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Quantum Mechanical Reactive Scattering via 

Exchange Kernels: Application to the Collinear 

H + H2 Reaction* 

Bruce C. Garrett and William H. Miller* 

LBL-6971 

Department of Chemistry and Materials and Molecular Research Division 
Lawrence Berkeley Laboratory, University of California 

Berkeley, California 94720 

ABSTRACT 

A formulation of quantum mechanical reactive scattering given by 

Miller is applied to the collinear H + H2 reaction. The approach is 

the direct analog to the Hartree-Fock method of electronic structure 

theory, and it obviates the need for specialized (e.g., "natural" 

collision) coordinates. The rearrangement process takes place via an 

explicit exchange interaction (cf. electron exchange in Hartree-Fock 

theory), and closed channels are incorporated via a square-integrable 

set of correlation functions. Agreement with results obtained by others 

using other methods is excellent, showing this approach to quantum 

mechanical reactive scattering to be a viable one. 

Work performed under the auspices of the U. S. Department of Energy. 
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I. Introduction 

In recent years much progress has been made in the quantum mechanical 

description of molecular collisions in which rearrangement channels are 

1-4 
open. The major complication in treating rearrangement collisions 

arises from the fact that coordinates descriptive of the asymptotic 

reactant arrangement differ from those describing the asymptotic product 

arrangements. 

One method of approaching this problem is to use a coordinate system 

which goes smoothly from reactants to products--i.e., natural collision 

d ' 1 co or ~nates. Another method is to solve the coupled channel equations 

in each arrangement and match the solutions in the interaction region. 
2 

Both of these methods have the undesireab1e characteristic that they must 

be tailored to the specific problem at hand. 

A more general formulation of reactive scattering was given a number 

of years ago by Mi11er. S Here the wavefunction is expanded in the 

internal states of all arrangements, and the coupled channel equations 

are obtained from a variational principle. This approach is the direct 

analog of the Hartree-Fock expansion familiar in electronic structure 

theory, and it obviates the need for any special (e.g., natural collision) 

coordinates. The price paid is that the coupled equations contain a 

non-local exchange interaction analogous to electron exchange in Hartree-

Fock theory. 

The only application of this approach to date has been Wolken and 

6 
Karp1us' three dimensional calculation for the H + H2 reaction. This 

work, however, included only the ground vibrational state of H2 in the 
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coupled channel expansion and was thus not fully converged with respect 

to the expansion in internal states. 

In this paper we describe a practical method of dealing with the 

non-local exchange interaction and present the results of calculations 

for the collinear H + H2 reaction. Agreement with results obtained by 

other workers using other approaches is excellent. 

In addition to dealing directly with the non-local exchange interaction, 

5 the other novel feature in this approach is that the effect of energetically 

closed channels is included via a square-integrable set of "correlation 

functions". With regard to this expansion we observe the variational 

property of this method, namely that the scattering parameters converge 

monotonically as the set of correlation functions is enlarged. 

Section II summarizes the theory, specialized for the collinear H + H2 

reaction. Results are presented and discussed in Section III. 
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II. Summary of the Theory 

-J,.. Here we summarize the reactive scattering formalism of Miller,S 

specialized to the collinear A + Be 7 AB + e reaction. For the 

collinear reaction only two asymptotic arrangements are possible, 

a(A + Be) and c(AB + e), for which the coordinates are (r , R ) a a 

and (r , R ), respectively; cf. Figure 1. For arrangement a, for 
c c 

example, r is the diatomic separation (the distance between B and e), 
a 

and R is the translation coordinate (the distance from A to the 
a 

center of mass of Be); rand R are defined similarly for arrangement 
c c 

c. 

For translational energies less than ~ 0.5 eV the ground vibrational 

state of H2 is the only open channel. To simplify the formulae we thus 

assume that only the ground vibrational state of Be and AB are open. 

If ¢ (r ) and ¢ (r ) are the vibrational wavefunctions for these 
a a c c 

states, then the expansion of the wavefunction is 

where {X } is a set of square-integrable "correlation functions" 
n 

(2.1) 

introduced to take account of closed channels. The index a
O 

(= a or c) 

denotes the initial arrangement. The coordinates (r,R) can be either 

(r ,R ) or (r ,R ) since only two of these four coordinates (r ,R ,r ,R ) 
aa- cc aacc 

are independent. For H + H2 , for example, one has 
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R 
1 

r = r c a 2 a 

R = .!.R +1 r 
c 2 a 4 a 

(2.2) 

The radial functions, f (R ) and f (R ), and the expansion 
a+uO a c+u

O 
c 

coefficients {C } in Eq. (2.1) are determined from a variational 
n 

principle. The two coupled equations for the two radial functions are 

and 

00 i 
dR 2 

a 

+ V (R) - E ] f (R ) + [dR V (R, R ) f (R ) 
aa a a a+aO a 0 c ac a c c+aO c 

+ '" A (R )(M-
1

) L..J an a '" n,m n,m 
[<A If > + <A If >] = 0 rna a+a

O 
mc c+u

O 
(2.3a) 

00 

+ V (R) - Ec] f ~f'J (Rc) + I dR V (R, R ) f (R ) cc c c~~o 0 a ca c a a+uo a 

+ '" A (R ) (M-
l

) L.J cn c ~ n,m n,m 
[<A If > + <A If >] mc c+aO rna a+u

O 
o . (2.3b) 

~a and ~c are the translational reduced masses for arrangements a and 

c, and E and E are the translational energies, 
a c 

where E is the total energy and ca the vibrational eigenvalue corresponding 

to the vibrational eigenfunction ¢ (r). The interaction diagonal in the a a 

arrangement index is a local potential, 
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v (R) = Idr <p (r)* [V-v (r )]<p (r) aa a J~ a a a a a a a 

where V is the total potential energy and v (r ) is the asymptotic a a 

vibrational potential function for arrangement a, while the inter-

action non-diagonal in arrangement indices is a non-local, or 

exchange interaction, the kernel of which is 

V (R ,R ) 
ac a c 

dr (R ,R ) 
a a c 

dR 
c 

0
2 

-- + V - v (r ) - E ] 
oR 2 c c c 

c 

<p (r (R ,R » <p (r (R ,R » a a ace cae 

and similarly for V (R ,R). In Eq. (2.5) the two translational 
ca c a 

coordinates Rand R are the independent variables; for the H + H2 
a c 

case, for example, r (R ,R ) and r (R ,R ) are determined by 
a ace a c 

Eq. (2.2), 

r (R ,R ) 4 2 R =-R 
3 a a c 3 c a 

(R ,R ) 
4 2 

r = - R --R 
c a c 3 a 3 c 

The matrix M in Eq. (2.3) is 

M 
n,m <~IE-HI\n> 

where H is the total Hamiltonian,and the function A (R) is . an a 

A (R) 
an a 

I 
Ii 
,. I 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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For the case of H + H2 , to which we now specialize the discussion, 

the two coupled equations in Eq. (2.3) can be decoupled because of 

synnnetry. In Eq. (2.3b) one interchanges the labels (r ,R ) ++ (r ,R ) 
a a c c 

and denotes R = R ,R' = R. The correlation functions are chosen to 
a c 

have a definite parity, + or -, upon the exchange (r ,R ) ++ (r ,R ) 
a a c c 

(i.e., the interchange of the identical atoms A and C), and because 

of the identity of particles the matrix M has no matrix elements 

connecting + and - states. If f±(R) is defined by 

f (R) 
c+a o 

(2.9) 

adding and subtracting Eqs. (2.3a) and (2.3b) leads to the following 

uncoupled equations for f+ and f : 

+ 2 z: 
n,m 

where 

VO(R) == V (R) aa 

V (R,R') == V (R R') ex ac ' 

A (R) == A (R) n an 

E 
c 

o (2.10) 
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The designation ± on the sununation in Eq. (2.10) means that the correlation 

terms of + or - parity are retained in the sununation. 

Eq. (2.10) is two uncoupled, one-channel radial equations for f+ 

and for f , so that the regular solutions have the asymptotic form 

~im f±(R) ~ sin(kR + of) 
R-+oo 

where k=J2~EO/h2 and o± is the phase shift which is determined by 

solving Eq. (2.10). Inverting Eq. (2.9), 

one can show that the reactive S-matrix is 

S 
c,a 

1 2iO+ 2io 
2i (e - e ) 

so that the reaction probability, 

P - Is 12 - P
R c,a c,a 

is given by 

° ) 

(2.11) 

(2.l2a) 

(2.2b) 

(2.13) 

(2.14) 

(2.15) 

The task, then, is to solve Eq. (2.10) to determine the phase shifts 

0+ and 0_, the reaction probability then being given by Eq. (2.15). 
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The terms in Eq. (2.10) which involved the correlation functions 

{x } are easy to deal with since they have the form of a separable 
n 

exchange interaction. The nonseparable exchange term, V , is ex 

intrinsically more difficult to handle. The physical distinction 

between these two exchange interactions is that the nonseparable 

exchange V is the direct exchange between open channels, while the 
ex 

separable exchange interaction resulting from the correlation functions 

is the indirect exchange that takes place through closed channels. 

If the reaction mechanism involves a long-lived collision complex, 

then this feature is described by the correlation functions. 

The principle novel aspect of this paper is that we treat the 

nonseparable exchange interaction by making a separable expansion of 

it, 

V (R, R') 
ex 

L: u. (R) <u.lv lu.> u. (R') 
1 1 ex J J i,j 

(2.16) 

where {u.} is some convenient basis set. For a finite basis set, which 
1 

is always necessary in practice,Eq. (2.16) is an approximation, but it 

can be made successively better by including more basis functions. In 

practice, therefore, one must increase the number of basis functions to 

insure conversions of this expansion. 

With the approximation in Eq. (2.16), both exchange interactions 

in Eq. (2.10) are separable, and it is well known that a closed form 

solution of Eq. (2.10) is then possible. Thus the equation has the 

generic form 
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o , (2.17) 

where the functions {g.(R)} and the matrix A .. are known. If fO(R) 
1 . 1,J 

and fl(R) are the regular and irregular solutions, respectively, to 

the Schrodinger equation with only the local potential, 

with asymptotic form 

Hm fO(R) 
R-w> 

Hm fl (R) 
R-w> 

sin(kR) + tan 00 cos(kR) 

cos (kR) 

then the Green's function GO(R,R') is defined by 

Defining the matrix ~O and vector !O by 

(Go)' . 
~ 1,J 

<g If > 
i 0 

the exact expression for the phast shift ° for the Schrodinger 

equation (2.17) is 

(2.18) 

(2.l9a) 

(2.l9b) 

(2.20) 

(2.21a) 

(2.21h) 
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tano (2.22) 



i) 
~ u j J 

-11-

III. Results 

Calculations were performed on the porter-Karplus7 potential surface 

for the collinear version of the H + H2 reaction. The asymptotic diatomic 

potential is a Morse potential in this case, so the vibrationa1 function 

¢(r) is the ground state eigenfunction of the Morse oscillator. 

The functions {u.} used to expand the non-separable interaction 
1 

[cf. Eq. (2.16)] were taken to be the set of harmonic oscillator wave-

functions whose parameters were chosen to give the best fit to the 

kernel. Since the exchange kernel is peaked sharply along the 

diagonal, as seen in Figure 2, a fairly large expansion is necessary; 

to achieve three significant figures in the reaction probability, for 

example, 25 functions were required. It should also be noted that the 

exchange kernel is energy dependent [cf. Eq. (2.5)], but the separable 

expansion of it makes it easy to do the calculation for different 

energies. 

The correlation basis set {Xu} was taken to be a product of harmonic 

oscillator wavefunctions in the coordinates sand u, 

u 

which diagonalize the kinetic energy at the saddle point of the potential 

surface. The index n is thus two indices, n = (n ,n). N is the number 
s u u 

of functions used in the u coordinate (symmetric stretch), and Ns is the 

number of functions used in the s coordinate (asymmetric stretch). The 
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total number of correlation functions is thus N oN , although this s u 

factors into + and - parity groups corresponding to n being even 
s 

or odd. The parameters of the harmonic oscillator functions were 

chosen to give the fastest convergence. 

Table I shows the phase shifts 0+ and ° obtained with various 

sizes of the correlation basis. One sees reasonable convergence with 

quite a small basis set and also observes the effect of the "minimum 

principle",5 the fact that 0+ and ° converge monotonically as the basis 

set is enlarged. 

Table II shows the reaction probability as a function of total 

energy. To show the importance of closed vibrational channels, the 

"open channels only" result (i. e., no correlation functions) is shown 

along with the results that have converged with respect to the correlation 

basis. 8 Also shown are the results obtained earlier by Duff and Truhlar, 

with which our converged values are in excellent agreement. Numerical 

error in our calculation is less than 2%, similar to that of Duff and 

Truhlar. The major source of error in the present calculation arises 

from the numerical integrations to obtain the matrix elements of the 

Green's function. 
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IV. Concluding Remarks 

The calculations described in this paper are the first complete 

application of Miller's formulation of the reactive scattering problem. 

Only standard Jacobi coordinates are involved, and the rearrangement 

process is described via a non-local exchange interaction. The effect 

of energetically closed channels is included through a set of square-

integrable correlation functions. 

The results show that the method is capable of accurate scattering 

calculations. Particularly encouraging is the fact that only a small 

number of correlation functions is necessary to achieve convergence. 

This is presumably true because the correlation functions, which are 

chosen specifically to describe the system in the "transition state" 

region, are more effective in characterizing the wavefunction than 

closed channels of the asymptotic Hamiltonian. 

A not-so-encouraging feature in the present approach is that so 

many terms are needed in Eq. (2.16) to represent the exchange kernel 

V (R,R') by a separable expansion. A more facile way of dealing with 
ex 

it is probably required before this approach would be practical for 

calculations in higher dimensions. 

Perhaps the greatest utility of this formulation of reactive 

scattering is its applicability to any bi-mo1ecu1ar reaction without 

modification of the basic equations. Methods for dealing efficiently 

with the non-local exchange kernel must be found, however, to make it 

practically useful. The fact that the exchange kernel is highly 

localized in coordinate space may suggest simplifying approximations. 
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Table I. Phase shifts 0+/0 for (N ,N ) Correlation Functions. 
a 

- u s 

Phase Shifts N u 
0+ 0 1 2 3 4 5 6 

0 1.014 

2 1.317 1.396 1.406 1.411 1.419 1.419 

N 4 1.337 1.398 1.421 1.434 1.436 1.436 
s 

6 1.349 1.4l3 1.430 1.436 1.437 1.438 

8 1.359 1.414 1.431 1.430 1.438 1.437 

10 1.361 1.414 1.431 1.436 1.438 1.438 

N 
u 

° 0 1 2 3 4 5 6 

0 .670 

1 .670 .670 .670 .670 .670 .670 

N 3 s .687 .677 .683 .685 .686 .687 

5 .703 .680 .684 .686 .687 .687 

7 .674 .681 .685 .686 .687 .688 

9 .674 .682 .685 .686 .687 .688 

a 
Total energy E 0.4898 eV. 
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Table II. Quantum Mechanical Reaction Probability for Collinear H + H2 

on the Porter-Kaplus Surface. 

Reaction Probability 

Energy (eV) 
a 

Open 
(b) 

Channel Only . Fully Converged 
(c) Duff 

0.4276 0.00449 0.0174 

0.4334 0.00655 0.0265 

0.4465 0.0144 0.0617 

0.4546 0.0226 0.100 

0.4768 0.0660 0.297 

0.4826 0.0853 0.369 

0.4898 0.1137 0.465 

(a) Zero of energy is the bottom of the asymptotic H2 potential. 

(b) Results obtained with no correlation functions. 

and Truhlar (d) 

0.0173 

0.0265 

0.101 

0.297 

0.371 

0.465 

(c) Results, fully converged with respect to the correlation basis set. 

(d) Results of Duff and Truhlar,reference 8. 
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1. Depiction of the coordinates (r ,R ) and (r ,R ) relevant to the 
a a c c 

collinear A + BC + AB + C reaction. 

2. Contour plot of the non-local exchange kernel V (R,R') for total 
ex 

energy E = 0.4 eV. Rand R' are in units of Bohr radii, a
O

' 
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Figure 2 
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