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EPIGRAPH

Pure mathematics is, in its way,
the poetry of logical ideas.

Albert Einstein
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ABSTRACT OF THE DISSERTATION

Intersection theory of the moduli space of elliptic K3 surfaces

by

Bochao Kong

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Dragos Oprea, Chair

Moduli spaces of K3 surfaces are fundamental objects in algebraic geometry. Elliptic

K3 surfaces are K3 surfaces with elliptic fibration structure, and they are of particular

interest due to their rich geometry. The moduli space of elliptic K3 surfaces can be studied

using the theory of Weierstrass models. In this dissertation, we study the topology and

intersection theory of the moduli space of elliptic K3 surfaces.

We compute the Poincaré polynomial of the moduli space of elliptic K3 surfaces.

The main idea is constructing a compactification using the Weierstrass models, this

compactification is a GIT quotient. We adapt Kirwan’s blowup machinery to weighted

projective space to compute the Poincaré polynomial. We find the cohomology is mostly

xi



concentrated in the even degrees, but there is one odd degree class in degree 33.

We also study the Chow ring of the moduli space of elliptic surfaces of degree

N ≥ 2. We conclude that the Chow ring of the moduli space of elliptic surfaces is always

generated by two classes. Furthermore, explicit relations between these classes are given,

the Poincaré polynomial for the Chow ring is the same for any N ≥ 2 and the ring is

Gorenstein with socle in degree 16. When N = 2, we obtain the Chow ring for the moduli

space of elliptic K3 surfaces, we conclude that the Chow ring in this case is tautological.

Finally, we present localization computations on the relative Quot scheme over

the moduli space of elliptic K3 surfaces. Our calculations are sufficient to determine the

divisorial κ-classes in terms of the Hodge class. We also represent one Noether-Lefschetz

divisor in terms of the Hodge class, which agrees with the modularity nature of the

Noether-Lefschetz divisors.
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Chapter 1

Preliminaries

1.1 Moduli spaces of K3 surfaces

1.1.1 K3 surfaces

K3 surfaces are a class of complex surfaces that are of great interest in algebraic

geometry, differential geometry, and mathematical physics. They were first defined by

Andre Weil in 1958, and the name K3 comes from the names of the three mathematicians

who first studied them: Kummer, Kähler, and Kodaira, as well as the mountain K2 in

Kashmir. Algebraic K3 surfaces can be defined over any field, but we will only consider

K3 surfaces over the complex numbers C. Unless otherwise stated, we will assume that

the K3 surfaces are smooth and projective.

Definition 1.1.1. A K3 surface is a smooth projective surface X over the complex

numbers such that:

KX
∼= OX and dim H1(X,OX) = 0.

The conditions we put on a K3 surface are quite strong, and it is a nontrivial fact

that such surfaces exist. We present some examples of K3 surfaces below:

Example 1.1.2. 1. The most famous example of a K3 surface is the Fermat quartic
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surface in P3 given by the equation

x4 + y4 + z4 + w4 = 0.

More generally, any smooth quartic surface in P3 is a K3 surfaces.

2. Consider a smooth sextic curve C in P2. The double cover of P2 branched along C

is a K3 surface.

3. Let A be an abelian surface. The involution map [−1] : A → A is an isogeny of

degree 2. It will have 16 isolated fixed points. The minimal resolution X → A/± 1

is a K3 surface.

The strong conditions in the definition of a K3 surface allow us to compute many

of its invariants.

Proposition 1.1.3. For a K3 surface X, we have:

dimH0(X,OX) = 1 and dimH2(X,OX) = 1.

The top Chern class integral
∫
X
c2(X) is equal to 24, we will also write c2(X) = 24 if no

confusion arises.

Proof. By Serre duality, we have

H0(X,OX) ∼= H2(X,OX ⊗KX)
∨ ∼= H2(X,OX)

∨.

Since the surface is projective, we have dimH0(X,OX) = dimH2(X,OX) = 1. In

particular, we have χ(X,OX) = 2. The Hirzebruch-Riemann-Roch theorem gives

χ(X,OX) =

∫
X

ch(OX) td(TX) =

∫
X

c1(TX)
2 + c2(TX)

12
= 2.

2



Note that c1(TX) = −KX , so we have c1(TX)
2 = 0. Thus, c2(TX) = 24.

We can compute the Hodge diamond of a K3 surface using similar techniques. Recall

the Hodge numbers are defined as hp,q(X) := dimHq(X,Ωp
X). We have the following

result:

Proposition 1.1.4. For a K3 surface X, the Hodge numbers are presented as follows:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

1

0 0

1 20 1

0 0

1

Proof. We have h0,1(X) = h1,2 = 0 by definition, so h1,0(X) = 0 as well. Now the only

Hodge number that requires a computation is h1,1(X). We apply the Hirzebruch-Riemann-

Roch theorem to the sheaf of Kähler differentials ΩX :

χ(X,ΩX) =

∫
X

ch(ΩX) td(TX)

=

∫
X

(
ch2(ΩX) + ch0(ΩX) ·

c1(TX)
2 + c2(TX)

12

)
= c2(TX) + 2 · 2 = −20.

= h1,0 − h1,1 + h1,2.

Thus, h1,1(X) = 20.

From the Hodge diamond, we see that the second Betti number b2(X) of a K3

surface is equal to 22. In fact, the integral cohomology ring of a K3 surface can be

computed explicitly.

3



Theorem 1.1.5. For a K3 surface X, the odd integral cohomology vanishes, and the

integral cohomology group is given by:

H∗(X,Z) = H0(X)⊕H2(X)⊕H4(X) ≃ Z⊕ Z22 ⊕ Z.

The ring structure is given by the lattice structure on H2(X,Z), which is isomorphic to

the unique even unimodular lattice of signature (3, 19). More precisely, we have:

H2(X,Z) ≃ U3 ⊕ E8(−1)2,

where U is the hyperbolic plane and E8(−1) is the unique negative definite even unimodular

lattice of rank 8.

Definition 1.1.6. The lattice U3 ⊕ E8(−1)2 is called the K3 lattice, we denote it by ΛK3.

For a general surface X, the Pic(X), the NS(X), and the Num(X) are different.

However, for a K3 surface, we have the following result:

Proposition 1.1.7. [Huy16, 1.2.4] Let X be a K3 surface. The natural surjections:

Pic(X) → NS(X) → Num(X)

are all isomorphisms. Moreover, the intersection pairing on NS(X) is even, non-degenerate

and of signature (1, ρ(X)− 1), where ρ(X) is the rank of the Néron-Severi group NS(X).

1.1.2 Weight 2 Hodge structures and period map

In this section, we will study the weight 2 Hodge structures on a K3 surface. We

will introduce the period domain and the Torelli theorem for (quasi-)polarized K3 surfaces.

We follow the exposition in [DK07, Section 9]. In this section, we do not assume that our

K3 surface is projective, we replace the projective assumption with the assumption that

4



our K3 surface is Kähler. In fact, the Kähler assumption is not necessary due to Siu’s

Theorem [Siu83], but it simplifies the exposition.

The interesting part of the Hodge structure for K3 surfaces is of weight 2. Consider

the intersection form on H2(X,C):

Q(α, β) =

∫
X

α ∧ β.

The intersection form Q is the complex extension of the usual intersection form in

H2(X,Z) ≃ ΛK3. We associate a Hermitian form on H2(X,C) by:

H(α, β) = −Q(α, β).

The Hodge decomposition:

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X)

is orthogonal with respect to the Hermitian form H. Recall in Proposition 1.1.4, we have

(h2,0, h1,1, h0,2) = (1, 20, 1). The Hodge decomposition is uniquely determined by the lowest

part in the Hodge filtration H2,0(X) = F 2H2(X,C). Furthermore, the Hermitian form H

is negative definite on H2,0(X) by the Hodge index theorem. This motivates the following

definition:

Definition 1.1.8. The period domain D is the open subset (in usual topology) of a

quadric:

D = {ω ∈ P(ΛK3 ⊗ C) | Q(ω, ω) = 0, Q(ω, ω) > 0}.

The period domain D is a complex manifold of dimension 20. It parametrizes all

the Hodge structures of weight 2 on complex K3 surfaces. We would like to map a K3

surface to the period domain via its Hodge structure. To do this, we need to fix a marking

5



of the K3 surface.

Definition 1.1.9. [DK07] A marking of a K3 surface X is an isomorphism ϕ : ΛK3 →

H2(X,Z), where ΛK3 is the K3 lattice defined in Definition 1.1.6. A marked K3 surface is

a pair (X,ϕ), where X is a K3 surface and ϕ is a marking of X. We will write ϕR and ϕC

for the real and complex extensions of ϕ.

Two marked K3 surfaces (X,ϕ) and (X ′, ϕ′) are isomorphic if there exists an

isomorphism f : X → X ′ such that the following diagram:

ΛK3 H2(X ′,Z)

ΛK3 H2(X,Z)

ϕ′

id f∗

ϕ

commutes.

For a marked K3 surface (X,ϕ), we can map the H2,0(X) to the period domain D

via the marking ϕ:

H2,0(X) 7→ [ϕ−1
C (H2,0(X))] ∈ D. (1.1.1)

Definition 1.1.10. The above association (1.1.1) is a well-defined map from the set of

isomorphism classes of marked K3 surfaces to the period domain D. We call this map the

period map:

Per : {Marked complex K3 surfaces}/ ∼ → D. (1.1.2)

The weak Torelli theorem tells us a complex K3 surface is determined up to

isomorphism by its Hodge structure. We can state it using marked K3 surfaces and the

period map:

Theorem 1.1.11. [Pvv71,LP81] The period map Per in (1.1.2) is injective.

We would like to focus on the algebraic K3 surfaces, and we wish to construct a

reasonable moduli space for them. The correct object to consider is the (quasi-)polarized

6



K3 surfaces.

Definition 1.1.12. A line bundle L on a K3 surface X is called big and nef if L is nef

and L2 > 0. A line bundle L is called primitive if L is not a multiple in the Picard group.

A polarized K3 surface is a pair (X,L), where X is a K3 surface and L is an ample

primitive line bundle on X. A quasi-polarized K3 surface is a pair (X,L), where X is a

K3 surface and L is a primitive, big and nef line bundle.

Two (quasi-)polarized K3 surfaces (X,L) and (X ′, L′) are isomorphic if there exists

an isomorphism f : X → X ′ such that f ∗L′ ∼= L.

We call the intersection number L2 the degree of the (quasi-)polarized K3 surface.

The coarse moduli space of degree 2d polarized K3 surfaces can be constructed

using Hilbert scheme. The key ingredient is the following theorem due to Saint-Donat:

Theorem 1.1.13. [SD74] Let L be any ample line bundle on a K3 surface X. Then L2

is globally generated, and L3 is very ample.

Given any degree 2d polarized K3 surface (X,L), we can embed X into P9d+1 via

L3. The embedding is unique up to a projective transformation. The Hilbert polynomial

of X in P9d+1 is P (t) = 9dt2 + 2. All closed subvarieties in P9d+1 with a fixed Hilbert

polynomial are parametrized by the Hilbert scheme, in our case we have the Hilbert scheme

HilbP (t)(P9d+1). The points in HilbP (t)(P9d+1) that correspond to K3 surfaces actually form

a quasi-projective variety, we denote it by Hilb2d, the orbit space Hilb2d /PGL(9d + 2)

exists as a quasi-projective variety, and it represents the coarse moduli space of polarized

K3 surfaces of degree 2d. We will denote the coarse moduli space by F◦
2d, we have:

F◦
2d ≃ Hilb2d /PGL(9d+ 2).

As we impose a polarization on a K3 surface, the possible domain for the holomorphic

2-forms is further restricted. We can model it by selecting a fixed primitive element l ∈ ΛK3

7



and consider the period domain Dl:

Dl = {ω ∈ P(l⊥) | Q(ω, ω) = 0, Q(ω, ω) > 0},

where l⊥ is the orthogonal complement of l in ΛK3 ⊗ C with respect to the intersection

form Q. The period domain Dl is a 19 dimensional complex manifold. We now define

markings for (quasi-)polarized K3 surfaces:

Definition 1.1.14. [DK07] Given a (quasi-)polarized K3 surface (X,L), a marking of

(X,L) is an isomorphism ϕ : ΛK3 → H2(X,Z) such that ϕ−1(c1(L)) = l for some primitive

element l ∈ ΛK3.

We say two marked (quasi-)polarized K3 surfaces (X,L, ϕ) and (X ′, L′, ϕ′) are

isomorphic if there exists an isomorphism f : X → X ′ such that the following diagram

commutes:

ΛK3 H2(X ′,Z)

ΛK3 H2(X,Z)

ϕ′

id f∗

ϕ

and f ∗L′ ∼= L.

For any two primitive elements l and l′ in ΛK3, if l
2 = l′2 = 2d, then they are

isometric. Furthermore, any even integer 2d can be realized as the square of a primitive

element in ΛK3. Thus, for a (quasi-)polarized K3 surface (X,L), we can always find a

marking ϕ : ΛK3 → H2(X,Z) such that ϕ−1(c1(L)) = l for some primitive element l ∈ ΛK3

with l2 = 2d. Sometimes we write D2d for the period domain Dl with l2 = 2d if no

confusion arises.

Similar to the case for complex K3 surfaces, we can define the period map for

(quasi-)polarized K3 surfaces:

{(X,L), ϕ} 7→ [ϕ−1
C (H2,0(X))] ∈ Dl.

8



We wish to connect the period map for polarized K3 surfaces with the moduli space F2d.

To do this, we need to remove the extra information coming from the marking. We have

the following result known as the global Torelli theorem:

Theorem 1.1.15. [Pvv71,LP81] Let (X,L) and (X ′, L′) be two polarized K3 surfaces. If

there exists an isometry of lattices ψ : H2(X,Z) → H2(X ′,Z) such that ψ(L) = L′ and

ψC(H
2,0(X)) = H2,0(X ′). Then there exists a unique algebraic isomorphism f : X → X ′

such that f ∗ = ψ.

Let Γl be the subgroup of O(ΛK3) which stabilize the element l. We can remove

the marking by consider the quotient:

Γl\Dl.

The orbit space Γl\Dl is separated and can be endowed with a quasi-projective variety

structure. Since the automorphism group is discrete, the dimension of Γl\Dl is 19.

Moreover, the Global Torelli theorem 1.1.15 implies the period map descends as an

injective map:

Per : F◦
2d → Γl\Dl. (1.1.3)

The above map is not surjective. In fact, the orbit space Γl\Dl is the coarse moduli space

for quasi-polarized K3 surfaces. We denote it by F2d, we have:

F2d ≃ Γl\Dl.

Remark 1.1.16. We use the notation F2d for the coarse moduli space of (quasi-)polarized

K3 surfaces of degree 2d. The notation F2d is reserved for the fine moduli space.

The difference between a quasi-polarization and a polarization can be tested using

(−2)-curves on the K3 surface. Let δ be an element in ΛK3 such that δ2 = −2 and (δ, l) = 0,
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let Hδ be the hyperplane in Dl defined by {ω ∈ Dl|(δ, ω) = 0}. We define the discriminant

locus of Dl as:

∆l =
⋃

δ2=−2,(δ,l)=0

Hδ.

Theorem 1.1.17. [DK07, Theorem 9.4] Any point in Dl can be realized as the period

point for a marked quasi-polarized K3 surface. The image of the period map Per in (1.1.3)

is Γl\(Dl −∆l).

1.1.3 Moduli Spaces of lattice polarized K3 surfaces

In this section, we will generalize period domain constructions for (quasi-)polarized

K3 surfaces to lattice polarized K3 surfaces. We follow the exposition in [DK07, Section

10]. We will fix a primitive sublattice:

Λ ↪→ ΛK3,

we require the signature of Λ to be (1, ρ − 1), where ρ is the rank of Λ. We start with

some constructions motivated by (−2)-curves and nef classes on K3 surfaces.

Let Λ−2 = {m ∈ Λ|m2 = −2}, consider the real cone:

VΛ = {m ∈ Λ⊗ R|m2 ≥ 0}.

Let V◦
Λ be a connected component of VΛ − {0}. We fix a choice of a connected component

C+
Λ of the set:

V◦
Λ\

⋃
δ∈Λ−2

δ⊥.

Definition 1.1.18. [DK07] A M-polarized K3 surface is a pair (X, j). Where X is a K3

surface and j : Λ → Pic(X) is a primitive lattice embedding such that j(C+
Λ ) contains a

big and nef class. The polarization is called ample if j(C+
Λ ) contains an ample class.
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We can construct the period domain for Λ-polarized K3 surfaces in a similar way.

Let N = Λ⊥ ⊂ ΛK3, we define:

DΛ = {ω ∈ P(N ⊗ C) | Q(ω, ω) = 0, Q(ω, ω) > 0}. (1.1.4)

Consider the group ΓΛ ∈ O(ΛK3) that stabilizes the sublattice Λ. The group ΓΛ acts on

N thus acts on DΛ. The orbit space ΓΛ\DΛ is again a quasi-projective variety, we denote

it by FΛ:

FΛ ≃ ΓΛ\DΛ.

The automorphism group is discrete, so the dimension of FΛ is 20− rank(Λ).

We can single out the coarse moduli space of K3 surfaces amplely polarized by Λ

by considering the discriminant locus. Let N−2 = {δ ∈ N |δ2 = −2}. For any δ ∈ N−2, we

define Hδ = {ω ∈ DΛ|(δ, ω) = 0}, and the discriminant locus:

∆Λ =
⋃

δ∈N−2

Hδ.

Let F◦
Λ be the coarse moduli space of K3 surfaces amplely polarized by Λ, we have:

F◦
Λ ≃ ΓΛ\(DΛ −∆Λ).

Remark 1.1.19. We use the notation FΛ for the coarse moduli space of lattice polarized K3

surfaces. We will work with the moduli stack FΛ in Section 4.3.1.

1.2 Elliptic surfaces over P1

Elliptic surfaces play central role in both complex algebraic geometry and number

theory. In this section, we will survey the geometry of elliptic surfaces over P1, we focus

on the relative minimal elliptic fibrations with a distinct section. We will start with the
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definition of elliptic surfaces and then study the fundamental line bundle and the numerical

invariants of elliptic surfaces. We will introduce the Weierstrass models of elliptic surfaces

and use them to study the moduli of elliptic surfaces. We follow the exposition in [Mir89]

and [Mir81].

We begin with the definition of elliptic surfaces. Throughout this section, we will

work over the complex numbers C. An elliptic curve is a smooth projective curve of genus

1 with a distinguished point, the identity element under the group law.

Definition 1.2.1. An elliptic surface over P1 is a smooth projective surface X together

with a surjective morphism π : X → P1 such that the general fiber of π is an elliptic curve,

and all fibers of π are connected.

A minimal elliptic surface over P1 is an elliptic surface X such that the fiber of π

contains no (−1)-curve.

A section of an elliptic surface is a morphism s : P1 → X such that π ◦ s = idP1 .

Remark 1.2.2. The minimality condition above is not the same as the surface X is minimal.

In fact, the above definition is relative minimality with respect to the fibration π : X → P1.

We will only study minimal elliptic surfaces with a section in this Chapter. We

will abbreviate a minimal elliptic surface over P1 with a section as an elliptic surface for

simplicity.

1.2.1 Fundamental line bundle and numerical invariants

In this section, we will introduce the fundamental line bundle of an elliptic surface

and study the numerical invariants of elliptic surfaces. The fundamental line bundle plays

a central role in connecting elliptic surfaces with Weierstrass models.

We have the following basic results about various direct images of the sheaves on

an elliptic surface. We will prove them under our setting for this chapter. For the general

proof, we refer to [Mir89] and [Mir81].
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Proposition 1.2.3. [Mir81] Let π : X → P1 be a minimal elliptic surface with a section

s : P1 → X. Let S ⊂ X be the image of the section s. Then:

1. π⋆OX = OP1,

2. R1π⋆OX is invertible on P1,

3. dimH1(X,OX) = dimH0(P1, R1π⋆OX),

4. dimH2(X,OX) = dimH1(P1, R1π⋆OX),

5. R1π⋆OX
∼= π⋆ (OX(S)/OX) ∼= s⋆OX(S),

6. S · S = degR1π⋆OX ,

7. the canonical class KX is an integral multiple of the fiber class F of the fibration

π : X → P1.

Proof. For any closed point t ∈ P1, the fiber Xt ∈ X define a same divisor class F in X.

In particular the morphism π : X → P1 is flat due to equi-dimensinality of the fibers. By

Zariski’s Lemma, we know F = rF ′ for some r ∈ Q and F ′ effective divisor supported on

fiber components of π. In our case r = 1 due to the existence of the section. Recall we

require the fibers to be connected, and we know no multiple fiber can occur in this case,

we have dimH0(Xt,OXt) = 1 for all t ∈ P1. The first statement follows from the flat base

change theorem.

For any t ∈ P1, we have the exact sequence:

0 → O(−Xt) → OX → OXt → 0.

So we have χ(Xt,OXt) = χ(X,OX) − χ(X,O(−Xt)). Since O(−Xt) are isomorphic for

all t ∈ P1, we know that:

χ(Xt,OXt) = dimH0(Xt,OXt)− dimH1(Xt,OXt) = 1− dimH1(Xt,OXt)
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is the constant 0 for all t ∈ P1. So we have dimH1(Xt,OXt) = 1 for all t ∈ P1. Again by

the flat base change theorem, we have R1π⋆OX is a locally free sheaf of rank 1 on P1.

Now we consider the Leray spectral sequence for the morphism π : X → P1:

Ep,q
2 = Hp(P1, Rqπ⋆OX) ⇒ Hp+q(X,OX).

Taking the p+ q = 1 terms, we have:

0 → H1(P1, R0π⋆OX) → H1(X,OX) → H0(P1, R1π⋆OX) → 0.

The third statement follows from H1(P1, R0π⋆OX) ∼= H1(P1,OP1) = 0. The fourth

statement follows from the p+ q = 2 terms of the Leray spectral sequence, we notice only

the p = q = 1 term is non-zero.

Next we consider the exact sequence:

0 → OX → OX(S) → OX(S)/OX → 0.

We apply the functor π⋆ to the above exact sequence, we have:

0 → π⋆OX
f−→ π⋆OX(S) → s⋆OX(S) → R1π⋆OX → R1π⋆OX(S) → 0.

By base-change the sequence to the fibers of π, we have f is an isomorphism and

R1π⋆OX(S) = 0. So we have R1π⋆OX
∼= s⋆OX(S) ∼= π⋆ (OX(S)/OX).

The sixth statement follows from direct computation based on the previous state-

ments:

S · S = deg(O(S)|S) = deg(O(S)/OX) = degR1π⋆OX .

The last statement follows from the adjunction formula applied to a general fiber
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F of π : X → P1:

KF = (KX + F )|F = KX · F + F 2 = KX · F.

So we have KX · F = 0. By Zariski’s Lemma, we know KX is an integral multiple of F .

We are now ready to introduce the fundamental line bundle of an elliptic surface:

Definition 1.2.4. [Mir89] Let π : X → P1 be a minimal elliptic surface with a section

s : P1 → X. The fundamental line bundle of X is the invertible sheaf L := (R1π⋆OX)
−1 on

P1. The fundamental invariant of X is the degree of the fundamental line bundle, denoted

by N := degL.

Based on the previous Proposition 1.2.3 and our definition of the fundamental

invariant N , we have the following corollary:

Corollary 1.2.5. [Mir81] Let π : X → P1 be a minimal elliptic surface with a section

s : P1 → X. Let N be the fundamental invariant of the elliptic fibration, S ⊂ X be the

image of the section s. Assume N > 0, then the following statements hold:

1. dimH1(X,OX) = 0, dimH2(X,OX) = N − 1 and S · S = −N ,

2. KX = (N − 2)F , where F is the fiber class of the fibration π : X → P1.

Proof. The first statement follows from the previous Proposition 1.2.3. The second

statement follows from the adjunction formula applied to the section S, assume KX = rF ,

we have:

OP1(2) ∼= KS = (KX + S)|S = (rF + S)|S.

Compare the degree of the above equation, we have r = N − 2.
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Remark 1.2.6. The fundamental invariant N is always a non-negative integer. When

N = 0, the elliptic surface is a product of two elliptic curves. When N = 1, the elliptic

surface is a rational elliptic surface. When N = 2, the elliptic surface is a K3 surface.

1.2.2 Weierstrass fibrations

In this section, we will introduce the Weierstrass fibrations. Weierstrass fibrations

can have singularities. We can construct a Weierstrass fibration from any elliptic surface

by contracting some fiber components. We will later show this construction is reversible,

but not all Weierstrass fibrations are coming from elliptic surfaces.

Definition 1.2.7. [Mir89] A Weierstrass fibration over P1 is a reduced irreducible

projective surface X̄ together with a flat proper morphism π̄ : X̄ → P1 such that every

fiber is one of the following types:

1. a smooth elliptic curve,

2. a rational curve with a single node,

3. a rational curve with a single cusp.

A section of a Weierstrass model is a morphism s̄ : P1 → X̄ such that π̄ ◦ s̄ = idP1 , and

the image of s̄ does not pass through the singular points of the fibers.

Similar to the case of elliptic surfaces, we will only study Weierstrass fibrations

over P1 with a section in this Chapter. We will abbreviate a Weierstrass fibration over P1

with a section as a Weierstrass fibration for simplicity.

A Weierstrass fibration over P1 is a family of elliptic curves over P1 with mild

singularities. We recall some basic results about cohomology of elliptic curves.

Proposition 1.2.8. Let E be a smooth elliptic curve or a rational curve with a single

node or a single cusp. We have:

H0(E,OE) ∼= C, H1(E,OE) ∼= C.
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Furthermore, let p ∈ E be a smooth point, we have for any n ≥ 1:

H0(E,OE(np)) ∼= Cn, H1(E,OE(np)) = 0.

We review the construction of the Weierstrass Basis for the elliptic curve (E, p).

Proposition 1.2.9. [Mir89] Let S(n) := H0(E,OE(np)) for any n ≥ 0. We have:

1. There is a nonzero element y ∈ S(3)\S(2) such that y2 ∈ Sym3 S(2),

2. There is a nonzero element x ∈ S(2)\S(1) such that:

y2 = x3 + Ax+B, for some A,B ∈ C.

3. If (x1, y1)and(x2, y2) are two pairs of elements satisfying the above conditions, then

there exists a constant λ ∈ C⋆ such that: x2 = λ2x1 and y2 = λ3y1.

The resulting pair (x, y) is called a Weierstrass basis for the elliptic curve (E, p), they’re

unique up to the action in the third statement.

Proof. We view the elements in S(n) as rational functions on E. We have the constant

function 1 as basis for S(0) and S(1). We take any f ∈ S(2)\S(1), then take any

g ∈ S(3)\S(2). Then we can construct basis for S(6) as {1, f, g, f 2, fg, f 3}, the linear

independence is guaranteed by the vanishing orders of the functions at the point p. Now

we note g2 ∈ S(6), so we can write:

g2 = a6f
3 + a5f

2g + a4fg
2 + a3f

2 + a2g + a1.

The leading coefficient a6 is nonzero since g2 is not S(5). By replace f → a6f and g → a26g,

we can assume a6 = 1. Then we can replace g → g− a5
2
f − a3

2
to eliminate the linear term

of g in the above equation. We can then replace f → f + a2
3
to eliminate the quadratic
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term of f in the above equation. We use x and y to denote the new f and g respectively,

then we have:

y2 = x3 + Ax+B.

So we have addressed the first two statements.

For the last uniqueness statement, assume we have (x1, y1) and (x2, y2) satisfying

the above conditions. Let y21 = x31+A1x1+B1 and y
2
2 = x32+A2x2+B2 be the Weierstrass

equations for the two pairs. Let y2 = αy1 + βx1 + γ with α ̸= 0, then we have:

y22 = α2y21+2(βx1+γ)αy1+(βx1+γ)
2 = α2(x31+A1x1+B1)+2(βx1+γ)αy1+(βx1+γ)

2.

The rational function y22 ∈ Sym3 S(2), so in coefficients of x1y1 and y1 must be zero. We

have β = 0 and γ = 0. We have y2 = αy1. Now let x2 = ax1 + b with a ̸= 0, substitute in

y22 = x32 + A2x2 +B2 we have:

α2y21 = (ax1 + b)3 + A2(ax1 + b) +B2 = α2(x31 + A1x1 +B1).

We have b = 0 and thus x2 = ax1. Then we have α2 = a3, there exists a constant λ ∈ C⋆

such that α = λ3 and a = λ2.

We can define the fundamental line bundle and the fundamental invariant of a

Weierstrass fibration in the same way as for elliptic surfaces. The strong restriction on the

singular fibers of a Weierstrass fibration will give us the following result:

Proposition 1.2.10. [Mir89] Let π̄ : X̄ → P1 be a Weierstrass fibration with a section

s̄ : P1 → X̄. Let S ⊂ X̄ be the image of the section s̄. Then:

1. π̄⋆OX̄ = OP1 and R1π̄⋆OX̄ is invertible on P1,

2. for any n ≥ 1, π̄⋆OX̄(nS) is a locally free sheaf of rank n on P1 and R1π̄⋆OX̄(nS) = 0.
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Proof. The Weierstrass fibration has all fibers to be smooth elliptic curve or rational curves

with a single node or a single cusp. Both the first and second statements follow from

Proposition 1.2.8 and flat base change theorem.

Definition 1.2.11. [Mir89] Let π̄ : X̄ → P1 be a Weierstrass fibration with a section

s̄ : P1 → X̄. The fundamental line bundle of X̄ is the invertible sheaf L̄ := (R1π̄⋆OX̄)
−1 on

P1. The fundamental invariant of X̄ is the degree of the fundamental line bundle, denoted

by N := deg L̄.

We have the following splitting results for the direct images of the sheaves on a

Weierstrass fibration:

Lemma 1.2.12. [Mir89] Under the setting of Proposition 1.2.10. For any n ≥ 2, there

exists a short exact sequence:

0 → π̄⋆OX̄ ((n− 1)S) → π̄⋆OX̄(nS) → L̄−n → 0.

Moreover, we have a splitting:

π̄⋆OX̄(nS) ∼= OX̄ ⊕ L̄−2 ⊕ L̄−3 ⊕ · · · ⊕ L̄−n.

Proof. Consider the exact sequence:

0 → OX̄ ((n− 1)S) → OX̄(nS) → OS(nS) → 0.

We apply the functor π̄⋆ to the above exact sequence and use the previous Proposition

1.2.10:

0 → π̄⋆OX̄ ((n− 1)S) → π̄⋆OX̄(nS) → OS(nS) → R1π̄⋆OX̄ ((n− 1)S) = 0.
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The first statement follows from OS(nS) ∼= L̄−n.

We have shown in the previous Proposition 1.2.10 that π̄⋆OX̄(nS) is vector bundle.

Now note any vector bundle on P1 is a direct sum of line bundles, we have the second

statement.

Remark 1.2.13. The splitting in Lemma 1.2.12 actually holds for any base curve, not just

P1. The idea is to use Weierstrass basis (x, y) fiberwise. Using Proposition 1.2.9, we know

the (1, x, y) will define canonical directions on the fibers of π̄⋆OX̄(3S). For general n, let

k = ⌊n
2
⌋ and l = ⌊n−3

2
⌋, we can construct:

{1, x, x2, ..., xk, y, xy, x2y, ..., xly}

as a basis for fiber of π̄⋆OX̄(nS). The linear independence again follows from the vanishing

orders. The basis defines canonical directions every fiber, and each direction can be

identified with a line bundle by restrict the exact sequence in Lemma 1.2.12 to the fiber.

1.2.3 Weierstrass equations

In this section, we will introduce the Weierstrass equations of Weierstrass fibrations.

We begin with the local description. Let {Ui} be a open affine cover of P1, so the

fundamental line bundle L̄ is trivial on each Ui. We choose a basis ti for the local section

space Γ(Ui, L̄). Then t
n
i will be a basis for the local section space Γ(Ui, L̄

n) for any n ∈ Z.

We can apply the standard argument to the local sections to build the Weierstrass

equation. We first pick an xi in Γ(Ui, π̄⋆(OX̄(2S))) such that xi projects onto t
2
i under

the isomorphism in Lemma 1.2.12. Then we pick a yi in Γ(Ui, π̄⋆(OX̄(3S))) such that yi

projects onto t3i under the isomorphism in Lemma 1.2.12. We know {x3i , xiyi, x2i , yi, xi, 1}

will be a basis for the local section space Γ(Ui, π̄⋆OX̄(6S)). Now y2i will also be a local
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section of π̄⋆OX̄(6S), so we can write:

y2i = a6x
3
i + a5xiyi + a4x

2
i + a3yi + a2xi + a1,

where a1, a2, a3, a4, a5, a6 are regular functions on Ui. By compare the leading terms, we

know a6 = 1. Now we can replace yi → yi − a5
2
xi − a3

2
to eliminate the linear term of yi in

the above equation. We can then replace xi → xi +
a2
3
to eliminate the quadratic term of

xi in the above equation. So we get the following equation:

y2i = x3i + Axi +B.

We can glue the local descriptions to get a global description of the Weierstrass

fibration. We will need to understand the transition functions for xi, yi, A,B. Let aij ∈ C⋆

be the transition functions for ti and tj, then we have:

Lemma 1.2.14. [Mir89] The transition maps for xi, yi, A,B are given by:

xj = a−2
ij xi yj = a−3

ij yi

Aj = a−4
ij Ai Bj = a−6

ij Bi.

From the above transition rules, we can glue the local functions {Ai} and {Bi} to

global sections of line bundles. Consider local sections {Ai · t4i } and {Bi · t6i } on the open

affine cover {Ui}, Lemma 1.2.14 tells us that they glue to a global section of L̄4 and L̄6

respectively.

Remark 1.2.15. Recall in Definition 1.2.7, we require the fibration has general fibers to be

smooth elliptic curves. This translates to the condition that the discriminant:

∆ := 4A3 + 27B2
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is not identically zero as a global section of L̄12.

Lemma 1.2.16. [Mir89] Fix a fundamental line bundle L̄ over P1. Then the two pairs

(A1, B1) and (A2, B2) together with L̄ induce isomorphic Weierstrass fibrations if and only

if there exists a constant λ ∈ C⋆ such that:

A2 = λ4A1, B2 = λ6B1.

Proof. We will only show the only if direction, that is if the two pairs (A1, B1) and (A2, B2)

together with L̄ induce isomorphic Weierstrass fibrations, then there exists a constant

λ ∈ C⋆ such that A2 = λ4A1 and B2 = λ6B1.

Pick an affine open set U ∈ P1, let y21 = x31+A1x1+B1 and y
2
2 = x32+A2x2+B2 be

the local Weierstrass equations for the two pairs. Let y2 = αy1+βx1+γ with α ̸= 0, Using

the same technique in the proof of Proposition 1.2.9, we have x2 = λ2x1 and y2 = λ3y1 in

the local Weierstrass equation, we have:

x32 + A2x2 +B2 = y22 = λ6y21 = λ6(x31 + A1x1 +B1) = x31 + λ4A1x1 + λ6B1.

So we have A2 = λ4A1 and B2 = λ6B1. It’s not hard to see the above argument glue to

the global level.

We can further globalize the discussion, consider the natural map:

ϕ : π̄⋆π̄⋆OX̄(3S) → OX̄(3S).

We have seen above morphism is surjective on all fibers, so it’s a surjection between

OX̄-modules, hence induces a morphism:

f : X → ProjP1(π̄⋆OX̄(3S)).
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Recall π̄⋆OX̄(3S) ∼= OP1 ⊕ L̄−2 ⊕ L̄−3, so we have:

P := ProjP1(π̄⋆OX̄(3S))

is a P2-bundle over P1. Let p : P → P1 be the natural projection. Then we have:

X
p◦f−−→ P1

recovers the Weierstrass fibration map π̄.

Let (A,B) be the global sections of L̄4 and L̄6 that induce the Weierstrass fibration

π̄ : X̄ → P1. The local Weierstrass equation y2i = x3i + Aixi + Bi over Ui ∈ P1 can be

globalized to a global Weierstrass equation:

Y 2Z = X3 + AXZ2 +BZ3.

The variables X, Y, Z in the above equation formally correspond to OP1 , L̄2, L̄3 respectively.

For more detail, consult the discussion in [MS72].

Definition 1.2.17. [MS72,Mir89] A Weierstrass equation over P1 is a choice of a line

bundle L̄ over P1, together with an equation:

Y 2Z = X3 + AXZ2 +BZ3,

where A,B are global sections of L̄4 and L̄6 such that the discriminant ∆ := 4A3 + 27B2

is not identically zero. The variables Z,X, Y are global coordinates corresponding to the

projectivization of π̄⋆OX̄(3S) ∼= OP1 ⊕ L̄−2 ⊕ L̄−3 respectively.

The section s̄ factor through the natural section s0 of the P2-bundle P over P1

corresponds to: OP1 ⊕ L̄−2 ⊕ L̄−3 ↠ L̄−2. More directly, the image of the section s0 is

given by X = Z = 0 in P. We have the following commutative diagram:
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X̄ P

P1

π̄

f

p
s̄

s0

We have established the following 1:1 correspondence:

{Weierstrass Equations/ ∼} {Weierstrass fibrations/ ∼}

1.2.4 Weierstrass models of elliptic surfaces

In this section, we will connect the Weierstrass fibrations with the elliptic surfaces.

Unlike in Section 1.2.3, we will not get a one-to-one correspondence. We will specify the

conditions for a Weierstrass fibration to be a Weierstrass model of an elliptic surface with

a section.

Let π : X → P1 be an elliptic surface with a section s : P1 → X. Kodaira [Kod63]

has classified the singular fibers of an elliptic surface, we have the following table:

Table 1.1. Kodaira’s classification of singular fibers.

Name Fiber Reducible

I0 smooth elliptic curve No
I1 nodal rational curve No
I2 two smooth rational curves meeting at two points Yes
I3 three smooth rational curves meeting in a cycle; a triangle Yes

IN≥4 N smooth rational curves meeting in a cycle, dual graph ÃN Yes

I∗N N ≥ 0 N + 5 smooth rational curves meeting with dual graph D̃N+4 Yes
II a cuspidal rational curve No
III two smooth rational curves meeting at one point to order 2 Yes
IV three smooth rational curves all meeting at one point Yes

IV ∗ 7 smooth rational curves meeting with dual graph Ẽ6 Yes

III∗ 8 smooth rational curves meeting with dual graph Ẽ7 Yes

II∗ 9 smooth rational curves meeting with dual graph Ẽ8 Yes
I∗N,M , N ≥ 0 topologically an IN , but each curve has multiplicity M Yes

All components of the reducible fibers of an elliptic surface are smooth rational

curves with self-intersection −2.
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Using Kodaira’s classification of singular fibers, we can contract the components

of the singular fibers that are not meeting S to get a surface with only rational double

points. We have the following result:

Proposition 1.2.18. [Mir89] Let F0 ⊂ X be a reducible singular fiber of an elliptic

surface π : X → P1 with a section s : P1 → X. Let S ⊂ X be the image of the section s.

Then the following statements hold:

1. F0 is a reducible fiber of type IN≥2, I
∗
N , III, IV, IV

∗, III∗, II∗, I∗N,M ,

2. the map p : X → X̄ that contracts all components of singular fibers that do not meet

S produces a surface X̄ with at worst rational double points. The surface X̄ is a

Weierstrass fibration over P1 with a section.

Proof. Since F0 · S = 1, we know the component of F0 meeting S must have multiplicity 1.

So by checking the Kodaira’s Classification Table 1.1, we have F0 is a reducible fiber of

type IN≥2, I
∗
N , III, IV, IV

∗, III∗, II∗, I∗N,M .

For the second statement, note all the types of reducible fibers in the first statement

consist of smooth rational curves with self-intersection −2. The components that do not

meet the section S form a Dynkin diagram, so the contraction X̄ is a surface with at

worst rational double points. Now the contraction is fiberwise, so the map π : X → P1

factors through the contraction map p : X → X̄, so we have a map π̄ : X̄ → P1. The

fibers of π̄ clearly satisfy the conditions in Definition 1.2.7. The section s̄ : P1 → X̄ is the

composition of the section s : P1 → X and the contraction map p : X → X̄.

We have constructed a Weierstrass fibration from a minimal elliptic surface. Con-

versely, if we have a Weierstrass fibration, we can take its minimal resolution to get a

minimal elliptic surface. We have the following two maps:

{minimal elliptic surfaces w/section} {Weierstrass fibrations} .
ι

j
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The composition j ◦ ι is the identity map, but the composition ι ◦ j is not. In fact,

the map j is surjective, the map ι is strictly injective. Based on the classification of the

singular fibers Table 1.1, we know Im(ι) are those Weierstrass fibrations with at worst

rational double points.

We want to specify the conditions on Weierstrass equation for the corresponding

fibration has at worst rational double points. The key idea is using the double induced by

π̄⋆OX̄(2S) to detect the singularities. Recall the natural map:

ϕ : π̄⋆π̄⋆OX̄(2S) → OX̄(2S).

Examine on the fibers, we know the morphism ϕ is surjective on all fibers, hence induces a

morphism:

g : X̄ → ProjP1(π̄⋆OX̄(2S)) = ProjP1(OP1 ⊕ L̄−2) := F.

The map g is a double-covering, we can compute the branch locus:

Proposition 1.2.19. [Mir89] Let π̄ : X̄ → P1 be a Weierstrass fibration and Y 2Z =

X3 + AXZ2 + BZ3 be its Weierstrass equation. Let g : X̄ → F be the double-covering

produced by above process. Then the branch locus of g is a disjoint union of the following

divisors:

1. the divisor R corresponds to Z = 0,

2. the divisor T corresponds to X3 + AXZ2 +BZ2 = 0.

Proof. The global coordinates Z,X, Y correspond to the projectivization of OX̄ , L̄
−2, L̄−3

respectively. If Z ̸= 0, the map g is given by the projection: [X : Y : Z] → [Z : X]. The

infinity section [0 : 1 : 0] can be mapped to [0 : 1] on F.

It’s easy to verify that the above description for g agrees with its construction. The

branching happens if Z = 0 or Y = 0, the corresponding locus consists of two components:

R given by Z = 0 and T given by X3 + AXZ2 +BZ2 = 0.
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The classical result of double coverings tells us the double cover is smooth if and

only if the branch locus is smooth, the double cover has at worst rational double points if

and only if the branch locus has simple singularities. We can translate the condition to

the Weierstrass equation:

Lemma 1.2.20. [Mir89] Let π̄ : X̄ → P1 be a Weierstrass fibration and Y 2Z =

X3 +AXZ2 +BZ3 be its Weierstrass equation. For point p ∈ P1 and any section s of line

bundle on P1, the integer vp(s) is the order of the zero of s at p. Then the Weierstrass

fibration has at worst rational double points if and only if the following conditions hold:

• there is no point p ∈ P1 such that vp(A) ≥ 4 and vp(B) ≥ 6.

Proof. The two components of the branch locus R and T are clearly disjoint. The divisor

R is clearly smooth. Thus, the Weierstrass fibration has at worst rational double points if

and only if the divisor T has simple singularities. The local equation of T has degree 3, so

we need to guarantee there will be no triple tacnodes. Equivalently, we need to guarantee

after at any point c ∈ T , we will not have triple point again.

We take t as the local coordinates on the base P1, and x as the local coordinates

on the fiber. We have the local equation of T is given by: x3 + A(t)x + B(t) = 0. We

may assume the point c ∈ T has coordinates (x0, 0). If point c is a triple tacnode, in

particular (x0, 0) must be a triple root for x3 + A(0)x+B(0) = 0. So we have A(0) = 0

and B(0) = 0 and x0 = 0. Now we know the triple tacnode must be (0, 0). The equation

x3 + A(t)x + B(t) = 0 has a triple root at (0, 0) if and only if t2|A(t) and t3|B(t). To

make the triple root (0, 0) a triple tacnode, we blow up the point (0, 0) and get the local

equation:

t3
(
x3 + (A(t)/t2)x+ (B(t)/t3)

)
= 0.

Repeat the argument for x3 + (A(t)/t2)x+ (B(t)/t3) has a triple root at (0, 0), we have

t4|A(t) and t6|B(t).
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Conversely, if t4|A(t) and t6|B(t), it’s straightforward to check (0, 0) is a triple

tacnode.

1.2.5 Moduli spaces of elliptic surfaces

In this section, we construct the moduli space of elliptic surfaces. We have seen

in the previous section that the elliptic surfaces are in 1:1 correspondence with the

Weierstrass equations subject to certain conditions. The following Proposition summarizes

the correspondence:

Proposition 1.2.21. [Mir89] Let π : X → P1 be a minimal elliptic surface with a section

s : P1 → X. It is in 1:1 correspondence with a Weierstrass fibration π̄ : X̄ → P1 with

a section s̄ : P1 → X̄ such that X̄ has at worst rational double points. Furthermore,

the Weierstrass fibration is in 1:1 correspondence with the Weierstrass equations Y 2Z =

X3 + AXZ2 +BZ3 subject to the following conditions:

1. the discriminant ∆ := 4A3 + 27B2 is not identically zero (see Remark 1.2.15),

2. there is no point p ∈ P1 such that vp(A) ≥ 4 and vp(B) ≥ 6 (see Lemma 1.2.20).

To form the moduli space of elliptic surfaces, we need to fix the fundamental invariant

N , then fundamental line bundles for the elliptic surface and the induced Weierstrass

fibration will be L ∼= L̄ ∼= OP1(N). The total parameter space for the Weierstrass equations

is the space of global sections of OP1(4N) and OP1(6N). Let VN := Γ(P1,OP1(N)), define

TN ⊂ V4N ⊕ V6N to be the subset of pairs (A,B) subject to the conditions in Proposition

1.2.21. The isomorphism of the elliptic surfaces coming from two sources. The first source

is the isomorphism of the Weierstrass equations, recall Lemma 1.2.16, we have C⋆ acts on

V4N ⊕ V6N by:

λ · (A,B) = (λ4A, λ6B).
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The second source is the automorphism of the base P1. Let T0, T1 be the standard

coordinates on P1, the group SL2(C) on coordinates by:

a b

c d

 ·

T0
T1

 =

aT0 + bT1

cT0 + dT1

 . (1.2.1)

Identify the V4N and V6N with the binary forms of degree 4N and 6N respectively, we

have induced the action of SL2(C) on V4N ⊕ V6N .

Remark 1.2.22. The action of C⋆ on V4N ⊕ V6N is not effective. We prefer to work with

the induced effective action:

λ · (A,B) = (λ2A, λ3B).

We will work with the reduced effective action from now on.

Proposition 1.2.23. Set theoretically, the moduli space of elliptic surfaces with funda-

mental invariant N is the quotient space:

EN := TN/(C⋆ × SL2(C)).

Remark 1.2.24. We use the notion EN to denote the coarse moduli space of elliptic surfaces

with fundamental invariant N . We will work with the corresponding quotient stack

EN := [TN/C⋆ × SL2(C)] in Section 4.3.1.

Now we want to make the set EN an algebraic variety. Which is in fact the coarse

moduli space of the elliptic surfaces. The main idea is to use the geometric invariant

theory (GIT). We can view the quotient process as a three-step process:

1. We take the group C⋆ action on V4N ⊕ V6N − {0}. This results in the weighted
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projective space:

V4N ⊕ V6N − {0}/C⋆ = WP(2, ..., 2︸ ︷︷ ︸
4N+1

, 3, ..., 3︸ ︷︷ ︸
6N+1

).

2. Find a line bundle L on WP such that the action of SL2(C) is linear. Examine the

stability condition of above GIT quotient, make sure the image of TN is contained in

the stable locus.

3. We can take the GIT quotient:

EN := WP(2, ..., 2︸ ︷︷ ︸
4N+1

, 3, ..., 3︸ ︷︷ ︸
6N+1

) //L SL2(C).

The previous step assures the moduli space of elliptic surfaces EN will be a quasi-

projective variety sits inside EN .

To execute the above plan, the non-trivial part is to find the line bundle L and verify the

stability condition. The following Proposition gives the answer [Mir81, Proposition 5.1]:

Proposition 1.2.25. [Mir81] Consider the Veronese embedding ι : WP → P given by:

[A : B] 7→ [A3 : B2],

let L := ι⋆OP(1). The line bundle L is ample and has a natural SL2(C)-linearization.

Furthermore, the pair (A,B) is not semistable if and only if there is a point p ∈ P such

that:

vp(A) > 2N and vp(B) > 3N.

A pair (A,B) is not stable if and only if there is a point p ∈ P such that:

vp(A) ≥ 2N and vp(B) ≥ 3N.
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Proof. The line bundle L is clearly ample, it is isomorphic to OWP(6). The SL2(C)-

linearization is given by identifying the A3 and B2 with the binary forms of degree 12N .

We now use Hilbert-Mumford criterion to check the stability condition. We take the

one-parameter subgroup: λ 0

0 λ−1

 ⊂ SL2(C).

Let T0, T1 be the homogeneous coordinates on P, the action of λ on T0 and T1 is given

by: λ · T0 = λT0 and λ · T1 = λ−1T1. We can expand the binary form or equivalently the

polynomial A,B in terms of T0, T1:

A =
4N∑
i=0

aiT
i
0T

4N−i
1 , B =

6N∑
l=0

blT
l
0T

6N−l
1 .

Clearly the action will send coordinates ai to λ
2i−4Nai and bl to λ

2l−6Nbl. The polynomial

A3 will have coefficients aiajak, and B
2 will have coefficients blbm. Coordinate-wise, the

action of λ on the coefficients of A3 and B2 is given by:

λ2i+2j+2k−12Naiajak, λ2l+2m−12Nblbm.

The Hilbert-Mumford criterion tells us the pair (A,B) is not semistable for the selected

one-parameter subgroup if and only if the following conditions are met:

• If i+ j + k ≤ 6N , then aiajak = 0.

• If l +m ≤ 6N , then blbm = 0.

In particular, we have a3n = 0 if n ≤ 2N and b2m = 0 if m ≤ 3N . This implies for the point

p = [0 : 1] ∈ P, we have vp(A) > 2N and vp(B) > 3N .

Conversely, if we have a point p ∈ P such that vp(A) > 2N and vp(B) > 3N , we

can a suitable coordinate system such that p = [0 : 1]. Then we take the corresponding
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one-parameter subgroup, the above two conditions will be met. So we conclude the pair

(A,B) is not semistable if and only if there is a point p ∈ P such that vp(A) > 2N and

vp(B) > 3N .

The argument for the stable condition is completely analogous.

Corollary 1.2.26. The moduli space of elliptic surfaces with fundamental invariant N ≥ 2

is a quasi-projective variety with at worst finite quotient singularities.

Proof. Let f : V4N ⊕V6N −{0} → WP be the quotient map induced by the C⋆-action. Let

WPs denote the stable locus of the GIT quotient. For N ≥ 2, compare the conditions in

Proposition 1.2.21 and Proposition 1.2.25, we have f(TN) ⊂ WPs.

1.2.6 Moduli space of elliptic K3 surfaces

In this section, we will realize elliptic K3 surfaces with a section as lattice polarized

K3 surfaces. We will fix a primitive sublattice:

U =

0 1

1 0

 ⊂ ΛK3.

Instead of using the standard basis of the hyperbolic lattice U , it is useful to

consider the basis σ, f that corresponds to the section and fiber class of the elliptic surface.

The basis σ, f satisfies the following intersection matrix:

−2 1

1 0

 .

Definition 1.2.27. An elliptic K3 surface with a section is a K3 surface X together with

an elliptic fibration π : X → P1 such that the general fiber of π is an elliptic curve, and a

section s : P1 → X.
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Before we show the one-to-one correspondence between elliptic K3 surfaces and

U -polarized K3 surfaces, we will need some basic results about nef line bundles on K3

surfaces.

Proposition 1.2.28. Let L be a nontrivial line bundle on a K3 surface X such that

L2 ≥ −2. Then either L is effective or L−1 is effective.

Proof. We apply the Riemann-Roch theorem to the line bundle L, note KX = OX , we

have

χ(X,L) =
L2

2
+ χ(X,OX) =

L2

2
+ 2 ≥ 0.

Since L2 ≥ −2, we have dimH0(X,L) + dimH2(X,L) ≥ 1. By Serre duality, H2(X,L) ≃

H0(X,L−1)∨. Moreover, if dimH0(X,L) > 0 and dimH0(X,L) > 0, then L must be

trivial. So we have either dimH0(X,L) > 0 or dimH0(X,L−1) > 0, which means either

L is effective or L−1 is effective.

Definition 1.2.29. [Huy16] For a smooth rational curve C on a K3 surface X, we define

the reflection s[C] : Pic(X) → Pic(X) by:

s[C](L) = L+ (L · C)C.

A reflection s[C] will be an isometry of the Picard lattice.

Proposition 1.2.30. [Huy16] Let L be a line bundle on a K3 surface X such that L2 ≥ 0.

Then there exists a sequence of smooth rational curves C1, . . . , Cn on X such that:

s[C1] ◦ · · · ◦ s[Cn](L)

is a nef line bundle.

33



Proposition 1.2.31. [Huy16] Let L be a nef line bundle on a K3 surface X such that

L2 ≥ 0. Then there exists an elliptic fibration π : X → P1 such that L ∼= OX(mf), where

f is the fiber class of the fibration.

From the elliptic surface point of view, the elliptic K3 surfaces are elliptic surfaces

with a section and the fundamental invariant N = 2.

Proposition 1.2.32. There is a one-to-one correspondence between elliptic surfaces with

a section and the fundamental invariant N = 2 and U-polarized K3 surfaces.

Proof. Suppose we have an elliptic surface with the fundamental invariant N = 2. Let

π : X → P1 be the elliptic surface, and s : P1 → X be the section. From Corollary 1.2.5,

we know KX
∼= OX and H1(X,OX) = 0. Use Corollary 1.2.5 again, the section class S

will have self-intersection S2 = −2. So the section class S together with the fiber class F

will generate the desired lattice L, with H = S + 2F being a big and nef class.

Conversely, suppose we have a U -polarized K3 surface X. Let D1 and D2 be the

basis of the lattice U such that D2
1 = 0, D2

2 = −2 and D1 ·D2 = 1. Using Proposition

1.2.30, we can find a nef class f with self-intersection f 2 = 0 using successive reflections on

D1. Let σ be the corresponding class of D2 after reflections. From Proposition 1.2.31, we

know there is an elliptic fibration π : X → P1 such that f is a multiple of the fiber class of

π. Notice σ · f = 1, we know f must be the fiber class itself. Now since σ2 = −2, from

Proposition 1.2.28 and nefness of f , we know σ is effective. Consider the fixed part of the

base locus in the linear system BS|σ|, we know the fixed part must contain a component

S which is a section of the elliptic fibration.

Corollary 1.2.33. The coarse moduli space of elliptic K3 surfaces is isomorphic to E2.

Remark 1.2.34. From the construction of the moduli spaces of K3 surfaces, we expect the

moduli space of elliptic K3 surfaces to be a quasi-projective variety with at worst finite

quotient singularities. We expect the dimension of the moduli space to be 18, it’s easy to
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check the dimension of E2:

dimE2 = dimV8 + dimV12 − dimSL2(C)× C⋆ = 9 + 13− 4 = 18.
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Chapter 2

Summary of results

2.1 The cohomology of the moduli space of elliptic

K3 surfaces

In Chapter 1, we constructed the coarse moduli space of elliptic K3 surfaces, from

both the K3 surface point of view and the elliptic surface point of view. The coarse

moduli space is a quasi-projective variety with at worst finite quotient singularities. One

of the most interesting aspects is the topology of these spaces. For F2, the coarse moduli

space of degree 2 quasi-polarized K3 surfaces, Kirwan and Lee computed the Poincaré

polynomial in [KL89]. Their main tools are equivariant perfect stratification (cf. [Kir84])

and Kirwan’s blowup (cf. [Kir85]). Recently, the same machinery has been used to obtain

data for the moduli of Enriques surfaces [For23], the moduli of non-hyperelliptic genus

four curves [For21], and the moduli of cubic fourfolds [Si23].

In Chapter 3, we will study the topology of the moduli space of elliptic K3 surfaces.

From the lattice polarization approach, these are K3 surfaces equipped with a lattice

polarization:

U =

0 1

1 0

 ⊂ Pic(X).

To study the topology of FU , we will use the theory of Weierstrass fibration over P1. The

basic setup can be found in Chapter 3 or [Mir81]. We have demonstrated that the relevant
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moduli space is E2, the moduli space of elliptic K3 surfaces with the fundamental invariant

N = 2. Theorem 1.2.32 shows FU ≃ E2. We have constructed the moduli space E2 from the

geometric invariant theory in Chapter 3. The stability conditions are given in Proposition

1.2.25. The coarse moduli space of Weierstrass fibrations E2 has a natural compactification

E2:

E2 ⊂ E2 = WP(2, ..., 2︸ ︷︷ ︸
9

, 3, ..., 3︸ ︷︷ ︸
13

) //L SL2(C).

So we can use Kirwan’s machinery to study the cohomology of the GIT quotient, and then

remove the compactification boundary using results in [OO21]. The main result of the

chapter is the Poincaré polynomial of E2.

Theorem 2.1.1. The Poincaré polynomial of E2 or equivalently FU is:

Pt(E2) = Pt(FU) = 1 + t2 + 2t4 + 2t6 + 3t8 + 3t10 + 4t12 + 4t14 + 5t16

+4t18 + 4t20 + 3t22 + 3t24 + 2t26 + 2t28 + t30 + t32 + t33.

The tautological cohomology RH∗(FU ) ⊂ H∗(FU ) would be a more interesting object

to study (cf. [MP13,MOP17,PY20,BLMM17]). Theorem 2.1.1 shows the tautological

cohomology is not the full cohomology due to the odd generator in degree 33. But RH∗(FU )

alone satisfies the vanishing result proved by Peterson [Pet19].

Corollary 2.1.2. The tautological cohomology of FU vanishes in the top two degree.

RH34(FU) = RH36(FU) = 0.

The Chow ring of FU is completely understood in [CK23] using the Weierstrass

fibration approach. Although we have odd cohomology in degree 33, in even degrees, we

can show all cohomology comes from algebraic classes.
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Theorem 2.1.3. The cycle maps of FU are isomorphisms:

cl : Ai(FU)
∼−→ H2i(FU).

2.2 Chow ring of the moduli space of elliptic K3

surfaces

Given a smooth stack X that is the solution to a moduli problem, there are often

natural algebraic cycles called tautological classes in A∗(X), the Chow ring of X with

rational coefficients. For example, when X = Mg, the moduli space of smooth curves

of genus g, there is the tautological subring R∗(Mg) ⊂ A∗(Mg) generated by the κ-

classes. Faber [Fab99] gave a series of conjectures on the structure of R∗(Mg), which

assert that R∗(Mg) behaves like the algebraic cohomology ring of a smooth projective

variety of dimension g − 2, even though Mg is neither projective nor of dimension g − 2.

Looijenga [Loo95] proved that Ri(Mg) = 0 for i > g− 2 and that Rg−2(Mg) ∼= Q, settling

one of Faber’s conjectures. Looijenga’s theorem gives a new proof of Diaz’s result [Dia84]

that the maximal dimension of a complete subvariety of Mg is g − 2. Faber further

conjectured that R∗(Mg) should be a Gorenstein ring with socle in codimension g − 2,

meaning that the intersection product is a perfect pairing

Ri(Mg)×Rg−2−i(Mg) → Rg−2(Mg) ∼= Q.

Faber [Fab99] and Faber–Zagier proved this conjecture for g ≤ 23 by producing relations in

the tautological ring and showing computationally that the resulting quotient is Gorenstein.

Recently, there has been significant interest in the tautological rings R∗(FΛ) of the

moduli stacks FΛ of lattice polarized K3 surfaces [MP13,MOP17,PY20,BLMM17,BL19].

In [MOP17], the tautological rings are defined as the subrings of A∗(FΛ) generated by the

fundamental classes of Noether–Lefschetz loci together with push forwards of κ-classes
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from all Noether-Lefschetz loci. There are natural analogues of Faber’s conjectures for

R∗(FΛ).
1

Conjecture 2.2.1 (Oprea–Pandharipande). Let d = dimFΛ.

1. For i > d− 2, Ri(FΛ) = 0.

2. There is an isomorphism Rd−2(FΛ) ∼= Q.

The primary evidence for part (1) of this conjecture is a theorem of Petersen [Pet19,

Theorem 2.2], which says that the image RH2∗(FΛ) of R
∗(FΛ) in cohomology under the

cycle class map vanishes above cohomology degree 2(d − 2). If Conjecture 2.2.1 holds,

then one can further ask for the analogue of Faber’s Gorenstein conjecture: is there a

perfect pairing

Ri(FΛ)×Rd−2−i(FΛ) → Rd−2(FΛ) ∼= Q?

In this paper, we study the Chow rings of moduli spaces EN of elliptic surfaces Y

fibered over P1 with section s : P1 → Y and fundamental invariant N (see Section 2 for

definitions). The main result is that natural analogues of Faber’s vanishing and Gorenstein

conjectures hold for the entire Chow ring A∗(EN) for each N ≥ 2.

Theorem 2.2.2. Let N ≥ 2 be an integer.

1. The Chow ring has the form

A∗(EN) = Q[a1, c2]/IN

where a1 ∈ A1(EN), c2 ∈ A2(EN), and IN is the ideal generated by the two relations

from Proposition 4.2.4.

1The author learned about these analogues from a lecture given by Rahul Pandharipande in the
algebraic geometry seminar at UCSD and from a course on K3 surfaces given by Dragos Oprea.
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2. The Poincaré polynomial collecting dimensions of the Chow groups is given by

pN(t) =
∑

dimAi(EN)t
i

= 1 + t+ 2t2 + 2t3 + 3t4 + 3t5 + 4t6 + 4t7 + 5t8+

+ 4t9 + 4t10 + 3t11 + 3t12 + 2t13 + 2t14 + t15 + t16.

3. The Chow ring A∗(EN) is Gorenstein with socle in codimension 16.

We also have similar partial results for Poincaré polynomial for the cohomology

ring when N = 2 that will appear in future work.

A notable property is that the dimensions of the Chow groups are independent of N .

In particular, the Chow groups Ai(EN ) are only nonzero in codimension 0 ≤ i ≤ 16, despite

the fact that the dimensions of the moduli spaces EN go to infinity with N . Moreover,

the ring structure depends in a simple and explicit way on N coming from the relations in

Proposition 4.2.4. As a consequence of Theorem 2.2.2, we obtain an analogue of Diaz’s

theorem [Dia84] on the maximal dimension of a complete subvariety of Mg. In our case,

the bound is independent of N .

Corollary 2.2.3. Let N ≥ 2 be an integer. The maximal dimension of a complete

subvariety of EN is 16.

When N = 2, the corresponding elliptic surfaces are K3 surfaces polarized by a

hyperbolic lattice U with intersection matrix

0 1

1 0

 .

We show that the generators a1 and c2 of A
∗(E2) have natural interpretations as tautological

classes in R∗(FU), where FU is the moduli space of U -polarized K3 surfaces.
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Theorem 2.2.4. Under the identification of A∗(E2) with A
∗(FU ), the classes a1 and c2 lie

in R∗(FU). Therefore, A
∗(FU) = R∗(FU) is a Gorenstein ring with socle in codimension

16.

We view Theorem 2.2.4 as providing a piece of evidence toward Conjecture 2.2.1.

Since dim(A1(FU)) = 1, we can determine the κ classes in terms of the Hodge class

λ ∈ R1(FU).

Proposition 2.2.5. The following four linear combinations of κ-classes are independent

of the choice of universal line bundles. Moreover, they are all multiples of the Hodge class

λ.

κ3,0,0 +
1

4
κ1,0,1 =

7

2
λ, 3κ2,1,0 −

1

4
κ1,0,1 +

1

4
κ0,1,1 =

1

2
λ,

3κ1,2,0 −
1

4
κ0,1,1 = −3λ, κ0,3,0 = 0.

where κi,j,k := π∗
(
c1(O(σ))i · c1(O(f))j · c2(Tπ)k

)
.

2.3 Tautological relations in the moduli space of

elliptic K3 surfaces

For the moduli stack FΛ, its tautological ring R
⋆(FΛ) encodes natural geometric

cycles that capture the geometry of the moduli space. Understanding the generators and

relations in R⋆(FΛ) is perhaps just as important as understanding the entire Chow ring.

Let

π : XΛ → FΛ; H1, · · · ,Hr ∈ Pic(XΛ)

be the universal surface and line bundles obtained by fixing a basis for lattice polarization.

Definition 2.3.1. We have the following tautological classes arising from tautological

constructions:

• Hodge classes : Let ωπ be the relative cotangent sheaf of the universal surface π. The

Hodge class is defined as: λ = c1(π⋆ωπ).
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• Noether-Lefschetz classes : Let Λ ⊂ Λ′ be a lattice embedding within the K3 lattice.

We define the Noether-Lefschetz class as the image of the induced map: ι : FΛ′ → FΛ.

• Kappa classes : The enriched kappa classes are defined in [MOP17]:

κa1,...,ar,b = π∗

(
c1 (H1)

a1 · · · c1 (Hr)
ar · c2 (Tπ)b

)
.

In [MOP17], it was conjectured that the tautological ring (see Definition 5.0.1)

is the same subring generated solely by the Noether-Lefschetz loci. This conjecture was

proven in [PY20]:

Theorem 2.3.2. [PY20, Theorem 1] NL⋆(FΛ) = R⋆(FΛ).

The proof uses the relative moduli space of stable maps over the universal surface.

The key idea is to employ the WDVV equations and Getzler’s relation.

In the original work [MOP17], computations on the low degree F2ℓ are conducted

by localization over the relative Quot scheme of the universal surface. Similarly, we

can perform these computations over FU . Let f and σ be the universal line bundles

corresponding to the fiber and the section of the universal elliptic fibration.

Proposition 2.3.3. Let the κi,j = π⋆ (c1(O(H))i · c2(Tπ)j). Let Sred be the reduced

Noether-Lefschetz divisor associated to the following lattice:


0 1 0

1 0 0

0 0 −2

 .

We have the following relations.

1. For H = σ + 2f, χ = 0, we have: κ1,1 − 4κ3,0 − 30λ = 0.

2. For H = σ + 2f, χ = 1, we have: 40
3
(κ1,1 − 4κ3,0) + 128λ− 4Sred = 0.
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3. For H = σ + 3f, χ = 0, we have: 10(κ1,1 − 2κ3,0)− 44λ− 3Sred = 0.

4. For H = σ + 4f, χ = −1, we have: 3κ1,1 − 4κ3,0 − 38λ− Sred = 0.

5. For H = σ + 5f, χ = −2, we have: 8
3
(κ1,1 − κ3,0)− 52λ− Sred = 0.

Using the first two relations in Proposition 2.3.3, we have obtained Sred = 132λ. This

result aligns with the modularity theorem in [MP13]. Where we expect S = 2Sred = 264λ.

The coefficient 264 is the second coefficient of modular form E4(τ)E10(τ). In fact, we can

prove:

Theorem 2.3.4.

Dh,(d1,d2) = −E4(q)E6(q)

[
det(Λ)

2

]
· λ

where E4(q) and E6(q) are the Eisenstein series, and the matrix Λ is:


0 1 d1

1 0 d2

d1 d2 2h− 2

 .

We can substitute Sred with 132λ in the remaining relations, and they will yield a

set of linearly independent relations that is equivalent to Proposition 2.2.5.

This chapter is, in part, adapted from the material as it appears in

• Samir Canning and Bochao Kong, “The Chow rings of moduli spaces of elliptic

surfaces over P1”, Algebraic Geometry 10.4 (2023).

The dissertation author was the co-primary investigator and author of this paper.
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Chapter 3

Cohomology of the moduli space of
elliptic K3 surfaces

3.1 Notations and conventions

1. Varieties and groups are over the complex number field C. We abbreviate SL2(C) as

SL2 in this chapter. All homologies, cohomologies, and Chow rings are with rational

coefficients.

2. Let G be a connected topological group, BG is a classifying space of G, and EG is

the universal bundle over BG.

3. For a topological space Y , its Poincaré polynomial is:

Pt(Y ) :=
∑
i≥0

ti dimH i(Y ).

4. Let G be a connected topological group. For a topological space Y with G-action,

its equivariant Poincaré polynomial is:

PG
t (Y ) :=

∑
i≥0

ti dimH i
G(Y ) =

∑
i≥0

tiH i(Y ×G EG).

5. The vector space Vn is the space H0(P1,O(n)), which can be identified with the
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space of homogeneous polynomials of degree n. The SL2-action on Vn is given by

the standard change of variables, for more details, see Equation (1.2.1).

6. The stand-along symbol WP is the weighted projective space:

WP := V8 ⊕ V12 − {0}/C⋆ = WP(2, ..., 2︸ ︷︷ ︸
9

, 3, ..., 3︸ ︷︷ ︸
13

).

The C⋆-action is given by: λ · (A,B) = (λ2A, λ3B). We denote the semistable locus

by WPss, and the stable locus by WPs.

7. The subset T2 ⊂ V8 ⊕ V12 is the subset of pairs (A,B) subject to the conditions in

Proposition 1.2.21.

8. We denote the coarse moduli space of elliptic K3 surfaces with fundamental as W,

i.e. W ≃ FU ≃ E2 = T2/C⋆ × SL2.

9. The GIT compactification of W is denoted by WGIT , i.e. WGIT = WP //L SL2. The

definition of the linearization L is given in Proposition 1.2.25.

3.2 GIT compactification boundaries

In this section, we describe the boundary components in WGIT . The boundary

only consists of only dimension 1 and dimension 0 components. Furthermore, the GIT

compactificationWGIT agrees with the e Satake-Baily-Borel compactification for the moduli

space of elliptic K3 surface (cf. [OO21, Theorem 7.9]). We have a concrete description of

the boundary.

Proposition 3.2.1. [OO21, Theorem 7.4] The boundary WGIT −W consists of two curves

Css ∪ Cnn.

1. Css parametrizes the strictly semistable Weierstrass equations.
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2. Cnn parametrizes Weierstrass equations which fail the condition (1) in Proposition

1.2.21.

Moreover, Cnn ≃ P1, Css and Cnn intersect at a single point in WGIT .

3.3 Orbifold structure on WP

The main technical difficulty in applying Kirwan’s machinery is the orbifold structure

on the WP. In this section, we describe the orbifold structure on WP. There are two

different types of orbifold structures for weighted projective spaces. The first type is

induced by the global quotient of the usual projective space by a finite group action:

Pn/(Zw0 × · · · × Zwn),

where the group action is given by:

(ζk0w0
, ..., ζknwn

) · [z0 : ... : zn] = [ζk0w0
z0 : ... : ζ

kn
wn
zn].

The second type is the orbifold structure induced by the C⋆-action on the vector spaces:

WP(w0, ..., wn) := V (w0, ..., wn)− {0}/C⋆,

where V (w0, ..., wn) is a representation of C⋆ with weights w0, ..., wn. Clearly, the relevant

orbifold structure for us is of the second type. We can write down orbifold charts for

weighted projective space of the second type concretely:

Definition 3.3.1. Let V (w0, ..., wn) be a representation of C⋆ with weights w0, ..., wn, i.e.

λ · (z0, ..., zn) = (λw0z0, ..., λ
wnzn).
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The weighted projective space WP(w0, ..., wn) is the quotient of V (w0, ..., wn) − {0} by

the C⋆-action. The orbifold structure on WP(w0, ..., wn) is given by the following charts

(Ui,Zwi
, ϕi):

Ui ≃ Cn, Zwi
= {ζkwi

}k∈Z, ϕi(z̃0, ..., 1i, ..., z̃n) = [z̃0 : ... : 1i : ... : z̃n],

where 1i is viewed as a placeholder for the i-th coordinate on the left-hand side. The

group action is given by:

ζwi
· (z̃0, ..., 1i, ..., z̃n) = (ζw0

wi
z̃0, ..., 1i, ..., ζ

wn
wi
z̃n).

This orbifold structure can be described as a translation Lie groupoid. We sketch

the relevant notions.

Definition 3.3.2. A Lie groupoid G consists of the following data:

• A pair of manifolds G0 and G1.

• Two submersions s, t : G1 → G0 called the source and target maps.

• A smooth composition map m : G1 ×G1 → G1.

• An smooth inversion map i : G1 → G1.

• A smooth unit map u : G0 → G1.

The maps satisfy the following axioms:

• The composition map is associative.

• The unit map is a two-sided identity for the composition.

• The inversion map is a two-sided inverse for the composition.
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• The source and target maps are compatible with the unit map.

A proper foliation Lie groupoid will give us an orbifold structure. The precise

definitions are:

Definition 3.3.3. Let G be a Lie groupoid. For any point x ∈ G0, the isotropy group at

x is the group:

Gx := s−1(x) ∩ t−1(x).

The groupoid G is proper if the map (s, t) : G1 → G0 ×G0 is proper. The groupoid G is a

foliation groupoid if every isotropy group Gx is discrete. The groupoid G is an orbifold

groupoid if it is proper and a foliation groupoid.

The groupoid gives us a way to study orbifolds globally. The orbifold structure on

WP(w0, ..., wn) can be described by the translation groupoid. The groupoid is given by:

Definition 3.3.4. Let V (w0, ..., wn) be a representation of C⋆ with weights w0, ..., wn.

The translation groupoid W for WP(w0, ..., wn) is given by:

• The objects G0 = V (w0, ..., wn)− {0}.

• The arrows G1 = G0 × C⋆.

• The source map s : G1 → G0 is given by s(z, λ) = z.

• The target map t : G1 → G0 is given by t(z, λ) = λ · z. Recall the action is given by:

λ · z = λ · (z0, ..., zn) = (λw0z0, ..., λ
wnzn).

If we realize C⋆ ≃ S1 × R+ and V (w0, ..., wn) − {0} ≃ S2n+1 × R+, the action of

C⋆ on V (w0, ..., wn)− {0} is a product of two actions. The S1-action on S2n+1 is proper

and the R+-action on R+ is free and proper. Furthermore, the isotropy groups of C⋆ on
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V (w0, ..., wn)−{0} are all finite. Thus, the translation groupoid W is an orbifold groupoid.

We can construct the orbifold charts from W using the classical slice theorem.

Theorem 3.3.5. Let a Lie group G act on a manifold M smoothly and properly. Let

x ∈M be a point with isotropy group Gx. Then there exists a G-equivariant diffeomorphism

from a disk bundle G ×Gx D onto a G-invariant neighborhood of the orbit G · x, whose

restriction to the zero section is the orbit map:

G×Gx {0} ≃ G/Gx → G · x.

Applying the slice theorem to the translation groupoid W, for any point z ∈

V (w0, ..., wn)− {0}, we have a G-equivariant diffeomorphism from a disk bundle G×Gz D

onto a G-invariant neighborhood U of the orbit G · z. The restriction orbifold W |U is

Morita equivalent to the etale groupoid Gz ×D ⇒ D. One can check the etale groupoid

gives orbifold charts that are equivalent (up to refinement) to the charts in Definition

3.3.1.

To prepare for the equivariant cohomology computation, we need to work with

a good notion of sub-orbifolds. We will not go into the details of the general theory of

sub-orbifolds. Since we will only be working with translation groupoids, the discussion can

be reduced to equivariant immersions of manifolds. We will follow the method introduced

in [CHS13].

Definition 3.3.6. Let N,M be manifolds with a smooth action of a Lie group G. We

assume the induced translation groupoids are orbifolds. A smooth map f : N →M is a

strong equivariant immersion if:

• For any x ∈ N , the differential dfx : TxN → Tf(x)M is injective.

• The map f is G-equivariant.
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• For any p ∈M , the isotropy group Gp acts transitively on the set of points x ∈ N

such that f(x) = p.

The strong equivariant immersion will induce an orbifold embedding map.

Theorem 3.3.7. Under the same assumptions as in Definition 3.3.6. Let N ,M be the

translation groupoids of [G×N ⇒ N ] and [G×M ⇒M ] respectively. If f : N →M is a

strong equivariant immersion, then the map f induces an orbifold embedding map:

f : N → M.

An orbifold embedding map will induce maps between orbifold tangent bundles, we

can define orbifold normal bundle and orbifold normal Euler class. We will always work

with holomorphic orbifold embeddings, so the induced bundles will be holomorphic as well.

Unless otherwise stated, we will only consider holomorphic orbifold tangent bundle and

holomorphic orbifold normal bundle.

3.4 Equivariant stratification

In this section, we summarize Kirwan’s equivariant perfect stratification results in

the fundamental work [Kir84]. We will apply the theory to WP // SL2 to compute the

equivariant cohomology of the semistable locus. In [Kir84], the machinery of equivariant

perfect stratification is developed for smooth projective varieties with linear reductive

group action. However, the theory can be applied to the weighted projective space WP as

well. In [KL89], the authors applied the equivariant perfect stratification to a weighted

projective space produced by weighted blowups. We will define the HKKN stratification

for WP concretely, and prove the equivariant perfectness holds for our case.
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3.4.1 The HKKN stratification

There are symplectic and algebraic approaches to the Hesselink-Kempf-Kirwan-Ness

(HKKN) stratification. We start with the algebraic setting that fits better in our case.

We set X ⊂ Pn to be a projective variety (not necessarily smooth), and let G be a

reductive group that acts linearly on Pn. To describe the stratification, we pick T ⊂ G

to be a maximal torus and K ⊂ G to be a maximal compact subgroup. Then equip the

real Lie algebra t⋆ := Lie (K ∩ T )⋆ with an invariant inner product, and let ∥.∥ be the

corresponding norm.

Now we can construct the index set B of the HKKN stratification. Let:

{α0, . . . , αn} ⊂ t⋆

be the weights of the representation of T on Cn+1, using the inner product we identify

them as subset of t. To form the set B, we select a positive Weyl chamber t+, and then

collect all the points β ∈ t+ such that β is the closest point to the origin for a convex hull

formed by some non-empty subset of {α0, . . . , αn}. The positive weights and the origin 0

are included in B.

Theorem 3.4.1. [Kir84, Theorem 12.26] In the above setting, there exists a G-invariant

stratification on X:

X =
⊔
β∈B

Sβ.

The partial order on B is given by the norm ∥.∥. Moreover, the dominant stratum S0

coincides with the semistable locus Xss defined by GIT.

If the variety X is smooth, the stratification admits a Morse theoretic description.

In the above setting, assume the G-action on X is Hamiltonian. Let µ : X → Lie (K)⋆ be

a moment map. Let’s take an invariant inner product on Lie (K), Kirwan constructs the
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stratification by taking ∥µ∥2 as a Morse function. Furthermore, the stratification enjoys

the following good property.

Theorem 3.4.2. [Kir84, Theorem 13.5] If the variety X is smooth, then the stratification

stated in Theorem 3.4.1 is equivariant-perfect, i.e. we have:

PG
t (X) =

∑
β∈B

t2 codim(Sβ)PG
t (Sβ) (3.4.1)

or equivalently:

PG
t (Xss) = PG

t (X)−
∑

0̸=β∈B

t2 codim(Sβ)PG
t (Sβ) . (3.4.2)

The above result tells us that on the level of equivariant Poincaré polynomials, we

can remove the unstable strata to get the result for the semistable locus. The equivariant

perfectness has many corollaries, we list the most relevant ones below.

Corollary 3.4.3. [Kir84] If the stratification X =
⊔

β∈B Sβ is equivariantly perfect. Then

we have a surjection:

H∗
G(X) ↠ H∗

G(X
ss). (3.4.3)

If X is smooth, we further have:

H∗
G(X) ≃ H∗(X)⊗H∗(BG). (3.4.4)

Our goal is to apply the above theory to the weighted projective space WP with

SL2 action. Then examine the stratification to show we have equivariant perfectness even

though WP has mild singularities. To achieve this, we need to introduce the construction

of the stratification in more detail.

For each weight β ∈ B\{0}, we construct the linear section Zβ ⊂ X:

Zβ :=
{
(x0 : . . . : xn) ∈ X : xi = 0 if αi · β ̸= ∥β∥2

}
.
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In [Kir84, 8.11], a suitable linear action of the stabilizer group Stab β on Zss
β is defined.

We write Zss
β as the semistable locus for this action. We need another set Yβ ⊂ X:

Yβ :=
{
(x0 : . . . : xn) ∈ X : xi = 0 if αi · β < ∥β∥2, at least one xj ̸= 0 if αj · β = ∥β∥2

}
.

The set Yβ carries a similar action of the group Stab β as well. We denote Y ss
β as the

semistable locus for this action. The stratification of X is given by:

Sβ := GY ss
β , X =

⊔
β∈B

Sβ.

If X is smooth, then the set Zβ is smooth. In fact, Zβ is fixed by the torus

Tβ : exp(Rβ) ⊂ Stab β. Let µβ be the moment map for the action of Tβ on X. Then Yβ

is the Morse stratum for Zβ under the gradient flow of µβ. Kirwan has shown that we

can compute PG
t (Sβ) based on the action of Stab β on Zss

β and thus achieve an inductive

algorithm:

Theorem 3.4.4. [Kir84] If X is smooth, then we have the following inductive formula:

PG
t (Sβ) = P Stabβ

t (Zss
β ).

3.4.2 Stratification for WP with SL2 action

We now explain the HKKN stratification for the SL2 action on WP. The index set

for the stratification is easy to describe. Note that the maximal torus

T =

λ 0

0 λ−1

 ⊂ SL2

is one-dimensional. We take the positive chamber and identify it with R≥0, the index set

B of the stratification is a subset of R≥0. Recall the action is given by Equation (1.2.1). If
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we ignore the weighted structure on WP, the weights of the T-action on C22 are given by:

{2m| − 4 ≤ m ≤ 4} on V8, {2n| − 6 ≤ n ≤ 6} on V12. (3.4.5)

As explained in Proposition 1.2.25, the correct stratification for WP is given by

the realization of WP as a projective variety:

ι : WP ↪→ P49, [A : B] 7→ [A3 : B2].

The weights on the projective space P49 = P (V24 ⊕ V ′
24) are given by:

{2m| − 12 ≤ n ≤ 12} on V24, {3n| − 18 ≤ n ≤ 18} on V ′
24. (3.4.6)

According to the construction in Theorem 3.4.1, we should construct the stratification

using the weights in Equation (3.4.6). However, many of the weights in Equation (3.4.6)

are irrelevant for our case, we have the following proposition:

Proposition 3.4.5. Let β ∈ Z+ be a weight of T on P49. We have:

1. If 3 ∤ β, then any pair (A,B) ∈ Zβ satisfies A = 0,

2. If 2 ∤ β, then any pair (A,B) ∈ Zβ satisfies B = 0.

Proof. We will prove the first statement, the second statement can be proved similarly.

Let A =
∑8

i=0 aiT
i
0T

8−i
1 , we expand A3 in terms of coordinates:

A3 =
∑
i,j,k

aiajakT
i+j+k
0 T 24−i−j−k

1 .

The weight of T on the coordinate ai is 2i − 8, the weight on the coordinate aiajak is

2i+ 2j + 2k − 24. In particular, the weight of a3i is 6i− 24. If 3 ∤ β, then for all 0 ≤ i ≤ 8,

we have 6i− 24 ̸= β. Thus, for all 0 ≤ i ≤ 8, we have ai = 0, which implies A = 0.
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The above proposition and its proof tell us we can only consider the weights

corresponding to Equation (3.4.5) to form the index set B. However, we need to normalize

them to cancel the degree factors coming from the embedding ι : WP ↪→ P49. The

normalized weights are:

{m| − 4 ≤ m ≤ 4} on V8, {2n
3
| − 6 ≤ n ≤ 6} on V12. (3.4.7)

We denote the index set B̂ as the subset of R≥0 formed by these normalized weights. We can

view the normalized weights from the perspective of fixed points. For any β̂ = m = 2n
3
∈ B̂,

the torus T acts with weights (2m, 2n) on corresponding coordinates in V8⊕V12 respectively.

Since m/n = 2/3, the torus T will fix the points [am+4T
m+4
0 T 4−m

1 : bn+6T
n+6
0 T 6−n

1 ] ∈ WP.

Now we describe the Zβ̂ and Yβ̂ for each β̂ ∈ B̂ concretely.

Definition 3.4.6. Let (A,B) be a pair in V8⊕V12, we expand them in terms of coordinates:

A =
8∑

i=0

aiT
i
0T

8−i
1 , B =

12∑
j=0

bjT
j
0T

12−j
1 .

Let B̂ := {m|0 ≤ m ≤ 4} ∪ {2n
3
|0 ≤ n ≤ 6}. For each β̂ ∈ B̂, we define:

Zβ̂ :=

{
[A : B] ∈ WP|ai = 0 if i ̸= β̂ + 4, bj = 0 if

2j

3
̸= β̂ + 4

}
,

Yβ̂ :=

[A : B] ∈ WP

∣∣∣∣∣∣∣
ai = 0 if i < β̂ + 4, bj = 0 if

2j

3
< β̂ + 4,

ai ̸= 0 or bj ̸= 0 if i =
2j

3
= β̂ + 4

 .

The set Zβ̂ is closed sub-orbifold of WP and Yβ̂ is a locally closed sub-orbifold of WP. For

β̂ ̸= 0, we define:

Sβ̂ := SL2 ·Yβ̂.

For β̂ = 0, we define S0 = WPss, the semistable locus for the SL2-action, see Proposition
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1.2.25. Then we have a stratification:

WP =
⊔
β̂∈B̂

Sβ̂.

Remark 3.4.7. In our case, the group Stab β is the standard maximal torus T in SL2. It

acts on Zβ̂ and Yβ̂ trivially. The semistable loci Zss
β̂

and Y ss
β̂

are the same as Zβ̂ and Yβ̂

respectively. We will not distinguish them in the following discussion.

Proposition 3.4.8. For any β̂ ∈ B̂, the coordinate-wise projection map:

p : Yβ̂ → Zβ̂

is a fibration, where the fibers are affine space quotients by a finite group action.

Proof. Let π : V8 ⊕ V12 − {0} → WP be quotient map induced by the C⋆-action. Clearly

π−1(Yβ̂) = π−1(Zβ̂) × Am. The map p is induced by the projection onto the first factor

in π−1(Zβ̂)× Am. For any point z ∈ Zβ̂, the fiber p−1(z) is the affine space Am quotient

Stab z ⊂ C⋆. The group Stab z is a finite group.

Our next step is to show the stratum Sβ̂ is actually a locally closed sub-orbifold of

WP. We will work on the vector spaces and use Theorem 3.3.7 to show we get sub-orbifolds.

Let C(Yβ̂) be the cone over Yβ̂ in V8 ⊕ V12\{0}, and C(SL2 ·Yβ̂) be the cone over SL2 ·Yβ̂
in V8 ⊕ V12\{0}. Recall the action of SL2 and C⋆ commutes, so we have:

C(SL2 ·Yβ̂) = SL2 ·C(Yβ̂).

We begin with the following propositions are parallel to [Kir84, Lemma 13.4] and [Kir84,

Theorem 13.5].
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Proposition 3.4.9. Let P be the following parabolic subgroup in SL2 that contains T:

P =


λ 0

µ λ−1

 ∈ SL2

 .

Let p be the Lie algebra of P , sl2 be the Lie algebra of SL2. For any point y ∈ C(Yβ̂), we

have:

1. {g ∈ SL2 |g · y ∈ C(Yβ̂)} = P ,

2. {ξ ∈ sl2|ξy ∈ Ty(C(Yβ̂))} = p, where ξy is the induced vector field of ξ at y.

Proof. Recall we can represent an element in V8 ⊕ V12 as a pair (A,B), where A =∑8
i=0 aiT

i
0T

8−i
1 and B =

∑12
j=0 bjT

j
0T

12−j
1 . A pair (A,B) is in C(Yβ̂) if and only if the point

[T0 : T1] = [0 : 1] is a zero of the polynomial A with degree at least β̂ + 4 and is a zero

of the polynomial B with degree at least 3β̂
2
+ 6. Moreover, at least one of the degree

lower bounds is sharp. Note that any element g ∈ SL2, g act on P1 linearly, and both

A and B the point [0 : 1] has vanishing degree more than half of the total degree. So

g · (A,B) ∈ C(Yβ̂) if and only if g fixes the point [0 : 1], which implies g ∈ P . This proves

the first statement.

For the second statement, recall we have the standard basis

E =

0 1

0 0

 , F =

0 0

1 0

 , H =

1 0

0 −1


for sl2. We can compute the induced vector fields explicitly. For example, the induced

vector field of E at y is given by:

Ey =
d

dt

∣∣∣
t=0

1 t

0 1

 · (A,B).
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We consider the two coordinates of Ey: i · ai · ∂T i−1
0 T 7−i

1 and j · bj · ∂T j−1
0 T 11−i

1 . Suppose

Ey ∈ Ty(C(Yβ̂)), then we must have ai = bj = 0, but this contradicts the definition of

C(Yβ̂). So we know Ey /∈ {ξ ∈ sl2|ξy ∈ Ty(C(Yβ̂))}. Using similar arguments, we can show

Fy, Hy ∈ {ξ ∈ sl2|ξy ∈ Ty(C(Yβ̂))}. Since the subset is linear, we conclude:

{ξ ∈ sl2|ξy ∈ Ty(C(Yβ̂))} = ⟨Fy, Hy⟩ = p.

Proposition 3.4.10. For any β̂ ∈ B̂\{0}, the stratum Sβ̂ is isomorphic to a mixed

quotient:

Sβ̂ := SL2 ·Yβ̂ ∼= SL2×PYβ̂.

In particular, the stratum Sβ̂ is a locally closed sub-orbifold of WP.

Proof. We consider the maps in V8 ⊕ V12\{0}:

SL2×PC(Yβ̂)
f−→ SL2 ·C(Yβ̂)

h−→ V8 ⊕ V12\{0}.

The cone C(Yβ̂) is P -invariant, so the map f is well-defined. Furthermore, set theoretically,

the map f and h descend to a map:

SL2×PYβ̂
f̄−→ SL2 ·Yβ̂

h̄−→ WP.

We need to show the map h̄ ◦ f̄ is an orbifold embedding. According to Theorem 3.3.7,

it’s sufficient to show h ◦ f is a strong equivariant immersion. The map h ◦ f is clearly

C⋆-equivariant, we will check the following.

• The map h ◦ f is injective.

• The map d(h ◦ f) is an injective map at each point.
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The first item is equivalent to the first statement in Proposition 3.4.9. For the second item,

let d(h ◦ f) : T(gP,y)
(
SL2×PC(Yβ̂)

)
→ Ty(V8 ⊕ V12\{0}) be the differential at (gP, y).

It is enough to check for (P, y), d(h ◦ f) is injective. Let

(ξ + p, η) ∈ T(P,y)

(
SL2×PC(Yβ̂)

)

be a tangent vector, where ξ + p ∈ sl2/p and η ∈ Ty(C(Yβ̂)). Furthermore, we have

−ξy + η ∈ Ty(C(Yβ̂)). Now assume we have:

d(h ◦ f)(ξ + p, η) = η = 0.

Then ξy ∈ Ty(C(Yβ̂)), which implies ξ ∈ p by the second statement in Proposition 3.4.9.

We have d(h◦f) is injective at (P, y). So we conclude on the level of cones in V8⊕V12\{0},

the map h◦f is a strong equivariant immersion. So the map h̄◦ f̄ is an orbifold embedding.

The stratum Sβ̂ is a locally closed sub-orbifold of WP, and its closure is given by SL2 ·Yβ̂,

where

Yβ̂ :=

{
[A : B] ∈ WP|ai = 0 if i < β̂ + 4, bj = 0 if

2j

3
< β̂ + 4

}
.

Lemma 3.4.11. The stratification WP =
⊔

β̂∈B̂ Sβ̂ is equivariant-perfect.

Proof. From Proposition 3.4.10, we know the stratification WP =
⊔

β̂∈B̂ Sβ̂ formed by

locally closed sub-orbifolds. We need to show the equivalent Thom-Gysin sequence for the

stratification:

· · · → H
k−d(β̂)
SL2

(Sβ̂) → Hk
SL2

(
⊔
γ≤β̂

Sγ) → Hk
SL2

(
⊔
γ<β̂

Sγ) → · · ·
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splits into short exact sequences. It is enough to show the first map is injective:

H
k−d(β̂)
SL2

(Sβ̂) → Hk
SL2

(
⊔
γ≤β̂

Sγ).

We can compose the above map with the restriction and obtain:

H
k−d(β̂)
SL2

(Sβ̂) → Hk
SL2

(Sβ̂).

We will show the above map is injective for any β̂ and k. The map is multiplication by the

equivariant Euler class of the orbifold normal bundle N of Sβ̂ in
⊔

γ≤β̂ Sγ. We will show

eSL2(N ) is a non-zero divisor in H∗
SL2

(Sβ̂). Thanks to Proposition 3.4.10 and Proposition

3.4.8, we have the following isomorphisms:

H∗
SL2

(Sβ̂) ≃ H∗
P (Yβ̂) ≃ H∗

Stab β̂
(Yβ̂) ≃ H∗

Stab β̂
(Zβ̂).

Consider the restriction of the normal bundle N|Zβ̂
, it will be a quotient of the normal

bundle of Zβ̂ in WP. Recall Zβ̂ is a fixed component of Stab β̂, so Stab β̂ must have

non-trivial weights on N|Zβ̂
. Then eStab β̂(N|Zβ̂

) must be a non-zero divisor in H∗
Stab β̂

(Zβ̂)

by the Theorem [AB83, Proposition 13.4].

Now we are almost ready to compute the equivariant cohomology of the semistable

locus WPss. We need to compute the codimension of each stratum Sβ̂ and examine the

shape of Zss
β̂
. Let n(β̂) be the number of weights (counting with multiplicity) αi in (3.4.7)

satisfying αi.β < ∥β∥2. It can be used to compute the codimension of each stratum

(see [Kir84, 3.1]):

codim (Sβ̂) = n(β̂)− dimG/P .

In our case, P will always be the parabolic group in Proposition 3.4.9, so dimG/P = 1.

Furthermore, Zss
β̂

all agrees with Zβ̂. We do the codimension count and summarize the
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data for unstable strata in the following table.

Table 3.1. Cohomology of the unstable strata.

normalized weights β̂ Stab β̂ codim (Sβ̂) Zss
β̂

PG
t (Sβ̂)

2/3 T 11 pt (1− t2)−1

1 T 12 pt (1− t2)−1

4/3 T 13 pt (1− t2)−1

2 T 14 P1 (1 + t2)(1− t2)−1

8/3 T 16 pt (1− t2)−1

3 T 17 pt (1− t2)−1

10/3 T 18 pt (1− t2)−1

4 T 19 P1 (1 + t2)(1− t2)−1

We also need to state one fact about the equivariant cohomology of the total space

WP. The isomorphism (3.4.4) extends to our case, we suspect Kirwan’s isomorphism is

true for any compact symplectic orbifold. We will only prove the following proposition

which is sufficient for our purpose.

Proposition 3.4.12. The equivariant Poincaré polynomial of WP is:

P SL2
t (WP) =

∑21
i=0 t

2i

1− t4
.

Proof. We replace the groups by the maximal real compact subgroups:

S1 ⊂ C⋆; SU(2) ⊂ SL2 .

It’s enough to do the computation for P
SU(2)
t (WP). Recall by [Kaw73, Theorem 1] we

know the cohomology ofWP is free and isomorphic to the cohomology of a usual projective

space P. Consider the fibration:

WP → WP×S1 ES1 → BS1.
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Since WP is a free and no odd degree cohomology, we know the Serre spectral sequence

degenerates at E2 page. In fact, the fibration satisfies the hypothesis of the Leray-Hirsch

theorem, so we have:

H∗
S1(WP) ≃ H∗(WP)⊗H∗(BS1).

Now we consider the fibration:

SU(2)/S1 ≃ S2 → WP×S1 ES1 → WP×SU(2) ESU(2),

again, the Serre spectral sequence degenerates at E2-page and the Leray-Hirsch theorem

applies. We have:

H∗
S1(WP) ≃ H∗

SU(2)(WP)⊗H∗(S2).

Combining the above two isomorphisms and counting dimensions, we have:

P
SU(2)
t (WP) =

∑21
i=0 t

2i

1− t2
· 1

1 + t2
=

∑21
i=0 t

2i

1− t4
.

Lemma 3.4.13. The equivariant Poincaré polynomial of WPss is:

P SL2
t (WPss) = 1 + t2 + 2t4 + 2t6 + 3t8 + 3t10 + 4t12 + 4t14 + 5t16 + 5t18

+6t20 + 5t22 + 5t24 + 4t26 + 4t28 + 3t30 + 3t32 + 2t34 + 2t36 +
∞∑

i=19

t2i

Proof. Using Equation 3.4.2 in Theorem 3.4.2, Proposition 3.4.12 and the datum in the

Table 3.1, we compute:

P SL2
t (WPss) =

∑21
i=0 t

2i

1− t4
− (t38 + t28) (t2 + 1)

1− t2
− t22 + t24 + t26 + t32 + t34 + t36

1− t2

which expands to the series in the Lemma.
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Remark 3.4.14. The equivariant Poincaré polynomial P SL2
t (WPss) is not a finite polynomial,

this is due to the WPs ̸= WPss. For the same reason, H∗
SL2

(WPss) is different from

H∗(WP // SL2). In the next sections, we’ll get around this problem using Kirwan’s partial

desingularisation.

3.5 Kirwan blowup

In this section, we will study the Kirwan’s partial desingularisation WK for WGIT =

WP // SL2. In [Kir85], Kirwan developed a general theory for constructing the canonical

partial desingularisation for GIT quotient of smooth projective varieties. The process

consists of a sequence of blowups centered at loci with positive dimensional stabilizers. The

change of Poincaré polynomial in the partial desingularisation process is understood. Later,

in [ER21], the partial desingularisation theory is extended to the case for irreducible Artin

stack X with a good moduli space. The main construction is saturated blowup, which will

maintain a good moduli space. Since our space WP has singularities, we should construct

the partial desingularisation using saturated blowup. Moreover, we still wish to keep track

of the change of Poincaré polynomial in the partial desingularisation process. The strategy

is to construct an equivariantly perfect stratification for the desingularisation explicitly.

Finally, we note that the result is essentially repeating the computation in [Kir85] for a

space with finite quotient singularities.

3.5.1 Kirwan blowup for WGIT

As explained in Remark 3.4.14, the SL2 action on WP will have strictly semistable

points. They form the set SL2 ·Y0 using our notation in (3.4.6). There are points in WPss

with positive dimensional stabilizers as well. More precisely, they are SL2 ·ZT, where

ZT := {x ∈ WPss| T fixes x} = {[λx4y4 + µx6y6] ∈ Pss} ≃ WP(2, 3).

63



In the notation of [Kir85], Zss
T is used to denote the semistable locus for an induced

T-action on ZT. In our case, Zss
T and ZT will be the same, and we will not distinguish

them.

In the smooth case, we need to blowup SL2 ·ZT ⊂ WPss. Then we lift the SL2-action

on the blowup appropriately such that the action will have no strictly semistable points.

But our space WP has quotient singularities. To cope the difficulty, we will do the blowup

on the corresponding smooth affine cones.

Definition 3.5.1. Consider q : V8 ⊕ V12\{0} → WP be the quotient map induced by the

C⋆-action. For a subset Z ⊂ WP, let C(Z) be the cone over Z in V8 ⊕ V12\{0}. We write

C(WPss) as V ss, and C(SL2 ·ZT) as C.

The cone C is covered by the following two spaces:

V2\{0} × C → V ss; (F, x) 7→ [x · F 4 : F 6],

V2\{0} × C → V ss; (F, y) 7→ [F 4 : y · F 6].

It is straightforward to check that the cone C is smooth in V ss. We consider the blowup

of V ss along C. Let E ⊂ BlC(V
ss) be the exceptional divisor. We have the following

commutative diagram:

E BlC(V
ss)

E X̃

/C⋆ /C⋆

The existence of the vertical quotients can be explained using saturated blowup or

equivalently the equivariant Reichstein transform in [ER21, Definition 4.4]. Consider

the closed substack [C/C⋆] ⊂ [BlC(V
ss)/C⋆]. The map p : [V ss/C⋆] → WPss is a good

moduli space. The equivariant Reichstein transform BlpC V
ss is obtained by deleting the

strict transform of the saturation p−1p(C) in BlC(V
ss). However, p−1p(C) is still C in
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our case, so we have BlpC V
ss = BlC(V

ss). Then we have the good moduli space map

[BlC(V
ss)/C⋆] → X̃, which is in fact still the coarse moduli space map of a Deligne-

Mumford stack.

Now we consider the good moduli space map π : [V ss/C⋆ × SL2] → WGIT . The

Kirwan desingularisation is obtained by considering the substack:

[C/C⋆ × SL2] ⊂ [V ss/C⋆ × SL2].

Let BlπC V
ss be the equivariant Reichstein transform, then Kirwan’s partial desingularisation

is the coarse moduli space:

[BlπC V
ss/C⋆ × SL2] → WK .

So we need to understand the difference between BlC(V
ss) and BlπC V

ss. By the construction,

we need to remove the strict transform of the saturation π−1π(C) in BlC(V
ss). Recall C

is the cone over SL2 ·ZT, we can identify the set π−1π(C) as:

π−1π(C) = C(SL2 ·Y0) ⊂ V ss,

where Y0 is the subset of WP defined in (3.4.6). Clearly, these correspond to the strictly

semistable points in WP with respect to the SL2-action. If we remove the strict transform

of C(SL2 ·Y0) in BlC(V
ss), we will obtain a space with C⋆ × SL2-action and no strictly

semistable points. The coarse moduli space of the quotient stack is of finite quotient

singularities.

3.5.2 The cohomology of WK

The Kirwan partial desingularisation for a GIT quotient is intrinsic, and the Betti

numbers of the partial desingularisation can be viewed as invariants for the GIT quotient.
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In [Kir85], a concrete formula is developed to compute Betti numbers of the partial

desingularisation. We would like to adapt the computation to BlπC V
ss ⊂ BlC(V

ss). To

simplify the process and make it more explicit, we will work with the coarse moduli spaces

of [BlπC V
ss/C⋆] and [BlC(V

ss)/C⋆], we define:

X̃ss := BlπC V
ss/C⋆; X̃ := BlC(V

ss)/C⋆.

The goal for this section is to compute the Poincaré polynomial for WK , which

is identical to the SL2-equivariant Poincaré polynomial of X̃ss. The main strategy is to

mimic the stratification construction in [Kir85], and construct the equivariantly perfect

stratification for X̃ explicitly:

X̃ =
⊔
α∈A

Sα.

The subset X̃ss will be the biggest stratum in the stratification. We begin with computing

the equivariant cohomology of the entire space X̃.

Recall the cone C ⊂ V ss is smooth. So the equivariant cohomology of the blowup

BlC(V
ss) can be computed using the following formula:

H∗
G(BlC(V

ss)) = H∗
G(V

ss)⊕H∗
G(E)/H∗

G(C), (3.5.1)

where G = C⋆ × SL2. The exceptional divisor E is a projective bundle over C. More

precisely, let NC be the normal bundle of the embedding C ⊂ V ss, and let r = rank (NC)

and h be the hyperplane class on projectivization of NC , we have:

H∗
G(E) = H∗

G(C)(1 + h+ · · ·+ hr−1).

Notice the group C⋆ acts with finite isotropy on V ss and on NC , so we have the corre-
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sponding formulas for SL2-equivariant cohomology (see e.g. [Bri98, Remarks 2]):

H∗
SL2

(X̃) = H∗
SL2

(WPss)⊕H∗
SL2

(E)/H∗
SL2

(SL2 ·ZT), (3.5.2)

and

H∗
SL2

(E) = H∗
SL2

(SL2 ·ZT)(1 + h+ · · ·+ hr−1). (3.5.3)

The rank r of the normal bundle NC in our case will be 18.

It’s easy to verify SL2 ·ZT is homeomorphic to SL2×N(T)ZT. Here N(T) ⊂ SL2 is

the normaliser of T, N(T) is generated by diagonal and anti-diagonal matrices in SL2:

N(T) =


λ 0

0 λ−1

 ,

 0 µ−1

−µ 0


 ⊂ SL2 .

Now note that N(T) acts trivially on ZT. The equivariant cohomology of SL2 ·ZT can be

identified with H∗
SL2

(SL2 ·ZT) ≃ H∗
N(T)(ZT), hence we have:

P SL2
t (SL2 ·Zss

T ) = P
N(T)
t (Zss

T ) = Pt(P1)Pt(BN(T)) = (1 + t2)(1− t4)−1.

Based on Lemma 3.4.13 and Equation 3.5.2, we can already solve P SL2
t (X̃). But

the polynomial we’re looking for is Pt(W
K) = P SL2

t (X̃ss). Kirwan developed the concrete

formula for removing these contributions. For the reader’s convenience, we state the

simplified formula which closely related to our case.

Theorem 3.5.2. [Kir85] Let X ⊂ PN be a nonsingular projective variety, and a reductive

group G acts on it linearly. Assume Kirwan’s desingularisation X̃ // G is obtained by
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one-step blowup of Xss along G · Zss
T , then we have:

Pt(X̃ // G) = Pt(X̃
ss // G) = PG

t (X̃)−
∑

0̸=β′∈B(ρ)

1

w(β′, T,G)
t2d(PNp,β′)P

N(T )∩Stabβ′

t (Zss
β′,T ).

(3.5.4)

Unfortunately, the formula 3.5.4 is not directly applicable to our case. The main

reason is that the weighted projective space WP is singular. The construction of our X̃ss

is by the equivariant Reichstein transform. Furthermore, we have identified:

X̃\X̃ss = S̃L2 ·Y0,

where S̃L2 ·Y0 is the strict transform of SL2 ·Y0 in X̃ = BlC(V
ss)/C⋆.

Definition 3.5.3. Let A = {2, 4, 6, 8, 10, 12}. Let Y0,α ⊂ Y0 be the subset defined by the

following condition:

Y0,α :=

[A : B] ∈ WP

∣∣∣∣∣∣∣
ai = 0 if i < α/2 + 4, bj = 0 if j < α/2 + 6,

aα/2+4 ̸= 0 or bα/2+6 ̸= 0

 .

Definition 3.5.4. Let Sα ⊂ X̃ be the strict transform of SL2 ·Y0,α in X̃. Take S0 := X̃ss.

We get a stratification:

X̃ = S0 ∪
⊔
α∈A

Sα.

In WPss, the set Y0,α is only fixed by the standard torus T ⊂ SL2. We can check

that SL2 ·Y0,α ≃ SL2×TY0,α.

Proposition 3.5.5. The stratification Sα in Definition 3.5.4 is SL2-equivariantly perfect.

Proof. Consider the projection map in WP:

p : Y0,α → WP(2, 3)× ZT, [A : B] 7→ ([aα/2+4 : bα/2+6], [a4 : b6])
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if α ≤ 8, and

p : Y0,α → ZT, [A : B] 7→ [a4 : b6]

if α > 8. The map p is a locally trivial fibration, with affine fibers up to a finite group

action. We lift the map p to the blowup X̃:

p̃ : Y0,α → Zα,

where Zα a subset of the exceptional locus E in X̃. The map p̃ is also a locally trivial

fibration with affine fibers up to a finite group action. Using the same argument in 3.4.11,

it’s sufficient to show the equivariant Euler class of the normal bundle of Sα in X̃ is not a

zero divisor in H∗
SL2

(Sα). Notice we have:

H∗
SL2

(Sα) ≃ H∗
SL2

(SL2×TY0,α) ≃ H∗
T(Y0,α) ≃ H∗

T(Zα).

Again, the subspace Zα is fixed by the standard torus T ⊂ SL2. Moreover, the normal

bundle of Sα in X̃ is a quotient of the normal bundle of Zα in X̃. We conclude by the

Theorem [AB83, Proposition 13.4].

To proceed with our computation, we need to know the topology of the fixed locus

Zα ⊂ E. We pick a point x ∈ ZT. Up to a finite group Z2 or Z3, the fiber Ex is a projective

space P(Nx). The isotropy group Z2 or Z3 action is homotopic to a trivial action, and the

map:

Zα → ZT

is locally trivial fibration in the orbifold sense, see [PS03, Definition 2.1]. Furthermore, the

orbi-bundle O(1) over Zα gives the generators for every fiber. The orbifold Leray-Hirsch
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Theorem [PS03, Theorem 2] applies to our case:

H∗(Zα) ≃ H∗(ZT)⊗H∗(P(Nx)).

Since Nx is the normal bundle of C in V ss at a point x, the subspace Zα|x is a

hyperplane section of Ex. The fixed locus Zα will be a projective bundle fibration over

ZT up to a finite isotropy group, and the fibers are homeomorphic to P1 or a point. We

collect the data in the following table.

Table 3.2. SL2-stratification on PNx.

weights α ∈ A d(PNx, α) Zα|x
2 9 pt
4 10 P1

6 12 P1

8 14 P1

10 16 pt
12 17 pt

Lemma 3.5.6. The Poincaré polynomial of WK is:

Pt(W
K) = 1 + 2t2 + 4t4 + 5t6 + 7t8 + 8t10 + 10t12 + 11t14 + 13t16 + 13t18

+13t20 + 11t22 + 10t24 + 8t26 + 7t28 + 5t30 + 4t32 + 2t34 + t36.

Proof. Using Equation 3.5.2, we can compute:

P SL2
t (X̃) = P SL2

t (WPss) + P
N(T)
t (ZT)(

17∑
i=1

t2i).

The term P SL2
t (WPss) has been computed in Lemma 3.4.13. Recall that we have:

P
N(T)
t (Zss

T ) = Pt(P1)Pt(BN(T)) = (1 + t2)(1− t4)−1.
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We can compute the equivariant Poincaré polynomial of X̃\X̃ss using the perfect stratifi-

cation in Definition 3.5.4 and the data in Table 3.2:

∑
α∈A

P SL2
t (Sα) =

∑
α∈A

P T
t (Zα)

= Pt(T) · Pt(Zα|x) · Pt(BS
1)

=
1 + t2

1− t2
(
t18 + t32 + t34 + (t20 + t24 + t28)(1 + t2)

)
.

Putting everything together using:

Pt(W
K) = P SL2

t (X̃)−
∑
α∈A

t2d(PNx,α)P SL2
t (Sα)

gives us the desired result.

Remark 3.5.7. The Kirwan partial desingularisation WK should be a compact orbifold, and

thus is subject to Poincaré duality. Our computation result is indeed a finite polynomial

with the Poincaré symmetry.

Although in principle not applicable, one can still try to use the formula in Theorem

3.5.2 to compute the equivariant Poincaré polynomial of X̃ss. The computation will give

the identical result as that in Lemma 3.5.6.

Let E be the exceptional locus E/C⋆ in X̃. We finish this section by computing

the Poincaré polynomial of the exceptional locus of the Kirwan blowup WK → WGIT .

The locus is a quotient F := Ess/ SL2, where E
ss is the part inside of the equivariant

Reichstein transformation:

Ess := E ∩ X̃ss.

We have H∗(F ) = H∗
SL2

(Ess). We need a suitable stratification for Ess to compute the

cohomology. Note that we have the following locally trivial fibration in the orbifold
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sense [PS03, Section 2]:

P(Nx)/Aut(x) → E → SL2 ·ZT,

where Aut(x) is either Z2 or Z3. The Aut(x) action is always homotoptic to a trivial action.

Recall the group N(T) acts trivially on ZT, and SL2 ·ZT is isomorphic to SL2×N(T)ZT. Let

EZ := E|ZT and Ess
Z := Ess|ZT . We have:

H∗
SL2

(SL2 · ZT) ≃ H∗
N(T)(ZT), H∗

SL2
(E) ≃ H∗

N(T)(EZ), H∗
SL2

(Ess) ≃ H∗
N(T)(E

ss
Z ).

Let ρ be the linear action of T ⊂ SL2 on Nx, relative to this action, the classical T-

equivariant stratification construction in [Kir85] applies to P(Nx). We have:

Proposition 3.5.8. Let B(ρ) be the weights of T-action ρ, we have the following T-perfect

stratification on P(Nx):

P(Nx) = S0 ∪
⊔

β′∈B(ρ)

Sβ′ ,

where S0 is the semistable locus, and the equivariant Poincaré polynomial of Sβ′ is:

P T
t (Sβ′) = P Stabβ′

t (Zss
β′,ρ).

We can summarize the data in Table 3.3:

Table 3.3. T-stratification on PNx.

weights β′ ∈ B(ρ) Stab β′ d(PNx, β
′) Zss

β′,ρ

±2 T 9 pt
±4 T 10 P1

±6 T 12 P1

±8 T 14 P1

±10 T 16 pt
±12 T 17 pt
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The stratification will include negative weights, this is because the Weyl group of

T is trivial. From our construction, we know:

Ess|x = S0/Aut(x) ⊂ P(Nx)/Aut(x).

All the strata Sβ′ in the stratification of P(Nx) will be Aut(x)-invariant. The action of

Aut(x) on each stratum is homotopic to a trivial action. So we can ignore the isotropy

groups.

Lemma 3.5.9. The Poincaré polynomial of the exceptional locus F ⊂ WK is:

Pt(F ) = 1 + 2t2 + 3t4 + 4t6 + 5t8 + 6t10 + 7t12 + 8t14 + 9t16 + 9t18

+8t20 + 7t22 + 6t24 + 5t26 + 4t28 + 3t30 + 2t32 + t34.

Proof. To compute the Poincaré polynomial of F , it is sufficient to compute the N(T)-

equivariant Poincaré polynomial of Ess
Z . Consider the fibration:

P(Nx)/Aut(x) → EZ → ZT.

Note the Aut(x) action is homotopic to trivial action for any g ∈ Aut(x). Thus, every

fiber has the same N(T)-equivariant cohomology concentrated on even degrees. The base

is simply connected. The Leray spectral sequence degenerates, and we have:

H∗
N(T)(EZ) ≃ H∗(ZT)⊗H∗

N(T)(P(Nx)).

The Weyl group N(T)/T ≃ Z2, we have:

H∗
N(T)(EZ) ≃ H∗(ZT)⊗ [H∗

T(P(Nx))]
Z2 .
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Recall we have the fibration:

S0/Aut(x) → Ess
Z → ZT.

We know P T
t (S0/Aut(x)) = P T

t (S0) = P T
t (P(Nx)) −

∑
0̸=β′∈B(ρ) P

T
t (Sβ′), which does not

depend on the choice of the fiber and concentrated on even degrees. So we have:

H∗
N(T)(E

ss
Z ) ≃ H∗(ZT)⊗ [H∗

T(S0)]
Z2 .

We can compute:

P T
t (S0) = Pt(P(Nx))Pt(BT)−

∑
0 ̸=β′∈B(ρ)

t2d(PNx,β′) · P Stabβ′

t (Zss
β′,T)

where the Zss
β′,T and t2d(PNx,β′) are given in Table 3.3. To get the invariant part [H∗

T(S0)]
Z2 ,

we notice the Weyl group Z2 will change the sign of the generator of H∗(BT) and permute

the strata Sβ′ and S−β′ for any β′ ∈ B(ρ). So we have:

∞∑
i=0

ti · dim [H i
T(S0)]

Z2 = Pt(P(Nx))(1− t4)−1 − 1

2

∑
0̸=β′∈B′

t2d(PNx,β′) · P Stab(β′)
t (Zss

β′,T )

= (
17∑
i=0

t2i)(1− t4)−1 − (1− t2)−1(t18 + t32 + t34 + (t20 + t24 + t28)(1 + t2)).

The Lemma now follows from Pt(F ) = (1 + t2) ·
∑∞

i=0 t
i · dim [H i

T(S0)]
Z2 .

3.6 The cohomology of Ws

In this section, we compute the cohomology of stable locus quotientWs := WPs/ SL2

following the ideas presented in [KL89].

For simplicity of notation, we write G = SL2 in this section.
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Lemma 3.6.1. The natural maps

Hi(W
K) → Hi(W

K ,Ws)

are surjections for all 0 ≤ i ≤ 36.

Proof. Since WK only has quotient singularities, we have the following commutative

diagram by Poincaré duality:

H36−i(WK) H36−i(E // G)

Hi(W
K) Hi(W

K ,Ws)

χ36−i

∼ ∼

αi

To prove αi are surjections, it’s sufficient to show all χi are surjections. Note the SL2

actions on X̃ and E have no strictly semistable points, we can further lift χi to equivariant

cohomologies:

H i
G(X̃

ss) H i
G(E

ss)

H i(WK) H i(E // G)

χi

∼ ∼

χi

According to Kirwan’s surjectivity, the equivariant cohomologies H i
G(X̃

ss) and H i
G(E

ss)

receive surjections from H i
G(X̃) and H i

G(E) respectively. We have the commutative

diagram.

H i
G(X̃) H i

G(E)

H i
G(X̃

ss) H i
G(E

ss)

resi

χi

It is now sufficient to demonstrate that the restriction maps resi are all surjections.

We have explained in (3.5.2) and (3.5.3), for cohomology groups, the map π : X̃ →

WPss behaves like a smooth blowup. Let ι : E ⊂ X̃ be the exceptional locus, r be the rank

of the normal NC , and h be the hyperplane class on E. We have one more commutative
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diagram:

A⊕H i
G(WPss) B

H i
G(X̃) H i

G(E)

ϕ=ϕ1⊕ϕ2

ι!⊕π∗ ∼ ∼

resi

where A =
⊕r−1

j=1H
i−2j
G (G · ZT) · hj−1 and B =

⊕r−1
j=0H

i−2j
G (G · ZT) · hj.

On the summand A, the map ϕ1 is simply the multiplication by h. Therefore, it is

sufficient to show

ϕ2 : H
i
G(WPss) → H i

G(G · ZT)

is a surjection. We may compute:

H∗
G(G · ZT) = H∗

N(T)(ZT) = H∗(ZT)⊗H∗(BN(T)).

Now recall that:

ZT ≃ P1 ⊂ WPss ⊂ WP.

So we have a surjection:

H∗(WP) ↠ H∗(ZT).

The map BN(T) → BG induces an isomorphism on cohomologies in our case. Thus, the

composition of the following restriction maps is a surjection

H∗
G(WP) → H i

G(WPss)
ϕ2−→ H∗

G(G · ZT),

and so is ϕ2.

Remark 3.6.2. In the proof, we claimed Kirwan surjectivity holds for H i
G(X̃) → H i

G(X̃
ss)

and H i
G(E) → H i

G(E
ss). Note that although X̃ and E are not compact, it has been

shown that the G-action on the two spaces will induce equivariantly perfect stratifications

(see [Kir85, 7.5]). So the surjectivity still holds.
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Lemma 3.6.3. The Poincaré polynomial of Ws is:

Pt(W
s) = 1 + t2 + 2t4 + 2t6 + 3t8 + 3t10 + 4t12 + 4t14 + 5t16

+4t18 + 4t20 + 3t22 + 3t24 + 2t26 + 2t28 + t30 + t32.

Proof. Consider the excision sequence for homology:

· · · → Hi+1(W
K ,Ws) → Hi(W

s) → Hi(W
K)

αi−→ Hi(W
K ,Ws) → · · ·

Recall from Lemma 3.5.9 and Poincaré duality that H2i+1(W
K ,Ws) ≃ H35−2i(F ) = 0. The

maps αi are all surjections as established by Lemma 3.6.1. The long exact sequence thus

splits into short exact sequences:

0 → Hi(W
s) → Hi(W

K) → Hi(W
K ,Ws) → 0.

Passing to the cohomology of Ws we have:

dimH i(Ws) = dimHi(W
s) = dimH36−i(WK)− dimH36−i(F ).

Now the Poincaré polynomial Pt(W
s) follows immediately from the data in Lemma 3.5.6

and Lemma 3.5.9.

3.7 The cohomology of W

In this section, we compute Betti numbers of W. As explained in Proposition 3.2.1,

the space W is obtained by removing two curves from WGIT , and the space Ws appears in

the intermediate step:

WGIT − Css = Ws, WGIT − {Css ∪ Cnn} = W.
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Furthermore, we completely understand the topology of Cnn ≃ P1 and thus:

Pt(Cnn) = 1 + t2. (3.7.1)

We can now complete the proofs of Theorems 2.1.1 and 2.1.3.

Proof of Theorem 2.1.1. Using the universal coefficient theorem, it’s sufficient to compute

the dimension of Hi(W). Consider the excision sequence:

· · · → Hi(W) → Hi(W
s) → Hi(W

s,W) → Hi−1(W) → · · · .

Now for the homology Hi(W
s,W), we view W ⊂ Ws as subset of WK . Then by duality

and excision, we have:

Hi(W
s,W) ≃ H36−i(Css ∪ Cnn, Css) ≃ H36−i(Cnn, pt).

By equation 3.7.1, H2(Cnn, pt) ≃ Q and H i(Cnn, pt) = 0 if i ̸= 2. Putting them into the

long exact sequence we conclude:

Hi(W) ≃ Hi(W
s) if i ̸= 33; H33(W) ≃ H2(Cnn, pt) ≃ Q.

Proof of Theorem 2.1.3. In the proof of Theorem 2.1.1, we have shown H2i(W) ≃ H2i(W
s).

Taking a dual we get:

H2i(Ws) ≃ H2i(W).

Recall in the proof of Lemma 3.6.3, we have shown the generators of H2i(Ws) can be lifted

to generators of H∗(WP)⊗H∗(BSL2).

Now under the cycle map, the hyperplane class on WP corresponds to the Chow
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class a1 as defined in [CK23], and the generator of H∗(BSL2) corresponds to Chow class

c2 as defined in [CK23]. A direct comparison of dimensions concludes that the cycle maps

must be isomorphisms.

79



Chapter 4

The Chow ring of the moduli space
of elliptic K3 surfaces

4.1 Elliptic surfaces and Weierstrass fibrations

In this section, we recall the necessary background on elliptic surfaces and Weier-

strass fibrations. A detailed survey following [Mir81,Mir89] can be found in Section 1.2.

The main objects of interest in this section will be moduli stacks of minimal elliptic surfaces

over P1 with section.

Definition 4.1.1. A minimal elliptic surface over P1 with section consists of the following

data:

1. a smooth projective surface Y ,

2. a proper morphism π : Y → P1 whose general fiber is a smooth connected curve of

genus 1 and such that none of the fibers contain any (−1)-curves,

3. a section s : P1 → Y of π.

Remark 4.1.2. Note that the minimality condition is different from the usual one given in

the birational geometry of surfaces. There can be (−1)-curves on the surface Y , but they

must not lie in the fibers of p.
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We will study moduli spaces of minimal elliptic surfaces by studying the closely

related notion of Weierstrass fibrations. We refer the reader to Section 1.2 for a detailed

survey.

Definition 4.1.3. A Weierstrass fibration over P1 consists of the following data:

1. a projective surface X,

2. a flat proper morphism p : X → P1 such that every fiber is an irreducible curve of

arithmetic genus 1 and the general fiber is smooth,

3. a section s : P1 → X of p whose image does not intersect the singular points of any

fiber.

Weierstrass fibrations X → P1 have a natural invariant associated to them that

governs aspects of the geometry of X and the associated moduli spaces.

Definition 4.1.4. Let p : X → P1 be a Weierstrass fibration.

1. The fundamental line bundle associated to p : X → P1 is the line bundle

L = (R1p∗OX)
∨.

2. The fundamental invariant associated to p : X → P1 is the integer

N = degL.

Because L is a line bundle on P1, it is of the form O(N) where N is the fundamental

invariant. By [Mir81, Corollary 2.4], the fundamental invariant is always nonnegative.

There is a one-to-one correspondence between minimal elliptic surfaces with a

section and Weierstrass fibrations with at worst rational double points as singularities.

81



Given a minimal elliptic surface π : Y → P1, we obtain a Weierstrass fibration with at

worst rational double points P : X → P1 by contracting any rational components in the

fibers that do not meet the section. Conversely, given a Weierstrass fibration p : X → P1

with at worst rational double points as singularities, resolving the singularities and blowing

down (−1)-curves in the fibers yields a minimal elliptic surface π : Y → P1. We say that

Y contracts to X and X resolves to Y . We surveyed the details of this correspondence in

Proposition 1.2.18 in Section 1.2.4.

Weierstrass fibrations have a representation as divisors on a P2-bundle over P1.

This representation can be further described by Weierstrass equations. For details of

the correspondence, see Section 1.2.3. Miranda [Mir81] used Weierstrass equations to

construct coarse moduli spaces for Weierstrass fibrations, and hence elliptic surfaces. The

construction is based on Geometric Invariant Theory (GIT), we surveyed the details in

Section 1.2.5, we will state the results that we need in this chapter.

Lemma 4.1.5 (Corollary 2.5 of [Mir81]). Let π : Y → P1 be a minimal elliptic surface

with section contracting to a Weierstrass fibration p : X → P1 with fundamental invariant

N . Then X is isomorphic to the closed subscheme of P(O ⊕O(2N)⊕O(3N)) defined by

y2z = x3 + Axz2 +Bz3,

where A ∈ H0(P1,O(4N)) and B ∈ H0(P1,O(6N)). Moreover,

1. 4A3 + 27B2 is not identically zero. If it vanishes at q ∈ P1, the fiber of X over q is

singular.

2. For every q ∈ P1, vq(A) ≤ 3 or vq(B) ≤ 5, where vq is the order of vanishing at q.

We have proven the Lemma 4.1.5 in an equivalent form in Lemma 1.2.20 and

Proposition 1.2.21. Set V4N := H0(P1,O(4N)) and V6N := H0(P1,O(6N)). Let TN ⊂
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V4N ⊕ V6N denote the open subspace satisfying conditions (1) and (2) from Lemma 4.1.5.

The following is [Mir81, Corollary 2.8].

Corollary 4.1.6. The set of isomorphism classes of minimal elliptic surfaces π : Y → P1

with degR1p∗OX = −N and with fixed section (equivalently, Weierstrass fibrations with

only rational double points) is in 1− 1 correspondence with the set of orbits of SL2×Gm

on TN .

In order to give the set of orbits a geometric structure, Miranda analyzes the

stability of the action of SL2×Gm on TN .

Proposition 4.1.7. Let (A,B) ∈ V4N ⊕ V6N be a pair of forms.

1. The point corresponding to (A,B) is not semistable if and only if there is a point

q ∈ P1 such that

vq(A) > 2N and vq(B) > 3N.

2. The point corresponding to (A,B) is not stable if and only if there is a point q ∈ P1

such that

vq(A) ≥ 2N and vq(B) ≥ 3N.

The proof of Proposition 4.1.7 is about finding the appropriate linearization of

the action and use the Hilbert-Mumford criterion. We have given a detailed proof in

Proposition 1.2.25. From Lemma 4.1.5 and Proposition 4.1.7, we see that as long as

N ≥ 2, points in TN are stable, and thus EN := TN// SL2×Gm is a coarse moduli space for

Weierstrass fibrations with fundamental invariant N . In particular, the natural morphism

EN := [TN/ SL2×Gm] → EN

from the quotient stack to the GIT quotient is a coarse moduli space morphism.
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In Section 4.3, it will be useful for us to work on a stack WN of Weierstrass

fibrations with fundamental invariant N , not just the coarse moduli space constructed by

Miranda. This stack is not the stack EN defined above, but it is closely related as we will

now explain. The stack WN was recently defined in work of Park–Schmitt [PS21], and we

will briefly recall their construction.

Definition 4.1.8. Let S be a scheme. A family of Weierstrass fibrations over S is given

by the data

X p−→ P γ−→ S,P s−→ X

where

1. γ is a smooth, proper morphism locally of finite type, with geometric fibers isomorphic

to P1,

2. p is a proper map with section s,

3. the fibers (Xt → Pt,Pt → Xt) on geometric points t ∈ S are Weierstrass fibrations.

Park–Schmitt [PS21] define W to be the moduli stack whose objects over S are

families of Weierstrass fibrations over S with morphisms over T → S given by fiber diagrams.

The stack WN is the open and closed substack parametrizing Weierstrass fibrations with

fundamental invariant N . Finally, we consider the open substacks Wmin,N ⊂ WN of

Weierstrass fibrations satisfying the two conditions from Lemma 4.1.5. These stacks

parametrize the Weierstrass fibrations with fundamental invariant N that resolve to

minimal elliptic surfaces. By [PS21, Theorem 1.2], the stacks Wmin,N are smooth, separated

Deligne-Mumford stacks for N ≥ 2, and by [PS21, Theorem 1.4], EN is a coarse moduli

space for Wmin,N

We now have three spaces of interest: EN , Wmin,N and EN . We want to compare

their Chow rings.
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Proposition 4.1.9. The Chow rings of EN , Wmin,N and EN are isomorphic.

Proof. The space EN is a coarse moduli space for both stacks EN and Wmin,n. Therefore,

since we are using rational coefficients, all three Chow rings are isomorphic by a result of

Vistoli [Vis89, Proposition 6.1].

Remark 4.1.10. The difference between the stacks Wmin,N and EN is that EN is a µ2-banded

gerbe over Wmin,N . The gerbe structure arises from the map BSL2 → BPGSp2.

Notations and conventions

1. Schemes are over a fixed algebraically closed field k of characteristic not 2 or 3. All

stacks are fibered over the category of schemes over k.

2. We denote the Chow ring of a space X with rational coefficients by A∗(X).

3. We use the subspace (classical) convention for projective bundles.

4.2 Computing the Chow ring

By Proposition 4.1.9, it suffices to compute A∗(EN ) in order to prove Theorem 2.2.2.

Let ∆N ⊂ V4N ⊕ V6N denote the complement of TN . We have the excision exact sequence

A∗([∆N/ SL2×Gm]) → A∗([V4N ⊕ V6N/ SL2×Gm]) → A∗(EN) → 0. (4.2.1)

We want to study the image of A∗([∆N/ SL2×Gm]) in A
∗([V4N ⊕ V6N/ SL2×Gm]).

We begin with background information on the stack [V4N ⊕ V6N/ SL2×Gm]. The

stack BSL2 is the classifying stack for rank 2 vector bundles with trivial first Chern class.

Let V denote the universal rank 2 vector bundle with trivial first Chern class over BSL2.

Set c2 := c2(V). Similarly, the stack BGm is the classifying stack for line bundles. Let M

denote the universal line bundle over BGm. Set a1 := c1(M). By abuse of notation, we will

not distinguish between V , M, c2, and a1 and their pullbacks to the product BSL2×BGm
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under the natural projection maps. We will interpret the stack BSL2×BGm as the stack

of line bundles of relative degree N on P1-bundles as in [Lar23] as follows. Consider the

universal P1-bundle

γ : P(V) → BSL2×BGm .

Fix N ≥ 0 and set L := γ∗M(N), the universal relative degree N line bundle on P(V).

Lemma 4.2.1.

1. The stack [V4N ⊕V6N/ SL2×Gm] is the total space of the vector bundle γ∗(L⊗4⊕L⊗6)

on BSL2×BGm.

2. There is an isomorphism of graded rings

A∗([V4N ⊕ V6N/ SL2×Gm]) ∼= Q[a1, c2],

with a1 in degree 1 and c2 in degree 2.

Proof. Part (1) follows from cohomology and base change. Indeed, the fibers of γ∗(L⊗4 ⊕

L⊗6) are canonically identified with V4N ⊕ V6N , and the higher cohomology vanishes. For

part (2), we note that by part (1) and the homotopy property for Chow rings, there is an

isomorphism

A∗([V4N ⊕ V6N/ SL2×Gm]) ∼= A∗(BSL2×BGm).

A standard calculation in equivariant intersection theory [Tot99, Section 15] shows that

A∗(BSL2×BGm) ∼= Q[a1, c2]

as graded rings.
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4.2.1 Computing the ideal of relations

By Lemma 4.2.1, the exact sequence (4.2.1) can be rewritten as

A∗([∆N/ SL2×Gm]) → Q[a1, c2] → A∗(EN) → 0. (4.2.2)

It follows that A∗(EN), and hence A∗(EN), is a quotient of Q[a1, c2] by the ideal IN

generated by the image of A∗([∆N/ SL2×Gm]).

Lemma 4.1.5 tells us exactly when a pair (A,B) ∈ V4N ⊕ V6N is contained in

∆N . We write ∆N = ∆1
N ∪∆2

N , where ∆1
N parametrizes the pairs of forms (A,B) such

that 4A3 + 27B2 is identically zero (corresponding to Lemma 4.1.5 part (1)), and ∆2
N

parametrizing pairs of forms (A,B) such that vq(A) ≥ 4 or vq(B) ≥ 6 for some point

p ∈ P1 (corresponding to Lemma 4.1.5 part (2)). First, we will determine the relations

obtained from excising the pairs (A,B) ∈ ∆2
N . To do so, we need to introduce bundles of

principal parts. We will follow the treatment in [EH16].

Let b : Y → Z be a smooth proper morphism. Let ∆Y/Z ⊂ Y ×Z Y be the relative

diagonal. With p1 and p2 the projection maps, we obtain the following commutative

diagram:

∆Y/Z

Y ×Z Y Y

Y Z.

p2

p1

b

b

Definition 4.2.2. Let F be a vector bundle on Y and let I∆Y/Z
denote the ideal sheaf

of the diagonal in Y ×Z Y . The bundle of relative mth order principal parts Pm
b (F) is

defined as

Pm
b (F) = p2∗(p

∗
1F ⊗OY×ZY /Im+1

∆Y/Z
).

The following explains all the basic properties of bundles of principal parts that we
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need.

Proposition 4.2.3 (Theorem 11.2 in [EH16]). With notation as above,

1. There is an isomorphism b∗b∗F
∼−→ p2∗p

∗
1F .

2. The quotient map p∗1F → p∗1F ⊗OY×ZY /Im+1
∆Y/Z

pushes forward to a map

b∗b∗F ∼= p2∗p
∗
1F → Pm

b (F),

which, fiber by fiber, associates to a global section δ of F a section δ′ whose value at

z ∈ Z is the restriction of δ to an mth order neighborhood of z in the fiber b−1b(z).

3. P 0
b (F) = F . For m > 1, the filtration of the fibers Pm

b (F)y by order of vanishing at

y gives a filtration of Pm
b (F) by subbundles that are kernels of the natural surjections

Pm
b (F) → P k

b (F) for k < m. The graded pieces of the filtration are identified by the

exact sequences

0 → F ⊗ Symm(ΩY/Z) → Pm
b (F) → Pm−1

b (F) → 0.

By (2) of Proposition 4.2.3, there is a morphism

ψ : γ∗γ∗(L⊗4 ⊕ L⊗6) → P 3
γ (L⊗4)⊕ P 5

γ (L⊗6)

which, along points in the P1 fibers, sends A (respectively, B) to a third (respectively, fifth)

order neighborhood. The kernel of this map therefore parametrizes the triples (A,B, q)

such that vq(A) ≥ 4 and vq(B) ≥ 6. Looking fiber-by-fiber, one sees that the map ψ

is surjective. Therefore, the kernel K of ψ is a vector bundle. We obtain the following
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commutative diagram where ϕ, ϕ′ and ϕ′′ are vector bundle morphisms.

K γ∗γ∗(L⊗4 ⊕ L⊗6) γ∗(L⊗4 ⊕ L⊗6)

P(V) BSL2×BGm .

i

ϕ′′

γ′

ϕ′ ϕ

γ

(4.2.3)

By construction, K maps properly and surjectively onto [∆2
N/ SL2×Gm] under the identi-

fication of γ∗(L⊗4 ⊕ L⊗6) with [V4N ⊕ V6N/ SL2×Gm] from Lemma 4.2.1. Consequently,

the images of the push forward maps

γ′∗i∗ : A∗(K) → A∗(γ∗(L⊗4 ⊕ L⊗6)) = A∗([V4N ⊕ V6N/ SL2×Gm])

and

A∗([∆
2
N/ SL2×Gm]) → A∗([V4N ⊕ V6N/ SL2×Gm])

are the same.

Proposition 4.2.4. Let z denote the hyperplane class of P(V). The image of the push

forward map γ′∗i∗ : A
∗(K) → A∗(γ∗(L⊗4 ⊕ L⊗6)) is the ideal generated by the two classes

1. ϕ∗γ∗(ctop(P
3
γ (L⊗4)⊕ P 5

γ (L⊗6))), and

2. ϕ∗γ∗(ctop(P
3
γ (L⊗4)⊕ P 5

γ (L⊗6)) · z).

Proof. Let α ∈ A∗(K). Then because K is a vector bundle over P(V), we see that

α = ϕ′′∗(β) for some class β ∈ A∗(P(V)), so we have

α = ϕ′′∗(β) = i∗ϕ′∗(β).

Pushing forward, we obtain

γ′∗i∗α = γ′∗i∗i
∗ϕ′∗(β) = γ′∗([K] · ϕ′∗β).
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Because K is the kernel of the vector bundle morphism

ψ : γ∗γ∗(L⊗4 ⊕ L⊗6) → P 3
γ (L⊗4)⊕ P 5

γ (L⊗6),

the fundamental class [K] is given by ϕ′∗(ctop(P
3
γ (L⊗4)⊕ P 5

γ (L⊗6))). Because the square

in the commutative diagram (4.2.3) is Cartesian, γ′∗ϕ
′∗ = ϕ∗γ∗, so

γ′∗i∗α = ϕ∗γ∗(ctop(P
3
γ (L⊗4)⊕ P 5

γ (L⊗6)) · β).

Because P(V) is a projective bundle, β can be written as

β = γ∗β1 + γ∗β2z,

where β1 and β2 are classes in A∗(BSL2×BGm). The statement of the proposition

follows.

Remark 4.2.5. The relations from Proposition 4.2.4 can be computed explicitly as polyno-

mials of a1, c2, and N using the splitting principle and Proposition 4.2.3. We carried out

this computation in Macaulay2 [GS] using the package Schubert2 [GSS+].

ϕ∗γ∗(ctop(P
3
γ (L⊗4)⊕ P 5

γ (L⊗6))) = 119439360N9c42a1 − 859963392N8c42a1 − 1433272320N7c32a
3
1

+ 2598469632N7c42a1 + 8026324992N6c32a
3
1 + 3009871872N5c22a

5
1

− 4277919744N6c42a1 − 18189287424N5c32a
3
1 − 12039487488N4c22a

5
1

− 1433272320N3c2a
7
1 + 4164009984N5c42a1 + 21389598720N4c32a

3
1

+ 18189287424N3c22a
5
1 + 3439853568N2c2a

7
1 + 119439360Na91

− 2427125760N4c42a1 − 13880033280N3c32a
3
1 − 12833759232N2c22a

5
1

− 2598469632Nc2a
7
1 − 95551488a91 + 813809664N3c42a1

+ 4854251520N2c32a
3
1 + 4164009984Nc22a

5
1 + 611131392c2a

7
1

− 139567104N2c42a1 − 813809664Nc32a
3
1 − 485425152c22a

5
1

+ 8847360Nc42a1 + 46522368c32a
3
1.

90



ϕ∗γ∗(ctop(P
3
γ (L⊗4)⊕ P 5

γ (L⊗6)) · z) = −11943936N10c52 + 95551488N9c52 + 537477120N8c42a
2
1

− 324808704N8c52 − 3439853568N7c42a
2
1 − 2508226560N6c32a

4
1

+ 611131392N7c52 + 9094643712N6c42a
2
1 + 12039487488N5c32a

4
1

+ 2508226560N4c22a
6
1 − 694001664N6c52 − 12833759232N5c42a

2
1

− 22736609280N4c32a
4
1 − 8026324992N3c22a

6
1 − 537477120N2c2a

8
1

+ 485425152N5c52 + 10410024960N4c42a
2
1 + 21389598720N3c32a

4
1

+ 9094643712N2c22a
6
1 + 859963392Nc2a

8
1 + 11943936a101

− 203452416N4c52 − 4854251520N3c42a
2
1 − 10410024960N2c32a

4
1

− 4277919744Nc22a
6
1 − 324808704c2a

8
1 + 46522368N3c52

+ 1220714496N2c42a
2
1 + 2427125760Nc32a

4
1 + 694001664c22a

6
1

− 4423680N2c52 − 139567104Nc42a
2
1 − 203452416c32a

4
1 + 4423680c42a

2
1.

Simplifying, we have that the ideal that these two classes generate is the ideal generated

by the following two polynomials, p1 and p2.

p1 = (1620N − 1296)a9
1 + (−19440N3 + 46656N2 − 35244N + 8289)a7

1c2

+ (40824N5 − 163296N4 + 246708N3 − 174069N2 + 56478N − 6584)a5
1c

2
2

+ (−19440N7 + 108864N6 − 246708N5 + 290115N4 − 188260N3 + 65840N2 − 11038N + 631)a3
1c

3
2

+ (1620N9 − 11664N8 + 35244N7 − 58023N6 + 56478N5 − 32920N4 + 11038N3 − 1893N2 + 120N)a1c
4
2.

p2 = 324a10
1 + (−14580N2 + 23328N − 8811)a8

1c2

+ (68040N4 − 217728N3 + 246708N2 − 116046N + 18826)a6
1c

2
2

+ (−68040N6 + 326592N5 − 616770N4 + 580230N3 − 282390N2 + 65840N − 5519)a4
1c

3
2

+ (14580N8 − 93312N7 + 246708N6 − 348138N5 + 282390N4 − 131680N3 + 33114N2 − 3786N + 120)a2
1c

4
2

+ (−324N10 + 2592N9 − 8811N8 + 16578N7 − 18826N6 + 13168N5 − 5519N4 + 1262N3 − 120N2)c52.

Lemma 4.2.6. The codimension of ∆1
N in V4N ⊕ V6N is 8N + 1.

Proof. Let t be an affine coordinate on P1. Then we can factor A(t) and B(t) into linear

factors as

A(t) = a

4N∏
i=1

(t− ci) and B(t) = b

6N∏
i=1

(t− di).
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Because 4A3 + 27B2 is identically zero, we have the equation

4a3
4N∏
i=1

(t− ci)
3 = −27b2

6N∏
i=1

(t− di)
2.

By comparing the orders of vanishing of each side, we see that A(t) = aG(t)2 and

B(t) = bG(t)3, where G is a polynomial of degree 2N and 4a3 + 27b2 = 0. It follows that

the codimension of ∆1
N is given by

dim(V4N ⊕ V6N)− dimV2N = 10N + 2− 2N − 1 = 8N + 1.

We can now complete the proof of Theorem 2.2.2.

Proof of Theorem 2.2.2. By a calculation in Macaulay2 [GS], the graded ring Q[a1, c2]/IN

vanishes in degree 17 and higher, where IN is the ideal generated by the relations from

Proposition 4.2.4. We have the excision exact sequence

A∗([∆
1
N/ SL2×Gm]) → Q[a1, c2]/IN → A∗(EN) → 0.

By Lemma 4.2.6, the image of

A∗([∆
1
N/ SL2×Gm]) → Q[a1, c2]/IN

lies in codimension 17 or higher, so it is identically zero. Therefore,

Q[a1, c2]/IN ∼= A∗(EN).

This completes the proof of Theorem 2.2.2 part (1). Parts (2) and (3) are consequences of

part (1) together with a computation in Macaulay2 [GS] that computes the Hilbert Series
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of the ring Q[a1, c2]/IN and verifies that the intersection pairing is perfect.

Proof of Corollary 2.2.3. Miranda’s construction of EN by geometric invariant theory

[Mir81] shows that EN is a quasi-projective variety. It thus admits an ample line bundle

L. If S is a complete subvariety of dimension d, then, because L is ample,

c1(L)
d · S > 0.

Hence, c1(L)
d is numerically nonzero. By Theorem 2.2.2, it follows that d ≤ 16.

4.3 The Tautological ring

4.3.1 Stacks of lattice polarized K3 surfaces

Let Λ ⊂ U⊕3 ⊕ E8(−1)⊕2 be a fixed rank r primitive sublattice with signature

(1, r − 1), and let v1, . . . , vr be an integral basis of Λ. A Λ-polarization on a K3 surface X

is a primitive embedding

j : Λ ↪→ Pic(X)

such that

1. The lattices H2(X,Z) and U⊕3⊕E8(−1)⊕2 are isomorphic via an isometry restricting

to the identity on Λ, where we view Λ as sitting inside H2(X,Z) via Λ ↪→ Pic(X) ↪→

H2(X,Z).

2. The image of j contains the class of a quasi-polarization.

Beauville [Bea04] constructed moduli stacks FΛ of Λ-polarized K3 surfaces, and showed

that they are smooth Deligne–Mumford stacks of dimension 19− r. Using the surjectivity

of the period map, one can construct coarse moduli spaces FΛ for FΛ [Dol96].
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We think of the stacks FΛ as parametrizing families of K3 surfaces

π : X → S

together with r line bundles H1, . . . , Hr on X corresponding to the basis v1, . . . , vr of Λ,

well-defined up to pullbacks from Pic(S). Technically, these bundles exist only étale locally,

as they are defined as sections of the sheaf PicX/S, which is the étale sheafification of the

presheaf on the category of schemes over S

T 7→ Pic(XT )/Pic(T ).

We will generally suppress this detail, but we will remark when it is important. There are

forgetful morphisms

FΛ′ ↪→ FΛ

for any lattice Λ ⊂ Λ′. When Λ is strictly contained in Λ′, we call the subvarieties FΛ′

Noether-Lefschetz loci of FΛ.

4.3.2 The tautological ring of FΛ

The stack FΛ comes equipped with a universal K3 surface

πΛ : XΛ → FΛ.

and universal bundles H1, . . .Hr, well-defined up to pullbacks from FΛ. Let TπΛ
denote

the relative tangent bundle. Following [MOP17], we define the κ-classes

κΛa1,...,ar,b := πΛ∗
(
c1(H1)

a1 · · · c1(Hr)
ar · c2(TπΛ

)b
)
.

Definition 4.3.1. The tautological ring R∗(FΛ) is the subring of A∗(FΛ) generated by
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pushforwards from the Noether–Lefschetz loci of all κ-classes.

By [Bor99] or [FR20], the Hodge class λ := c1(πΛ∗ωπΛ
) lies in the tautological ring

R∗(FΛ) for all Λ, as it is supported on Noether–Lefschetz divisors.

4.3.3 Moduli of elliptic K3 surfaces and Weierstrass fibrations

Let p : X → P1 be a minimal elliptic surface over P1 with fundamental invariant

2. Then X is a K3 surface, and the class of the fiber f and section σ form a primitively

embedded lattice U ⊂ Pic(X) equivalent to a hyperbolic lattice, whose image contains a

quasi-polarization σ + 2f . Conversely, given a K3 surface X, a primitive embedding of

a hyperbolic lattice U ↪→ Pic(X) whose image contains a quasi-polarization allows one

to define a morphism p : X → P1 with section s : P1 → X with fundamental invariant

2 [CD07, Theorem 2.3]. Because of this, we call the stack FU the stack parametrizing

elliptic K3 surfaces with section. By [OO21, Theorem 7.9], the coarse moduli space FU

is isomorphic to E2. By the discussion in subsection 4.3.1, FU comes equipped with a

universal K3 surface and two universal line bundles

πU : XU → FU , O(f) → XU , O(σ) → XU .

The intersection matrix of O(σ) and O(f) is

 O(σ)2 O(σ) · O(f)

O(σ) · O(f) O(f)2

 =

−2 1

1 0

 ,
which can be obtained by a change of basis from the usual intersection matrix for a

hyperbolic lattice U : 0 1

1 0

 .
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We prefer to take O(f) and O(σ) as our basis because of their geometric meaning. Recall

that the stack Wmin,2 parametrizes families of Weierstrass fibrations resolving to minimal

elliptic surfaces. We will construct a morphism

G : FU → Wmin,2,

which is a relative version of the morphism sending an elliptic K3 surface to its associated

Weierstrass fibration. Let π : X → S be a family of U -polarized K3 surfaces, equipped

with bundles O(f) and O(σ) on X, up to an étale cover of S. The surjection

π∗π∗O(f) → O(f)

defines a morphism

p : X → P(π∗O(f)∨)

over S. The relative effective Cartier divisor associated to O(σ) allows us to define a

section s of p. The surjection

p∗p∗O(3σ) → O(3σ)

defines a morphism i : X → P(p∗O(3σ)∨). Let Y denote the image of X under i. Then Y

is a family of Weierstrass fibrations over S. This construction defines the morphism

G : FU → Wmin,2.

Remark 4.3.2. We note that in constructing Y , we chose line bundles O(f) and O(σ).

Technically, we could only do so étale locally. The projective bundle P(π∗O(f)∨) → S

will only descend to a smooth proper morphism, locally of finite type, with geometric

fibers isomorphic to P1: it will not necessarily be the projectivization of a vector bundle

on S. Second, even once we pass to an étale cover, O(f) and O(σ) are only defined up
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to pullbacks from Pic(S). If we made different choices for O(f) and O(σ) the resulting

Weierstrass fibration would be canonically isomorphic to the original one because for any

vector bundle E and line bundle L, P(E ⊗ L) is canonically isomorphic to P(E).

Consider the following Cartesian diagram, which defines the stack F̃U .

F̃U E2

FU Wmin,2

G′

G

The vertical morphisms are µ2-banded gerbes. In fact, we can explicitly describe the

functor of points for F̃U . A morphism from a scheme S to F̃U is a family

(π : X → S,O(f),O(σ),N )

where (π : X → S,O(f),O(σ)) is a family of U -polarized K3 surfaces and N is a line

bundle on S such that

N⊗2 ∼= detπ∗O(f).

Recall that E2 has a universal rank 2 vector bundle with trivial first Chern class V and a

universal line bundle M. By construction of the map G and its base change G′, we have

that

G′∗V = π∗O(f)∨ ⊗N ,

where N is the universal square root of detπ∗O(f). We will abuse notation and denote

the universal K3 surface on FU and F̃U both by π.

Lemma 4.3.3. The class c2(π∗O(f)∨ ⊗N ) on F̃U is the pullback of a tautological class

on FU .
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Proof. Note that

c2(π∗O(f)∨ ⊗N ) = c1(N )2 + c1(π∗O(f)∨)c1(N ) + c2(π∗O(f)∨)

=
1

4
c1(detπ∗O(f))2 − 1

2
c1(π∗O(f))c1(detπ∗O(f)) + c2(π∗O(f))

= −1

4
c1(π∗O(f))2 + c2(π∗O(f)).

It thus suffices to show that the Chern classes of π∗O(f) are tautological. By Grothendieck–

Riemann–Roch, we have

ch(π!O(f)) = π∗(ch(O(f)) · td(Tπ)).

By definition, the classes on the right hand side are tautological. We note that

π!O(f) = π∗O(f)

because π is a relative K3 surface. By comparing degree 1 parts of both sides, we see

that c1(π∗O(f)) is tautological. By comparing degree 2 parts, we see that c2(π∗O(f)) is

tautological.

Proof of Theorem 2.2.4. Each of the stacks E2, Wmin,2, FU , and F̃U has the same coarse

moduli space E2. They thus all have isomorphic Chow rings, and proper push forward

A∗(Z) → A∗(E2) is an isomorphism of Chow groups, where Z is any of the four stacks

above [Vis89, Proposition 6.1]. By Theorem 2.2.2, A1(E2) is generated by the push

forward of a1. By [Pet19, Theorem 2.1] or the proof of [vdGK05, Corollary 4.2], the

tautological class λ is nonvanishing on FU . It follows that A
1(FU) is generated by λ, so

A1(FU) = R1(FU). By Theorem 2.2.2, A2(E2) is generated by the push forwards of a21

and c2. By Lemma 4.3.3, the class c2 pulls back to a class in A2(F̃U) that is the pullback

of a tautological class from A2(FU ). It follows that A
2(FU ) = R2(FU ), as the images of a21
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and c2 in A2(E2) can both be obtained by pushing forward tautological classes from FU .

Therefore, A∗(FU) = R∗(FU). The fact that A∗(FU) = R∗(FU) is Gorenstein with socle

in codimension 16 follows from Theorem 2.2.2.

4.3.4 Codimension one classes

By Theorems 2.2.2 and 2.2.4, A1(FU) is of rank one and the Hodge class λ is a

generator. It is natural to ask how to represent κ-classes explicitly in terms of the Hodge

class λ.

Proposition 4.3.4. The following four linear combinations of κ-classes are independent

of the choice of universal line bundles. Moreover, they are all multiples of the Hodge class

λ.

κ3,0,0 +
1

4
κ1,0,1 =

7

2
λ, 3κ2,1,0 −

1

4
κ1,0,1 +

1

4
κ0,1,1 =

1

2
λ,

3κ1,2,0 −
1

4
κ0,1,1 = −3λ, κ0,3,0 = 0.

where κi,j,k := π∗
(
c1(O(σ))i · c1(O(f))j · c2(Tπ)

k
)
.

Proof. A direct computation shows the above four κ combinations are invariant under

f 7→ f + π∗(l) and σ 7→ σ + π∗(l′) for any l, l′ ∈ A1(FU).

By Theorem 2.2.2, we know A1(FU) is of rank one, so it is sufficient to check the

identities by computing their intersection numbers with a suitable test curve:

ι : C → FU .

To construct the curve, we use the resolved version of the STU model in [KMPS10]. The

STU model is a smooth Calabi-Yau 3-fold, endowed with a map:

πSTU : XSTU → P1.
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It arises as an anti-canonical section of a toric 4-fold Y . The fan datum for Y can be

found in [KMPS10, Section 1.3]. We use their notation. There are 10 primitive rays

{ρi; 1 ≤ i ≤ 10}, and the corresponding divisors are denoted as Di ∈ Pic(Y ). The

anti-canonical class is:

−KY =
10∑
i=1

Di.

The general fiber of πSTU is a smooth elliptic K3 surface, but there are 528 singular

fibers [KMPS10, Proposition 1], each of which has exactly one ordinary double point

singularity. Let ϵ : C → P1 be a double cover branched along the 528 points corresponding

to the singular fibers. The pullback of XSTU by ϵ has double point singularities, and by

resolving them we obtain the resolved STU model:

π̃STU : X̃STU → C.

All fibers of π̃STU are smooth elliptic K3 surfaces. Moreover the toric divisors D5, D3 ∈

Pic(Y ) restrict to the universal section and fiber for π̃STU . The family π̃STU defines a

curve in the moduli space FU :

ι : C → FU .

The intersection number ι∗(λ) is computed in [KMPS10, Proposition 2]:

ι∗(λ) = 4E4(q)E6(q)[0] = 4,

where E4 and E6 are Eisenstein series, and we take the coefficient of q0.

For the κ-classes, it suffices to perform the computation over the non-resolved STU

model. Since the tautological classes we consider are all invariant, we may assume the
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universal line bundles on FU pull back to the toric divisors D5, D3. For κ3,0,0, we have:

ι∗(κ3,0,0) = 2 · πSTU
∗

(
D3

5 ·
10∑
i=1

Di

)
,

where the factor of 2 comes from the double cover ϵ. Using toric geometry, all monomials

of the form Di ·Dj ·Dk ·Dl can be explicitly determined. We obtain:

ι∗(κ3,0,0) = 16.

Other intersection numbers can be computed analogously. We record the final answers:

ι∗(κ3,0,0) = 16 ι∗(κ1,0,1) = −8 ι∗(κ2,1,0) = −4

ι∗(κ0,1,1) = 48 ι∗(κ1,2,0) = 0 ι∗(κ0,3,0) = 0.

The four identities in the proposition then follow immediately.

This chapter is, in full, adapted from the material as it appears in

• Samir Canning and Bochao Kong, “The Chow rings of moduli spaces of elliptic

surfaces over P1”, Algebraic Geometry 10.4 (2023).

The dissertation author was the co-primary investigator and author of this paper.
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Chapter 5

Tautological relations via localiza-
tion

We have seen in Definition 2.3.1 and Section 4.3.1 that the moduli spaces F2ℓ and

FΛ carry rich cycles/classes originating from tautological constructions. Using Hodge

classes, Noether-Lefschetz classes and kappa classes, [MOP17] proposed the following

definition of the tautological ring:

Definition 5.0.1. The tautological ring R⋆(FΛ) ⊂ A⋆(FΛ) is the Q-subalgebra generated

by all pushforwards of all monomial combinations of kappa classes and Hodge classes from

all Noether-Lefschetz loci. The Noether-Lefschetz ring NL⋆(FΛ) is the Q-subalgebra of

A⋆(FΛ) generated by the Noether-Lefschetz classes.

We have computed the divisorial tautological relations in Proposition 4.3.4, where

κ-classes are expressed in terms of the Hodge class λ. In this chapter, we will use

localization to derive the tautological relations in A1(FU). The program was initially

proposed in [MOP17], we apply the techniques to the moduli space of elliptic K3 surfaces

FU . All three types of tautological classes will appear naturally in the process. Furthermore,

this method does not require knowing that the dimension of A1(FU) is one.
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5.1 Quot scheme localization

Let π : XU → FU be the universal K3 surface map, and O(σ),O(f) be the universal

line bundles with the following intersection matrix:

−2 1

1 0

 .

Take H = σ + df with d ≥ 2. We consider the π-relative Quot scheme Qπ
H,χ(C2). Which

parametrizes quotients:

0 → E → C2 ⊗OX → F → 0

over a surface (X,O(f),O(σ)), where F is of rank 0, c1(F ) = H and χ(F ) = χ. The

Quot scheme is not smooth, but it admits a virtual fundamental class [Qπ
H,χ(C2)]vir, which

allows us to do intersection theory.

Lemma 5.1.1. [MOP17, Lemma 1] The Quot scheme Qπ
H,χ(Cr) admits a virtual funda-

mental class [Qπ
H,χ(Cr)]vir. The π-relative virtual dimension is rχ+H2. The obstruction

theory is governed by the sheaves: Ext1(E,F ) and Ext2(E,F ).

However, the naive virtual fundamental class [Qπ
H,χ(Cr)]vir actually vanishes, as we

have a trivial factor in the obstruction theory. To resolve this issue, we need to consider

the refined virtual fundamental class [Qπ
H,χ(Cr)]red.

Proposition 5.1.2. [MOP17, Lemma 2] For a K3 surface (X,H) as above, there exists

a natural surjective map:

Ext1(E,F ) → H2(OX) = C,

and a reduced virtual fundamental class [Qπ
H,χ(Cr)]red of π-relative dimension rχ+H2 + 1.

We will only consider r = 2, and the π-relative reduced virtual dimension will be
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2χ+ 2d− 1. We will derive relations from the vanishing pushforward:

(−1)χ+ℓp⋆
(
02χ+2d ∩ [Qπ

H,χ(C2)]red
)
∈ A1(FU ,Q), (5.1.1)

where the class ζ is the pullback of the hyperplane class via the morphism:

Qπ
H,χ(C2) → P(π⋆H).

To obtain non-trivial tautological terms from (5.1.1), we will use the virtual localization

formula. Consider the torus action C⋆ on C2 with weight 0 and 1:

C2 = C[0] + C[1].

This induces the action of C⋆ on Qπ
H,χ(C2). The virtual localization formula [GP99] states

that the virtual fundamental integrals can be computed at the fixed points of the torus

action: ∫
[QH,χ(C2)]

vir
α =

∑
F

∫
[F]vir

α̃|F
eC⋆ (Nvir

F )

where F runs over the fixed points of the torus action, Nvir
F is the virtual normal bundle of

F, and α̃ is any lift of α to the C⋆-equivariant Chow. The equation holds in the equivariant

Chow ring of Qπ
H,χ(C2), which is a Q(t)-algebra. The formula holds true for the reduced

virtual fundamental class as well. Furthermore, the pushforward (5.1.1) can be computed

fiberwise as reduced virtual class integrals. In our case, we will need to pick the equivariant

lift 0̃, and we will lift to the equivariant parameter t. If no confusion arises, we will set the

equivariant parameter t to 1 during the computation.
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5.2 The calculation for d = 2, χ = 1

In this section, we will fix d = 2 and χ = 1. We will compute the pushforward

(5.1.1) for the reduced virtual class. The fixed locus will parametrize sequences of the

following form:

0 → E = E1 ⊕ E2 ↪→ OX ⊕OX → F = F1 ⊕F2 → 0.

Given that F has zero-dimensional and one-dimensional supports, the kernel must split as

E1 = IZ ⊗OX(−C1), E2 = IW ⊗OX(−C2)

where C1 + C2 = σ + 2f and

Z,W ⊂ X

are zero-dimensional subschemes of lengths z and w respectively, and in our case:

z + w = 2− C1 · C2.

The fixed locus generally takes the form of a fiber product of relative Hilbert schemes

of points and relative projective bundles corresponding to curves varying in the linear

systems:

X [z] ×FU
P1 ×FU

X [w] ×FU
P2.

Over a generic point of FU , the splitting C1 + C2 = σ + 2f can only involve

combinations of σ and f . On the Noether-Lefschetz loci, extra curves on the surfaces result

in additional contributions. Therefore, the overall summation will include contributions

from Noether-Lefschetz loci. The fixed locus involves the Hilbert scheme of points, where

the computation can be reduced to a product of surfaces. This reduction process introduces
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κ-classes and the Hodge class. Moreover, the trivial factor in deformation-obstruction

theory will also contribute to the Hodge class.

5.2.1 Generic Contributions

In our case, the generic splitting has finitely many possibilities. We list all the

possible configurations of E1 ⊕ E2, up to a flip:

1. I2 ⊕ O(−H)

2. I∆1 ⊕ I∆2 ⊗O(−H)

3. O ⊕ I2 ⊗O(−H)

4. I∆1 ⊗O(−σ − f) ⊕ O(−f)

5. O(−σ − f) ⊕ I∆2 ⊗O(−f)

6. O(−σ) ⊕ O(−2f)

We will demonstrate the computations for case (1), (2) and (3). These three cases

include all crucial computation details. For the rest of the cases, we will only list the final

results.

Case (1): I2 ⊕ O(−H)

The fixed locus in this case is X [2] ×FU
P, where the Hilbert scheme of points X [2]

comes from the first factor and the projective bundle P comes from the linear systems of

H. Recall that the reduced virtual class is determined by the K-theory class:

Ext• (E ,F) + C.
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The C⋆ action on 0 → E → C2 ⊗ OX → F → 0 introduces fixed and moving K-theory

classes:

Fixed = Ext• (E1,F1) + Ext• (E2,F2) + C.

The moving part of the theory has two components. The one with weight 1 is:

Mov[1] = Ext•(E1,F2),

and the one with weight −1 is:

Mov[−1] = Ext•(E2,F1).

We need to compute the obstruction class from the fixed theory. Notably, we have a

smooth fixed locus, so the obstruction class can be computed as follows:

Obs = Ext• (E1,F1) + Ext• (E2,F2) + C− Tan(Fixed Locus)

Let L = OP(1). We can simplify the fixed K-theory class as:

Fixed = 2C+ Ext•(I2,O2) + Ext•(H−1 ⊗ L−1,C)− Ext•(C,C)

= Ext•(I2,C)− Ext•(I2, I2) + Cℓ+2 ⊗ L

= Tan(Pℓ+1) + C+ Tan(X [2])− 2C+ Ext•(C,C)− Ext•(O2,C)

= Tan(Pℓ+1) + Tan(X [2])− ((O[2]
1 )∨ − C),

where H2 = 2ℓ = 2. In this case, we conclude that the reduced obstruction bundle is:

Obs = (O[2]
1 )∨ − C.
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Note that the fiber-wise trivial factor C will glue to the pullback of the the Hodge line

bundle E∨ on ML. We will further reduce it but the final contribution for this case will

be a multiple of the Hodge class λ. Next, we compute the moving part with weight 1:

Mov[1] = 2C− (O[2])∨ − Cℓ+2 ⊗ L−1 + (H [2])∨ ⊗ L−1.

The moving part with weight −1 is:

Mov[−1] = Ext•(H−1 ⊗ L−1,O2) = H [2] ⊗ L.

The localized contribution of p⋆
(
06 ∩ [QH,χ(C2)]red

)
on this fixed locus will be

e(Obs)

c+(Mov[1]) · c−(Mov[-1])
=

∫
X[2]×P2

c1((O[2])∨) · c+((O[2])∨) · c+(C3 ⊗ L−1)

c+((H [2])∨) · c−(H [2] ⊗ L)

where the bundles O[2] and H [2] are tautological line bundles on the Hilbert scheme of

points X [2]. The c+ and c− are total Chern polynomial evaluated at 1 and −1 respectively,

essentially, we substitute the equivariant parameter t to 1. The computation can be carried

out using standard techniques in [EGL01]. The final result is:

∫
X[2]×P2

c1((O[2])∨) · c+((O[2])∨) · c+(C3 ⊗ L−1)

c+((H [2])∨) · c−(H [2] ⊗ L)
= −24

so the contribution from this fixed locus is 24λ.

Case (2): I∆1 ⊕ I∆2 ⊗O(−H)

We now demonstrate the computation for case (2), which is similar with Case (1),

but a Grothendieck-Riemann-Roch computation is needed. In this case, the fixed locus is

X [1] ×FU
X [1] ×FU

P2 ∼= X ×FU
X ×FU

P2.
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Let L = OP(1). We can simplify the fixed K-theory class as:

Fixed = TanX1 + TanX2 + TanP − (O[1]
1 )∨ −H2 ⊗ L.

Note that the fiber-wise trivial factor O[1]
1 will glue to the pullback of the the Hodge line

bundle E on ML. Thus, we have:

Obs = H2 ⊗ L+ E∨.

The moving parts can be simplified as follows:

Mov[1] = 2C− (O[1]
1 )∨ − Ext•(I∆1 , I∆2 ⊗H−1)⊗ L−1,

Mov[−1] = C3 × L−H2 ⊗ L− Ext•(I∆2 ⊗H−1, I∆1)⊗ L

The localized contribution of p⋆
(
06 ∩ [QH,χ(C2)]red

)
on this fixed locus will be

e(Obs)

c+(Mov[1]) · c−(Mov[-1])

= −c1(E)
∫
X×X×P2

e(H2 ⊗ L) · c−(H2 ⊗ L) · c−(Ext• ⊗ L) · c+((Ext•)∨ ⊗ L−1)

(1− ζ)3
,

= −λ ·
∫
X×X×P2

(h2 + ζ)(1− h2 − ζ) · c2+((Ext•)∨ ⊗ L−1)

(1− ζ)3
.

where Ext• = Ext•(I∆2 ⊗H−1, I∆1). Using Grothendieck-Riemann-Roch, we can compute:

ch((Ext•)∨) = 1 + h1 + h2 +∆1,2 − [(c,X)]− [(X, c)]− [(h, h)]− [(c, c)],

where the c is a point Chow class. In fact, the class c is a special zero cycle, satisfying the
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Beauville-Voisin rule in [BV04]:

[(x, x)]− [(x, c)]− [(c, x)] + [(c, c)] = 0 in CH0(X ×X).

Converting ch((Ext•)∨) to c((Ext•)∨) and plugging it in, the fixed locus contribution

simplifies to:

e(Obs)

c+(Mov[1]) · c−(Mov[-1])
= 48λ.

Case (3): O ⊕ I2 ⊗O(−H)

Case (3) is special among all cases, as we have a trivial factor O in the summand,

the result will not be a multiple of the Hodge class. The obstruction theory on the fixed

locus has been computed in [MOP17, Section 4.3]. We briefly summarize the result here.

Let π : X → FU be the universal K3 surface map. Let V := π⋆(H). In our case, it

will be a vector bundle of rank l + 2 = 4. Let P = P(V) be the projective bundle over FU .

The fixed locus is X [2] ×FU
P. The obstruction bundle is given by:

Obs = E∨ ⊗ L⊗
((

H−1
)[2])∨

,

and the moving parts of the theory are:

Mov[±1] =
(
C+ E∨ + L−1 ⊗

(
H−1

)[2] − L−1 ⊗ V∨ ⊗ E∨
)
[±1].

The localized contribution of p⋆
(
06 ∩ [Qπ

H,χ(C2)]red
)
on this fixed locus will be:

q⋆

e
(
E⊗ L−1 ⊗

(
H−1

)[2]) · c−(L ⊗ V⊗ E)
1− λ

· 1

c+

(
L−1 ⊗ (H−1)[2]

)
 , (5.2.1)
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where

q : X [2] ×FU
P → FU .

Furthermore, let:

γi = pr⋆

(
s2+i+1

((
H−1

)[2]) · c2−i

((
H−1

)[2]))
, 0 ≤ i ≤ 2,

where pr : X [2] → FU . The final contribution can be expressed as the following three parts:

(−1)ℓ+1 ·

(
n∑

i=0

(
ℓ+ 1− 2n− i

ℓ+ 1− i

)
· γi + a · c1(V) + b · λ

)
,

where n = d+χ. The constant a and b can be reduced to linear combinations of tautological

integrals over X [2] of the following forms:

αi :=

∫
X[2]

cn−i

((
H−1

)[2]) · sn+i

((
H−1

)[2])
.

Using the recursion in [EGL01], we can compute the integrals αi and the pushforward γi.

We record the results:

Proposition 5.2.1. Let κi,j := π⋆ (c1(O(H))i · c2(Tπ)j). Let 2ℓ = H2, and we have:

γ0 =
1

2
((4ℓ− 10)κ3,0 + κ1,1 + 10ℓ · λ) ,

γ1 =
1

2
((30− 8ℓ)κ3,0 − 7κ1,1 + (48− 40ℓ) · λ) ,

γ2 =
1

2
((4ℓ− 20)κ3,0 + 6κ1,1 + (30ℓ− 48) · λ) ,

α0 = 2ℓ2 − 4ℓ, α1 = −4ℓ2 + 14ℓ− 12, α2 = 2ℓ2 − 10ℓ+ 12.

Now, by carefully expanding Equation (5.2.1), we can see in our case:

a = −4α0 + 6α1 − 4α2 = −20, b = −8α2 + 10α1 − 8α0 = −36.
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Using Grothendieck-Riemann-Roch, we can compute:

c1(V) = (−1− ℓ

2
)λ+

1

6
κ3,0 +

1

12
κ1,1.

Putting everything together, we can compute the contribution from this fixed locus is:

40

3
(κ1,1 − 4κ3,0)− 12λ.

The process for other fixed loci will be similar. We will list the final results:

1. I2 ⊕ O(−H): 24λ.

2. I∆1 ⊕ I∆2 ⊗O(−H): 48λ.

3. O ⊕ I2 ⊗O(−H): 40
3
(κ1,1 − 4κ3,0)− 12λ.

4. I∆1 ⊗O(−σ − f) ⊕ O(−f): 32λ.

5. O(−σ − f) ⊕ I∆2 ⊗O(−f): 32λ.

6. O(−σ) ⊕ O(−2f): 4λ.

5.2.2 Noether-Lefschetz Loci Contributions

The numerical constraints arising from z + w = 2− C1 · C2 dictate that only one

Noether Lefschetz locus will occur in the computation, which is the reduced divisor class

Sred corresponds to the following lattice:


0 1 0

1 −2 0

0 0 −2

 .

Let σ, f and β be the basis of the lattice S. We have an additional possible configuration

of E1 ⊕ E2 (up to a flip):
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1. O(−β) ⊕ O(−σ − 2f + β)

This splitting condition is supported on S ⊂ ML, the contribution of p⋆
(
06 ∩ [QH,χ(C2)]red

)
will be a multiple of S. To determine the multiplicity, it suffices to perform the computation

over a fiber. On a fixed surface X, the fixed locus will be pt × P1. We follow the same

recipe and have:

Fixed = TanP1 =⇒ Obs = 0,

Mov[1] = L−1
2 , Mov[−1] = C2 ⊗ L2 + L2.

Thus, the multiplicity of S can be computed as:

∫
P1

e(Obs)

c+(Mov[1]) · c−(Mov[-1])
=

1

(1− ζ2)(−1 + ζ2)2(−1 + ζ2)
= −4.

Finally, we put everything together, for d = 2, χ = 1, the relation we obtained by

p⋆
(
06 ∩ [QH,χ(C2)]red

)
is:

24λ+ 48λ+
40

3
(κ1,1 − 4κ3,0)− 12λ+ 32λ+ 32λ+ 4λ− 4Sred

=
40

3
(κ1,1 − 4κ3,0) + 128λ− 4Sred = 0.

5.3 Divisorial relations on FU

The method in Section 5.2 can be applied repeatedly to H = σ+df . If χ = 3−d, we

will have Hilbert schemes of two points involved in the computation. These computations

will follow the exact same procedure as in Section 5.2. We have computed the results for

2 ≤ d ≤ 5, and we will list the final results.

5.3.1 Fixed loci contributions

We have given the fixed loci contributions for the case d = 2, χ = 1. For complete-

ness, we will give the fixed loci contributions for all the cases in Proposition 5.3.1. The
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reader can use the methodology in Section 5.2 to verify the results.

Fixed loci contributions for H = σ + 2f, χ = 1.

1. I2 ⊕ O(−H): 24λ.

2. I∆1 ⊕ I∆2 ⊗O(−H): 48λ.

3. O ⊕ I2 ⊗O(−H): 40
3
(κ1,1 − 4κ3,0)− 12λ.

4. I∆1 ⊗O(−σ − f) ⊕ O(−f): 32λ.

5. O(−σ − f) ⊕ I∆2 ⊗O(−f): 32λ.

6. O(−σ) ⊕ O(−2f): 4λ.

7. Noether-Lefschetz loci: −4Sred.

Fixed loci contributions for H = σ + 3f, χ = 0.

1. I2 ⊕ O(−H): −184λ.

2. I∆1 ⊕ I∆2 ⊗O(−H): 32λ.

3. O ⊕ I2 ⊗O(−H): −40κ3,0 + 20κ1,1 + 76λ.

4. I∆1 ⊗O(−σ − 2f) ⊕ O(−f): −4λ.

5. O(−σ − 2f) ⊕ I∆2 ⊗O(−f): −12λ.

6. O(−σ − f) ⊕ O(−2f): 4λ.

7. Noether-Lefschetz loci: −6Sred.
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Fixed loci contributions for H = σ + 4f, χ = −1.

1. I2 ⊕ O(−H): −216λ.

2. I∆1 ⊕ I∆2 ⊗O(−H): 48λ.

3. O ⊕ I2 ⊗O(−H): −16κ3,0 + 12κ1,1 + 84λ.

4. I∆1 ⊗O(−σ − 3f) ⊕ O(−f): −16λ.

5. O(−σ − 3f) ⊕ I∆2 ⊗O(−f): −48λ.

6. O(−σ − 2f) ⊕ O(−2f): −4λ.

7. Noether-Lefschetz loci: −4Sred.

Fixed loci contributions for H = σ + 5f, χ = −2.

1. I2 ⊕ O(−H): −72λ.

2. I∆1 ⊕ I∆2 ⊗O(−H): 24λ.

3. O ⊕ I2 ⊗O(−H): 8
3
(κ1,1 − κ3,0) + 24λ.

4. I∆1 ⊗O(−σ − 4f) ⊕ O(−f): −2λ.

5. O(−σ − 4f) ⊕ I∆2 ⊗O(−f): −22λ.

6. O(−σ − 3f) ⊕ O(−2f): −4λ.

7. Noether-Lefschetz loci: −Sred.
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5.3.2 Divisorial relations

We have listed all the fixed loci contributions, and we know all of them should sum

to zero. We have the following result:

Proposition 5.3.1. Let the κi,j = π⋆ (c1(O(H))i · c2(Tπ)j), we have the following divisorial

relations on FU .

1. For H = σ + 2f, χ = 0, we have: κ1,1 − 4κ3,0 − 30λ = 0.

2. For H = σ + 2f, χ = 1, we have: 40
3
(κ1,1 − 4κ3,0) + 128λ− 4Sred = 0.

3. For H = σ + 3f, χ = 0, we have: 10(κ1,1 − 2κ3,0)− 44λ− 3Sred = 0.

4. For H = σ + 4f, χ = −1, we have: 3κ1,1 − 4κ3,0 − 38λ− Sred = 0.

5. For H = σ + 5f, χ = −2, we have: 8
3
(κ1,1 − κ3,0)− 52λ− Sred = 0.

Proof. Except for the first relation, all the other relations are obtained by summing up

the fixed loci contributions listed in Section 5.3.1. The first relation can be computed

from localization which only involves Hilbert schemes of one point. The computation

is contained in [MOP17, Proposition 1]. In fact, [MOP17, Proposition 1] contains the

following identity in A1(F2):

κ1,1 − 4κ3,0 − 18λ+ 12[FU ] = 0.

We pullback this identity to FU and obtain the first relation, where we use the fact that

the normal bundle of FU in F2 will contribute −λ, see [O’G86, Lemma 1.2].

Remark 5.3.2. The other relations we presented here should also be compared with the

ones in [MOP17, Proposition 1-4]. Although the Noether-Lefschetz loci behave more

intricately under the pullback, every relation we obtained should be a pullback of the

corresponding relation in A1(F2ℓ) via the morphism ι : FU → F2ℓ.
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Note that the Noether-Lefschetz classes can be defined with respect to invariants

of the lattice embedding.

Definition 5.3.3. For ∆ ∈ Z, and δ ∈ G/±1 where G = Λ∗/Λ. We define the Noether-

Lefschetz divisor

P∆,δ ⊂ FΛ

to be the closure of the locus of Λ-quasi-polarized K3 surfaces S for which Pic(S) has

rank rank(Λ) + 1 and j : Λ → Pic(S) has discriminant ∆ and coset δ. For more details,

see [KMPS10].

The reduced Noether-Lefschetz divisor Sred can be described using the following

definition by picking ∆ = 2 and δ = 0.

As explained in [KMPS10], the Noether-Lefschetz divisors will behave better if we

repackage them in the following way:

Definition 5.3.4. For integers h, d1, ..., dr, we define the Noether-Lefschetz divisor

Dh,(d1,...,dr) to be the weighted sum:

Dh,(d1,...,dr) =
∑
∆,δ

m (h, d1, . . . , dr | ∆, δ) · [P∆,δ]

where the multiplicity m (h, d1, . . . , dr | ∆, δ) is the number of elements β in any lattice

(L,Λ ↪→ L) of type (∆, δ) satisfying:

⟨β, β⟩ = 2h− 2, ⟨β, ei⟩ = di for i = 1, . . . , r

where ei is the basis of Λ.

The intersection theory of Noether-Lefschetz divisors are related with modular

forms. For FU , we have the following result:
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Theorem 5.3.5.

Dh,(d1,d2) = −E4(q)E6(q)

[
det(Λ)

2

]
· λ

where E4(q) and E6(q) are the Eisenstein series, and the matrix Λ is:


0 1 d1

1 0 d2

d1 d2 2h− 2

 .

Proof. This follows immediately from Proposition 2 in [KMPS10] and Theorem 2.2.2.

We can derive the Noether-Lefschetz divisor Sred = 132λ from the first two relations.

Theorem 5.3.5 above tells us that D0,(1,1) = 264λ. They differ by a factor of 2, due to the

automorphism of the extra class β → −β.

Plugging in Sred = 132λ into all the relations and solving a linear system, we can

compute all the invariant κ-classes:

κ3,0,0 +
1

4
κ1,0,1 =

7

2
λ, 3κ2,1,0 −

1

4
κ1,0,1 +

1

4
κ0,1,1 =

1

2
λ,

3κ1,2,0 −
1

4
κ0,1,1 = −3λ, κ0,3,0 = 0.

where κi,j,k := π∗

(
c1(O(σ))i · c1(O(f))j · c2 (Tπ)

k
)
. The results are consistent with Propo-

sition 4.3.4.
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