
UC Irvine
ICS Technical Reports

Title
Representing communicating software to derive system behavior and deadlock-free
software

Permalink
https://escholarship.org/uc/item/19t774x4

Author
Lane, Debra S.

Publication Date
1987-11-02

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19t774x4
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Representing Communicating Software to Derive
~

System Behavior and Deadlock-Free Softwar~"

Debra S. Lane
</ /

Technical Report No. 87-27

University of Calfornia at Irvine

Department of Information and Computer Science

November 2, 1987

'',

j
~. ' '

I' "" i·
i' ', i

" ' ~I ,\ ~ .' I

ABSTRACT

A great difficulty in building distributed systems lies in being able to predict
what the systems behavior will be. A distributed or communicating system is
defined here to be one in in which the hardware consists of a set of processors
each with their own memory, connected by some communication medium (there
is no shared memory), and the software is assumed to be of the CSP (Hoare's
Communicating Sequential Processes) type.

In the past few years some theories have been proposed to model features
of communicating systems. Milner's Calculus of communicating Syst.ems (CCS),
Winskel's Synchronization Trees (ST), Hennessy's Acceptance Trees (AT), and
Hoare and Brookes's theory of communicating processes are examples of formal
models of such systems. All of these models concentrate on modelling observable
properties of a system.

Event Dependency Trees (EDT) is a new representation of communicating
systems that models the time dependent nature of such systems. None of the
representations mentioned above explicitly represent time but time is precisely the
factor that introduces so much variability and complexity into such software and
systems. EDT provides a representation based on trees and a set of operations
over the EDT trees that can be used to produce deadlock-free software. The
model supplies potentially important information for the design and construction
of distributed, parallel software systems.

Representing Communicating Software to Derive

System Behavior and Deadlock-Free Software

Introduction

A great difficulty in building distributed systems lies in being able to predict

what the system behavior will be. A distributed or communicating system is

defined here to be one in which the hardware consists of a set of processors

each with their own memory, connected by some communication medium (there

is no shared memory), and the software is assumed to be of the CSP (Hoare's

Communicating Sequential Processes) type. The problem is that while it is easy

to understand how each process behaves in and of itself, it is nearly impossible to

predict all the ways in which the processes will interact and influence each other's

execution. It is necessary to understand their interaction in order to determine

how the system behaves (so that one might convince oneself or others that the

system performs as intended).

In the past few years some theories have been proposed to model features

of communicating systems. Milner's Calculus of Communicating Systems (CCS)

[MILN80], Winskel's Synchronization Trees (ST) [Wrns84], Hennessy's Acceptance

Trees (AT) [HENN85B], and Hoare and Brookes's theory of communicating processes

[BRoo84] are examples of formal models of such systems. All of these models

concentrate on modelling observable properties of a system.

This paper presents a new representation of communicating systems called

Event Dependency Trees (EDT) [LANE87] that models the time dependent nature

of such systems. None of the representations mentioned above explicitly represent

time but time is precisely the factor that introduces so much variability and

complexity into such software and systems. Many models in computer science

1

2

assume that events occur instantaneously, but here it is assumed that every event

occurs with a certain time delay represented explicitly by an event name and a

variable for the time delay. Communication events are important because that is

how processes interact. Events preceding the communication events, even if they

are only executions of sequential pieces of code, are also very important, however,

because they determine the exact manner in which the communication events will

occur.

Besides modelling time explicitly, EDT differs from CCS, ST, and AT in its

representation of system behavior. Both CCS and ST represent system behavior

as interleavings of events. The combine tree operation in those models produces

the set of interleavings. AT represents the system as a state-transition graph.

The tree combine operation in AT takes two state-transition graphs and produces

a larger one. In EDT, the system behavior is represented as a partial ordering

of events. The combine tree operation in EDT produces the partial ordering of

events in a way that indicates how particular sets of events contend with each

other to produce the various execution paths.

EDT show the right amount of information about system behavior, not too

much as in an interleaving representation, and not too little as in a state-transition

model. It is possible to identify each execution path by its unique event ordering.

In interleaving many event orderings produce the same execution path because

many times it is irrelevant that some event occurred before or after another since

they don't influence each other's execution. EDT shows exactly those events that

influence each other's execution and also those that are not related.

CCS, ST, and AT all show the possible execution paths but indicate only that

they arise because of nondeterminism. What is the source of such nondeterminism?

There are two ways in which nondeterminism arises in such systems: (1) through

the use of guarded commands, and (2) through the use of the communication

3

constructs. EDT models the nondeterminism that anses through the use of

communication constructs in CSP-type languages.

Because of limited space this paper tries to provide an intuitive feel for

the structure of Event Dependency Trees, their operations, how they model time

dependent behavior (i.e., their explicit representation of time and depiction of

system behavior), and how they can be used to detect deadlock. In fact, one type

of deadlock will never be manifest in the representation of the system because it

can be detected from the structure of the trees as the overall behavior is derived.

Event Dependency Trees

In EDT processes are represented as trees where the nodes of a tree represent

system states and the arcs represent the execution of system events. An event is

one of three types: (1) execution: represents the execution of a sequential piece

of code (with no communication constructs), (2) communication: represents the

execution of a message passing construct, or (3) the null event. Communication

events are further subdivided into send, receive, and synchronized communication

events. In addition, each event has an associated time delay, represented by some

variable such as t.

The following notation is used:

1) e[t] denotes a sending communication event that takes time t.

2) e[t] denotes a receiving communication event that takes time t.

3) e[t] denotes a synchronized communication event that takes time t.

4) e[t] denotes an execution event that takes time t.

5) To denotes the null tree, which is also the null event.

These are the only events that can occur in ED Ts. Using this model, all portions

of the computation that take time are accounted for.

4

Labelling trees is subject to some restrictions, which are not described here.

However, note that each event has a name e, a time t, and a type that is in the

set {exec, send, recv, sync, null}. The name of the null event, which is also the

null tree, is s or the empty string, and the time of the null tree is 0. The functions

name, type, and time when applied to an event, return the respective information

about that event.

Two operations are defined on trees: a prefix operation that allows a tree

to be prefixed by an event producing a new tree (prefixing an event to the null

tree results in a tree with a single arc labelled by the new event); and a combine

operation that takes two trees and produces a new tree. The combine operation is

a very important one in that it preserves the relevant information that indicates

how execution paths arise as a function of event orderings. Many preliminary

definitions and functions are needed to define the combine operation.

First the notion of matching communication events, which occurs between

trees, not within a tree, is defined. Communication events are important because

they are the only way that processes interact.

Definition 2.2. Let A be a set of events. Va, /3 E A, a and /3 are matching

communication events, denoted a~e/3 if and only if

i) name(a)= name(/3),

ii) type(a)= send and type(/3) E {recv,sync} OR type(a) E {recv,sync} and

type(/3) = send.

Thus, matching communication events are two events with the same event

name in which either (i) one is a receiving communication event and one is a

sending communication event, e.g., c[t2] and c[t1], or (ii) one is a synchronized,

communication event and one is a sending communication event, e.g., c[ii] and

5

Now, given two arbitrary trees, it is necessary to determine whether or not

they have matching communication events and if they do, to identify them.

Definition 2.3. ,C,,. is the set of all event labels in tree T.

Next, a function COMM is defined that takes an EDT and maps it to a list of

the communication events it contains.

Definition 2.4. Let T be some EDT. COMM(r) = (a1,a2, ... ,an) where

Vi E {l, ... ,n},ai E £,,.., type(ai) E {send,recv,sync} and there does not exist

any /3 E (L,. \ {a1, ... ,an}) 3 type(/3) E {send,recv,sync}.

Two trees, r, µ, having matching communication events is denoted

COMM(r)§COMM(µ), stated formally below. For the following definitions, let

£1JT be a set of EDTs.

Definition 2.5. Let r,µ E £1JT, and COMM(r) = (a1, ... ,an), COMM(µ)=

(/31, ... ,f3m)· If ::Ji E {l, ... ,n} and :3j E {l, ... ,m} 3 a/~e/3j, then

COMM(r)§COMM(µ).

MATCH is a function that maps two trees to a list of all their matching

communication events. If MATCH contains more than one pair of matching

communication events, then if the portion of the multiple pairs in one tree occurs

in a chain, then the respective portion in the other tree must also occur in a chain.

There can not be branch nodes ocurring between one portion of the pair in one

tree and not in the other. The reason is that the resulting tree will contain a

deadlock. This is discussed in more detail later.

Definition 2.6. Let r,µ E £1JT 3 COMM(rY@COMM(µ). MATC'H(r,µ) =

((ai1, ... , O'.ik),(/3j1, ... , /3J·k)) where~ E {1, ... , min{n,m}} and O'.it~ef3it·

There are two more pieces of information that will be needed: the length of

the path from the root node to some designated event in the tree, and a "route"

6

indicating which branches to take to arrive at the designated event, beginning at

the root of the tree.

Definition 2.7. Let TE £VT, a E Cr. PATH(r, a)= n, where n EN AT is the

length of the path from the root node to a.

Definition 2.8. Let r E £VT, a E Cr, r the root node, and c the empty string.

Va, Vs EN AT*, and Vi EN AT,

i) V£ST(a,c)=a,

ii) VEST(a, si) = the ith child of VEST(a, s).

VEST is not defined in some cases (e.g., the third child of a node with only two

children).

Definition 2.9. Let T E £VT, a E Cr, and r the root node. ROUT£(r, a) =

s 3 s EN AT* and VEST(a,s) = r.

The combine operation can be thought of as taking two concurrent processes

and showing how they interact and affect each other. If the two processes do

not exchange information (i.e., they don't send messages to each other), then

they will not affect each other and the corresponding trees that represent them

will be denoted as a tuple (of trees) called a pseudo tree. Each pseudo tree is

actually a forest of trees. Two trees will be combined into a single (new) tree

when they have matching communication events. The tree that contains the

sending communication event will be referred to as the active tree and the tree

that contains the other event in the matching communication events pair, the

passive tree.

Rather than give the formal definition since it is quite lengthy, the

combine operation is defined pictorially. Figure 1 shows all the cases

that arise when combining two trees that contain matching communication

events. Each tree is broken into a subtree prefixed by an arc. Selective

r µ

r µ

if a:= a[t1],,B = b[t2] then~= (a[t1], b[t2])

t1,2 = M AX(ti, t2)

(i) n = 1

(i) m = 1

(i) n = 1, m = 1

(iii) n = 1, m = 2

Figure 1

Combining Trees

7

(ii) n = 2

(ii) m = 2

(ii) n = 2, m = 1

(iv) n = 2, m = 2

if a: = a[t1], ,B = a[t2] then

then ~ = a[t1,2]

subtrees are recursively combined. Referring to Figure 1, assume 81 and 82

are the pair of matching communication events such that 81 E £,,., r the

active tree, and 82 E £µ, µ the passive tree. Furthermore, assume that

PA.TH(r, 81) = PA.TH(µ, 82) (it is easy to remove this restriction, which

is not done here), and let RVUTE(r,81) = ns,n E .NAT,s E NAT* and

RVUTE(µ,82) = mq,m E NA.T,q E NAT*.

8

Most of the important information is encoded into the branch nodes. Branch

nodes only arise when multiple senders contend for a single receiver. On each

branch there is a synchronized communication event with the same name. The

path taken from the branch node is the one that has the shortest execution

time for the events that lie between the root of the branch and the synchronized

communication event. Thus, the reason why a particular path is executed is that

some set of events executed faster than another set.

As trees are combined, two kinds of events appear that are not present in

an initial set of trees, synchronized communication events and tuples of events.

Synchronized communication events have already been defined, tuples of events

appear now for the first time. The additional notation needed for manipulating

tuples of events is not discussed here.

The definition of the combine operation is not quite complete. It demonstrates

the case where the matching communication events cont,ains a send and a receive

pair. There is another case that occurs when the pair of matching events contains

a send and a synchronized pair of events (see Figure 2). The resulting tree is a

tree with a branch node at the root where one branch is the current passive tree

(the tree that contains the synchronized communication event), and the other

branch is the tree that results from combining the two trees in the manner shown

in Figure 1. As mentioned before, combining two trees that do not contain any

matching communication events results in a pseudo tree. The operators that

=

(ii) n = 2

=

(i) m = 1 (ii) m = 2

= ~ ~~

(i) n = 1, m = 1 (ii) n = 2, m = 1

(iii) n = 1, m = 2 (iv) n = 2, m = 2

if a= a[t1],f) = (bi[t2], b2(t3])
then"'(= (a[t1J, b2(t3])

if a = a[t1], tJ = a[t2] then

t1,2 = M AX(ti, t2)

Figure 2

then "'(= a[t1,2]

Combining Trees With Synchronized Events

9

10

define how to combine basic trees with pseudo trees and pseudo trees with pseudo

trees are not described here but are denoted by ** and * * * respectively. Finally,

a general combine operator denoted @ combines any two trees regardless of their

respective types. However, if the set of trees to be combined is ordered (so that

each pair of trees has a pair of matching communication events) then the **, * * *,
and @ operations are not needed. They are provided to insure that the combine

operation is commutative and associative. For our purposes here they are not

necessary.

Translating Programs to EDT

Translating programs to EDT is fairly straightforward. Each sequential piece

of code that does not contain any communication events is assigned a unique

event name. The only tricky part. is assigning event names to communication

events. The event names must be kept in a table along with enough information

to correlate matching send and recv commands.

The translation process is now illustrated by an example. A well known

example of synchronization is the dining philosphers problem. Five philosophers

alternate between thinking and eating. When they want to .eat they take a seat at

a table that has five plates and. five forks, one fork between each plate. In order

to begin eating a philosopher must pick up two forks, one to his right and one to

his left. If only one fork is available then he must wait for the second to become

available before beginning to eat.

Figure 3 gives pseudo code for a solution to the dining philosophers problem.

The version used here is taken from [HoAR85]. There is one process for each fork

and one process for each philosopher. In this example only three fork and two

philosopher processes are depicted. It is enough to demonstrate how programs,

here written in pseudo code, are translated to event dependency trees.

process phil1:
loop

sitdown
send[fork1, pickup]
send[fork2, pickup]
send[fork1, putdown]
send[fork2, putdown]
getup

end
end phil1

process fork1:
loop

recv[pickup]
recv [put down]

end
end f ork1

process fork3:
loop

recv[pickup]
recv [putdown]

end
end f ork3

Figure 3

process phil2:
loop

sitdown
send[fork2, pickup]
send[fork3, pickup]
send[fork2, putdown]
send[fork3, putdown]
getup

end
end phil2

process fork2:
loop

recv [pickup]
recv [putdown]

end
end f ork2

Dining Philosophers: Pseudo Code

11

Each fork process consists of two events, first it waits for a message

indicating some philosopher wishes to use the fork, then it waits for another

message indicating the philosopher is finished with the fork. Each philosopher

process actually represents a specific location at the table where a philosopher

sits down. A philosopher process consists of six events: (1) first a philosopher sits

down, (2) next he picks up the fork to his left, (3) then he picks up the fork to his

right, (4) he puts down the fork to his left, (5) he puts down the fork to his right,

12

Tpl Tp2

sl s2

ul u2

u2 u3

dl d2

d2 d3

gl g2

(a) Philosopher process 1 (b) Philosopher process 2

Tjl Tf 2

ul u2 u3

dl d2 d3

(c) Fork process 1 (d) Fork process 2 (e) Fork process 3

Figure 4

Dining Philosophers: Translated to Trees

and (6) he leaves the table. If a philosopher sends a message to pick up a fork and

it isn't available, then the fork process will not be at the correct receive statement

and the philosopher process will block until the fork becomes available.

Figure 4 shows the five processes as event dependency trees. First each

receive event is assigned a unio11 e name. The only receive events occur in the fork

processes. The tree representing fork process 1, called Tj1, is a sequence of two

events, ul, which represents recv [pickup], and dl, which represents recv [put down].

13

The other two trees, Tf2 and Tf3, which represent the processes f ork2 and f ork3,

are the same except that the event names are unique. The send commands in

the philosopher processes must be given the same event names as their respective

receive commands. send[f orkl,pickup] is assigned the event label ul. The other

send commands are assigned their corresponding labels in the same manner. The

actions sitdown and getup are represented as execution events, unique to each

process. The five trees in Figure 4 represent the five individual processes in

Figure 3.

The five processes are now combined using the * operator in order to

depict the system behavior. The intermediate steps and final result are shown in

Figure 5. In Figure 5 part (d) the five processes are all combined. The resulting
..___
--r

tree represents a conflict with the event u2, which is depicted by the introduction

of a branch node during the combine operation. The meaning of the branch node
..___
--r

is: if sl u2 occurs before s2, then the lefthand branch is taken. Otherwise the

righthand branch is taken.

Deadlock Detection

Much research has been done on deadlock detection and avoidance.

A~gorithms exist that are used during the execution of the system to detect

deadlock and prevent it (GLIG80, KAME80, CHAN83]. Many other algorithms for

deadlock detection in distributed databases have also been developed; they are

similar in purpose and use to those listed above. The approach taken here is based

on general use of the synchronization primitives send and receive. It is shown

that deadlock due to incorrect software can be prevented before execution by using

EDT.

14

sl sl

~ ~

ul ul

~

u2 u2

~ ~

dl dl

~

d2 d2

gl gl

(a) rp@r11 (b) 'TpfiJ'TJfiJ'TJ 2

s2 s2

~ ~ ~ ~

ul u2 ul u2

~ ~ ~

u2 u3 u2 u3

~ ~ ~ ~

dl dl dl d2

~ ~ ~

d2 d3 d2 d3

gl g2 gl g2

...... ;:::..< ;:::..<

(c) rp@r1-f$r1..@rp2
(d) rp@r1@r12

Figure 5

Dining Philosophers: Combining Trees

15

Use of Synchronization Primitives

There are two sources of deadlock that can be detected using EDT, both

the result of incorrect software. The first source of deadlock arises when the

synchronization primitives are used incorrectly, manifested as a receiver with no

sender or vice versa. This is easy to detect in the EDT representation of a piece

of software. First, the processes are converted to trees (as described above), then

the combine operation is repeatedly applied until all trees are combined. Any

communication events in the tree that are not synchronized communication events

indicate the presence of a deadlock. In Figure 5(a), if this tree represented a

complete computation, then the event u2 would block forever. It indicates that a

process is sending a message to a receiver that doesn't exist. In the same tree d2 is

another unsynchronized event. To detect these problems the tree is scanned once

for any receive or send events. If some are presente then a deadlock will occur.

Cyclic Dependency

In addition to finding deadlocks that occur from incorrect use of the

synchronization primitives, EDT provides some insight into how or when deadlocks

might occur due to cyclic dependencies of events, even though no unsynchronized

communication events are present.

Dining Philosophers

The dining philosophers problem, described above, demonstrates the second

form of deadlock. Take the case of three philosophers. Another philosopher

process is combined with the tree in Figure 5(d), shown in Figure 6. There are

now three philosopher processes and three fork processes. Each philosopher sits

down, picks up the first fork, picks up the second fork, puts down the first fork,

puts down the second fork and then gets up. Sitting down and getting up are

represented as execution events and the rest of the events are communication

16

s3

u3

ul

d3

dl

gl

(a) Philosopher process Tp3

sl s3

=::; =::;

ul u3

=::; =::;

u2 ul

=::; =::;

dl d3

=::; =::;

d2 dl

gl g3

(d) Tp-/3Tj-/3'Tj2

<JJTpifiTJ 3

<JJTp3

Figure 6

Three Dining Philosophers

17

events. Each fork process has two communication events, pick up fork and put

down fork.

Consider the EDT P1 * P2 * P3 * F1 * F2 * F3 in Figure 6. A deadlock problem

is revealed that is due to timing. In an EDT: from a branch node only one path

occurs, the path that occurs is the one whose events from the root of the tree
"--

to the common communication event occur first. Thus if s1 Ui occurs before s2

completes then the first branch will be taken. However, consider the case where

s2~ occurs before s1~ and s1~ occurs before s3~. This is a deadlock.

In reality an EDT like the one just discussed is never allowed (recall the

restriction about combining trees with multiple pairs of matching communication

events). In terms of EDT's, the correct structure is to have each path trying

to synchronize on the same event. In Figure 6 the three combinations of pairs

of processes are trying to synchronize on three different events. The first and

third branches are contending for ~, the first and second branches are contending

for ~, and the second and third branches are contending for ~. If any one

branch is removed, then the remaining two branches are only contending for one

synchronised event, which is a correct structure.

The original rule about combining trees states that two trees with multiple

pai.rs of matching communication events can not be combined if branch nodes

occur between the pair of events in one tree, and the events occur within a chain

in the other tree. Therefore the tree in Figure 6 would never have been produced

in the first place. Any two philosopher processes can be combined with the tree

fork processes as in Figure 5 but the restriction is violated when the remaining

philosopher process is introduced.

Now consider a solution to the deadlock problem .. Another process 1s

introduced that only allows two philosophers to sitdown at any given time. This

corresponds quite closely to the structure revealed in the EDT representation.

here:
i .- 0

recv [si tdown]
i := i+1
if i = 1

then recv [m]
if m = sitdown

then i .- i+1
else i := i-1

elsif i = 2
then recv [getup]

i := i-1
go to here

m is a message that can be either sitdown or getup

Figure 7

A Solution to Cyclic Dependency

18

It is not possible, however, to represent the solution directly because it contains

control structures which can not be modelled by EDT at ·this time. Figure 7

contains code for the solution. In essence it requires all philosopher processes to

first synchronize with a new process on the event sitdown. Then a count of the

number of philosophers eating is kept. The message m can be either sitdown

or getup. Never are more than two philosophers allowed to sit down before one

must get up. The getup event also becomes a synchronized event. In terms of

the EDT representation (if it could be represented) this requires every branch to

synchronize on just one event, sitdown and then any two of the three paths will

further synchronize on a fork event.

19

Summary

EDT is a formal model of distributed or communicating systems that predicts

how CSP-type processes will interact. Although it appears that EDT is a model of

software, assumptions about how the system impacts the execution of the software

is a crucial aspect of the model, the primary assumption being that events take

time that could differ from execution to execution.

Next it was shown how Event Dependency Trees can be used to produce

deadlock-free concurrent software. First a program or pseudo code is translated

into an EDT representation. At this stage there is one tree for each process in the

software. Then the combine operation is applied until all trees are glued together.

During the combine operation, deadlock resulting from a cyclic dependency of

events is revealed. It is detected from structural properties of the two trees being

combined. If no cyclic dependencies are detected then a representation of the

system is the result.

At this stage more deadlock detection is performed to discover if there

exist any unsynchronized communication events. If there are the software is

corrected, translated to trees, and combined. At this point if no deadlocks due to

cyclic dependencies or incorrect matching up of send and receive commands are

present. The model supplies potentially important information for the design and

· construction of concurrent software systems.

20

REFERENCES

[BRoo84] BROOKES S.D., HOARE C.A.R., AND RoscoE A.W. A Theory of
Communicating Sequential Processes. Journal of the A CM 31, 3 (July,
1984), 560-599.

[CHAN83] CHANDY K.M., AND MISRA J. Distributed Deadlock Detection. ACM
Transactions on Computer Systems 1, 2 (May, 1983), 144-156.

[GLIG80] GLIGOR V.D., AND SHATTUCK S.H. On Deadlock Detection in
Distributed Systems. IEEE Transactions on Software Engineering
6, 5 (September, 1980), 435-440.

[HENN85B] HENNESSY M. Acceptance Trees. CACM 32, 4 (October, 1985),
896-928.

[HoAR85] HOARE C.A.R. Communicating Sequential Processes, Prentice-Hall,
1985.

[KAME80] KAMEDA T. Testing Deadlock-Freedom of Computer Systems. Journal
of the ACM 27, 2 (April, 1980), 270-280.

[MILN80] MILNER R. A Calculus of Communicating Systems, Goos G., and
Hartmanis J., Ed., Springer-Verlag, Berlin, 1980.

[Wrns84] WINSKEL G. Synchronization Trees. Theoretical Computer Science 34
(1984), 33-82.

