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There are two prominent paradigms for themodelling of networks: in the first, referred to as themechanistic
approach, one specifies a set of domain-specific mechanistic rules that are used to grow or evolve the
network over time; in the second, referred to as the probabilistic approach, one describes a model that
specifies the likelihood of observing a given network. Mechanistic models (models developed based on
the mechanistic approach) are appealing because they capture scientific processes that are believed to be
responsible for network generation; however, they do not easily lend themselves to the use of inferential
techniques when compared with probabilistic models. We introduce a general framework for converting
a mechanistic network model (MNM) to a probabilistic network model (PNM). The proposed framework
makes it possible to identify the essential network properties and their joint probability distribution for
some MNMs; doing so makes it possible to address questions such as whether two different mechanistic
models generate networks with identical distributions of properties, or whether a network property, such as
clustering, is over- or under-represented in the networks generated by the model of interest compared with
a reference model. The proposed framework is intended to bridge some of the gap that currently exists
between the formulation and representation of mechanistic and PNMs. We also highlight limitations of
PNMs that need to be addressed in order to close this gap.

Keywords: networks; mechanistic models; probabilistic models.

1. Introduction

Conducting a randomized clinical trial (RCT) to evaluate the effectiveness of a prevention programme
designed to mitigate the spread of disease may not be possible in many contexts due to logistical and
financial complexities as well as the potentially long time frame required for a RCT [1–4]. Furthermore,
it may be difficult to estimate effectiveness due to interference and spillover effects inherent in research
on control of infectious diseases [5–9]. To address the challenges that arise in RCTs, there is increas-
ing use of agent-based models (ABMs) for modelling effects of proposed prevention programmes; such
efforts are facilitated by the advancement of high-speed computing resources [10–13]. A critical feature
of ABMs is that their formulation facilitates simulation of interactions that can transmit disease among
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the agents in the model; the collection of all such interactions within a population can be represented as
a network. Investigators representing several different disciplines have developed specialized techniques
for modelling these networks. Although there is potentially considerable synergy across the methods
developed in different fields, limited tools currently exist to bridge them. In this article, we focus on
bridging two of the primary techniques for generating simulated networks, mechanistic network models
(MNMs) and probabilistic network models (PNMs).

MNMs generate a network by repeatedly applying a collection of stochastic microscopic rules. These
rules can be simple, but nonetheless give rise to rich and complex network structure at the mesoscopic
and macroscopic levels. There has been extensive research linking the presence or frequency of network
structures to processes operating on a network, such as disease propagation [14–16]. For example, having
a larger number triangles in a network can tend to decrease the size of an epidemic [17–19]. To statistically
formulate and then address questions regarding whether mesoscopic- and macroscopic-level structures
are more or less common in networks generated by mechanistic models than would be expected by
chance typically requires models that specify a likelihood, denoted as PG (G = g), of observing a given
network g from a set of networks G . We use the term PNM to describe such models; their importance
arises from the way in which they can enable investigators to perform statistical inference. In this article,
we propose a framework for specifying a PNM that is consistent with a mechanism model of interest in
order to allow for statistical inference; we refer to this framework as mechanistic-to-probabilistic model
conversion (MPMC).

In the next section, we provide an illustrative example of the connection between MNMs and PNMs
as well as an example demonstrating that some commonly used PNMs are not suitable for this con-
version. In Section 3, we discuss the theoretical reasons for such limitations. In addition, we discuss
a fairly recently described PNM—referred to as the congruence class model (CCM)—that overcomes
some of these limitations. Section 4 provides details of the proposed MPMC framework using CCMs
and Section 5 provides two examples of this framework using a mechanistic model designed to provide
insight into the HIV epidemic. In Section 6, we present an example that highlights the limitations in the
use of PNMs (including CCMs) to model some mechanistic models. Section 7 discusses the proposed
methods and suggests future research directions.

2. Background

A connection between PNMs and MNMs exists for specific sets of mechanistic rules. For example,
let the generation of a network be governed by the mechanistic rule that individuals form edges with a
fixed probability p and independent of all other edges. This generation process corresponds to the Erdős–
Rényi–Gilbert model [20]; it also can be represented as an exponential random graph model (ERGM)—a
common and flexible class of PNMs [21, 22]. Based on the authors’ knowledge, this article provides the
first framework for mechanistic to PNM conversion. Figure 1 illustrates our conceptualization of the
connection between MNMs and PNMs; these two modelling paradigms are depicted as rectangles. The
arrow connecting MNMs and PNMs (Arrow A) represents the subset of models wherein the association
between the network generative mechanism(s) and corresponding probability distribution is known, such
as for the ER model. For many models, the association between the mechanism(s) and probability distri-
bution will not be obvious, and one must derive this connection through generating network realizations
(data [circle in Fig. 1]) from the model: Arrows B and E in Fig. 1 represent starting from aMNMor PNM,
respectively. From these generated data, it is possible to fit either a PNM (Arrow C) or MNM (Arrow
D). This article focuses on converting a MNM to a PNM (Arrows B and C). Though ERGMs are quite
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Fig. 1. Conceptual illustration of the conversion between mechanistic and PNMs: The mechanistic and probabilistic network mod-
elling paradigms are depicted as rectangles. The arrow connecting MNMs and PNMs (Arrow A) represents the subset of models
wherein the association between the network generative mechanism(s) and corresponding probability distribution is known. Arrows
B and E represent generating network realizations (data [circle]) from a MNM or PNM, respectively. Arrows C and D representing
fitting a PNM or MNM model, respectively, based on data. The MPMC framework is represented by Arrows B and C.

flexible, there are challenges to modelling MNMs using ERGMs (Arrow B then C in Fig. 1). The chal-
lenges are demonstrated through an investigation of a mechanistic model developed by Kretzschmar and
Morris—hereafter referred to as the KM model [23, 24]—which played a significant role in identifying
intervention priorities by highlighting the potential impact of concurrency on epidemic spread in sub-
Saharan Africa [25]. In addition to its historic importance, the model continues to be the building block
of more recently developed realistic models to study HIV [26]. This simple demonstration illustrates the
need for a more flexible PNM than ERGMs.

2.1 KM model

Network evolution under the KM model is based on individual-level stochastic rules for partnership for-
mation and dissolution. The population is fixed and the relationships among the population form and
dissolve over time. At each time t, an individual can form new partnerships, dissolve existing partner-
ships or both. There are three key components governing the formation and dissolution of relationships:
probability of pair formation (pf ), probability of pair separation (ps) and a stochastic rule for partner
mixing (φ), which can depend on the properties of the nodes. (Section 2.2 provides further details on the
three key components of the KM model.) The evolution of a network under the KM model is outlined
below:

1. Let gt denote the network at time t.

2. Repeat the following T1
t times (T

1
t is a KM model parameter):

(a) Simulate a Bernoulli process where X = 1 with probability pf and X = 0 otherwise.

(b) If X = 1: (i) Draw two unconnected individuals at random: one male, i, and one female, j; (ii)
with probability φ(i, j) add edge (i, j) to g; otherwise repeat (i) by redrawing two individuals at
random.

3. Every connected node pair splits up with probability ps.

The resulting network following these steps represents the network at time t + 1, denoted as gt+1.
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To use the KM model to simulate an HIV epidemic, one must specify an initial network at time 0,
denote this network as g0. Once g0 is specified, the steps outlined above can be used to generate networks
at subsequent times. In the KM model, the network g0 is generated by starting with an empty bipartite
network with n1 and n2 nodes representing females and males, respectively, and then repeating the above
steps a large number of times. This procedure is commonly referred to as a burn-in step. After completing
this large number of iterations, the resulting network, g0, is used at time 0. The burn-in step ensures that
the simulation of the HIV epidemic starts at the stationary state of the network generation process. In
Section 5, we provide examples of how the MPMC framework can be used to derive a PNM for the
stationary state of the process. For the KM model, the stationary distribution, PG (G = g), is unknown.
However, once PG (G = g) is known and given a method to sample from PG (G = g), there is no need for
the MCMC burn-in process going forward as one can sample a network g from the stationary state based
on PG (G = g). The MPMC framework can be used to derive a PNM for the stationary distribution of the
KMmodel, i.e., derive PG (G = g). However, the MPMC framework does require repeated simulation of
a network from the stationary state using the burn-in process of the KM model. Therefore, the value of
deriving a PNM identical to the KM model is reduction in future computational burden when applying
or using the KMmodel. Note that in our article, we focus only on the generation of the networks and not
on modelling the HIV epidemic on the networks.

2.2 KM model and PNMs

To illustrate the limitation of ERGMs to capture the KM model, we: (1) simulate k networks,
{gM1 , . . . , gMk }, using a specification of the KM model; (2) sample k networks, {gS1 , . . . , gSk}, from an
ERGM and (3) compare {gM1 , . . . , gMk } to {gS1 , . . . , gSk }. The following provides additional details on
each step.

Step 1: Simulate from KM

We investigate a simple specification of the KM model, pure random mixing, and use parameter val-
ues identical to those used by the authors of the KMmodel when it was first proposed [23]. In the setting
of pure random-mixing, there exists no preference for nodes to form edges based on their covariates. The
φ function for this setting is the following:

φ(i, j) =
{
1 if ki < dm and kj < dm

0 else,
(2.1)

where dm is a KM model parameter and ki and kj are the current degrees of nodes i and j. The follow-
ing parameters values were used in the original model: n1 = n2 = 1, 000, pf = 0.01, dm = 10 and
ps = 0.005, T1

t = (n1 + n2)/2− |gt|, where |gt| is the number of edges in gt.

Step 2: Simulate from ERGM

In Section 5, we provide evidence that the only network property necessary to represent the KMmodel
for pure random mixing is the number of edges. Therefore, we consider ERGMs for which the number
of edges is the only network statistic, reflecting our knowledge that other properties are not relevant. We
investigate two ERGMs: (1) one that includes number of edges and (2) one that includes number of edges
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and a constraint—implicit in the KM model—that the number of edges cannot exceed (n1 + n2)/2. The
first ERGM has the following probability mass function (PMF):

PG (G = g|ω) ∝ exp(ω1η1(g)), (2.2)

where η1(g) is the number of edges in network g and ω1 is the parameter associated with the number
of edges. The second ERGM is similar, except in that the probability space with positive probability is
restricted to networks with 1, 000 or fewer edges. Therefore, the second ERGM has the following PMF:

PG (G = g|ω) ∝
{
exp(ω1η1(g)) if |g| ≤ 1, 000

0 else,
(2.3)

where |g| is the number of edges in network g. For both ERGMs, we set ω1 such that probability distri-
bution is centred at the mean value for networks generated by the KM model.

Step 3: Comparison

We compare the cumulative density functions (CDFs) of the two collections of networks,
{gM1 , . . . , gMk } and {gS1 , . . . , gSk}, on network properties that consist of number of edges and number
of individuals with degrees {0, 1, . . . , 4} (CDFs for degrees 5–10 are not shown here as few nodes had
degrees in this range). The blue lines in Fig. 2 depict the CDFs of the network properties for the k = 1, 000
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(a) Edges (b) Degree 0 (c) Degree 1
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Fig. 2. Comparison between the KM model and ERGMs: A comparison of the number of edges and number of nodes of specified
degree across the network collection for the KM model and ERGMs. Panel (a) depicts the CDF for the number of edges. Panels
(b)–(f) depict the CDF for the number of nodes with degrees {0, 1, . . . , 4}. The blue lines depict the CDFs for the KM model, and
the red and green lines depict the CDFs for the ERGMs with and without the constraint on the number of edges, respectively.
Because the CDFs generally do not match, the specified ERGMs are not able to capture the network structure generated by the KM
model.
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networks generated by the KM mechanistic model. The red and green lines depict the CDFs of the net-
work properties for the k networks sampled from the ERGM with and without the constraint on the
number of edges, respectively. The CDF associated with the KM model in blue is significantly steeper
than is that for the ERGMs for the number of edges and for the number of nodes of degree 0; the CDF
is only slightly steeper for the degrees greater than 0. The steeper CDFs for the KM model compared
with those for the ERGM models indicate that the mechanistic model imposes additional constraints on
the variability of the examined network properties compared with ERGMs. The two ERGMs used in
this illustration are the only ERGMs that are possible assuming that the sole essential network property
is the number of edges (evidence for this assumption is shown in Section 5). Therefore, for ERGMs
to model the pure random mixing KM model, ERGMs would need to include more complex terms (and
potentially a very large number of terms) to capture the KMmodel. The authors are not aware of any pro-
cedure to select these terms. Furthermore, inclusion of these complex terms would provide an incorrect
interpretation of the generative process associated with the KM model for pure random mixing.

The PMF on the space of networks of size n for an ERGM is solely based on constraints, each of
which specifies the expected frequency of a network structure of a random network sampled based on an
ERGM. However, the KM model has an additional mechanism for creating edges. Specifically, the net-
work generated at time step t +1 is based on the number of edges present at time step t. This mechanistic
rule creates a dependency among all of the edges in a network, i.e., the presence of an edge in a network
generated by the KMmodel depends on the presence or absence of all other edges. This dependency can
be difficult to capture within the ERGM framework. In the next section, we provide details of ERGM
theory to highlight this issue.

3. Previous work

To highlight some theoretical limitations of representing mechanistic models using ERGMs, we provide
technical details for deriving the ERGM probability distribution. In Section 3.2, we present a recent
network model that overcomes some, but not all, of these limitations; we return to this discussion in
Section 6.

3.1 Limitations of ERGMs

In positing an ERGM, i.e., specifying PG , one proposes a dependence hypothesis that defines contingen-
cies among the network edges, which are regarded as random variables; each potential edge, Eij, has a
corresponding random variable, denoted as Xij [27]. This hypothesis can be codified through the spec-
ification of a dependence graph, denoted as GD = (VD,ED), on a population V . The nodes of GD are
tuples (i, j), where i, j ∈ V . An edge in GD is represented as a pair of tuples, i.e., {(i, j), (k,m)}, where
i, j, k,m ∈ V . Here, {(i, j), (k,m)} is an edge in GD if and only if edges (i, j) and (k,m) are conditionally
dependent given information on all other potential edges, that is, the probability of the edge (i, j) existing
in a network depends on the presence of edge (k,m). Let C denote the set of cliques (a subset of vertices
such that every two distinct vertices are connected) in GD; the cliques can be of any size. Let Gc be the
graph formed by the collection of all edges denoted by the nodes of c ∈ C; Fig. 3 provides an illustration
of a clique c and corresponding subgraph Gc.

The Hammersley–Clifford theorem states that PG is a Gibbs distribution that can be factored over
GD, conditional on PG being a positive distribution, i.e., PG (G = g) > 0, for all g ∈ G [28]. Therefore,

PG (G = g) = 1

Z

∏
c∈C

ψc(Xc), (3.1)
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Fig. 3. Illustration of a clique: an illustration of a clique c in the dependence graph is shown in the left panel. The corresponding
subgraph Gc is shown in the right panel.

where ψc is a function over sets of variables Xc associated with clique c in GD and Z is a normalizing
constant. As Equation (3.1) does not provide a unique distribution, additional constraints are necessary.
A natural set of constraints assigns the probability of observing Gc for each c ∈ C. These constraints
control the probability of observing a subgraph in which the occurrence of each edge depends on all of
the other edges; the constraints are represented in Equation (3.2):∑

g∈G

IGc⊆gPG (G = g) = PG (IGc⊆g), (3.2)

where IGc is the indicator function that Gc is a subgraph of g and PG (IGc⊆g) is the probability that needs
to be specified.

As all subgraphs of Gc are associated with a clique in C, they too would be the subject of a con-
straint. Even with these constraints, PG is not uniquely defined. In order to specify PG , ERGMs use the
probability distribution that maximizes the Shannon entropy subject only to constraints represented in
Equation (3.2); the maximum entropy principle is conceptually powerful and has numerous applications
in science—particularly in physics [29]. The maximum entropy distribution best represents the current
state of knowledge of a system, while assuming maximal ignorance about the distribution other than what
is imposed by Equation (3.2) [30, 31]. This approach leads to the following distribution:

PG (G = g) = 1

Z

∏
c∈C

exp(ωGc IGc⊆g), (3.3)

where ωGc is a parameter used to fix the mean probability of observing Gc, i.e., specify PG (IGc⊆g).
Therefore,

ψc(Xc) = exp(ωGc IGc⊆g). (3.4)

As the distribution specified in Equation (3.3) has a large number of parameters, {ω}, one can simplify
the model by imposing a homogeneity assumption that sets parameter values equal when they refer to the
same type of subgraph, e.g., edge pairs and triangles. The resulting PMF presented below is the standard
form for ERGMs:

PG (G = g|ω) ∝ exp(ωTη(g)), (3.5)

where ω is a (column) vector of model parameters associated with the specified network properties and
η(g) denotes the vector of counts for the network configuration associated with the cliques in GD (also
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referred to as sufficient network statistics for the ERGM), i.e., η : Gn → R
p, where p is the length of

the vector. As referred by Cimini et al. [31], ERGMs are examples of a canonical approach; that is, an
approach in which networks are generated to have network features that match the observed network
in expectation. This is in contrast to microcanonical approaches, which generate networks that exactly
match observed network properties—for example, the configuration model [30, 32].

In developing the PMF for ERGMs, there are two critical requirements. The first is that the depen-
dence graph, GD, not be complete. A complete dependence graph results in 2(

n
2) cliques, which not only

causes there to be a large number of parameters in Equations (3.3) and (3.5) but also creates identifiability
issues; dense dependence graphs may also be problematic for a similar reason. The second requirement
is that Equation (3.2) represents the only constraints on the system; that is, only the mean of the config-
uration counts is constrained. This precludes inclusion of information on the second or third moments
on network configurations. For instance, Equation (3.2) allows neither specification of uncertainty in
those counts (measurement error) nor variability around those counts (due to the stochastic nature of the
mechanistic rules). The KM model violates these ERGM requirements.

3.2 Congruent class model

Because of their limitations, ERGMs cannot be used to represent theKMmechanisticmodel; this inability
illustrates the need for greater flexibility in the modelling of network properties. To overcome some of
these limitations, we propose an MCMC framework that uses the congruent class model (CCM) [33].
The class of models allows for greater flexibility in specifying the functional form of the probability
distributions associated with network properties.

The CCM partitions the space of networks on n nodes, G , such that all networks within a partition
have the same values for the network properties of interest; these partitions are referred to as con-
gruence classes. For example, one congruence class might correspond to all networks with 50 closed
triads; another, to all networks with 51 closed triads and so on. Hence, a congruence class is defined as
cx = {g : η(g) = x, g ∈ Gn}, where η(g) denotes the value of the properties used to define the congruence
classes for g ∈ G . The number of networks in cx is denoted as |cx|. The probability distribution on G
for the CCM is based on specifying PC , the PMF for the congruence classes defined by the essential
network properties; PC (x) is the total probability of all networks that are elements in cx:

PC (x) =
∑
g∈cx

PG (g). (3.6)

Because the congruence classes represent the partition of the space G based on essential network
properties, two networks within a congruence class must have the same probabilities of being observed.
Therefore, the probability distribution on G for the CCM is the following:

PG (G = g) ∝
(

1

|cη(g)|
)

PC (cη(g)). (3.7)

For additional details on CCMs including a comparison with ERGMs, see [34, 35].

4. Framework

We denote the network generation rules of a MNM as γ . Though mechanistic models do not explicitly
specify a PMF on a set of networks, they do so implicitly. Let PG (G = g|γ ) denote this implicit PMF,
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where G is a random variable with support on G and g ∈ G . Let PG (G = g|ω) denote a PMF for a
PNM, where ω represents functions or parameters necessary to specify the PMF; this formulation allows
for the PMF to be parametric, semi-parametric or non-parametric. We consider a collection of network
properties to be essential for a model if the omission of any one property makes it no longer possible
for the collection to characterize the model. The goal of MPMC is to uncover the essential network
properties and their joint probability distribution, such that the probability of observing a network g is
identical, whether the network is generated from the mechanistic model with rules γ or is sampled from
a probabilistic model with parameter ω.

The general MPMC framework is an iterative algorithm; an outline of the conversion framework is
as follows:

1. Simulate the mechanistic model: Generate a collection of networks, {gM1 , . . . , gMk }, based on
simulating the mechanistic model k times.

2. Propose essential network property candidates: Based on subject matter knowledge, conceptual
knowledge of the mechanisms, and previous iterations of the algorithm, propose a collection of
network properties, defined by the function η, as the essential network properties of the mechanistic
model.

3. Estimate the joint probability distribution of essential network properties: Estimate the joint prob-
ability distribution, PC (s1, ..., sj), of the candidate essential network properties, defined by η, based
on the observed simulated networks {gM1 , . . . , gMk }. In high dimensions, i.e., settings where a large
number of network properties is being considered, density estimation is a non-trivial problem. How-
ever, given the generic nature of the problem, there exists a vast literature on methods for density
estimation in this setting [36, 37].

4. Sample networks: Sample networks, {gS1 , . . . , gSk }, based on a CCM with the estimated joint
probability distribution PC (s1, ..., sj).

5. Compare networks: Statistically compare the probability distribution of the two collections of net-
works, {gM1 , . . . , gMk } and {gS1 , . . . , gSk}, on a large set of network properties defined by η′ not
contained in the set defined by η.

6. Iterate: If statistical tests do not reject the hypothesis that the probability distributions on each of
the network properties defined by η′ differ between {gM1 , . . . , gMk} and {gS1 , . . . , gSk}, then accept
the properties defined by η as the essential network properties, such that their joint probability
distribution PC characterizes the network properties induced by the mechanistic model. Otherwise,
repeat steps 2–6.

5. Application

In this section, we investigate the KMmodel described in Section 2. Specifically, we investigate two rules
for partner mixing: serial monogamy and pure random mixing. In neither setting is it straightforward
to understand what the mechanistic rules of the KM model imply about the properties of the induced
networks. We use identical parameter values as the authors of the KM model when it was first proposed
[23] and shown in Section 2.

5.1 Pure random mixing

To characterize the pure random mixing setting of the KM model, i.e., to identify the essential network
properties of the mechanistic model along with their joint probability distribution, we follow the steps
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of the MPMC framework outlined in Section 4. As described in Section 2, in the random mixing setting,
there exists no preference for individuals to form relationships based on degree.

1. Simulate the mechanistic model: Let γr denote the microscopic rules associated with the pure ran-
dom mixing setting for the KM model. We simulate k = 10, 000 networks, {gM1 , . . . , gMk }, based
on γr.

2. Propose essential network property candidates: Based on Fig. 2 it may appear that it would be
necessary to model the degree distribution; however, we propose modelling only number of edges
as the essential network property of the KM model. Let Xγr

E represent the random variable for the
number of edges in a network generated with γr.

3. Estimate the joint probability distribution of essential network properties: Let Pγr
E denote the PMF

for Xγr
E . From the blue line in panel (a) of Fig. 2, it appears that the distribution Pγr

E does not follow
any common distribution; therefore, we estimate Pγr

E , denoted as P̂γr
E , by letting P̂γr

E (Xγr
E = x) equal

the fraction of the k generated networks that have x edges, i.e., P̂γr
E (Xγr

E = x) = 1
k

∑k
i=1 Iη(gMi

)=x.

4. Sample networks: We sample 10, 000 networks based on the following PMF:

PG (G = g|Pγr
E ) ∝

(
1

|cη(g)|
)

PCr (cη(g)), (5.1)

where PCr (cη(g)) = P̂γr
E (Xγr

E = η(g)) and η(g) is the number of edges in g.

5. Compare networks: Figures 4 and 5 compare the networks generated from the KMmodel and those
sampled from the CCM based on Equation (5.1) on a large set of network properties which consists
of the number of edges, number of nodes of degree 0–4 (nodes of higher degree were extremely
rare), betweenness centrality (max and mean across all nodes), degree correlation, eigenvalue cen-
trality (max and mean across all nodes) and number of K-stars (1–3); detailed descriptions of the
metrics are available in [38] and [30]. Based on the Kolmogorov–Smirnov test, one cannot reject
the hypothesis that the network property distributions are identical (the p-values ranged from 0.23
to 1 across all of the network properties) [39].

6. Iterate: Based on the Kolmogorov–Smirnov tests, we conclude that the number of edges is the
only essential network property and the probability distribution in Equation (5.1) characterizes the
mechanistic random mixing KM model.

5.2 Serial monogamy

In the serial monogamy setting, individuals are restricted from having more than one partner at the same
time. In the article by Kretzschmar and Morris [23], the φ function for this setting is the following:

φ(x, y) =
{
1 if ki = kj = 0

0 else.
(5.2)

For the remaining parameters, we use values that are identical to those used by the authors of the KM
model when it was first proposed [23] (see Section 2).

As in the previous example, to characterize the serial monogamy setting of the KM model, i.e.,
identify the essential network properties of the mechanistic model along with their joint probability
distribution, we follow the steps of the MPMC framework outlined in Section 4.
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Fig. 4. Comparison between KM model and CCM on the number of edges and degree distribution: A comparison of the number
of edges and number of nodes of specified degree across the network collection for the KM model and CCM ERGMs. Panel (a)
depicts the CDF for the number of edges. Panels (b)–(f) depict the CDF for the number of nodes with degrees {0, 1, . . . , 4}. The
red lines depict the CDFs for the KM model and the blue lines depict the CDFs for the CCM. Because the CDFs match perfectly,
the specified CCM appears to be able to capture the network structure generated by the KM model.

1. Simulate the mechanistic model: Let γs denote the microscopic rules associated with the serial
monogamy setting for the KM model. We simulate k = 10, 000 networks, {gM1 , . . . , gMk }, based
on γs.

2. Propose essential network property candidates: Our candidate collection of essential network prop-
erties include only the number of individuals with degree 0. Let Xγr

D0
represent the random variable

for the number degree 0 nodes generated with γs.

3. Estimate the joint probability distribution of essential network properties: Let Pγs
D0

denote the PMF

for Xγs
D0
. We estimate Pγs

D0
, denoted as P̂γs

D0
, by letting P̂γs

D0
(Xγs

D0
= x) equal the fraction of the k

generated networks that have x individuals with degree 0.

4. Sample networks: We sample 10, 000 networks based on the following PMF:

PG (G = g|P̂γs
D0

(Xγs
D0

= x)) ∝
(

1

|cη(g)|
)

Pγs
C (cη(g)), (5.3)

where Pγs
C (cη(g)) = P̂γs

D0
(Xγs

D0
= η(g)) and η(g) is the number of nodes with degree 0.

5. Compare networks: We compare the networks generated from the KM model to those generated
from the CCM based on Equation (5.3) on a large set of network properties, which consists of
number of edges, number of nodes of degrees 0 and 1 (nodes of higher degree are not compatible
with themonogamymodel) and eigenvalue centrality (max, mean, median andmin across all nodes).
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Fig. 5. Comparison between KM model and CCM on higher-order properties: A comparison of centrality measures (betweenness
and eigenvector), degree correlation and number of k-stars across the network collection for KM model and CCM. Panels (a) and
(b) depict the CDF for the max and mean betweenness centrality. Panel (c) depicts the CDF for the degree correlation. Panels (d)
and (e) depict the CDF for the max and mean eigenvector centrality. Panels (f)–(h) depict the CDF for the number of k-stars with
k equal to 1, 2 and 3. The red lines depict the CDFs for the KM model and the blue lines depict the CDFs for the CCM. Because
the CDFs match perfectly, the specified CCM appears to be able to capture the network structure generated by the KM model.

Based on the Kolmogorov–Smirnov test, one cannot reject the hypothesis that the network property
distributions are identical (the p-values ranged from 0.96 to 1 across all of the network properties).

6. Iterate: Based on the Kolmogorov–Smirnov tests, we conclude that the number of individuals with
degree 0 is the only essential network property and the probability distribution Pγs

D0
characterizes

the serial monogamy KM mechanistic model.

Note that as individuals either have degree 0 or 1, it would be equivalent to use the number of
individuals of degree 1 as our essential network property.

6. Limitations of CCMs

To our knowledge, all PNMs formulate the probability for a network g, PG (G = g), based on the fre-
quencies with which that particular network structures are present in g. For example, CCMs assume that
all networks within a congruence class have the same probability [40]; this assumption is also made in
commonly used PNMs including the ER model [20], stochastic block (SB) model [41] and ERGMs [22].
While ER and SB models are developed to model specific network structures—the number of edges and
this number stratified by categorical–nodal covariates, respectively—CCMs and ERGMs do not have
this constraint. In theory, CCMs and ERGMs can represent any PMF on the space of networks by includ-
ing a sufficient number of parameters associated with network structures; but the number of parameters
may be large and describe structures that consists of many nodes. Therefore, all MNMs—to the authors’



MECHANISTIC NETWORK MODELS TO PROBABILISTIC MODELS 13

knowledge—can be represented as a CCM or an ERGM. However, there are practical constraints on these
models. In the case of ERGMs, when the model includes network structures that are larger than a small
number of nodes (e.g., 2–4), the parameter estimates will have difficulty converging [42, 43]. Further-
more, as demonstrated in Section 3, there are limitations with representing MNMs parsimoniously using
ERGMs; it is not clear to the authors what ERGM terms are necessary to include to represent the KM
model. For CCMs, the ratio of the size of two adjacent congruence classes must be evaluated to use an
MCMC to generate networks from the model [33], which we expect to be increasing difficult as the size
of the network structure increases. Below we provide an example of a mechanistic model that requires a
PNM to incorporate a network structure that consists of a large number of nodes, which is difficult for
both CCMs and ERGMs.

MNMs represent a range of phenomena in social and biological systems. Such phenomena include
the small-world property, which refers to the notion that pairwise shortest path lengths are small—
logarithmic in n (the number of nodes)—in most networks. The small-world property allows infections
to potentially reach any individual in a population over relatively short transmission chains. Another
common phenomenon in social systems is the coalescence of influence to a few individuals [44, 45].
This macroscopic phenomenon has been shown to emerge from a small collection of microscopic rules
that encourage preferential attachment—the process wherein a new node introduced to the system links
adjoins to an existing node with a probability proportional to the number of edges the node already
has, i.e., its degree. Preferential attachment mechanistic rules were introduced in the model of Price for
directed networks to study patterns of citation of scientific papers [44], and were later introduced inde-
pendently in a different formulation for undirected networks by Barabási–Albert (BA) to describe a broad
range of scientific and societal systems [45].

The BA model can be initiated with a small seed network, which grows by the addition of new nodes
one at a time. (The model can be modified in various ways, but we consider only the original version
of the model.) Nodes and edges, once introduced, are never deleted. Each new node forms exactly m0

new edges with existing nodes based on the linear preferential attachment rule. One feature of the BA
model is that it creates networks with a single connected component. Neither ERGMs nor CCMs can
be formulated to handle this constraint, as both frameworks are only able to include model parameters
associated with network structures that consist of only a small number of nodes (e.g., dyads, triangles
and four-cycles).

The properties of the BA model illustrate the inability of current PNMs to represent certain popular
mechanistic models. This is particularly striking given that the preferential attachment mechanistic rule
for the BA model is designed to be straightforward. While the formulation of the preferential attachment
rule clearly indicates its impact on the degree distribution of the resulting network, the impact of the
rule on other networks features is less immediately apparent. For example, as discussed above, the rule
leads to global features of the generated networks (e.g., presence of a single connected component). The
preferential attachment rule has been observed to have an impact on other network features, such as
correlations between the degrees of connected nodes [46] and network clustering coefficient [47].

To assess which mechanistic models are compatible with current PNMs requires an approach to
quantifying the size of the network structures impacted by a mechanistic rule; for example, the approach
would need to assess whether a rule impacts probabilities associated with pairs (size 2 structure), triads
(size 3) or larger network structures. For the BA model, the rule impacts the global features of generated
networks (i.e., size is equal to n). The formulation of an approach to quantifying size would enable
creating a taxonomy or classification for mechanistic rules based on the size of the network structures
impacted by the rule. It may be possible to assess whether the mechanism impacts network structures
of small sizes (two–four nodes) by converting the mechanistic model to a probabilistic model using the
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approach proposed in this article. However, even for these settings, there could be practical limitations on
the development of a taxonomy via this process, as no straightforward method is available to assess the
similarity of two mechanistic rules; hence, each rule would need to be assessed independently of other
rules.

7. Discussion

In this article, we proposed the MPMC framework for first learning the joint distribution of essential
network properties of a MNM and then using a probabilistic model, the CCM, to generate collections of
networks that are indistinguishable from those generated by the original mechanistic model. There are
advantages to being able to specify PG (G = g|γ ) as doing so enables investigators to perform statistical
inference. In particular, the framework enables the investigation of whether a certain network property,
such as clustering, is over- or under-represented in the generated networks compared with a reference
model. There has been extensive research linking the presence or frequency of network properties to
the nature of processes operating on networks, such as disease propagation [14–19]. MPMC also enables
statistical testing of hypothesis, such as whether two distinct rules, γ 1 and γ 2, generate identical networks,
i.e., whether PG (G = g|γ 1) = PG (G = g|γ 2) for all g ∈ G or whether systems generated under two
distinct rules have the same set of essential network properties.

An illustration of two examples of mechanistic models that are based on relatively simple rules
demonstrates the complexity that can arise even from simple mechanistic models. This complexity helps
to reveal the limitations on representing mechanistic models using probabilistic models. We identified
three promising areas of future research. The first investigates ways to propose mechanistic models that
are consistent with probability distributions of networks—the reverse of what we discussed above; see
[48] for initial work in this area. The second is finding ways to allow the flexibility that probabilistic
models require to represent a broader class, or particular classes, of mechanistic models. The third is a
need for a taxonomy or classification of mechanistic models that is based on the set of network properties
that are influenced by the mechanistic rules.

Our examples were kept simple in order to demonstrate a proof of concept of the framework; we
acknowledge that much additional work is needed to bridge the two approaches. Nevertheless, the pro-
posed framework provides a novel method for revealing relationships between the two approaches for
modelling networks; this development has the potential to provide investigators with new insights about
how networks are formed and how they impact the processes that operate on them.
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