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Abstract of the Dissertation

Pulling Punches: A Non-parameteric Approach
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of Novel Boxing Metrics

by

Nathan James Langholz

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2013

Professor Mark Hansen, Chair

Boxing has seen limited advancements in way of quantification of the sport dur-

ing live professional fights. The PunchR system is an automated measurement

system to collect information about a fight in realtime with fine-grained temporal

resolution. The system employs nonintrusive accelerometers placed on the insides

of boxers’ wrists beneath their gloves to wirelessly relay acceleration data to a

ringside laptop. Statistical models process the data for realtime estimates of fight

metrics to quantify the action taking place in the ring including punch count,

punch speed, punch force, and punch type. There are no new risks provided to

the boxers during the fight nor do these accelerometers affect either of the boxers

physical performances.

The statistical methods used to construct these statistical models are non-

parametric in a sense that the data is really driving the modeling procedure with-

out any notion of a structure prior to model construction. Data for the models is

collected in a controlled experimental boxing setting or through video review of

live fights. Model features are derived from the acceleration profiles of punches

combined with boxer physical measurements to create a complete feature set to

train the models.
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Primarily, the boxing metrics are largely tangible quantities that already are

commonplace in boxing discussions (count, speed, force, and type) but have no

prior method of measure. Methods are also developed to measure number of

counterpunches and flurries using the timing of certain punches. Newly proposed

metrics not in typical boxing terminology are either combinations of the common

punch metrics or other measures taken from the acceleration data. These metrics

attempt to measure a boxers aggression and different measures of overall punch

quality. The groundwork for these new contributions to boxing metrics and re-

sulting visualizations for these metrics arise through the study of 65 professional

boxing matches. Two complete fight summaries illustrate how a fight narrative

can be told through use of the new metrics and visualizations. The PunchR system

has been developed to begin the higher level quantification of boxing.

iii



The dissertation of Nathan James Langholz is approved.

Mani Srivastiva

Ying Nian Wu

Jan de Leeuw

Mark Hansen, Committee Chair

University of California, Los Angeles

2013

iv



To my parents...

v



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Boxing Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Live Fight Measurements . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 CompuBox . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 PunchZone . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Live Fight Force Measurements . . . . . . . . . . . . . . . 11

2.1.4 Amateur Fights . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Boxing Lab Measurements . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Straight Punch Force . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Hook Punch Force . . . . . . . . . . . . . . . . . . . . . . 20

3 PunchR System Overview . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Hardware Development . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Hardware Technical Specification . . . . . . . . . . . . . . 26

3.1.2 Unit Calibration . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Unit Sample Rates . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Punch Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Punch Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



3.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Punch Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Punch Type Classification . . . . . . . . . . . . . . . . . . . . . . 65

3.5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Model Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6.1 Punch Extraction Algorithm . . . . . . . . . . . . . . . . . 73

3.6.2 Model XML Specifications . . . . . . . . . . . . . . . . . . 73

3.6.3 Ringside Laptop Application . . . . . . . . . . . . . . . . . 74

4 Fight Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Fight Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Rocky Martinez - Juan Carlos Burgos . . . . . . . . . . . . 77

4.1.2 Brandon Rios - Mike Alvarado . . . . . . . . . . . . . . . . 89

4.2 Punch Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.1 Total Punches . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.2 Punches Per Round . . . . . . . . . . . . . . . . . . . . . . 97

4.2.3 Compubox Comparison . . . . . . . . . . . . . . . . . . . . 98

4.3 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vii



4.3.1 Speed by Weight Class . . . . . . . . . . . . . . . . . . . . 101

4.3.2 Top Median Speed . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.1 Force by Weight Class . . . . . . . . . . . . . . . . . . . . 103

4.4.2 Top Median Force . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 New Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.1 Punch Time . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.2 Punch Sharpness . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.3 Punch Quality . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.4 Flurries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.5 Counterpunches . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.6 Boxer Aggression . . . . . . . . . . . . . . . . . . . . . . . 108

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . 110

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 Model Improvements . . . . . . . . . . . . . . . . . . . . . 111

5.2.2 Further Quantification of Boxing . . . . . . . . . . . . . . 112

5.2.3 Fighter Styles . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.4 Fight Predictions . . . . . . . . . . . . . . . . . . . . . . . 113

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.1 List of Single Punch Metrics . . . . . . . . . . . . . . . . . . . . . 116

A.2 List of Fight Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



List of Figures

2.1 CompuBox from the Mike Alvarado versus Brandon Rios fight.

Taken from CompuBox [2013]. . . . . . . . . . . . . . . . . . . . . 10

2.2 PunchZone from the Rocky Martinez versus Juan Carlos Burgos

fight. Heatmap shows Burgos landing a high volume of body shots

on Martinez. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Punch speed literature comparison. . . . . . . . . . . . . . . . . . 18

2.4 Punch force literature comparison. . . . . . . . . . . . . . . . . . 24

3.1 PunchR unit attached to wrist (left) and in standby mode (right). 26

3.2 ROC curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Thomas Dulorme right hand acceleration values (x-axis only). . . 39

3.4 Detected punch profiles (red) over Dulorme acceleration values. . 40

3.5 Comparison of raw and smoothed punch profile. . . . . . . . . . . 41

3.6 Example of the integral of a single punch from the punch start to

punch impact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Sample features for speed modeling. . . . . . . . . . . . . . . . . . 45

3.8 Observed and predicted punch speed values. . . . . . . . . . . . . 51

3.9 Punch speed predictions for 42 punches from the BASE testing. . 52

3.10 Training boxers by weight class. . . . . . . . . . . . . . . . . . . . 56

3.11 Correlation matrix of boxers’ physical features. . . . . . . . . . . . 57

3.12 Force by boxer weight (left) and force by punch type and hand (right) 62

3.13 Observed versus estimated force. . . . . . . . . . . . . . . . . . . . 65

3.14 BASE measurements versus force model estimations. . . . . . . . 66

ix



3.15 Example of bird’s eye of straight punches (far left) and hooks (mid-

dle) with side view of uppercut (far right). . . . . . . . . . . . . 69

4.1 Metrics by round colored for the fighter with the higher metric

value. Burgos is blue, Martinez is red, and white is a tie. . . . . . 88

4.2 Running average speed in mph. . . . . . . . . . . . . . . . . . . . 90

4.3 Distribution of force of punches from entire fight (top). Cumulative

force by round (bottom). . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Round 1 punches by type throughout the round. Triangle indicates

straight punches, circles indicates hooks, X indicates uppercuts.

Darker color represents rear hand punches. Lighter color represents

lead hand punches. The colored mound along the timeline in the

middle is aggregate punch count. . . . . . . . . . . . . . . . . . . 92

4.5 Treemap of punch type by fighter. Box size and color darkness

indicate more punches of each type. There are very few lead upper

cuts that the boxes are almost non-existent in the plot. . . . . . . 93

4.6 Flurries by round. Each row of bubbles is one round plotted over

time. The larger the bubble indicates more punches included in the

flurry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Spider chart for the entire fight. Each metric is plotted relative to

all other fighters that have used the PunchR system. . . . . . . . 95

4.8 Round-by-round fight score based on averaged PunchR metrics for

Rios versus Alvarado. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Punches per round by weight. . . . . . . . . . . . . . . . . . . . . 100

4.10 CompuBox versus PunchR punches recorded by round. . . . . . . 100

4.11 Speed by weight with LOESS smooth fitted line. . . . . . . . . . . 102

4.12 Force by weight with LOESS smooth fitted line. . . . . . . . . . . 104

x



5.1 Spider chart for three different Jamie Kavanagh fights using the

PunchR system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 CART fit on the 62 fights with outcomes using the new PunchR

metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xi



List of Tables

2.1 Speed studies comparison. . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Force studies comparison. . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Punches tagged during video review. . . . . . . . . . . . . . . . . 32

3.2 Punch detection features. . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Training and validation boxers’ punch detection model assessment. 38

3.4 Testing boxers’ model assessment. . . . . . . . . . . . . . . . . . . 38

3.5 Phantom X-mo speed measurements (mph). . . . . . . . . . . . . 43

3.6 Features used in speed modeling. . . . . . . . . . . . . . . . . . . 49

3.7 Polymars regression coefficients and standard errors. . . . . . . . . 50

3.8 Boxer measurements. . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.9 Boxer stance and commitment level . . . . . . . . . . . . . . . . . 55

3.10 Punch force for 1,199 experimental punches. . . . . . . . . . . . . 62

3.11 Features included in force model. . . . . . . . . . . . . . . . . . . 63

3.12 Force model feature coefficients and interactions. . . . . . . . . . . 64

3.13 Classified punch types. . . . . . . . . . . . . . . . . . . . . . . . 68

3.14 Lead multinomial 20,000 bootstrapped accuracies. . . . . . . . . . 71

3.15 Lead polyclass MARS 10,000 bootstrapped accuracies. . . . . . . 71

3.16 Rear multinomial 10,000 bootstrapped accuracies. . . . . . . . . . 71

3.17 Rear polyclass MARS 10,000 bootstrapped accuracies. . . . . . . 71

3.18 Lead punch type. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.19 Rear punch type. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Tale of the tape and fighter’s previous record per BoxRec.com [2011]. 78

xii



4.2 Total punches thrown in each round. . . . . . . . . . . . . . . . . 79

4.3 Median speed by round in mph. . . . . . . . . . . . . . . . . . . . 79

4.4 Median force by round in lbs. . . . . . . . . . . . . . . . . . . . . 80

4.5 Lead to rear ratios by round for Burgos. . . . . . . . . . . . . . . 80

4.6 Lead to rear ratios by round for Martinez. . . . . . . . . . . . . . 80

4.7 Total flurries per round (top) and Percent of punches in flurries

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8 Punches per flurry, max flurry length and percent of counter punch

flurries for Burgos. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.9 Punches per flurry, max flurry length and percent of counter punch

flurries for Martinez. . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.10 Counterpunches by round (top) and percent of all punches that are

counterpunches (bottom). . . . . . . . . . . . . . . . . . . . . . . 83

4.11 PSHARP by round. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.12 Mean Punch Quality Aggregate (top) and mean Punch Quality

Index (bottom) by round. . . . . . . . . . . . . . . . . . . . . . . 85

4.13 Boxer Aggression Rate (top) and Boxer Aggression Aggregate (bot-

tom) by round. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.14 Round by round fight score based on averaged PunchR metrics for

Burgos versus Martinez. . . . . . . . . . . . . . . . . . . . . . . . 88

4.15 Top 15 Boxers for total punches (TP) thrown during a fight using

PunchR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.16 Top 15 boxers for total punches (TP) thrown during a fight using

PunchR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.17 Median speed by weight class including number of fighters, total

punches, lead, rear, and max speed in miles per hour. . . . . . . . 101

xiii



4.18 Top 15 boxers for median speed of punches thrown during a fight

using PunchR with a minimum of 100 punches. . . . . . . . . . . 103

4.19 Median force by weight class including number of fighters, total

punches, lead, rear, and max speed in lbs of force. . . . . . . . . . 104

4.20 Top 15 boxers for median force of punches thrown during a fight

using PunchR with a minimum of 100 punches. . . . . . . . . . . 105

4.21 Top 5 boxers for mean PSHARP of punches thrown during a fight. 106

4.22 Top 5 boxers for punch quality index and punch quality aggregate. 107

4.23 Top 5 boxers for flurries per round and punches per flurry. . . . . 107

4.24 Top 5 boxers for counterpunches per round and counterpunch percent.108

4.25 Top 5 boxers for boxer aggression rate and boxer aggression aggregate.109

xiv



Acknowledgments

I would like to thank my advisor, Mark Hansen, for his advice and insight through-

out this process. I was able to work on two great projects under his guidance at

the UCLA which were both challenging yet fulfilling. I greatly appreciate the

freedom given to me to explore different avenues of work and am glad to have

worked with him. To my committee Jan De Leeuw, Ying Nian Wu, and Mani

Srivastiva for their feedback during the oral defense presentations.

Thanks to everyone involved in the development of this system. This work was

done in consultation with the IT and Sports departments of a large broadcasting

company and I’d like to thank them for their incredible support and encourage-

ment. Their knowledge on boxing, countless hours at boxing events, and general

positive support of the system has been integral to my work. Working on this

project with all of them has been a fantastic experience. I know setup for all the

experimental data collection was a lot of work as was keeping everything in line

during the live events. It has been a tremendously gratifying experience.

Further, thank you to all the boxers willing to participate in experimental data

collection exercises and all the boxers willing to use the PunchR accelerometer

units during live fights. The extensive data collected made this project possible.

Taking time out of their training schedules to provide us with the information to

work on this project is irreplaceable.

To the rest of the UCLA Statistics department for providing a supportive

environment to complete my graduate studies and this dissertation. I received

many great opportunities to teach at the undergraduate level that was a nice

counter-balance to my own studies. I was surprised to learn I enjoy teaching as

much as I do as a result. Also, the graduate student community environment

kept my life lively and varied which was absolutely necessary to contrast the often

solitary lifestyle when partaking in statistics research. Thanks to Glenda Jones for

xv



keeping me on track and all the administrative help. I am also very appreciative

of the weekly conversations and all the treats!

To the St. Olaf Mathematics and Statistics department for getting me in-

volved in applied statistics research at an early stage in my academic career that

really prompted me to a graduate degree. The opportunities I was afforded as an

undergraduate were incredible and I do not think there is really any other depart-

ment like it. The sense of community to help students succeed in statistics past

St. Olaf is unique and it is no wonder there are so many great Ole statisticians.

And finally, to my friends and family who were always willing to listen and keep

me positive throughout my five years at UCLA. The phone calls, the messages,

the advice, and the numerous trips kept me refreshed and invigorated to complete

this dissertation when at times it was a struggle. I could not have done it without

all of you and I will appreciate that for the rest of my life.

xvi



Vita

2008 B.A. (Mathematics, Statistics concentration), St. Olaf College.

2009-2013 Teaching Assistant, Statistics Department, UCLA.

2009 Graduate Student Researcher, Center for Embedded Network

Systems, UCLA.

2010 M.S. (Statistics), UCLA.

2012-2013 Instructor, UCLA Extension.

2012 Lecturer, Statistics Department, UCLA.

2009-present Boxing Statistical Consultant.

xvii



CHAPTER 1

Introduction

Much is made of boxing’s declining popularity in the United States with the rise of

a direct competitor in mixed martial arts (MMA), along with the ever increasing

popularity of team sports especially American football and basketball. The non-

existent broadcasting of large fights on national network television, dwindling

media coverage, and controversial judging decisions have dismayed existing fans

while failing to attract new fans. A Gallup poll conducted at the end of 2008

has boxing as the seventh most popular viewer sport with only 2% of respondents

favoring it while American football leads the way at 41%, followed by baseball

at 10%[Jones, Dec 2008]. Nonetheless, a Forbes list ranking the top money-

making athletes in 2012 has the top two athletes being boxers Floyd “Money”

Mayweather and Manny Pacquiao making $85 million and $62 million respectively

[Badenhausen, June 2012]. Pay-per-view events broadcast by Home Box Office

(HBO) and Showtime consistently reach one million buys providing huge profits

for each event [Jay, Dec 2012, Rafael, May 2013]. So despite some of boxing’s

popular decline it continues to have every reason to be included in the popular

sports discussion.

One issue that cannot be contended is that boxing is definitely falling behind

in numerical analysis of the sport during live events. Recently, sports have seen

an explosion of sorts in quantification and statistics, much of it realtime, but box-

ing, so far, has been left behind. Leading the way in these statistical innovations

in sports is baseball. The publication of the book Moneyball (and subsequent
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major motion picture) put baseball Sabermetrics with Bill James’ work into the

public conscience. This strengthened the case for high level analysis that Saber-

metricians had been promoting for years. As a result many baseball teams have

hired statisticians to improve player drafting strategies and roster construction,

to reduce contracts while improving performance on the field.

For example, the importance of commonly held measures like batting average

(BA) and earned run average (ERA) have been supplanted with on-base plus

slugging (OPS) and walks plus hits per inning pitched (WHIP) when trying to

quantify the value of an individual player to a team’s success. Available since

2006, the PITCHF/X system is employed in all Major League Baseball stadiums,

which uses two cameras to record information about pitch location, type, rotation,

and speed adding a vast array of measurements to evaluate pitching performance

[Sportvision.com, 2013]. There are countless other example in baseball that could

serve as examples of how measures are being developed to increase analytical

thinking about the sport.

Other sports have followed baseball’s lead often searching for value in over-

looked non-traditional locations with systems like SportsVu for basketball and

soccer. SportsVU considers spatial locations and relationships of players during

games to assess team dynamics and how players perform with different combina-

tions of teammates or against varying opponent defensive techniques [STATS.com,

2013]. In football, ESPN has introduced the Quarterback Rating (QBR), an ad-

vanced metric to quantify a quarterback’s performance throughout a game [Oliver,

Aug 2011]. In an attempt to improve fan enjoyment of the 2012 NBA Slam Dunk

Contest, the NBA employed the Slam Net Force to record force of all the slam

dunks as developed by the MIT Media Lab [Novy et al., 2012] . Further, the

annual MIT Sloan Sports Analytic Conference has boomed in popularity with

teams’ owners, general managers, sports analysts, and quantitative analysts all in

attendance to discuss topics relating to the advancement of quantitative analytics

2



in sport [Sloan, 2013, Arnovitz, Mar 2013].

Many new measurement systems have been devised through the use of video

cameras. Another inexpensive, widely deployed sensor is the accelerometer. In

recent decades, these devices have become commodity sensors, finding their way

en masse to consumer products like mobile phones. In sports, Major League

Soccer has introduced accelerometers to record measures [Squatriglia, April 2012,

Duffy, July 2012] about players during matches while the National Football League

(NFL) has begun testing accelerometer placement in helmets, mouthpieces, and

earpieces to record the severity of blows to the head as a result of tackles [Maske,

Jan 2007]. Some NFL prospects wore accelerometer equipped compression shirts

while participating in workouts prior to the NFL draft [Stack, Feb 2011]. Similarly

rugby in New Zealand has equipped mouthpieces and patches behind players ears

with accelerometers to record all impacts that occur throughout a match [Stoney,

April 2013, Knouse et al., 2003].

Not only are accelerometers being frequently used at the professional level of

sports, non-professionals are taking advantage of accelerometers for fitness moni-

toring in devices such as the Nike+ Fuelband and smart phone applications. The

data collected from these devices are pushed to online servers where it is viewable

via website or online device. These measurement devices become valuable training

tools even at the amateur level. This widespread use of accelerometers advances

the development of higher functioning hardware and associated research methods

to take advantage the ever increasing amount of data.

With this push for more data in all sports and the available technology to

record this information professional boxing has made few advances. CompuBox,

the main provider of live fight statistics claims it “produces live stats in 16 cate-

gories,” but has measured these same metrics since 1985 [CompuBox, 2013]. Com-

puBox employs professional human operators ringside to record punches landed

and punches missed. PunchZone, launched in 2009, is an extension to the numbers
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recorded by CompuBox providing five rough spatial locations to these measure-

ments [HBOSports, 2010]. Amateur boxing has seen the use of accelerometers

in headgear to record head acceleration as a result of punch impact [Stojsih,

2010] and flexible wrist bands to record punch impacts for an automated scor-

ing system [Hahn et al., 2010]. These did not lead to further advancements in

professional boxing as headgear is not used and in amateur fights to score points

only a “reasonably forceful punch” is necessary [Mack et al., 2010]. An article on

thesweetscience.com from February 14, 2011 penned “A Numbers Game? As-

sessing Boxing’s Place in the Statistical Revolution” discusses the limitations box-

ing has in recording statistics being dissimilar to other sports. The article states,

“Ultimately, there’s only so much you can do with statistical data in boxing.

The sport just doesn’t lend itself conveniently to numbers or acronyms [Raskin,

February 2011].”

With so little activity taking place in the boxing community comparisons must

be made to another one-on-one combat sport, MMA. MMA is a relatively new

sport but has already made comparable headway to boxing in the realm of numer-

ical analysis [Meltzer, Sep 2010]. CompuStrike, developed in 2007, is a natural

extension by CompuBox employing operators to record various live statistics, out-

numbering those used in boxing with a total of 26 metrics [CompuStrike, 2007].

Another independent company, FightMetric, also started providing MMA fight

statistics in 2007. FightMetric reviews fights post event using video recordings

to derive metrics frame-by-frame. They have numerous categories dealing with

volume, accuracy, and location of strikes in addition to wrestling movements. An

overall fight performance metric has been created to provide one score to sum-

marize each fighters performance in a fight [FightMetric, 2011]. There are more

movements and attacks in MMA to quantify where boxing is solely restricted to

punching, but more thought has gone into developing new ideas more recently.

In both boxing and MMA the problem with data collection during live profes-
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sional fights so far has been the reliance on human operators making judgement

calls based on previously defined definitions of fighter actions. The pitfall of this

collection method is different operators having different interpretations of these

definitions, having to make split second decisions often with compromised viewing

angles and loud fan bases, and possibly having preconceived notions about fight

participants. It is inevitable that under these conditions there is bias introduced

based on the operators in charge of scoring the different fights in addition to the

human error that will occur. It is impossible to remove all subjectivity when

collecting data in this manner.

This dissertation discusses the development as well as the implementation of

the automated measurement system called PunchR to make advances in boxing

quantification in live professional boxing matches. The PunchR system employs

nonintrusive accelerometers placed on the wrists of the boxers inside their gloves.

The accelerometers wirelessly relay acceleration data to a ringside laptop providing

high grain temporal data that can be used instantaneously at ringside. Statistical

models process the data for realtime estimates of fight metrics to quantify the ac-

tion taking place in the ring. There are no new risks provided to the boxers during

the fight nor do these accelerometers affect either of the boxers’ physical perfor-

mances. As there is no human involvement of data collection during each fight

measurements are recorded identically from fight to fight provided the accelerom-

eters are properly calibrated and the ring conditions provided sufficient sample

rates. This is not to say there is no error involved in this system, so while humans

as obvious sources subjectivity and bias are removed, error still remains through

choice of technology to record measurements, along with modeling assumptions

and techniques.

The new boxing metrics metrics are largely tangible quantities that already are

commonplace in boxing discussions but had no prior method of measure including

punch counts, speed, force, and punch type. Additionally, methods to measure
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number of counterpunches and flurries using the timing of certain punches are

constructed. There are also new proposed metrics that are not in typical boxing

terminology, which are either combinations of the common punch metrics or other

measures taken from the acceleration data. These metrics attempt to measure a

boxer’s aggression and different measures of overall punch quality.

The statistical methods used to model punch detection, speed, force, and

punch classification are non-parametric in a sense that the data is really driving

the modeling procedure without any notion of a structure prior to model con-

struction. Data for the models is collected in an experimental setting to construct

models to be translated to live fights. Features are derived from the acceleration

profiles of punches combined with physical measurements to create a complete

feature set to train the models.

This dissertation outlines many new statistical ideas relating to the sport of

boxing while laying the groundwork for many new contributions to the quantita-

tive analysis of the sport. The remaining format is as follows: Chapter 2 provides

a review of previous boxing methods of quantifying boxing during live fights as

well as in controlled experimental settings. These include punch counts, punch

speed, punch force, and punch type classification. Chapter 3 provides a system

overview of the hardware, statistical modeling, and model instantiation for use

during fights. Chapter 4 looks at complete fight results with the construction of

novel boxing metrics and visualizations. Finally, chapter 5 discusses remaining

possibilities for future work with the system, other possibilities in the develop-

ment of the quantification of boxing, and a small section about fight outcome

predictions.
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CHAPTER 2

Boxing Quantification

As discussed in the introduction, there has been previous work to quantify boxing

in the ring as well as in experimental settings. This chapter will survey the ways in

which boxing has been quantified prior to this dissertation. This includes private

companies’ measurement systems along with academic studies interested in the

biomechanics of boxers’ punches, health implications, and training techniques.

Largely, boxing measurements outside of punch counts have come in controlled

environments with few studies taking live measurements during fights. At times

weaknesses in each measurement system will be discussed not to discredit these in

favor of PunchR, but to point out possibilities where PunchR provides a different

approach.

In addition to exploring the measurements available in boxing, the speed and

force measurements are used as guides during data collection for the respective

statistical models. Using these measurements as a guide is necessary to verify

that the data that has been collected is representative of a larger population of

boxers in order to extrapolate the speed and force estimations to boxers that did

not participate in this data collection process.

2.1 Live Fight Measurements

Currently, live boxing statistics in professional fights are limited to CompuBox

and HBO PunchZone. There have been other attempts to bring live numerical
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analysis to fights, but little headway has been made to leave a lasting impression on

the sport. The bestshot System attempted to bring an automated quantification

method to live professional matches but ultimately was only used in a total of

six fights [Pierce et al., 2006]. Some work has been done with amateur fights,

incorporating new technology to measure boxing, but these do not often translate

well to the professional level because of the rule implementations at the different

levels of the sport.

2.1.1 CompuBox

The most well-known, longest standing provider of live fight statistics is Com-

puBox, started in 1985. CompuBox has two professional operators sitting ring-

side with a laptop counting boxers’ punches looking for jabs missed, jabs landed,

power punches missed, and power punches landed. Power punches are any punch

that is not a straight lead hand jab. This system does not differentiate between

punching hand so a lead hook is counted the same as a rear uppercut, both as

power punches. The punch counts are aggregated by round and fight for use in

fight broadcasts along with post fight analysis. [CompuBox, 2013, Perry, Feb

2007]

CompuBox is the starting pointing for all conversations involving fight statis-

tics, but remains very contentious in terms of its accuracy and effectiveness in

describing a fight [Magno, January 2011, InterAksyon.com, June 2012]. With hu-

man operators inevitably there system some amount of human error in each fight.

In addition, prior knowledge about boxer’s record, opponents, and CompuBox

results may bias an operator to record more punches as landed or missed in com-

parison to a different operator. The operators sit ringside providing only one angle

of the fight where the view of one fighter can easily be blocked by the opposing

fighter or the referee making missing punches very conceivable. Not to mention

a raucous crowd during a title-fight in favor of one fighter over another may lend
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an operator to count more landed punches over misses or vice versa. One of the

founders, Bob Canobbio, pointed out the system flaws best when mentioning the

possibility of evolving the system in an interview,

“From my standpoint, I could probably add more categories, but

I don’t want to sacrifice accuracy. We could do left hand and right

hand if we wanted. But too many keys leads to too much thinking,

and we dont want to be thinking while we’re working. I don’t want to

sacrifice accuracy [Raskin, February 2011].”

He does stress the desire for accuracy, but the idea of having to mitigate think-

ing is a concession of the possibility of outside influence on the human operators.

Even with these weaknesses in the system CompuBox remains the standard for

boxing metrics in professional boxing providing rich information about the story

of the fight. These statistics are used in on-air broadcasts by HBO and Showtime

to provide live round-by-round analysis. Also, they provide measures to preview

a fight to highlight match-ups and to summarize a fight following completion to

compare fighter’s performances. Figure 2.1 is a fight report taken from CompuBox

[2013] summarizing the Mike Alvarado versus Brandon Rios fight that took place

in Carson, CA. Overall, Rios lands more total punches, jabs, and power punches

with the fight ending in the seventh round of a ten round fight. Unlike other

sports, for instance baseball, there is no community that uses this data to take a

high-level quantitative view of boxing.

2.1.2 PunchZone

HBO PunchZone, launched in 2009 by HBO, is really a supplement to CompuBox

numbers making use of a nice visualization to provide spatial location of landed

punches. Like CompuBox, HBO employs operators to watch live fights, done

remotely, again counting boxers’ punches with CompuBox numbers acting as cross
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Figure 2.1: CompuBox from the Mike Alvarado versus Brandon Rios fight. Taken

from CompuBox [2013].

reference for accuracy. The types of punches recorded are still jab miss, jab landed,

power punch miss, power punch landed. The added dimension by PunchZone is

the grouping of the landed punches to five body locations including two sides of

the head, the chin, and two sides of the body. This provides visual reference to

where punches are landing on each boxer on top of just the raw counts with a

heat match darkening where more punches are landing. [HBOSports, 2010]

The main use of PunchZone is as an online website for boxing fans without the

HBO television broadcast to follow a live fight online round-by-round. Again only

round summaries are available as in CompuBox, but this does provide the first way
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to follow a fight live online. The visualization is also used during live broadcasts

on HBO to provide an additional level of depth to the announcer’s commentary

[Braff, Mar 2010]. This has many of the same downfalls as CompuBox with the

possibility of human error and bias. Also, in both systems the temporal resolution

is aggregated by round. There is no second-by-second breakdown of each round

which leaves something to be desired. Lastly, there is no distinction between lead

hand punches and rear hand punches, a lead hook is counted the same as a rear

jab, which for different fighters may vary wildly in effectiveness.

Figure 2.2: PunchZone from the Rocky Martinez versus Juan Carlos Burgos fight.

Heatmap shows Burgos landing a high volume of body shots on Martinez.

2.1.3 Live Fight Force Measurements

Pierce et al. [2006] is the first attempt to record measurements of punch force

in any boxing match. This is also the one prior attempt to provide automated
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measurements to live professional fights. In this study, the company SensorPad

Systems, Inc. developed the proprietary bestshot System that uses a lightweight

force sensor placed on the glove to directly measure contact force of punches. This

study included twelve boxers in six professional boxing matches across five differ-

ent weight classes. Contrary to every other lab study which have used responsive

sensors or accelerometers in the object being hit, this study had instrumentation

in the boxers’ gloves to directly measure the force. A lower limit of 500 Newtons

(122.4 lbs) is set so as not to record incidental contact or “pity-pats,” which are

not considered punches. Two of the fights ended in the first round as a result of

injury leaving only four complete fights for comparison [Pierce et al., 2006].

During these fights a total of 1,675 punches were recorded, with 500 of them

coming in a single fight. The maximal punch force across all of these fights was

thrown by a cruiserweight with a value of 1204.5 lbs. Of the 1,675 punches more

than half the force measurements are below 245 lbs. Additionally only three

punches were recorded over 900 lbs [Pierce et al., 2006]. Five of the twelve boxers

averaged below 245 lbs for the entire fight. The authors attribute these small

force measurements (in comparison to previous experimental studies) to boxers

having to be cautious in the ring so not to get hit, which becomes more clear

when presented with the lab force measurements in the following section. All

force measurements have been translated to pounds for consistency across this

dissertation.

The main drawback to this system is that the force sensors alter the punch-

ing surface of the glove. As a result, this system causes concern for boxers who

have trepidation towards any foreign object being placed in or on their oppo-

nents’ gloves that could result in further harm being caused during a violent fight.

Further boxers’ also have concern for their own hands when punching with an

additional device on their own gloves. Similarly, boxing commissions who have

responsibility for boxers safety have difficulty allowing equipment to be used in
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fights that will come in direct contact with a fighter’s body and face that has

the possibility of increasing the amount of punishment that these fighters already

endure.

2.1.4 Amateur Fights

At the amateur level the motivations vary for the different attempts to quantify

boxing ranging from a desire to improve scoring, to learn about health risks, and

to improve training methods. The study Hahn et al. [2010] used a combination of

sensor-outfitted body vests, head protection, and accelerometers in the gloves to

record when body punches were landed during fights. The information is uploaded

wirelessly to a ringside computer where it is processed to record valid scoring

punches. This system is called BoxTag [Bruch et al., 2010]. In amateur fights

a point is awarded by judges for a punch that lands with the knuckle surface of

the glove to an opponents head or body. This system has been employed in eight

fights providing an objective scoring method in response to many controversial

decisions seen at the amateur level. The use of accelerometers in the boxing

gloves to aid the punch count and impacts mirrors the PunchR study using an

automated method to make the desired measurements.

Both Beckwith et al. [2007] and Stojsih et al. [2008] are concerned with the

Head Injury Criterion (HIC) and the Gadd Severity Index (GSI), which study

the possibility of concussions based on the estimated severity of head impacts.

These studies use accelerometer equipped head gear to be used to record HIC

and GSI during amateur fights. Beckwith et al. [2007] investigated the properties

of the head gear when blows were applied to a manikin head in a controlled

experimental environment. Stojsih et al. [2008] adapted the technology taking to

sparring rounds amongst a number of men and women amateur fighters preparing

it for use in a live event. Neither have taken the head gear to live amateur bouts

yet.
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Unfortunately, using sensor-equipped body vests in combination with accelerom-

eters in the gloves nor sensor-equipped head gear cannot be translated to the pro-

fessional level because of the tightened restrictions on boxer’s equipment including

no body wear or headgear.

2.2 Boxing Lab Measurements

The boxing lab measurements are a complete look at all academic published papers

pertaining to punch speed followed by punch force. A majority of the published

speed measurements are recorded using some high speed camera with scaling

markers as points of reference. There have been no studies that have measured

punch speeds during live fights. Most of the force measurements have also been

collected in the lab or gym setting using a variety of techniques involving known

mass targets with accelerometers. The majority of these studies have been to

assess the effects of punch force in relation to boxer injuries or boxer biomechanics

[Stojsih, 2010].

2.2.1 Speed

To begin we consider seven studies that recorded speed for boxer punches along

with two more studies that assessed karate strikes for further velocity reference.

Essentially there are two methods to record punch speed: using high speed video

to record boxers’ punches while placing reference points on the boxers glove to

measure the gloves’ movement over time or using accelerometers within the boxers’

gloves with the acceleration measurements being integrated up to punch impact.

The second measurement technique falls in line with the measurement technique

to be used by PunchR. All studies’ measurements have been converted to miles

per hour (mph).

Five studies used high speed video with reference points on the boxers’ gloves
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to measure speed including the earliest study, the oft cited, Atha et al. [1985]

measured a single punch from professional heavyweight Frank Bruno. This single

punch recorded a speed of his fist at impact of 19.9 mph [Atha et al., 1985].

Another older study with high speed video recordings, Whiting et al. [1988],

had speeds recorded on 83 punches. The peak speeds for hooks were 28.0 ± 5.1

mph noticeably faster than for jabs with peak speeds of 14.8 ± 2.5 mph.

During the next study of four punches by welterweight Ricky Hatton,“...his

fastest effort was clocked at 32 mph- a blistering left hook...” with the three other

punches being recorded at speeds of 22, 24, and 24 mph respectively [Manchester,

June 2007].

Mack et al. [2010] had no specific speeds listed, but the published figures show

a maximum punch speed for hooks of just under 47.0 mph ranging all the way

down to 15 mph. There are fifteen punches with velocities above 35.8 mph, which

are some of the fastest speed measurements recorded in any of the studies. The

speeds for straight punches are slower ranging from just above 22.4 mph down to

13.4 mph. [Mack et al., 2010]

Piorkowski et al. [2011], recorded individual punches as well as punches in

combinations. Again, hooks were noticeably faster than straight punches, and

rear hand punches were faster than lead hand punches. The fastest punches were

rear hand hooks at 24.6 ± 4.9 mph, while the lower end were at 16.2 ± 1.6 mph.

All the combination punches were slower than the single punches with the left

combination punches going as slow as 12.6 ± 2.1 mph. [Piorkowski et al., 2011]

The remaining two boxing studies we consider used accelerometers to measure

speed. In Walilko et al. [Jan 2005] speed was measured using both an accelerome-

ter placed in the hands of each boxer along with video analysis. The accelerations

were integrated up to face contact while the glove motion was tracked to verify

the accuracy of the integration. “The results showed good correlation between
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the two speed measurements,” so the integrated hand accelerations were reported

as speed. The mean speed was 20.5 ± 4.6 mph for 18 total punches from four

boxers with a maximum of 30.0 mph for the middleweight boxer. The minimum

punch speed was 13.6 mph.

Also using accelerometers the thesis Stojsih [2010] determined speed by inte-

grating the resultant hand acceleration up to punch impact. The mean speed is

reported as 22.4 ± 6. mph for 113 punches from male fighters ranging from a

minimum of 20.13 ± 6.7 mph to 26.9 ± 9.0 mph. The mean speed for 30 punches

from eight female fighters is 17.9 ± 4.5 mph, ranging from a minimum of 13.4

± 0.7 mph to a maximum of 24.6 ± 2.2 mph. This study does not list a single

minimum punch value or maximum punch value. [Stojsih, 2010]

Further, to gain an even better understanding of athletes hand speed when

striking their opponents we also report on two studies done on karate strikes

that are similar to those performed for boxing. Both karate studies used high

speed cameras to measure the speed of the athletes’ strikes. Cesari and Bertucco

[2008] recorded a mean of 18.4 ± 3.6 mph for six single punches from expert

karate participants, and a mean of 10.9 ± 1.6 mph for six single punches from

novice karate participants. Not surprisingly the maximum recorded for the cohort

of expert fighters was 21.8 mph much faster than the maximum for the novice

fighters of only 13.3 mph [Cesari and Bertucco, 2008]. In the far older study

Vos and Binkhorst [1966], five total karate strikes were recorded with velocities of

31.1, 30.5, 28.6, 24.9, and 24.2 mph. The measurements for the karate studies are

comparable to those from the boxing studies.

Table 2.1 is a comprehensive summary of all the speed studies. This table

combines all groups seen in each of these papers including males and females,

elite and novice fighters, as well as different punch types. All values are listed in

mph.

1No specific values listed. The approximated (∼) from the published plots.
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Study Punches Mean Max Min

Atha et al. [1985] 1 - 19.9 -

Whiting et al. [1988] 83 20.4 ± 4.1 28.0 ± 5.1 13.2 ± 2.5

Walilko et al. [Jan 2005] 18 20.5 ± 4.6 30.0 13.6

Manchester [June 2007] 4 25.5 ± 4.4 32.0 22.0

Stojsih [2010] 143 21.4 ± 6.3 26.9 ± 9.0 13.4 ± 0.7

Mack et al. [2010]1 39 - ∼47.0 ∼13.5

Piorkowski et al. [2011] 160 18.3 ± 3.3 24.6 ± 4.9 12.6 ± 2.1

Vos and Binkhorst [1966] 5 27.8 ± 3.2 31.1 24.2

Cesari and Bertucco [2008] 12 14.6 ± 4.7 21.8 8.7

Table 2.1: Speed studies comparison.

Table 2.1 is visualized in Figure 2.3 with the mean plotted as a black dot, with

standard deviation as the dotted line, the maximum value as the red asterisk and

minimum value as the blue asterisk. The studies are listed across the x-axis with

the publication year.

To summarize all the studies, the majority of the speeds fall between 10 and

35 mph. One study measured extremely fast punches of over 35 mph all the

way up to roughly 47 mph. Rear punches are typically faster than lead punches,

hook punches are typically faster than straight punches, more advanced fighters

typically faster than newer fighters, and men typically faster than women. The

only study with a large variety of weight classes, Stojsih [2010], did not show a

trend of smaller being faster than larger fighters. No speed measurements have

been made on uppercut punches nor have any measurements been made during live

fights. These points are all important to keep in consideration when addressing

the speed modeling.
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Figure 2.3: Punch speed literature comparison.

2.2.2 Straight Punch Force

With force we first discuss straight punches as initial boxing studies only took

measurements on straights. Very few papers have studied hooks or uppercuts.

Revisiting the Atha et al. [1985] study, Bruno punched an instrumented, padded

target mass suspended as a ballistic pendulum. The one punch analyzed in de-

tail had a peak force on impact of 920 lbs This punch was extrapolated to the

equivalent maximal force delivered to a human’s head of 1,421 lbs.

Two older studies reported maximal punch forces of 776 lbs for 24 elite boxers,

680 lbs for 23 national boxers and 659 lbs for 23 intermediate boxers [Joch et al.,

1981], along with 606 lbs for a heavyweight amateur boxer [Karpilowski et al.,

1994].

In the study, Manchester [June 2007], where Hatton threw four punches the
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researchers attached a force sensor to a 30 kg punching bag with the sensor at-

tached to a laptop. At first glance the researchers thought he had landed a blow

with 3,307 lbs of instantaneous force. During further analysis it was revealed that

the power of the punch caused the sensor to malfunction, giving a false reading.

So the researchers used (undocumented) alternative data and examined (unspec-

ified) previous studies to conclude he had thrown a punch with 882 lbs of force.

[Manchester, June 2007]

The more recent method to record force is boxing dynamometer, which is a

combination of a triaxial accelerometer force measurement system and a boxing

manikin built specifically to record punch force. This was first outlined in the

study Smith et al. [2000], which measured forces for elite, intermediate, and novice

boxers. The maximal punches forces in this study for each group were 1079 ± 51

lbs, 837 ± 30 lbs, and 535 ± 26 lbs for rear hand punches. The lead hand punches

were significantly lower for each group at 640 ± 51 lbs, 513 ± 28 lbs and 361 ±

22 lbs, respectively.

Six other studies also used the boxing dynamometer to record force on straight

punches. Sherman et al. [2004] had eleven olympic boxers record a mean value of

513 ± 214 lbs. This is also the first study to consider other types of punches, such

as hooks, which we will cover in the next section, and the only study to consider

uppercuts which had a mean of 347 ± 192 lbs [Sherman et al., 2004].

In Walilko et al. [Jan 2005] boxers weighing between 112 pounds and 240

pounds recorded eighteen direct hits to be used in analysis. Peak punch force

ranged from 447 to 1,066 lbs, with a mean of 770 ±182 [Walilko et al., Jan 2005].

The next study, Dyson et al. [2005], had six amateur boxers throw punches

during a 30 second period from which their maximal punch force was analyzed.

Typically between 19-20 punches were recorded for each hand during the 30 second

time period. The goal of this study was to compare forces of punches that were

either thrown for maximal speed or maximal force [Dyson et al., 2005]. The mean
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maximal punch force for the lead hand was 468 ± 14 lbs and 592 ± 22 lbs for the

rear hand.

Smith [2006] analyzed 29 senior English amateur boxers maximum punch

forces for straight punches to head and body again using the boxing dynamome-

ter. Here, they recorded the rear hand mean maximal force to the head at 594

± 286 lbs and lead hand force at 387 ± 157 lbs. The recorded forces were lower

for punches thrown to at the body at 595 ± 243 lbs and 378 ± 143 lbs, for rear

and lead hands respectively. These are very similar to the force values recorded

in Dyson et al. [2005] for the punches thrown for maximal speed to the body and

the head.

The Stojsih [2010] study had 18 boxers, both male and female, throw a varying

number of punches as was discussed in the speed section. In all there were 99

straight punches thrown during testing. For all boxers the mean force was 450 ±

308 lbs. In the comparison of males and females, the 10 males threw 113 punches

with a mean punch force of 547 ± 335 lbs while the 8 females threw 30 punches

with a mean of 335 ± 189 lbs.

Lastly, Mack et al. [2010] had 42 amateur boxers to record force resulting in

only 39 reliable straight punches to be analyzed. Again no specific values were

listed but force values were estimated from the published scatterplots. From these

39 punches the peak force was roughly 1,034 lbs with a minimum value of roughly

270 lbs.

2.2.3 Hook Punch Force

There have been considerably fewer studies that have recorded force measurements

from hook punches resulting in a less extensive section as the straight punch

section. As in the speed studies, overall the hooks have higher measurements

than the straight punches. The maximum force across all punch categories was a
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hook.

First, we return to Sherman et al. [2004], which was the first study to consider

hooks separately from straight punches. The measured hooks had a mean force

of 980 ± 524 lbs with a maximum of 2,234 lbs. This maximum of 2,234 lbs is the

highest recorded force in any of the studies. Additionally, the smallest force seen

in this study was only 103 lbs, one of the lowest of any of the studies.

Smith [2006] is the only study that had mean rear hooks that were lower than

the straight punches by the rear hand. This study recorded the rear hand hooks

to the head at 582 ± 234 and rear hooks to the body at 574 ± 208 lbs. The

lead hooks to the head and to the body are 542 ± 161 lbs and 543 ± 161 lbs,

respectively.

The Stojsih [2010] study had male boxers throw a total 34 hooks and females

throw at total of ten hooks. Separately, the means for the males was 771 ± 285

lbs and for the females was 399 ± 126 lbs. The mean hook force was well above

the mean straight punch force.

By again examining the published plots in Mack et al. [2010], the hook force

for the 39 amateur boxers the maximal punch force is just above 1,800 lbs for a

hook. Additionally, there is a punch with a force slightly under 1,575 lbs and five

punches between 1,125 and 1350 lbs. On the lower end there is a hook that is

slightly below 450 lbs. Outside of the Sherman et al. [2004] study, this study had

some of the highest individual force punches of any that are being compared.

A similar table (2.2) as seen in the speed section summarizes the available

force data. All groups seen in each of these papers including males and females as

well as elite and novice are combined for one mean, max, and min value per study.

Also included are the force measurements from the live fight system Pierce et al.

[2006] as it is the only study to have previously record force during live fights.

2No specific values listed. The approximated (∼) from the published plots.
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Type Study Punches Mean Max Min

Straight Joch et al. [1981] 70 - 776 -

Atha et al. [1985] 1 - 921 -

Karpilowski et al. [1994] 1 - 606 -

Smith et al. [2000] 46 652±252 1,297 277

Sherman et al. [2004] - 513±214 - -

Walilko et al. [Jan 2005] 18 770±182 1,066 447

Dyson et al. [2005] 36 - 952±41 420±9

Smith [2006] 29 - 592±286 378±143

Manchester [June 2007] 4 - 882 -

Stojsih [2010] 79 450±308 - 97

Mack et al. [2010]2 39 - ∼1,034 ∼270

Hook Sherman et al. [2004] - 980±524 2,234 103

Smith [2006] 29 - 582±294 543±161

Stojsih [2010] 34 771±285 - -

Mack et al. [2010]2 39 - ∼1,798 ∼405

Fight Pierce et al. [2006] 1,675 234±123 1,205 195±71

Table 2.2: Force studies comparison.

Table 2.2 is visualized in Figure 2.4 with the mean plotted as a black dot, with

standard deviation as the dotted line, the maximum value as the red asterisk and

minimum value as the blue asterisk. The studies are listed across the x-axis with

the publication year.

To summarize, the majority of the force measurements in the experimental

setting fall between 250 to 1,100 lbs of force with a mean near 700 lbs. The

highest maximal punch force is all the way at 2,234 lbs with a minimum of only

97 lbs. Hooks are more generally more forceful than straight punches, experienced
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fighters throw harder punches, and males punch harder than females. There is

also a large discrepancy between the force measured in the experimental setting in

comparison to in the live fight with the live fight having far less forceful punches

overall. Unfortunately, the difference between experimental punches and live fight

punches is confounded by the measurement process. The live fight study is the only

system to have used a force sensor on the glove rather than having to measured

force in the response to a punch. Only one study measured force for uppercuts,

which had lower force values than the straight punches in that same study.
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CHAPTER 3

PunchR System Overview

Having seen all the prior methods of quantifying boxing we turn to outlining the

PunchR system for taking real-time measurements during live boxing matches.

The PunchR system is comprised of many different hardware and software com-

ponents. This chapter first discusses the hardware necessary for use of the system

during a live fight in addition to considerations about system quality and consis-

tency needed to provide appropriately reliable output for on-air broadcast. Fol-

lowing the hardware description, we present an overview of our data collection for

the PunchR system, statistical methods used for modeling, and results for punch

detection, speed, force and type. Lastly, is the model instantiation in concordance

with the hardware pieces for use during live fights.

3.1 Hardware Development

A custom dual-axis accelerometer has been designed in previous phases (prior

to any of this work) of the PunchR project to record hand accelerations during

boxers’ punches [Eveland, 2011]. Prior to use in live fights these accelerometers

had to be finalized from the previous versions, making minor calibration changes

for each of the units and monitoring the sampling rates. The final glove units

measure 1.7 inches by 0.9 inches by 0.38 inches weighing 7.9 grams, small enough

and lightweight enough to be placed underneath a boxing glove, but taped above

a hand wrapping on the inside of the wrist. The one base unit that handles

communication between the glove units and the PunchR system computer is only
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2.6 inches by 2.6 inches by 1.2 inches weighing 66 grams. As designed, the system

measures and wirelessly communicates the accelerations of a boxer’s hands during

live boxing matches.

Figure 3.1: PunchR unit attached to wrist (left) and in standby mode (right).

3.1.1 Hardware Technical Specification

The PunchR system consists of a number of primary hardware elements and as-

sociated primary software elements. Taken from the Eveland [2011], the typical

physical setup uses:

• Four glove units - wireless sensor units inserted, one per hand, in the gloves

of the fighters to be monitored.

• One base unit - USB-attached wireless transceiver which handles communi-

cation between the glove units and the system computer.

• One host computer - d laptop which receives and analyzes glove data, prepar-

ing it for further production use.

• One or more glove unit chargers - battery chargers used to charge and con-

dition glove unit batteries in advance of a fight.

• Assorted antennas, cables, and mounting hardware.
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PunchR glove units are compact, battery-powered, wireless sensor devices used

to measure and transmit the acceleration experienced by a boxer’s fist over the

course of a punch.

System radio operation is in the 2.4 GHz ISM band and makes use of Nordic

brand low-power embedded transceiver system-on-chip (SoC) modules with 0 dBm

output power. Radio firmware implements frequency-agility, with support for 20

channels spanning 2.4-2.5 GHz. The operator can selectively change the system’s

operating frequency to avoid interference with other devices operating in same

band.

The glove units feature an onboard ceramic chip antenna while the base unit

operates with a variety of high-gain uni- and omni-directional antennas. Avail-

able antenna configurations include a highly-directional Luxul brand circularly-

polarized Yagi antenna with 10 dBi gain and a 50-degree beamwidth, an omni-

directional WiFi+ brand multi-polarized antenna with 7.5 dBi gain, and a number

of other directional and omni-directional models.

The antenna and base unit are typically mounted together near the ring. Op-

timal performance requires line-of-sight to the ring, a mounting position several

feet above the level of the ring and, when a directional antenna is used, enough

“throw” distance to take in the entire ring.

The PunchR system operates with a minimum range of 50 feet from glove units

to base unit. Data transfer over the air is at the rate of 2 Mbps or approximately

600 sensor data packets per second.

Inertial sensing is provided by a single-package two-axis MEMS accelerometer

with +/- 35 g range. The accelerometer provides a highly linear, high-fidelity

indication of instantaneous acceleration for analysis. A passive filter network on

board further reduces noise and scales the signal to the range of the system-

on-chip’s integrated DAC. The sensor input is over-sampled with a resolution of
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10-bits and further filtered before being packed and transmitted.

3.1.2 Unit Calibration

These final versions of the PunchR glove units had to be calibrated so that in

each use the units would have the same saturation value in g’s. Three punch tests

were completed in the fall of 2009, on October 30, November 12, and December

1, all at Gleason’s Gym in New York, NY to record data for force modeling. In a

large portion of punches during these tests the acceleration measurements reached

a saturation value in the x-axis. The saturation values varied greatly from test

to test so it was deemed that the results from these three were incomparable to

one another. As a result a number of in house tests were completed at the start

of 2010 to make certain that the units were calibrated so the saturation value

became the same from test to test. This was completed before any of the testing

done for the speed or force modeling.

The glove units are calibrated prior to being attached to a boxer’s wrist during

each fight event. Units that have a maximal acceleration of 30 ± 1 g’s in addition

to a stationary mean of 0 ± 1 g are deemed acceptable for use during a live fight.

Sufficient extra units are available at each fight that if initial units do not meet the

standards replacements are readily available. The mean calibration of the units

are monitored during live fights so that if a deviation away from 0 ± 1 g’s is noted

on-air reference to PunchR is cautious for the remainder of that fight. Following

the fight the defective unit is assessed for damage or re-calibrated for later use.

3.1.3 Unit Sample Rates

An important part of the testing during 2010 was to assess the sample rates.

There was no specific goal in mind of sample rate, but the higher the better.

During the sample rate tests the optimal sample rate while four units were running
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simultaneously fell between 6 and 7 ms/sample.

Similarly to calibration, the units are tested for sample rates prior to use

during a fight event. Again, all four units to be used in the fight should maintain

a sample rate as close as possible to the optimal sample rate. The sample rates

are also monitored during live use. If the units sample rates slows to more than 10

ms/sample the data becomes largely insufficient for proper estimations by any of

the statistical models. Another issue that is also monitored is the loss of packets

or length of gaps seen between observations. During a fight, loss of packets occur

as a result of loss of unit connectivity to the base station whether it be as a result

of referee interference, venue setup or any other unforeseen issue. Gaps between

data collection of over 200 ms are monitored during a fight with a filter in place

to deal with punches that may include gaps of this nature (discussed further in

Punch Detection).

3.2 Punch Detection

Throughout the development of the PunchR system a necessary goal has been

to reliably detect a punch “event” from acceleration values from the glove units

in real time. To do this it is necessary to take the rough acceleration values

recorded by each accelerometer unit splitting them into a regularized format of

a single punch. A number of criterion will be used to assess whether or not a

punch is in fact thrown, which will all be validated using video recordings of the

actual punches. This is an important step along with a primary step in both

speed estimations, force estimations, and any other future work resulting from

the PunchR system.
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3.2.1 Data Collection

There have been two phases of data collection to train a punch detection model.

Initially, fitness boxers simulated multiple rounds of sparring to replicate live box-

ing match conditions. The boxers were equipped with two units, one on each hand,

to record a number of punches and flurries of punches. The PunchR system was

run as it is during a live fight with the acceleration time series recorded. A punch

detection model trained on these “rounds” of sparring was deemed satisfactory,

but improvable through the use of data from live professional boxing matches.

As the PunchR system continued to see use in live boxing matches the simu-

lated sparring “rounds” were replaced by actual fight data. The raw data recorded

by the PunchR system was matched frame-by-frame with fight videos that had

associated timestamps. First, a professional CompuBox operator tagged all accel-

eration peaks of over 5 g’s as landed punch, missed punch, block, and other (any

other strange hand motions) from rounds of a fight between Kentrell Claiborne

and Seanie Monaghan that took place in Atlantic City, NJ on October 1, 2011.

When considering the profiles of landed punches and missed punches as tagged

by the CompuBox operator there is little, to no difference in many of the profiles

because the fundamental punching motion is the same. In many cases a “miss”

occurs when a boxer actually hits the opposition’s gloves who is in a blocking

stance. There is effectively minimal difference when comparing these acceleration

values to the acceleration values when a boxer actually hits the opposition in the

body, which is considered a landed punch. As a result, we categorized landed

punches and missed punch, which both have punching motions, as punch, and all

other movements as non-punch. Using similar criterion as the CompuBox operator

to differentiate punch motions and any other movement, videos from nine other

fights were reviewed tagging acceleration peaks using the punch/non-punch tags

for at least one round per fighter. These tagged fights totaled 17 different boxers
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for use in the punch detection algorithm training process.

From the live fights, each acceleration trace for each boxer was scanned using

the buffer of 100 observations marking a total of 2,411 acceleration peaks rising

above the noise threshold of 5 g’s as possible punches. Of these acceleration peaks

there were a total of 1,172 tagged punches all matched to video. These tagged

possible punches were broken into a training set (for model fitting), validation set

(for model selection), and testing set (for final model assessment). The following

table 3.1 list boxer name, number of possible punches, number of actual punches,

and which data set (training, validation, or testing).

3.2.2 Methods

The initial step in detecting a punch event is identifying when a punch has taken

place. This is trivial in an experimental data collection setup (force and speed

data collection) with a wired punching bag where the punch events occur on a

nearly regular basis making them easily identifiable by a large deviation from the

majority of the acceleration values. In these rounds of data collection boxers are

prompted to hit the bag with equal time intervals. A punch “event” is simply

identified when the acceleration values cross a fixed noise threshold until they

drop back below that same noise threshold. The maximum acceleration of those

acceleration above the noise threshold is the peak acceleration and is when punch

impact occurs.

In the live fighting environment a more sophisticated algorithm becomes nec-

essary as punches are thrown consecutively or in rapid succession with opponents

hitting the PunchR equipped gloves. Deciphering when one punch ends and an-

other begins is difficult because often the acceleration values will not drop back

below the noise threshold before the next punch begins or there are large acceler-

ation peaks as a result of a boxer blocking an opponent’s punches.

1Kentrell Claiborne punches were tagged by a CompuBox operator
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Boxer Tagged Punches Possible Punches Dataset

Thomas Dulorme 30 47 training

Harrison Cuello 18 107 training

Kentrell Claiborne1 132 222 training

Isaac Chilemba 119 208 training

Jameson Bostic 54 193 training

Magomed Abdusalamov 19 51 training

Kevin Burnett 7 24 training

Danny Garcia 105 183 training

Dwanye July 128 292 training

Ivan Najera 156 215 validation

David Castillo 81 219 validation

Juan Colon de Jesus 19 32 validation

Alex Saucedo 24 38 validation

Deontay Wilder 66 122 testing

Marlon Hayes 23 110 testing

Eddie Gomez 121 180 testing

David Lopez 75 168 testing

Total 1,172 2,411

Table 3.1: Punches tagged during video review.

Punch detection operates on a buffer of the acceleration measurements. Again

when an acceleration value crosses a fixed noise threshold the following measure-

ments are surveyed for the peak acceleration, which is just marked as a possible

punch. The threshold here is set intentionally low compared to the training rounds

mentioned above. The buffer of acceleration values is then scanned to extract a

complete profile of the event, which fills in data both before and after the possible

punch. Finally, logistic regression is used to determine the probability that an
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identified punch profile comes from a punch.

To fit the logistic regression, the collected data is split into three parts, train-

ing, validation, and testing. The training and validation sets are used to fit the

logistic regression while the testing set is used in final assessment. Unique features

about the possible punch acceleration profiles are considered to identify whether

each specific profile is a punch or not a punch. The features include the height

of the maximum acceleration (both x- and y-axis), the width of the maximum

acceleration, minimum acceleration, slope from the minimum acceleration to the

maximum, indicator whether the max occurred prior to the peak or post, and

some quadratic and interaction terms. These feature are paired down using step-

wise logistic regression with the Akaike Information Criterion (AIC) or with the

Bayesian Information Criterion (BIC), as the criterion for model selection. Re-

cursive feature elimination (rfe)2 and classification and regression trees (CART)3

[Breiman et al., 1984] are implemented for comparison. The different models and

combinations of acceleration features are fit on the training data and compared

using the validation set to ultimately decide on the best features to identify actual

punches. All modeling takes place in the open source statistical software package

R [R Core Team, 2013].

The final step in determining whether to keep an acceleration peak as a punch

is to set a probability estimated by the logistic regression at which we accept a

possible punch as a being an actual punch for estimation. In selecting the model,

we assume that if the probability of a possible punch is greater than 0.5 based on

the logistic regression we consider the profile to be a punch. It is preferable that

no punches are missed in detection for future estimations so we would like to set

the probability at which we accept a possible punch as a punch at a low threshold

for liberal inclusion of punches. In the results above the model does well to reduce

2rfe implements the caret package in R [from Jed Wing et al., 2013]
3CART implements the rpart package in R [Therneau et al., 2012]
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false positives, but the next step is to increase the number of punches correctly

detect without drastically increasing the false positive rate. To do this we used

receiver operating characteristic (ROC) curves [Peterson et al., 1954, Egan, 1975]

by varying the threshold at which we will accept a punch from 0.5 down to 0.001.

Finally, the logistic regression and probability threshold are used to assess the

model using the testing data.

In assessment of the models there are both false positives and false negatives.

A false positive is when a punch is detected by the model, but is not actually

a punch as determined through video analysis. A false negative occurs when a

punch should be detected by the model, but is missed. Assessment considered

three rates described below:

• Detected Punches - percent of correctly identified punches out of punches

identified from video analysis.

• False Positives - percent of incorrectly identified punches out of all identified

punches from video analysis

• Overall Accuracy Rate - percent of correctly identified punches and non-

punches out of all peak accelerations over 5 g’s

In model assessment we want to find a balance between correctly detecting

punches and minimizing false positives. When it comes to deciding the between

the two, correctly detecting punches is more important to make sure we do not

miss any estimations of force or speed. Overall accuracy rate is the least useful

in this problem because it is directly related to the threshold that we have set. If

we lower the threshold from all acceleration peaks over 5 g’s down to 3 g’s, for

example, we would increase the number of possible punches, which would easily

be identified as non-punches thus increasing the overall accuracy rate percentage.

If we want to artificially inflate this we could simply lower the threshold. It is
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included in assessment as the traditional measure of accuracy in classification

problems.

Next, the detected punch events that are deemed punches by the logistic re-

gression are registered to a regular grid of time values. The detected punches each

have a varying number of samples that are collected within the 500 millisecond

buffer on either side of the punch profile acceleration peak. So that each punch

profile is consistent with another, each profile is set to a grid size of 1,001 points.

This ensures that each punch profile is the same number of observations as well

as that each observation is equivalent to 1 millisecond. The grid is formed in a

way so that none of the original acceleration peak values are changed.

Finally, we “smooth” the acceleration values. There is some amount of noise

recorded by the accelerometers even when a boxer is holding a hand still. To

reduce the noise in the acceleration measurements each punch profile is passed

through a local linear smoother. The smoothing will allow for more robust calcu-

lations of features that will be used in both speed along with force calculations.

3.2.3 Results

Using the training data, nineteen different features were considered from the punch

profiles. Different models fit using stepwise regression with AIC or BIC and CART

were assessed on 280 punches in the validation set until ultimately a model fit using

stepwise regression with BIC was selected. With the features selected we included

the validation set in addition to the training set to fit the model to determine if

there was a drastic change in the coefficients of the model. As this model will be

used to extrapolate punches for many other fighters we wanted to have as many

fighters used in fitting the model as possible. There was not a significant change

in the coefficients so the final coefficients use the punches from all the fighters

from the training and validation set. The final logistic regression fit to determine
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the chance that an identified punch profile is actually a punch is as follows:

prob = exp(0.452 · value acc peak− 0.049 · fwqmax + 0.038 · y acc peak

+ 0.035 · y acc min− 0.107 ·min acc peak− 0.607 · avg slope− 2.323 · ind

+ 0.006 · fwqmax · value acc peak− 0.008 · value acc peak2 − 6.432) (3.1)

probability of punch =
prob

(1 + prob)
(3.2)

The features are listed in the following table (3.2) with a description of how

each feature is constructed.

Feature Name Description

value acc peak max acceleration value in the x-axis

min acc peak min acceleration value in the x-axis

fwqmax the width of the acceleration profile at 1/4 the height

of the max acceleration

y acc peak max acceleration value in the y-axis

y acc min min acceleration value in the y-axis

avg slope average slope of the acceleration from the min

acceleration to the max acceleration

ind indicator if the min acceleration is prior to the max

acceleration and if its absolute value is larger than the max

Table 3.2: Punch detection features.

Overall, for the training and validation sets combined the percent of correctly

identified punch was 88.7% and the false positive rate was only 14.6%. The next

step was to consider ROC curves varying the probability of determining whether

a peak should be considered a punch. The ROC curves in Figure 3.2 indicate that

between 0.4 and 0.3 is where we begin to lose in the trade-off between increasing

number of correctly identified punches and false positives.
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Figure 3.2: ROC curves.

Ultimately, the threshold of 0.4 was selected in combination with another

threshold of any acceleration peak greater than 20 g’s being deemed a punch.

The 20 g’s hard threshold has been included as a failsafe to make sure all large

punches are surely tagged. Table 3.3 summarizes the model performance on the

training and validation punches.

Finally, with the logistic regression model and the selected thresholds we as-

sessed the entire punch detection algorithm on the testing set as show in Table

3.4 below. For the four boxers included in the testing set the percent of correctly

identified punches was just over 90% with a false positive rate of 14.6%. The two

fighters that had the higher false positive rates (Hayes and Lopez) were the losers

in their respective fights.

Overall, for all 17 boxers in training, validation, and testing sets the percent

of correctly identified punches is 91.1% with a false positive rate of 15.9%. The

majority of punches that are not being identified are insignificant punches or

punches that look different than a typical punch. The boxers that see high false

positive rates are generally the boxers who are being significantly out-boxed by
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Boxer Detected Punches False Positive Overall Accuracy Rate

Dulorme 30/30 = 100% 0/30 = 0.00% 47/47 = 100%

Cuello 15/18 = 83.3% 25/40 = 62.5% 79/107 = 73.8%

Claiborne 120/132 = 90.9% 17/137 = 12.4% 193/222 = 86.9%

Chilemba 110/119 = 92.4% 12/122 = 9.8% 187/208 = 89.9%

Bostic 47/54 = 87.0% 28/75 = 37.3% 158/193 = 81.9%

Abdusalamov 19/19 = 100% 1/20 = 0.05% 50/51 = 98.0%

Burnett 7/7 = 100% 2/9 = 22.2% 22/24 = 91.7%

Garcia 102/105 = 97.1% 11/113 = 9.73% 169/183 = 92.4%

July 113/128 = 88.3% 32/145 = 22.1% 245/292 = 83.9%

Najera 141/156 = 90.4 % 14/155 = 9.0% 186/215 = 86.5%

Castillo 72/81 = 88.9% 12/84 = 14.3% 198/219 = 90.4%

Colon de Jesus 16/19 = 84.2% 3/19 = 15.8% 26/32 = 81.3%

Saucedo 23/24 = 95.8% 1/26 = 4.17% 36/38 = 94.7%

Total 815/892 = 91.4% 158/973 = 16.2% 1596/1831 = 87.2%

Table 3.3: Training and validation boxers’ punch detection model assessment.

Boxer Detected Punches False Positive Overall Accuracy Rate

Wilder 64/66 = 97.0 % 9/73 = 12.3% 111/122 = 91.0%

Hayes 21/23 = 91.3% 15/36 = 41.7% 93/110 = 84.5%

Gomez 109/121 = 90.1% 6/115 = 5.22% 162/180 = 90.0%

Lopez 63/75 = 84.0% 14/77 = 18.2% 142/168 = 84.5%

Total 257/285 = 90.2% 44/301 = 14.6% 508/580 = 87.6%

Table 3.4: Testing boxers’ model assessment.
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their opponents so their gloves are in the block position being struck by their

opponents more frequently.

With the algorithm complete to identify punches from the acceleration traces

we now provide an example of a single round of the fight between Thomas Du-

lorme and Harrison Cuello from Thomas Dulorme’s right hand only. To begin, we

show acceleration values in the x-axis prior to punch detection (Figure 3.3) and

then following punch detection with the detected punches overlain in red (Figure

3.4). Looking at the running acceleration values, the punch “events” are easily

identifiable as the major spikes in acceleration where the logistic regression is

used to determine if they are punches for estimation. About half way through the

round the peaks disappear as Dulorme knocked out Cuello to end the fight.
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Figure 3.3: Thomas Dulorme right hand acceleration values (x-axis only).

The punch detection algorithm recorded 17 punches from this single round

of Thomas Dulorme’s fight. From the previous table (3.3), we can see that this

is one of the cleaner rounds in terms of punch detection where 100% of punches

were identified correctly. The smaller spikes were when punches occurred in the

opposite (left) hand, which resulted in a small hand movement or when Cuello

punched his glove.
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Figure 3.4: Detected punch profiles (red) over Dulorme acceleration values.

From the preceding string of punches, we consider the first detected punch to

be placed on the grid of 1,001 points in Figure 3.5. Prior to regularization this

specific punch had 543 values, which is one observation every 3 milliseconds.

Once the punch has been placed on a regular time grid we turn to the smooth-

ing of the punch. The main characteristics of the punch profile are maintained

during this process, including peak acceleration, minimum acceleration, other local

maxima/minima, other unique features, and the general shape. In this example,

the most notable smoothing occurs in the observations before the peak accelera-

tion, which will help provide more stable calculations of feature estimation. The

following Figure 3.5 is the punch profile before and after the smoothing.

We have completed the example of the punch detection on a single punch from

the Dulorme fight. This process of punch detection is the first step in all modeling

and real-time fight estimations. With each resulting punch profile, it is possible to

extract the necessary features to input into both the speed and the force models.
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Figure 3.5: Comparison of raw and smoothed punch profile.

3.3 Punch Speed

One of the main goals of the PunchR project is to provide a reliable speed mea-

surement during live boxing matches. As the PunchR project is based on the

accelerations of punches, these accelerations can be used to provided a measure-

ment of punch speed. This can be done with more accuracy using high speed

cameras outside of the ring, but the goal in section is to provide live speed mea-

surements quickly and for all punches during each match.

3.3.1 Data Collection

September 20, 2010 saw a data collection trial of the PunchR hardware setup co-

inciding with Inertia Unlimited’s Phantom High Speed X-mo camera [InertiaUn-

limited, 2010] with the goal of validating speed measurements from the PunchR

system. Six boxers threw between fourteen and twenty-four punches that each

had a punch acceleration trace along with the calculated speed from the high

speed X-mo video. The calculated speed from the high speed X-mo video was
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considered actual punch speed. The only types of punches thrown during this

trial were lead hand jabs and rear hand crosses, with the first punch always being

a jab followed by a cross.

To ascertain accurate recordings using the Phantom High Speed X-mo camera,

boxers punched a heavy punching bag with both lead and rear hands. The high

speed X-mo camera was placed perpendicular to each boxer who was facing the

bag so the full extent of the punch could be recorded. A 1-inch marker was placed

on each glove facing the camera to serve as the necessary reference point in all

the recorded video. While each punch was recorded with the camera the PunchR

system was also run to record the punch acceleration time series. Once all the

punches had been video recorded each punch was analyzed with the Phantom

Software to get actual punch speed.

A second round of data collection with Inertia Unlimited took place on May

26 and 27, 2011 completing another trial of the PunchR system in alignment with

the Phantom Speed X-mo camera. During this trial there was a larger variety of

boxers along with types of punches recorded. Some boxers were instructed to only

throw hooks, while the other boxers were instructed to throw alternating left and

right straight punches followed by left and right uppercuts.

For the second speed collection trial the same setup as the first trial was used

for the straight and uppercut punches. A new setup was employed for the hook

punches as a result of the movement in both the x-axis plane (straight ahead) and

y-plane (side-to-side). Here the camera was placed beneath the boxer to catch

the entire range of the motion of the punch. The 1-inch scaling markers were

placed on the bottom the glove facing the camera as reference points for speed

measurements. As this was the first time this method has ever been used there was

difficulty with some boxers in the placement of the camera not always catching

enough of the punch on video to make the speed calculations.

From the original 109 punches thrown by the six different boxers form the first
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speed trial, we were able to pair 100 total punches that had readable scaling marks

on the high speed X-mo camera to the PunchR acceleration punch profiles. From

the second trial we were able to match another 248 punches from fifteen different

boxers from the readable scaling markers on the high speed video to the PunchR

acceleration punch profiles. There was a large amount of difficulty in making the

readings from the high speed camera especially in the new camera setup for the

hook punches. The following table (Table 3.5) is a numerical summary of the

speed of the 348 punches thrown as recorded by the high speed X-mo camera. All

the punch speeds are recorded in miles per hour.

Boxer Minimum 25th Median Mean 75th Maximum Punch Count

Total 7.0 13.3 15.9 16.3 18.2 31.4 348 (143 lead)

Table 3.5: Phantom X-mo speed measurements (mph).

Finally, there was a third trial of data collection done by a group from BASE

Productions [BASEProductions, 1992], a production company with trademark

motion-capture technology, that used similar methods as the Inertia Unlimited

trials to record straight punches for five different boxers. This testing also used

a high speed camera perpendicular to a boxer punching a dummy with scaling

markers as reference points. The measurements recorded from this trial were not

used in any of the model fitting, but solely in validation of the model fit once

completed.

3.3.2 Methods

In this high speed X-mo camera testing each punch acceleration time series is

recorded as a single event in separate files, rather than one long time series with

multiple punches. Nonetheless, each punch file is treated as an acceleration time
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series run through the real-time system, first extracting a punch event with a

500 millisecond buffer around the peak force, second placing the punch event

on a regular grid 1,001 points, and finally the smoothing the punch event. The

resulting punch profiles are then paired with the corresponding calculated speed

from the high speed X-mo video.

The first step in the modeling is to use simple physics to compare velocity

measurements. Velocity is the rate of distance moved over time with an associated

direction. To derive velocity from acceleration we take the integral of acceleration

over a specified period of time. As each punch profile is an acceleration trace,

velocity at impact should just be the integral from the start of the punch (if we

assume hand velocity is 0 at punch start) event acceleration until impact.

v(t) =

∫ impact

start

acc(t)dt

This is calculated with the trapezoidal rule using the accelerations from the

start of the punch until the time of impact, as each acceleration occurs at 1

ms resolution. Velocity is speed with a direction so we will simply use speed

throughout. In theory this speed should be similar to speed from the high speed

X-mo camera.

The integral is the obvious, preferable path for speed measurement, but ulti-

mately prove unreliable. The characteristics of these small accelerometer systems

as well as missing data packets as a result of the wireless data upload make just

using the integral not robust enough to make reasonable speed predictions in all

cases. Searching for any improvement in the speed predictions we use the ac-

celeration punch profiles to extract features (i.e predictors) which is also done

in the force modeling. These features are entirely composed of the acceleration

curve both preceding impact as well as following impact. Features from the punch

profiles are sums of acceleration values over different periods during the punch.
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Figure 3.6: Example of the integral of a single punch from the punch start to

punch impact.

Unlike the force modeling, no boxer specific or physical features are used because

the definition of velocity only considers distances and times, but nothing pertain-

ing to mass. The specific features initially considered are combinations of the

following three plots in Figure 3.7 where the light grey is the acceleration trace

with the red being the acceleration features.
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Figure 3.7: Sample features for speed modeling.

The first plot is an example of the punch start to punch impact. The punch
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start is determined by moving backwards from the impact point looking at each

point one by one summing the previous value to the impact. Once ten accelera-

tions have been added to the total and the total has not changed by more than

10% the last value added is considered the punch start. The third plot is the

first time the acceleration rises above a 1.5 g’s noise threshold until the punch

impact. This will be referred to as “noise” when describing the features. The

second plot is the minimum acceleration to the punch impact. This is determined

as the minimum value between the punch start and the “noise”. Again, the speed

features are sums from one of these points to another, time between one of these

and another, or means over these time periods.

The modeling techniques in the speed modeling differ only slightly to that of

the force modeling. Polynomial multivariate adaptive regression splines (polymars)

[Friedman, 1991, Kooperberg et al., 1997, Stone et al., 1997]4 is considered, along

with variable selection again using rfe and a regression subsets method that uses

exhaustive variable selection (leaps)5 as well as linear models using LASSO re-

gression[Tibshirani, 1996, Efron et al., 2004]6. Starting with all the features, the

ten best model to predict speed for each model size (from 1 predictor to 35 pre-

dictors) are selected using leaps. Additionally, rfe is used to indicate the most

important features in modeling. Comparing the most important features selected

in the leaps models as well as the most important features from rfe we can

reduce the total number of features. This reduced the total number of features

from 35 to a more manageable, parsimonious number of the nine best features.

With the reduced number of important features different models are fit with

previously mentioned modeling techniques assessing uncertainty and fit through

bootstrap methods. In bootstrapping we select random punches along with the

corresponding speed value, with replacement, from the original punch set, in a

4polymars models fit using polspline package in R [Kooperberg, 2013]
5leaps implements the leaps package in R [using Fortran code by Alan Miller, 2009]
6LASSO models fit using lars package in R [Hastie and Efron, 2012]
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bootstrapped sample. The bootstrap sample is the same size as the original data

set. Each model estimates speed based on the bootstrapped sample features with

which we then calculate residual sum of squares (RSS) as well as relative error.

The smaller the RSS the more closely the model fits the data. Specifically, RSS

is calculated by:

∑
(observed speed - predicted speed)2

The RSS is recorded for the bootstrapped sample. Relative error is a statement

about the accuracy of the speed predictions. The definition of relative error is:

relative error =
| error |

observed speed

Thus, relative error is difference of the prediction from the observed value

relative to the observed value. This is a value we would like to minimize in the

predictions. Mean relative error is also calculated on each bootstrapped sample.

Lastly, accuracy of the punch predictions will be defined as: accuracy = 1 - relative

error. Once RSS and relative error have been recorded a new bootstrap sample is

selected. This process is repeated a large number of times (> 20, 000) recording

the RSS and relative error for each bootstrap sample.

The final item considered in choosing the speed model is robustness to pre-

dicting many different punches from many different boxers. There are two groups

of punches used together in assessing the robustness of the final model. The 1,631

punches collected in experimental settings for the force modeling as well as from

the heavyweight boxer for force calibration. Additionally, another 3,309 punches

from 11 different fights from five different dates. This brings us to a total of 4,940

punches with which we are able to predict speed to make sure a large volume of

punches are being predicted at physically reasonable levels on par with speed seen

in previous boxing studies.
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In previous speed modeling attempts some model fits were resulting in these

extrapolated speed predictions at physically unattainable levels especially during

live fights as a result of the much more varied conditions than the gym testing

days. Also, punches may come in with atrophied acceleration profiles as a result

of the wireless communication (or lack thereof) between units within a glove and

the laptop. Slower sampling rates for small periods of time is a problem. All of

these possible shortcomings must be addressed with a robust model. Finally, as

with any statistical modeling model diagnostics are performed to address glaring

problems with the model; mostly to address any major outliers.

Once a final model has been selected, the model estimates speed on the BASE

testing measurements to further assess how well the model. The BASE speed

measurements are compared to the model estimations.

3.3.3 Results

The first task once the actual speed from the high X-mo camera was paired with

the PunchR acceleration traces was to calculate the velocity simply based on the

acceleration integral. The integral of each punch acceleration profile resulted in

an RSS of 8,165 and a relative error of 0.24. A relative error of 0.24 is equivalent

to deeming that the punch speed predictions are 76% accurate. More importantly,

predicting on the 4,940 punches from the force modeling resulted in a number of

punches being predicted at levels not physically reasonable. There was improve-

ment to be made from just using the straight integral that would both increase

accuracy as well as reduce the number of physically impossible predictions.

Following the consideration of the simple integral we began exploring a number

of other feature combinations to improve the accuracy. The best models as chosen

by leaps are the models of size 15 using Mallow’s Cp as the selection method,

while using adjusted-R2 this jumps all the way up to models of size 20. These
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large models of up to size 20 are much too big its just a lot of cancelation of one

feature by another and over-fitting. Also, these larger models continue to predict

punches at extremely high speeds (over 100 mph) or negative speeds. From here

we started considering the features that are consistently picked by leaps as more

important features. These are crossed referenced with the most important features

from the rfe process to come up with the nine most important features as seen

in Table 3.6. These are the features that contribute the most in predicting speed

while resulting in fewer high speed or negative speed predictions.

Feature Description

X1 sum punch noise to impact in x-axis

X5 sum of forty points around minimum acceleration in x-axis

X6 sum from point 470 to impact in x-axis

X14 sum from impact to point 520 in x-axis

X16 sum from point 550 to point 600 in x-axis

X22 sum from point 470 to impact in y-axis

X24 sum from punch start to noise in y-axis

X29 sum from impact to point 520 in y-axis

X32 magnitude of x- and y-axis from minimum acceleration to impact

Table 3.6: Features used in speed modeling.

There were 6 models considered that each had 20,000 bootstrapped samples

on which both RSS and relative error were calculated. There were four polymars

models and two lars models. None of these models used more than five of the

nine important features. Following the bootstrapping the two lars models were

dropped because the mean relative errors for 20,000 bootstrapped samples was

above 0.20 (accuracy less than 80%). In the end the decision for the final model

was between two models that had similar mean relative errors and RSS. The final

model chosen had predictors included that followed more what a physical model
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would include. The mean relative error for this final speed model was 0.182 from

the 20,000 bootstrapped samples. Hence, the accuracy was 81.8%. The RSS for

this model is 4,666. The final speed model polymars regression output is reported

in Table 3.7.

Feature Knot Coefs SE

Intercept 8.6148 2.0771

X32 0.0070 0.0009

X14 -0.0128 0.0070

X14 286.1078 0.0342 0.0082

X16 0.0097 0.0023

X32 994.3653 0.3172 0.0567

X32 1067.5225 -0.1274 0.0245

X32 963.2239 -0.1946 0.0390

X5 -0.0157 0.0030

X5 -175.4262 0.0292 0.0062

Table 3.7: Polymars regression coefficients and standard errors.

The model included only 10 total terms with only four features included in

the model with the remaining six terms being all knots with no interactions. If

we refer back to Table 3.6 we see that X32 is the magnitude of acceleration from

the minimum acceleration value to the maximum, X14 is the sum 20 accelerations

after impact in the x-axis, X16 is the sum of 50 more accelerations further after

impact, and X5 is the sum of 40 accelerations around the minimum acceleration.

The first three seem to make sense even in a physical model standpoint. Basically,

it is just what happens in the punch up until impact and then how fast is the arm

being pulled straight back. The fourth feature is maybe some type of scaling

feature, but is less identifiable as to what it may be doing. The associated RSS

for the model is 3008 with an R2 equal to 0.576. Then the correlation between
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observed and predicted is 0.75.
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Figure 3.8: Observed and predicted punch speed values.

An additional step in fitting this speed model was to make sure it is robust

over a large number of punches. This model predicts no negative punches nor

any punches above 40 mph for the 4,940 punches from both the force modeling

combined with 11 different fights. From the Phantom X-mo High Speed Camera

measurements we saw speeds ranging from 7 mph to 32 mph, while most previous

other studies were in the range of 10 mph to 35 mph, with one study having speeds

up almost 47 mph.

Following the selection of the speed model it was tested in concordance with

the BASE measurements. From the BASE testing we were able to match 42

punches from five different boxers that had an associated PunchR acceleration

punch profile with a measured BASE speed.

The relative error for the BASE measurements is 0.13 giving us an accuracy

of 1 - 0.13 = 0.87 or 87%. The correlation between the PunchR predictions and

BASE measurements is 0.69, while the slope of the simple linear relationship
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Figure 3.9: Punch speed predictions for 42 punches from the BASE testing.

without an intercept between the two is 0.96 which indicates no necessary linear

calibration between the two measurements. This shows despite two groups making

independent measurements and the method of processing the images may vary

slightly, the underlying measurements are similar. The plot in Figure 3.9 provides

a graphical representation of these relationships.

3.4 Punch Force

Another main goal of the PunchR system is to determine punch force in real-

time during live boxing matches. Acceleration measurements, boxer physical at-

tributes, and corresponding punch force measurements from experiments are used

to develop a robust statistical model to estimate punch force. In estimating force,

we have the acceleration necessary, but the difficulty lies in finding some combina-

tion of boxer physical attributes that becomes a stand-in for effective mass behind

the punch. Recording force in the experimental setting has been done previously
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on numerous occasions so this has other reliable measures for comparison. Once

a statistical model has been fit from the experimental data it can be translated

to live fight punch force estimations.

3.4.1 Data Collection

To record punch force there were fours days of testing over a period of two months.

These tests all occurred at Gleason’s Gym in New York, NY. The same setup to

record force was employed for each of the four days of testing. Each of the four

tests were also video recorded for validation at a later date or item analysis on

each punch.

The setup to record the punch force measurements prior to being used in the

current force experiments had been adapted from three different studies Broker

and Crawley [2010], Manchester [June 2007], Baagrev and Trachimovitch [1981].

A heavy punching bag was hung from an overhead bar allowing it to swing freely.

During testing the movement was restricted for minimal movement in the y (side-

to-side) acceleration plane. The bag was equipped with a wired sensor attached

to a computer. The mass of the bag was known, so by measuring the acceleration

of the bag as it was punched we could then determine the actual force received

by the bag. In this edition of the setup, the bag sensor was now wired to the

computer to provide higher resolution of acceleration measurements throughout

the testing. This was done to make sure to attain the most accurate acceleration

profiles possible. Each boxer then had the wireless units placed on both their

right and left hand as is done during all live fights.

Boxer specific measurements were collected prior to each test including: gen-

der, commitment level, hours training before test, glove weight, height, wingspan,

arm length, bicep circumference, elbow circumference, forearm circumference,

wrist circumference. Measurements were taken on both arms for all boxers to
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take into account any differences between arms. Level is the commitment level

at which each boxer classified themselves either professional, amateur or fitness

level. All the boxers tested were volunteers working out at the gym each day and

where chosen to cover a full range of boxer sizes, fighting level, stances, and even

gender. Table 3.8 lists all the recorded measurements, along with measurement

units.

Measurement Units

Stance Orthodox or Southpaw

Gender Male or Female

Level Pro, Amateur, or Fitness

Hours Training Minutes

Glove Weight Pounds

Weight Pounds

Height Inches

Wingspan Inches

Arm Length Inches

Bicep Circumference Inches

Elbow Circumference Inches

Forearm Circumference Inches

Wrist Circumference Inches

Table 3.8: Boxer measurements.

On March 19, 2010, eight boxers at Gleason’s Gym each threw forty punches.

The boxers were instructed to first throw twenty punches alternating lead hand

jabs with rear hand crosses followed by ten lead hand hooks and finally ten more

rear hand hooks. Occasionally an extra punch was thrown during any one of these

sequences resulting in more than forty total punches. Each boxer is identified by

the 24 hour time when the system was run.
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On both April 5, 2010 and April 20, 2010, ten boxers at Gleason’s Gym

again each threw forty punches. The boxers were instructed to first throw twenty

punches alternating lead hand jabs with rear hand crosses except this time fol-

lowed by alternating twenty lead hand and rear hand hooks.

May 20, 2010, six boxers at Gleason’s Gym again each threw up to fifty-five

total punches. Like the three previous tests the boxers first threw twenty punches

alternating lead hand jabs with rear hand crosses. These were followed by ten left

hooks. Lastly they were instructed to throw a combination of either jabs, crosses

or hooks where the bag was not stopped between combinations. These punches

were unused in the force modeling because a bag acceleration profile from these

combinations would not give an accurate measurement of force for a single punch.

Table 3.9 counts the number of boxers by commitment level and boxer stance.

Most the boxers in this training data come as amateur fighters with only seven be-

ing professionals. The number of orthodox fighters greatly outnumber the south-

paw fighters, but this holds true overall in the boxing world.

Commitment Level

Fitness Amateur Pro Total

Orthodox 9 11 7 27

Southpaw 0 5 0 5

Total 9 16 7 32

Table 3.9: Boxer stance and commitment level
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Now we look at the boxers by weight class. The two dots colored in green are

the female boxers. There are lots of boxers between 140 and 200 lbs, but not as

many below 140 lbs for the lower weight classes or above 200 lbs for heavyweights.
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Figure 3.10: Training boxers by weight class.
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Finally, a correlation matrix of some of the major boxer physical features

(figure 3.11). The arm circumferences are highly correlated as are the measures

corresponding to arm lengths.
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Figure 3.11: Correlation matrix of boxers’ physical features.

There was one final day of data collection on July 7, 2011 done by a group

from BASE Productions [BASEProductions, 1992] that used entirely different

methods to record straight punches for five different boxers. This testing used a

boxing dynamometer instrumented with three accelerometers as discussed in the
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straight punch force measurement section of the Boxing Quantification chapter.

The measurements recorded from this trial were not used in any of the model

fitting, but solely to assess whether the two measurement approaches would agree.

3.4.2 Methods

Each boxer’s acceleration time series is treated like it will be during a live fight

being passed through the punch extraction algorithm, extracting the punch, plac-

ing the punch on a regularized grid of 1,001 points and finally smoothing the

acceleration values. Similarly, the corresponding bag acceleration time series is

passed through a bag extraction algorithm that is a simple adaptation of the

punch extraction algorithm. Each punch acceleration profile is paired with the

corresponding bag acceleration profile to create a complete set of punches.

Of course, we are trying to estimate force. In our experimental setup we stated

we know the mass (m) of the bag, so using the acceleration (a) of the bag as it is

punched we can then determine the actual force (F ) received by the bag, with the

simple relationship F = m · a. The maximum acceleration in each bag profile is

multiplied by the bag weight to get a resultant force. This is used as the response

variable in the modeling throughout.

At this point, features are extracted from the punch acceleration profile. Fea-

tures from the punch profiles are sums of acceleration values over different periods

during the punch. These features included sums of values in both the x and y

acceleration planes as well as acceleration before and after impact. These sums

become necessary instead of just the maximum acceleration or largest change in

acceleration because the accelerometer units reach a saturation point upon impact.

There is no telling if the actual maximum is close to what is recorded because of

saturation. In the speed modeling, we have some idea of what features would be

important so we were able to list them all out. In the force modeling nearly 50
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different features are included in the modeling step at some point so all of these

will not be listed. As these features are all based on acceleration they represent

the acceleration (a) in our F = m · a equation.

The features extracted from each punch profile are then paired with the boxers

physical features to complete a full set of features for all the punches that will

be used to estimate force. For specific arm measurements only the punching arm

measurements are included as physical features for each punch. For instance,

if the boxer is throwing a right hand punch then only the right arm weight,

arm length, forearm circumference, bicep circumference, elbow circumference, and

wrist circumference are included. The left hand measurements are not included

for this punch. The combination of the physical features are basically the effective

mass behind each punch or the m in F = m · a.

It should be noted that one last additional feature must be added. Although

stance is recorded as a feature it can not be used as a predictor. Fundamentally,

a boxer who has the exact same physical attributes that throws a punch with a

specific acceleration profile should have the same punch force whether the boxer

is has an orthodox stance or a southpaw stance. Additionally, denoting which

hand (right vs. left) is throwing the punch is trivial by which unit has indicated a

punch. Combining stance and hand throwing the punch we have the final feature

of punching hand, which is either rear or lead. An orthodox boxer throwing a right

hand punch is indicated as rear while a left hand punch is lead. The converse is

true for a southpaw boxer.

With a full set of features we can now begin the force modeling. The force

modeling will use polymars regression as is used in the speed modeling. Other

methods of modeling are considered, again including LASSO and CART, but the

implementation of the polymars into a functional real-time model for estimations

in addition to the possibility of non-linearity in the data make it ideal in this

scenario as a modeling technique.
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The first step in modeling is to ascertain whether or not a boxer could be

modeled individually. Basically, can we show evidence that each boxers’ punches

have consistency in their forces based solely on their acceleration profiles. If each

boxer can not be modeled accurately there is no way we can construct a model

to estimate multiple boxers punch forces. A model for each boxer is fit to try

to show this generalizability in punches for a single boxer. Comparing the RSS

gives us some idea if all the boxers will be able to be modeled individually. Any

deviation from by one or multiple boxers from the rest may give reason for that

specific boxer to be dealt with in a slightly different manner than the rest. If it

looks as all the boxers are agreeably close we can continue with the modeling.

To include as much information as possible from all the different types of

boxers as well as to improve the relative error, traditional regression bootstrap-

ping is again employed for the modeling. The bootstrapping is used both to

choose the complexity parameter in the model fitting process along with estimat-

ing uncertainty when the final model is selected. As in the speed modeling the

bootstrapping calls for a random sample with replacement of all the punches and

corresponding forces with which a model is fit. The model size, predictors, and

model itself are recorded. Next the model estimates force on the true dataset

recording RSS, along with recording relative error. This sequence is repeated for

a large number of random samples (> 20, 000).

The function to fit polymars has an input that constrains the number of terms

allowable by the model fit. This constraint is changed to create models of different

sizes to compare and the bootstrap procedure repeated. Fewer predictors in the

model as well as fewer interactions between predictors reduces any over-fitting that

might occur when training the models. A parsimonious model that maintains the

estimations levels is a preferred model of choice.

A simple function is created to test the sensitivity of the model to varying

boxer sizes. The physical features included in the models are varied singularly
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and in combinations making sure that there are no drastically unrealistic force

estimations. The final model is selected based on a combination of relative error,

parsimony, and robustness to varying boxer sizes as well as hitting styles.

Once a final model has been selected, the model is with the BASE testing

physical measurements to further assess how well the measurements used to train

the PunchR algorithm parallel measurements taken from the BASE boxing dy-

namometer.

3.4.3 Results

To begin there were 1,239 punches that had matching punch acceleration traces

with corresponding bag acceleration traces. Modeling each boxer individually

resulted in one boxer being noticeably worse than the rest. A fitness boxer from

April 20, 2010 had a within model RSS (13,415) that was six times that of the

mean within boxer RSS (2221) of the other 32 boxers. Additionally, his RSS was

almost double the next highest RSS (7,775). As the goal is to make an algorithm

to estimate for all boxers and most specifically during professional bouts leaving

this boxer out seems ideal. This left us with 1,199 punches from 32 boxers for the

modeling.

The following table (3.10) is a summary of all the remaining boxers’ recorded

force by the wired unit bag setup. Overall, the forces all fall within a similar

range to those seen in the Boxing Quantification chapter. Here, the mean force is

681 lbs, with 75% of punches having force below 815 lbs with a max of 1,754 lbs.

As summarized in previous studies the majority of the force measurements in the

experimental setting fall between 250 to 1,100 lbs of force with a mean near 700

lbs. The highest maximal punch force is all the way at 2,234 lbs.

Additionally, Figure 3.12 plots force by boxer weight followed by force by

punch type and hand. The force by weight plot has a localized regression (LOESS)
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Min. 1st Qu. Median Mean 3rd Qu. Max.

Force 197 466 619 681 815 1,754

Table 3.10: Punch force for 1,199 experimental punches.

line plotted over the top to outline the general trend of an increase in force as

weight increases. One fighter, near 160 lbs, had some of the highest punch forces

recorded. In the force by punch type boxplot, jabs have the lowest overall median

force with crosses having the highest median force. Hooks are only slightly above

jabs although the overall hardest punches came as hooks. In both cases the lead

hand punches are lower than rear hand punches staying a little closer for hooks.
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Figure 3.12: Force by boxer weight (left) and force by punch type and hand (right)

Although the remaining boxers had relatively similar RSS when constructing

models within each boxer this in no way shows that the boxers’ models are similar.

The next step is to create generalizable model for all boxers. All the models were

fit on 20,000 bootstrap samples. In the generalized cross validation (GCV) setting

the lambda was changed by increments of one from 0.1 to 10 to construct different

polymars models with different sizes and different feature sets. For lambdas up
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to seven we have a mean relative error below 0.20. The higher the lambda is set

results in fewer predictors and interactions allowed in the model. We would like

to choose a model that has fewer terms without drastically lowering the relative

error so models where the lambda was equal to five, six, and seven were compared.

Following sensitivity testing while varying the different physical features a final

model was selected where the lambda was set to seven for the 20,000 bootstrapped

samples. In the bootstrapping procedure the models fit with lambda of seven had

a mean relative error of 0.198 (0.195 median) or an accuracy of 80.2% (median of

80.5 %). Table 3.11 has the features included in the force model.

Feature Description

forearm.hit circumference of forearm doing the punching

weight weight in pounds

wingspan wingspan in inches

hand rear or lead punching hand

X6 sum of x acceleration from profile time 470 to 501

X14 sum of x acceleration from profile time 501 to 520

X15 sum of x acceleration from profile time 501 to 550

X32 magnitude of x- and y-axis from minimum acceleration to impact

Table 3.11: Features included in force model.

Next we have the regression output. Previously we stated that the sums of the

acceleration model were the a in our F = m · a equation while the combination

of the physical features would be the m. There are 17 total terms made up of 8

different features. As there are many interactions between terms there is no benefit

to interpret the coefficients on any of the estimations in terms of acceleration or

effective mass. All we remain interested in is the force estimations.

The correlation between observed and estimated force is 0.77. There is a slight

trend of higher variability in estimation as force increases partially as a result of
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Feature1 Knot1 Feature2 Knot2 Coefs SE

intercept -1353.89 1839.64

X14 4.96 4.80

weight -8.92 1.80

X6 -25.96 5.94

forearm.hit -58.87 168.65

weight 190.00 33.90 2.91

wingspan 79.06 7.58

X32 0.68 0.12

forearm.hit X14 -0.19 0.45

hand 293.63 49.45

forearm X6 1.97 0.55

X14 411.02 -38.10 9.02

forearm.hit X14 411.02 3.95 0.84

X15 -1.44 0.31

X6 107.34 17.94 7.36

forearm 11.38 365.37 89.62

forearm X6 107.34 -1.37 0.68

Table 3.12: Force model feature coefficients and interactions.

fewer overall punches at the higher force value. This model is also robust on

30,695 punches from available fight data keeping most of the fight estimations at

a level comparable to the values recorded in this study as well as the force values

seen in all other previous studies. All the fight results will be discussed further in

the following chapter.

As in the speed modeling the force model was also compared to the BASE

measurements. The relationship between the two was not as similar as in the

speed model. In Figure 3.14 we see a low correlation of 0.171 between the 42
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Figure 3.13: Observed versus estimated force.

BASE measurements and their corresponding force model estimations. There are

two punches from boxer 2 that are influencing this relationship greatly. When

removing boxer 2 punches from this comparison the correlation jumps all the way

to a more reasonable 0.452. With only 42 punches from the different measurement

system it is difficult to make general conclusions about about the relationship

between the two measurement systems, but there is some case to be made for a

boxer specific model as we see that one boxer larger deviated from the rest of the

group (albeit with only 2 punches).

3.5 Punch Type Classification

In addition to punch detection, speed, and force, PunchR lends itself to many

other possibilities to quantify boxing. The acceleration profiles can be used to

classify punches into four main punches: jabs, crosses, hooks, and uppercuts.

Currently, during live fights the only attempt to classify punch type has been by

CompuBox differentiating between jab and non-jab punches. The Nintendo Wii
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Figure 3.14: BASE measurements versus force model estimations.

has made use of their hand-held accelerometer to further classify jabs, hooks, and

uppercuts in their popular WiiSports Boxing [Nintendo, 2011]. Adding this new

dimension to live fights will provide added depth to story that is able to be told

about a single fight.

3.5.1 Data Collection

Data collection for punch type came as a result of data collection for force modeling

and punch detection. Unlike the other PunchR experiments there was no data

collection directed only towards the goal of classifying punch type. First, during

each of the force collection dates boxers were given a string of punches to complete

in combinations of jabs, crosses, and hooks so each punch with a recorded force also

has an associated punch type. Second, during the video review of the live fights

where acceleration peaks were tagged as punch/non-punch for punch detection,

all punches were additionally tagged with punch type. The punch types include

only four main types of punches: jab, crosses, hooks, and uppercuts. With a data

collection experiment directed solely at punch type this could be further expanded
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to other types such as overhands.

As there was no data collection experiment solely for punch classification some

of the punches were not fundamentally sound in their technique. Further the

classification from live fights required some judgment calls about punches based on

some limited camera angles and punches straddling the line between two possible

punch types. These punches were included in modeling and assessment with

caution.

From the list of punches used in force modeling along with punches from the

heavyweight used to assess the force model there was a total of 1,143 punches

from these gym experiments. Following video review of a number of the boxers’

punching technique a number of the original punches were omitted from this mod-

eling. Specifically, the heavyweight’s uppercuts had very similar trajectories to

his hooks making classification between the two incredibly difficult. Additionally,

there were 3 amateur fighters and 3 fitness fighters whose straight punches and

hooks were not visually different in the video so they have no reason to be differ-

ent in their acceleration data either. Further, there were 992 punches tagged from

from live fights.

In the end we have a total of 2,135 punches that are tagged with punch type.

Table 3.13 lists the punches by type used to train the punch type classification

model. Right away it is clear there are more lead punches and very, very few

uppercuts. The small number of uppercuts will make it difficult to classify these

with so many of the other types of punches if there is not a large difference in

acceleration profiles.

3.5.2 Methods

Similar to the modeling in other chapters we use the smoothed punch profiles to

extract features as first considered in the speed modeling. All punches are split
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Lead Rear

Jab Hook Upper Cross Hook Upper

818 409 35 490 335 48

Table 3.13: Classified punch types.

into lead and rear punches as they will be classified separately. Southpaw fighters

have their y-acceleration inverted to match the side-to-side direction of orthodox

fighters so that a lead hook is always looping out the left and a rear hook out to

the right. The only difference between the names of punches between lead and

rear is for straight punches where leads are jabs and rears are crosses.

The below diagram in Figure 3.15 has two dimensional vector graphics of

acceleration traces for the three punch types given the best case scenario. For

both the straight punches and the hooks the graphs are from a bird’s eye view as

if looking down on a boxer from above. The third panel for the uppercut is looking

from the side of the boxer with the two dimensions being x-axis (forward-and-back)

and z-axis (up-and-down). As has been discussed in the punch detection chapter,

the accelerometers are only two-dimensional in the x-axis and y-axis (side-to-side)

so right away there is inherent difficulty in classifying uppercuts with no z-axis.

Modeling first separates the classification into two slightly easier problems of

classifying hooks versus other punches and then jabs versus uppercuts. Breaking

it down into these two problems serves two purposes: to identify how easy it

will be to differentiate punches without having the third vertical dimension in the

accelerometers and to identify any punches that may have been misclassified. This

serves as a screening process to some of the problems that will be encountered

when trying to do all the classification at once along with exploring some of the

more important acceleration features that separate the punches.
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Figure 3.15: Example of bird’s eye of straight punches (far left) and hooks (middle)

with side view of uppercut (far right).

Classification methods for all three types of punches at once compares multino-

mial logistic regression7, polyclass MARS8, regular and sparse linear discriminant

analysis. The different model fits are assessed on percent of correctly classified

punches out of all available punches. Extra importance is given to higher accuracy

of uppercuts because there are so few of them in the training data.

Also, since there are so few uppercuts in both the lead and rear punches an

additional step is considered where all the lead and rear punches are combined to

fit a single model. Basically, we want to increase the available number uppercuts

used in the model to determine if there is any improvement in modeling. Again,

similar modeling techniques are used in separate lead and rear modeling.

Following the initial modeling with the different techniques, models with higher

levels of classification accuracy are compared using bootstrapping. For each model

20,000 bootstrapped samples are selected from the list of punches and accuracy is

computed for all punch types. The final punch type classification model is selected

based on the bootstrapped results.

7Multinomial models and linear discriminant models fit using MASS package in R [Venables
and Ripley, 2002]

8polyclass MARS models fit using polspline package in R [Kooperberg, 2013]
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3.5.3 Results

The initial modeling showed a difference in hooks and other punches as well as

a difference in jabs and uppercuts. Mostly, these separate modeling procedures

were used to reduce the original 33 features down to a smaller set of 23 more

stable features. In addition this was used to note individual punches that were

having a difficult time being classified.

With the final data set of punch types and features in place modeling started

using the multiple class methods. The four different methods compared accuracy

of punch type classification accuracy; overall as well as by punch type. The two

linear discriminant analysis methods were inferior in modeling (accuracies < 90%)

in comparison to the polyclass MARS and multinomial models which both have

accuracies over 90%. This was true for both lead and rear punches.

The combining of the lead and rear punches into one group for modeling did

not improve the overall classification accuracies. In fact, all three punch types:

hooks, straights, and uppers had more difficulty being classified. Keeping the lead

and rear punches separate with two different hand specific models is ideal.

The last step in modeling was comparing the bootstrapped samples of 20,000

samples for the two best models from the initial four: the polyclass MARS and the

multinomial models for both lead and rear punches. In both cases the polyclass

MARS model outperformed the multinomial models in overall accuracy as well

as by individual types of punches. In the Tables 3.14 and 3.15 below it is clear

that the straight punches are easiest to classify, followed by hooks, and lastly

uppercuts, which in the lead models are only being classified correctly around

20% of the time. There does not seem to be much difference between hooks and

uppercuts for lead punches available. The polyclass MARS model does perform

slightly better than the multinomial model.

Tables 3.16 and 3.17 making the same comparison for the rear hand classifi-
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Type Min. Med. Mean Max.

Jab 0.940 0.965 0.965 0.985

Hook 0.790 0.882 0.881 0.943

Upper 0.000 0.140 0.157 0.632

Total 0.879 0.915 0.915 0.950

Table 3.14: Lead multinomial 20,000

bootstrapped accuracies.

Type Min. Med. Mean Max.

Jab 0.878 0.966 0.965 0.996

Hook 0.726 0.901 0.909 1.000

Upper 0.000 0.212 0.257 1.000

Total 0.812 0.923 0.923 0.991

Table 3.15: Lead polyclass MARS

10,000 bootstrapped accuracies.

cation models. Again, the polyclass MARS model outperformed the multinomial

model. Here though there is a large amount of accuracy in classifying the up-

percuts in contrast to the lead modeling. This is very encouraging to be able to

classify all three types of punches using only two dimensions.

Type Min. Med. Mean Max.

Cross 0.905 0.948 0.947 0.984

Hook 0.809 0.891 0.890 0.950

Upper 0.355 0.744 0.738 1.000

Total 0.859 0.914 0.914 0.959

Table 3.16: Rear multinomial 10,000

bootstrapped accuracies.

Type Min. Med. Mean Max.

Cross 0.897 0.953 0.957 1.000

Hook 0.749 0.892 0.889 0.970

Upper 0.000 0.800 0.760 1.000

Total 0.814 0.918 0.916 0.979

Table 3.17: Rear polyclass MARS

10,000 bootstrapped accuracies.

After comparing the different models, the model selected for both lead and rear

punches is the polyclass MARS model. From the training data we have Table 3.18

and 3.19 of classified punches. So from the bootstrapping we have an accuracy of

92.3% and of 91.9% on lead punches using the polyclass model with the accuracy

on all of the training data is 91.6% and 90.6% on rear punches. See Tables

The overall accuracy for these models at almost 92% is quite good, but in both

cases the uppercut accuracies are far below the hooks and straights. The overall
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Actual Punch Type

Jab Hook Upper Total

Predicted Jab 788 40 8 836

Punch Type Hook 29 365 24 418

Upper 1 4 3 8

total 818 409 35 1262

Table 3.18: Lead punch type.

Actual Punch Type

Cross Hook Upper Total

Predicted Cross 462 34 4 500

Punch Type Hook 23 295 10 328

Upper 5 6 34 45

Total 490 335 48 873

Table 3.19: Rear punch type.

accuracy for straight punches is 1250/1308 = 95.6%, hook punches is 660/744 =

88.7% , and uppercuts is 37/83 = 44.5% using these two models. There is definitely

a signal in the rear uppercuts and with more punches the accuracy is expected to

increase. In any case, this is a model where accuracy may be misleading because

the straights and hooks were so easily classified having so many of them. In short,

the overall accuracy is not significantly affected by the small number of uppercuts

we do have.

Knowing that there is a difference in straights, hooks, and uppers (as evidenced

by the rear modeling) we could have any number of technically sound boxers throw

an equal number of each punch with their very best form, make sure the variance

between features in these punches is minimal, fit a model to this data set, and
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whatever this model estimates during a fight is the punch type. We have seen

similarities in the modeling between uppercuts and hooks so whichever a specific

punch seems to emulate more is what it would be classified. The error no longer

would come in the way of what a human decides the punch type to be, but the

boxer not having a technically correct punching motion.

3.6 Model Instantiation

All data from the PunchR accelerometers is recorded to static CSV files for post

processing and analysis. The data cleaning, modeling, and analysis was done in

the open source statistical package R [R Core Team, 2013]. These models are

integrated for use with the real-time accelerations from the accelerometers for on-

air broadcasts. R works well for the static statistical modeling, but when it comes

to integration with the live system it is not practical.

3.6.1 Punch Extraction Algorithm

The punch detection algorithm evolved over the period of the project based on

needs. It was first outlined in R to be run on all of the static data from the

different trials to fit the necessary models. In order to be integrated with the

entire PunchR system the R algorithm code is translated into JAVA.

3.6.2 Model XML Specifications

Each of the speed and force linear models fit in R are translated into an XML

file. Additionally, there is a feature construction file for each of these models.

This makes a total of four XML files; one for the speed model, one for the speed

features, one for the force model, and one for the force features. The models then

are instantiated at system startup. As the models are self contained allowing for
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model updates with their corresponding feature file without requiring any other

system programming. Punch type classification has yet to be integrated into the

system, but similar XML files are appropriated to have similar functionality as

speed and force.

3.6.3 Ringside Laptop Application

On fight night the models are called with the PunchR application, but before the

models are used in real-time application there are prior steps that take place. First,

an event is defined in the user interface including the name, date, and location.

As the force model is trained using a number of boxer physical attributes (weight,

wingspan, and forearm circumference) these must be recorded in each locker room

to be entered into the application. At this step one boxer is assigned to be the red

boxer while the other is to be the blue boxer. Once the boxer has had their hands

wrapped the glove units themselves must be attached inside the boxer’s wrists

with athletic tape. The sensors are checked with the sensor monitor to assure

they are “awake”, have enough battery power, and providing measurements. The

boxer puts on gloves to head to the ring for the fight.

Once inside the ring, the In-Fight Dashboard is used to start, stop, or reset the

recording of the acceleration measurements by the units. This is when the JAVA

coded punch extraction algorithm comes into play. As the accelerometers record

the data, the algorithm extracts the punch in real-time. With the extracted

punch, the system then calls the XML feature extraction files followed by the

model predictions, in a similar fashion as is outlined by the model fitting sections.

The In-Fight Dashboard displays the resulting punch speed and force predic-

tions in a couple of ways. The first is a visualization of punch force as a bar chart

with each punch graphed to the height of the force predicted. Each new punch is

graphed to the right of the previous punch with the blue boxers punches showing
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up as blue bars and the red boxers as red bars. There are fixed views showing

the max force per boxer across all rounds as well as the current round. It is also

possible to toggle between each round. Punch speed is located in a similar chart

beneath the force chart. The second display in the In-Fight Dashboard is simply

a table that records round, boxer that throws the punch, speed, force, and time

the punch is thrown.

Simultaneously, while the punches are being displayed on the In-Fight dash-

board the acceleration traces are being recorded to be used in static modeling,

along with trouble shooting, at a later time.
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CHAPTER 4

Fight Results

The PunchR system has been used in hundreds of fights to test the technology, the

different environments provided by professional boxing matches, and the process

of incorporating the accelerometers into a fighter’s pre-fight routine. As with any

new technology there have been some setbacks and challenges in implementation

so not every fight has a complete record as a result of things like transmission

interference, sensor damage, and even refusal by boxers to use the sensors. Lots

of the fights have partial data recorded from a few rounds which is informative

about the process as well as providing some information about fighters’ tendencies.

More importantly there have been 65 fights complete fights where 130 boxers have

been equipped with the PunchR sensors, totaling 359 rounds for an average of 5.5

rounds per fight.

The following chapter will begin with two fight reports that include a highly

controversial decision that was reviewed by the World Boxing Organization (WBO)

and the Sports Illustrated Fight of the Year for 2012. These are the first looks at

a higher level numerical review of a professional boxing matches. Following these

individual fight summaries will be results from all 65 of the complete fights occa-

sionally referring to results from partial fights when necessary. All of these results

include numerical summaries, visualizations, the introduction of new metrics.

The new metrics and visualizations included in this section come as a response

to the Sabermetric movement in baseball and other high level analysis of other

sports. These are all creative, novel ideas in boxing to bring a higher level numer-
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ical understanding of the sport. Having seen the limited ways boxing currently is

quantified, these are attempts to advance the way boxing can be analyzed, viewed,

and critiqued. Ultimately, not every idea presented here will prove useful, but are

provided as introductory ideas into boxing quantification.

4.1 Fight Summaries

The fight summaries come from two major fights where PunchR was employed.

These summaries provide a different understanding about the entirety of the fight

outside of the outcome and the information provided by CompuBox or PunchZone.

4.1.1 Rocky Martinez - Juan Carlos Burgos

The Rocky Martinez versus Juan Carlos Burgos WBO super featherweight title

fight ended in a twelve round draw taking place on January 19, 2013 at Madison

Square Garden in New York City. The three judges scored the fight 117-111

Burgos, 116-112 Martinez, 114-114 shedding light on the wide discrepancy that

can arise in judging a fight. This draw allowed Rocky Martinez to retain his title

to the dismay of many observers. This was a significantly controversial decision

with a HBO poll having 84% of respondents considered Burgos the winner of the

fight in addition to various other media sources also scoring the fight for Burgos.

There was enough public outcry that the WBO officially reviewed the decision of

the fight. Ultimately, the WBO decided there was not enough evidence to require

an immediate rematch by the two fighters. [Reports, Jan 2013, Donovan, Feb

2013, Christ, Jan 2013]

As in any fight the precursor is the “Tale of the Tape” providing information

about the fighters sizes. In Table 4.1 there is not a big advantage either way in

height or weight with Burgos being the younger fighter. This table also combines

additional information about the fighters’ records prior to the fight that was taken
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from BoxRec.com [2011]. As it was a title fight the two fighters should have

similarly excellent resumes warranting Martinez to already hold the WBO title

and Burgos deserving to be the contender in title fight. They have boxed almost

the exact same number of rounds although Burgos did so in 3 more fights. Neither

fighter had been knocked out prior to this fight so it is no surprise that in this

fight they went the full twelve rounds.

Rocky Martinez Juan Carlos Burgos

Color red blue

Stance orthodox orthodox

Weight 130 129

Height 68 70

Wingspan 68 69

Age 29 25

Wins 26 30

Losses 1 1

Draws 1 0

KOs 16 20

% KOs 57.1 64.5

KOed 0 0

% KOed 0 0

Decisions 12 11

% Decisions 42.9 35.5

Rounds Boxed 180 183

Table 4.1: Tale of the tape and fighter’s previous record per BoxRec.com [2011].

Now that the pre-fight fighter comparison has been outlined we follow with

the fight analysis. This numerical analysis provides a round-by-round look into

the fight to consider if PunchR presented a difference between the two fighters in
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contrast to the judges’ scores.

First is punches by round in Table 4.2. This fight had the most punches

thrown in any fight recorded by PunchR with both fighters having thrown over

850 punches. Burgos averaged 81.9 punches per round (PPR) while Martinez

averaged 71.2 PPR. In the early rounds Burgos threw quite a few more punches

than Martinez until rounds 7-9 where Martinez looked to even things up. Rounds

10 and 11 Burgos again picked up the pace until a fairly even, but most active

final round. In all of the tables that follow, Burgos will be listed above Martinez.

1 2 3 4 5 6 7 8 9 10 11 12 Total

Burgos 88 73 83 81 86 92 61 76 71 86 88 98 983

Martinez 64 59 57 64 73 73 63 77 82 68 71 103 854

Table 4.2: Total punches thrown in each round.

Table 4.3 compares speed by round for the two fighters. Burgos was faster

in ten rounds with a median speed 1.1 mph faster than his opponent. This was

a metric where Burgos really outclassed Martinez. Although Martinez’s fastest

punch of 34.1 mph nearly equalled Burgos’ fastest punch of 34.9 mph. Burgos’

round 4 with a median of 19.2 mph was the fastest round by a full mph.

1 2 3 4 5 6 7 8 9 10 11 12 Total

Burgos 18.1 17.7 17.8 19.2 17.1 18.0 17.0 15.8 16.4 18.2 17.0 18.2 17.4

Martinez 16.7 17.4 17.9 15.9 16.3 16.2 15.9 16.5 15.9 15.8 16.2 16.3 16.3

Table 4.3: Median speed by round in mph.

Burgos also had the higher overall median force with a higher median force in

a majority of the rounds. In rounds 1 and 8 Martinez did throw harder punches

than Burgos. They both averaged just under 500 lbs of force for the entire fight as

seen in Table 4.4. Burgos’ hardest punch was 1,184 lbs while Martinez’s slightly

lower at 1,051 lbs Martinez’s first round is the only round to have his median force

over 500 lbs Burgos had three rounds with a median force of over 500 lbs.
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1 2 3 4 5 6 7 8 9 10 11 12 Total

Burgos 474 485 490 500 467 503 487 446 477 516 489 513 490

Martinez 506 472 483 478 463 481 470 485 474 484 460 456 474

Table 4.4: Median force by round in lbs.

Both Burgos and Martinez averaged about 1.5 lead punches for every rear

punch (LTRP) over the entire fight. In the first round they both averaged over 2

leads to rears being a bit tentative trying to read each other. In round 8 Burgos

had over 2.5 lead to rear punches which was one of Martinez’s more effective

rounds. Similarly, Martinez had 2.2 lead to rear in the tenth round which was one

of Burgos’ more effective rounds. Both fighters had nearly equal speed in their

lead and rear hands (LTRS), while Burgos’ lead had was slightly more comparable

to his rear hand in regards to force (LTRF).

1 2 3 4 5 6 7 8 9 10 11 12 Total

LTRP 2.03 1.81 1.77 1.13 1.61 1.36 1.90 2.62 1.96 1.21 1.67 1.45 1.64

LTRS 0.97 0.93 1.08 0.99 0.90 1.21 0.96 1.02 1.11 1.09 0.97 1.04 1.02

LTRF 0.81 0.81 0.85 0.81 0.87 0.94 0.85 0.89 0.94 0.94 0.88 0.90 0.87

Table 4.5: Lead to rear ratios by round for Burgos.

1 2 3 4 5 6 7 8 9 10 11 12 Total

LTRP 2.56 1.57 1.59 1.91 1.61 1.03 1.33 1.75 1.41 1.00 2.23 1.51 1.55

LTRS 1.06 1.13 1.14 1.06 1.01 1.02 1.04 1.05 0.98 1.05 1.10 1.04 1.05

LTRF 0.81 0.79 0.76 0.81 0.84 0.80 0.77 0.77 0.80 0.79 0.87 0.84 0.81

Table 4.6: Lead to rear ratios by round for Martinez.

Next is the flurry analysis between the two fighters. The idea of flurry analysis

is to determine whether a fighter throws consistently individual punches, quick

bursts, or longer successions of punches throughout the fight. This can help

provide an idea about how the punches are occurring in relation to one another.

A flurry is defined here as at least 3 consecutive punches or more with each punch

being thrown less than 750 ms after the previous punch.
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Flurries is something that Martinez was more active with than Burgos. Burgos

had more overall flurries (seen in the top half of table 4.7) and they had a similar

percentage of his punches come during flurries (seen in the bottom half of table

4.7) . Martinez’s average flurry length was almost a full punch longer than Burgos.

Martinez’s max flurry length of 15 was also five punches longer than Burgos’ max

flurry length of 10. Something future opponents can take from this is if Martinez

throws a punch expect to have 3 to 4 more following that while Burgos will throw

more controlled bursts of punches throughout the round.

1 2 3 4 5 6 7 8 9 10 11 12 Total

Burgos 10 8 10 9 8 8 4 5 6 10 12 11 91

Martinez 8 6 6 4 6 5 5 8 8 4 6 12 78

Burgos 0.38 0.30 0.51 0.35 0.34 0.33 0.15 0.18 0.27 0.38 0.59 0.34 0.35

Martinez 0.44 0.42 0.42 0.17 0.32 0.18 0.33 0.45 0.39 0.31 0.31 0.46 0.35

Table 4.7: Total flurries per round (top) and Percent of punches in flurries (bot-

tom).

Following the definition of a flurry it is possible to consider information about

the number of flurries in each round (TF), the rate of flurries per round (FPR),

and the percent of punches (POPIF) that were parts of flurries. In addition

we can take a look at some of the information about each of the flurries. The

punches per flurry (PPF) and the maximum flurry length (MFL). Because the

minimum length of a flurry is 3 punches and flurries of lots of punches are difficult

to maintain because the energy expended by throwing so many punches in a row,

flurries have a very right skewed distribution. Tables 4.8 and 4.9 show punches

per flurry, max flurry length, and percent of counterpunch flurries. Almost a third

of Martinez’s flurry started as a result of a counterpunch while only a quarter of

Burgos’ flurries started as a counter.

This leads us to counterpunches where Martinez threw almost twice as many

counterpunches as Burgos. So far we have seen that Burgos threw more punches,
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1 2 3 4 5 6 7 8 9 10 11 12 Total

PPF 3.67 3.14 4.67 3.50 4.14 4.29 3.00 3.50 3.80 3.67 4.73 3.30 3.87

MF 6 4 9 5 8 8 3 4 6 7 10 4 10

PCPF 0.30 0.25 0.00 0.22 0.25 0.12 0.25 0.20 0.33 0.30 0.25 0.27 0.26

Table 4.8: Punches per flurry, max flurry length and percent of counter punch

flurries for Burgos.

1 2 3 4 5 6 7 8 9 10 11 12 Total

PPF 4.00 5.00 4.80 3.67 4.60 3.25 5.25 5.00 4.57 7.00 4.40 4.27 4.65

MF 6 11 8 4 7 4 7 14 7 15 7 7 15

PCPF 0.12 0.33 0.17 0.25 0.17 0.20 0.20 0.50 0.25 0.25 0.50 0.42 0.35

Table 4.9: Punches per flurry, max flurry length and percent of counter punch

flurries for Martinez.

but now we also see that Burgos is also initiating the exchanges. In all Martinez

averaged 19.9 counterpunches per round while Burgos averaged 11.4. A coun-

terpunch occurs when a boxer immediately punches an opponent following an

attack initiated by the opponent. A counterpunch is often a tactical punch used

to take an advantage of an opponent’s mistake when throwing a punch leaving

them exposed. Using PunchR we can identify when punches are considered coun-

terpunches by each boxer to identify who is the more defensive fighter or trying to

take advantage of an opponents mistake. Unlike the other metrics outlined so far,

computing a counterpunch will take into account information from two opponents

using the timecodes from the acceleration peak of each punch recorded during the

fight.

Here, a counterpunch is defined as a punch that occurs within 750 ms of an

opponent throwing a punch. There can not be two counterpunches in a row and

any flurry of punches can only have one counterpunch, which is the first punch

of that flurry indicating a counter-flurry. A fighter who engages his opponent,

who in turn throws a counterpunch, does not get credit for a counterpunch fol-
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lowing his opponent’s counterpunch. In other words, it is not possible to throw a

counterpunch to a counterpunch.

In defining counterpunches the inherent problem arises that they will often be

tied to a losing fighter. If facing an overwhelming opponent it is likely that many

punches a boxer throws in defense will be classified as counterpunches. A fighter

who can win while throwing a high number of counterpunches can be considered

a good defensive fighter trying to take advantage of their opponent’s mistakes.

1 2 3 4 5 6 7 8 9 10 11 12 Total

Burgos 9 5 8 10 13 12 7 12 19 13 12 17 137

Martinez 16 17 17 20 18 22 18 20 18 23 24 26 239

Burgos 0.10 0.07 0.10 0.12 0.15 0.13 0.11 0.16 0.27 0.15 0.14 0.17 0.10

Martinez 0.25 0.29 0.30 0.31 0.25 0.30 0.29 0.26 0.22 0.34 0.34 0.25 0.30

Table 4.10: Counterpunches by round (top) and percent of all punches that are

counterpunches (bottom).

Punch sharpness (PSHARP) metric is based on the punch detection algorithm

equation. Basically, taking the probability that a profile is a punch is an indication

of how “clean” or “sharp” a profile looks. Profiles that are unimpeded by the

opponent that closely represent the training data have higher probabilities based

on the logistic regression of being a punch. It is not quite the equivalent of landing

a punch, but a fighter whose punches have profiles that consistently match the

training profiles are more likely to be landing these punches. As discussed in

the punch detection section there is a threshold of 20 g’s of any acceleration to

be included as a punch which occasionally includes a block or a blocked punch.

These have low probabilities of being punches so the recorded PSHARP will be

closer to 0. Like just about every other metric so far Burgos dominated the punch

sharpness as well. He had sharper punches in 10 of 12 rounds with one round

being equal.

Punch time (PTIME) is the time in milliseconds from the estimated punch
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1 2 3 4 5 6 7 8 9 10 11 12 Total

Burgos 0.88 0.88 0.85 0.83 0.83 0.85 0.87 0.85 0.84 0.89 0.86 0.87 0.86

Martinez 0.84 0.87 0.78 0.84 0.83 0.78 0.79 0.79 0.83 0.79 0.82 0.72 0.80

Table 4.11: PSHARP by round.

start to impact. This is one of the features used in force and speed modeling

having some relation to the speed of the punch. In terms of PTIME Martinez

average punch times were 10 ms shorter than Burgos’ punch times.

Punch quality is something that will assess each individual punch with the idea

being faster, stronger punches qualify as a “better” punch than a slower, weaker

punch. It is not always the case that the hardest punches are the fastest or the

fastest punches are the hardest. The punch quality metrics will be a combination

of force and speed that will provide a single measure to indicate the “quality”

of each punch. These metrics will also help compare individual punches across

weight classes. Speed is something that is easily compared, but it is unfair to

compare a heavyweight boxer’s force to a lightweight’s force.

The first punch quality metric compares each punch to the average of all other

punches from boxers of similar size. The punch quality index (PQI) is the average

of the two standardized scores of force and speed in comparison to boxers that are

within 5 pounds larger and 5 pounds smaller than the boxer doing the punching.

So PQI is defined as:

Punch Quality Index =

pf−µforce
σforce

+
ps−µspeed
σspeed

2
(4.1)

where pf is the individual punch force, µforce is the mean of all punch force for

boxers within 5 pounds of the boxer weight, and σforce is the standard deviation

of force for boxers within 5 pounds. Similarly, ps is individual punch speed, µspeed

is the mean of all punch speed for boxers within 5 pounds of the boxer weight, and

σspeed is the standard deviation of speed for boxers within 5 pounds. Anything
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below zero would be considered a less than average quality punch and anything

above zero is quality.

The second punch quality metric has no relationship to any other boxer and is

just a combination of speed and force, but that will still be able to be compared

across different weight classes. The punch quality aggregate (PQA) is force per

pound of the boxer, squared, added to speed. PQA is defined as:

Punch Quality Aggregate = (
pf

boxer weight
)2 + ps (4.2)

again, where pf is the punch force and ps is the punch speed. The punch force

over boxer weight is squared so they are roughly on the same scale as punch speed

so the importance of one term does not outweigh the other.

The punch quality metrics both went Burgos’ way in all rounds except for

round 8. Martinez threw most of his punches at a level that were a combined

slower and less forceful than other fighters his size that have used PunchR as

realized by having a mean PQI of less than zero. Only in two of the first three

rounds did he have a mean PQI above zero with his quality falling off as the fight

went on. Burgos, on the other hand, averaged only slightly above those of similar

size, but only had 3 total rounds where he was below the average PQI.

1 2 3 4 5 6 7 8 9 10 11 12 Total

Burgos 35.2 36.0 35.3 36.8 34.5 35.2 33.2 31.1 33.6 36.5 35.2 36.7 35.1

Martinez 34.5 33.1 34.4 31.5 29.9 32.7 31.1 32.6 31.6 30.9 30.1 30.2 31.8

Burgos 0.11 0.21 0.14 0.34 0.01 0.15 −0.10 −0.41 −0.05 0.33 0.07 0.37 0.11

Martinez 0.09 −0.11 0.05 −0.28 −0.5 −0.13 −0.35 −0.2 −0.29 −0.35 −0.5 −0.45 −0.27

Table 4.12: Mean Punch Quality Aggregate (top) and mean Punch Quality Index

(bottom) by round.

Boxer aggression will indicate how aggressive each boxer is during the round

and the entire fight. The boxer aggression metrics combines flurries initiated and
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non-counter punches. The higher the aggression metric the more aggressive the

fighter, but this does not necessarily mean the fighter is winning the fight. An

example that comes to mind is the Miguel Cotto versus Floyd Mayweather fight

on May 5, 2012. The conjecture is that Cotto would have the higher aggression

metric, but Mayweather (a notorious defender and counterpuncher) controlled the

fight for a victory.

Here are two boxer aggression metrics that take into account flurries initiated

(non-counter punch flurries) and non-counter punches. First, is Boxer Aggression

Rate (BAR) which is defined as:

Boxer Aggression Rate =

flurries initiated
total flurries

+ non−counterpunches
total punches

2
(4.3)

Basically, BAR is the average of two percents so the closer the value is to 1

indicates the more aggressive boxer. The glaring issue with this metric is it does

not take into account volume of punches so if a boxer only threw three punches

in a flurry that he initiated in a round he would have have a BAR of 1 despite

having thrown very few punches.

The second boxer aggression metric is the Boxer Aggression Aggregate (BAA),

which does take into account volume of flurries and non-counterpunches. The

BAA is the total number of flurries plus the rate of non-counter punches per

round. BAA can be simply defined as:

Boxer Aggression Aggregate = flurries initiated+
non− counterpunches

rounds
(4.4)

Comparing the two boxer aggression metrics Burgos again came out on top.

Martinez had a higher BAR in round 1 and round 9 and when volume came in

play with BAA he only came out ahead in round 9. When considering all the

previous metrics in the fight these are results we expected to see as Burgos has
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outperformed Martinez in just about every previous metric so far. In Table 4.13

BAR is the top half with values between 0 and 1 while BAA is on the bottom for

each fighter.

1 2 3 4 5 6 7 8 9 10 11 12 Total

Burgos 0.78 0.82 0.95 0.81 0.78 0.86 0.78 0.80 0.67 0.76 0.80 0.76 0.80

Martinez 0.80 0.66 0.75 0.68 0.78 0.72 0.73 0.58 0.75 0.66 0.53 0.65 0.68

Burgos 85 73 84 77 78 86 56 67 55 79 84 88 76

Martinez 54 45 44 46 59 54 48 60 69 47 49 83 54.8

Table 4.13: Boxer Aggression Rate (top) and Boxer Aggression Aggregate (bot-

tom) by round.

Having assessed this fight using all these new metrics we will provide a score

for this fight based on the round-by-round 10 point system that boxing currently

employs. The scoring includes median force and speed, punch count (PPR),

PSHARP, total flurries (TF), punches per flurry (PPF) , counter punches per

round (CPPR), both punch quality measures (mean PQI and PQA), and both

boxer aggression measures (BAR and BAA). By having so many metrics to score

on the 10 point system does not have to be absolute. Another method of scoring

this fight is to give a 10 to the boxer with the higher round for each metric that

was considered in scoring the fight and a 9 for the boxer with the lower metric

value. Then average the 12 metrics to get a score that tells us how close each

round was. The following visualization (figure 4.1) provides a row for each of

the twelve metrics and a column for each of the twelve rounds. The grid cell is

colored by the boxer who had the higher value for each metric during the round

with white cells being a tie.

Averaging each column in Figure 4.1 results in the scoring in Table 4.14. Still

Burgos won 10 rounds, but this provides an idea bout which rounds were closely

contested. Rounds 1, 7, 8, 9, and 12 looked to be close possibly going either way.

The final fight score summing these round scores is 117.2 - 110.8 which is very
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1 2 3 4 5 6 7 8 9 10 11 12

Force

Speed

PPR

Flurries

POPIF

PPF

CPPR

BAR

BAA

PSHARP

PQI

PQA

Figure 4.1: Metrics by round colored for the fighter with the higher metric value.

Burgos is blue, Martinez is red, and white is a tie.

close to what one of the three judges scored the fight for Burgos at 117 - 111.

1 2 3 4 5 6 7 8 9 10 11 12 Score

Burgos 9.67 9.83 9.83 9.83 9.92 10 9.67 9.33 9.42 10 10 9.67 117.2

Martinez 9.33 9.17 9.17 9.17 9.17 9 9.33 9.67 9.58 9 9 9.33 110.8

Table 4.14: Round by round fight score based on averaged PunchR metrics for

Burgos versus Martinez.

The official review of this fight by the WBO had Burgos winning rounds 2, 10,

and 12 by 100%, 6 and 11 by 87.5%, and round 3 by 75%. They had Martinez

winning round 5 by 100%, round 9 by 87.5%, round 8 by 75%, and round 1 by

62.5%. Rounds 4 and 7 were scored as draws. [Reports, Jan 2013, Donovan, Feb

2013, Christ, Jan 2013] So the major difference between this analysis was round 4

and 5 which these metrics had strongly for Burgos in contrast to the WBO review.
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These new PunchR metrics are not in any way intended to replace judges, but are

presented as an additional tool to further think about how the fight played out.

The analysis presented here does provide good evidence towards Burgos being the

victor. As all of these metrics are new it is hard to tell if they are representative of

what is happening in the fight. All of these metrics will be continued to be studied

to determine whether they do help provide information about the outcome of the

fight.

4.1.2 Brandon Rios - Mike Alvarado

The fight between Brandon Rios and Mike Alvarado, was named Sports Illus-

trated Fight of the Year in 2012, and runner-up in numerous other media outlets.

[Fischer, Dec 2012, Illustrated, Dec 2012] This was a slugfest with the two fighters

standing toe-to-toe punching each other round after round. Rios came away the

victor with a referee stoppage in the 7th round after barrage of punches on Oc-

tober 13, 2012 at the Home Depot Center in Carson, CA. As this was a decisive

fight we take a different approach, presenting the fight largely through visualiza-

tions for many of the metrics discussed. Throughout this summary Rios will be

presented as the red fighter and Alvarado as the blue fighter.

Figure 4.2 is running average speed by round with the white gaps in the colored

lines being the round intermissions. The first ten punches were omitted in the

plot until the average speed estimate stabilized. The first two rounds were close,

averaging just under 17.5 mph for both fighters, until the third round when Rios

started getting faster while Alvarado got slower. The fourth round saw both

fighters maintain until they both saw some decline until the final round as they

tired with so many punches. In the end Rios averaged 17.4 mph while Alvarado

was just over 17.0 mph. Alvarado did have the faster maximum punch speed at

35.6 mph while Rios only reached 31.4 mph.
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Figure 4.2: Running average speed in mph.

Figure 4.3 is associated with force. The plot on the top is the distribution of

force for each fighter overlaid with their density. It is easy to see that Alvarado

threw harder punches for the entire fight with his median force at just over 500

lbs while Rios was slightly lower at 470 lbs The distributions for each fighter are

similar making the histograms in the background largely indistinguishable. Rios

had the maximum force punch of 1,036 lbs The plots on the bottom are cumulative

force by round making these a combination of punches thrown in addition to force.

Rounds 1-4 are the four top panels with rounds 5-7 on the bottom. Rounds 1 and

2 were the two closest rounds. In both cases Rios started off ahead in both rounds

until finally falling only slightly behind at the end of the rounds. Round 3 and 5

Alvarado threw punches that combined for over a total of 60,000 lbs of estimated

cumulative force. Round 7 saw the least as Rios won the fight about two minutes

into the round.

The following figure (4.4) is from round 1 of the fight. It is a timeline of each

punch thrown by Rios and by Alvarado with the symbol indicating punch type

with darker colors indicating rear punches. Triangles indicate straight punches,

circles indicate hooks, X indicate uppercuts. The colored mound along the time-

line is aggregate punch count. Rios started out strong throwing quite a few more
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Figure 4.3: Distribution of force of punches from entire fight (top). Cumulative

force by round (bottom).

punches than Alvarado in the first minute. Alvarado only threw one rear hand

cross in the first minute sticking almost entirely to his lead hand. By the end of

the round Alvarado was more active most notably in the final minute.
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The treemap in Figure 4.5 shows punch type by fighter as area of each rect-

angle. Overall, Alvarado threw more punches as evidenced by his slightly overall

larger area. Both fighters threw mostly jabs. Relatively, Rios looped his lead

hand having proportionally more lead hooks to jabs than Alvarado. Conversely,

Alvarado looped his rear hand a little more with proportionally more rear hooks

to crosses than Rios. The number of uppercuts are roughly the same. These are

rear uppercuts with there only being 2 lead uppercuts for Alvarado and 1 for Rios,

so few, that the boxes are almost non-existent in the plot.

Jab Jab Cross

Mike Alvarado Brandon Rios

Punch Type 
Treemap 0 389194

Cross

Lead
Hook

Lead
Hook

Rear
Hook

Rear
Hook Upper

Upper

Figure 4.5: Treemap of punch type by fighter. Box size and color darkness indicate

more punches of each type. There are very few lead upper cuts that the boxes are

almost non-existent in the plot.

Figure 4.6 helps visualize the flurry activity by round. Each line in the plot is

a round making the x-axis time in each round. The larger the bubble the more

punches included in the flurry. The largest flurry occurred in the fifth round
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by Rios, while there are more larger blue bubbles indicating Alvarado had more

flurries overall. The most flurry action came in round five especially towards the

end with round six and the start of round seven seeing quite a few flurries as well.

The middle parts of rounds tended to see fewer flurries, especially in rounds two

and five.

Figure 4.6: Flurries by round. Each row of bubbles is one round plotted over

time. The larger the bubble indicates more punches included in the flurry.

A spider (radar) chart is seen in Figure 4.7 that summarizes twelve metrics

about each fighter from the entire fight. Spider charts have become popular in

basketball analysis in comparing match and see a natural use in boxing as the

fighters are going head-to-head so we can directly compare different measure-
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ments [Pimentel, 2009, Moghadam, 2013]. These are plotted as distance away

from the center relative to all other fighters that have used the PunchR system.

Included metrics are media force, median speed, punches per round (PPR), per-

cent of punches if flurries (POPIF), punches per flurry (PPF), counterpunches

per round (CPPR), counterpunch percent (CPP), Boxer Aggression Rate (BAR),

mean Punch Quality Aggregate (PQA), punch sharpness (PSHARP), hook to

straight punch ratio (HTS) and lead to rear punch ratio (LTRP). It is easy to

see that both fighters were throwing large amounts of punches with more of Al-

varado’s coming in way of flurries. Alvarado had very high values for PSHARP

throughout the fight. Rios was counterpunching more frequently, throwing more

hooks relative to straight punches, and lead punches relative to rear punches. This

is a quick way to summarize how the fight played out in many metrics over all the

rounds combined.

Rios versus Alvarado
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Figure 4.7: Spider chart for the entire fight. Each metric is plotted relative to all

other fighters that have used the PunchR system.
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Finally, we again have the grid of boxer metrics colored by the boxer with

the higher value (figure 4.8). This is largely dominated by Alvarado with speed

being Rios’ best metric. Round 3 and 5 were also his two best rounds when

comparing at all metrics. With Rios winning by TKO in the seventh round this

brings up the limitations of predicting the victor with these measures. Many of

these measures point to Alvarado being in control of the fight, but Rios was able

to hurt Alvarado and end the fight prematurely. The judges had even scorecards

at the end of six rounds although some media outlets did have Alvarado firmly

ahead in the fight similiar to what we have seen here. CompuBox numbers had

Rios out landing Alvarado in the power punch category 144 to 132. So despite

providing a compelling story in many accounts there is still some information not

being provided by this system. Chapter 5 further addresses the usefulness of these

new metrics in relation to predicting fight outcomes.

1 2 3 4 5 6 7 8 9 10

Force

Speed

PPR

Flurries

POPIF

PPF

CPPR

BAR

BAA

PSHARP

PQI

PQA

Figure 4.8: Round-by-round fight score based on averaged PunchR metrics for

Rios versus Alvarado.
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4.2 Punch Counts

Having taken a comprehensive view of two fights we now outline each of the

metrics for all PunchR fight results. The easiest thing to summarize are metrics

related to punch volume and rate based on the punch detection algorithm. This

is really the only metric that boxing already records during fights, measured by

CompuBox and PunchZone. Metrics relating to punch counts provide the most

basic look at the activity that is occurring in the ring.

4.2.1 Total Punches

To begin we look at the most punches recorded in any of the fights. The total

punches (TP) is testament to both a very active fighter and a fighter who fights

a lot of rounds. Table 4.15 is the top 15 total punches thrown by a fighter in a

fight. The two fighters with the most total punches thrown in a single fight came

in the draw between Burgos and Martinez. They are the only two fighters to have

thrown over 800 punches in a single fight coming against one another. Two other

fights contributed four fighters to this list including the Alvarado versus Rios fight

as well as the Dashon Johnson versus Jermell Charlo fight. These were high action

fights by both fighters that lasted into the later rounds of the fight.

4.2.2 Punches Per Round

Punches per round (PPR) is a rate that can be compared across fights for fighters

who have fought different fight lengths. Rigoberto Casillas leads the way with 120

punches per round being one of five fighters to break the 100 punches per round

level. Three fighters (Rios, Alvarado, Kavanagh) that fought at least 7 rounds at

these high punching rates made both the total punch list and this PPR list. Jamie

Kavanagh made this list for three separate fights indicating he always throws a

high rate of punches. For all fighters in all weight classes the average is 56.4 PPR.
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Boxer TP RDs Weight Victor

Juan Carlos Burgos 983 12 129 draw

Rocky Martinez 854 12 130 draw

Sakio Bika 792 12 172 winner

Isaac Chilemba 784 8 179 winner

Luis Orlando Del Valle 772 10 122 loser

Jamie Kavanagh 754 8 136 winner

Mike Alvarado 723 7 140 loser

Dashon Johnson 696 10 153 loser

Jose Medina 692 10 162 loser

Jermell Charlo 672 10 154 winner

Javier Fortuna 669 12 126 winner

Victor Terrazas 665 8 136 winner

Lanard Lane 630 8 144 winner

Brandon Rios 622 7 140 winner

Marvin Quintero 613 12 135 loser

Table 4.15: Top 15 Boxers for total punches (TP) thrown during a fight using

PunchR.

Figure 4.9 illustrates PPR by weight. There is a definite trend of decreasing

PPR as weight increases.

4.2.3 Compubox Comparison

There have been 9 partial fights with PunchR data where Compubox has also

published a fight report. These fights are a good opportunity to compare the two

systems. CompuBox records punches on a round-by-round basis so this will be

the level at which we compare punch totals by fighter. We do not expect the

two counts to be exactly the same as both systems have some error involved in
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Boxer PPR RDs Weight Victor

Rigoberto Casillas 120.0 3 118 loser

Jamie Kavanagh 110.5 5 136 winner

Mike Alvarado 103.3 7 140 loser

Saul Rodriguez 103.0 2 130 draw

Randy Caballero 102.0 3 119 winner

Jamie Kavanagh 98.8 6 136 winner

Keith Thurman 98.0 1 147 winner

Isaac Chilemba 98.0 8 179 winner

Hector Orozco 96.3 6 148 loser

Jamie Kavanagh 94.3 8 136 winner

Sean Monaghan 93.0 6 175 winner

Phil Lo Greco 93.0 6 148 winner

Brandon Rios 88.9 7 140 winner

Cesar Garcia 88.5 2 130 draw

Edner Cherry 85.2 6 130 winner

Table 4.16: Top 15 boxers for total punches (TP) thrown during a fight using

PunchR.

recording the punches, but there should be a high correlation between the two.

The correlation between PunchR and CompuBox is 0.847. As seen in Figure

4.10 the diagonal line is the 1-1 line, with more of the points falling below the line

showing PunchR more often records more punches than the CompuBox operators.

On average it records 5.5 more punches than CompuBox per round. This higher

punch count by PunchR can be attributed to the threshold set in the punch

detection algorithm to allow a possible peak to be consider a punch. This was

set to allow for the liberal inclusion of more punches in order to not miss a punch

during a live broadcast.
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Figure 4.9: Punches per round by weight.
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Figure 4.10: CompuBox versus PunchR punches recorded by round.

4.3 Speed

The speed measurements are the first measurements of speed of punches during

live professional fights. The comparisons will be made looking at median speeds

because the distribution of speeds of all punches is slightly right skewed so the
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medians will provide a better measure of center.

4.3.1 Speed by Weight Class

Summarizing speed by weight class is a natural comparison. Table 4.17 splits all

the punches from all fights with partial data into 8 large, general weight classes.

Overall, there was data from 154 different fighters with almost 50,000 punches.

Boxing has 18 different weight classes, depending on the sanctioning body, so at

the lower weight classes the weight differences are very minimal which in this

comparison would separate out to too many groups of boxers. The middle weight

classes have seen the most fighters. Typically, the rear hand is faster than the lead

hand and there is a slight decrease in speed as weight class increases. Fighters

weighing below 147 pounds had median punch speed above the median punch

speed of 16.85 mph.

Weight Class Fighters TP Lead Rear Med Max

Below 118 lbs 2 175 17.5 18.2 18.1 31.2

118 - 126 lbs 15 2714 17.5 16.9 17.2 36.7

126 - 135 lbs 25 9419 16.8 17.5 17.1 38.8

135 - 147 lbs 30 12491 16.8 17.3 17.0 38.3

147 - 160 lbs 42 11560 16.8 16.9 16.8 41.8

160 - 175 lbs 19 5869 16.4 17.0 16.7 36.5

175 - 200 lbs 11 5359 15.9 17.5 16.3 38.3

Above 200 lbs 10 1595 16.2 17.5 16.9 37.6

Total 154 49192 16.6 17.2 16.9 41.8

Table 4.17: Median speed by weight class including number of fighters, total

punches, lead, rear, and max speed in miles per hour.

The following figure (4.11) has plotted speed of all the punches with a LOESS

smooth fitted line over the top to point out the slight downward trend of the line
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as weight increases.
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Figure 4.11: Speed by weight with LOESS smooth fitted line.

4.3.2 Top Median Speed

Table 4.18 lists the 15 fastest fighters by median speed for fighters with over 100

punches in a fight. Lots of the fights had fewer than 100 punches but with such

a small sample of punches we see quite a bit of variation in punch speed. Having

to throw at least 100 punches settles the median speeds to a more representative

estimate of each fighters speed. DeVonte Allen averaged just around 2 mph faster

than the average punch. Surprisingly the top two fastest punchers were losers of

their respective fights but of the top 15, twelve (12/15 = 80%) of the fighters were

winners. Out of the 65 fights, 42 (42/65 =65%) winners had a higher median

speed than their opponent. Further, for those that had a median speed more than

a half a mph faster than their opponent 32/45 = 71% were winners.
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Boxer Median Speed Weight TP Victor

DeVonte Allen 18.8 128 171 loser

Jay Krupp 18.6 154 296 loser

Jermell Charlo 18.5 154 132 winner

Abraham Han 18.5 160 232 winner

Rigoberto Casillas 18.4 118 360 loser

DeAndre Latimore 18.4 154 150 winner

Saul Rodriguez 18.3 129 309 winner

Deontay Wilder 18.3 218 213 winner

Brandon Bennett 18.2 135 144 winner

Rau’shee Warren 18.2 116 107 winner

Bryant Jennings 18.2 223 269 winner

Wale Omotoso 18.1 148 360 winner

Demetrius Hopkins 18.1 154 179 winner

Cedric Agnew 18.1 175 365 winner

Luis Carlos Abregu 18.1 147 106 winner

Table 4.18: Top 15 boxers for median speed of punches thrown during a fight

using PunchR with a minimum of 100 punches.

4.4 Force

4.4.1 Force by Weight Class

In Table 4.19 we have the rear median force always larger than the lead median

force. The highest maximal force punch came in the heavyweight division with

the maximal punch force being 1,925 lbs There is a large positive trend showing

an increase in force as weight increases.

The force by weight plot with LOESS curve in Table 4.12 shows the positive

trend of an increase in force as weight increases.
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Weight Class Fighters TP Lead Rear Med Max

Below 118 lbs 2 175 395 379 386 1083

118 - 126 lbs 15 2714 451 499 468 1076

126 - 135 lbs 25 9419 467 517 486 1574

135 - 147 lbs 30 12491 472 527 492 1613

147 - 160 lbs 42 11560 516 555 531 1304

160 - 175 lbs 19 5869 587 639 604 1536

175 - 200 lbs 11 5359 549 652 580 1379

Above 200 lbs 10 1595 859 1012 929 1925

Table 4.19: Median force by weight class including number of fighters, total

punches, lead, rear, and max speed in lbs of force.
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Figure 4.12: Force by weight with LOESS smooth fitted line.

4.4.2 Top Median Force

The top 15 median force by fighter is not quite as interesting to compare because

the heavier fighters dominate the top of the list. It is harder to make comparisons

across weight classes because of the strong increase in force as weight increases.
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The top fighters come from the heavyweight division. In 41/65 = 63.1% of fights

the fighter with the higher median force was the victor. In 30 fights were there

was a difference in median force of larger than 50 lbs, 21 fights had the boxer with

the higher force being the winner (21/30 = 70%).

Boxer Median Force Weight TP Victor

Bryant Jennings 1077 223 269 winner

Deontay Wilder 1071 218 213 winner

Theron Johnson 1051 230 228 loser

Isa Akberbayev 748 210 411 loser

Ronald Ellis 716 168 316 winner

Cedric Agnew 708 175.5 365 winner

Ryan McKenzie 674 175 302 winner

Nikola Sjekloca 670 168 592 loser

Sakio Bika 649 172 792 winner

Anthony Ferrante 643 196 226 winner

Chris Chatman 635 154 173 loser

Jason Escalera 631 166 581 loser

Edwin Rodriguez 621 165 522 winner

J’Leon Love 619 158 502 winner

Josiah Judah 614 165 191 winner

Table 4.20: Top 15 boxers for median force of punches thrown during a fight using

PunchR with a minimum of 100 punches.

4.5 New Metrics

The following new metrics are proposed as additions to punch counts, speed, force,

and punch types many of which were outlined in the Burgos and Martinez fight

summary. Metrics relating to counterpunches and flurries are based on common
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boxing terminology and techniques, but have had no previous method of quan-

tification while other metrics are entirely novel conceptually. Most of these new

metrics are an attempt to quantify something tangible in the boxing ring while

some are a bit more abstract.

4.5.1 Punch Time

The average PTIME is 152 ms with a standard deviation of 57 ms for all fighters.

There is no intuition as to whether shorter or longer punches are of any benefit

so no list will be included, but it does tell us something stylistically about the

fighters.

4.5.2 Punch Sharpness

For the remaining new metrics there is really no sense of the levels that each will

be recorded at so only top 5 fighters for each will be presented. Table 4.21 has

the top 5 fighters for PSHARP. The mean fighter PSHARP is 0.835. There were

14 boxers who surpassed an average PSHARP of 0.9, eleven (11/14 = 78.6%) of

whom were victors.

Boxer PSHARP Weight Victor

Thomas Dulorme 0.915 145 winner

Adam Lopez 0.911 118 winner

Rau’shee Warren 0.908 116.8 winner

Jay Krupp 0.906 154 loser

Keith Thurman 0.905 147.5 winner

Table 4.21: Top 5 boxers for mean PSHARP of punches thrown during a fight.
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4.5.3 Punch Quality

Comparing punch quality across weight classes is a possibility as well. In the top

5 for mean PQI and PQA we have fighters from various weight classes. In the

mean PQA top 5 the first two are heavyweights, while the next three come from

fighters nearly 100 lbs smaller. Bryant Jennings manages to make the top 5 for

both lists.

Boxer PQI Weight Victor Boxer PQA Weight Victor

Theron Johnson 3.0 230 loser Deontay Wilder 46.3 218 winner

Bryant Jennings 2.7 223 winner Bryant Jennings 43.8 223 winner

Cedric Agnew 1.4 175 winner Patrick Hyland 39.9 126 loser

Chris Chatman 1.0 154 loser Miguel Garcia 39.0 126 winner

J’Leon Love 0.9 158 winner Dodie Penalosa Jr 38.8 123 winner

Table 4.22: Top 5 boxers for punch quality index and punch quality aggregate.

4.5.4 Flurries

The median number of flurries per round is three with the median number of

punches per flurry being 4.1. Below we have the top 5 flurries per round and

punches per flurry. Jamie Kavanagh leads the way with 11.5 flurries per round

while Rau’shee Warren throws the most punches in his flurries averaging 6.5 PPF.

Boxer FPR Weight Victor Boxer PPF Weight Victor

Jamie Kavanagh 11.5 136 winner Rau’shee Warren 6.5 116 winner

Rigoberto Casillas 11.0 118 loser Isaac Chilemba 6.2 185 winner

Saul Rodriguez 9.5 130 draw Eddie Cordova 6.2 152 loser

Mike Alvarado 8.9 140 loser Keith Thurman 6.0 147 winner

Cesar Garcia 8.5 130 draw Saul Rodriguez 5.8 130 draw

Table 4.23: Top 5 boxers for flurries per round and punches per flurry.
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4.5.5 Counterpunches

In Table 4.24 we see Randy Caballero averaging the highest number of counter-

punches per round and winning in addition to Miguel Garcia having the highest

percentage of his punches being counterpunches also winning. These two could be

considered good counterpunches in their fights. The remaining fighters on these

lists are losers (one draw) of their fights making it impossible to differentiate if

this is their style or if they were severely outclassed by their opponents.

Boxer CPPR Weight Victor Boxer CPP Weight Victor

Randy Caballero 24.3 119 winner Miguel Garcia 0.6 126 winner

Marcos Herrera 24.2 135 loser Rayco Saunders 0.5 176 loser

Cesar Cisneros 23.8 135 loser Katrell Straus 0.4 168 loser

Cesar Garcia 23.5 130 draw Ayi Bruce 0.4 154 loser

Hector Orozco 22.5 148 loser Paul Velarde 0.4 136 loser

Table 4.24: Top 5 boxers for counterpunches per round and counterpunch percent.

4.5.6 Boxer Aggression

The top 5 boxer aggression measures are listed in Table 4.25. This measure

we can easily compare across weight classes like many of the measures we have

presented so far outside of force. Both Orlando Salido and Deontay Wilder had

perfect BAR during their fights indicating they were the aggressor throughout the

entirety of their fights. Surprisingly, Salido lost. Isaac Chilemba made both top

5 lists meaning he was a high volume, high percentage aggressor.
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Boxer BAR Weight Victor Boxer BAA Weight Victor

Orlando Salido 1.0 126.0 loser Rigoberto Casillas 38.6 118.0 loser

Deontay Wilder 1.0 218.0 winner Jamie Kavanagh 35.4 136.0 winner

Isaac Chilemba 0.9 179.0 winner Isaac Chilemba 33.2 179.0 winner

Raeese Aleem 0.9 127.0 winner Keith Thurman 32.3 147.5 winner

Eddie Cordova 0.9 152.0 loser Saul Rodriguez 32.3 130.0 draw

Table 4.25: Top 5 boxers for boxer aggression rate and boxer aggression aggregate.

109



CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

This dissertation accomplished a number of different things in bringing more quan-

titative thought to the sport of boxing. Without even mentioning any of the fight

results with PunchR a lot of new territory has been covered. Chapter 2 brought

about the largest assessment of boxing quantification in one place looking at both

in-fight measures in addition to studies in controlled experimental settings. In

Chapter 3, the PunchR system overview outlined the construction of an objective

system to vastly increase the available measurements that can be recorded in live

professional boxing matches. The data collection exercises alone for both speed

and force modeling recorded more punches with known speed and force than all

other experimental studies combined.

Including the fight results into the discussion the amount of new information

that can generated with each new fight is staggering in comparison to what has

been previously available. When considering prior to PunchR only one study

with a total of six fights had attempted to make estimates about force of punches

during live professional boxing matches it is evident boxing was in its infancy in

relation to the available data. Further no fights had had any measures of speed

and very little had been done in way of uppercut punches. Now 65 complete fights

have estimates of speed, force, punch type and a variety of other metrics. Not

only were new metrics presented, but so were a number of new visualizations to
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help create a narrative about each fight.

5.2 Future Work

As the PunchR system sees continued use further possibilities begin to present

themselves. These possibilities can be separated into improving upon the PunchR

system, improvements in quantifying the sport of boxing, or making more knowl-

edgable fight predictions.

5.2.1 Model Improvements

First, when talking about improving upon the system the difficulty of extrapola-

tion is a main issue. For boxers that may have different fighting styles or physical

sizes than those used to train the force model, the estimations become difficult.

The cohort of 30 boxers used to train the force model only consisted of seven

professional fighters. As the fights using PunchR are all professional fighters this

training data may not be entirely representative of the fighters we are trying to

encapsulate. The first step would to be further data collection for the force model

with more professional fighters making sure to get boxers from many of the weight

classes with as many replicates from each weight class as possible. Refitting the

force model on additional punches from a more representative group of professional

boxers would improve the force estimates.

With force being such a difficult problem to provide accurate estimates the

desired solution would be to dynamically update the force model. Boxer specific

punches prior to a fight would provide a solution to this difficulty. This would en-

tail each boxer to punch a portable boxing dynamometer while using the PunchR

units in the weeks or days prior to using the system in an upcoming fight. The

resulting punches could be included into a boxer specific force model prior to fight

to provide more accurate estimations for each boxer.
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Outside of force, as accelerometer technology improves incorporating new, bet-

ter quality sensors with higher sampling rates will only improve data collection.

Adding a third dimension (z-axis) to the accelerometer will further improve data

integrity for modeling most specifically in the punch type classification when com-

paring hooks to uppercuts. Further the use of a combination accelerometer, gy-

rometer could prove beneficial.

5.2.2 Further Quantification of Boxing

Of course, the implications of a comprehensive, automated quantitative system in

boxing are far reaching. Fighters, historians, and fans alike can make conjectures

like, “Roy Jones, Jr. or Sugar Ray Leonard are the fastest punching fighters of

all-time” or “Mike Tyson is undoubtedly the hardest puncher who ever fought,”

but outside of video of a blur of punches or a devastating knockout these com-

parisons can only be made following an “eye-test” without any concrete evidence.

Historical comparisons about speed and force will never be able to be resolved,

but as PunchR sees continued use comparisons will be able to be made across

weight classes and across different fighter eras.

For fighters and boxing promoters any number of quantitative measures could

be used when considering future opponents. Fighting styles can begin to be sum-

marized numerically used in training up to a fight to scout an upcoming opponent

to come up with a fight plan for success. Training can be tailored to improve

fighters deficiencies. The promoters can use similar information to provide fights

to viewers that have more action or stylistically provide an intriguing fight.

Further, the possibility of medical information becomes a possibility. Ringside

doctors could this information to stop fights earlier if these new metrics start to

indicate a fight is getting more out of hand than it may look. Or possible metrics

can be developed to help educate fighters about long term health risks if they
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continue to fight.

5.2.3 Fighter Styles

One fighter, Jamie Kavanagh, has participated in three bouts using the PunchR

system. He was victorious in all three fights recording two unanimous decisions

and one technical knockout (TKO). Visualizing all three fights by way of the spider

chart we see that he had similar performances across all three fights especially in

fights 1 and 2. He is a high volume puncher, with average PSHARP, and a low

counterpunch percent. In fight 2, where he recorded his TKO is where his speed

was the fastest of all three fights. With the similar shapes of these spider charts

we can see how a fighter style begins to shape up over multiple fights. This would

likely when he is faced with a more difficult opponent, but it does give a good

representation about the type of fighter Kavanagh looks to be.
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Figure 5.1: Spider chart for three different Jamie Kavanagh fights using the

PunchR system.

5.2.4 Fight Predictions

There have been minimal studies trying to predict fight outcomes using statis-

tical analysis. The only study available is Warnick and Warnick [2007] and its

extension, Warnick and Warnick [2009]. These studies compiled results of 739
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male professional boxers from the website BoxRec.com [2011]. In Warnick and

Warnick [2007] they indicated age, career wins and losses, and the outcome of the

preceding fight are predictive of a fight’s outcome. Warnick and Warnick [2009]

again cited prior performance in a preceding fight, prior performance against the

same opponent, and prior performance at a particular location were all good in-

dicators of fight outcomes. These studies only consider measures pertaining to

fight outcomes, opponents, and boxer characteristics. No studies have considered

using in-fight measures like CompuBox. There is plenty of room for research in

fight predictions even prior to PunchR.

With the PunchR system fight predictions become even more interesting. The

fight summary of the Rocky Martinez versus Juan Carlos Burgos fight took a look

at using some of the new PunchR metrics to help frame the story of the fight

to come to a decision about the victor. This begs the question which of these

new metrics are more important in predicting a winner. With only 65 complete

fights (62 of which ended in a victor; 3 draws) there is not an extensive amount

of outcomes to make a strong case for certain new metrics over the others, but

an exploratory analysis is presented here. A small CART using the difference in

metrics between two opponents indicates a few metrics possibly more important

than others. The CART (seen in figure 5.2) fit on the 62 fights with outcomes

has only three splits from the new metrics including the difference in PSHARP,

PQA, and median punch speed. Using these only these three metrics the correct

victor is selected 54/62 = 87.1% of the fights.

This was just a quick into look at the possibility of fight prediction, but the

opportunities to improve on this become very clear with more and more PunchR

data being recorded. Despite all this new information it is not to say all boxers,

boxing fans, or boxing historians will readily adopt PunchR numbers. Boxing has

a way of remaining true to it’s traditional roots. Nonetheless publication of data

recorded from the PunchR system could go a long way in making boxing a sport
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|psharpdiff< 0.06675

pqadiff< 0.1478

speeddiff< -0.4135
loser 
0/29/2

loser 
0/7/1

winner
0/5/9

winner
0/0/9

Figure 5.2: CART fit on the 62 fights with outcomes using the new PunchR

metrics.

no longer starving for data and numerical analysis, but one that can be compared

to baseball with the analysis being done in the Sabermetric movement and other

sports who are heading in the same direction. The trove of data will beg for fan

usage, interaction, and development, in addition to building a more educated fan

base. It will be hard to deny the rich experience that this new data will add to

boxing and the evidence that it provides that boxing does need to move towards

higher numerical analysis of the sport. PunchR is a much needed step in the right

direction to quantify the sport of boxing.
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APPENDIX A

Appendix

A.1 List of Single Punch Metrics

New individual punch measurements with abbreviations and descriptions.

Metric Abbreviation Description

Punch Force pf Estimated punch force in pounds

Punch Speed ps Estimated punch speed in mph

Punch Type pt Punch type classified as straight (jab or cross), hook, or upper

Punch Sharpness PSHARP Estimated probability a profile is a punch in detection

Punch Time PTIME Time of punch from estimated start to impact

Counterpunch cp Indicator if a punch is a counterpunch

Flurry Punch fp Indicator if a punch is included in a flurry

Punch Quality Aggregate PQA force per pound squared plus speed

Punch Quality Index PQI Average of standardized speed and standardized force

in relation to all boxers within 5 lbs of the boxer weight
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A.2 List of Fight Metrics

List of overall fight metrics with abbreviations and descriptions.

Metric Abbreviation Description

Total Punches TP Punches thrown in a fight

Punches Per Round PPR Mean number of punches per round

Max Force Max force value of all punches in pounds

Median Force Median force value of all punches in pounds

Cumulative Force CF Sum of all punch force values in pounds

Force Per Pound FPP Force of punch divided by boxer weight

Max Speed Max speed value of all punches in mph

Median Speed Median speed value of all punches in mph

Cumulative Speed CS Sum of all punch speed values in mph

Lead to Rear Punches LTRP Number of lead punches for every rear punch

Lead to Rear Force LTRF Ratio of force lead punches to rear punches

Lead to Rear Speed LTRS Ratio of speed lead punches to rear punches

Hook to Straight HTS Ratio of hook to straight punches

Total Flurries TF Total number of flurries of 3 or more punches

Flurries Per Round FPR Mean number of flurries of 3 or more punches per round

Percent of Punches in Flurries POPIF Percent of punches in flurries of 3 or more punches

Punches Per Flurry PPF Mean number of punches in flurries of 3 or more punches

Max Flurry Length MFL Max number of punches in flurries of 3 or more punches

Percent Counter Punch Flurries PCPF Percent of flurries started with a counterpunch

Total Counter Punches TCP Counterpunches thrown in a fight

Counter Punches Per Round CPPR Mean number of counterpunches thrown per round

Counter Punch Percentage CPP Percent of all punches that are counterpunches

Mean Punch Quality Aggregate mPQA Mean PQA value of all punches

Mean Punch Quality Index mPQI Mean PQI value of all punches (0 is average)

Boxer Agression Aggregate BAA Flurries initiated plus non-counterpunches over rounds

Boxer Agression Rate BAR Average of the percent of flurries initiated

and percent of non-counterpunches
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