses; error bars 

indicate standard errors. 

Sequential likelihood ratings. Figure 3 shows means of the 
likelihood ratings for A- and B-chemicals, and for C- and 
D-chemicals after each symptom for symptom sequences of 
the AB item type (Ab_Ba_x_x, Ab_x_Ba_x, and 
Ab_x_x_Ba) plotted separately for trials answered with A 

(A Diagnosis) and B (B Diagnosis). Bayesian posterior 
probabilities are shown for comparison. 

As visible in Figure 3, mean ratings after the first 
symptom match well with the Bayesian posterior 
probabilities in both trials with final A- and trials with final 
B-diagnoses. Right before the final diagnosis after the 
fourth symptom, the rating for the chemical that was 
subsequently chosen as the final diagnosis was generally 
higher than the rating for the competing alternative. Thus, 
final diagnoses were consistent with the last ratings. 

The mean A-ratings after x-symptoms for trials answered 
with B (right column in Figure 3) are lower than for trials 
answered with A (left column) and lower than the respective 
Bayesian probabilities. The decrease of A-ratings after x-
symptoms that occurred before a Ba-symptom in trials 
answered with B shows that participants did not process x-
symptoms as non-diagnostic. Instead and particularly in 
trials with final B-diagnoses, x-symptoms increased the 
ratings for alternatives to A (for B, but also ratings for C 
and D). This shift to alternatives after x-symptoms that was 
more pronounced in trials with a final B-diagnosis is clearly 
apparent in the mean sums of C- and D-ratings listed in 
Table 4. 

 

 

 
Figure 3. Mean likelihood ratings of A-, B-, C-, and D-

diagnoses for the three sequences of the AB-item type with 
standard errors along with the posterior probabilities 

computed with the Bayesian causal model separately for 
trials finally answered with A (column A Diagnosis) and 

trials finally answered with B (column B Diagnosis). 
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Table 4: Mean sums of C- and D-ratings after each 
symptom for the three sequences of the AB-item type 

separately for trials finally answered with A (A-Diagnosis) 
and trials finally answered with B (B-Diagnosis) 

 A-Diagnosis B-Diagnosis 
Order/ 
Symptom 

C+D-Rating         
M (SE) 

 

N 
 
 

C+D-Rating 
M (SE) 

N 
 

Ab 0.88  (0.65) 80 3.50  (1.48) 60 
Ba 1.13  (0.64)  2.00  (0.91)  
x 1.98  (0.74)  6.13  (1.93)  
x 2.55  (0.94)  6.53  (1.88)  
Ab 1.10  (0.69) 91 2.86  (1.30) 49 
x 2.81  (0.92)  8.82  (2.80)  
Ba 1.80  (0.73)  4.43  (1.69)  
x 2.97  (1.05)  6.69  (1.95)  
Ab 0.60  (0.33) 92 3.72  (1.75) 43 
x 3.28  (0.95)  10.19  (3.43)  
x 4.64  (1.14)  10.51  (3.25)  
Ba 2.09  (0.67)  4.40  (1.52)  
 
The decrease of A-ratings after x-symptoms in trials with 

B-diagnoses further suggests that a tendency towards the 
final response developed rather early in a trial. To quantify 
the dependence of final diagnoses on early x-symptom 
processing, we computed the difference between A- and B-
ratings after each symptom and tested with logistic 
regressions how well the AB-differences predicted the final 
response. The results of the logistic regressions are shown in 
Table 5. Note that the unit for the AB-difference was set to 
10 rating points and that the clustering of trials at the level 
of participants was not modeled in the reported regressions. 

The regression weights for the AB-difference increase 
across the four symptoms for all three AB-sequences. For 
the Ab_Ba_x_x and the Ab_x_Ba_x sequences, the 
prediction weights increase earlier than for the Ab_x_x_Ba 
sequence confirming that how Ba was processed was 
important for the final diagnosis. The changes in regression 
weights additionally confirm that the processing of non-
diagnostic symptoms influenced the final diagnosis. 

Discussion 
Symptom sequences that contained somewhat diagnostic 
symptoms and non-diagnostic symptoms and that equally 
supported two competing diagnostic hypotheses induced 
symptom processing that more often favored the initially 
leading hypothesis. This bias towards the leading hypothesis 
occurred although step-by-step belief ratings highlighted 
alternatives and could have strengthened the weight of a 
later symptom supporting the competing alternative (Catena 
et al., 2002; Hogarth & Einhorn, 1992). 

The ambiguous symptom sequences are particularly 
sensitive to biased symptom processing because each 
symptom is consistent with the favored diagnosis and can be 
interpreted as supporting it. The belief ratings suggest that 
participants indeed interpreted somewhat diagnostic 
symptoms that were consistent with two diagnostic 
hypotheses in support of the currently favored hypothesis. 

Non-diagnostic symptoms increased ratings of 
unsupported alternatives (C and D), but less so in the more 
frequent trials, in which participants stayed with the initially 
leading hypothesis (see Figure 3 and Table 4) suggesting 
that non-diagnostic symptoms were rather interpreted as 
supporting the leading hypothesis than alternatives. 
Normatively, any change in ratings after non-diagnostic x-
symptoms is unjustified. Yet, the attenuating effect 
(dilution) of non-diagnostic evidence is common (Nisbett, 
Zukier, & Lemley, 1981). In the present experiment, 
favoring the leading hypothesis resulted in a smaller dilution 
effect by non-diagnostic symptoms.  

Missed non-diagnosticity (pseudodiagnosticity) is a 
known phenomenon in human diagnostic reasoning and is 
usually explained with missed alternative possible causes 
(Fischhoff & Beyth-Marom, 1983; Tversky & Koehler, 
1994). In the present study, however, the repeated prompts 
to rate all candidate causes prevented that possible causes 
could be missed. 

 
 

Table 5: AB-difference in ratings after each symptom as predictor of the final response (A vs. B) in sequences of the AB 
item type. Results of logistic regressions with the unit of the AB-difference set to 10 rating points (10%) 

Order/ 
Symptom 

Intercept  exp(β)   [95% CI] Chi2(1) a p R² b N 

Ab 
Ba 
x 
x  

.33 

.36 

.27 

.30 

 0.99   [0.86; 1.14] 
1.36   [1.02; 1.82] 
1.81   [1.03; 3.19] 
1.85   [1.17; 2.91] 

0.01 
5.22 

10.24 
21.31 

.91 

.02 
.001 

< .001 

< .001 
.05 
.10 
.19 

140 
 

Ab 
x 
Ba 
x 

.46 
-.03 
.59 
.63 

 1.03   [0.90; 1.18] 
1.16   [1.02; 1.32] 
1.52   [1.21; 1.91] 
1.83   [1.30; 2.58] 

0.19 
5.57 

21.82 
26.81 

.66 

.02 
< .001 
< .001 

.002 
.05 
.20 
.24 

140 
 

Ab 
x 
x 
Ba 

.66 

.36 
-.02 
.86 

 1.02   [0.86; 1.20] 
1.10   [1.00; 1.23] 
1.22   [1.07; 1.39] 
1.72   [1.33; 2.22] 

0.05 
2.45 
9.57 

32.06 

.83 

.12 
.002 

< .001 

.001 
.03 
.10 
.30 

135 
 

Note. a Likelihood ratio test. b Nagelkerke’s R2 
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The non-diagnostic symptoms were linked to supported 

and to unsupported alternatives. Thus, they could be 
interpreted as caused by the leading hypothesis and could be 
taken as confirming the leading hypothesis. Presumably, 
such a confirmation of the leading hypothesis by non-
diagnostic symptoms resulted in a stronger primacy order 
effect (higher A-proportion in Figure 2) in the AB-
sequences, in which the Ba-symptom was preceded by x-
symptoms. For non-ambiguous ABB-sequences, such an 
effect of a preceding x-symptom presumably was 
annihilated by a recency effect of the second Ba-symptom in 
the final position. 

The observed biased symptom processing of somewhat 
diagnostic and non-diagnostic evidence is consistent with 
theories postulating biased information sampling 
(Busemeyer & Townsend, 1993) and with theories of biased 
information interpretation in the construction of a coherent 
representation (Hagmayer & Kostopoulou, 2013; Thagard, 
1989). Reviewing the symptoms for evaluating the status of 
alternatives can be seen as information sampling in working 
memory and for such sampling a bias towards earlier 
presented information as well as a bias towards information 
supporting the leading alternative is deemed possible 
(Busemeyer & Townsend, 1993). 

In biased information interpretation, the information value 
of a piece of evidence is not fixed but can be modified by 
stressing certain aspects to attain a better fit with an overall 
interpretation (Kostopoulou et al., 2012; Thagard, 1989). 
Such biased interpretation is particularly easy with 
ambiguous evidence and thus, a general tendency towards 
coherent representations could well be the reason for the 
observed bias towards the initially leading hypothesis. 

Our results are consistent with recently reported biased 
symptom processing in very similar tasks without step-by-
step belief ratings (Jahn & Braatz, 2014; Rebitschek et al., 
2012). Sequential belief ratings are a quite obtrusive method 
for process tracing. It is remarkable that symptom 
processing biased towards the leading diagnostic hypothesis 
was nonetheless confirmed. In more realistic diagnostic 
tasks, perfectly ambiguous symptom patterns are unlikely 
and if information search is possible, uncertainty will 
motivate for continued search. If, however, ambiguity is 
strong and cannot be overcome, biased symptom processing 
seems likely. 
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