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Abstract  
 

The use of whole genome sequencing in infectious disease diagnostics generated an 

unprecedented amount and resolution of information. Large-scale sequencing of pathogens 

requires scalable methods in species identification, outbreak clustering, virulence phenotyping, 

antimicrobial resistance profiling, and epidemic modeling.  

 

This dissertation presents a new approach in defining species membership using a pangenome 

framework explicitly applied to the whole genome sequences of the genus Hungatella which 

effectively identified a misclassified reference strain. Genomic epidynamics is a phylogenetic free 

approach in epidemiological inference, particularly the disease transmission parameter 

reproductive number (R). This approach offers a scalable process in elucidating heterogeneous 

transmission of genomic variants of SARS-CoV-2. Genomic epidynamics bridges pathogen 

population genomics and epidemic modeling. A genome-first approach to antimicrobial 

resistance definition combines automated machine learning rank resistance genes and 

phenotypic data thru genomic MICs. This approach was applied to a multidrug-resistant serotype 

of Salmonella enterica subsp. enterica serovar Dublin (S. Dublin). Machine learning-based 

approach to genome-wide association study revealed allelic variants of porA in Campylobacter 

jejuni leading to an abortive phenotype when the organism is invasive from the gut and resides 

in the reproductive system.  
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Introduction 

Next-generation sequencing is transforming infectious disease diagnostics from a plethora of 

individual observational phenotypic tests to a complete unitary collection of phenotypic 

potential with an array of genes. Using this network of genes that make up a genome to 

examine phenotypic capability provides a method for causative agent inference coupled with 

suitable therapeutic options. This information can also be used to compare genome evolution 

and transmission globally with unprecedented resolution1. A pivotal dependency to make the 

transformation from phenotypic and biomarker schemes to the use of whole-genome 

sequencing (WGS) for diagnostics and epidemiology is foundational evidence that genomes 

accurately predict important features of pathogens from the strain to the global population. 

The expansion of pathogen WGS in infectious disease diagnostics must incorporate the 

massive variation between genomes of the same species and serotype2. The use of population 

genomics requires several shifts for a suitable and robust analysis that can be relied upon for 

accurate and fast infectious disease agent characterization.  

 

Efforts to capture this diversity estimate that at least 500-1000 bacterial genomes are needed 

for inclusion in a diagnostic analysis independent of the rate of evolution3-5. Viral genome 

availability is rising at exponential rates with some viruses leading to an even more significant 

challenge than bacteria for the scale of data, but the low number of genes enables 10,000’s of 

genomes to be compared if the infrastructure is in place. Likewise, existing phylogenetic 

methods for infectious disease are not designed to handle thousands of samples. In many 
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cases, the underlying assumptions of relatedness are violated using phylogenomics and tree-

based methods that are observed with the sometimes enormous genome diversity of 

organisms with the same name6. Consequently, as the number of genomes from the same 

species continues to grow, another consideration is required – computational capacity. The 

scalable computational challenge is outpacing the capacity of many diagnostic labs and local 

computation and beyond many clinical applications' reach. With new genomes also comes 

additional diversity in genes that were once thought to be directly causal but are now 

containing variants that are conditional on causing disease. Therefore, there is a need to 

bridge the gap for scalable analysis of pathogen genomes to elucidate the mechanistic basis of 

virulence, transmissibility, and antimicrobial resistance. 

 

Within a species, or even a serotype, genomic diversity underpins the mechanistic basis of 

disease and virulence. For example, the genome distance, a pairwise measure of relatedness, 

between pathogenic and nonpathogenic Escherichia coli is estimated to be 36%. This 

microbial genomic diversity is best represented by the pangenome concept, consisting of the 

core genes, which are genes common to all isolates and accessory genes, genes found only in 

subgroups of the isolates. The species pangenome is shaped by a set of complex and diverse 

processes, including mutations, gene gain, and loss, genome reduction and rearrangement, 

and horizontal gene transfer. The accessory component of the pangenome, genomic islands, is 

also directly linked with disease, virulence, antimicrobial resistance, and metabolic functions. A 

common approach to define microbial species diversity is through population genetics. 
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Population genetics is the study of the inheritance of a gene at the scale of the population. In 

the context of infectious disease investigation, samples from an outbreak are collected and 

sequenced, and a phylogenetic tree is generated to define clusters as inference of 

transmission. However, this assumption is misleading as a phylogenetic tree is not a 

transmission tree but rather an estimation of the evolutionary relatedness based on mutation 

and selection. A phylogenetic tree generated from a densely sampled outbreak is not directly 

able to identify “who infected whom.” While a phylogenetic tree can identify relationships 

between genomes, it is restricted to information about evolutionary relatedness. It is a poor 

indicator of events between individuals unless the genome diversity is coupled to additional 

genealogical or other information. This gap in determining disease transmission parameters 

can be addressed using an epidemiology first approach in analyzing pathogen WGS.  While 

epidemiological methods are inherently designed and optimized for inferring population-level 

disease parameters, such methods are relatively underutilized in the genomics field7.  Applying 

epidemiological methods to large-scale populations of pathogen WGS enables a quantitative 

approach in determining pathogen characteristics related to disease transmission, virulence, 

and antimicrobial resistance. This strategy allows evaluation of the impact of pathogen 

population genomic variation for disease transmission. A novel approach is needed to link 

genome content, genetic variation, and distribution with the population scale characteristics of 

organisms found globally and locally. This approach allows for multiple types of evolution, such 

as parallel and convergent selection but without epidemiological information these concepts 

are not valuable to determine transmission. However, they are helpful in determining the 

genomic evolution of pathogens to understand the disease dynamics of zoonotic pathogens. 
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A recent development using the epidemiological approach in determining the role of 

pathogen genome variation in disease and virulence is the application of bacterial genome-

wide association study (GWAS)8. The conceptual basis of the GWAS approach in bacterial 

virulence discovery is the presence of common mutational variants at higher frequencies across 

isolates with a specific phenotype or disease9. The variants in the isolates without the 

phenotype is expected to be low or close to zero. Hence, it is possible to determine the 

statistical association of the mutational variants to the corresponding phenotype out of the 

thousands of genomic variations that directly link the population genome variation to disease 

transmission and persistence. Consequently, the use of bacterial GWAS for virulence gene 

discovery has increased in recent years9. However, one distinguishing element of bacterial 

GWAS from human GWAS is the challenge of defining an outgroup and conditional settings 

other for the specific question at hand. This is particularly challenging because bacteria evolve 

or mutate so quickly, especially compared to mammalian species that take years to fix a new 

mutation. Bacteria can mutate within minutes and grow in conditions that direct the evolution 

to ‘guide’ mutations that result in a new dimension for conditional alleles linked to disease but 

are not informative of parentage. This is compounded by horizontal gene transfer and genome 

rearrangements that do not occur quickly in other organisms (Table 1). 
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Table 1. Heritable mutation time scale among domains of life 

 
Form of Life Genome size 

(bases) 
Mutation time scale DNA source  Detailed 

genealogical 
record 

Humans (mammals) 3,100 Mb ~25 years  mixture from 
parents to 
distinctly indicate 
parentage 

Common 

Livestock (cattle) 3,000 Mb ~2 years mixture from 
parents to 
distinctly indicate 
parentage 

Common 

Plants ~5,500 Mb Months  mixture from 
parents to 
distinctly indicate 
parentage 

Common 

Bacteria  1.8 to 8.5 Mb Minutes to hours Previous 
generation with 
mutations each 
generation 

Rare to never 

Viruses ~30,000 bases Minutes  Previous 
generation with 
mutations each 
generation 

Rare to never 

 

For human GWAS, healthy individuals usually serve as the outgroup or controls. While certain 

bacterial species like Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus 

agalactiae have asymptomatic carriers; therefore, can be used as outgroups, other species do 

not have a well delineated counterpart10-12. Hence, the alternative option employed to use 

differential virulence phenotype, such as the one used in Helicobacter pylori GWAS for gastric 

cancer with the gastritis as the outgroup phenotype13. Another complicated feature of bacterial 
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GWAS is the level of diversity within the population. These diversity results in accessory genes 

that are present in some isolates but not in all isolates2. This presents a challenge in selecting a 

reference species to identify the difference between bacterial sequences. Hence, alternative 

approaches to define genome difference via k-mers and the pangenome that are reference 

free enable a new method to assess relatedness. This also serves as the justification to perform 

a population wide approach of analysis in bacterial genomics as the presence of accessory 

genes are variable and cannot be applied to the entire population.  

 

Bacterial diversity also complicates the statistical frameworks of analysis. Bacterial GWAS 

employs several statistical methods such as linear mixed models, Fisher exact test, and 

Spearman rank test9. While a Bonferroni correction has been used to account for multiple 

comparisons, this generates a relatively high level of exclusion criteria, potentially eliminating 

other causative variants. Another more pressing concern is the lack of ranking of the GWAS hits 

with the existing GWAS frameworks. Hence robust statistical frameworks are needed to rank 

genes associated with specific phenotypes in bacterial GWAS. On one hand, attempts have 

been made to model population genetic measures of selection as the process generating the 

GWAS hits in human studies using Fisher’s geometric model14,15. This model explores the effect 

size of fitness with mutations. Ultimately, alterations in fitness by mutations will result to 

increase in the phenotype frequencies that will be amenable to statistical analysis. While such 

analytical approaches are common in microbial evolutionary experiments, they are relatively 

unused in microbial GWAS studies 16.  
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The complexities of delineating bacterial phenotypes extend beyond virulence. The prediction 

of bacterial antimicrobial resistance (AMR) from genome sequences suffers a similar condition 

due bacterial diversity, limitations in databases, and sparsity of sequence of many bacterial 

species17. A typical workflow for antimicrobial resistance prediction from sequence data 

compares known resistance mechanisms in curated databases18,19. Known resistance genes are 

compared and scored with the counterpart genes in the isolates. While such methods are 

robust for well sequenced organism and well characterized mechanisms, bacterial diversity is 

not static. Hence, evolutionary forces generate novel mechanisms of resistance that cannot be 

handled by existing databases20. These generate different forms of discordance21. A false 

positive indicate presence of resistance genes without the resistance phenotype and false 

negative shows absence of resistance genes but manifests the resistance phenotype. This limits 

the direct utilization of genomes for AMR prediction.  

 

To address the limitations of the similarity index approach in predicting AMR from sequences, 

a population-based approach combining epidemiological techniques and machine learning has 

been applied to several bacterial species (Table 1). The complexity of bacterial diversity is well 

suited for large data analytical techniques such as machine learning. For instance, Kavvas et al.  

discovered novel mechanisms of resistance in Mycobacterium, one of the relatively slow 

evolving bacterial species using 1595 samples support vector machines22. Predictably, machine 

learning will be more valuable as an approach for species that are more rapidly evolving and 
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hence more genetically diverse than Mycobacterium. Hence machine learning approaches to 

AMR prediction have been employed for the following bacterial species: Staphylococcus 

aureus, Pseudomonas aeruginosa, Escherichia coli, Salmonella and Klebsiella as listed in Table 

123-27. Most studies used support vector machine followed by Xgboost and neural networks28. 

There are also differences with the unit of analysis ranging from SNPs, k-mers to pangenome 

wide gene presence and absence reflecting a similar pattern of feature extraction with bacterial 

GWAS25,27,29.  

 

While machine learning approach offers a path to resolve some issues with similarity index-

based assignment of resistance, fundamental issues remain-particularly genotype-phenotype 

discordance30.  These discordances are designated as either very major errors (false antibiotic 

susceptibility) and major errors (false resistance). The errors arise from the conflicting presence 

of resistance genes but absence of phenotypic resistance and vice versa. There is also no 

universally accepted definition of resistance via minimum inhibitory concentration (MIC). The 

arbitrary cutoffs compound the difficulty of defining a clear resistance phenotype. There are 

also several antibiotics such as azithromycin which lack a well-defined MIC cutoff.  MIC cutoffs 

are also defined without referencing the presence of resistance genes, an artefact of pre-

genomic era.  
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Table 2. Machine learning studies in genome-based prediction of AMR 

 

Reference Number of 
samples 

Unit of analysis Machine learning 

Algorithm 

Organism 

Kavvas et al. 
(2018)  

1595 SNPs support vector 
machine 

Mycobacterium 

Hyun et al. 
(2020)  

288 (SA) 

456 (PA) 

1588 (EC) 

Pangenome gene 
presence 
absence, SNPs 

support vector 
machine 

Staphylococcus aureus, 

Pseudomonas  

Escherichia coli 

Nguyen (2018) 5278 10 nucleotide 
units (10-mers) 

Xgboost Salmonella 

Macesic (2020) 600 < K-mers and SNPs Multiple (Random 
forest, logistic 
regression) 

Klebsiella pneumoniae 

Avershina 
(2021)  

171 K-mers Neural networks E. coli and Klebsiella 

Jaillard (2021)  1665 K-mers  Support vector 
machine 

Klebsiella pneumoniae 

Her (2018) 59 Pangenome gene 
presence absence 

Multiple (Support 
Vector Machine, 
Naive Bayes, 
Random Forest 

E. coli 

Liu (2020)  96 K-mers Support Vector 
Machine and Set 
Covering Machine 

Actinobacillus 
pleuropneumoniae 
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This dissertation formulated epidemiological inference from pathogen sequence data. The first 

two parts cover a cross-sectional approach (bacterial GWAS in virulence and AMR) and the last 

part focuses on time-series methods like epidemic curves. There is currently no direct disease 

transmission inference from pathogen genome data to place this in context. Disease 

transmission inference from sequences is heuristically estimated by phylodynamic methods, 

which combine phylogenetics and a demographic model. The conceptual basis of 

phylodynamics is based on the ability of the topology of phylogenies to represent 

immunological and evolutionary processes31. Extrapolation of transmission from phylogenies 

also requires similarity between the rate of pathogen evolution and infection spread. Hence, 

RNA viruses with relatively small genomes rapidly mutate, generating signals of disease 

transmission32. Aside from similarities in timescales between pathogen evolution and spread, 

the shape and features of phylogenies still need to be related to the disease transmission 

process using coalescent-based methods or birth-death methods. Coalescent-based methods 

link demographic values such as effective population size to the estimates of coalescence times 

of the phylogeny. Birth-death methods models the features of phylogenies: branches as birth 

and leaves as deaths, allowing a quantitative transformation. However, phylodynamic 

approaches do not have a framework to integrate temporal data, cannot handle large datasets 

due to computational complexity, and propagates uncertainties in multistep manner.  
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Table 3. Disease transmission inference from pathogen WGS 

 

Publication Unit of 
analysis 

Epidemiological 
scale  

Parameters 
Estimated 

Transmission 
inference 

Sample 
size of 

genomes 

Disease 

Davies et 
al. (2021)  

Lineage Population  R Phylogenetic 
and statistical 

model 

150,000 COVID-19 

Pybus et 
al. (2009)  

Lineage Population Effective 
population 
size, R for 

each lineage 

Phylogenetic 
and 

demographic 
model 

300 < HCV  

Zhao et al. 
(2020) 

Nucleotide 
set 

Population Prevalence 
of 

nucleotide 
marker 

None 47000 COVID-19 

De Maio 
et al. 

(2017)  

SNPS 
(genomic 
variants)  

Infection 
clusters 

Transmission 
cluster 

Phylogenetic 
and shared 

variant 
clustering 
algorithm 

62 Ebola 2014 
outbreak 

Alamil et 
al. (2019)  

Genome 
distance 

Infection 
clusters 

Transmission 
pairs 

Pseudo 
evolutionary 
model using 

distance 
function 

21 Swine influenza 
virus 

Jombart et 
al. (2014)  

Genome 
distance 

Transmission 
tree 

R Bayesian 
inference of 
transmission 

tree; sequence 
evolution 

model 

13 SARS 2003 
outbreak 

Singapore 

Campbell 
et al. 
(2018) 

Genome 
distance  

Infection cluster Transmission 
cluster  

Transmission 
divergence  

63-62 
cases 

Multiple 
bacterial & viral 

outbreaks  
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Stimson et 
al. (2019)  

Genome 
distance 

Transmission 
cluster  

SNP 
threshold  

Genome 
distance and 

sampling time  

32 Tuberculosis  

Ypma et 
al. (2012)  

Genetic 
distance 

Transmission 
cluster 

Transmission 
cluster 

Transmission 
likelihood 
integrated 

with 
spatiotemporal 

data 

200 < Avian influenza 

Worby et 
al. (2014)  

Pairwise 
genetic 
distance 

Infection 
cluster  

Transmission 
chain 

geometric-
Poisson 
distribution 

35 Staphylococcus 
aureus 

 

 

Aside from phylodynamic approaches, alternative methods have been explored to determine 

disease transmission (Table 2)33-41. The techniques utilized several scales of the genome, from 

mutations to genome distance. Infection clusters have been defined using shared variants. The 

assumption here is that sequences sharing common mutations are treated as evidence of 

epidemiological linkage. Multiple studies used genome distance, a metric of difference 

between two genomes as a tool for epidemiological linkage between clusters based on the 

entire genome, rather than marker genes or a small subset of gene clusters. Aside from 

differences in how sequences are used to establish epidemiological linkage, alternative 

methods also directly integrate temporal and spatial data to increase the resolution of 

transmission clusters. However, fundamental limitations exist as most of the methods 

enumerated here rely on limited samples (13-200) and only infer transmission clusters without 

providing a framework to estimate population-level metrics such as reproductive number.  
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This dissertation addresses the notable gaps in population-level inference from pathogen 

WGS.   We used machine learning approaches in bacterial GWAS to identify alleles associated 

with abortive phenotype of Campylobacter jejuni and tested the hypothesis that genomic 

variants of Campylobacter jejuni drive variable virulence. Current methods utilized in 

comparative genomics, such as pairwise comparison between genomes, failed to identify 

causative genes or alleles out of the 8000 allelic differences between an abortive isolate and a 

laboratory strain. We applied a machine learning method for bacterial GWAS to address other 

significant limitations in virulence discovery methods associated with multiple testing of 

individual loci that lack the framework of interrogating the interaction of various genes or allelic 

variants. Furthermore, a method to rank the generated GWAS hits using classical statistical 

methods is absent in the literature. Statistical assumptions like the independence of units being 

tested like gene or allele within the genome are conceptually flawed in bacteria considering 

the operon configuration and horizontal gene transfer (e.g., plasmids).  Hence, alternative 

biological and statistically compatible analyses need to be defined for bacterial population 

genomics.  

 

We developed a population genomics approach combined with machine learning in  

addressing gaps in predicting antimicrobial resistance using WGS in multidrug-resistant cattle 

adapted Salmonella enterica subsp. enterica serovar Dublin (S. Dublin). We tested the 
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hypothesis that genomic variants of Salmonella Dublin drive antimicrobial resistance. A critical 

gap in predicting resistance phenotype from pathogen WGS is the lack of correlation between 

genomic resistance mechanisms and resistance phenotype as defined by epidemiological 

cutoff values (ECVs). ECVs are antibacterial susceptibility values that distinguish wild-type 

bacteria from non-wild-type populations using differences in MIC (minimum inhibitory 

concentration). While resistance mechanisms are included in the definition of the MICs, 

resistance gene presence is not integrated in setting ECVs for antibiotics. Given the high 

resolution of WGS to identify resistance phenotypes by linking genomic mechanisms, we 

developed a population genomics approach to use WGS to associate resistance mechanisms 

with specific MICs. We also applied machine learning in WGS of S. Dublin to address the gaps 

in using a database approach to identify antimicrobial resistance, particularly the absence of 

framework to discover novel resistance mechanisms and susceptibility.  

 

Genomic epidynamics addresses the gaps in disease inference using population WGS. We  

developed genomic epidynamics as an epidemiology first approach in measuring disease 

transmission of SARS-CoV-2 variants. Most existing methods to analyze viral WGS depend on 

associating viral evolution dynamics and disease transmission via phylogenetic analysis33,42. 

However, phylogenetics and its derivative method, phylodynamics are inadequate to handle 

the large volume of SARS-CoV-2 sequences with the COVID-19 pandemic. Consequently, viral 

lineage estimation becomes cumbersome with large sets of WGS that unfortunately leads to 

crude data reduction techniques like downsampling, ultimately defeating the public health 



 15 

investment in large-scale sequencing. Moreover, there is no universally accepted definition of a 

viral lineage which resulted in multiple competing classification schemes43. Unfortunately, it is 

computationally impossible to create phylogenetic trees with hundreds of thousands of 

genomes for meaningful epidemiological analysis43. Genomic epidynamics addresses the gaps 

in disease transmission inference by bypassing the computationally prohibitive method of 

phylogenetic construction between SARS-CoV-2 WGS. Using this approach, we tested the 

hypothesis that the genomic variants of SAR-COV-2 drive the transmissibility of COVID-19.  

 

Thesis structure 

The overarching theme in this dissertation is the development of epidemiological and machine 

learning approaches in pathogen population genomics to define antimicrobial resistance, 

virulence and disease transmission dynamics in the population.  

 

The remainder of the dissertation is organized as follows: 

Chapter 1. Biological machine learning combined with Campylobacter population genomics 

reveals virulence gene allelic variants cause disease (published in Microorganisms, 2020). 

Chapter 2. Automated machine learning and genomic MICs as a framework for antimicrobial 

resistance prediction in whole genome sequences of Salmonella enterica subsp. 

enterica serovar Dublin. 
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Chapter 3. Analysis of SARS-CoV-2 genomic epidemiology reveals disease transmission 

coupled to variant emergence and allelic variation (published in Scientific Reports, 2021) 

Chapter 4. Introduction of genomic epidynamics as an approach to determine disease 

transmission dynamics of SARS-CoV-2 variants.  

Chapter 5. Demonstrates the pangenome-based species definition and clustering for bacterial 

population genome analysis in Hungatella hathewayi (preprinted in medRxiv,2020; 

components published in Virulence, 2021).  
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Chapter 1.  Biological machine learning combined with Campylobacter 
population genomics reveals virulence gene allelic variants cause disease1 

 

Introduction 

Comparative microbial genomics has emerged from pangenome comparisons that are 

exclusively tied to reference genomes that define the perspective of change to a core and 

flexible genome perspective lacking a firm confirmation of which genes are linked to disease44. 

An alternative approach to this perspective is use of genome wide association (GWAS) 

methods that are common in mammalian genomics in an effort to refine the estimates of 

specific genes of interest. A limitation of GWAS is that it sequentially examines single loci that 

prevents simultaneous analysis of different allelic variants that can be interacting at different 

levels and population distribution between strain differentation45. This is a severe limitation in 

bacterial genomics, especially as bacterial population genomics is now possible at a scale that 

allows examination of non-linear and specific selective conditions for evolutionary rates of each 

gene and all of the alleles found in very large populations that create a big data analytical 

problem. A compounding limitation is the lack of appropriate statistical models that underpin 

this approach in bacteria since it is unknown when the populations are normally distributed or 

evolving in a non-linear progression. As with all large data sets, multiple comparisons require 

Bonferroni correction to adjust the p-value based on a new scale as compared to gene 

 
1 Bandoy, D. D. R. and B. C. Weimer (2020). "Biological Machine Learning Combined with 
Campylobacter Population Genomics Reveals Virulence Gene Allelic Variants Cause Disease." 
Microorganisms 8(4): 549. 
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expression but it is on a scale that is beyond that contemplated for gene expression variation 

(Table 1)46. Further, the assumption that each gene or allele is independent is conceptually 

flawed in bacteria considering the operon configuration and plasmids. Hence, alternative 

analyses that are biological and statistically compatible need to be defined and is tractable 

using machine learning.  

 

Coupling GWAS, population microbial genomics, and machine learning is poised to be a 

robust alternative to classical GWAS or pangenome comparison to simultaneously discover 

changes in microbial genomes, and genes, that span the scale of genome plasticity to alleles of 

a single gene. Moreover, this combination (coined here as bioML) produces a statistically 

underpinned comparative importance ranking for each gene and allele that are not determined 

from GWAS alone. These advantages combined with downstream inspection of the prioritized 

rankings further powers discovery to bring biologically insightful observations and solutions, 

especially when large genome populations are used in the analysis, from very divergent 

populations of alleles that are missed when the sequence is too divergent for gene calling. 

 

An analytical strength for use of machine learning in microbiology is the ability to define 

functional relationships from population scale genome comparisons or genes without a priori 

definition of the underlying mechanism of change or specific phenotype limitations47. This 

distinctive advantage makes machine learning superior to classical statistical tests for 
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prokaryotic systems that are highly variable, particularly bacteria wherein explanatory variables 

are not linearly correlated, features are dependent due to genome dislinkage, varying 

evolutionary rates of between genes within the same genome, and assumptions of normal 

distribution are violated in part due to varying selection conditions45,48. These biological 

conditions and parameters are incompatible with the assumptions of linear or correlative 

statistics, which is compounded with data reduction methods that provide a very small 

snapshot of the genome variation that yield associations that have low predictive value with 

highly variable genomes49-52, such as bacteria.  

 

We proved the concept of coupling GWAS with machine learning and population bacterial 

genomics (Figure 1) using previously published verified alleles of a gene that causes abortion in 

livestock53-55. We hypothesized that a specific allele of a single gene (i.e., porA) is linked to 

extraintestinal invasion and further is causative in abortion. This was done using a wet lab 

validated data set containing 100 genomes53-55 combined with extreme gradient boosting 

(XGboost) that was previously used in biological applications56. In a Finnish study XGboost 

identified genetic variants in a human GWAS sample that integrated complex nonlinear 

interactions of SNPs57. The ability to interrogate the predictive features enables whiteboxing of 

parameters, which is emerging as a tool for deriving mechanistic function in biology58. XGboost 

implements adaptive optimization within the functional space by iteration of the weak learners 

into strong learners represented by decision trees where each new decision tree is generated 
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by factoring the residuals generated from the difference from observed to the predicted 

feature (Figure 2; Supplemental Table 1).  

 

Figure 1. Biological feature engineering of genomic data for machine learning analysis. A critical step in 
feature engineering is selection of the appropriate comparison groups to enable classification of alleles 
that are related to the specific phenotype of interest (i.e., intestinal (controls; diarrheal; n=108) and 
extraintestinal (cases; abortive; n=85) (Step 1). Population-wide allelic variants (red dot = intestinal, green 
dot = extraintestinal) that result from variant calling (Step 2) and are used as the input features for 
machine learning analysis (Step 3). The predicted model generated from the machine learning analysis is 
inspected for the most predictive features using biological context, input, and protein modelling (Step 4) 
that represents a nonsynonymous mutation from the genomic the population of allelic variants (n=193).  

biological big data generation and 
conversion to a machine learning 

readable format

Biological Big Data Question machine learning as a novel GWAS 
statistical framework

mechanistic insight from ranked 
GWAS candidates 

Genome feature engineering for 
machine learning analysis 

geneallele

extra-intestinal 
Campylobacter jejuni

(n=100)

intestinal 
Campylobacter jejuni

(n=97)

Define hypothesis

Define GWAS groups

GWAS driven by machine learning

Prioritized GWAS list of important features from 
machine learning analysis

intestinal allelesextra-intestinal alleles

1 2 3 4

protein modeling of GWAS candidates



 21 

 

Figure 2. The conceptual framework diagram depicting machine learning in bacterial genome wide 
association using extreme gradient boosting (XGboost). Boosting is a technique of combining a set of 
weak classifiers or decision trees to increase prediction accuracy. Red dots represent an allelic variant, 
each grey bar represents a unique allele. Individual decision trees (1, 2, 3) fail to fully capture the allelic 
variants associated with the phenotype (e.g., extraintestinal abortion), but by combining the trees 
together results in a process called as boosting increases the discriminative power.  

 

Results 

BioML analysis identified 14 porA loci as the most important alleles ranging from 1.0 to 0.65 

scaled importance out of the 1.2 million SNPs (Supplemental Table 1). These ranked loci were 

compared by body location (Figure 3), which further clarified the location of these SNPs and 

indels that simultaneously presented the ranked associated allelic variants within the 

phenotype of interest as detected with bioML as well as the non-associated alleles. This 

analysis procedure detected various forms of porA from more abundant versions to hybrid 

variation and rare variants that were not captured by gene calling (allele divergence was too 

great), machine learning alone, or classical statistical testing. Regions within porA from the 
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cases expressing different allelic patterns were further explored for each genome and 

implications in biological features important in the disease. Protein structures were modeled to 

examine the changes in protein configuration initially yielded four distinct groups (Figure 3.) 

that ranged from non-abortive to variations of proteins all of which caused abortion. These 

alleles were directly compared to those validated in vivo and found to be linked to specific 

protein loops within alleles verified previously53-55 – in all cases bioML found each of those to 

be biologically important for abortion and found new hybrid versions of the protein that were 

previously unrecognized.  

 

Figure 3. Comparative plot of SNP loci along the porA gene in all genomes. We termed this a Tetris plot 
as an alternative visualization of genome wide association hits because they are ranked and display only 
the loci that vary to produce a nonsynonymous mutation. The y-axis contains individual genomes from 
the cases and the controls, while the x-axis contains the GWAS SNP loci (green), the non-disease 
associated SNPs (red), open space (white) are loci that are identical in the gene sequence. Temporal and 
geographic metadata on the right side of the Tetris plot provides context for mutational enrichment over 
30 years and multiple distant locations in North America and the UK. The enriched SNP variation 
produced different protein structures (far right in blue) as the corresponding protein model by location 
within the animal by SNP. Protein structural features corresponding to the ranked GWAS variants are 
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annotated on top and below the plot are the nucleotide coordinates. Rare variants (homology <75%) 
was not included by the variant caller in this visualization but manual inspection provided a method to 
find these variants.  

 

 

Figure 4. Whole genome distance matrix using minhash depicting an all against all comparison of 
genome diversity for all isolates used in this study overlaid with the porA variant associated with body 
location and disease phenotype. Genotypes and porA variants are connected in this depiction to 
examine the association between intestinal/diarrheal location (yellow dot boxes), prototypical 
extraintestinal/abortive (red dot boxes), non-prototypical porA variants in extraintestinal/abortive 
(maroon lines), and rare porA variants in extraintestinal/abortive (grey dashed lines) were co-located to 
their respective genomes in the genotype map. For the non-prototypical variants, the year and location 
of isolation was included to depict the variation over time and space in the maintenance of a minority 
population of porA variants of extraintestinal abortive Campylobacter jejuni. The diagram to the right 
depicts the process used for this analysis. 
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because the sequence variation was high enough to change protein structures. In a limited set 

of alleles, the porA gene was so divergent that they were not variant called but were recovered 

with manual curation of the bioML output. Recovery of these genes that were not initially 

identified created a third group of rare variant alleles that also caused abortion (Figure 4; 

protein homology <75%). This result provides a foundation for functional variation of a core 

gene from all Campylobacter and further provides insight into the variability of porA as a 

virulence factor.  

All of the variants were mapped to the whole genome phylogeny to determine if the alleles 

were co-evolving with the genome (Figure 4). While some of the alleles were associated with 

similar genomes most of the alleles were found in >2 genotypes. Prototypical allelic variants 

clustered in the largest genomic group of abortive isolates, as did some of the nonprototypical 

porA variants. However, there was significant genome variation and contained the two groups 

that caused abortion. Rare porA variants were distributed within different genomic groups as 

well as over a 15-year span between North America and the UK. The extensive allelic variation 

of porA, as well as the different genotypes, suggests that a genome surveillance system based 

on SNPs or a single gene would be unsuccessful to link these genomes to a disease. In 

combination, these observations indicate that bioML produced a ranked list of biologically 

important alleles that were validated with those that were previously shown to be causal in 

abortion for the exact SNP and the protein loop location. Together, these observations verified 

that bioML was capable of accurately identifying the exact SNPs in porA that cause abortion.  
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Figure 5. Protein models of the four groups of porA allelic variants that change the protein model 
structure relative to the isolate location in the host and the disease outcome. The amino acids 
corresponding with the bioML top ranked alleles are labelled in the common variant of porA, while the 
rest show the substituted amino acid in their respective position.  

 

 

Discussion 

In this study we used a previously validated wet lab data set with a tetracycline resistant strain 

of Campylobacter jejuni causing abortion in sheep53-55 as the validation training set for bioML 

analysis. Previous wet lab studies used a pairwise comparison to identify 8,000 SNP difference 

between a reference genome and an abortive strain that subsequently utilized transformed 

genomes to identify specific allelic variants causing abortion. We included the validated 85 

genomes that span 30 years and multiple locations as a reference set of cases and 108 control 

genomes of intestinal, diarrheal isolates. This approach permitted exploration of bacterial 
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population genomic space by linking different phenotypes to validated genome variation 

(Figure 1). Biological feature engineering of this collection identified 1.2 million SNPs, which is 

not tractable using in vivo infection studies to determine the roll of all SNPs in disease. To 

examine this scale problem, we hypothesized that genomic changes evolved in gastrointestinal 

C. jejuni resulting in an abortive phenotype; hence, invading the intestine and progressing to 

other tissues – in this case the placenta resulting in abortion. Applying bioML analysis to the 

population of gastrointestinal, diarrheal C. jejuni versus extraintestinal, abortive phenotypes 

produced a prioritized set of alleles in a ranked order of importance to the phenotype (i.e. 

abortion) (Supplementary Table 1).  

Since each bioML allele was validated for accuracy to wet lab results correctly, we broadened 

the examination of the protein changes from the ranked alleles to determine if the protein 

structure variation contained a specific feature or amino acid substitution that was linked to 

abortion (Figure 5). The first six top-ranked alleles contained various amino acid substitutions 

for each porA sequence and multiple PorA models. However, Lys189 was conserved among the 

extraintestinal variants and Asn was found in the intestinal alleles at the same position. Lys 

mutation changes are the most impactful in membrane pore structure and are one of the 

tenets of membrane topology as positive inside rule59,60. Positive inside rule describes the 

observation across membrane pores that positively charged amino acids are found within the 

cytoplasm and negatively charged amino acids are in the extracellular domain. Membrane 

topology can radically change from being oriented inside the membrane (exposed to the 

periplasm in this case) to outside the membrane with a single Lys mutation. Within the adjacent 
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protein structure, Lys snorkeling effectively minimized the nonpolar chain component by 

burying in the hydrophobic domain and at the same time exposed the polar component to the 

aqueous domain is another single amino acid change that alters the topology of the membrane 

domain61. Bacterial membrane pore flipping could be a potential mechanism to avoid 

recognition by the immune system and enhance of ion transport for bacterial metabolism. In 

atypical (i.e., hypervariable alleles) this position is buried in a deeper position due to insertional 

mutation in rare variants, the inserted amino acids contain Lys at position 197, a new position 

as compared to the prototypical protein model. Additionally, insertions in the rare variants 

reduce the homology to <75% lead to more extensive protein structural changes that change 

the PorA arrangement in the membrane and were retained the ability to cause abortion. This 

situation is troublesome for traditional analytical approaches and would be missed completely 

using comparative genomics alone but bioML combined with biological tracing effectively 

identified this situation to successfully link multiple genotypes, protein models, and disease. 

Conclusions 

This study utilized a combination of GWAS, population bacterial genomics, and machine 

learning to identify and rank allelic variants that correspond to biologically validated alleles of 

porA to cause abortion. The bioML analysis were further supported by the longitudinal and 

spatial conservation of porA coupled to protein substitutions that led to biologically relevant 

changes in the structure to change activity. A Tetris plot visualization provided an avenue to 

discover divergent and rare variants that provided further insight with protein modelling that 

uncovered protein substitutions resulting in localization changes that affect activity and 
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isolation localization in the host. Together these results demonstrate and validate a novel 

method, bioML, to discover biological variation combined with established mechanisms using 

population bacterial genomics. This approach provides an avenue to leverage the massive 

amount of bacterial genomic sequences to uncover new mechanisms of disease with potential 

to provide therapeutic approaches. 

Methods 

Biological feature engineering 

Biological feature engineering entails selection of pertinent controls and cases for bioML 

analysis. The genomes between gastrointestinal and extraintestinal abortive isolates. C. jejuni 

controls were downloaded from Patric 3.5.28 (https://www.patricbrc.org/), June 1, 2019 

(Supplemental Table 2). Abortive extraintestinal genomes of C. jejuni were obtained from the 

Sequence Read Archive (SRA; Supplemental Table 3)55. Fastq files were assembled using 

Shovill 1.0.4 (https://github.com/tseemann/shovill). Assembled files were annotated with 

Prokka (version 1.13.3)62. Variant calling was done with the reference sequence C. jejuni 

NTC11168 with Snippy 4.3.5 (https://github.com/tseemann/snippy) as previously described63.  

Gradient tree boosting as GWAS framework 

GWAS variants generated from the biological feature engineering step were used as input for 

XGboost. The original source code for implementing gradient tree boosting is available at 

https://xgboost.readthedocs.io/. Confusion matrix were generated and used to assess the 
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performance of the model (Supplemental Table 4). The relative importance of the predictive 

model was used as the GWAS hits 

Tetris plot 

Classical GWAS hits are displayed as the negative logarithm of the p-value in Manhattan plots, 

hence we formulated a novel visualization of the ranked alleles generated by the machine 

learning model to highlight the difference between approaches - we call this GWAS hit 

visualization a Tetris plot. We color coded the relative importance values of the associated 

alleles derived from the XGboost (green being associated and red being non-associated). The 

source genome is plotted on the y-axis and genomic coordinates on the x-axis overlaid with 

GWAS hits presence or absence matrix.  

 

Population wide whole genome phylogeny 

The genome distance metric was calculated using genome wide k-mer signatures to generate 

the population-wide phylogeny with a k-mer size of 31 scaled to 1000 with Sourmash64. The 

resulting genome wide k-mer distance was visualized as an all-against-all heatmap64. 

 

Protein Modelling  

Assembled genomes were annotated using Prokka (V1.13.3) and PorA protein sequences were 

extracted for protein modelling using Swiss Model65,66. The most homologous protein was used 
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as template for protein modelling. Illustrate (https://ccsb.scripps.edu/illustrate/) was used to 

generate the protein visualization of the alleles. Ranked bioML alleles identified by visual 

inspection of the Tetris plot, via the ranked variable importance were used to inspect the 

protein structures. 
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Chapter 2. Automated machine learning identifies genomic variants 
driving antimicrobial resistance in Salmonella enterica subsp. 
enterica serovar Dublin  

 

Introduction 

Highly dimensional bacterial whole genome sequence (WGS) data provides an unprecedented 

scale of biological and clinically-relevant information that requires an appropriate statistical 

analysis framework to determine virulence and antimicrobial resistance 67-69. Bacterial taxonomic 

identification using a phylogenetic approach is the most common method to infer biological 

underpinnings from WGS. Antimicrobial resistance (AMR) data is increasingly generated from 

WGS but still needs validation and calibration with simultaneous analysis with standard 

phenotypic antibiotic susceptibility testing54. Antimicrobial resistance prediction using gene 

presence-absence is definitive in a select bacterial species-antibiotic combination. This 

highlights the distinct advantage in performing purely genome-based identification of 

resistance over phenotyping. WGS-based methods, once fully validated, offer faster than 

phenotype measurements for characterizing resistance. There are multiple methods to 

determine the inhibitory phenotypic resistance concentrations that require extensive time, 

often several days to weeks, with variable variance before clinically relevant information is 

available. Hence, timely therapeutic decisions are delayed. This situation leaves a gap between 

the appropriate antibiotic treatment and sensitivity to antibiotics that can be addressed if the 

proper methods are in place to define the specific genes, gene dosage, and possible 

interactions between genes that result in resistance. 
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Due to the advantages of WGS based AMR prediction, databases have been developed to 

infer resistance from sequence data17-19. This approach relies on the underlying curated 

resistance genes to be included in the reference database that is then used to BLAST genome 

content to generate a similarity score based on the underlying homology to predict resistance. 

For example, using CARD as the reference database, bacterial genomes are noted with the 

corresponding antimicrobial resistance genes based on cutoff categories (strict, perfect, loose) 

depending on the homology scores. The approach is robust to adequately sequenced 

pathogens, well-annotated in the database, and for antibiotics with well-known resistance 

mechanisms. If the mechanism or organism is not well studied, reliance on homology often 

provides variable results with uncertain confidence in the genome containing specific genes 

that are biologically causal to resistance.  

 

The key challenge to using databases is bacterial evolution, which continuously generates new 

mutations that result in diverse strategies to evade antimicrobials; hence a need for continuous 

curation to integrate novel mechanisms70. Furthermore, a significant proportion of important 

bacterial pathogens are underrepresented in the public sequence repositories. This generates 

gaps in understanding the relevant characteristics that impact the database result's confidence. 

A combination of genome sparsity and underrepresentation of AMR genes leads to a discord 

between WGS resistance prediction and phenotypic resistance21. There are several additional 

factors leading to genotype-phenotype discrepancies including, curation of the underlying 
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database, quality of bioinformatic pipeline used and variation in laboratory-related processes 

that in combination lead to errors in linking WGS to phenotype17. Beyond the procedure for 

generating the sequence, considerable variation in the pathogen genome could be an 

explanatory factor for this discord3,5,71. Complex genomic variation, such as large deletions and 

insertions, is missed in most variant calling pipelines, which only capture 10-20 nucleotide 

deletions72. As more genomes are sequenced, this issue can be addressed with a concerted 

effort to expand multiple examples of genomes from the same species, especially when 

specific SNP-associated resistance translates to an expressed phenotype. Allelic resistance is 

frequently missing from some AMR prediction platforms leading to false negatives. Specifically, 

for example, quinolone resistance is dependent on specific mutations in the gyrA gene73. Lack 

of the SNP or lack of gene coordinated expression of gyrA and gyrB leads to false-positive 

results using gene content predictions as present, but that is not observed as resistance in 

phenotypic assays. This augments the need for population WGS to be included in database 

content that will enhance the specific mechanisms. This is also found in beta-lactam resistance 

where many alleles from multiple resistance genes can be in circulation within the genomic 

population that may shift over time. Hence, there is a need to adequately reconcile the 

discrepancies in antimicrobial phenotype-genotype predictions using sequence data.  

 

We addressed the gaps in WGS based AMR prediction by testing the hypothesis that microbial 

variants determine AMR plasticity in the population. Specifically, we tested the predictive 

capability of using multi-scale genomic features (genes, alleles, indels) to determine resistance 
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phenotypes with MICs as a measure of antimicrobial resistance. We applied automated 

machine learning to identify genomic variants driving AMR using WGS and MIC data for 

multiple antibiotics of Salmonella enterica subsp. enterica serovar Dublin (S. Dublin). Machine 

learning is increasingly being used in biological domains due to its ability to detect hidden 

patterns in big data without explicit knowledge of the underlying process, thereby bridging the 

need for constantly updating databases 22,74,75. This approach allows the discovery of novel 

mechanisms yet to be included in AMR databases, potentially improving the predictive 

capability of AMR inference from WGS data.  

Automated machine learning combines multiple algorithms (random forests, gradient boosted 

machines) or an ensemble of neurons (neural networks) into a single function, offering the 

added advantage of replacing a complex coding process.  

 

Results 

We tested the hypothesis that genomic variants determine the AMR plasticity of S. Dublin in 

the population by applying automated machine learning to paired WGS and AMR phenotype 

data (Figure 1). First, we curated 387 S. Dublin isolates from USDA FSIS surveillance data of 

beef products with paired WGS and AMR profiles defined by NARMS MICs cutoff values. The 

AMR profiles covered a broad range of antibiotics: chloramphenicol, sulfonamides, 

trimethoprim-sulfamethoxazole, tetracycline, streptomycin, gentamicin, ampicillin, amoxicillin-

clavulanic acid, ceftriaxone, cefoxitin, ceftiofur, nalidixic acid, and colistin. The accompanying 
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WGS data was feature engineered by AMR annotation using the CARD RGI database. Finally, 

automated machine learning (AutoML) was applied to each antibiotic tested using resistance 

and susceptible as categories and annotated resistance genes and alleles as features. AutoML 

scored the performance of each algorithm using measures of error (mean squared error, root 

mean squared error, root mean squared logarithmic error, mean absolute error) between the 

resistance predictions of the model and the actual observed resistance in the S. Dublin isolates. 

The resulting scores are tallied in a leaderboard based on the performance of the respective 

algorithm relative to the measures of error (smaller values are better in prediction). From the 

top-ranking algorithm in the leaderboard; variable importance quantifies the relative 

importance of the predictor (resistance genes) within the resistance model.  
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Figure 1. A conceptual framework for automated machine learning approach to antimicrobial resistance 
prediction contrasted with the similarity index approach. Automated machine learning is dependent on 
the underlying data (resistance genes) within the genomes, while similarity index is dependent on the 
database of resistance.  

 

For beta-lactam antibiotic resistance in S. Dublin, CMY-2 is the dominant variant identified by 

multiple algorithms in AutoML based on variable importance ranking (Table 1). CMY-2’s 

variable importance (100.0 %) outranked other predicted beta-lactamases (particularly 

homologous beta-lactamases from E. coli).  As the predicted beta-lactamases from E. coli dodo 

not translate to Salmonella phenotypic resistance, this finding highlights the need to validate 

the prediction of resistance genes derived from different bacterial species.  For ampicillin, 

deep learning was the top-ranked algorithm based on the leaderboard, although the 

succeeding algorithms (GBM, DRF, XGBoost) had nearly identical performance based on error 

measures. Beyond defining the dominant variant of beta-lactam resistance, other emerging 

variants were identified with the use of the order of variable importance:  TEM-206 (85.0 %), 

TEM-214 (65.0%) and 65 % CMY-136 (65.0%).  The set of variants were also ranked in the same 

order of variable importance for amoxicillin-clavulanic acid with a small numerical difference for 

(TEM-214) 66% and (CMY-136) 61 %. For ceftriaxone, the beta lactamases with high variable 

importance for deep learning and XGBoost algorithms were CMY-2, TEM-57 and TEM-206 with 

a slight difference in order. Xgboost ranked CMY-2 with 100% succeeded by TEM-57 (42.0 %), 

TEM-206 (29.0 %) while deep learning ranked TEM-57 higher at 73.0 % followed by CMY-2 at 

52.0 % and TEM-206 (47.0%). The deep learning algorithm for cefoxitin ranked more beta 
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lactamases for TEM-206 (82.0%), CMY-99 (80.0%), CMY-98(79.0%), CMY-17(77.0 %), CMY-

2(75.0%), CMY-34 (73.0%), TEM-160 (72.0%), OXA-29 (64.0%). 

Table 1. The top ranked machine learning model and top ranked variable of importance 
(resistance genes). 

 

CARD Top ranked model Top ranked gene 

beta-lactams   

Ampicillin Deep learning CMY-2 

Co-amoxiclav Stacked Ensemble CMY-2 

Cefoxitin Deep learning CMY-2 

Ceftriaxone Deep learning CMY-2 

Aminoglycosides   

Streptomycin GBM ANT(2'')-IA 

Gentamicin Stacked Ensemble ANT(2”)-la 

Folate pathways   

Sulfamethoxazole Deep learning sul2 
 

Chloramphenicol XGBoost Flor 

Tetracycline GBM tetA 
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For non-beta lactamases, the impact of multiple drug resistance is more pronounced in the 

order of ranking within each respective machine learning model. For chloramphenicol 

resistance, the top-ranked variable is TEM-57, a beta-lactamase (100. %), while 

chloramphenicol exporter (flor) is only represented with a score of (37.0) % in terms of variable 

importance in the model.  The next top-ranked algorithm, deep learning, was able to correctly 

identify flor as the top-ranked variable for chloramphenicol resistance. It is worth noting that 

there is very little numerical difference between the top models.  

Table 4. Prevalence of top-ranked gene within resistant and susceptible isolates of 
Salmonella enterica subsp. enterica serovar Dublin 

 

CARD Top ranked gene 

Resistant 
phenotype 
with top 
ranked gene 

Susceptible 
phenotype 
with top 
ranked gene 

B-lactams    

Ampicillin CMY-2 307 2 

Co-amoxiclav CMY-2 306 3 

Cefoxitin CMY-2 254 55 

Ceftriaxone CMY-2 302 7 

Ceftiofur* TEM-1 1 19 

Aminoglycosides    

Streptomycin ANT(2”)-la 0 21 

Gentamicin ANT(2”)-la 21 0 
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Folate pathways    

Sulfamethoxazole 

sul2 
floR 
APH(6)-Id                                                          

APH(3’')Ib                                                       

tet(A) 
 

345 4 

Co-trimoxazole CMY-2 1 4 

Chloramphenicol Flor 325 3 

Tetracycline tetA 339 1 

 

The same effect of resistance co-occurrence is observed in sulfamethoxazole resistance, as the 

top-ranked algorithm, deep learning ranked sul2 (sulfonamide resistant dihydropteroate 

synthase) in third place (95%) in terms of variable importance following CMY-99 (100.0) and 

APH (3”)-Ib. This is also observed in tetracycline where tetA, an inner membrane tetracycline 

efflux protein, is ranked second to flor by XGBoost in terms of variable importance. Hence 

further curation of the underlying ranking of each variable using a white box approach allows 

examination of the basis of each algorithm. For non-beta lactamases, co-occurrence 

complicates the ranking of variable importance, but further curation based on mechanistic 

basis of resistance can improve the accuracy of the model.  

 

We then analyzed the relationship of highly ranked variable importance and their presence and 

absence within the isolates relative to antibiotic resistance (Table 2).  For beta-lactams, CMY-2 
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prevalence ranges from 97.0-99.0% of the resistant isolates except cefoxitin with a lower 

prevalence at 81.0%. For tetracycline, tetA is found in 99.0 % of the resistant isolates, sul2 in 

99.0%, tetA 99.4%, gentamycin ant (2”) 100.0 %, streptomycin aph (3’)-1a is 78.3%. The top-

ranking features generated by automated machine learning on the predicted resistance hits 

and AMR phenotypes consistently match known resistance mechanisms with each antibiotic 

class. Given the uncertainties in the predicted AMR, automated machine learning can prioritize 

the most likely resistance genes associated with the AMR phenotype. 

 

 

Figure 2. Genomic MICs for beta-lactam antibiotics. Green bar shows the presence of CMY-2 resistance 
gene relative to MICs concentrations of each antibiotic. Blue bar indicates absence of the resistance 
gene.  

 

We then examined the combination of resistance genes with lower prevalence (<90.0%) in the 

resistance phenotype by comparing the resistance gene presence identified and ranked by 
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AutoML relative to MIC cutoff values. We hypothesize that resistance gene presence 

specifically CMY-2 determines MIC values for beta lactam resistance in Salmonella Dublin. 

Results indicate that CMY-2 presence is associated with MIC value above the resistance cutoffs 

like ampicillin, co-amoxiclav and ceftriaxone. Notably, cefoxitin diverges as CMY-2 is present in 

some of the isolates below the threshold for resistance. We compared the respective MICs 

relative to the presence of the dominant beta lactamase variant CMY-2 (Figure 2). Different 

agencies (CLSI, EUCAST) indicate a cutoff of 8.0 mg/L for susceptibles for cefoxitin in 

Salmonella 76. As shown in Figure 2, this cutoff (8.0 mg/L) will delineate most isolates (284 out 

of 274) with CMY-59 as resistant, some isolates with CMY-59 gene (16 out 274) will be 

designated as susceptible hence the cause for the underlying discordance. Adjusting to cutoff 

based on known resistance mechanisms can mitigate the discrepancies between genotype and 

phenotype association. Hence a calibration of MICs cutoffs with known resistance genes could 

lead to a better delineation of phenotype. The gene presence and its association with 

resistance cutoffs is also observed in non-beta lactamase mechanisms for S. Dublin like 

tetracycline, chloramphenicol etc. except for streptomycin (Figure 3).  
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Figure 3. Green bar shows the presence of resistance gene relative to MICs concentrations of each 
antibiotic. Blue bar indicates absence of resistance gene.  

We examined the allelic variation of aph (including (3’')-Ib and other variations) that is 

associated with streptomycin resistance. There are several genomic scales on which phenotype 

can be manifested from operon, gene and allele which can be appropriate unit of analysis. The 

current bioinformatic pipeline only resolves to the gene level, hence we perform variant calling 

to identify allelic variants, including SNPs and indels, followed by AutoML to determine if this 

approach accurately found the gene and the various alleles that may indicate specific variants 

cause AMR. We did not identify any alleles differentiating the resistance phenotype of 

streptomycin and aph (data not shown), indicating that no variation was associated with the 

phenotype/genotype discord for this antibiotic and gene, as is known for this gene. We also 

tried other resistance isolates as reference as to ascertain the features are sufficient extracted 

but still got similar negative results. We then tested another hypothesis with complex genomics 

variants as the driver of resistance in streptomycin in Salmonella Dublin. Complex variants are 
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missed by variant callers which can handle single nucleotide polymorphisms and small indels 

(10-20 nucleotides) but not larger segments of the gene. The presence of 91 nucleotide 

deletions in (APH(3’')-Ib) results in streptomycin susceptibility (MICs > 32 mg/L) and none of the 

isolates with the deletions exceeded 64 mg/L MIC (Supplemental Table 1)77.  

 

We then applied pangenome analysis to determine the relationship between acquisition of 

novel phenotypes of resistance particularly with the presence of indels (Supplemental Figure 1). 

The overall pangenome is captured by the total gene count within the pangenome population. 

In the genomes of Salmonella Dublin included in this analysis, the core genes count is 

equivalent to 4256 with the total genes numbering 7805. The average genome count within 

Salmonella Dublin is 4743.0 while the average gene count for the isolates with the novel 

susceptible phenotype due to indels is 4752.0, indicating a relatively higher gene count. Hence 

genome diversifying events can be considered stochastic in nature but could impact 

manifestation of phenotypic characteristics. A gene level categorization is insufficient to resolve 

the resistance properties of S. Dublin.  

 

The previous examples demonstrated that indels could resolve the discord between the 

genome content and the MIC. These mutations are not widely examined in AMR and these 

observations point out that the genotyping needs to be expanded. Subsequently, we used 

SNP analysis with nalidixic acid resistance to identify mutations associated with resistance in 
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gyrA (Supplemental Table 2). This approach found 1 mutation in the nalidixic susceptible 

isolates and 62 mutations in the nalidixic acid resistant isolates. The nonsynonymous mutations 

identified in nalidixic resistant isolates (Ser83Tyr, 21 resistant isolates), (Ser83Phe ,16 resistant 

isolates), (Asp87Asn,18 resistant )  conform with previous observations of mutations in positions 

83 and 87 of gyrA resulting in quinolone resistance78.  These mutations are potentially missed if 

variant analysis is not included in the methods for genomic based prediction of antimicrobial 

resistance. 

 

Figure 4. Antibiotic resistance phenotype from surveillance data of Salmonella Dublin. Bottom panel 
shows number of isolates with multidrug resistance defined as resistance to more than two different 
mechanisms. 
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Figure 5. Longitudinal prevalence of antibiotic resistance from 2010-2020 from Salmonella  Dublin 
isolates.  

 

After confirming the resistance genotype and phenotype correlation between WGS and MICS, 

we examined 1707 Salmonella Dublin beef isolates between 2010 to 2020 from various 

locations in the US. A high prevalence of resistance was found among the bacterial population 

used in this study for sulfisoxazole (92.9%), tetracycline (91.3 %), chlortetracycline (89.2%), 

ampicillin (82.8%), co-amoxiclav (81.7%), ceftriaxone (80.7%), streptomycin (79.4%), 

streptomycin (79.4%) and cefoxitin (68.0%). Low levels of prevalence were seen with colistin 

(6.1%), gentamicin (5.5%), co-trimoxazole (2.9%) and intermediate levels for nalidixic acid 

(33.1%). A time series of AMR was examined from MICs that demonstrate a general uptrend in 

the number of isolated S. Dublin between 2013-2015 (Figure 5). The plot also demonstrates 

the co-occurrence of the high prevalence resistance pattern across time. There is a low-level 

emergence of resistance to nalidixic acid which captures resistance to quinolones in general. 

On the other hand, there is a decline of ceftiofur. This depicts an overall high level of resistance 
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but also highlight specific emergence and decline of antibiotics. We then classified the co-

occurrence of AMR into multidrug resistance if there is resistance to more than two drug 

classes (Figure 4). We observed high level of prevalence of multidrug resistance (4 drug 

classes, 53.8%). The high prevalence of MDR isolates is accompanied by counterpart low level 

of pansusceptible isolates (4.6 %).  

Discussion 

Predicting antimicrobial resistance from WGS is a significant challenge due to unknown 

resistance mechanisms, decoupled genomic and phenotype resistance characterization with 

MICs cutoffs determined independent of underlying genomic drivers, inadequate sampling of 

pathogen genomic diversity restricts the inferences, particularly of cross-species extrapolation 

of resistance mechanisms79. The application of automated machine learning to genomic 

surveillance data offers a scalable approach to determining dominant and emerging resistance 

variants. The process connects pathogen population genomics, resistance phenotyping, and 

the whitebox approach to machine learning algorithms. A whitebox approach to automated 

machine learning anchors to the concept of model explainability so that rather than focusing 

on prediction parameters, the constituent variables are considered by ranked variable 

importance80. We proposed this strategy to be very efficient in determining the dominant 

resistance variant in exploring multiple algorithms and ranking the predicted resistance genes. 

This complements the similarity index approach,, which could be challenging to interpret when 

too many homologous resistance genes are shared by evolutionary relationships that do but do 

not translate to functional phenotypes81. This dilemma is solved by ranking the predicted hits 
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using variable importance generated from routine surveillance. Furthermore, discordance and 

discrepancies between top ranked gene presence and prevalence are triggers for detecting 

emerging variants.  

 

One crucial element of the application of machine learning is the feature engineering step. This 

is a matter of defining the optimal scale of genome analysis from SNPs, k-mers, genes, and 

operons. While for most antimicrobial resistance, gene presence is sufficient to resolve 

resistance phenotypes, and by extension, mer, a subsample that efficiently represents genes, a 

scalable approach to cover big data for genome analysis, we have identified instances where 

gene presence alone is insufficient. Addressing the correct genomic scale for feature 

engineering is a crucial step in applying machine learning for antimicrobial resistance. Notably, 

most recent applications of machine learning for AMR involve k-mers and pangenome gene 

presence and absence, which for most antibiotic resistance is sufficient but can be inadequate 

for novel resistance mechanisms. These observations were commonly found in the AMR 

observations suggesting that unknown genetic mechanisms were not included in the reference 

database or that gene expression differences between the isolates account for the presence of 

the gene but susceptibility. As most of the AMR genotype-phenotype is shown to be 

concordant by applying AutoML to the resistance hits, we formulated several hypotheses for 

the underlying genomic mechanism of resistance that may account for the discord between the 

genotype and the phenotype. As the AMR hits are based on gene presence and absence, we 

postulated that we could recalibrate the genomic scale from gene to an allele that may not yet 

be captured in the reference database. If so, this may resolve the discord among many of the 
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observations. One key finding in this study is the utility of calibration MIC cutoffs with 

resistance genes. The capability to define a more objective cutoff will enable a universal 

standard comparable worldwide. Variation in MIC cutoffs hinders comparison in surveillance 

data. A potential outcome from the standardization of cutoff is a better understanding of 

clinical outcomes because of the increase in the precision of defining resistance and 

susceptibility.  

 

We note the value and importance of the said technique as s feature engineering used in the 

state-of-the-art AMR prediction pipeline, which is derived from comparing sequences and 

assigning similarity scores in the form of homology. While state of the art performs remarkably 

well for well-defined and sequenced species, transposing the AMR genes from one genus to 

another does not correlate well with beta-lactam resistance. This highlights the need to 

continuously sequence more samples and is a reason to perform more sequencing. Population 

genomics coupled with automated machine learning provides a scalable path forward of 

identifying organisms, defining meaningful biological clusters at different scales of analysis, 

enhance surveillance of AMR with a nuanced strategy to identify emerging variants.  

 

Another important discovery in work is the synthesis of population genomics with machine 

learning. The ranked variable importance creates a pipeline to define dominant variants 

depending on how the machine learning model ranks the variable. The connection between 

resistance gene presence as rated by AutoML and the correlation with MIC values for each 
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antibiotic resistance opens avenues to resolving resistance phenotype and resistance genomics 

at the population level. This potentially creates a streamline method to identify causative 

resistance genes and plot the relationship between MIC values within the population. 

 

We demonstrate an automated machine learning approach in resolving genotype-phenotype 

discordance using a multidrug resistance isolate22,69,74,75. The system resolved two types of 

discrepancies (false positive, attributes resistance but is susceptible) and false negative (does 

not attribute resistance but is resistance) in using AMR prediction using sequence data. These 

discrepancies will result in overestimation or underestimation of resistance which undermine 

the quality of surveillance data and, in clinical settings, impact therapeutic decisions. We 

demonstrate the culling of false positives, which can overwhelm the accurate hits in the analysis 

making attribution complicated and confusing. While there might be an underlying mechanism 

for the false positives, like repression, a straightforward approach using machine learning can 

remove a significant number of false positives. Our approach also consistently identified known 

mechanisms of resistance and essentially separated the wheat from the chaff highlighting the 

resolving power of machine learning of complex biological phenomenon.  We have 

consistently identified false negatives specially with gyrA due to limitations in the resolving 

power of bioinformatic pipelines (limited to genes while the underlying mechanism is allelic in 

nature). While this is a known limitation, published literature still propagates the discordance 

and results in underestimation of quinolone resistance73. The potential solution of using variant 

calling is an added step of complexity but is necessary to address proper analysis of genomes 
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Conclusion  

This study combined automated machine learning and bacterial population genomics to 

identify and rank genomic variants that drive antimicrobial resistance in Salmonella Dublin.  

This approach enhances the current state-of-the-art approach based on similarity index metrics 

based on curated databases by ranking resistance predictions effectively reducing false 

positives. Furthermore, genomic MICs integrate ranked variants with resistance phenotypes in 

a population-wide manner providing a path to define resistance cutoffs. The detailed whitebox 

approach enhances the value of machine learning in discovering novel variants defining 

resistance mechanisms effectively updating the databases in a scalable manner. We expect the 

broad applicability of this approach for other serotypes of Salmonella and other species as 

well.  
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Methods  

Genomes  

Genomes of Salmonella enterica subsp. enterica serovar Dublin isolates were obtained from 

the Sequence Read Archive (SRA; Supplemental Table 3)55. The downloaded fastq files were 

assembled using Shovill 1.0.4 (https://github.com/tseemann/shovill). After assembly, genomes 

were annotated with Prokka (version 1.13.3)62. Snippy 4.3.5 was used to variant call the 

sequences (https://github.com/tseemann/snippy)63.  

 

Antimicrobial Resistance Profiling 

A command line version of CARD Resistance Gene Identifier (5.1.1) was used to predict the 

resistance genes within the Salmonella genomes18.  The accompanying resistance phenotype 

profile was provided by USDA-Food Safety Inspection System.  

 

Automated Machine Learning (AutoML) 

The resistance gene predictions from CARD RGI and the resistance phenotype was used as 

input for the automated machine learning using H20 AutoML graphical user interface 82.  

Leaderboard rankings indicate the respective performance of difference machine learning 

algorithms and variable importance is inspected for each top-ranking machine learning model.  
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Chapter 3 Analysis of SARS-CoV-2 genomic epidemiology reveals disease 
transmission coupled to variant emergence and allelic variation2  

 

Introduction 

COVID-19 has reached global spread in all continents, except Antarctica, and was defined to 

be a pandemic by the World Health Organization (WHO) in March 202083-85. As expected, 

outbreak dynamics are different among countries and regions. In part, this is due to 

environmental factors, contact networks, socio-cultural practices, human population 

characteristics, healthcare systems, the testing rate, and the public health strategies that 

include testing and surveillance strategies. Outbreaks are defined by the reproductive number 

(R)86,87, a common measure of transmission for infectious disease spread. The probability of 

increased disease spread is evaluated based on the threshold when R>1; conversely a decline 

in spread is observed with R<1. Additionally, R can be used to estimate the proportion of the 

population that needs to be vaccinated in order to generate herd immunity88, as has been 

discussed in a few countries as a method to control the current pandemic, as a method to 

measure how well population immunity is occurring in absence of a vaccine. Use of R in the 

context of viral mutation has yet to be examined. 

Use of R for the 2020 COVID-19 pandemic was done for the initial outbreak in China as an 

estimate of the local epidemic expansion with the earliest estimates of R = 2.2 (95% CI, 1.4 to 

 
2 Bandoy, D. D. and B. C. Weimer (2021). "Analysis of SARS-CoV-2 genomic epidemiology 
reveals disease transmission coupled to variant emergence and allelic variation." Sci Rep 11(1): 
7380. 
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3.9) based on 424 cases in Wuhan, China89. Subsequent calculation of R, with 2033 cases from 

China (nationwide), slightly changed the estimate of R = 2.2 to 3.690. However, estimates of R 

for other countries were not done routinely but rather a fixed estimate R was used based on 

the refined estimate based on the outbreak in China. However, even the refined estimate was 

inadequate in capturing spread dynamics of the pandemic and expansion within individual 

locations, suggesting that R was not constant at different locations of the pandemic and that a 

more dynamic calculation is warranted. Use of static R estimates during the epidemic spread is 

underestimating location and population specific outbreak dynamics during local spread86,87. 

Hence, there is a need to rapidly estimate country-specific R values during the epidemic so as 

to better estimate potential local hot spots that will have rapid and unexpected increases in 

cases. This approach can also be useful to provide global comparisons of outbreak expansion 

at each global location that will enable public health responses to align with the 

epidemiological curves across countries as well as locally.  

The Wallinga and Teunis method for R estimation requires input of outbreak incidences and 

the period between the manifestation of symptoms in the primary case and the onset of 

symptoms in secondary cases to be the serial interval91. This approach was previously 

implemented in a web resource to estimate R during epidemics92. A key advantage of using 

dynamic estimates is the ease of estimating credible serial intervals, compared to other 

maximum likelihood estimation approaches that quickly provides valuable information to 

control spread of the outbreak. Additionally, integration of viral genetic variation with R 

estimates will provide additional information about changes in cases and indicate a change in 
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risk. While a single report found that there was no obvious relationship between R, severity of 

the epidemic, SARS-CoV-2 genome diversity93, and continual mutation of the viral genome 

makes this comparison an important consideration to describe outbreak dynamics so that 

appropriate interventions can be considered in specific locations. As the number of WGS 

continue to be generated, it is becoming clear that genome variation has a role in changing 

the epidemiological dynamics of the outbreak. 

In spite of no clear path for systematic integration of viral genome variation with epidemiology, 

the COVID-19 pandemic is demonstrating a global unity for sharing SARS-CoV-2 whole 

genome sequences (WGS) with unprecedented openness. By quickly sharing genome 

sequences it enables investigation of the genome variation using multiple approaches to 

sample the virial genome space that define changes that may lead to alteration of the outbreak 

dynamics. WGS availability is continuing to expand and has reached a number of WGS that 

constitutes as a viral population for analysis, which provides additional information that cannot 

be gleaned from a few sequences. Population genome analysis is particularly important for 

SARS-CoV-2 because of the high mutation rate, which was linked by estimating transmission 

dynamics of rapidly evolving RNA viruses. WGS integration highlights the opportunity to infer 

transmission by incorporating WGS into the outbreak progression and mitigation strategies38,94. 

This approach was validated in Ebola virus (EBOV) and Middle East respiratory syndrome 

coronavirus (MERS-CoV) outbreaks where each virus is separated by a small number of 

mutations, yet these small changes produce new infection dynamics during respective 

outbreaks95,96. Rapidly evolving pathogens undergo genome sequence mutation, random drift, 
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local selection pressure, and stochastic events that produce variant versions of the viral 

genomes that is likely associated with new infections 38. Even small changes in the genome 

result in transmission changes that are determined by mutations between individual genomes 

and can be detected using WGS. SARS-CoV-2 genomes are changing over the course of 

outbreak but there is controversy about the impact and specifics mutations that lead to public 

health impacts and transmission dynamics. Viral mutations and the need for fast differentiation 

of changes highlights the value of systematically combining WGS with epidemiology.  

Considering the lack of containment of the pandemic globally, except in Singapore, Hong 

Kong, and Taiwan, we hypothesized that the estimated basic R value for China do not provide 

reliable estimates for other countries. This is demonstrated by the observation that varies 

greatly by the time and location of the outbreak – highlighting the dynamic nature of R in 

outbreaks but more importantly in pandemics. The empirical observations of varying 

epidemiological curves by country, viral mutation rate, and geographically unique variation 

seem to accompany new cases around the world. These intertwined factors are likely individual 

mechanisms of change in sustaining the outbreak expansion of the pandemic. While viral 

sequencing is occurring quickly and the data are being made public, it is not being effectively 

integrated with epidemiological information because there is not an existing framework to 

systematically merge these different data streams. In this study, we used incidence data to 

estimate R and compared country specific COVID-19 transmission dynamics with viral 

population genome diversity. By incorporating R, the epidemic curve, and SARS-CoV-2 

genome diversity we created a systematic framework that deduced how viral genome diversity 
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can be used to describe epidemiological features of an outbreak before new cases were 

observed. This was done by creating a genome diversity metric that provides genome diversity 

context and allowed quantification of the infection dynamics globally that were divergent from 

the early estimates with genomic evidence. We call this approach the pathogen genome 

identity (GENI) scoring system. GENI scores, in combination with distinct outbreak stages, were 

indicative of new cases and found unrecognized local transmission. 

Results 

Our mutation rate calculations for SARS-CoV-2, based on the Wuhan reference genome, found 

the nucleotide change per month to be 1.7 (95% CI=1.4-2.0), similar to other estimates93, with 

substitutions occurring at 0.9 × 10-3 (95% CI 0.5-1.4 × 10-3) substitutions per site per year. This 

provided confidence that the reference genome was adequate for this study. We proceeded to 

determine the outbreak dynamics of COVID-19 pandemic by classifying each country’s status 

according to epicurve stage with a framework of stages: a) index b) takeoff c) exponential 

d) decline as a clear method that can be used to benchmark metrics that allow a consistent 

integration of R and viral genome diversity measurement. First, R was determined using the 

instantaneous method with two different serial intervals - 2 and 7 days (Table 1). As of March 1, 

2020, this framework defined global epicurves as gaining momentum globally with 52 

countries in the index stage. Three countries were in the exponential stage and five countries in 

the takeoff stage (Figure 1). China was the only country that reached the peak of the epicurve 

and was characterized to be in the decline stage. There was no evidence of any other country 
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near the decline stage, and some countries were poised to move into the takeoff and 

exponential phase based on the epicurve alone.  

Table 1. Country-specific instantaneous reproductive number (R) estimates for SARS-CoV-
2 as of March 1, 2020 

 

  
Instantaneous Reproductive Number (R)  

serial intervals 

Country Cases 2 days 7 days 

Mainland China 79251 1.6 2.1 

South Korea 3150 2.8 25.6 

Italy 1128 8 57.0 

Iran 593 2.8 17.1 

Japan 241 3.6 2.2 

Singapore 102 3.3 1.6 

France 100 2.9 16.9 

Hong Kong 95 2.6 1.6 

Germany 79 3.1 17.2 

United States 70 4.3 1.7 

Kuwait 45 2.6 15.3 

Spain 45 3.7 10.8 

Thailand 42 3.8 1.7 
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Figure 1. Distribution of country classification based on SARS-CoV-2 epicurve status.   

 

Instantaneous R sensitively described real-time shifts of the incidence captured within each 

epicurve stage (Figure 2). The decline stage in China was reflected by a decrease in R 

estimates in the latter stages the outbreak and relative to the early estimates: 1.6 (95 % CI 0.4-

2.9) and 1.8 (95 % CI 1.0-2.7) for 2- and 7-days serial interval, respectively. Superspreading 

events inflated R estimates seen in exponential stage that was observed in South Korea: 2.8 

(95% CI 0.6-5.3) and 25.6 (95 % CI 3.0-48.2) for 2- and 7-days serial interval, respectively. 

Distinctive disease control was instituted in Singapore enabling it to remain in the index stage 

while Japan was moving to the takeoff stage characterized by increased R estimates 3.6 (95% 

CI 0.4-7.3) 2.2 (95% CI 1.3-3.0) for 2- and 7-days serial interval, respectively. The R estimates 

overlapped for all exemplar country outbreak stages in the two serial interval scenarios, 

suggesting that the transmission could be as short as 2 days. These estimates were relatively 

lower than previously reported, bringing to light the possibility of transmission during the 
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incubation period that is associated with rapidly expanding outbreaks, which was being 

observed in many European counties at this time during the pandemic.  

 

 

Figure 2. Instantaneous reproductive number estimates for different stages of the SARS-CoV-2 epidemic 
curve: a) index (Singapore) b) takeoff (Japan) c) Exponential (South Korea) d) decline (China) in short (2 
days) and standard (7 days) serial interval. Decelerating stage of epidemic curve results to a reproductive 
number lower than 2 for both serial intervals, epidemic curve with multiple introductions yields 2-day 
serial interval with higher reproductive number and exponential serial interval yields higher reproductive 
number for the 7-day serial interval. The surge in the epidemic curve of China corresponds to the 
alteration of the case definition of SARS-CoV-2 by broadening confirmed cases with pneumonia 
confirmed with a computed tomography scan. South Korea’s higher reproductive number is due to 
cryptic transmission associated with a secretive cult with altered health seeking behavior.  

 

Low case detection of COVID-19 was observed in representative countries in the index stage 

with R values <2 that was attributed to effective social distancing (i.e. Hong Kong) or under 

detection for countries with limited testing (i.e. United States) (Figure 3a). Sustained local 

transmission occurred in five countries that were progressing into the takeoff stage (Japan, 
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Germany, Spain, Kuwait and France) by R values >2 (Figure 3b). The magnitude of spread was 

apparent with relatively higher R estimates (>10) in Italy, Iran and South Korea, which 

demonstrated sudden surges in incidence due to prior undetected clusters of cases (Figure 

3b). This substantially increased instantaneous R estimates relative to other estimation methods 

but allowed a more obvious depiction of the surge of cases that precisely differentiated the 

takeoff stage from the exponential stage.  
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Figure 3. Epicurve estimates with different serial intervals. Panel A represents Epicurves and 
instantaneous R values for index stage countries using 2- and 7-day serial interval. Panel B Global 
dynamics of SARS-CoV-2 using instantaneous estimate of reproductive number with 2-day serial interval. 
Under preincubation period infectivity scenario, globally increasing R > 2. Italy’s R = 8 is highest due to 
late detection of infection clusters. This higher R estimate is due to a huge bump in cases combined with 
diagnostic gap of low-level incidence. The same surge dynamics is seen in South Korea. Global 
dynamics of SARS-CoV-2 using instantaneous estimate of reproductive number with 7-day serial interval. 

Index Stage

R=3.8 (95% CI 1.4-6.2)
R=1.6 (95% CI 0.6-2.7)

0.07.515.022.530.0

2 6 10 14 18 22 26 30 34 38

R=2.6 (95% CI 1.1-4.2)
R=1.6  (95% CI 1.1-2.1)

0.07.515.022.530.0

2 6 10 14 18 22 26 30 34 38

01.753.55.257
8.75

Epidemic
curve 

Reproductive
Number (R)

0
3
6
9

12

R=4.3 (95% CI 1.7-7.0)
R=1.7 (95% CI 0.3-3.1)

0.012.525.037.550.0

2 6 10 14 18 22 26 30 34 38

02
46
810

Panel 3a

2 day Serial Interval

7 day Serial Interval

Thailand Hong Kong United States

Time (days) Time (days)Time (days)



 62 

Italy’s R value inflates to 57 with the 7-day serial interval assumption and overlaps with the lower 
threshold of 2-day serial interval R estimate. This estimation depicts a decreasing pattern for countries 
multiple introductions like Singapore, Hong Kong.  

 

We further examined the association of country-specific instantaneous R estimates by 

comparing different local temperature ranges (tropical versus temperate) and population 

density of representative cities with outbreaks. The higher temperature range and population 

density were used for selected countries; however, no direct link was observed (Table 2). Case 

increases for South Korea were largely associated with an outbreak among a secretive religious 

group Shinsheonji (73% cases of COVID-19 in South Korea), located mainly in Daegu with a 

lower population density 883/km2 as compared to the rest of the areas with an outbreak97 and 

may explains the outbreak expansion early in the epicurve rather than the area’s population 

density. While most representative countries (Table 2) have cooler temperatures (10-6˚C), 

Singapore’s higher temperatures indicated that local transmission occurred at higher 

temperatures and suggests that temperature shifts will not likely change transmission. The 

temperature and population density did not explain changes in the epicurve. This led us to 

hypothesize that the viral genomic variation underpinned changes in the epicurve in each 

country. 
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Table 2. Epidemiological parameters and instantaneous R estimates. 

 

Country 
Reproductive 

Number (R) 

Temperature 
(˚C) during 
outbreak 

Population 

Density 
(people/km2) 

Interpretation in 
consideration of the 
epidemiological curve 

Singapore 3.3 32 8136 
Imported cases, limited 
local transmission 

France 2.9 10 4300 
Imported, Local 
transmission >1-2 
month 

Italy 8 10 7200 
Imported cases, Local 
transmission >1 month 

United States 4.3 9 8444 
Imported cases, Local 
transmission >2 month 

South Korea 2.8 6 883 
Imported cases, Local 
transmission >1-2 
month 

 

We determined the relationship of epicurve stage with viral genetic variation using a metric 

that merges absolute genome variation with the rate of genome change to create the GENI 

score. This approach anchored viral genome diversity with the rate of evolution for SARS-CoV-

2 to create an index that is comparable between countries and progression of the outbreak. To 

examine how the viral genome diversity was associated with the epicurve stages we first 

examined the index stage (Singapore) and the exponential (South Korea). Integration of GENI 

scores successfully distinguished the index and exponential stages (Figure 4). An increase in 

the GENI score was associated with the exponential stage at a median score = 4, suggesting 

that the viral diversity and rate of mutation was directly proportional to case increases during 
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this stage. Singapore (index stage) had a GENI score = 2. This was found in multiple time 

points during the outbreak, where multiple mutation events were directly associated with an 

increase in cases. While China was in the decline stage the retrospective association with R, 

cases, and the GENI score provided longitudinal evidence of multiple case expansions with 

viral mutation events. This observation was especially clear early in the epicurve and indicated 

that SARS-CoV-2 was circulating in China at least 1 month prior to the official declaration of the 

outbreak (Figure 4). Merging these estimates provided evidence that repeated viral mutations 

indicated a change in the epicurve. These metrics were associated at each time point over 3 

months, in three countries, and in three different outbreak stages. This finding is useful in 

integrating virus genome diversity and evolution rate into assessment of outbreak status. The 

approach successfully replicated the observation in viral movement between countries and 

within a country when the epicurve was combined into a triad with instantaneous R estimates. 

The proportionality of GENI scores with the epicurve stage indicated the stage of outbreak as 

well as determining the outbreak status. 
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Figure 4. Relationship of pathogen genome identity (GENI) score with the temporal signal along the 
epidemic curve. Local transmission is captured by virus mutation as expressed in GENI score values. 
GENI scores of SARS-CoV-2 isolates are relative to Wuhan reference strain Wuhan-Hu-1 NC_045512.2. 
The red line in the China epicurve represents the time before an outbreak was determined yet genome 
sequences were circulating. The blue shaded curves indicate GENE scores directly overlaid with the 
outbreak curve. The dotted line represents the common point in time as a reference for visualization. 
The GENI score and epicurve show similarity except in China as the outbreak advanced to takeoff and 
exponential the GENI score increased while in the index stage example of Singapore the outbreak was 
contained and the GENI score remained <2.  

 

Table 3. Relationship of Pathogen Genome Identity (GENI) Score derived from mutational 
difference from the index genome (Wuhan isolate of SARS-CoV-2 or cluster isolate 
reference from multiple outbreak regions outside of territory). 

 

Equivalent 
Pathogen 
Genome Identity 
(GENI) score for 
SARS-CoV-2 

Clinical Interpretation and 
Epidemiological Inference  
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0-2 
No difference from index case 
isolate genome or reference, 
imported case if there is no prior 
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earliest isolate available. 

Epidemic curve merged 
with GENI scores 

0
1250
2500
3750
5000
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report, indicative of acute 
transmission <1 month 

3-4 

recent local transmission (average 
1-2 months) if there are no prior 
report of cases 

Subsequent outbreak clusters can 
serve as sources of introduction 
hence near neighbor reference has 
to be selected to generate an 
accurate GENI score.  

>4 

sustained local transmission 
(greater than 2 months) if there is 
are no prior report of cases  

Subsequent outbreak clusters can 
serve as sources of introduction 
hence near neighbor reference has 
to be selected to generate an 
accurate GENI score.  

 

A framework to merge epidemiology and population genomics was derived from this study as 

a method to systematically integrate molecular epidemiology into public health (Figure 5). It 

required dynamic measurements be taken for R and surveillance efforts to determine WGS for 

each virus. Ideally, each case would have multiple WGS as the disease progressed, but this was 

not available. Using this triad of measurements accurately and quickly provided insight to 

measure outbreak progress but also provided an evidence-based method to judge intervention 

effectiveness. This study demonstrated an advancement of how to use population genomics in 

an infectious disease, particularly when the mutation rate is fast and the genome diversity of 

the population is large, such as SARS-CoV-2. GENI scores provided a missing element of 

evidence that defined how to estimate new cases approximately 2-5 days before they 

appeared. GENI score estimation accuracy increases with analysis of large numbers of 

genomes (i.e. populations of genomes) and from different global locations.  
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Further examination of this approach was done using genomes and epidemiology curves from 

February to April 2020, which captured documented surges in outbreaks that were aligned 

with the GENI score in the UK. This analysis led to further validation that genomic variation was 

occurring even during lockdown that was aimed at reducing the outbreak and was predictive of 

recurring surges in infections using >16,000 genomes (Figure 5). Low numbers of new cases 

were observed (Figure 5 inset) was associated with a variable GENI score (February 2020). As 

the cases surged in April 2020 the GENI score rose at a constant rate indicating that the 

genomic variation was increasing as cases were increasing. Instituting a government lockdown 

aimed to reduce exposure did cause variable changes in the outbreak curve it had no effect on 

the GENI score, which continued to rise indicating that when exposure occurred the virus was 

readily able to infect the person. This suggests that the underlying causes of new cases have 

two components – viral genome variation (evolution) and individual exposure. With this 

concept in mind, it can explain ‘superspreading’ events based on the continued genome 

evolution to maintain or expand host range that readily infect people that form large groups to 

quickly lead to new cases. Demonstration of this repeated observation using a longitudinal 

analysis with >16000 genomes and hundreds of cases lends extremely strong support to the 

notion that measuring allelic diversity is predictive of higher transmission and it will be 

observed when the appropriate conditions in large groups or exposure using outbreak curves. 

However, additional work is needed to specifically indicate the exact mutations that will initiate 

new cases more quickly, as demonstrated with emergence of the B.1.1.7 linage in late 2020 

within the UK and quickly spread globally.  
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This study demonstrated an advancement of how to use population genomics in an infectious 

disease, particularly when the mutation rate is fast and the genome diversity of the population 

is large, such as SARS-CoV-2. GENI scores provided a missing element of evidence that 

defined how to estimate new cases approximately 2-5 days before they appeared. GENI score 

estimation accuracy increases with analysis of large numbers of genomes (i.e. populations of 

genomes) and from different global locations as demonstrated (Figure 5). Consequently, a 

framework to merge epidemiology and population genomics was derived from this study as a 

method to systematically integrate molecular epidemiology into public health (Figure 6). It 

required dynamic measurements be taken for R and surveillance efforts to determine WGS for 

each virus. Ideally, each case would have multiple WGS as the disease progressed, but this was 

not available. Using this triad of measurements accurately and quickly provided insight to 

measure outbreak progress but also provided an evidence-based method to judge intervention 

effectiveness.  

 

Figure 5. The GENI Score of 13419 SARS-CoV-2 sequences in United Kingdom (top) and the epidemic 
curve. A high initial GENI score suggests cryptic viral transmission while a consistent GENI score 
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indicates an increase in transmission as the pandemic progresses. This also indicates continued 
mutations increase viral genome diversification.  

 

Figure 6. Integration of genomic and classical epidemiology for outbreak investigation. The foundation 
of epidemiology is the accurate and timely reporting of cases which enable the calculation of the 
number. Genomic Identity (GENI) score is formulated from genomic data of pathogens to differentiate 
imported cases versus local transmission and measure time of cryptic spread. Together these two 
epidemic values deliver insight that can be directly used for making decision criteria for public health 
intervention.  

 

Discussion 

Public health response is proportional to the severity and transmission dynamics of an 

infectious disease outbreak. This requires epidemiological metrics that can be used as decision 

criteria, and ideally, they can be used to assess impact of the intervention. In this work we 

determined that R was more dynamic in the SARS-CoV-2 pandemic than previously 

appreciated among the countries examined (Fig 2-3). The instantaneous R estimation with a 

serial interval of 2 was extremely sensitive to shifts in the epicurve during the index phase (Fig 
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2-3). Singapore was an excellent example of effectively controlling and containing the SARS-

CoV-2 outbreak in spite of multiple mutation or multiple introduction events. They previously 

designated a response system called Dorscon (Disease Outbreak Response System 

Condition)98 providing a systematic approach to control, which seemed to effectively control 

transmission so that they did not moved beyond the index phase. In contrast, other countries in 

this phase were poised to move into the takeoff phase (Fig 3). The transition into the takeoff 

phase was accompanied by a transition from a 2-day serial interval to a 7-day serial interval 

determine shifts in the epicurve.  

Gaps in testing created a challenge in accurately defining the epicurve status. To address this 

diagnostic limitation, while estimates of R alone is insightful in retrospect, they alone lacked 

robust predictive value in this study. To overcome this limitation, we merged GENI estimates 

based on WGS variation and the mutation rate with the epicurve and R to provide a predictive 

triad of measurement that resulted in insight that accurately refined case expansion (Figure 4). 

Each phase of the outbreak was categorized with mutations that were associated with new 

cases in established outbreaks. The merged evidence indicated that China had circulating virus 

at least 1 month prior to the recognized outbreak. Independent of the phase framework, 

merging GENI scores with the epicurve found new cases in the same timeframe as new 

sequence variants emerged. Previous studies where the relationship of genomic diversity with 

epidemic severity (i.e. R) found no clear link93. However, by merging instantaneous R, the 

epicurve stage, and the GENI index we determined that a link does exist for each country 
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examined and that this approach resulted in a direct prediction of outbreak dynamics and 

genomic mutations as well as the mutation rate.  

The GENI index provided a basis to examine imported cases or locally spreading, both of 

which were addressed in this current work using established metric - R and novel integration of 

WGS to define changes in the sequence that were directly predictive of increases in cases. This 

approach leads to an epidemiological framework that is scientifically robust and at the same 

time can convey complex biological properties to enable an efficient characterization of an 

outbreak in combination. Transforming complex pathogen characteristics were accessible to 

the public health and medical fields using the GENI score as a complete merged information 

set with other characteristics of the outbreak. 

Previous outbreaks, such as Ebola, employed state of the art analysis using phylodynamics that 

is anchored on the genetic evolution95. Inference, such as time to most recent common 

ancestor, allowed estimation of outbreak origin, population size, and R – yet this was not 

integrated into the outbreak dynamics and stage of advancement in the outbreak. This type of 

analysis is possible because genomic sequences carry temporal signals and when used in 

context with samples collected longitudinally, previous divergence can be determined, which 

has been used to do source tracking. However, the GENI score includes these signals and 

expands their use by merging them with the outbreak dynamic using the population genome 

variation as well as the mutation rate to provide an index related to the epicurve – one that was 

directly predictive of new cases – opposed to the genealogy of the virus.  
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This approach is not limited to viruses. Another recent example, in a bacterial setting, was the 

cholerae outbreak in Haiti wherein the phylogenetic analysis resolved the origin of the 

pathogen99. However, for this analysis to succeed, a substantial genome sequence database, of 

isolates collected across time and geographic location, was needed to enable placement in a 

phylogenetic context. As outbreaks are bound to happen in the future, investment in 

cataloguing the genomic space of pathogens is even more important than previously 

appreciated100,101. It is critical to obtain COVID-19 sequences from humans as well as other 

animals that have zoonotic potential. This was demonstrated previously with zoonotic 

Campylobacter species102,103 that enabled disease in a variety of host species. Creating 

sequence repositories for pathogens is critical and underway for various pathogens101 as well as 

SARS-CoV-2104. 

Prior work forewarned the flaw of being overly dependent on early estimates of R alone105. By 

having the most accurate possible information for a dynamic metric and taking into account the 

complex dynamics that factor in the calculation of R along with merging this the WGS and 

mutation rates of the pathogen a robust and insightful method to assess outbreak dynamics 

was created in this study. Openness and data sharing of incidence reports and sequences at 

unprecedented scale is being done in this pandemic and it is paying rewards106.  

Examples where information was not shared were observed in several countries and it led to 

cryptic spread of the disease in countries that exacerbated the outbreak. Leveraging shared 

resources opens unexpected collaboration and avenues for applying relevant bioinformatic and 

disease modelling skills across the scientific community to solve global public health problems 
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very quickly. Establishing a systematic framework to merge epidemiology and genomics was 

defined in this work (Figure 5) to provide an evidence-based approach that can be used to 

predict locations for new cases or applied to examine intervention effectiveness to control new 

cases. 

 

Conclusion 

This study integrated population genomics into epidemiological methods to provide a 

framework for molecular epidemiology. Specifically, this study demonstrated epicurves, 

instantaneous R estimates, and GENI scores for SARS-CoV-2 are useful as pandemic metrics 

and in combination are a robust method. It was demonstrated that the pandemic is poised to 

become larger and that mutation will be associated with the increase in cases. Exemplar 

outbreaks, such as Singapore, found increases in cases with viral mutations that were effectively 

controlled. However, other outbreaks had expanding R estimates during the outbreak, as well 

as numerous viral mutation events. Use of epicurve stages, instantaneous R estimates, and 

GENI provided a robust and accurate framework to monitor outbreak progression to different 

stages with direct association between cases and increases in each metric. 

 

 

 

 



 74 

Methods 

Chinese CDC and WHO situations reports were used to assemble the incidence data as 

compiled by the Center for Systems Science and Engineering by the John Hopkins University 

(Baltimore, MD, USA) that was accessed on March 1, 2020107 to construct epidemic curves 

(epicurves). We defined four groups along the epicurve that characterized increasing expansion 

and a decline phase that was used as markers of specific events for each outbreak. 

The extracted time series case data were used as input for determining the instantaneous R on 

a daily basis to effectively capture dynamic changes in case reports. The estimates of R were 

selected at 2 and 7 days to examine fluctuations in reporting as between the defined phases. A 

parametric of uncertainty (offset gamma) and distributional estimates for the serial interval were 

used. A mean of 2 and 7 days, with standard deviation of 1 was used to capture short and 

standard serial interval assumptions using 50 sub-samples of the serial interval distribution. The 

Wallinga and Teunis method, as implemented by Ferguson92, is a likelihood-based estimation 

procedure that captures the temporal pattern of the effective R from an observed epidemic 

curve. R was calculated using the web application EpiEstim App 

(https://shiny.dide.imperial.ac.uk/epiestim/)92. The descriptive statistics were used to compute 

the mean and confidence intervals to estimate the instantaneous R. 

The GENI score was anchored on the principle of rapid pathogen evolution between 

transmission events. This required defining a reference sequence from the outbreak, which in 

this study was the Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1 
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NC_045512.2108. Publicly available virus WGS were retrieved from GISAID with whole genome 

variant determination using Snippy (version 4.6.0)104,109,110. The average mutation/isolate was 

divided by the total epicurve time (days) to derive a daily epidemic mutation rate that was 

scaled to a monthly rate that was produced. We derived a transformed value of this rate before 

integrating it with epidemiological information. The output from the variant calling step was 

then used to determine GENI score by calculating the individual nucleotide difference over the 

entire genome from the reference. The basis for GENI score cutoffs, to estimate transmission 

dates, were derived from accepted evolutionary inference of mutation rates of SARS-CoV-2 of 

2 mutations/month.  

We defined four epicurve stages to provide a clear method to define increases in the outbreak. 

First, the ‘index stage’ was characterized by the first report (index case) or limited local 

transmission indicated by intermittent zero incidence from an undulating epicurve. Second, a 

distinct stage, we defined to be the ‘takeoff stage’, wherein the troughs are approximately the 

same level as the previous peak but no longer reached zero. Third, the ‘exponential stage’ was 

characterized by a sharp upward increase where the outbreak was expanding quickly, and a 

large number of new cases emerged daily. The last stage was defined as the ‘decline’ and was 

noted when the outbreak past the peak and newly reported case counts were smaller than the 

previous day. Transition into the decline stage ultimately resulted in few to no new cases being 

reported, yet viral circulation was likely still occurring and new WGS were being found in each 

outbreak.  
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Chapter 4 Direct estimation of disease transmission from sequence data 
with genomic epidynamics reveal variable vaccine effectiveness with 
SARS-CoV-2 variants 

 

Introduction  

SARS-CoV-2, the etiologic agent COVID-19, consistently evolves at a rate of 2 mutations per 

month111. While most mutational changes are random and do not alter viral properties, 

selected mutations impact epidemiological parameters, including transmissibility, virulence, 

diagnostic performance, therapeutic and vaccine efficacy33,112. Mutational changes in the SARS-

CoV-2 genome are monitored using whole-genome sequencing surveillance worldwide and 

have generated more than a million WGS within a year of the pandemic. The outcome of 

genomic surveillance approaches is a classification scheme based on the relative risk that 

designates variants of concern (VOC) for detecting signals of phenotypic changes linked with 

specific mutations and are associated with increasing cases113. However, the impact of 

mutations on the viral properties is uncertain, resulting to the designation of variants of interest 

(VOI). Consequently, determining the effect of specific mutations that alter disease 

transmission dynamics based on viral WGS will bring about a needed and impactful tool for 

public health decisions.  

 

Various approaches have been explored to determine disease transmission using virus WGS, 

most of which rely on the relationship of viral evolution and disease transmission via 
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phylogenetic analysis33,42. The underlying disease transmission network is either directly 

overlaid in the resulting phylogenetic tree to map “who infected whom” for the phylodynamic 

models fitted to the time series data generated from clades or lineages to determine the most 

probable explanation of the underlying data for the phenomenological approach33,114. Both 

approaches have produced insight into virus evolution and disease transmission early in the 

pandemic. Unfortunately, lineage estimation becomes more difficult with large sets of WGS, 

leading to data reduction and lineage breadth estimates that unintentionally hide the vast 

WGS diversification as the pandemic continues. This has led to using a limited number of 

samples that significantly hinders the use of variants to track cases and disease transmission, 

ultimately impacting surveillance vaccine effectiveness. However, it is particularly challenging 

to handle population-scale sequences with lineages creating a gap in generating WGS and 

bioinformatic approaches that provide impactful integration of epidemiological needs for 

public health. Since there is no universally accepted definition of a viral lineage that resulted in 

multiple competing classification schemes43. Generating phylogenies from population-scale 

WGS data has an upper limit for computation and display under 1000, which mandates a need 

for a new analysis and visualization platform. Unfortunately, it is computationally impossible to 

create phylogenetic trees with hundreds of thousands  of samples for meaningful 

epidemiological analysis43. Hence, most phylodynamic analyses use a data reduction approach, 

limiting analyses to a few hundred WGS (i.e., cases); this approach cannot fully take advantage 

of the available WGS and leads to limited insight as more variants, and WGS emerge. This 

highlights the need to develop strategies in determining disease transmission dynamics in 

WGS that are scalable in computation and insight determination for public health decisions.  
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Previously, we designed an approach that specifically linked the mutation to increases in cases 

to determine that variant tracking using individual mutations accurately integrates 

epidemiological curves111. While variant tracking is an excellent metric that combines 

longitudinal information to estimate new outbreaks, an extension of this approach may 

determine variants that lead to vaccine breakthrough infections. To address this gap, we 

propose directly estimating disease transmission parameters from SARS-CoV-2 WGS using 

epidemiological dynamics (genomic epidynamics). Genomic epidynamics directly converts viral 

WGS into epidemiological data, effectively bridging population genomics with epidemiology 

in a dynamic longitudinal analysis. This contrasts with phylodynamics, wherein epidemiological 

inference is indirect and needs a phylogenetic tree generation step that is becoming 

impossible due to the WGS scale or severe data reduction that is counter to the advantage that 

WGS brings to disease transmission. Genomic epidynamics uses two data inputs to resolve 

population-scale transmission networks: temporal metadata that is derived from collection 

dates of the genome samples and WGS of SARS-CoV-2, which was used to generate a list of 

mutations for each isolate relative to the reference sequence (ex.Wuhan-Hu-1) by established 

bioinformatic variant calling methods. Temporal metadata and the catalog of mutations for 

each SARS-CoV-2 isolate are then combined into a variant epidemic curve (epicurves), based 

on the transmission routes inference with common variants115. The presence of common 

variants, defined as identical nucleotide mutation of virus samples from two infected individuals 

linked by the time of infection, is considered strong evidence for direct transmission116. Adding 
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time of infection with common variants data provides directionality, effectively establishing 

‘who infected whom,’ which is derived from the collection time of the samples. The resulting 

variant epicurves then provide a platform to derive vital epidemiological parameters. 

 

One key disease transmission parameter that can be estimated from variant epicurves is the 

variant reproductive number (Rv) based on established epidemiological methods111,117, except 

it is done with the variant WGS rather than total confirmed cases that rely on RT-PCR. Prior 

methods of estimating reproductive number (R) from epidemic curves have only temporal 

signal from onset of clinical signs to infer infection networks. The proposed approach adds a 

high level of precision from WGS data and direct integration with mathematical associations for 

every single variant and WGS. While the incident case-based R represents the average number 

of secondary cases from a single case, Rv represents the number of sequences generated by 

the index sequence with the mutation. The resulting Rv values are interpreted as either 

increasing transmission (Rv > 1) or decreasing transmission (Rv <1), which can be used to assess 

effectiveness of nonpharmaceutical interventions during the early stages of the pandemic 

(2020) as well as the impact of pharmaceutical use, such as vaccination (2021).  

  

In this study, we determined the impact on disease transmission of SARS-CoV-2 mutations 

using genomic epidynamics via Rv calculation and longitudinal metadata integration. We 

focused on viral mutations with validated phenotypic changes in laboratory experiments and 
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assessed whether those changes directly impact disease transmission and vaccination 

effectiveness within the population. The mutations from VOCs included in this study had: a) 

spike protein D614G, b) spike protein N501Y and P681H (Alpha variant, B.1.17), and c) spike 

protein L452R, T478K, P681R (Delta variant, B.1.617.2). These SNPs were selected for proof of 

concept, but the method is not limited to these mutations or a subset of SNPs. Mutations 

N501Y, L452R, and T478K are in the spike protein’s receptor binding domain (RBD), while 

P681R is in the furin-mediated spike cleavage site. We hypothesized that spike protein 

mutations in the RBD and furin-mediated cleavage site reduce vaccine effectiveness in the 

population. To test the hypothesis, we directly converted SARS-CoV-2 WGS to variant 

epicurves and subsequently derived Rv for each mutation to measure transmission dynamics 

compared to actual disease in the UK. We then compared the transmission differences of 

SARS-CoV-2 mutations (N501Y) and (L452R, T478K, P681R) variants before and during the 

rollout of vaccinations and assessed the predicted prevalence of infections using a 

compartmental model33,111,112. Lastly, we determined the capability of single and full dose 

vaccine administration to reduce transmission of SAR-CoV-2 variants within the population to 

assess mutation impacts on vaccination breakthrough infection capability.  

 

 

 

 



 81 

Results  

 

We hypothesized that SARS-CoV-2 mutations in the spike protein’s receptor binding domain 

(RBD) enhance disease transmission in the population. To test this hypothesis, we developed 

genomic epidynamics, an epidemiology first approach in analyzing whole-genome sequences of 

pathogens. Genomic epidynamics combines WGS and temporal data into a variant epidemic 

curve, directly converting sequence data into an epidemiologically tractable format. We used 

common variants between isolates as transmission inference and sampling time as temporal data 

to generate variant epicurves. We showed the scalability of genomic epidynamics by generating 

variant epicurves from 297,805 sequences during the second wave in the last quarter of 2020 

from the COG-UK consortium resulting in a high density of WGS relative to COVID-19 confirmed 

cases (genome sequence to case ratio ~7.1 to 28.1%) (Figure 1) (Supplemental Figure 1). We 

used genomic epidynamics to test the differential transmission hypothesis by comparing the 

variant epicurves of the reference N501 and the mutational variant N501Y (Figure 2). The variant 

epicurve of N501Y demonstrated a strong fit (R2=.9) to an exponential curve (Supplemental 

Figure 2) while the counterpart epicurve of the reference showed declining numbers, indicating 

a change in transmission dynamics within the population of isolates with N501Y mutation. We 

then used Apple mobility data to distinguish increased social interaction as alternative driver of 

increased transmission versus N501Y mutation. We compared the average baseline mobility 

prior to the emergence of N501Y consisting of driving, public transport and walking 

(Supplemental Figure 3). Incremental changes in mobility (driving 16%, public transport 9% and 
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walking 2%) prior and during emergence of N501Y could not account for the change in 

transmission dynamics. Hence the exponential rise of N501Y is not attributable to changes in 

social mobility data, further supporting the hypothesis of increased transmission due to 

mutational changes. These exemplars capture the value of being able to convert SARS-CoV-2 

WGS data to a time series allowing detection of trends at the population scale that evolve with 

time and outbreak dynamics. This provides the foundation of genomic epidynamics that can be 

extrapolated to all variants. 

 

Figure 1. Temporal variant framework for disease transmission inference. The estimates of disease 
transmission of each respective mutant are estimated using reproductive number. A compartmental 
model using the variant R is used to simulate the impact of different transmission properties.  
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Figure 2. Epicurves, time series of new cases per day, were constructed using reference and mutational 
variants of coronavirus. Several patterns are observed between reference and mutants, a) extinction and 
dominance b) emergence c) hitchhiking with driver mutation and co-occurrence. Symmetry of occurrence 
allows to collapse the mutations to four main patterns. D614 first wave extinction and D614G dominance 
in the second wave, early dominance in the second wave and decline with the emergence of N501Y.  

 

 

We then estimated Rv from the variant epicurve of the spike protein mutations to determine the 

difference in disease transmission in the population. Rv of N501Y is 1.0 (95 CI 0.5-1.6) compared 

to the reference N501 0.8 (95 CI 0.4-1.1), which indicate a difference of 25-45% transmission 

within the population, providing a mechanistic basis for measuring the impact of mutations in 

disease transmission in the population (Supplemental Figure 6). We then applied genomic 

epidynamics to test the hypothesis that spike protein mutation D614G enhances disease 
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transmission in the people during the first wave of the pandemic. We compared the differences 

in transmission dynamics prior and during the lockdown, Rv of D614G declined from 2.1 (95 CI 

1.1-3.4) to 0.9 (0.5-1.3), and Rv of the reference D614 also declined from 1.9 (95 CI 1.2-2.7) to 

1.0 (95 CI 0.7-1.3) (Supplemental Figure 7). This captures the impact of nonpharmaceutical 

interventions in reducing disease transmission of specific variants. However, estimates of Rv 

values of D614G and D614 overlap, indicating very similar transmission rates, indicating that the 

D614G mutation did not significantly modify disease transmission in the population.  

 

We compared the counterpart population genetic tests of selection as cross-validation for 

genomic epidynamics using the spike protein mutation D614G as an exemplar. Nonsynonymous 

to synonymous mutation ratio of 1.2 indicates selection, like the findings of other 

studies33(Supplemental Figure 4 & 8). However, this test is limited in capturing temporal 

dynamics, particularly difference between pre and post-lockdown as it is cross-sectional in 

operation. Furthermore, it only captures the information relative to the mutations, ignoring any 

quantitative input from the reference. This limits the capability of population genetic tests to be 

used as inference of transmission between variants. Using a temporal-based approach like a 

time-series chi-square statistic for D614G mutation frequency indicates no significant difference 

between expected frequency ratios before lockdown but showed a significant difference in 

expected frequencies post lockdown (P<.01) (Supplemental Table 1). While Muller plots of SAR-

CoV-2 variants allowed visualization of the temporal dynamics and identified variants showing 

clonal interference (Supplemental Figure 5), were associated with such plots. Hence population 
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based genetic-based measures of selection are not suitable as inferences of disease 

transmissions, which highlights the value of epidemiology first approach like genomic 

epidynamics for pathogen WGS analysis.  

 

We then tested the hypothesis that RBD mutations of the spike protein of SARS-CoV-2 reduce 

vaccine effectiveness in the population. We utilized 500,000 WGS to compute the Rv of N501Y 

and derived a variant-specific herd immunity threshold. The herd immunity threshold is the 

percentage of the population needed to be vaccinated or exposed to the disease controlled to 

control the epidemic. The formula for herd immunity threshold (HIT) = 1- (1/R0) and is based on 

R0. Hence, we propose a modified version using Rv, as variant-specific herd immunity threshold 

vHIT= 1-(1/Rv).  We selected the timeframe of Rv during the emergence period to capture the 

transmission dynamics like R0. The computed vHIT for N501Y is 50 %.  We then compared the 

disease transmission of N501Y when the vaccination levels of the population reached predicted 

vHIT levels (Figure 4). We observed a decline in cases associated with N501Y when vaccination 

coverage for two dosages got> 50 %. Regression analysis of the number of cases with N501Y 

mutations with the percentage of two dosage vaccine also showed a strong association (R2=.9). 

Expectedly, this results in a decrease of Rv from the high estimates of 1.6 to 0.8. Overall, this 

points to the possibility of achieving herd immunity effect specific to a variant, which is observed 

as a decline in cases attributed to a variant and is a novel way to measure the impact of 

vaccination.  
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Figure 3. Epicurves of L452R and N501Y and correlation of 2nd dose vaccine coverage with a 
number of cases.  
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Figure 4. Epidemic models of specific variants using derived reproductive number. A. Epidemic model 
with a derived reproductive number of L452R B. Epidemic Model with a derived reproductive number 
from N501Y C. Epidemic model with slow vaccination D. Epidemic model with fast vaccination 

 

However, we then applied the concept of variant-specific herd immunity to RBD mutation in the 

spike protein L452R to test the hypothesis that mutations in the RBD of the spike protein (L452R) 

reduce vaccine effectiveness. First, we compared the epicurves of N501Y and L452R relative to 

2nd vaccination coverage (Figure 3). L452R epicurve indicated a positive increase as the 

vaccination coverage increased, while the opposite was observed with N501Y. This uptrend in 

numbers which parallels the increase in vaccination coverage, indicate a potential reduction of 
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effectiveness of the vaccine against L452R. Furthermore, the L452R Rv = 1.6 is relatively high 

considering the relatively high vaccination coverage almost reached predicted herd immunity 

levels. These findings contrast the observed decline in the Rv of N501Y from 1.6 in the 2nd wave 

to 0.8. Remarkably, the regression of L345R epicurve with vaccination coverage (R2=0.8) showed 

a strong relationship. This finding suggests that some method of mutational selection is in place 

that will produce differences between variant spread and ability to evade vaccination, making it 

more transmissible.  

 

The estimation of disease transmission using Rv allows simulation of different vaccination 

coverage, differentiating between industrialized and developing countries. We constructed 

variant specific SIRV (Susceptible-Infectious-Recovered-Vaccinated) compartmental model with 

low and high vaccination coverage. Vaccination reduces the number of susceptibles and is 

predicted to result in lower number of cases. A suboptimal vaccination combined with a variant 

having a higher Rv will lead to more infections. As herd immunity threshold would take several 

months to achieve, a combination of intervention (masking and physical distancing) will likely 

be needed to reduce the transmission of new variants. With the foundation of Rv to precisely 

follow new or emerging surges in cases, we investigated variant-specific disease transmission 

by simulating different scenarios using compartmental models based on WGS and Rv. 

To estimate the impact of a more transmissible variant, we generated an SIR (Susceptible-

Infectious-Recovered) model parameterized with Rv of N501Y and the counterpart parent 

sequence (Figure 3). The upper estimates range was used for the parent strain (1.1) and the 
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variant (1.6). The difference of reproductive number between the two is 45%, slightly lower 

than previously estimated using phenomenological methods. The initial condition for the 

compartmental model is ten infectious individuals in a total of 100,000 population. In an 

unmitigated scenario (Figure 4A), the peak of infection (7000 cases) will be reached around 90 

to 100 days from the introduction, with infection numbers being higher, around 250% for the 

mutational variant. While 50% will be asymptomatic, peak infection levels indicate 

hospitalization of 750 individuals at 10 % severe cases. A simulation of a slow vaccination 

scenario (Figure 4C) indicates similar figures to the unmitigated scenario, while a fast 

vaccination ratio (Figure 4D) showed a reduction of peak infection from 7000 cases to 2000 

cases. Hence even with an available vaccine, it is still essential to combine other measures to 

decrease the overall number of issues and minimize the introduction of variants with higher 

transmissibility. These findings indicate that Rv and variant tracking accurately estimate the 

epidemiological dynamics, which led to investigating mutations in other genes with 

pharmaceutical interventions implemented via multiple vaccines. 

 

Discussion 

We present the conceptual framework of genomic epidynamics, which bridge the population 

genomics and epidemiology gap. This was executed by converting sequence data of SARS-

CoV-2 combined with sampling date into variant epicurves which allow estimation of disease 

transmission via Rv. The approach addresses the limitations of using pathogen WGS primarily 

with phylodynamics, which needs a phylogenetic generation step plus a demographic model42. 
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The need to be able to perform large-scale analysis of epidemiological insight from sequences 

will continue to increase, and hence alternative methods of research is important. We 

demonstrate that bypassing lineage assignment and using mutations to generate variant 

epicurve could lead to a faster and more scalable disease inference at the population level. We 

leveraged previous work demonstrating that transmission networks can be derived with 

common variants combined with sampling dates115. We also integrated temporal signals from 

sampling dates which are not usually incorporated in coalescent based approaches.   

 

Existing methods of estimation of R from epidemic curves lack the information to track “who 

infected whom” or infection networks and hence either rely on fitting incidence data with the 

statistical model or calculating the likelihood of infection pairs given temporal proximity117. The 

inclusion of pathogen sequence data with the construction of variant epicurves provides a 

high-resolution method to track infection networks. This addition enables direct integration of 

pathogen sequence data with epidemiological methods making it possible to compute disease 

parameters. While previous studies already demonstrated the possibility of tracking infection 

networks in small-scale community clusters with shared variants between pathogen isolates, 

our approach expanded the scale into a significant population-level analysis.  
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We demonstrated the value of genomic epidynamics by evaluating vaccine effectiveness 

considering the emergence of spike protein mutations in SARS-CoV-2. While we focused on 

these sets of mutations as the vaccine design is based on the nucleotide sequence of the spike 

protein, the co-occurrence of other mutations in other loci can still contribute to overall 

transmission of the variants. Calculation of Rv of each specific mutation allows a straightforward 

evaluation of vaccine effectiveness in the population. Using Rv, variability in vaccine 

effectiveness is observed with simultaneous decline and increase observed with different 

variants within the population. This work demonstrates genomic epidynamics in monitoring 

vaccine effectiveness relative to the emergence of variants.  

 

As the vaccine effectiveness demonstrates heterogeneities depending on the variant, a higher 

vaccination coverage requirement is also the consequence of a more transmissible variant. As 

there are pockets of virus transmission providing for a reserve pool of mutations, continued 

genomic surveillance will be pivotal to monitor the rise of new variants. It would need to be 

integrated into vaccine design. The glaring challenge with this approach is under-investment of 

most countries in pathogen sequencing for disease detection. The ability to model precision 

disease transmission is still dependent on the amount of sequencing data generated. Hence 

developing countries are underrepresented in the public databases while the UK is the primary 

generator of sequencing data. An interim solution for low sequencing can be addressed 

partially by generating models to create a simulation of the epidemic spread of specific 

variants, and our study provides a method for how to implement such an approach.  



 92 

 

 

Conclusion 

 

The COVID-19 pandemic generated an unprecedented amount of WGS of a single pathogen. 

Making sense of large-scale sequencing data is now becoming a role for epidemiologists who 

need to distill the information to policymakers. Striving disease transmission insights from 

sequencing data will be pivotal in monitoring the pandemic, generating decision-making 

criteria for lockdowns and circuit breakers, and monitoring vaccination campaigns. Our 

approach of deriving epidemiological metrics using extensive scale sequencing data provides a 

bridge between pathogen evolution and epidemic modeling. It addresses the gap with the use 

of the reproductive number as a measure of disease spread which is the most used parameter 

by public health agencies worldwide. 
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Supplemental Figures  

 

Supplemental Figure 1. The ratio of SARS-CoV-2 whole genome sequences to confirmed cases ratio 
included in the analysis. The lower figure shows the absolute number of confirmed cases, and the total 
number of SARS-CoV-2 confirmed cases. 
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Supplemental Figure 2. Exponential curve fitted to N501Y.  

 

Supplemental Figure 3. Mobility data as a proxy measure for human interaction 

 

Supplemental Figure 4 Ratio of nonsynonymous and synonymous mutations of the different lineages of 
Sars-CoV-2.1B Nonsynonymous/synonymous mutations ratio across time. Figure 1C  Mutational rank 
plot of D614G and wildtype mutation across time showing the cross over point 
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Supplemental Figure 5 Mutation rank allele plot of the dominant genomic lineage of Sars-CoV-2 B1. 
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Supplemental Figure 6. Monte Carlo approach to computing the variant reproductive number 
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Supplemental Figure 7 Variant epicurves between 1st and 2nd wave of infections of COVID-19, variant R 

comparison between D614 and D614G.  

 

Supplemental Figure 8. Variant R values across time between reference and mutational variant versions 

of SARS-CoV-2.  
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Supplemental Figure 9. Force of infection specific to reference and mutational variants of SARS-CoV-2.  

Supplemental Table 1. Significance of mutations detected in whole genome sequences of 
SARS-CoV-2 

 

Mutation Gene Significance 

D614G Spike Increased transmission 

E484K Spike  Reduction in neutralization by monoclonal 
antibody 

N501Y  Spike Increased transmission and mortality 
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Y453F Spike 
Mink associated mutation, higher affinity to ACE2 

receptor 

N439K Spike Resistance to antibodies 

A222 Spike Increased transmission 

P681H Spike Near the furin site 

Q27Stop Orf8 Increased transmission  

P323L RdRp  Associated with disease severity 

T1001i Orf1A Increased transmission  

 

Supplemental Table 2. Time-Series chi-square statistics for D614G mutation frequency 

Month D_Frequency  G_Frequency p < 0.01 

Feb 0.56 0.44  

March 0.41 0.59  Not significant at p < 0.01.  

April 0.15 0.85 

The chi-square statistic is 36.7071. 
The p-value is < 0.00001. 
Significant at p < .01.The chi-
square statistic with Yates 
correction is 34.9383. The p-value 
is < 0.00001. Significant at p < 
0.01  
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May 0.05 0.95 

The chi-square statistic is 61.3516. 
The p-value is < 0.00001. 
Significant at p < .01. The chi-
square statistic with Yates 
correction is 58.9692. The p-value 
is < 0.00001. Significant at p < 
0.01  

 

 

Supplemental Table 3. Mutation prevalence between 1st and 2nd waves of the COVID-19 Pandemic 

 

 Prevalence Prevalence_2ndWave 

A222_ 99.9 63.8 

A222V 0.1 36.2 

D614_ 16.0 0.1 

D614G 84.0 99.9 

E484_ 100.0 99.8 

E484K 0.0 0.2 

N439_ 98.8 98.3 

N439K 1.2 1.7 

N501_ 100.0 54.5 

N501Y 0.0 45.5 

P323_ 16.2 0.1 

P323L 83.8 99.9 

P681_ 100.0 54.9 

P681H 0.0 45.1 

q27_ 99.9 54.7 

Q27Stop 0.1 45.3 

T1001_ 100.0 55.2 

T1001I 0.0 44.8 

ref_21765_ 100.0 54.1 

Del_21765_6_ 0.0 45.9 
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Methods 

Genomes 

SARS-CoV-2 whole genome sequences were downloaded from the COG-UK Consortium site. 

Variant calling was performed using SNIPPY 109.  

 

Variant Reproductive Number 

Mutational variant and temporal metadata were combined to generate variant epicurves. 

Variant epicurves are then used to estimate the reproductive number of each respective variant 

by using Monte Carlo approach of random sampling within the four-day moving window. The 

moving sum of the four-day window was divided the preceding four-day sum to generate 

variant reproductive number. 

 

Epidemic Modelling  

The reproductive number of each variant was used as the model parameter for Susceptible-

Infectious-Recovered epidemic model. Infectious period used was 7 days and recovery period 

were 14 days.  
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Chapter 5 Pangenome based bacterial species identification and 

clustering for bacterial population genome analysis in Hungatella 

hathewayi 3-4 

Introduction 

Clostridia are a very diverse group of organisms. The taxonomy is in constant revision in light of 

new whole genome sequence production and genomic flux118. While organism classification 

can be reassigned, the identified isolates within the same species retain their relatedness. In 

the analysis of 13,151 microbial genomes, the misclassification (18%) was determined by 

binning into cliques and singletons with ANI data using the Bron-Kerbosch algorithm, which 

resulted in the misclassification of 31 out of the 445 type strains119. The different causes of the 

type strain misclassification include poor DNA-DNA hybridization (e.g. high genomic diversity), 

low DNA-DNA hybridization values, naming without referencing to another type strain, and 

lack of 16s rRNA data. Hungatella hathewayi, or its prior designation Clostridium hathewayi, 

was not included in the previous as there were very few Hungatella genomes in the time of that 

publication. As more metagenomes are published increasing claims of finding new organisms 

are mounting. To this point, Almeida et al. reported an increase of 1952 uncultured organisms 

 
3-4 Bandoy, D. D. R., B. C. Huang and B. C. Weimer (2019). "Misclassification of a whole genome 
sequence reference defined by the Human Microbiome Project: a detrimental carryover effect to 
microbiome studies." medRxiv: 19000489 and Hernández-Juárez LE, Camorlinga M, Méndez-Tenorio A, 
Calderón JF, Huang BC, Bandoy DDR, Weimer BC, Torres J. Analyses of publicly available Hungatella 
hathewayi genomes revealed genetic distances indicating they belong to more than one species. 
Virulence. 2021 Dec;12(1):1950-1964. doi: 10.1080/21505594.2021.1950955. PMID: 34304696; PMCID: 
PMC8312603. 
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that are not represented in well-studied human populations, where they presented data to 

support that rare species will be difficult to accurately identify and do not match existing 

references120. 

Public repositories of genomic data have experienced tremendous expansion beyond human 

curatorial capacities, which is an ever increasing issue with the high rate of WGS 

production121,122. Recently, it was estimated that ~18% of the organisms are misclassified in 

microbial genome databases119. This high rate of error led to investigation of misclassification 

of specific organisms, including Aeromonas123 Fusobacterium124, and ultimately entire reference 

databases119. These studies found misclassified type strains, which calls into question the 

foundation of the taxonomy and inferred relatedness when population genomes are being 

used for epidemiological purposes, especially with rare organisms that are not well 

represented in the reference database. The work presented here uniquely identified a 

misclassified reference species and found propagation of incorrectly labelled genomes in 

several highly cited microbiome studies125,126,127,128.  

 

Results  

Based on this species delineation notion, we discovered that the Human Microbiome Project 

reference genome for Hungatella hathewayi (WAL18680) was misidentified while building a 

phylogeny of Hungatella species using a population of whole genome sequences63. Both 16s 

rRNA and average nucleotide identity (ANI119) analysis indicated that WAL18680 was not a 
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member of the Hungatella genus based on genome assessment (Table 1). Population genome 

comparison analysis was instrumental in discovering that WAL18680 was misclassified and the 

impact for genomic epidemiology purposes would be important. 

Table 1. Average nucleotide identity of Hungatella isolates. BCW 8888 is highly similar to 
other hathewayi. WAL 18680 is 71.17 and falls into the cutoff limits for another genus. 
2789STDY5834916 ANI 85.62 (BCW 8888) and is a novel species of Hungatella. 

 
 

BCW_8888 effluvii_DSM_24995 WAL_18680 ve202_11 2789STDY5834916 2789STDY5608850 12489931 
BCW_8888 100 94.34 70.85 96.66 85.41 98.05 96.8 
effluvii_DSM_24995 94.38 100 70.49 94.51 85.45 94.41 94.93 
WAL_18680 71.17 70.78 100 71.03 72.01 71.07 71.07 
ve202_11 96.63 94.51 70.66 100 85.19 96.51 98.73 
2789STDY5834916 85.62 85.59 71.98 85.39 100 85.74 85.83 
2789STDY5608850 98.05 94.3 70.65 96.38 85.41 100 96.48 
12489931 96.77 94.95 70.82 98.82 85.65 96.68 100 

 

 

Figure 1. Pangenome of Hungatella. WAL18680 was originally identified as Clostridium hathewayi. After 
a recent taxonomic reclassification, it was renamed as Hungatella hathewayi. (WAL 18680) does not have 
the core genome of other Hungatella species (hathewayi or efluvii) and possess very few core genes 
common to the other Hungatella species. The bulk of its genome is not found in other Hungatella species, 
indicating it belongs to another genus. Strain 2789STDY5834916 is a novel Hungatella species.  
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The misclassified H. hathewayi WAL18680 has been used to generate phylogenomic analysis, 

reference WGS for metagenome analysis, and web server identification platforms utilizing the 

metagenomic classifiers127,129,130. Epidemiologically, association with clinical disease will be 

discordant with genomic data and result in inaccurate conclusions on the microbiome ecology 

or therapies based on the microbiome membership to mitigate disease leading to the wrong 

causal relationship to be concluded126. As more microbiome studies are linking rare microbes 

to biological outcomes, a need exists to quickly identify inaccurate assignment when only a few 

WGS of individual organisms are available for use as a reference. This creates an issue with low 

sampling of the genome space for rare organisms and may result in mis-naming based on a 

small set of phenotypic assays that do not represent the genome content or flux71. 

 

Discussion 

H. hathewayi was first described as an isolate was from human feces131 and was subsequently 

reported in a patient with acute cholecystitis, hepatic abscess, and bacteremia132,133. It was also 

later reported in a case of appendicitis134. H. hathewayi is (WAL18680) one of the designated 

reference strains in Human Microbiome Project and is used extensively for binning and 

classification of microbiome related studies, which confounds analysis of the genus Hungatella. 

This organism can be isolated from the microbiome depending on the enrichment 

conditions126. Having a reference species misclassified is detrimental to microbiome research 

and in epidemiological investigations. To solve this issue, we developed a heurist to minimizing 
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misclassification for rare reference species as a result of cross-validation of the genomic 

information for name assignment.  

The standard procedure of the 100K Pathogen Genome Sequencing Project4,122,135-137 

determines the identity of bacterial pathogen isolates in clinical samples using WGS and the 

genome distance (ANI138,139) before proceeding with additional comparisons. This analysis was 

done with a group of isolates from suspected Clostridioides difficile infection cases. We 

identified a species of H. hathewayi using genome distance using the entire genome sequence 

that was implemented for high dimensional comparison using MASH140 (with the maximum 

sketch size). This was coupled to comparison of all of the available WGS to represent the entire 

genome diversity to build a whole genome phylogeny 141 to determine the naming accuracy of 

the clinical isolates . Unexpectedly, one particular sequence was well beyond the species ANI 

threshold for C. difficile. We found that based on ANI, is a putative new species of Hungatella 

(strain 2789STDY5834916). Weis et al.103,142 used this method with Campylobacter species to 

demonstrate that genome distance accurately estimates host-specific genotypes, zoonotic 

genotypes, and disease within livestock disease with validated reference genomes. While ANI 

was the first estimate to raise questions for the accurate identification of this organism, we 

proceeded with a cross-validation strategy to verify the potential misclassification of the 

reference species. 

We advanced with the initial mis-identification by determining the pangenome analysis with 

the hypothesis that outbreak isolates would cluster together based on the isolate origin (i.e. an 

individual or location)63 as well as contain the same core genome. We found that WAL18680 
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did not contain any of the core genome relative to all of the other Hungatella genomes (Figure 

1). Together, these genomic metrics prove that this reference genome was misclassified, which 

has extensive implications as reference sequences are commonly used for genomic identity for 

outbreak investigations. Additionally, metagenome studies require reference genome 

databases to identify bacterial community members. This result indicates that if the 

epidemiological workflow did not include specific whole genome alignment, inaccurate 

conclusions and misleading deductions will be made – as was observed by Kaufman et al.71 – 

where they found that genome diversity is unexpectedly large and expands based on a power 

law with each new WGS that is added to the database. Combining the fact that this is a 

reference genome from a rare organism from a very diverse group, that the genome evolution 

rate is a power law, and that this is a reference genome from the Human Genome Project the 

implications for the misidentification have far reaching implications. 

 

Conclusion 

Conflicts of taxonomic classification based on traditional methods, such as phenotypic assays, 

metabolism, with genomic based parameters will likely increase as more genomes are 

produced and use of the entire genetic potential (i.e. the entire genome). The need for 

heuristical indicators of misclassification are needed as is the need to expand WGS that 

adequately represent bacterial diversity among and within taxonomy to represent the genetic 

diversity of any single organism.   
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Methods 

 Whole genome sequences of the genus Hungatella were downloaded from NCBI 

GenBank  on May 1, 2019 143. Whole genome sequences were annotated using Prokka 1.13.3  

and pangenome analysis was performed with Roary 3.12.0 , visualized with Phandango and 

manually curated  44,144.  Average nucleotide identity (ANI) was estimated using a digital DNA-

DNA hybridization approach.  
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Chapter 6. Conclusion 

This dissertation aimed to determine genomic variants that drive antimicrobial resistance, 

virulence, and transmissibility of pathogens using population wide WGS (Table 11.). With the 

application of automated machine learning, population genomics and epidemic modeling, the 

genomic variants have been identified and ranked and further disease parameters defined. 

Genomic epidynamics is a phylogenetic free approach in measuring disease transmissibility 

scaled to several hundreds of thousands of WGS, providing a method to measure disease 

transmission of genomics variants of SARS-CoV-2. The COVID-19 pandemic ushered a new era 

in infectious disease genomics characterized by data driven demand for public health 

intervention. Pivotal to the public health decisions is assimilation of predictive models 

integrating scenarios generated by epidemic models. Linking pathogen genome data with 

epidemic models opens opportunities to bridge population genomics with genomic 

epidemiology. While phylogenetics attempts to connect these two fields, scalability is a huge 

impediment. Furthermore, phylogenetics lack an intuitive input for important epidemiological 

parameters particularly temporal signature. With genomic epidynamics, WGS data is effectively 

combined with temporal metadata which enables epidemic modeling of specific genomic 

variants. A consequence for such a strategy is the ability to analyze the impact of vaccination 

relative to specific variants. This approach provided a way to determine the relationship of herd 

immunity levels specific to genomic variants in a scalable manner. Therefore, the proliferation 

of novel variants would need constant surveillance of changes in transmissibility and hence 
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highlights the value of this approach in measuring disease transmission dynamics using 

population WGS of pathogens. 

 

Another discovery in this dissertation is the formulation of genomic MICs, which combined 

automated machine learning prioritized variants and correlated resistance gene presence with 

MIC. This approach validated a set of resistance genes using variable importance ranking, 

providing a path to whitebox machine learning models. Hence, genomic variants important for 

antimicrobial resistance have been identified in Salmonella Dublin but can be expanded to 

other bacterial species. One important feature of this approach is the overall improvement in 

resistance prediction using databases. This is manifested with the resolution of several 

discordant phenotype-genotype combination between antibiotic resistance phenotype and 

presence of resistance genes.  

 

Fundamental limitations serve as challenges in extrapolating important disease parameters 

from WGS, including limitations in testing AMR  resistance particularly the range of antibiotics, 

inadequate resolving capabilities of variant calling, which impacted feature engineering and 

the complexity of multidrug resistance. Further broadening the genomic space by further 

sequencing to cover more of the underlying genomic diversity could improve the predictive 

capabilities within the AMR databases. Another issue is the lack of transparency with metadata 

sharing as WGS are published with very limited access to pertinent clinical information. This 
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significantly hindered further downstream analysis which could have been very useful for public 

health decisions.  

 

Table 1. Dissertation chapter hypotheses and conclusions. 

 Hypothesis Conclusion 

Chapter 1 
Genomic variants drive virulence in  abortive 
phenotype in Campylobacter jejuni. 

Machine learning approach with pathogen genome 
wide association identifies genomic variants of porA 
driving abortion in Campylobacter jejuni. 

Chapter 2 
Genomic variants drive antimicrobial resistant in 
Salmonella enterica subsp. enterica serovar 

Dublin. 

Automated machine learning combined with genomic 
MICs define antimicrobial resistance and susceptibility 
in Salmonella Dublin.  

Chapter 3 
Genomic variation expands with disease 
transmission of SARS-CoV-2. 

Genome identity measures pathogen variation as 
function of temporal transmission SARS-CoV-2.  

Chapter 4 
Genomic variants drive transmission dynamics of 
SARS-CoV-2. 

Genomic epidynamics is a scalable approach to 
measuring variant specific disease transmission 
dynamics of SARS-CoV-2.  

Chapter 5 
Pangenome defines species membership of 
Hungatella hathewayi. 

Hungatella reference species are misidentified due to 
systemic errors in phylogenetic approach in species 
clustering.  
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