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This dissertation examines the effect of severe narrowband interference on wire-

less communication systems. In single-carrier systems, the interference causes the adap-

tive equalizer to have an extended convergence time, where convergence is considered in

terms of the bit error rate (BER). Two techniques are proposed to improve the conver-

gence. The first method, data-aided initialization (DAI), initializes the Wiener weights

from estimates derived directly from the received data and training sequences. This

technique is shown to substantially reduce the number of training symbols needed for

convergence. Further, two methods for obtaining the DAI weights are investigated. The

use of multistage Wiener filters (MSWF) is preferable to a parametric approach to direct

matrix inversion in terms of BER performance and number of training symbols needed.

The second method is a two-stage system that utilizes a prediction error filter (PEF) as

a pre-filter to the equalizer. It is shown that the two-stage system reduces the number of

training symbols required to reach a BER of 10−2 by approximately two orders of mag-

nitude without substantially degrading the steady-state BER performance as compared

to the DFE-only case.

In block-modulated multi-carrier systems the presence of a severe narrowband in-
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terference causes the degradation of a large number of subcarriers due to spectral leakage

of the interference power after demodulation. Multi-carrier code division multiple access

(MC-CDMA) obtains frequency diversity by spreading the data into every subcarrier,

thus mitigating the effects of narrowband interference. On the other hand, orthogonal

frequency division multiplexing (OFDM) requires the addition of coding and interleav-

ing to obtain frequency diversity. The use of genie inserted erasures provides little to

no improvement in BER performance, thus the PEF is proposed as an erasure insertion

mechanism that notches out the tones located close to the interference, while leaving

the remaining tones unaffected. This technique provides excellent results as compared

to the case of no interference.

This work was done at UCSD’s Center for Wireless Communication, under the

“Bandwidth Efficient Communications” project (CoRe research grant 06-10216) and

supported by the Office of Naval Research, Code 313.
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1 Introduction

With the proliferation of data-enabled digital mobile phones and technology,

there is a large demand for high data rate wireless communications, that includes voice,

web, and video content. To accomplish this task, communication systems require large

amounts of bandwidth. Unfortunately, the amount of spectrum is finite and may be

shared among a number of communication systems. One example of this scenario occurs

in the unlicensed bands where there is little restriction on who may operate. This leads

to a competition for spectrum and the possibility that these systems may interfere with

each other. Similarly, in licensed bands, a new direction in research aims to utilize

unused portions of the spectrum using cognitive radios [57]. In this case, a primary user

may access any part of the spectrum, while secondary users must modify their spectrum

so as not to interfere with the primary user. Interference may also arise when other

communications systems radiate in a primary user’s frequency band in order to disrupt

communications. This is referred to as intentional jamming, and can be seen primarily

in military applications. Finally, interference can also occur because of nonlinearities in

the mixer.

To maintain reliable communications it is necessary to quickly mitigate the in-

terference, especially when the information is being transferred in small packets or short

bursts. This dissertation examines innovative receivers that can quickly mitigate nar-

rowband interference when it is a hundred times as strong as the signal of interest

(signal-to-interference ratio (SIR) of -20 dB). The effect of this type of interference is

examined in the case of single-carrier systems, as well as multi-carrier systems. Both

cases will use similar techniques to mitigate the interference, however, the goals of the

two scenarios are different.

For single-carrier systems, the use of linear and nonlinear equalizers are examined

in suppressing the interference, however the convergence properties of these systems are

1
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Figure 1.1: Single-carrier complex baseband system model.

limited in the presence of severe narrowband interference. This issue of convergence of

adaptive equalizers is investigated in terms of bit error rate (BER), as opposed to the

commonly used metric of mean-squared error (MSE). Also of importance is the resulting

steady-state BER. The first approach to solve this problem utilizes data-based averages

to initialize the equalizers. The second approach employs a two-stage approach using the

prediction-error filter (PEF) as pre-filter to the decision-feedback equalizer (DFE). In

the case of multi-carrier systems, the overall BER is considered for two block modulated

systems. Multi-carrier code division multiplexing (MC-CDMA) is considered along with

orthogonal frequency division multiplexing (OFDM). MC-CDMA attains frequency di-

versity through spreading of each data symbols into all subcarriers. OFDM requires a

signal processing technique, such as the PEF to mitigate the narrowband interference.

The PEF acts an erasure insertion mechanism in the coded scenario. An analytical upper

bound for the coded OFDM BER is provided for this scenario as well.

1.1 System Model

A complex baseband representation of a single-carrier communication system is

depicted in Figure 1.1. The signal of interest, dl, is composed of i.i.d. bits. This discrete

data is mapped into symbols from an arbitrary constellation with average power equal

to Es. These symbols are passed through a pulse-shaping filter (possibly oversampled

by a factor of Lo) that is necessary for bandlimited transmission (see Section 1.2 for

further discussion). The discrete-time symbols are converted into continuous-time using

a digital-to-analog converter (DAC), given by

x(t) =
∑

m

dmg(t−mTs), (1.1)

where Ts is the symbol duration and g(t) is the transmit pulse-shaping filter. This signal

is transmitted through the channel and the received signal is given by the convolution
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of x(t) and the channel, h(τ, t), as well as corrupted by additive noise,

y(t) = h(τ ; t) ∗ x(t) + n(t)

=

∫ ∞

−∞
h(τ ; t)x(t − τ) dτ + n(t), (1.2)

where ∗ represents linear convolution. The receiver converts the continuous-time signal

into discrete samples using an analog-to-digital converter (ADC). A matched filter is

utilized to maximize the SNR, noting that the frequency response of the pulse shape and

matched filter is assumed to satisfy Nyquist’s criterion for no ISI (see Section 1.2).

The noise is a circular symmetric Gaussian random process. Each sample of

which is modeled as a zero-mean, complex additive white Gaussian (AWGN) random

variable with variance, given by σ2
n.

1.1.1 Wireless Channel

The channel can prove to be a difficult problem when it causes multipath prop-

agation. This occurs when transmitted signals traverse multiple paths caused by a rich

scattering environment. If the objects within the medium are moving, it is possible that

the multipath channel changes with time as well. The channel can be represented by its

impulse response, h(τ ; t), which is the response of the channel at time t to a unit pulse

transmitted at time t − τ . If the channel’s maximum delay spread, Tm is greater than

the symbol duration, Ts, the channel will induce intersymbol interference (ISI) [97].

The channel can be further modeled statistically in a discrete manner as

h(τ ; t) =

Lh∑

m=0

αm(t)e−j2πfcτn(t)δ (τ − τm(t)) , (1.3)

where δ(·) is the Dirac delta function, αm(t) is the attenuation factor for the received

signal on the mth path, τm(t) is the propagation delay for the mth path, and fc is the

carrier frequency of the system. The number of resolvable multipath components is

denoted by Lh =
⌊

Tm

Ts

⌋

+ 1, where b·c is the function that returns the integer portion

of argument. When there are a large number of paths, the channel response defined by

(1.3) may be modeled as a complex-valued Gaussian random process using the central

limit theorem [71]. This randomness leads to fading of the signal caused by moving

scatterers in the environment. This result arises from the phase of the channel changing

very rapidly, and causing the received signal to vary rapidly. At times, the multiple

paths will add constructively, causing the received signal power to increase. However,
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when the paths sum destructively, the received signal power can decrease substantially,

making detection of the data symbols virtually impossible.

When h(τ ; t) is modeled as a zero-mean complex Gaussian random variable, the

envelope |h(τ ; t)| = αm(t) is distributed as a Rayleigh random variable at each t value,

while the phase e−j2πfct is distributed as a uniform random variable. The envelope is

characterized by the following probability density function [71],

pR(r) =
r

σ2
e−

r2

2σ2 , r ≥ 0. (1.4)

If there happens to be a line-of-sight (LOS) component or if fixed scatterers exist in the

environment in addition to the random scatterers, the channel can no longer be modeled

as zero-mean. The envelope of this channel has a Rice distribution, characterized by the

following probability distribution function,

pR(r) =
r

σ2
e−

r2+s2

2σ2 I0

( rs

σ2

)

, r ≥ 0, (1.5)

where I0 is the modified Bessel function of the first kind with order zero. Note that when

s = 0, (1.5) degrades into (1.4).

These channel impairments can be quite severe, causing the need for time-domain

equalizers. Ideally, a maximum-likelihood (ML) receiver is employed, however, this is

generally impractical due to the complexity of implementation which grows exponentially

with the number of symbols interfering with the symbol of interest. Many suboptimal

equalizers have been examined with regard to mitigating ISI [100, and references therein],

and some of these will be discussed in Chapter 2. In the case of severe fading, diversity

techniques over time, frequency, and space are employed. A review of the research in

this area can be found in [115, and references therein].

1.2 Band-Limited Transmission

In practical systems, the channel is band-limited such that transmission of data

outside a certain frequency band is not allowed, i.e. H(f) = 0, |f | > W , where W is

the channel bandwidth of the system. For successful transmission, the data must be

shaped such that its frequency content lies within the bandwidth of the channel. This

is accomplished using the pulse-shaping filter, g(t), as seen in (1.1), and defined as

g(t) =

∫ W

−W
G(f)ej2πft dt, (1.6)
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where G(f) is the frequency response of g(t). The goal is to find g(t) such that there is

no distortion of the transmission (aside from additive noise). Without loss of generality,

it is assumed that the channel has ideal frequency response, H(f) = 1, |f | ≤W .

The received observations, given in (1.2), can be rewritten as

y(t) =
∞∑

m=0

dmg(t−mTs) + n(t). (1.7)

Sampling the the received signal, (1.7), at times t = lTs + τ0, l = 0, 1, . . . , gives

yl = y(lTs + τ0) =

∞∑

m=0

dmg((l −m)Ts + τ0) + n(lTs + τ0)

=
∞∑

m=0

dmgl−m + nl, (1.8)

where τ0 is the delay associated with transmission through the channel. Extracting the

symbol of interest, dl, from (1.8), gives the sample values as

yl = g0dl +

∞∑

m=0

m6=l

dmgl−m + nl

= g0




dl +

1

g0

∞∑

m=0

m6=l

dmgl−m




+ nl. (1.9)

The value g0 can be regarded as an arbitrary scalar value that is set to unity, giving the

first term of (1.9) as the desired symbol, the second term representing the ISI, and the

third term is the additive noise. The condition then for no ISI is

gl =







1, l = 0,

0, l 6= 0.
(1.10)

This condition is known as the Nyquist pulse-shaping criterion. The theorem implies

that ∞∑

m=−∞
G

(

f +
m

Ts

)

= Ts (1.11)

must be satisfied such that (1.10) is true. The proof of this theorem can be found

in [97, pp. 557-558].

There are three cases for choosing the sampling rate, Ts, given the bandwidth of

the channel, W . When Ts <
1

2W , (1.11) can not be satisfied, and ISI is induced. When
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Ts = 1
2W , or equivalently 1

Ts
= 2W (this is known as the Nyquist sampling rate), there

is one choice that satisfies (1.11), namely

G(f) =







Ts, |f | < W,

0, otherwise.
(1.12)

Taking the inverse Fourier transform of (1.12) gives the impulse response for the pulse-

shaping filter to be

g(t) =
sin (πt/Ts)

πt/Ts
= sinc

(
πt

Ts

)

. (1.13)

For this case, the choice of a sinc function as the pulse-shaping impulse response provides

an ideal rectangular filter in the frequency-domain. To obtain this filter, it is necessary

that g(t) be noncausal, thus making this choice of filter unrealizable requiring the use

of a delayed version. Another drawback of this choice of filter is that the sinc function

decays as 1/t. If there is a small error in the sampling time, this will cause an unbounded

level of ISI components.

Finally, choosing Ts >
1

2W provides a scenario where there is no unique choice of

filter. One choice of pulse-shaping filter that has been used in practical situations is the

raised cosine pulse. The frequency response of the raised cosine filter is given as

Grc(f) =







Ts, 0 ≤ |f | ≤ 1−β
2Ts

,

Ts

2

{

1 + cos
[

πTs

β

(

|f | − 1−β
2Ts

)]}

, 1−β
2Ts

≤ |f | ≤ 1+β
2Ts

,

0, |f | > 1+β
2Ts

,

(1.14)

where β ∈ [0, 1] is the roll-off factor. When β > 0, Grc(f) possesses frequencies that

are greater than the Nyquist frequency, 1
2Ts

, and called excess bandwidth. When β = 1,

Grc(f) has twice the bandwidth of the rectangular filter defined in (1.12), and is termed

100% excess bandwidth. The impulse response, grc(t), is defined as

grc(t) =
sin (πt/Ts)

πt/Ts

cos (πβtTs)

1 − 4β2t2T 2
s

. (1.15)

From (1.15), it can be seen that when β = 0, grc(t) = sinc
(

πt
Ts

)

, which is simply the

case of Ts = 1
2W . A benefit of using the raised cosine pulse is that its tail decays as 1/t3,

which reduces the number of ISI components associated with an error in the sampling

time.

In practical implementations, the pulse shaping is usually divided between the

transmit and receive filters, with the goal of ensuring that the overall frequency response
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approximates the response of the raised cosine pulse. Let gT (t) and gR(t) be the impulse

responses of the transmitter pulse shape and the receiver pulse shape, respectively. Again

assuming that the channel is ideal, let the received observations be defined as

y(t) = gT (t) ∗ gR(t) + n(t) ∗ gR(t)

=

∫ ∞

−∞
gT (τ)gR(t− τ) dτ +

∫ ∞

−∞
n(τ)gR(t− τ) dτ. (1.16)

For a given gT (t), gR(t) is chosen in a manner to maximize the signal-to-noise ratio

(SNR) at the sampling time, t = Ts, and is called the matched filter. Sampling (1.16),

gives

y(Ts) =

∫ Ts

0
gT (τ)gR(Ts − τ) dτ +

∫ Ts

0
n(τ)gR(Ts − τ) dτ

=

∫ Ts

0
gT (τ)gR(Ts − τ) dτ + yn(Ts). (1.17)

The SNR is then defined as

SNR =

[∫ Ts

0 gT (τ)gR(Ts − τ) dτ
]2

E [y2
n(Ts)]

. (1.18)

The denominator of (1.18) is simply the variance of the noise at the output of the receive

filter, and calculated as

E
[
y2

n(Ts)
]

=

∫ Ts

0

∫ Ts

0
E [n(τ)n(t)] gR(Ts − τ)gR(Ts − t) dτ dt

=

∫ Ts

0

∫ Ts

0
σ2

nδ(t− τ)gR(Ts − τ)gR(Ts − t) dτ dt

= σ2
n

∫ Ts

0
g2
R(Ts − τ) dτ. (1.19)

Substituting (1.19) in (1.18), gives the SNR as

SNR =

[∫ Ts

0 gT (τ)gR(Ts − τ) dτ
]2

σ2
n

∫ Ts

0 g2
R(Ts − τ) dτ

. (1.20)

To maximize (1.20), the numerator must be maximized while the denominator is held

constant. This maximization can be performed using the Cauchy-Schwarz inequality,

which is defined as

[∫ ∞

−∞
f(x)g(x) dx

]2

≤
∫ ∞

−∞
f2(x) dx

∫ ∞

−∞
g2(x) dx. (1.21)
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Note that equality is obtained when g(x) = af(x) for any arbitrary constant a. Using

the Cauchy-Schwarz inequality, an upper bound of the SNR is defined as

SNR =

[∫ Ts

0 gT (τ)gR(Ts − τ) dτ
]2

σ2
n

∫ Ts

0 g2
R(Ts − τ) dτ

≤
∫ Ts

0 g2
T (τ)dτ

∫ Ts

0 g2
R(Ts − τ) dτ

σ2
n

∫ Ts

0 g2
R(Ts − τ) dτ

=
1

σ2
n

∫ Ts

0
g2
T (τ) dτ. (1.22)

The SNR is maximized when gR(t) = agT (T − t), i.e. gR(t) is matched to gT (t). Looking

at the overall frequency response of the transmit and receive filters and noting that the

filters are matched, G(f) = GT (f)GR(f) = |GT (f)|2. Recall the desire for G(f) to have

the same characteristics as the raised cosine filter, implies GT (f) = GR(f) =
√

|Grc(f)|.
The impulse response of these filters is the root raised cosine pulse, grrc(t) defined [123,

p.165] as

grrc(t) =
4β

π
√
Ts

cos [(1 + β)πt/Ts] + sin [(1 − β)πt/Ts] / (4βt/Ts)

1 − (4βt/Ts)
2 . (1.23)

It is assumed that the root raised cosine is unit norm and grrc(0) is normalized to unity.

To further improve this system, the data can be oversampled prior to transmis-

sion. The oversampled version is obtained by placing Lo − 1 zeros between each data

symbol, where Lo is the oversampling rate. This data stream is then filtered by the root

raised cosine pulse, which interpolates the zero values and provides a waveform for trans-

mission. The oversampling increases the space between replicas in the frequency-domain,

allowing the anti-aliasing filter to have a larger transition band at the receiver, at the

cost of needing faster hardware to operate at the faster sampling rate. This facilitates

the design of the reconstruction filter at the receiver.

1.3 Narrowband Interference

The narrowband interference is an additive term of the received signal, making

(1.2) now

y(t) =

∫ ∞

−∞
h(τ ; t)x(t − τ) dτ + i(t) + n(t). (1.24)

The interference, i(t), is modeled as a pure complex exponential,

i(t) =
√

Eie
j(Ωit+θ), (1.25)
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where Ei is interferer power, Ωi is the angular frequency of the interferer measured in

radians, and θ is a random phase that is uniformly distributed between 0 and 2π. Note

that the angular frequency can be written as Ωi = 2πfi, where fi is the frequency of

the interference measured in Hertz. The discrete-time interference samples are obtained

after the ADC by sampling (1.25) at time instances, t = lTs,

il = i(t)|t=lTs
=
√

Eie
j(ΩilTs+θ). (1.26)

When narrowband interference is present in the received signal, the techniques

mentioned previously for receive filtering are not appropriate. Statistics of the interfer-

ence are required to design a filter that minimizes the distortion caused by the interfer-

ence. In the case that this type of knowledge is not available at the receiver, the receive

filters must be implemented by an adaptive filter that will take on different forms in this

dissertation.

Adaptive filtering for interference mitigation can be separated into four broad

groups, transform-domain filtering, noise cancellation, linear prediction, and equaliza-

tion. Transform-domain techniques aim to mitigate interference in the frequency-domain,

following the work done in spectral estimation [20, 82]. Adaptive implementation was

examined using surface acoustic waves (SAW) filters to track frequency variations of the

interference in the frequency-domain [114]. Further adaptive transform-domain filtering

was investigated for use in spread spectrum (SS) systems in [108].

An adaptive noise canceler (ANC) is another method utilized to suppress inter-

ference [47,133] when an auxiliary reference containing the interference term is available.

This reference signal is filtered in a manner suitable for interference removal from the pri-

mary input. More recently, this technique has been examined for use with gradient-based

algorithms and higher order statistics (HOS) [113], however, this type of interference in-

formation is considered unavailable in this work.

The next technique of interest is linear prediction (LP) [81, 140] and its variant

the prediction-error filter (PEF). This structure was first used in speech coding and

for spectral estimation [53] to estimate the frequency content of narrowband signals (as

opposed to using Fourier techniques [20]). The use of the PEF as a means for sup-

pressing narrowband interference in spread spectrum systems using either the Wiener

algorithm [134] or the maximum entropy algorithm [21, 22] was proposed in [62]. [124]

further examined the properties of the PEF when rejecting NBI, specifically demonstrat-

ing that the performance is dependent on the interference-to-noise ratio (INR) and the
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filter aperture. The adaptive nature of the structure was examined in terms of spec-

tral dynamics in [110, 111], while [102] compared the convergence aspects of the linear

predictor and the smoothing filter.

Equalization as a means for interference mitigation was introduced in [73–75].

In [73,75] a comparison of the PEF and a two-sided transversal filter are compared for a

stationary interference and a pulsed interferer, respectively. Reference [74] compared the

use of a linear equalizer (LE) to the decision-feedback equalizer (DFE) in the context of

interference mitigation. The DFE was shown to significantly outperform the LE due to

its nonlinear structure.

A number of works make comparisons between the strategies as seen in [73,75].

For instance, [68] compared the use of Fourier transform techniques and linear prediction.

Finally, reviews of interference mitigation techniques for use in spread spectrum systems

can be found in [84, 85]. Also available are reviews of interference mitigation using

adaptive notch filtering [70] and using nonlinear estimation techniques [96]. A thorough

review of adaptive interference suppression not limited to narrowband interference can

be found in [60].

1.4 Dissertation Focus

The issue of mitigating narrowband interference has been a well-studied subject

matter. However, the aspect of very strong interferers and their affect on the perfor-

mance of communication systems has not been resolved in sufficient detail to allow the

successful operation of systems under conditions of severe interference. It is the goal of

this dissertation to provide solutions that allow effective performance (in terms of BER

and complexity) in severe interference for both single and multi-carrier communication

systems.

Li and Milstein [74] originally looked at the performance of the adaptive decision-

feedback equalizer (DFE) in regards to mitigation of narrowband interference. This

work examined the optimal weights of the equalizer, as well as the steady-state BER

results of the system. Also examined was the convergence of the least-mean square

(LMS) algorithm when the signal-to-interference ratio was moderate, i.e. SIR = 0 dB.

In this work, a single-carrier system is examined in the presence of a severe narrowband

interferer, i.e. SIR = -20 dB. It is shown that the narrowband interference causes an

increase in the time required for the adaptive algorithm to converge. This is due to
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the fact that the equalizer does not have a true reference for the interference. As a

consequence, a large number of training symbols is required to construct a reference

from the received interference contaminated signal. This reduces the efficiency of the

system and wastes bandwidth. In this dissertation, two techniques are proposed for

improving the convergence of the adaptive equalizers. The first technique, entitled data-

aided initialization (DAI), aims to initialize the weights of the adaptive algorithm with

an estimate of the Wiener weights. This estimate is obtained from averages of the

autocorrelation matrix and the cross-correlation vector derived from the received samples

and the training data. Further, two techniques to efficiently obtain the estimate of the

Wiener weights is examined, in terms of complexity and steady-state BER as compared

to the theoretical Wiener filter. A second approach proposes the use of an adaptive

prediction-error filter (PEF) as a pre-filter to the DFE to improve the convergence of the

overall system. The PEF generates a direct reference for the strong interference from

past samples and mitigates it prior to equalization. The convergence time and steady-

state BER of this system are compared to the case of the DFE-only, when both systems

have the same number of total taps.

In order to satisfy the demands for increased capacity in modern communica-

tion systems, the modulation schemes have shifted from single-carrier to multi-carrier

modulation approaches. We next examine how to best extend the results for single-

carrier systems to the mitigation of narrowband interference in multi-carrier systems. A

number of approaches have been proposed for this problem, especially in the uncoded

scenario. Saito, et al. [105] proposed the idea of hole-punching, where the transmitter

refrains from sending data on subcarriers that are experiencing interference. This ob-

viously requires coordination between the transmitter and receiver and may be overly

complex, especially if the interference is non-stationary or the coherence time of the

channel exceeds the feedback delay of the system. Another technique utilizes orthogonal

codes [23,45,137] to spread the data into every subcarrier thereby providing frequency di-

versity, as will be described for multi-carrier code division multiple access (MC-CDMA).

The receiver must determine the (optimal) combiner weights to successfully recover the

data. Spread-spectrum methods [78, 109] have also been investigated in an effort to

reduce the interference power seen at the receiver. Nilsson, et al. [91] examined the

use of frequency-domain subtractive cancellation using the singular value decomposition

in conjunction with silent tones. Another frequency-domain mitigation technique was
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proposed by Darsena [34], using successive interference cancellation to remove the inter-

ference. This technique amounts to linear prediction of the interference using estimates

generated from more reliable tones. Receiver windowing has also been investigated by a

number of researchers [32,33,101] using the redundancy of the cyclic prefix to minimize

the interference power. Finally, Coulson [29] proposed the use of excision-based filtering

to remove the interference in the time-domain prior to demodulation. This technique

is a well known method, often used in conjunction with spread-spectrum systems [84]

when the processing gain does not provide enough immunity to the interference. Coulson

utilizes a number of phase locked loops (PLLs) to estimate and track the interference

during a signal-free period between data transmissions. A pre-defined excision filter is

then employed to excise the interference. Note that this filter is defined such that the

impulse response is greater than the duration of the cyclic prefix, causing distortion in

the form of intersymbol interference.

More recently, work has been done on examining mitigation strategies in coded

orthogonal frequency division multiplexing (OFDM) systems. Wu and Nassar [137] ex-

amined the case of coded OFDM with and without orthogonal codes through simulation.

Similarly, Coulson [29] briefly mentions the use of coding and excision filtering, demon-

strating results through simulation. Li et al. [76] proposed an advanced joint erasure

and decoding scheme that exploits the structure of the code. This method can substan-

tially increase the complexity of the system. Snow et al. [118] primarily examined the

problem of efficient error rate analysis for coded multi-carrier systems, but also briefly

mentioned the use of erasure insertion in a coded OFDM system. These authors pro-

ceeded to examine the case of WiMAX interfering with UWB systems [119, 120], using

spectrum estimation (similar to linear prediction) techniques to appropriately weight the

bit metrics inputted into the Viterbi decoder.

In this dissertation, two multi-carrier systems are investigated in the presence

of narrowband interference. It is shown that demodulation of the interference causes

a large number of subcarriers to be degraded, due to the spectral leakage of the in-

terference power. MC-CDMA possesses frequency diversity from spreading to mitigate

narrowband interference, even without the use of forward error correction coding. This

system, however, requires a complex combiner at the receiver to extract the transmitted

data symbols. On the other hand, OFDM is investigated due to its simple equalization

structure. However, a lack of inherent frequency diversity requires the use of forward
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error correction coding and interleaving. The use of coding alone is not able to mitigate

the interference. It will be shown that even with the use of genie inserted erasures, little

to no improvement is achieved with this technique when the interference is strong. The

technique proposed here uses the PEF as an erasure insertion mechanism that concen-

trates the erasures in the vicinity of the narrowband interference. The length of the

PEF is limited to the unused portion of the cyclic prefix. Note that the cyclic prefix is

designed to deal with the delay spread of the channel. An adaptive PEF can be used to

allow a time-varying interference to be tracked over time.

1.5 Dissertation Overview

The body of this dissertation is organized as follows. In Chapter 2, the system

model for the single-carrier case is introduced as well as filtering structures pertinent

to mitigating the interference are reviewed. The adaptive algorithms that will be used

are detailed and discussed. In Chapter 3, the non-Wiener effect of linear equalizers

adapted via the LMS algorithm is demonstrated in an environment corrupted by nar-

rowband interference and multipath, however, the strong narrowband interference causes

the adaptive equalizer to require an extremely long time for convergence. Further, data-

aided initialization (DAI) is developed and shown to improve the convergence of adaptive

equalizers. Two techniques for estimating the Wiener weights are compared in terms of

complexity and BER performance relative to the theoretical Wiener filter. In Chapter

4, a two-stage approach to improve the convergence of the DFE is developed. This

two-stage approach utilizes the prediction-error filter (PEF) as a pre-filter to the DFE,

generating a direct reference for the interference from past samples and mitigates it prior

to equalization. In Chapter 5, the basics of multi-carrier modulation are presented. In

Chapter 6, the effect of narrowband interference is examined in a multipath channel for

bit-interleaved coded modulated (BICM) multi-carrier systems, MC-CDMA and OFDM.

Each modulation scheme is viewed in both the uncoded and coded cases. The PEF is

utilized in an OFDM system as an erasure insertion mechanism for which an analytical

upper bound is provided and compared to the use of conventional erasures. Finally,

concluding remarks and future research are provided in Chapter 7.



2 Background

Ideally, the interference term would be known exactly at receiver. If this was the

case, the interference could be subtracted from the received signal to give the desired

signal simply distorted by additive noise and the problem would be solved. Conversely, if

the interference is known at the transmitter, techniques such as dirty-paper coding [28],

have been developed to ensure that the received signal is free of the interference. In this

case, the receiver must feedback information of the interference to the transmitter which

may become outdated at the next transmission interval.

2.1 Minimum Mean-Square Error Filtering

In general, the exact interference term is not known to either the transmitter or

receiver, requiring the use of other means to mitigate the interference. Several methods

for suppressing narrowband interference have been discussed in the literature (see Section

1.3). A linear equalizer (LE) and a decision-feedback equalizer (DFE) were studied

in [74]. It was shown that the performance of the DFE is better than that of the LE. The

LE seen in both systems removes the interference, while the additional feedback taps of

the DFE enable the cancellation of the post-cursor ISI that is induced by the LE. Linear

prediction [81, 140] is another common technique that has been used in direct-sequence

code-division multiple access (CDMA) systems [73, 102, 124] when the processing gain

does not provide enough immunity to the interference. When the signal of interest is

wideband compared to the bandwidth of the interferer, linear prediction estimates the

current value of the interference from past samples. When the structure is implemented

as a prediction-error filter (PEF), the estimate of the interference is removed at the cost

of some signal distortion. A further review of interference suppression techniques can be

found in [70,84].

When the statistics of the interference are known, the weights of these systems

14
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are found by minimizing the mean-squared error [56]. This is equivalent to solving the

Wiener-Hopf equations [134]. These equations arise from the minimum mean-squared

error (MMSE) criterion as follows. Assume that a linear estimator of order M attempts

to estimate the desired response, y, from the data x = [x1, x2, . . . , xM ],

ŷ =

M∑

m=1

w∗
mxm = wHx, (2.1)

where w = [w1, w2, . . . , wM ]T is the coefficient vector of the estimator. The error term

given by e = y − ŷ and the mean-squared error (MSE) is defined as

J = E

[

|e|2
]

, (2.2)

This term can be expanded as

J(w) = E

[

|y|2
]

− wH
E [xy∗] − E [yx∗]w + wH

E
[
xxH

]
w

= E

[

|y|2
]

− wHp− pHw + wHRw, (2.3)

where p = E [xy∗] is the cross-correlation vector between the data vector and the desired

response, and R = E
[
xxH

]
is the autocorrelation of the input data vector that is

Hermitian and non-negative definite. Further, (2.3) can be written in the form of a

perfect square,

J(w) = E

[

|y|2
]

− pHR−1p + (Rw − p)H
R−1 (Rw − p) , (2.4)

where R−1 is the inverse of the autocorrelation matrix. When R is positive definite, R−1

exists and is also positive definite. This then implies that pHR−1p is greater than zero for

p 6= 0 and decreases the MSE. On the other hand, (Rw − p)H R−1 (Rw − p) is greater

than zero and will increase the MSE. This term is then minimized when Rw − p = 0.

Therefore the necessary and sufficient conditions for minimizing the MSE is

Rwopt = p. (2.5)

The system of equations in (2.5) are referred to as the Wiener-Hopf equations.

In practice, statistical information of the interference may not available a priori.

Thus, these systems are best implemented adaptively.
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2.2 Adaptive Algorithms

Of the many algorithms available, in this dissertation the focus is placed on the

low-complexity method provided by the least-mean square (LMS) algorithm [56]. Al-

though it has been shown that alternate adaptive algorithms, such as the recursive least

squares (RLS) algorithm [56] utilizes time averages of the data sequence to provide im-

proved convergence relative to the LMS algorithm in cases of high eigenvalue disparity,

there are many reasons why LMS is chosen for practical communications system appli-

cations. Hassibi [55] discusses some of the fundamental differences in the performance

of gradient based estimators such as the LMS algorithm and time averaged recursive

estimators such as the RLS algorithm in the cases of modeling errors and incomplete

statistical information concerning the input signal, interference, and noise parameters.

Hassibi [55] examines the conditions for which LMS can be shown to be more robust to

variations and uncertainties in the signaling environment than RLS. LMS has also been

shown to track more accurately than RLS because it is able to base the filter updates

on the instantaneous error rather than the time averaged error [14, 79, 80, 130]. The

improved tracking performance of LMS over RLS for a linear chirp input is well estab-

lished [56,130]. In [58] it is shown that an extended RLS filter that estimates the chirp

rate of the input signal can minimize the tracking errors associated with the RLS algo-

rithm and provides performance that exceeds that of LMS. It should be noted however,

that the improved tracking performance requires a significant increase in computational

complexity and knowledge that the underlying variations in the input signal can be accu-

rately modeled by a linear frequency modulated (FM) chirp. For cases where the input is

not accurately represented by the linear chirp model, performance can be expected to be

significantly worse than simply using an LMS estimator, for the reasons discussed in [55].

The computational complexity of RLS, in particular for high order systems, favors the

use of LMS. The latter is also more robust in fixed-point implementations. In addition

the LMS estimator has been shown to provide nonlinear, time-varying weight dynamics

that allow the LMS filter to perform significantly better than the time-invariant Wiener

filter in several cases of practical interest [13, 104] and especially for the case of nar-

rowband interference that is addressed in this dissertation. It is further shown that the

improved performance associated with these non-Wiener effects is difficult to realize for

RLS estimators due to the time-averaging that is inherent in the estimation process [12].
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2.2.1 Least-Mean Square Algorithm

The LMS algorithm [56] is defined by the following three equations:

yl = wH
l xl, (2.6)

el =







dl − yl, Training,

d̂l − yl, Decision-Directed,
(2.7)

wl+1 = wl + µe∗l xl, (2.8)

where xl is the input vector to the equalizer, wl is the vector of adapted tap weights, dl

is the desired signal, d̂l is the output of the decision-device when yl is its input, el is the

error signal, and µ is the step-size parameter.

Note that there are two stages associated with the adaptive algorithm. The first

stage is the training phase, where known training symbols are used to push the filter in

the direction of the optimal weights. After the training symbols have been exhausted,

the algorithm switches to decision-directed mode. The output of the decision device is

used as the desired symbol when calculating the error signal. Ideally, at the end of the

training phase the output of the filter is close to the desired signal.

The LMS algorithm is noted for its robustness and improved tracking perfor-

mance [55, 56]. The drawback of this particular algorithm is its slow convergence when

there is a large disparity in the eigenvalues of the input signal [56]. Slow convergence

leads to the need for a large number of training symbols. These symbols do not transmit

any new information, reducing the overall throughput of the system.

2.2.2 Normalized Least-Mean Square Algorithm

Note that the weight adjustment seen in (2.8) is proportional to input vector,

xl, and when this vector is large, the LMS algorithm suffers from gradient noise ampli-

fication. To combat this issue, the normalized LMS (NLMS) [3, 18, 19, 89] algorithm is

utilized. The NLMS algorithm [56] is defined by the following three equations:

yl = wH
l xl, (2.9)

el =







dl − yl, Training,

d̂l − yl, Decision-Directed,
(2.10)

wl+1 = wl +
µ

‖xl‖2
e∗l xl. (2.11)
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Note that the term µ
‖xl‖2 can be thought of as a time-varying step-size that changes

based on the squared Euclidean norm of the input to equalizer, xl.

2.2.3 Mean-Squared Error

The MSE is used as the metric that is minimized by the adaptive algorithms

discussed above [56] and is defined in (2.2). The MMSE, defined as Jmin, of the system

is obtained when the system operates in its optimum condition, i.e. when the the weights

are found by minimizing the MSE criterion, wopt. When these weights are utilized it

is noted that the optimal output of the filter, yopt,l, is orthogonal to its corresponding

estimation error, eopt,l = dl − yopt,l [56, Corollary to the Principle of Orthogonality],

E
[
yopt,le

∗
opt,l

]
= 0. (2.12)

This arises from the orthogonality principle, that states that the optimum estimation

error, eopt,l, is orthogonal to each input sample to the filter,

E
[
xl−me

∗
opt,l

]
= 0, m = 0, 1, . . . ,M − 1. (2.13)

2.2.4 Nonlinear Effects

Although the output of the filter in (2.9) is simply a linear combination of the

inputs, weighted by the coefficients of the filter, the time varying behavior of the adaptive

filter weights produce a nonlinear response as described in detail in [99,104]. A recursive

expansion of the weight update equation given in (2.11) can be written as,

wl+1 = wl−1 + µ

(
ul−1e

∗
l−1

‖ul−1‖2
+

ule
∗
l

‖ul‖2

)

. (2.14)

This shows that the weights are a function of not only the current input vector and error

value, but also of past input vectors and past errors. In fact, if the weights are initialized

to all zeros (i.e. w0 = 0), then (2.14) can be rewritten as

wl+1 = w0 + µ

l∑

m=0

ume
∗
m

‖um‖2

= µ

l∑

m=0

ume
∗
m

‖um‖2
. (2.15)

This clearly demonstrates that the current weight update is a function of all past input

vectors and error terms. At large step-sizes, this property provides the NLMS algorithm

with the nonlinear dynamics to outperform the time-invariant (TI) Wiener solution [13].
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In the equalization context, the linear adaptive decision-directed equalizer (DDE)

(see Section 2.3) is found capable of suppressing the interference better than the equiv-

alent optimal TI linear equalizer. The added performance benefit is a result of the

nonlinear instantaneous characteristics of the NLMS algorithm [13]. The instantaneous

error signal produces dynamic weight updating that effectively causes the filter to track

the interference and allows the performance of the linear DDE to approach that of the

nonlinear DFE [104].

2.2.5 Convergence Analysis

In conventional analyses, convergence refers to the asymptotic progress of either

the adaptive weights or the MSE toward the optimal solutions (wopt and Jmin, respec-

tively). The convergence (as well as the stability) of the system is dependent on the

step-size. The step-size parameter is chosen in a manner to guarantee convergence in

the mean-square sense, namely

0 < µ <
2

λmax
, (2.16)

where λmax is the maximum eigenvalue of the input autocorrelation matrix.

Assuming that the adaptive weights and the input vector are independent, Shensa

[110] showed that the convergence of the weight vector can be expressed as

‖wopt − E[wl]‖2 =

M∑

i=1

(1 − µλi)
2k
∣
∣
∣v

iHwopt

∣
∣
∣

2
, (2.17)

where λi are the eigenvalues and vi are the eigenvectors of the input autocorrelation

matrix. A similar equation arises for the convergence of the MSE [111], when gradient

noise (on the order of µMJmin) is neglected

∥
∥E[e2l ] − Jmin

∥
∥

2
=

M∑

i=1

(1 − µλi)
2k λi

∣
∣
∣v

iHwopt

∣
∣
∣

2
. (2.18)

In general, the learning curve is composed of a number of modes associated with

each of the eigenvalues of the input. As discussed in [56], the learning curve can approx-

imated by associating a single exponential with each mode such that a time constant

can be defined for each mode as

τi '
1

2µλi
. (2.19)

The maximum modal time constant is thus associated with the minimum eigenvalue,

τmax ' 1

2µλmin
. (2.20)
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This maximal time constant can be seen to be a conservative estimate by exam-

ining (2.17) more closely. The convergence will be influenced only by those eigenvalues

for which the projection of the corresponding eigenvector on the optimal weights is

large. Lastly, it can be seen for the case of λi � 1, that it is possible for the conver-

gence of the filter output (MSE) to be faster than the convergence of the filter weights.

This is because there may be fewer modes controlling the MSE convergence (i.e. when

λi|viHwopt| < |viHwopt|).
The equations above provide excellent insight into the convergence of the LMS

algorithm in terms of MSE. In order to evaluate the impact of the processing techniques

employed in this application, the convergence must be determined in terms of a metric

that directly relates to the performance of the specified communication system. The

metric that applies to all the systems considered is the bit error rate (BER). Conse-

quently, the convergence is defined to be the average number of training symbols needed

to achieve a BER of 10−2. This value is consistent with the requirement that the BER

should be less than 10−1 when switching from training to decision-directed mode [5].

Additionally, a convolutional code with an input BER equal to 10−2 is equivalent to a

BER of 10−5 at the output of the decoder [92].

2.2.6 BER Sliding Window

To examine the convergence of the BER here, a sliding window of Nwindow sym-

bols is employed. For example, the first BER value corresponds to the average number of

bit errors over symbols 1 through Nwindow; the second value corresponds to the average

number of bit errors over symbols 2 through Nwindow + 1; etc. These values are then

averaged for Nruns trials. A general formula for BPSK modulation can be seen as

BERl =
1

Nruns

Nruns∑

n=1

1

Nwindow

k∑

m=k−Nwindow+1

∣
∣
∣d(n)

m − d̂(n)
m

∣
∣
∣ , l ≥ Nwindow, (2.21)

where d
(n)
m is the mth transmitted symbol of the nth packet and d̂

(n)
m is the decision of the

mth symbol of the nth packet. Note that the minimum non-zero BER value will be equal

to 1
NrunsNwindow

. Convergence is then defined as the average number of symbols needed

to attain a certain BER value.
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Figure 2.1: Decision-directed equalizer block diagram.

2.3 Decision-Directed Equalizer

2.3.1 Equalizer Structure

Let the discrete-time output of the matched filter be given by ul, noting that this

signal may be oversampled by a factor of Lo. The decision-directed equalizer (DDE) is

a linear structure that consists of a transversal filter, as depicted in the block diagram

given in Figure 2.1. The filter is composed of the Mp postcursor symbols, the symbol of

interest, and Mf precursor symbols.

The output of the filter, yDDE,l, is defined as

yDDE,l = wH
DDExl, (2.22)

where wDDE is an (Mf +Mp + 1)Lo × 1 vector of equalizer tap weights. The equalizer is

fractionally sampled, however it operates at the symbol rate, thus requiring an input of

Lo samples at each iteration. The input to the delay line is a vector, ul, which is formed

from Lo samples of ul,

ul =
[

uLo(l+1)−1, · · · , uLol+1, uLol

]T
. (2.23)

The input to the equalizer becomes

xl =
[

uT
l+Mf

, · · · , uT
l , · · · ,uT

l−Mp

]T
. (2.24)

For the remaining properties of the DDE, the case of a one-sided DDE (Mf = 0)

and input at the symbol rate (whether by Lo = 1 or downsampling the oversampled

signal) is considered. This implies that (2.23) and (2.24) becomes

xl = ul = dl + il + nl. (2.25)
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These signals were previously introduced in Chapter 1. The output, (2.22), also reduces

to,

yDDE,l = wH
DDExl =

Mp∑

m=0

w∗
DDE,mxl−m. (2.26)

Of interest also, is the autocorrelation function of (2.25), where it is assumed that the

components of the received signal are independent. The autocorrelation function is then

given by

rx(m) = E
[
xlx

∗
l−m

]

=
(
Es + σ2

n

)
δm + Eie

jΩimTs . (2.27)

2.3.2 Optimal Weights

The optimal weights under the MMSE criterion can be found using the orthogo-

nality principle [56]. Mp + 1 equations are obtained, and the weights can be found using

the method of undetermined coefficients described in [74, 141]. The optimal DDE tap

weights are given by

wDDE,l =
SNR

[
(1 + SNR)σ2

n +MpEi

]

(1 + SNR) [(1 + SNR)σ2
n + (Mp + 1)Ei]

= C0, l = 0, (2.28)

wDDE,l =
−EiSNR

(1 + SNR) [(1 + SNR)σ2
n + (Mp + 1)Ei]

e−jΩlTs

=
C1

1 + SNR
e−jΩlTs, l = 1, . . . ,Mp. (2.29)

2.3.3 Minimum Mean-Squared Error

Following the discussion of Section 2.2.3, the MMSE is obtained using the optimal

weights given in (2.28) and (2.29). Using these weights makes the output of the filter,

yDDE,l, optimal in the MMSE sense, and this term is defined in (2.26). The optimal

estimation error term is defined as eopt,l = dl − yDDE,l. Based on the orthogonality

principle and its corollary, the following relationships are then true:

E
[
xl−me

∗
opt,l

]
= 0, m = 0, 1, . . . ,Mp, (2.30)

E
[
yDDE,le

∗
opt,l

]
= 0. (2.31)
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From (2.30) and (2.31) the DDE MMSE value is found to be

JDDE,min = E
[
|eopt,l|2

]
= E

[
eopt,le

∗
opt,l

]

= E
[
(dl − yDDE,l) e

∗
opt,l

]

= E
[
dle

∗
opt,l

]
− E

[
yDDE,le

∗
opt,l

]

= E
[
dle

∗
opt,l

]

= E
[
dl

(
dl − y∗DDE,l

)]

= E [dld
∗
l ] − E



dl





Mp∑

m=0

w∗
DDE,mxl−m





∗



= Esδ0 −
Mp∑

m=0

wDDE,mE
[
dlx

∗
l−m

]

= Es −
Mp∑

m=0

wDDE,mE [dl (dl−m + il−m + nl−m)∗]

= Es −
Mp∑

m=0

wDDE,mE
[
dld

∗
l−m

]

= Es − Es

Mp∑

m=0

wDDE,mδm

= Es − EswDDE,0 = Es (1 − wDDE,0) = Es (1 −C0) . (2.32)

2.3.4 Signal-to-Interference-Plus-Noise Ratio

The signal-to-interference-plus-noise ratio (SINR) at the input to the decision

device of the DDE can be found by examining (2.26) and the optimal weights (2.28) and

(2.29). The output of the DDE can be written as

yDDE,l =

Mp∑

m=0

w∗
DDE,m (dl−m + il−m + nl−m)

=

Mp∑

m=0

w∗
DFE,mdl−m

︸ ︷︷ ︸

ζd

+

Mp∑

m=0

w∗
DFE,mil−m

︸ ︷︷ ︸

ζi

+

Mp∑

m=0

w∗
DFE,mnl−m

︸ ︷︷ ︸

ζn

, (2.33)

and is composed of the filtered signal (ζd), the filtered interference (ζi), and the filtered

noise (ζn). The SINR is defined as,

SINR =
E
[
|ζd|2

]

E [|ζi|2] + E [|ζn|2]
. (2.34)
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Each signal term is determined as follows:

E
[
|ζd|2

]
= E









Mp∑

m=0

w∗
DDE,mdl−m









Mp∑

k=0

w∗
DDE,kdl−k





∗



=

Mp∑

m=0

Mp∑

k=0

w∗
DDE,mwDDE,kE

[
dl−md

∗
l−k

]

=

Mp∑

m=0

Mp∑

k=0

w∗
DDE,mwDDE,kEsδk−m

=

Mp∑

m=0

|wDDE,m|2Es

=



C2
0 +

Mp∑

m=1

∣
∣
∣
∣

C1

1 + SNR
e−jΩlTs

∣
∣
∣
∣

2


Es

=

(

C2
0 +Mp

(
C1

1 + SNR

)2
)

Es. (2.35)

The noise term follows exactly as the previous derivation and is given by,

E
[
|ζd|2

]
= E









Mp∑

m=0

w∗
DDE,mnl−m









Mp∑

k=0

w∗
DDE,knl−k





∗



=

(

C2
0 +Mp

(
C1

1 + SNR

)2
)

σ2
n. (2.36)

Finally, the interference term is derived to be,

E
[
|ζi|2

]
= E





∣
∣
∣
∣
∣
∣

Mp∑

m=0

w∗
DDE,mil−m

∣
∣
∣
∣
∣
∣

2



= E





∣
∣
∣
∣
∣
∣

w∗
DDE,0il +

Mp∑

m=1

w∗
DDE,mil−m

∣
∣
∣
∣
∣
∣

2



= E





∣
∣
∣
∣
∣
∣

C0

√

Eie
j(ΩlTs+θ) +

Mp∑

m=1

C1

1 + SNR
ejΩmTs

√

Eie
j(Ω(l−m)Ts+θ)

∣
∣
∣
∣
∣
∣

2



= E

[∣
∣
∣
∣

(

C0 +Mp
C1

1 + SNR

)
√

Eie
j(ΩlTs+θ)

∣
∣
∣
∣

2
]

=

(

C0 +Mp
C1

1 + SNR

)2

Ei. (2.37)
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Thus the SINR is given by,

SINR =

(

C2
0 +Mp

(
C1

1+SNR

)2
)

SNR

(

C0 +Mp
C1

1+SNR

)2
Ei

σ2
n

+ C2
0 +Mp

(
C1

1+SNR

)2 . (2.38)

2.3.5 Autocorrelation Structure

The (Mp + 1)× (Mp + 1) input autocorrelation matrix for the DDE is defined as

RDDE = E
[
xlx

H
l

]

=













rx(0) rx(1) rx(2) · · · rx(Mp)

r∗x(1) rx(0) rx(1) · · · rx(Mp − 1)

r∗x(2) r∗x(1) rx(0) · · · rx(Mp − 2)
...

...
...

. . .
...

r∗x(Mp) r∗x(Mp − 1) r∗x(Mpef − 3) · · · rx(0)













, (2.39)

where the components of the matrix are given by (2.27).

2.3.6 Eigenvalues

The eigenvalues for the correlation matrix given by (2.39), can be found [102,

110,127] to be equal to

λDDE =







Es + σ2
n + (Mp + 1)Ei, order 1,

Es + σ2
n, orderMp.

(2.40)

The eigenvalue spread is defined [56] as

χ(RDDE,i) =
λPEF,max

λPEF,min
= 1 +

(Mp + 1)Ei

Es + σ2
n

. (2.41)

2.3.7 Convergence Properties

The projection of any of the eigenvectors on the optimal weight vector is nonzero.

This implies that the time constant (2.20) is proportional to the minimum eigenvalue

(i.e. τDDE ' 1/2µ(Es +σ2
n). The delay in convergence can be attributed to the fact that

the DDE does not have a direct reference for the interferer during adaptation and is thus

forced to converge on the basis of the training data only.
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××

· · ·

×

×××

· · ·

∑

ul

d̂l

· · ·

f ∗

DFE,Mfb

y
DFE,l

z−1 z−1z−1 z−1

z−1 z−1 z−1

f ∗

DFE,1
f ∗

DFE,2

w
∗

DFE,-Mf
w

∗

DFE,0
w

∗

DFE,Mp

Figure 2.2: Decision-feedback equalizer block diagram.

2.4 Decision-Feedback Equalizer

2.4.1 Equalizer Structure

The decision-feedback equalizer (DFE) is a nonlinear structure that consists of

a feedforward filter and a feedback filter, and operates at the symbol rate. The block

diagram for this system is shown in Figure 2.2. The feedforward filter is a transversal

filter, similar that of the DDE. This filter is composed of Mp postcursor symbols, the

symbol of interest, and Mf precursor symbols. The feedback filter feeds back the Mfb

most recently decided symbols as an input to the equalizer. The input to the equalizer

is then given by

xl =
[

uT
l+Mf

, · · · , uT
l , · · · ,uT

l−Mp
|d̂l−1, . . . , d̂l−Mfb

]T
. (2.42)

where ul is given in (2.23) and d̂l are the fed back decisions. During the training phase,

d̂l = dl. The output of equalizer, yDFE,l, is defined to be

yDFE,l =
[

wT
DFE, f

T
DFE

]∗
xl, (2.43)

where wDFE is an (Mf + Mp + 1)Lo × 1 vector of tap weights associated with the

feedforward filter and fDFE is an Mfb × 1 vector of tap weights associated with the

feedback filter.

The impact of feeding back decisions, is that the noise associated with these

symbols has been removed by the decision device and the post-cursor ISI may be removed.

However, this situation leads to error propagation through the feedback filter when

the decisions that are fed back are incorrect. A BER analysis of the DFE with error
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propagation can be accomplished utilizing Markov chains to model the term [dk−l− d̂k−l]

as contents of a shift register and the assumption that the fed back decisions are perfect

[74,86,97,117]. The number of states in the Markov chain grows exponentially with the

number of feedback taps.

For the remaining properties of the DFE, the case of a one-sided DFE (Mf = 0)

and input at the symbol rate (whether by Lo = 1 or downsampling the oversampled

signal) is considered, similar to Section 2.3.1. In this case the output of equalizer becomes

yDFE,l =
[

wT
DFE, f

T
DFE

]∗
xl = yDFE,l =

Mp∑

m=0

w∗
DFE,mxl−m +

Mfb∑

m=1

f∗DFE,md̂l−m. (2.44)

2.4.2 Optimal Weights

The optimal weights under the MMSE criterion can be found using the orthogo-

nality principle [56]. Mp +Mfb +1 equations are obtained, and the weights can be found

using the method of undetermined coefficients described in [74,141]. The optimal DFE

tap weights are given by

wDFE,l =
SNR

[
(1 + SNR)(σ2

n +MfbEi) + (Mp −Mfb)Ei

]

(1 + SNR) [(1 + SNR)(σ2
n +MfbEi) + (Mp −Mfb + 1)Ei]

= C0, l = 0, (2.45)

wDFE,l =
−EiSNR

(1 + SNR)(σ2
n +MfbEi) + (Mp −Mfb + 1)Ei

e−jΩlTs

= C1e
−jΩlTs , l = 1, . . . ,Mfb, (2.46)

wDFE,l =
−EiSNR

(1 + SNR) [(1 + SNR)(σ2
n +MfbEi) + (Mp −Mfb + 1)Ei]

e−jΩlTs

=
C1

1 + SNR
e−jΩlTs , l = Mfb + 1, . . . ,Mp, (2.47)

fDFE,l =
EiSNR

(1 + SNR)(σ2
n +MfbEi) + (Mp −Mfb + 1)Ei

e−jΩlTs

= −C1e
−jΩlTs , l = 1, . . . ,Mfb. (2.48)

Observe that the weight of the feedback taps (2.48) is the negative of the feed-

forward side taps (2.46) when l = 1, . . . ,Mfb. This implies that if the data fed back is
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perfect, the ISI caused by the Mfb previous data symbols will be completely canceled.

Also note that (2.47) is a scaled
(

by 1
1+SNR

)

multiple of (2.46). This scaling value effec-

tively removes the influence of the associated data symbols that can not be canceled by

the feedback taps. For the special case of Mp = Mfb, it can be seen that if the data fed

back is perfect, the ISI caused by the feedforward equalizer will be completely canceled,

leaving only the symbol of interest.

Note also that when Mp = Mfb = 0 in (2.45) and (2.47), the optimal weights for

the DDE are obtained, as seen in (2.28) and (2.29).

2.4.3 Minimum Mean-Squared Error

Following the discussion of Section 2.2.3, the MMSE is obtained using the optimal

weights given in (2.45)-(2.48). Using these weights makes the output of the filter, yDFE,l,

optimal, and this term is defined in (2.44). The optimal estimation error term is defined

as eopt,l = dl−yDFE,l. Based on the orthogonality principle and its corollary, the following

relationships are true,

E
[
xl−me

∗
opt,l

]
= 0, m = 0, 1, . . . ,Mp, (2.49)

E
[
dl−me

∗
opt,l

]
= 0, m = 1, . . . ,Mfb, (2.50)

E
[
yDFE,le

∗
opt,l

]
= 0. (2.51)

The DFE MMSE value is calculated assuming that the fed back decisions are
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correct, d̂l = dl, and found to be

JDFE,min = E
[
|eopt,l|2

]
= E

[
eopt,le

∗
opt,l

]

= E
[
(dl − yDFE,l) e

∗
opt,l

]

= E
[
dle

∗
opt,l

]
− E

[
yDFE,le

∗
opt,l

]

= E
[
dle

∗
opt,l

]

= E
[
dl

(
dl − y∗DFE,l

)]

= E [dld
∗
l ] − E



dl





Mp∑

m=0

w∗
DFE,mxl−m +

Mfb∑

m=1

f∗DFE,mdl−m





∗



= Esδ0 −
Mp∑

m=0

wDFE,mE
[
dlx

∗
l−m

]
+

Mfb∑

m=1

fDFE,mE
[
dld

∗
l−m

]

= Es −
Mp∑

m=0

wDFE,mE [dl (dl−m + il−m + nl−m)∗] + Es

Mfb∑

m=1

fDFE,mδm

= Es −
Mp∑

m=0

wDFE,mE
[
dld

∗
l−m

]

= Es − Es

Mp∑

m=0

wDFE,mδm

= Es − EswDFE,0 = Es (1 − wDFE,0) = Es (1 − C0) . (2.52)

2.4.4 Signal-to-Interference-Plus-Noise Ratio

The SINR at the input to the decision device of the DFE can be found by

examining (2.44) and the optimal weights (2.45)-(2.48). Again, given that the fed back

decisions are correct, d̂l = dl, the output of the DFE can be written as

yDFE,l =

Mp∑

m=0

w∗
DFE,m (dl−m + il−m + nl−m) +

Mfb∑

m=1

f∗DFE,mdl−m

= w∗
DFE,0dl +

Mp∑

m=Mfb+1

w∗
DFE,mdl−m

︸ ︷︷ ︸

ζd

+

Mp∑

m=0

w∗
DFE,mil−m

︸ ︷︷ ︸

ζi

+

Mp∑

m=0

w∗
DFE,mnl−m

︸ ︷︷ ︸

ζn

(2.53)

Note that the second line of (2.53) arises from the fact that fDFE,l = −wDFE,l, when

l = 1, . . . ,Mfb. The output of the DFE is composed of the filtered signal (ζd), the filtered
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interference (ζi), and the filtered noise (ζn). The SINR is defined in (2.34), and each

term is determined as follows:

E
[
|ζd|2

]
= E







w∗
DFE,0dl +

Mp∑

m=Mfb+1

w∗
DFE,mdl−m







w∗
DFE,0dl +

Mp∑

k=Mfb+1

w∗
DFE,kdl−k





∗



= w∗
DFE,0wDFE,0E [dld

∗
l ] +

Mp∑

m=Mfb+1

Mp∑

k=Mfb+1

w∗
DFE,mwDFE,kE

[
dl−md

∗
l−k

]

= |wDFE,0|2Esδ0 +

Mp∑

m=Mfb+1

Mp∑

k=Mfb+1

w∗
DFE,mwDFE,kEsδk−m

=



|wDFE,0|2 +

Mp∑

m=Mfb+1

|wDFE,m|2


Es

=



C2
0 +

Mp∑

m=Mfb+1

∣
∣
∣
∣

C1

1 + SNR
e−jΩlTs

∣
∣
∣
∣

2


Es

=

(

C2
0 + (Mp −Mfb)

(
C1

1 + SNR

)2
)

Es, (2.54)

E
[
|ζi|2

]
= E





∣
∣
∣
∣
∣
∣

Mp∑

m=0

w∗
DFE,mil−m

∣
∣
∣
∣
∣
∣

2



= E





∣
∣
∣
∣
∣
∣

w∗
DFE,0il +

Mfb∑

m=1

w∗
DFE,mil−m +

Mp∑

m=Mfb+1

w∗
DFE,mil−m

∣
∣
∣
∣
∣
∣

2



= E





∣
∣
∣
∣
∣
∣

C0

√

Eie
j(ΩlTs+θ) +

Mfb∑

m=1

C1e
jΩmTs

√

Eie
j(Ω(l−m)Ts+θ)

+

Mp∑

m=Mfb+1

C1

1 + SNR
ejΩmTs

√

Eie
j(Ω(l−m)Ts+θ)

∣
∣
∣
∣
∣
∣

2



= E

[∣
∣
∣
∣

(

C0 +MfbC1 + (Mp −Mfb)
C1

1 + SNR

)
√

Eie
j(ΩlTs+θ)

∣
∣
∣
∣

2
]

=

(

C0 +

(

Mfb +
Mp −Mfb

1 + SNR

)

C1

)2

Ei, (2.55)
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E
[
|ζn|2

]
= E









Mp∑

m=0

w∗
DFE,mnl−m









Mp∑

k=0

w∗
DFE,knl−k





∗



=

Mp∑

m=0

Mp∑

k=0

wDFE,kw
∗
DFE,mE

[
nl−mn

∗
l−k

]

=

Mp∑

m=0

Mp∑

k=0

wDFE,kw
∗
DFE,mσ

2
nδk−m

= σ2
n

Mp∑

m=0

|wDFE,m|2

= σ2
n



|C0|2 +

Mfb∑

m=1

∣
∣C1e

−jΩmTs
∣
∣
2
+

Mp∑

m=Mfb+1

∣
∣
∣
∣

C1

1 + SNR
e−jΩmTs

∣
∣
∣
∣

2




= σ2
n

(

C2
0 +

(

Mfb +
Mp −Mfb

(1 + SNR)2

)

C2
1

)

. (2.56)

Therefore the SINR is given by,

SINR =

(

C2
0 + (Mp −Mfb)

(
C1

1+SNR

)2
)

SNR

(

C0 +
(

Mfb +
Mp−Mfb

1+SNR

)

C1

)2
Ei

σ2
n

+ C2
0 +

(

Mfb +
Mp−Mfb

(1+SNR)2

)

C2
1

. (2.57)

Again, the SINR for the DDE can be obtained from the (2.57) by setting Mp = Mfb = 0.

2.4.5 Autocorrelation Structure

The input to the decision-feedback equalizer is the concatenation of the received

input to the equalizer and the fed back decisions, given by
[

xT
l , d̂

T
l

]T
. The vector, d̂l, is

composed of the fed back decisions that are assumed to be correct, and is thus defined

as

d̂l = dl ,

[

dl−1, dl−2, . . . , dl−Mfb

]T
. (2.58)
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The autocorrelation matrix for the Mp +1-tap feedforward and Mfb-tap feedback equal-

izer is defined as

RDFE = E




xlx

H
l xld

H
l

dlx
H
l dld

H
l





=

























rx(0) rx(1) rx(2) · · · rx(Mp) 0 0 · · · 0

r∗x(1) rx(0) rx(1) · · · rx(Mp − 1) Es 0 · · · 0

r∗x(2) r∗x(1) rx(0) · · · rx(Mp − 2) 0 Es · · · 0
...

...
...

. . .
...

...
...

. . .
...

r∗x(Mp) r∗x(Mp − 1) r∗x(Mp − 2) · · · rx(0) 0 0 · · · Es

0 Es 0 · · · 0 Es 0 · · · 0

0 0 Es · · · 0 0 Es · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · Es 0 0 · · · Es

























.

(2.59)

The autocorrelation matrix seen in (2.59) is partitioned into 4 submatrices. The matrices

on the diagonal are the autocorrelation matrix of the received input to the equalizer and

the autocorrelation matrix of the data symbols, respectively. The values in the upper

left submatrix are given by (2.27). The cross-correlation matrix between the received

input to the equalizer and the data symbols is located on the off-diagonal.

2.4.6 Eigenvalues

There is no closed form expression for determining the eigenvalues of the corre-

lation matrix defined in (2.59). A method to bound the eigenvalues of positive-definite

Toeplitz matrices can be found in [35] and its application to the correlation matrix given

in (2.59) can be found in [103]. However, for the case of Mp ≥ 1 and Mfb ≥ 2, the

minimum and maximum eigenvalues are found to be

λDFE,min =
2Es + σ2

n −
√

4(Es)2 + (σ2
n)2

2
, (2.60)

λDFE,max ≈ Es + (Mp + 1)Ei + σ2
n, (2.61)

and the eigenvalue spread is

χ(RDFE) =
λDFE,max

λDFE,min
=

2(Es + (Mp + 1)Ei + σ2
n)

2Es + σ2
n −

√

4(Es)2 + (σ2
n)2

. (2.62)

Note that the eigenvalues given in (2.60) and (2.61) are not a function of Mfb.
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Figure 2.3: Prediction-error filter block diagram.

2.4.7 Convergence Properties

The projection of any of the eigenvectors on the optimal weight vector is nonzero.

This implies that the time constant (2.20) is proportional to the minimum eigenvalue

(i.e. τDFE ' 1/µ(2Es + σ2
n −

√

4(Es)2 + (σ2
n)2)). Similar to the DDE, the delay in

convergence can be attributed to the fact that the DFE does not have a direct reference

for the interferer during adaptation and is thus forced to converge on the basis of the

training data only. The feedback taps converge slower than the feedforward taps because

the DFE is designed such that the interferer is canceled by the feedforward taps, while

the feedback taps attempt to cancel out the signal distortion caused by the feedforward

taps [74].

2.5 Prediction-Error Filter

2.5.1 Predictor Structure

The linear predictor (LP) is a structure that uses the correlation between past

samples to form an estimate of the current sample [5,56,98]. A variant of this filter, the

prediction-error filter (PEF) has the property that it removes the correlation between

samples, thereby whitening the spectrum. A common example of this property is seen

when determining the parameters of an autoregressive (AR) process. The prediction-

error filter (assuming a sufficient filter order) of such an input provides both the AR

parameters and a white output sequence that is equal to the innovations process.

This technique has also been used to remove narrowband interference in many

applications [73, 97, 102, 124, 141]. The filter is able to predict the interferer due to its
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narrowband properties. A block diagram of the symbol-spaced prediction-error filter is

shown in Fig. 2.3. The PEF is a transversal filter with Mpef taps. The decorrelation

delay (∆) ensures that the signal of interest at the current sample is decorrelated from

the samples in the filter when calculating the error term. Because the data is i.i.d., ∆ = 1

is a sufficient choice, giving the one-step predictor. As discussed in [140] this technique

is also applicable for symbols received in correlated noise if the prediction distance is

increased to decorrelate the correlated noise when there is sufficient separation between

the correlation time of the data of interest and the noise. The linear combination of the

weighted input samples, xl, forms an estimate of the interferer, given by

yLP,l =

Mpef−1
∑

m=0

w∗
PEF,mxl−∆−m, (2.63)

where wPEF,m are the tap weights of the predictor. The output of the PEF, yPEF,l, is

defined as the subtraction of the estimate of the interference given in (2.63) from the

current input sample,

yPEF,l = xl − yLP,l = xl −
Mpef−1
∑

m=0

w∗
PEF,mxl−∆−m. (2.64)

Note that yPEF,l is also the error term of the structure. This implies that the PEF is

in fact a blind algorithm. It does not require any training symbols when calculating

the error term. This allows the interference to be removed without a specific reference

signal.

2.5.2 Predictor Optimal Weights

The optimal tap weights can be found in a way similar to those for the equalizer

above using the method of undetermined coefficients [74, 141]. Using the orthogonality

principle, Mpef equations are obtained and the weights of the PEF are given by

wPEF,l = Ke−jΩ(l+∆)Ts , l = 0, . . . ,Mpef − 1, (2.65)

where K is equal to

K =
Ei

Es + σ2
n +MpefEi

. (2.66)

Note that (2.65) can be rewritten in vector form as

wPEF = [1, 0, . . . , 0
︸ ︷︷ ︸

∆−1

, −Ke−jΩ∆Ts, . . . ,−Ke−jΩ(Mpef−1+∆)Ts ]. (2.67)
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This vector of length Mpef + ∆ can be applied directly to a vector of input samples to

provide that output of the PEF. Note that only the last Mpef weights are adjustable

when employed in an adaptive algorithm.

The scenario of interest for this work is when the interference power is much

larger than both the signal power and the noise power. Therefore the SIR and the noise-

to-interference ratio (NIR) can be assumed to be very small (i.e. SIR � 0 dB, NIR � 0

dB [74]) and K can be approximated as

K ∼= 1

Mpef
. (2.68)

2.5.3 Minimum-Mean Square Error

Following the discussion of Section 2.2.3, the MMSE is obtained using the optimal

weights given in (2.65). Using these weights makes the output of the filter, yPEF,l,

optimal, and this term is defined in (2.64). The optimal estimation error term is defined

as eopt,l = xl−yLP,l. Based on the orthogonality principle and its corollary, the following

relationships are true,

E
[
xl−∆−me

∗
opt,l

]
= 0, m = 0, 1, . . . ,Mpef − 1, (2.69)

E
[
yPEF,le

∗
opt,l

]
= 0. (2.70)
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The PEF MMSE value is found to be

JPEF,min = E
[
|eopt,l|2

]
= E

[
eopt,le

∗
opt,l

]

= E







xl −
Mpef−1
∑

m=0

w∗
PEF,mxl−∆−m



 e∗opt,l





= E
[
xle

∗
opt,l

]
−

Mpef−1
∑

m=0

w∗
PEF,mE

[
xl−∆−me

∗
opt,l

]

= E
[
xle

∗
opt,l

]

= E



xl



xl −
Mpef−1
∑

m=0

w∗
PEF,mxl−∆−m





∗



= E [xlx
∗
l ] −

Mpef−1
∑

m=0

wPEF,mE
[
xlx

∗
l−∆−m

]

= rx(0) −
Mpef−1
∑

m=0

wPEF,mrx(m+ ∆)

= Es + σ2
n + Ei −

Mpef−1
∑

m=0

Ke−jΩ(m+∆)Ts

[(
Es + σ2

n

)
δm+∆ + Eie

jΩ(m+∆)Ts

]

= Es + σ2
n + Ei −

Mpef−1
∑

m=0

KEi

= Es + σ2
n + (1 −MpefK)Ei. (2.71)

The MMSE in (2.71) can be approximated using the approximation in (2.68),

JPEF,min ≈ Es + σ2
n. (2.72)

This demonstrates that the interference is approximately removed at the output of the

PEF.

2.5.4 Sensitivity to Additive Noise

The PEF has been shown to be sensitive to additive noise when used for channel

estimation [1, 116]. An algorithm was proposed in [46] to provide adaptive estimation

of unbiased linear predictors with the goal of obtaining a consistent estimate of an ISI

single-input multiple-output (SIMO) channel. To examine the effect of the additive noise

on the PEF for this problem, we are interested in the noise free predictor weights, given
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by

w̃PEF = [1, 0, . . . , 0
︸ ︷︷ ︸

∆−1

, −K̃e−jΩ∆Ts , . . . ,−K̃e−jΩ(Mpef−1+∆)Ts ], (2.73)

where K̃ is equal to

K̃ =
Ei

Es +MpefEi
. (2.74)

The noise free case given in (2.73) is compared with the biased predictor weights given

in (2.67), looking at the norm of the difference (bias),

‖w̃PEF − wPEF‖ =
Mpefσ

2
nEi

(Es + σ2
n +MpefEi)(Es +MpefEi)

. (2.75)

This bias can be approximated using the assumptions that the SIR and the NIR are very

small to give

‖w̃PEF − wPEF‖ ≈
(
σ2

n/Ei

)

√
Mpef

=
NIR
√
Mpef

. (2.76)

The value in (2.76) is quite small due to the assumption that the NIR is small. Thus,

in this work, the bias in the linear predictor does not substantially affect the system’s

performance.

2.5.5 Autocorrelation Structure

The Mpef ×Mpef input autocorrelation matrix for the PEF is defined as

RPEF,i = E
[
xlx

H
l

]

=













rx(0) rx(1) rx(2) · · · rx(Mpef − 1)

r∗x(1) rx(0) rx(1) · · · rx(Mpef − 2)

r∗x(2) r∗x(1) rx(0) · · · rx(Mpef − 3)
...

...
...

. . .
...

r∗x(Mpef − 1) r∗x(Mpef − 2) r∗x(Mpef − 3) · · · rx(0)













, (2.77)

where the components of the matrix are given by (2.27). Note that this matrix is the

same as seen for the DDE in (2.39). The difference between the two structure arises

from using different cross-correlation vectors, p. For the case of the DDE, the desired

signal is dl, however, for the PEF the desired signal is xl as noted in Section 2.5.1.
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Figure 2.4: Approximate time constants for the DDE and the PEF for SNR = 10 dB,
SIR = −20 dB, and µ = 0.0001.

2.5.6 Eigenvalues

The eigenvalues for the correlation matrix given by (2.27) and (2.77), can be

found [102,110,127] to be equal to

λPEF =







Es + σ2
n +MpefEi, order 1,

Es + σ2
n, orderMpef − 1.

(2.78)

The eigenvalue spread is defined [56] as

χ(RPEF,i) =
λPEF,max

λPEF,min
= 1 +

MpefEi

Es + σ2
n

. (2.79)

2.5.7 Convergence Properties

In this case the Mpef − 1 eigenvectors corresponding to the minimum eigenval-

ues are orthogonal to the optimal weight vector, hence these eigenvalues do not affect

the convergence [110]. Thus the time constant is dependent only upon the maximum

eigenvalue (i.e. τPEF ' 1/2µ(Es + σ2
n +MpefEi)). This demonstrates the improved con-

vergence of the PEF as compared to the DDE. The approximate time constants for each
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structure are plotted in Figure 2.4. The time constant for the DDE is not a function of

the number equalizer taps and is thus constant. The time constant for the PEF is seen

to decrease as the number of prediction taps increases, and for all cases is less than the

time constant of the DDE.

2.5.8 Output Autocorrelation

The whitening property of the PEF can be seen more clearly through the auto-

correlation function of the output of the PEF, which is derived to be,

rPEF,o(m) = E
[
yPEF,ly

∗
PEF,l−m

]

= (1 −KMpef)
2Eie

jΩmTs

+ (Es + σ2
n)







(1 +K2Mpef), m = 0,

K2(Mpef − |m|)ejΩmTs , |m| = 1, · · · ,∆ − 1,

K(K(Mpef − |m|) − 1)ejΩmTs , |m| = ∆, · · · ,Mpef − 1,

−KejΩmTs , |m| = Mpef, · · · ,Mpef + ∆ − 1.

(2.80)

An approximation for the output autocorrelation function in (2.80) can be found using

the assumption given in (2.68),

rPEF,o(m) ∼= (Es + σ2
n)







1 + 1
Mpef

, m = 0,

( 1
Mpef

− |m|
M2

pef

)ejΩmTs , |m| = 1, · · · ,∆ − 1,

− |m|
Mpef

ejΩmTs , |m| = ∆, · · · ,Mpef − 1,

− 1
Mpef

ejΩmTs , |m| = Mpef, · · · ,Mpef + ∆ − 1.

(2.81)

Finally, letting the filter order increase toward infinity shows that the output spectrum

is approximately white,

lim
Mpef→∞

rPEF,o(m) ∼= (Es + σ2
n)δm. (2.82)

2.5.9 Eigenvalue Spread

The effect of the PEF is that the interference is removed, which then results in

the reduction of the eigenvalue spread. This can be seen in Fig. 2.5 for SNR = 10 dB,

SIR = −20 dB, and Ω = π
6 . Also in the plot is the eigenvalue spread of the received
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Figure 2.5: Eigenvalue spread of input to DFE-only and output of PEF for SNR = 10
dB, SIR = −20 dB, and Ω = π/6.

data given by (2.79). Note that it is assumed that Mpef = Mp. It is clearly seen that the

spread has been reduced, and the modes of this input to the LMS DFE will converge in

similar amounts of time.

2.5.10 Summary

Chapter 2, in part, is a reprint of material as it appears in A. Batra, T. Ikuma,

J. R. Zeidler, A. A. Beex, J. G. Proakis, “Mitigation of Unknown Narrowband Interfer-

ence Using Instantaneous Error Updates,” in Conference Record of the 38th Asilomar

Conference on Circuits Systems and Computers, vol. 1, Pacific Grove, CA, pp. 115–119,

Nov. 2004, A. Batra, J. R. Zeidler, and A. A. Beex, “Mitigation of Narrowband Inter-

ference Using Adaptive Equalizers,” in Proceedings of the European Signal Processing

Conference (EUSIPCO), Florence, Italy, Sep. 2006, and A. Batra, J. R. Zeidler, and

A. A. Beex, “A Two-Stage Approach for Improving the Convergence of Least-Mean-

Square Decision-Feedback Adaptive Equalizers in the Presence of Severe Narrowband

Interference,” EURASIP Journal on Advances in Signal Processing, vol. 2008, Article
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ID 390102, 13 pages, 2008. doi:10.1155/2008/390102. The dissertation author was the

primary investigator and author of these papers.



3 Data-Aided Initialization

3.1 Introduction

As discussed in Chapter 2, a technique commonly used to mitigate narrowband

interference and multipath distortion is equalization. These equalizers are implemented

via time varying adaptive filters that also possess the ability to locate and track any

interferers. The performances of such filters are judged based on the approximation to

the time-invariant (TI) Wiener filter of the same structure. It has been shown [11, 13,

104] that the normalized least-mean squares (NLMS) algorithm can possibly provide

better performance than this corresponding Wiener filter as a result of information in

the instantaneous error signal that is used to update the filter. This is especially true

when narrowband interference is present in the received data.

In particular, the BER performance benefit gained by adapting in the non-

Wiener region is investigated. The equalizers are evaluated, processing short bursts

of an interference-contaminated and multipath-distorted communication signal. The

channel considered here, is assumed to have a direct path and one resolvable multipath

component delayed by one symbol period. The channel impulse response is thus given

by

hl =







1, if l = 0,

α, if l = Lo,

0, otherwise,

(3.1)

where α is the multipath coefficient. The transmitter and the receiver are assumed not

to have a priori knowledge of the channel. The BER performance of the adaptive linear

equalizer is compared to that of the adaptive decision-feedback equalizer (DFE) to assess

the performance benefit of the non-Wiener adaptation over the corresponding nonlinear

42
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(optimal) system. Another result of this investigation is that the narrowband interfer-

ence causes the adaptive equalizers to possess long convergence times. To improve the

convergence rate of the equalizer, a new data-aided initialization procedure is proposed

that initializes the adaptive weights with estimates of the Wiener weights.

Finally, two techniques are evaluated to initialize the Wiener weights of the adap-

tive DFE in order to improve the convergence. These weights are obtained from averages

of the autocorrelation matrix and the cross-correlation vector derived from the received

samples and the training data. These two techniques are compared in terms of relative

BER performance and complexity in an environment corrupted solely by narrowband

interference (i.e. no multipath, α = 0). This examination considers the one-sided DFE

with an M + 1-tap feedforward filter, an M -tap feedback filter, and the input at symbol

rate,

3.2 Non-Wiener Results

In the equalization context, the NLMS-DDE is found capable of suppressing the

interference better than the equivalent optimal TI linear equalizer. The added perfor-

mance benefit is a result of the nonlinear instantaneous characteristics of the NLMS

algorithm [13] demonstrated in Section 2.2.4. The instantaneous error signal produces

dynamic weight updating that effectively causes the filter to track the interference. Fig.

3.1 demonstrates the effect of such nonlinear dynamics [104]. The MSEs of the TI

Wiener solutions and the simulated NLMS-DDE using only training data are computed

for various step-size parameters and for the different cases of multipath coefficient. Other

simulation parameters for this case are described in Section 3.3.1. It is readily observed

that NLMS-DDE performs better in an MSE sense than the TI Wiener solution over a

wide range of step-sizes under each of the multipath scenarios and the MSE improvement

is less for stronger multipath.

3.3 Convergence Simulation

3.3.1 Simulation Setup

In all experiments, the input signal to the equalizer (i.e., the output of the

matched filter (MF)) has the same statistical characteristics. The communication signal

is a quadrature phase shift keyed (QPSK) signal in which the independent in-phase and
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Figure 3.1: NLMS-DDE MSE versus step-size using all training data. Also plotted are
the equivalent Wiener MSEs (dotted lines). The optimal step-size for each multipath
value is noted in parenthesis.

quadrature components take values of +1/
√

2 and −1/
√

2 with equal probability. This

QPSK signal is up-sampled by Lo (=5) and shaped with a square-root raised cosine pulse

with roll-off factor of β = 0.25 and time delay of 3 symbols. The multipath coefficient

of the channel is assumed to take on a value from the discrete set: α = {0, 0.25, 0.5,

0.75}. The complex sinusoidal interference is located at frequency, Ωi = π/30, the SIR

= -20 dB, and SNR = 20 dB.

Similar to the received signal setup, the equalizer configurations, other than step-

size, are kept the same for all simulations. The input tap configuration is fixed for each

filter structure. The DDE is configured so that Mp = Mf = 3. The DFE is designed in

a manner where the LoMp samples associated with the postcursor symbols in the DDE

are instead fed back with the Mfb most recently decided symbols. Thus, the DFE is

configured so that Mf = Mfb = 3, and Mp = 0. The total number of taps for each

system is then given by, MDDE = 35 and MDFE = 23. Note that the DDE and DFE use

essentially the same number of samples of the MF output, i.e. the same information,

while the DFE uses a smaller number of taps. The weights for all filters are initialized

to zero, and the input taps are soft-initialized by pre-filling with data, unless noted

otherwise.
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Finally, a non-adaptive linear equalizer is also introduced as a third equalizer

to show the advantage of nonlinear large-µ adaptation. The linear equalizer has the

same structure as the DDE but without the adaptation mechanism. The same number

of taps is used as the DDE, and the weights are initialized by estimating the Wiener

solution over the training sequence. Hereafter, we refer to this linear equalizer as the

Wiener Equalizer. Note that in Figure 3.1 the Wiener Equalizer is approached by the

NLMS-DDE with small-µ adaptation.

3.3.2 NLMS-DDE Convergence Analyses

To apply an adaptive equalizer in a realistic communication system, fast con-

vergence is essential. Most critically, the training must be completed during the known

preamble sequence so that the subsequent decision-directed or decision-feedback mode

does not break down due to poor initial BER. Moreover, at the end of the training

interval the BER must have been reduced to an acceptable level.

The convergence rates of the NLMS-DDE operating only in the training mode

for different multipath coefficients are observed in Figure 3.2 which shows the resulting

MSE learning curves and sliding-windowed BERs. In all cases, the NLMS-DDE step-

size parameter is set to unity (which corresponds to fastest convergence). The observed

convergence rates are unacceptably slow. Even in the multipath-free environment (α = 0)

the NLMS-DDE requires 650 symbols to attain a BER of 1×10−2. When there is a strong

second ray (α = 0.75) the NLMS-DDE does not even reach the Wiener performance after

20, 000 symbols. The channel condition severely affects the convergence properties of the

NLMS-DDE.

On the other hand, once the NLMS-DDE reaches steady-state, it produces a

significant BER performance advantage over the Wiener-based non-adaptive equalizer.

The MSE difference of a mere 3 dB boosts the BER by more than an order of magnitude

(Wiener ∼ 10−3, NLMS < 10−4).

The observed slow convergence in Figure 3.2 indicates that the training interval

must be extremely long in order to obtain lower BER for the cases of α = 0.5 and

α = 0.75. Figure 3.3 illustrates the NLMS-DDE transient behavior for various durations

of the training interval for the α = 0.5 case. The equalizer breaks down with only 1,000

training symbols. This result corresponds with the notion that an initial BER below

∼10−1 or so is required at the time of the switch for the decision-directed mode to work
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Figure 3.2: Performance of NLMS-DDE exclusively in training mode. A 1,000-symbol
window is used to estimate the BER dynamics.

properly [5]. Consequently, poor performance is obtained when the number of training

symbols is not sufficient to allow convergence to an MSE value that corresponds to a

BER of 10−1 or less. Note that the BER performance advantage of the NLMS-DDE

over the TI Wiener equalizer is less in the decision-directed mode. Also, the training

length affects the NLMS-DDE steady-state BER, as a slightly higher BER obtained for

Ntr = 3, 000 as compared to the case of Ntr = 7, 500.

3.3.3 Data-Aided Initialization

Despite the slow transient behavior, the BER performance gain obtained with

large-µ NLMS adaptation is promising provided that a technique can be developed to

accelerate the convergence so that a BER of 10−2 or less can be achieved during the

training interval. One possible remedy to fight the slow transient is better initialization

of the NLMS weights. In the previous section the weights were initialized to zero and

allowed to adapt stochastically over the training interval. It is proposed here that the

Wiener weights be estimated from the samples received over the training symbols (where
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Figure 3.3: Performance of NLMS-DDE for various training durations, α = 0.5. A
1,000-symbol window is used to estimate the BER dynamics.

the desired signal is known) and then set to the estimated Wiener weight values. This

approach is referred to as data-aided initialization (DAI) of the weights. Upon obtaining

these initial weights, the adaptive equalizers operate immediately in decision-directed

mode.

Figure 3.4 shows the BER performance of the DAI-NLMS-DDE using different

durations of training data. Based on Wiener weights estimated from only 250 training

symbols the NLMS-DDE performs at a BER ∼ 10−4. Dotted lines in the figure corre-

spond to keeping the estimated Wiener weights fixed. The equalizer breaks down when

only 50 symbols are used to compute the DAI weights. Note that, similar to what is seen

in Figure 3.3, the training length affects the performance but the required number of

training symbols is reduced by approximately two orders of magnitude. For the adaptive

case of Ntr = 100, the performance is worse than that of the non-adaptive scenario with

Ntr = 500.

Clearly, data-aided initialization eliminates the need for the NLMS-DDE to have

a long training period, and also provides superior BER performance over a non-adaptive

equalizer in which those initial weights are kept fixed. This DAI training method is
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Figure 3.4: BER performance of NLMS-DDE using data-aided initialization, α =
0.5, µ = 1. A 1,000-symbol window is used to estimate the BER dynamics.

used for both the NLMS-DDE and the NLMS-DFE. Also, the optimal step-sizes found

in Figure 3.1 are used. Note that, at the start of the decision-directed mode of the DFE,

the feedback taps are filled with training symbols.

3.3.4 Equalizer Performance Analysis

The equalizer performance is assessed under the following scenario. The received

signal is composed of 5, 000-symbol long QPSK bursts in the interference dominated mul-

tipath environment as defined in Section 3.3.1. The first 250 symbols of the QPSK burst

are assumed to be the known preamble training symbols. The three equalizer configura-

tions (two adaptive and one non-adaptive) are compared in terms of BER performance

over the non-training symbols. Table 3.1 lists step-size parameters for all experiments.

The NLMS-DDE step-sizes are chosen according to those found to be optimal in Figure

3.1. As discussed in Chapter 2, the DFE structure does not benefit from NLMS nonlinear

effects and therefore a small step-size is used in the data-aided initialization.

The first set of results, shown in Figure 3.5, is the I/Q plot for each equalizer based

on a single observation given the exact same received signal. A multipath coefficient

α = 0.5 is used for this illustration. The associated BER is also displayed for each

plot. While both DAI-NLMS-DDE and DAI-NLMS-DFE show zero bit errors (which
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Table 3.1: Step-size parameter configuration for different multipath conditions.

α 0 0.25 0.5 0.75

NLMS-DDE 0.75 0.71 0.55 0.40

NLMS-DFE 0.01 0.01 0.01 0.01

are indicated by squares in Figure 3.5), the tightness of the symbol clusters illustrates

the relative BER performance of each equalizer. Clearly NLMS-DFE shows the most

compact clusters among the three. At the same time, the performance improvement

attained by exploiting the non-Wiener NLMS behavior is also visible when Wiener and

NLMS-DDE results are contrasted.

Table 3.2 contains the second set of results for which the experiment is repeated

500 times for each receiver configuration and the observed BER values are averaged.

Zero bit errors are recorded for several configurations because the experimental BER

values are lower than the experimental BER resolution (anything less than 1 error in

4, 750 × 2 × 500 = 4, 750, 000 bits is reported as 0 BER).

Table 3.2: Mean BER for all structures and all α values.

α 0 0.25 0.5 0.75

Wiener Equalizer 3.81e−3 3.13e−3 2.90e−3 4.64e−3

DAI-NLMS-DDE 8.47e−6 7.29e−6 2.59e−5 4.88e−4

DAI-NLMS-DFE 0 0 0 0

With the static interference and resolvable multipath channel, all DFE-based

equalizers perform better than the equivalent DDE-based structures, even when using

a large step-size in the latter. However, utilization of the nonlinear NLMS behavior

boosts the NLMS-DDE performance by a significant margin (by as much as three orders

of magnitude) when compared to the Wiener Equalizer (or equivalently the small-µ

NLMS-DDE). With the optimal large step-size selection, the NLMS-DDE performance

approaches the NLMS-DFE. Note that the DFE essentially uses the previous values of

the desired signal for feedback, whereas the NLMS-DDE only utilizes the corresponding



50

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

I

Q

BER: 3.16e−003

(a) Wiener equalizer.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

I

Q

BER: 0.00e+000

(b) Data-aided initialized NLMS-DDE.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

I

Q

BER: 0.00e+000

(c) Data-aided initialized NLMS-DFE.
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input signal.

3.4 Implementation of Data-Aided Initialization

In this portion of the chapter, under consideration is the one-sided DFE composed

of an M + 1-tap feedforward filter, an M -tap feedback filter, and input at symbol rate.

That is M = Mp = Mfb and Mf = 0.

3.4.1 Data-Based Averages

The autocorrelation matrix estimate, based on the received data, is

R̂ =
1

Ntr

Ntr∑

k=1

uku
H
k , (3.2)

where Ntr is the number of training symbols. The received vector is defined as,

uk =
[

xk, . . . , xk−M , d̂k−1, . . . , d̂k−M

]T
. (3.3)

Note that because there are training symbols available, d̂k = dk. The cross-correlation

estimate is given by

p̂ =
1

Ntr

Ntr∑

k=1

ukd
∗
k. (3.4)

3.5 Direct Matrix Inversion

3.5.1 Wiener Filter

The Wiener solution filter weights can be estimated from the estimated correla-

tion matrices by implicitly solving

R̂wDMI = p̂. (3.5)

If the inverse is found using Gaussian elimination, O((2M + 1)3) multiplications for an

(2M+1)×(2M+1) matrix are required. Instead a method that requires less complexity is

evaluated here. An expression for the inverse can be obtained more efficiently using direct

formulas, such as the Levinson algorithm [72], the Gohberg-Semencul formula [48, 122],

Schur’s complement [87], the matrix inversion lemma [56], and the Toeplitz structure of

the autocorrelation matrix. It is assumed that p̂ is given by its theoretical value,

p =
[

Es, 0, · · · , 0
]T
, (3.6)
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based on the fact that the components of (2.25) are uncorrelated. Note that the signal

power is assumed normalized to unity.

3.5.2 Complexity for Toeplitz Matrices

A simple procedure has been proposed for efficiently finding the inverse of an

(M+1)×(M+1) Toeplitz matrix [50, and references therein] due to its special structure.

The first step uses the Levinson algorithm [72] to obtain an estimate for the autoregres-

sive (AR) parameters. This technique requiresM2+2M+1 complex multiplications [50].

These AR parameters are then used with the Gohberg-Semencul formula [48,122] to ob-

tain the inverse of the matrix. This final step usesM2/2+3M/2 complex multiplications.

In all, 3M2/2 + 7M/2 + 1 complex multiplies are necessary to write down the inverse

of an (M + 1) × (M + 1) Toeplitz matrix. The complexity for finding the inverse of the

DFE correlation matrix is found in the next section.

3.5.3 Complexity for the DFE

The theoretical autocorrelation matrix can be partitioned as follows,

R = E
[
uku

H
k

]
=




Rxx QH

dx

Qdx EsIM



 , (3.7)

where IM is the M × M identity matrix, Rxx = E
[
xkx

H
k

]
is the autocorrelation of

the feedforward section, and Qdx = E
[
dkx

H
k

]
is the cross-correlation of the feedforward

section (received signal, xk) and the feedback section (fed back training symbols, dk)

and is given by

Qdx =
[

0M,1 EsIM

]

, (3.8)

where 0M,1 is the M × 1 zero vector. A technique using Schur’s complement [87, pp.

264-265] can be used to invert R,

R−1 =




Rxx QH

dx

Qdx IM





−1

,

=




S−1

C
−S−1

C
QH

dx

−QdxS
−1

C
IM + QdxS

−1

C
QH

dx



 , (3.9)

where SC is Schur’s complement and is given by

SC = Rxx − QH
dxQdx. (3.10)
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Using the matrix inversion lemma [56],

[
Rxx − QH

dxQdx

]−1
= R−1

xx − R−1
xx QH

dx

(
QdxR

−1
xx QH

dx − IM

)−1
QdxR

−1
xx . (3.11)

Now we are interested only in finding the inverse of Schur’s complement which is

an (M + 1) × (M + 1) matrix. The reduction in complexity for this method arises from

the assumption of knowledge of both Qdx and IM of (3.7). Note that this assumption

will result in a degradation in the approximated Wiener filter when there is not an

adequate number of training symbols. Conversely, the assumption holds for a large

number of training symbols because the estimated correlation matrix will be closer to

the theoretical matrix.

The algorithm requires finding the inverse of Schur’s complement and it is found

through the following steps (ignoring multiplications by 1):

• Let Z = R−1
xx . The resulting matrix (Z) happens to be Toeplitz and is found using

the procedure discussed in the previous section, thus requiring 3M2/2 + 7M/2 + 1

complex multiplications. Note that it is not always the case that the inverse of a

Toeplitz matrix is Toeplitz [52].

• Let Y = QdxR
−1
xx QH

dx. This step does not involve any multiplications; instead, Y

is equal to the lower-right M ×M submatrix of Z. Note that Y is still Toeplitz.

• Let X =
(
QdxR

−1
xx QH

dx − IM

)−1
. This inverse is found in the same manner as the

first step, since the term in parentheses is Toeplitz. This step requires 3M2/2+M/2

complex multiplications. The matrix X is again Toeplitz.

• Let W = QdxXQH
dx. This step does not require any multiplications. W is equal

to X with an additional row of zeros at the top of the matrix and an additional

column of zeros at the front of the matrix.

• Finally, V = R−1
xx WR−1

xx = ZWZ. The matrix V has the desirable properties

that the lower-right M ×M submatrix is Hermitian Toeplitz and the top row and

first column are related via Hermitian symmetry. V can be found by performing

M(4M + 1) complex multiplications.

Finally, the components of R−1 are found with the following steps:

• S−1

C
is found by performing 7M2 + 5M + 1 complex multiplications as discussed

in the previous steps.
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Figure 3.6: Multistage Wiener filter as a filterbank.

• S−1

C
QH

dx is the inverse of Schur’s complement (found in the previous step) with the

first column eliminated.

• QdxS
−1

C
is the inverse of Schur’s complement with the first row eliminated.

• QdxS
−1

C
QH

dx is the inverse of Schur’s complement with both the first row and first

column eliminated.

A total of 7M2 + 5M + 1 complex multiplications are needed to determine the inverse.

The approximation for the Wiener solution is then found by multiplying this inverse by

the cross-correlation vector. Recalling that the signal power is normalized to unity, p

simply selects the first column of the inverse. No additional multiplications are necessary

to find the approximation of the Wiener filter.

3.5.4 Eigenvalues of Schur’s Complement

The minimum eigenvalue of (3.10) for the case of M > 1 is found to be λmin = σ2
n

with multiplicity M − 1. When this eigenvalue approaches zero (i.e SNR approaches

infinity), the inverse may diverge as shown in Section 3.7.

3.6 Multistage Wiener Filter

3.6.1 Wiener Filter

The next approach used for DAI is based on the concept of Multi-Stage Wiener

Filters (MSWFs) as a method that decomposes the conventional Wiener filter into a

nested chain of scalar Wiener filters based on orthogonal projections [49]. They can be
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used to approximate the desired Wiener filter in a lower dimension (i.e a form of rank

reduction), thus reducing the complexity of the algorithm.

Honig and Xiao [61] observed that the Wiener solution provided by the MSWF

is found in the Krylov subspace of the correlation matrix, R, and the cross-correlation

vector, p. This observation led to the use of the Arnoldi algorithm [50] as a means

to determine the orthonormal basis vectors. Using the fact that the correlation matrix

is Hermitian, Joham, et al. [66] noted that the Lanczos algorithm [50] can replace the

Arnoldi algorithm when finding the basis vectors. Finally, Dietl, et al. [36] derived

the relationship between the Conjugate Gradient (CG) algorithm [50, 59, 112] and the

Lanczos algorithm for use with MSWFs. This formulation allows the filter weights

and the MSE to be updated as each stage is added. The CG implementation of the

MSWF also reduces the required complexity by one matrix-vector product as compared

to the Lanczos algorithm. The reduced complexity of this approach is illustrated for

the implementation of the equalizer for the high speed downlink packet access (HSDPA)

receiver in [37], where it was shown that a Krylov equalizer allows a reduction in the

computational complexity and storage requirements with almost no loss in performance.

The CG algorithm is a method of the Conjugate Direction family of iterative

techniques [112]. It utilizes R-orthogonal (or conjugate) search directions, where exactly

one step is taken in each direction toward the solution. The solution is guaranteed to

be found in m steps, where m is the dimension of R. This particular algorithm has

been shown to be especially useful for solving problems of the type, Rw = p, when the

dimensionality of R is large and R is sparse [112,126].

An example of a MSWF as a filter bank can be seen in Figure 3.6. Note that

ti are the orthonormal basis vectors for the observation space, ωi are the scalar Wiener

filters, and dl is the desired value. The error values are defined as εik = di
k − d̂i

k.

The basis vectors can be found [66] according to

ti =
Pi−1Pi−2Rti−1

‖Pi−1Pi−2Rti−1‖
, (3.12)

where ‖ · ‖2 is the 2-norm and Pk is the projection operation onto the space orthogonal

to tk, i.e.,

Pk = I2M+1 − tkt
H
k , (3.13)

where I2M+1 is the (2M + 1) × (2M + 1) identity matrix. The algorithm is initialized

with P0 = I2M+1, t0 = 0, and t1 = p/‖p‖.



56

Let T(D) =
[

t1, t2, . . . , tD

]

be a set of D basis vectors. The number of

basis vectors (D) is chosen dependent upon the desired complexity and approximation

to the Wiener solution. The application of (3.12) and (3.13) in an interference limited

environment returns D = 3 basis vectors:

T(3) =




















1 0 0

0 1√
M
e−jΩiT 0

...
...

...

0 1√
M
e−jMΩiT 0

0 0 1√
M
e−jΩiT

...
...

...

0 0 1√
M
e−jMΩiT




















. (3.14)

The observation vector, d
(3)
l , is found using the basis vectors given in (3.14),

d
(3)
k =







d1
k

d2
k

d3
k







= T(3),Huk =







xk

1√
M

∑M
m=1 xk−me

jΩmT

1√
M

∑M
m=1 d̂k−me

jΩmT






. (3.15)

Note that this algorithm is run using training data, so d̂k can be replaced with the actual

transmitted symbols, dk.

The first basis vector is chosen to maximize the correlation between the desired

signal, dk, and the first observed signal, d1
k. The second basis vector is orthogonal to the

first and is associated with the feedforward side taps. This can be seen by noting that

the second observed value, d2
k, is a linear combination of past received samples. Notice

also that the components of this basis vector contain the phase shifts found in (2.46)

that are needed to cancel the interference. The third basis vector which is orthogonal to

the first two, is associated with the feedback taps because the third observed value, d3
k,

is a linear combination of the fed back symbols. The components have again the phase

shifts needed, such that the post-cursor ISI caused by the feedforward side taps can be

canceled.

Finally, the scalar Wiener filters can be found as

ωi =
rεi,di−1

σ2
εi

, (3.16)

where rεi,di−1 = E

[

εik
(
di−1

k

)∗]
and εDk = dD

k . Using the autocorrelation function given
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in (2.27) and the above equations, the scalar Wiener filters are found to be

ω3 = 1, (3.17)

ω2 = Es + σ2
n +MEi, (3.18)

ω1 =

(
σ2

n +MEi

)
Es

(Es + σ2
n)(σ2

n +MEi) + σ2
nEi

. (3.19)

The intermediate estimated observations (d̂i
k) are

d̂2
k = d3

k, (3.20)

d̂1
k =

Ei

√
M

σ2
n +MEi

[
d2

k − d3
k

]
. (3.21)

The estimate of the desired signal (d̂k) is then found to be

d̂k = ω1d
1
k + ω1ω2d

2
k − ω1ω2ω3d

3
k

= κDFE



















σ2
n +MEi

−Eie
−jΩiT

...

−Eie
−jMΩiT

Eie
−jΩiT

...

Eie
−jMΩiT



















H

uk = wH
DFEuk, (3.22)

where κDFE = SNR
(1+SNR)(σ2

n+MEi)+Ei
and wDFE is the desired Wiener filter. This implies

that when the theoretical correlation matrices and the frequency of the interferer are

available, the iterative algorithm requires D = 3 stages to obtain the Wiener filter.

The three subspaces arise from the structure of the DFE, as seen earlier in the

basis determination. For the special structure seen in (2.45)-(2.48), the feedforward side

taps have the same magnitude and the feedback side taps also have the same magnitude.

This implies that three values need to be determined: the main tap, the feedback side

taps, and the feedback taps. From the first line of (3.22), ω1 is the weight needed to

scale the current received sample, d1
k = xn, while the product of ω1 and ω2 provides the

weight for the feedforward side taps. Recall that the phase shifts are contained in the

basis vector. Finally, noting that the feedforward side taps and the feedback taps are

negatives of each other, gives ω3 = 1, which allows the cancellation of the fed back data

symbols.
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Figure 3.7: BER performance for the theoretical Wiener filter and the full-rank CG
MSWF for a varying number of training symbols, SIR = -20 dB.

3.7 Results

In the simulation results to follow, a BPSK constellation is considered, the SIR =

-20 dB, and the interferer frequency is located at DC (Ωi = 0). The equalizer order is set

to M = 3, where the DFE is formed by a 4-tap feedforward filter and a 3-tap feedback

filter. Each packet is made up of 10,000 symbols. Note that the received samples and

the training symbols are used to form the estimates of the correlation matrices given

in (3.2) and (3.4). The estimated weights are then used to calculate the BER in a

decision-directed mode over the remaining symbols.

Figure 3.7 demonstrates the BER for the theoretical Wiener filter and the full-

rank MSWF as a function of the number of training symbols. The MSWF DFE suffers

when the estimated correlation matrices are poor, due to the lack of training symbols.

When this number is increased, the performance of the CG MSWF approaches that

of the theoretical Wiener filter. For this scenario, both 250 and 500 training symbols

provide a good approximation, which entails a 2.5-5% of overhead for this scenario.

Figure 3.8 is a plot of the BER for the theoretical Wiener filter and the reduced-



59

0 2 4 6 8 10 12
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Theoretical
D = 1
D = 2
D = 3
D = 4

Figure 3.8: BER performance for the theoretical Wiener filter and the reduced-rank CG
MSWF for a varying number of stages, SIR = -20 dB and Ntr = 500.

rank MSWF as a function of the number of implemented stages, with Ntr = 500. When

employing the theoretical correlation matrices with the MSWF algorithm, it was pre-

viously shown that 3 stages are needed to obtain the Wiener solution. In this plot for

D = 1, 2, the performance is very poor, indicating that the MSWF solution is far from

the desired. An improvement is obtained when using D = 3 stages, however toward the

high SNR region, the performance deviates from the ideal. An additional stage (D = 4)

improves the performance and it is comparable to that of the theoretical Wiener filter.

Increasing the number of stages further does not provide any further gains as D = 4 has

reached the limit of the theoretical Wiener filter.

Figure 3.9 shows the BER for the theoretical Wiener filter and the parametric

approximation to the DMI solution as a function of the number of training symbols.

The parametric approximation to the DMI solution provides a good approximation to

the desired correlation matrices at low SNR for all sizes of training symbols. However,

as the SNR increases, two forms of degradation for the parametric approximation to

DMI solution are noticed. The first deviation from the theoretical curve occurs because

of the assumptions made on the structure of the correlation matrix. Recall that we are
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dB.

attempting to invert, ŜC = R̂xx−Q̂H
dxQ̂dx, however, because we assume that Q̂dx = Qdx

and ÎM = IM in (3.7), we are actually solving ŜC = R̂xx −QH
dxQdx. These assumptions,

the forced Toeplitz structure of Rxx, and the use of the ideal cross-correlation vector

(p) lead to a loss of information when inverting the matrix and finding the approximate

Wiener solution. Note that the initial deviation from the theoretical curve occurs earlier

for smaller sets of training symbols. As more training is employed, the estimate of

the correlation matrix approaches the theoretical matrix, which allows the assumptions

made to hold and provide better performance. The second degradation occurs at higher

SNR values and is due the minimum eigenvalue of the data-based estimate of Schur’s

complement. This eigenvalue given in Section 3.5.4 is close to zero in this SNR region

causing the inversion process to suffer. The MSWF algorithm seen in Figures 3.7 and

3.8 is not affected in a similar manner because the CG implementation is less sensitive

to eigenvalue spread [112,126] of R.

For the parameters used, the parametric approximation to the DMI solution

is less complex, needing 79 multiplications, while the CG MSWF requires 347 multi-
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plications and 8 scalar divisions. Note, however, that the impact of these additional

computations for the CG MSWF on performance is shown to be significant since the

requirement of additional training symbols and reduced reliability is a major system

limitation.

The CG MSWF algorithm proves to be a better option than the parametric

approximation to the DMI solution even though its complexity is larger because it needs

fewer training symbols to obtain performance comparable to that of the theoretical DFE

Wiener filter for all SNR values.

3.8 Summary

In the first part of the chapter, the nonlinear dynamics of the NLMS equalizer

are studied in the presence of severe narrowband interference and multipath, and in com-

parison with other equalizer structures. The previous findings that an NLMS equalizer

can provide lower MSE than the corresponding time-invariant Wiener equalizer in the

presence of narrowband interference, are shown to translate into a significant BER per-

formance advantage. The BER performance of the decision-directed NLMS equalizer is

shown to approach the BER performance of the decision-feedback NLMS equalizer when

both structures use essentially the same information. The drawback of this approach

is the need for a long training period. Finally, it is shown that the extended training

period is not necessary when data-aided initialization (DAI) is employed to initialize the

Wiener weights from estimates generated from the training data.

The second part of this chapter is dedicated to the investigation of two differ-

ent computationally efficient techniques for obtaining the estimate of the DFE Wiener

weights necessary for DAI. The two methods are compared in terms of complexity and

performance relative to that of the theoretical Wiener filter for the DFE. The paramet-

ric approximation to the DMI solution is the lower complexity method (7M2 + 5M + 1

multiplications, where M is the order of the feedback filter), however, the performance

is degraded due to assumptions on the correlation matrix, R, that are only met when a

large number of training symbols is used. Further degradation occurs when the minimum

eigenvalue gets small (at high SNR) causing the inverse to possibly diverge. The CG

MSWF algorithm proves to be a better option than the parametric approximation to the

DMI solution even though its complexity is larger (4DM2 +2(7D+1)M +7D+1 multi-

plications and 2D scalar divisions, where D is the number of stages implemented). The
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benefit arises because it needs fewer training symbols to obtain performance comparable

to that of the theoretical DFE Wiener filter for all SNR values.

Chapter 3, in part, is a reprint of material as it appears in A. Batra, T. Ikuma,

J. R. Zeidler, A. A. Beex, and J. G. Proakis, “Mitigation of Unknown Narrowband Inter-

ference Using Instantaneous Error Updates,” in Conference Record of the 38th Asilomar

Conference on Circuits Systems and Computers, vol. 1, Pacific Grove, CA, pp. 115–

119, Nov. 2004, A. Batra, J. R. Zeidler, and A. A. Beex, “Initialization Techniques for

Improved Convergence of LMS DFEs in Strong Interference Environments,” in Proceed-

ings of the IEEE Global Communications (Globecom) Conference, Washington, DC, pp.

3068–3073, Nov. 2007, and is currently being prepared for submission for publication

of the material. A. Batra, J. R. Zeidler, and A. A. Beex, “Implementation Methods

for Data Aided Initialization,” in preparation, 2009. The dissertation author was the

primary investigator and author of these papers.



4 A Two-Stage Approach for

Improving Convergence

In this chapter, an alternate technique to reduce the required training period

and convergence time is evaluated. The results of Chapter 3 illustrate that an increasing

amount of training is required to achieve a given bit error rate (BER) when the interfer-

ence is strong. The required training period increases as the strength of the multipath

coefficient increases as well. To reduce the convergence time and the number of training

symbols needed, a two-stage system that uses a least-mean square (LMS) prediction-error

filter (PEF) as a pre-filter to the LMS decision-feedback equalizer (DFE) is proposed. In

this approach the PEF generates a direct reference for the interference from past samples

and mitigates it prior to equalization.

A two-stage system employing a linear predictor has been previously investigated

[51, 107] in combination with the constant modulus algorithm (CMA). The prediction

filter is employed to mitigate the interference and ensure that the CMA locks on to

the signal of interest. The prediction filter is not used specifically for its convergence

properties. The two-stage structure in this chapter uses a supervised algorithm for the

adaptation of the second structure and is developed with the goal of improving the

convergence of the overall system.

It will be shown that the two-stage system reduces the number of training symbols

required to reach a BER of 10−2 by approximately two orders of magnitude without

substantially degrading the steady-state BER performance as compared to the LMS

DFE-only case. All comparisons will be made under the condition that the LMS DFE-

only and the two-stage structure have the same numbers of total taps.

It will be further shown that the two-stage system may be implemented with a

blind algorithm that does not require any training symbols. The PEF is inherently a

63
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blind algorithm because the error signal is determined from the current sample and the

past samples. A relationship between the PEF weights and the DFE feedback weights is

obtained, allowing the DFE to be operated in decision-directed mode after convergence of

the PEF weights. This technique outperforms the non-blind decision-directed implemen-

tation when a small number of training symbols is used. The non-blind decision-directed

implementation suffers because the feedback weights lie far from their steady-state val-

ues prior to the switch to decision-directed mode. This blind method also allows for a

reduction in the complexity of the system (i.e. fewer weights that need to be adapted),

at the cost of a slight decrease in steady-state BER.

4.1 Two-Stage System

As discussed in Section 2.5.8, the PEF provides an approximately white output

spectrum when an infinite number of filter taps is used. Each additional tap provides an

increase in spectral resolution when notching out the narrowband interference. However,

the implementation of a large number of taps increases both the complexity and con-

vergence time and is not generally feasible, consequently some distortion in the form of

post-cursor ISI will be present. To combat the distortion induced by the PEF, the DFE

provides a simple structure that removes the ISI without enhancing the noise. This leads

to a simple two-stage structure that uses the PEF for rapid convergence and the DFE

for removing post-cursor ISI as a system to mitigate narrowband interference. A similar

approach is discussed in [5, pp. 364-365] when deriving the zero-forcing decision-feedback

equalizer. Barry, et al., demonstrate that the optimal DFE precursor equalizer is related

to optimal linear prediction. Consider transmitting data through a channel that induces

ISI. This distortion can be removed by employing a linear zero-forcing equalizer, while

causing the noise samples at the output of the equalizer to be correlated. This correlation

can be subsequently removed with a PEF, at the expense of post-cursor ISI. Finally, a

zero-forcing feedback post-cursor equalizer removes the ISI without enhancing the noise.

The performance of the PEF followed by the DFE is now considered, which will

be abbreviated as PEF+DFE. A block diagram of the two-stage structure is shown in

Fig. 4.1. Recall that the PEF is tasked with whitening the spectrum by removing the

interference, but due to its limited length it will introduce post-cursor ISI; this ISI is then

removed by the DFE. The DFE is designed to have a one tap feedforward section and an

Mfb-tap feedback section. In general, there is no need for a feedforward section, because
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Figure 4.1: Two-stage structure (PEF+DFE) block diagram.

the input is distorted with only post-cursor ISI that can be resolved by the feedback

equalizer portion. The single tap is included to compensate for any phase shifts that

might exist because of phase errors, and/or gain mismatch between the transmitter and

receiver.

4.1.1 Feedback Filter Order Estimation

The optimal feedback filter order can be estimated from the output of the DFE.

When the feedforward filter weight is assumed to be equal to unity and the decisions fed

back are perfect, the output is defined as

yPEF+DFE,l =
0∑

m=0

w∗
PEF+DFE,myPEF,l−m +

Mfb∑

m=1

f∗PEF+DFE,mdl−m

= yPEF,l +

Mfb∑

m=1

f∗PEF+DFE,mdl−m. (4.1)

To minimize the error, the optimal DFE weights are found according to

fPEF+DFE,l = arg min
fl

E





∥
∥
∥
∥
∥
∥

dk −



yPEF,k +

Mfb∑

l=1

f∗l dk−l





∥
∥
∥
∥
∥
∥

2



= arg min
fl

E





∥
∥
∥
∥
∥
∥

dk −



xk −K

Mpef−1
∑

m=0

xk−∆−me
jΩi(m+∆)Ts +

Mfb∑

l=1

f∗l dk−l





∥
∥
∥
∥
∥
∥

2

 .

(4.2)
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Taking the derivative of the expected value term and setting this result to zero, the

optimal weights are given by

fPEF+DFE,l =







Ke−jΩilTs , l = ∆, . . . ,min(Mfb,Mpef),

0, l = {1, . . . ,∆ − 1} ∪ {Mpef + ∆, . . . ,Mfb}.
(4.3)

When ∆ = 1, the optimal choice for the feedback filter order is Mfb = Mpef. This ensures

that the ISI caused by the PEF is removed. With these choices and the assumption that

the interference is canceled by the PEF, the output of the DFE is given by

yPEF+DFE,k = dk + nk −K

Mpef∑

m=1

nk−me
jΩimTs . (4.4)

4.1.2 Optimal Equalizer Weights after Prediction-Error Filtering

The DFE possesses a 1-tap feedforward section and an Mfb-tap feedback section.

The optimal weights for the DFE are found by solving the Wiener-Hopf equations [56,

104, 134]. The feedforward weight is equal to wPEF+DFE = (RPEF,o − QHQ/Es)
−1p.

The output autocorrelation matrix RPEF,o reduces to a scalar value due to the 1-tap

feedforward filter and is defined as

RPEF,o = rPEF,o(0). (4.5)

The latter term is given in (2.80). Q is defined as

Q = E
[
dky

∗
PEF,k

]
, (4.6)

where the components of Q are given by

E
[
dk−my

∗
PEF,k

]
= −KEse

−jΩimTs , m = {∆, . . . ,∆ +Mpef − 1} ∩ {1, . . . ,Mfb} . (4.7)

Finally, p is defined as

p = E [yPEF,kd
∗
k] = Es. (4.8)

The feedback weights are defined as fPEF+DFE = −QwPEF+DFE/Es.

4.1.3 Steady-State Equivalence

The two-stage structure can be viewed in a different manner when operating in

steady-state. Based on linear system theory, two linear time-invariant (LTI) systems can
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be combined into one LTI structure [94, pg. 107-108]. For example, the PEF weights

given in (2.67) and the feedforward weight of the subsequent DFE (wPEF+DFE) can be

combined to form an extended feedforward filter (wext) of a DFE with one main tap and

Mp = Mpef + ∆ − 1 side taps. This is accomplished by

wext = cPEF ∗ wPEF+DFE = wPEF+DFE × cPEF. (4.9)

The feedback taps remain the same, that is fext = fPEF+DFE. Observe that wext and fext

are the weights of a DFE operating in steady-state. The case of interest is when ∆ = 1

and Mpef = Mfb (as postulated in Section 4.1.1).

Solving,

wPEF+DFE = (RPEF − QH
PEFQPEF/Es)

−1pPEF, (4.10)

fPEF+DFE = −QPEFwPEF+DFE/Es, (4.11)

for the weights gives

wPEF+DFE =
SNR

SNR + (K2Mfb + 1) + (1 −KMfb)
2Ei/σ2

n

, (4.12)

fPEF+DFE,l =
KSNR

SNR + (K2Mfb + 1) + (1 −KMfb)
2Ei/σ2

n

e−jΩilTs , l = 1, . . . ,Mfb.

(4.13)

The extended feedforward filter weights can be found according to (4.9),

wext,0 =
SNR

SNR + (K2Mfb + 1) + (1 −KMfb)
2Ei/σ2

n

, (4.14)

wext,l = − KSNR

SNR + (K2Mfb + 1) + (1 −KMfb)
2Ei/σ2

n

e−jΩilTs , l = 1, . . . ,Mfb, (4.15)

fext,l =
KSNR

SNR + (K2Mfb + 1) + (1 −KMfb)
2Ei/σ2

n

e−jΩilTs , l = 1, . . . ,Mfb. (4.16)

Note that the feedback weights remain the same, namely (4.13) is equal to (4.16).

As mentioned previously in Section 2.5.2, the scenario of interest occurs when

the interference dominates the signal of interest and the noise. Equations (4.14)-(4.16)

can be approximated in this region using (2.68) to give

wext,0
∼= SNR

(1 + SNR) + 1
Mfb

, (4.17)

wext,l
∼= − SNR

(1 + SNR)Mfb + 1
e−jΩilTs , l = 1, . . . ,Mfb, (4.18)

fext,l
∼= SNR

(1 + SNR)Mfb + 1
e−jΩilTs , l = 1, . . . ,Mfb. (4.19)
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As a comparison to (4.17)-(4.19), the DFE-only weights described by (2.45)-

(2.48) need to be approximated for the assumption of small SIR and NIR as well. Letting

Mp = Mfb, so that there are Mfb + 1 taps in the feedforward section and Mfb taps in

the feedback section, the DFE-only weights are approximated as

wDFE,0
∼= SNR

(1 + SNR) + 1
Mfb

, (4.20)

wDFE,l
∼= − SNR

(1 + SNR)Mfb + 1
e−jΩilTs , l = 1, . . . ,Mfb, (4.21)

fDFE,l
∼= SNR

(1 + SNR)Mfb + 1
e−jΩilTs , l = 1, . . . ,Mfb. (4.22)

Comparing (4.17)-(4.19) and (4.20)-(4.22), it can be seen that combining the

two-stage weights approximates the weights of the DFE-only.

4.1.4 Blind Implementation

The previous sections established a relationship between the PEF weights, the

feedforward weight and the feedback weights. Note that in Section 4.1.1 the feedback

weights are equal to the PEF weights associated with past data symbols scaled by the

feedforward tap weighting. Also, recall that the weights of the PEF rapidly converge

and the structure does not require knowledge of training symbols. With ∆ = 1 and

Mpef = Mfb, the two-stage system in Figure 4.1 can be implemented in a manner where

the feedback tap weights are not adapted. After the PEF weights have converged,

the multiplication of the PEF weights and the feedforward weight defines the feedback

weights. The feedforward tap is initialized to unity and is adapted in decision-directed

mode. Thus, no explicit training symbols are required during the adaptation process.

This method also reduces the complexity of the system; only Mfb+1 of the total 2Mfb+1

tap weights are adapted. In the scenario where there is a phase and/or gain error, the

system requires the use of either training symbols to adapt the feedforward weight or

a phase locked loop (PLL) and automatic gain control (AGC). Observe that these two

components can be implemented in a decision-directed manner with no need for training

symbols.
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4.2 Results

4.2.1 Simulation Parameters

In the simulation results to follow, a QPSK constellation is utilized and the

SNR = 9 dB. For convergence results a 100-symbol window was used and the BER

values are averaged over 1,000 runs. The interferer frequency is located at DC (Ωi = 0).

All of the data were considered as training data, unless specified otherwise. The step-sizes

are chosen to ensure convergence toward the steady-state BER. The DFE steady-state

BER results in the convergence plots are given by Q
(√

SINR
)

, where Q(·) is the Q-

function [97, p. 40] and the SINR is given in (2.57).

The DFE adapted with the RLS algorithm [56] is also simulated as a benchmark

for the LMS DFE and the LMS PEF+DFE. The forgetting factor and the regularization

factor were found through trial and error and set to λ = 0.99, δ = 0.001, respectively,

for all simulations.

The adaptive weights are initialized such that the main tap is set to one, resulting

in the desired symbol being part of the output of the equalizer. The remaining taps are

set to zero.

4.2.2 Convergence Results

In previous works [74], [9] the convergence has been viewed through the adaptive

weights, even though they may not be unique [13]. As discussed in Section 2.2.5, the

convergence of the weights may lag behind the MSE convergence if the eigenvalues are

small. Similarly, the weight convergence does not provide an indication of how the BER

behaves during the transient period. Thus, the convergence results are shown in terms

of a sliding BER window, discussed in Section 2.2.6.

Figure 4.2 demonstrates the convergence of the LMS DFE, the LMS PEF+DFE,

and the RLS DFE in relation to the steady-state BER for SIR = -20 dB. The number

of taps is set such that Mp = Mpef = Mfb = 3, and the step-sizes for each structure

are µDFE = 0.0001, µPEF = 0.0001, µPEF+DFE = 0.01. The LMS PEF+DFE is seen

to converge significantly faster than the LMS DFE. Specifically, the LMS PEF+DFE

converges to a BER of 10−2 in approximately 450 symbols (or iterations, as adaptation

takes place at the symbol rate), while the LMS DFE converges in approximately 20,000

symbols. In the case of the RLS DFE, convergence to a BER of 10−2 occurs in 150
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Figure 4.2: Convergence comparison of the LMS DFE, the LMS PEF+DFE, and the
RLS DFE for SNR = 9 dB, SIR = -20 dB, Mp = Mpef = Mfb = 3,Ωi = 0, µDFE =
0.0001, µPEF = 0.0001, µPEF+DFE = 0.01, λ = 0.99, δ = 0.001.

symbols. As expected, RLS provides faster convergence because it whitens the input by

using the inverse correlation matrix. This improved convergence comes at the cost of

higher complexity. For example, in the context of echo cancellation, it has been shown

that the implementation of RLS in floating point on the 32 bit, 16MIPS, 1 serial port,

TMS320C31 requires 20 times the number of machine cycles that LMS does [106].

Figure 4.3 is a plot of the convergence for the above scenario when the SIR = -30

dB. The step-sizes for this case are µDFE = 0.00001, µPEF = 0.00001, µPEF+DFE = 0.001.

Again, the time required for convergence of the LMS PEF+DFE is dramatically less than

for the convergence of the LMS DFE. The LMS PEF+DFE converges in 3,000 symbols,

while the LMS DFE requires 200,000 symbols. The RLS DFE requires 160 symbols to

converge for this case.

Finally, Figure 4.4 shows the convergence of the two systems when the number

of filter coefficients for each stage is doubled, namely Mp = Mpef = Mfb = 6 and SIR =

-20 dB. The step-sizes for this scenario are µDFE = 0.0001, µPEF = 0.00005, µPEF+DFE =

0.01. The convergence time for both systems is reduced with the addition of more taps.
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Figure 4.3: Convergence comparison of the LMS DFE, the LMS PEF+DFE, and the
RLS DFE for SNR = 9 dB, SIR = -30 dB, Mp = Mpef = Mfb = 3,Ωi = 0, µDFE =
0.00001, µPEF = 0.00001, µPEF+DFE = 0.001, λ = 0.99, δ = 0.001.
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Figure 4.4: Convergence comparison of the LMS DFE, the LMS PEF+DFE, and the
RLS DFE for SNR = 9 dB, SIR = -20 dB, Mp = Mpef = Mfb = 6,Ωi = 0, µDFE =
0.0001, µPEF = 0.00005, µPEF+DFE = 0.01, λ = 0.99, δ = 0.001.

The LMS PEF+DFE converges in 300 symbols and the LMS DFE converges in 10,000

symbols. Doubling the complexity, halves the convergence time required. The RLS

DFE converges in 130 symbols. Note that increasing the order will eventually lead to a

degradation in the performance due to the increase of gradient noise. This degradation

is observed when increasing the number of taps from K = L = M = 3 (in Figure 4.2) to

Mp = Mpef = Mfb = 6 (in Figure 4.4) by noting the difference in the misadjustment of

the adaptive algorithm and DFE steady-state values.

Blind Implementation

In this section, the convergence of the blind implementation discussed in Section

4.1.4 is examined. This algorithm allows the LMS PEF to converge before the LMS

DFE that follows it is turned on. Let Noff represent the number of symbols that are

allocated to allow for PEF convergence. This system is compared to two other cases.

The first is the scenario where all the transmitted symbols are considered as training data

(similar to the results shown above). The second scenario demonstrates the convergence
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Figure 4.5: Convergence comparison of the different LMS PEF+DFE implementa-
tions for SNR = 9 dB, SIR = -20 dB, Mp = Mpef = Mfb = 3,Ωi = 0, µPEF =
0.0001, µPEF+DFE = 0.01, Noff = 200.

when a subset of the symbols is used for training, while the adaptive algorithm operates

in decision-directed mode for the remaining symbols. This case is referred to as the

decision-directed algorithm. The number of training symbols used for this case will also

be equal to Noff.

Figure 4.5 demonstrates the BER convergence of the three discussed cases in

relation to the steady-state BER for SIR = -20 dB and Noff = 200 symbols. The number

of taps is set such that Mp = Mpef = Mfb = 3, and the step-sizes for each structure are

µPEF = 0.0001 and µPEF+DFE = 0.01. The performance of both the blind algorithm and

the decision-directed algorithm deviates from the case of using all training data. This

is due to propagation of feedback errors that cause more errors. Observe that the blind

algorithm produces faster convergence and slightly better BER performance than the

decision-directed algorithm.

Figure 4.6 demonstrates the BER convergence of the three discussed cases in

relation to the steady-state BER for SIR = -20 dB, however now Noff = 100 symbols.

The blind algorithm now significantly outperforms the decision-directed algorithm in
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Figure 4.6: Convergence comparison of the different LMS PEF+DFE implementa-
tions for SNR = 9 dB, SIR = -20 dB, Mp = Mpef = Mfb = 3,Ωi = 0, µPEF =
0.0001, µPEF+DFE = 0.01, Noff = 100.
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Figure 4.7: Steady-state BER results of the DFE and the PEF+DFE for SIR = -20
dB and Ωi = 0. DFE results obtained using optimal weights given in (2.45)-(2.48),
PEF+DFE results obtained using optimal weights given in (2.67), (4.12), (4.13).

terms of both convergence and BER. The degradation of the decision-directed algorithm

arises from the fact that the number of training symbols used does not allow the feedback

weights to approach their steady-state values before switching to decision-directed mode.

4.2.3 BER Results

Figure 4.7 is a plot of the steady-state BER results for the DFE and PEF+DFE

for SNR = -20 dB and varying filter orders. The performance of ideal QPSK is plot-

ted as a reference. The performance of the PEF+DFE is seen to be approximately the

same as the performance of the DFE when both structures are operating in steady-state.

This validates the analysis performed in Section 4.1.3. It is also seen that the perfor-

mance of the systems improves as the number of filter taps is increased, approaching the

performance of QPSK. The improvement results from the increased spectral resolution

provided by the larger number of taps in the feedforward section of each system.

Fig. 4.8 demonstrates the BER results of the LMS PEF+DFE blind implementa-

tion in comparison to the steady-state PEF+DFE results. For the blind implementation,
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Figure 4.8: Steady-state BER results of PEF+DFE and the BER for the LMS blind
implementation for SIR = -20 dB and Ωi = 0. PEF+DFE steady-state results obtained
using optimal weights given in (2.67), (4.12), (4.13).

the DFE is turned on after Noff = 250 symbols and the BER is calculated over the last

2,500 symbols. The step-sizes are chosen for convergence to the steady-state BER and

are noted in Table 4.1. This table also gives the average number of symbols required to

obtain a BER of 10−2 for the blind implementation when SNR = 10 dB. A convergence

value equal to Noff indicates that the blind algorithm has converged to the target BER

after the first windowed calculation. It is clear that there is a small degradation in the

BER when implementing the blind version of the PEF+DFE algorithm. This degrada-

tion is attributed to the combination of the misadjustment of the adaptive algorithm

and the presence of uncanceled interference that causes feedback errors. Note that this

degradation in BER becomes smaller as the number of parameters is increased. This

occurs because a larger number of taps allows for more of the interference to be canceled,

thereby reducing the number of feedback errors.
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Table 4.1: Step-sizes and Convergence (at SNR = 10 dB) for LMS PEF+DFE Blind
Implementation

Mpef = Mfb 2 4 8

µPEF 1e-4 5e-5 1e-5

µPEF+DFE 0.01

No. of symbols to BER = 10−2 354 250 555

4.3 Summary

The response of the LMS DFE is investigated in the presence of severe narrow-

band interference. Due to the absence of a reference for the interference, the convergence

time for this equalizer may be unacceptably slow for use in some realistic applications.

The proposed system of an LMS PEF as a pre-filter to the equalizer is shown to provide

a solution to this problem. The two-stage system’s adaptive implementation is supe-

rior due to the fact that the prediction-error filter utilizes the narrowband nature of

the interference to obtain a beneficial initialization point. On the other hand, the LMS

DFE-only employs only the training symbols which have no knowledge of the statistical

characteristics of the interference.

This two-stage system was shown to reduce the convergence time, in terms of

reaching a BER of 10−2, by approximately two orders of magnitude. An added benefit

is that the steady-state BER for the two-stage system approximates that of the LMS

DFE-only. Thus, it is possible to improve the convergence results of the LMS DFE, by

splitting the system into an LMS prediction-error filter and a separate LMS DFE while

not significantly degrading the steady-state BER results. The convergence results were

also benchmarked against the DFE adapted with the RLS algorithm, which demonstrated

faster convergence at the cost of higher complexity. A blind implementation (i.e. no

training symbols are needed) that reduces complexity at the cost of a small degradation

in the steady-state BER is also discussed.

Chapter 4, in part, is a reprint of material as it appears in A. Batra, J. R. Zeidler,

and A. A. Beex, “A Two-Stage Approach for Improving the Convergence of Least-Mean-

Square Decision-Feedback Adaptive Equalizers in the Presence of Severe Narrowband

Interference,” EURASIP Journal on Advances in Signal Processing, vol. 2008, Article

ID 390102, 13 pages, 2008. doi:10.1155/2008/390102. The dissertation author was the
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5 Multi-carrier Background

Multi-carrier transmission schemes [17, 42] are becoming the dominant modula-

tion technique for current communication systems due to their ability to obtain higher

data rates that users are demanding. In order to provide the increased data rate with a

single carrier transmission scheme generally requires a bandwidth that is larger than the

coherence bandwidth of the channel. This causes groups of frequencies to be attenuated

and shifted in relative phase to each other thereby severely distorting the symbol. Con-

sequently, in the time-domain, intersymbol interference arises as symbols are smeared

with adjacent symbols requiring equalizers of increasing complexity as the ISI magnitude

increases.

Multi-carrier schemes split the input data sequence into many low-rate streams

that are transmitted on independent channels. Each channel could be considered as a

different frequency bin in a frequency division multiplexing (FDM) scheme. However,

this wastes bandwidth due to the guard bands needed when filtering at the receiver. In

block modulated multi-carrier schemes, the narrowband subcarriers (or subchannels) are

allowed to overlap orthogonally in the frequency-domain, thereby improving the spectral

efficiency of the system. Orthogonality is obtained be choosing the subcarrier spacing

to be the inverse of the symbol duration. This ensures that each subchannel has zeros

located at all other subcarriers.

To solve the problem of intersymbol interference (and by duality frequency-

selectivity), a guard interval is added to the front of the time-domain sequence. It

is possible to simply use zero-padding for the guard interval, however this causes a loss

of orthogonality [95] and requires a complex receiver that employs the overlap-and-add

technique [88] as is done in multi-band orthogonal frequency division multiplexing (MB-

OFDM) ultra-wideband (UWB) systems [38,64]. More commonly, a cyclic prefix is used.

The cyclic prefix is a repeat of the end of the signal pre-pended to the beginning of that

79
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signal. This method preserves orthogonality among the subcarriers. Note that this ad-

dition is overhead for the overall system, as it does not transmit any useful information.

However, as will be shown, the cyclic prefix aids in reducing the complexity required for

equalization.

These schemes are easily implemented in hardware as well. Modulation of all

subcarriers may seem to require a bank of filters, however, it can be performed using

the highly efficient inverse fast Fourier transform (IFFT) algorithm. Correspondingly,

at the receiver, the FFT algorithm is utilized as the matched filter. A consequence of

using the FFT/IFFT pair is that these matrices form the left and right eigenvectors of

the circulant (due to the use of the cyclic prefix) channel matrix. The result is that the

data is essentially multiplied by a diagonal matrix, and each subcarrier is distorted by

flat fading. Hence, the frequency-selectivity problem is resolved and a one-tap equalizer

on each subcarrier is now sufficient. Another consequence of having flat fading on each

subcarrier is that the number of bits transmitted per subcarrier can vary depending on

the channel gain for that particular subcarrier. This is referred to as bit loading [30],

and requires channel knowledge at the transmitter.

For all of the benefits of multi-carrier transmission, there are also drawbacks.

Carrier frequency offset (CFO) can be caused when very accurate frequency synchro-

nization is not available. This causes intercarrier interference (ICI) because the sam-

pling no longer occurs at the zeros of the other subcarriers. ICI may also arise when

there is mobility in the system, and the transmissions experience a Doppler shift [129].

Another disadvantage is a large peak-to-average-power ratio (PAPR) that occurs when

the phases of the subcarriers sum constructively. When passed through a nonlinear am-

plifier, intermodulation distortion may cause a loss of orthogonality of the subcarriers

and the signal will be corrupted with intercarrier interference. To combat this prob-

lem, a backoff in the transmitted power is required to remain in the linear region of the

amplifier, or have an amplifier with a large linear range. Techniques to compensate for

the PAPR are described in [125]. Finally, narrowband interference can severely degrade

the system and make reliable communication impossible. This type of interference may

arise from radio nonlinearities, intentional jamming, or from sharing of spectrum. Many

of the new wireless standards that employ multi-carrier schemes utilize the unlicensed

bands, thus there is the possibility that the system will have to share the frequency band

with other communication systems. For instance, WiMax is a narrowband interferer for
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UWB Systems [119,120]. This is especially true when discussing OFDM-based cognitive

radios [6] where it is required to modify the spectrum in order to avoid primary users.

Techniques to mitigate narrowband interference are developed in this chapter

for two multi-carrier schemes; multi-carrier code division multiple access (MC-CDMA)

[26,41,54,139] and orthogonal frequency division multiplexing (OFDM) [27,131]. These

two systems differ in that MC-CDMA employs multi-carrier principles with spreading

that has been seen in CDMA-based systems [97]. In MC-CDMA, each subcarrier of

a given user is multiplied by a single chip of a spreading sequence. At the receiver,

after demodulation of the subcarriers, the chips are correlated with a locally generated

chip sequence to provide both the multiple access capability and frequency diversity.

Conversely, OFDM does not spread the data symbols across the subcarriers. OFDM is

thus a special case of MC-CDMA, in which the spreading codes are simply the columns of

the identity matrix. The result of this is that uncoded OFDM does not possess frequency

diversity.

These techniques differ from other wideband systems, such as direct-sequence

CDMA (DS-CDMA) and multi-carrier direct-sequence CDMA (MC-DS-CDMA) [31,69].

For these modulations, the bandwidth of the signal is greater than the coherence band-

width of the channel, inducing frequency-selective fading. A Rake receiver [97] can be

used in addition to obtain path diversity, thereby reducing the deleterious effects of

the frequency-selective multipath fading channel. A comparison of MC-DS-CDMA and

MC-CDMA can be found in [42,77].

5.1 Multi-carrier Basics

A block modulated multi-carrier symbol is formed by modulating and summing

individual subcarriers. In continuous time, the set of complex sinusoids,
{
ej2πfkt

}N−1

k=0

are referred to as the subcarriers, where fk = k/Ts and 1/Ts is the subcarrier spacing.

This choice of spacing leads to orthogonality between the subcarriers. For example,

looking at the kth and mth subcarriers, the correlation is given by

1

Ts

∫ Ts

0
ej2πfkt

(

ej2πfmt
)∗

dt =
1

Ts

∫ Ts

0
ej2π(fk−fm)t dt

=







1, fk = fm,

0, fk 6= fm.
(5.1)



82

Interleaver IFFT
Add

CP

data bits

FFT
Symbol

Demapper Deinterleaver
Viterbi

data
decisionsRemove

CP
FEQ

Encoder
Symbol

Mapper

Decoder

d

x

(a) Transmitter

FFT
Symbol

Demapper Deinterleaver
ViterbiRemove

CP
FEQ

Decoder

(b) Receiver

d cp

xcp

D

Figure 5.1: BICM OFDM system model.

The subcarriers can be examined in discrete-time allowing for modulation and

demodulation to be performed using the DFT (implemented with the FFT). This is seen

by sampling the subcarriers at N equally spaced instances,

ej2πfkt|t=lTs/N = ej2π k
Ts

l Ts
N

= ej
2π
N

kl, 0 ≤ k, l ≤ N − 1. (5.2)

The discrete-time subcarriers, seen in (5.2), are the basis functions of the IDFT. A block

diagram of the system is depicted in Figure 5.1.

A block of N data symbols, {Dk}N−1
k=0 are defined in the frequency-domain. The

energy per modulated symbol, Es = RcRmEb where Rc is the code rate of the encoder

(see Section 5.4.1), Rm is the number of bits per subcarrier that depends on the constel-

lation size and Eb is the energy per information bit. These data symbols are modulated

onto the subcarriers using the IDFT, giving the time-domain signal as

dl =
1√
N

N−1∑

k=0

Dke
j 2π

N
kl, 0 ≤ l ≤ N − 1. (5.3)

Let F be the N -point DFT matrix, whose elements are given by

[F]kl =
1√
N
e−j 2π

N
kl, 0 ≤ k, l ≤ N − 1. (5.4)

Note that F is unitary, i.e. FFH = FHF = IN . Using this notation, (5.3) can be written

in matrix form as

d = FHD, (5.5)

where D is the vector of frequency-domain symbols, defined as

D =
[

D0, D1, . . . , DN−1

]T
, (5.6)
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and d are the time-domain samples given by

d =
[

d0, d1, . . . , dN−1

]T
. (5.7)

The time-domain samples given in (5.3) can be transformed back to the frequency-domain

using the DFT,

Dk =
1√
N

N−1∑

l=0

dle
−j 2π

N
kl, 0 ≤ k ≤ N − 1

=
1√
N

N−1∑

l=0

1√
N

N−1∑

m=0

Dme
j 2π

N
mle−j 2π

N
kl

=
1

N

N−1∑

m=0

Dm

N−1∑

l=0

ej
2π
N

(m−k)l

=
1

N

N−1∑

m=0

DmNδm−k

= Dk. (5.8)

This can also be viewed in vector form when the time-domain samples are transformed

using the DFT matrix, F,

D = Fd

= FFHD

= D. (5.9)

As mentioned above, the cyclic prefix is utilized to mitigate the effects of ISI.

The cyclic prefix is composed of the last Ng samples of d, and is pre-pended to d to give,

dcp =
[

dN−Ng , · · · , , dN−1, d0, · · · , dN−1

]T
. (5.10)

The vector given in (5.10) is transmitted over a time-invariant multipath fading channel,

h(t). The channel samples are obtained by sampling at t = lTs/N ,

hl = h(t)|t=lTs/N , 0 ≤ l ≤ Lh − 1, (5.11)

where Lh is the number of resolvable paths. Each tap, hl, is modeled as an i.i.d. zero-

mean, circularly Gaussian random variable with variance equal to σ2
h. Without loss of

generality, the total multipath power is normalized to unity,

Lh−1
∑

l=0

E

[

|hl|2
]

=

Lh−1
∑

l=0

σ2
h = 1. (5.12)
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The received time-domain samples are found by convolving, (5.10) and (5.11),

xcp = h ∗ dcp + ncp, (5.13)

where h is the 1×Lh vector of channel taps given in (5.11) and ncp is the (N +Ng)× 1

vector of time-domain additive noise samples. If Ng ≥ Lh, the guard interval can be ne-

glected, noting that the cyclic prefix converts linear convolution into circular convolution.

This allows (5.13) to be rewritten as,

x = Hd + n, (5.14)

where H is the N ×N channel convolution matrix and n is the now the N × 1 vector of

noise samples after cyclic prefix removal.

Applying the DFT matrix to (5.14), transforms the received time-domain sam-

ples, into the frequency-domain,

X = Fx = FHd + Fn

= FHFHD + N, (5.15)

where N is the vector of frequency-domain noise samples that have the same distribution

as the time-domain samples, due to F being unitary. Noting that the use of the cyclic

prefix causes H to be circulant and that the eigenvectors of a circulant matrix are the

columns of the DFT matrix [52], leads (5.15) to be rewritten as

X = H̃D + N, (5.16)

where H̃ is the N ×N diagonal matrix of the eigenvalues of H [52], and is given by

H̃ = diag

(√
NF

[

h, 01,N−Lh

]T
)

. (5.17)

Because H̃ is diagonal, (5.16) can be decomposed and viewed on a per-subcarrier basis,

thus the output of the DFT on the kth subcarrier is given as

Xk = H̃kDk +Nk. (5.18)

This decomposition, allows estimates of the transmitted data symbols, D̂k, to be obtained

by scaling (5.18) by the frequency-domain channel value, H̃k,

D̂k =
1

H̃k

Xk =
1

H̃k

(

H̃kDk +Nk

)

= Dk +
Nk

H̃k

. (5.19)

This is the definition of one-tap frequency-domain equalization (FDE).
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5.2 Mulitcarrier Systems in the Presence of Narrowband

Interference

Recall the interference term given in (1.25), can be written as

i(t) =
√

Eie
j(2πfit+θ). (5.20)

Sampling the interference term at the N equally spaced instances as in (5.2) and letting

the frequency of the interference term be defined as fi = (m+ α)/Ts gives

il = i(t)|t=lTs/N =
√

Eie
j
(

2π m+α
Ts

l Ts
N

+θ
)

=
√

Eie
j( 2π

N
(m+α)l+θ), (5.21)

where m is the subcarrier closest to the interference and α is the offset position of the

interferer from tone m, distributed uniformly as U
[
−1

2 ,
1
2

]
.

This interference term is part of the received signal, previously defined in (5.13)

and (5.14), where it is now

xcp = h ∗ dcp + icp + ncp, (5.22)

where icp is the (N + Ng) × 1 vector of interference samples. Note that icp and ncp

are not cyclically extended as the data is. After cyclic prefix removal, the time-domain

samples are transformed into the frequency-domain using the DFT,

X = Fx = FHd + Fi + Fn

= H̃D + I + N, (5.23)

where I is the vector of interference samples in the frequency-domain. Of interest is the

interference that is located on subcarrier k, denoted as Ik. When the interferer is non-

orthogonal to the subcarriers (i.e. not located directly on a tone, α 6= 0), the interference

is spread across all the tones, which is described as

Ik =

√

Ei

N

(
1 − ej2πα

)
ejθ

1 − ej
2π
N

(m+α−k)
. (5.24)

This effect is termed spectral leakage and arises from the fact that the DFT is of finite

length. The interference is multiplied by a rectangular window1 which is equivalent to

1Other windows may be chosen to reduce the impact of the spectral leakage, however in this work,
other means are examined to mitigate the interference.
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convolution by a sinc function in the frequency-domain. This representation is similar

to the case when ICI is present. When the interference is orthogonal only to tone m (i.e.

α = 0), the interference after the DFT reduces to

Ik =







√
NEie

jθ, k = m,

0, k 6= m.
(5.25)

The interference impacts only subcarrier m in this case.

5.2.1 Definition of Signal-to-Interference Ratio

It is necessary to examine the definition of the term, signal-to-interference ratio

(SIR) in the context of a multi-carrier system that is corrupted by narrowband interfer-

ence. Specifically, a resolution is needed since the data is defined in the frequency-domain

and the interference is defined in the time-domain. The uncoded case (i.e. Rc = 1) is

examined here for simplicity.

The frequency-domain data vector given in (5.9) is composed of QAM symbols,

with each subcarrier having a symbol of average energy, Es. The average power of the

received signal over the spectrum (i.e. across all subcarriers) is equal to N×Es/N = Es,

using E|Hk|2 = 1 (from (5.12) and Parseval’s Theorem [97]) and (5.17).

Both interference cases must be examined. Looking first at the orthogonal case

(α = 0), the interference power per subcarrier is given by

σ2
I,k = E [IkI

∗
k ] =







NEi, k = m,

0, k 6= m.
(5.26)

The average power of the interference is equal to 1
N (1 ×NEi + (N − 1) × 0) = Ei. Note

that the multiplication by the factor of N can be viewed as a form of processing gain,

allowing weaker interferences to be detected more easily through DFT processing.

The case of a non-orthogonal interferer is more involved. The interference power

per subcarrier is given by,

σ2
I,k = E [IkI

∗
k ] =

Ei

N

1 − cos 2πα

1 − cos 2π
N (m+ α− k)

. (5.27)

The average interference power over the spectrum is found by summing over all the

subcarriers and normalizing by the DFT length. It can be shown (see Appendix) that
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Figure 5.2: BICM MC-CDMA system model.

the following expression is true,

1

N

N−1∑

k=0

Ei

N

1 − cos 2πα

1 − cos 2π
N (m+ α− k)

= Ei. (5.28)

Thus, for both cases, the SIR can be reliably defined as Es/Ei.

5.3 MC-CDMA

The above discussion relates to general block modulated multi-carrier schemes,

however, it precisely describes the implementation of OFDM systems. For the case of

MC-CDMA systems, each data symbol is spread into all of the subcarriers. This is

accomplished by using a code (spreading) matrix, B, which is an N ×N unitary matrix

whose columns contain the N spreading sequences. The kth column is responsible for

spreading the kth data symbol, Dk. A block diagram for this system can be seen in Figure

5.2. Note that when B is the identity matrix (i.e. B = IN), the system is identical to

OFDM. Thus, OFDM is a special case of MC-CDMA.

Taking into account the code matrix, the received signal given in (5.15) can be

be written as

X = FHFHBD + N

= H̃BD + N. (5.29)

The design of the code matrix requires the columns of B to be orthogonal to successfully

recover the transmitted data symbols with no cross-talk between subcarriers. One choice

for the orthogonal spreading codes is the Walsh-Hadamard code matrix [97]. However, a

drawback of this choice is that these codes are only defined for lengths of N = 2n, where

n is an integer greater than zero [42]. Another choice that is utilized in this work, is
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using the DFT basis vectors as the columns of B [90,137] and is defined component-wise

as,

[B]kl =
1√
N
ej

2π
N

kl, 0 ≤ k, l ≤ N − 1. (5.30)

Note that (5.30) is the same as (5.4) and thus B is a unitary matrix. This choice allows

more flexibility because it can be determined for any choice of N .

Spreading each data symbol into all the subcarriers requires a combiner at the

receiver to extract the data from the received signal. The combiner weights are derived

under the MMSE criterion [137,138] and obtained by solving the Wiener-Hopf equations,

W = R−1
X RXD, (5.31)

where RX is the autocorrelation matrix of the received signal and RXD is the cross-

correlation vector between the received signal and the data vector. Assuming that the

channel is known, the autocorrelation matrix can be found to be

RX = E

[(

H̃BD + N
)(

H̃BD + N
)H
]

= H̃BE
[
DDH

]
BHH̃H + E

[
NNH

]

= EsH̃BBHH̃H + σ2
nIN

= EsH̃H̃H + σ2
nIN

= Es

∣
∣
∣H̃

∣
∣
∣

2
+ σ2

nIN . (5.32)

It can be seen from (5.32) that RX is an N ×N diagonal matrix, where the kth diagonal

component is given by

RX(k, k) = Es

∣
∣
∣H̃k

∣
∣
∣

2
+ σ2

n, 0 ≤ k ≤ N − 1. (5.33)

The cross-correlation vector can be found in similar way,

RXD = E

[(

H̃BD + N
)

DH
]

= H̃BE
[
DDH

]

= EsH̃B. (5.34)

Solving (5.31), gives the combiner weights to be

W = diag

([

EsH̃0

Es|H̃0|2+σ2
n

, EsH̃1

Es|H̃1|2+σ2
n

, · · · , EsH̃N−1

Es|H̃N−1|2+σ2
n

])

B. (5.35)
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Finally, the estimates of the transmitted data symbols are given by

D̂ = WHX. (5.36)

Note that a consequence of MMSE combining in frequency-selective channels is that

there is a loss of orthogonality among the subcarriers,

D̂ = WHX = WH
(

H̃BD + N
)

= WHH̃BD + WHN

= D +
(

WHH̃B − IN

)

D + WHN, (5.37)

where the second term represents the ICI. When the channel is AWGN or flat fading,

equal gain combining (i.e. W = B) can be utilized to preserve orthogonality,

D̂ = D +
(
WHρINB − IN

)
D + WHN

= D +
(
ρWHB − IN

)
D + WHN

= ρD + WHN, (5.38)

where ρ is dependent on the channel (i.e. ρ = 1 for an AWGN channel).

5.4 Convolutional Coding

Reliable wireless communication links require the use of forward error correction

in practical scenarios. In this work, convolutional codes are examined in conjunction

with multi-carrier modulation. These codes convert an input stream (possibly infinite)

into a single codeword. This differs from block codes that segment the input stream into

a fixed block length and output a codeword of a fixed length.

Convolutional coding was first introduced by Elias [39], and it was shown that

choosing random codes based on linear shift registers worked well. Ideally, a maximum-

likelihood (ML) estimate could be formed by examining all possible codewords with the

received vector. Unfortunately, the complexity of this approach increases exponentially

with kcL, where kc is the number of bits inputted into the encoder and L is the number

of bits in the sequence. This required the research into new decoding algorithms. A class

of sequential algorithms evolved through a number of iterations [40,65,83,136]. Finally,

Viterbi [128] discovered a maximum-likelihood decoding algorithm [43] by minimizing

a path through a weighted, directed graph [93]. This dynamic programming algorithm

was shown to be asymptotically optimal [128].
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5.4.1 Encoder

The convolutional encoder is composed of a linear finite-state shift register. In

general, the shift register consists of Kc stages, where Kc is the constraint length of the

code. This term relates the number of output bits that are affected by one input bit. The

binary input stream is inputted kc bits at a time, producing an output of nc bits. The

code rate is then defined as Rc = kc/nc, which is similar to the case for block coding. The

minimum distance of the code, dmin, is calculated as the minimum Hamming distance

between all pairs of codewords. Note that these encoders can be considered as finite

impulse response (FIR) digital filters or as finite state machines.

The encoder can be described by its generator polynomial. This is obtained by

inputting a delta function (i.e. a single one followed by a string of zeros) to provide the

impulse response of the encoder at the output. This polynomial is also apparent from

the block diagram of the structure, simply by examining the tap sequence of the encoder.

Using these polynomials, a generator matrix can be formed as is done in block coding,

however, because the length of the input sequence may not be bounded, the generator

matrix may be semi-infinite.

It is assumed that the shift register is initialized to the all-zero state. To aid in

the decoding of the codeword, it is necessary to assume that the final state of the shift

register is also the all-zero state. To accomplish this, an additional (Kc − 1)kc zeros are

appended to the end of the input stream. These input bits result in coded bits that do

not contain any useful information and this overhead reduces the effective rate of the

code. This reduction can be characterized in terms of a fractional rate loss as

ρ =
(Kc − 1)kc

L+ (Kc − 1)kc
. (5.39)

There are a number of methods that describe the operation of convolutional

codes. These are the tree diagram, the state diagram, transfer functions, and the trellis

diagram. In this work the trellis diagram is utilized. A review of the alternate methods

can be found in [97,132].

5.4.2 Decoder

The decoder is implemented using Viterbi’s algorithm and uses the trellis diagram

to determine the ML estimate. The trellis diagram depicts the state of the shift registers

as a function of time. The branches are labeled with the output bits that correspond
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with the associated state transitions. For an input sequence of kcL input bits, there are

2kcL distinct paths.

Consider the information sequence, d, encoded to form the codeword, x, which

is then transmitted across the channel. The received codeword, y is decoded to give

an estimate of the transmitted codeword, x̂. The ML decoder looks to maximize the

probability, p (y|x̂). With the assumption of a memoryless channel (i.e. each received

bit is independent from the other bits), the ML estimate can be decomposed into the

ML estimate for each bit,

p (y|x̂) =

L+(Kc−1)−1
∏

i=0

[

p
(

y
(0)
i |x̂(0)

i

)

p
(

y
(1)
i |x̂(1)

i

)

. . .
(

y
(nc−1)
i |x̂(nc−1)

i

)]

=

L+(Kc−1)−1
∏

i=0





nc−1∏

j=0

p
(

y
(j)
i |x̂(j)

i

)



 , (5.40)

where the first product is over the block numbers (set of kc bits inputted to the encoder)

and the second product is over the number of output bits, nc, for each block. Taking

the logarithm of (5.40) also maximizes the ML estimate,

log p (y|x̂) =

L+(Kc−1)−1
∑

i=0





nc−1∑

j=0

log p
(

y
(j)
i |x̂(j)

i

)



 . (5.41)

The bit metric can be defined as,

M
(

y
(j)
i |x̂(j)

i

)

= log p
(

y
(j)
i |x̂(j)

i

)

, (5.42)

and the path metric is the sum over all bit metrics,

M (y|x̂) =

L+(Kc−1)−1
∑

i=0





nc−1∑

j=0

M
(

y
(j)
i |x̂(j)

i

)



 . (5.43)

Recall that at each node there are 2kc branches at each node. The path with the best

metric at each node is chosen and referred to as the survivor. If the best metric is not

unique, the survivor is chosen randomly. Once the algorithm reaches the L + (Kc − 1)

iteration, the ML path is the one with the largest metric that ends in the all-zero (final)

state and is found by tracing back through the trellis.

This decoding algorithm requires keeping track of 2(Kc−1)kc surviving paths and

2(Kc−1)kc metrics, as well as computing 2k
c metrics at each node. Thus the number of

computations at each stage increases exponentially with kc and Kc.
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5.4.3 Log-Likelihood Ratio

The Viterbi decoder experiences improved performance when the input is com-

posed of soft-decisions [97, 132]. These decisions provide the decoder with a reliability

assessment for each bit, unlike hard decisions which are limited to binary values.

The soft-decisions out of the symbol demapper, are simply the log-likelihood

ratios (LLRs). For simplicity, the LLR for a BPSK system is calculated as follows,

Λ(xl|yl) = log
p(xl = +1|yl)

p(xl = −1|yl)
. (5.44)

This is noted as the ratio of the maximum a posteriori (MAP) probabilities. Using Bayes

rule, (5.44) can be rewritten in term of the ML probabilities,

Λ(xl|yl) = log
p(xl = +1|yl)

p(xl = −1|yl)

= log
p(yl|xl = +1)p(xl = +1)

p(yl|xl = −1)p(xl = −1)

= log
p(yl|xl = +1)

p(yl|xl = −1)
+ log

p(xl = +1)

p(xl = −1)

= log
p(yl|xl = +1)

p(yl|xl = −1)
. (5.45)

The last line of (5.45) comes from the assumption that the a priori probabilities of the

encoded bits are equal (i.e. p(xl = +1) = p(xl = −1)). Evaluation of (5.45) requires

the conditional probability density function of the received signal, yl. This term is used

as the input to Viterbi decoder. For larger constellations, refer to [4] for exact and

approximate calculations.

5.4.4 Puncturing

The rate of a convolutional code can be increased by puncturing the code. This

entails removing bits from the codeword prior to transmission. This increased rate comes

at the cost of redundancy and therefore error protection. In particular, there exists codes

that are rate-compatible, allowing a number of code rates to be obtained by following a

certain puncturing pattern. For example, rate-compatible punctured codes are seen in

the standards for WLAN [63] and UWB [38]. At the decoder, erasures (LLRs of zero)

are inserted at the locations of the punctured bits. The decoding follows the process as

described in Section 5.4.2.
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5.4.5 Interleaving

An interleaver is generally used in conjunction with forward error correction

coding to prevent a burst of errors from entering the decoder. Convolutional codes are

sensitive to burst errors, whereas they are well suited for handling well-spaced errors.

These errors can occur from fading channels that have deep fades over a number of

bits. This also implies that the received bits are not usually independent as assumed in

(5.40). The interleaver can make the received signal look independent to the decoder.

This can improve the performance by providing diversity to the system. At the receiver,

a deinterleaver is used to invert the interleaving process.

In this work an (n×m) block interleaver is considered, which consists of n rows

and m columns. A similar block interleaver is used in WLAN standard [63]. The coded

data is read row by row. The output of the interleaver is read out column-wise. Each

symbol is then separated from neighboring symbols by n − 1 other symbols. Note that

the structure of the deinterleaver is exactly the same as that of the interleaver.

5.4.6 Summary

Chapter 5, in part, is a reprint of material as it appears in A. Batra, J. R. Zeidler,

J. G. Proakis, and L. B. Milstein, “Interference Rejection and Management,” in New

Directions in Wireless Communications Research, V. Tarokh, Ed. New York: Springer,

2009. The dissertation author was the primary investigator and author of this paper.



6 Mitigating Narrowband

Interference in Block Modulated

Multi-carrier Systems

In this chapter, the cases of a multi-carrier code division multiple access (MC-

CDMA) and orthogonal frequency division multiplexing (OFDM) system are considered

in the presence of strong NBI (i.e., SIR � 0 dB) operating in a frequency-selective

channel. The optimal combining weights for MC-CDMA are first provided. It is then

shown that coding with erasure insertion (using a Bayesian method) is not adequate

for a severe non-orthogonal interferer in an OFDM system because a large number of

erasures are required when the interference power leaks (i.e. spectral leakage) into a large

number of subcarriers [7]. The prediction-error filter (PEF) is proposed as an erasure

insertion mechanism that localizes erasures around the interference by placing a notch in

the frequency spectrum of the received signal [8]. As discussed earlier, the PEF uses the

narrowband nature of the interference (as compared to the OFDM spectrum) to remove

the interference and can be easily implemented adaptively using the low complexity

least-mean square (LMS) algorithm. This is an example of excision filtering as proposed

by Coulson [29], however this implementation considers a filter that can be obtained

adaptively as well as limited to the portion of the cyclic prefix that is not allocated

toward mitigating intersymbol interference (ISI). This work also differs in that frequency-

selective fading is examined with explicit forward error correction coding. An upper

bound on the bit error rate (BER) is determined for the case of coding and prediction-

error filtering. The simulation demonstrates excellent results between the case of no

interference and when interference is present and mitigated by the PEF. Finally, a hybrid

system [7] that uses both erasure insertion and the PEF depending on the signal-to-

94
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interference ratio (SIR) is examined and it is seen that the PEF outperforms erasure

insertion over almost all SIR values considered.

6.1 Optimal Combining Weights for MC-CDMA

When narrowband interference is present, the received signal in the frequency-

domain after cyclic prefix removal is given by

X = H̃BD + I + N, (6.1)

where I is theN×1 frequency-domain vector of interference samples. The autocorrelation

matrix of (6.1) is defined as

RX = E

[(

H̃BD + I + N
)(

H̃BD + I + N
)H
]

= H̃BE
[
DDH

]
BHH̃H + E

[
IIH

]
+ E

[
NNH

]

= Es

∣
∣
∣H̃

∣
∣
∣

2
+ RI + σ2

nIN , (6.2)

where RI is the autocorrelation matrix of the interference samples in the frequency-

domain defined as

RI = FRiF
H , (6.3)

and where Ri is the time-domain correlation matrix of the interference, its entries given

by

ri(l) = Eie
j 2π

N
(mi+αi)l. (6.4)

When the interference is orthogonal to the subcarriers (except for the mth
i sub-

carrier), αi = 0, then I will have one non-zero component, at index mi. Thus, RI

will also only have one non-zero value, equal to NEi at position (mi,mi). Let w =

[w(0), . . . , w(N − 1)], where w(l) is given by

w(l) =







EsH̃l

Es|H̃l|2+σ2
n

, l 6= mi,

EsH̃l

Es|H̃l|2+σ2
n+NEi

, l = mi.
(6.5)

The MMSE weights are then given as

W = diag (w)B. (6.6)
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It can be seen from (6.6) that when interference is not present on the tone, the weight

is the same as for the no interference case. Note that when l = m and the narrowband

interference is strong, then Wk(l) is essentially zero, thus ignoring the subcarrier that is

unreliable and providing a form of erasure insertion.

For the case of a nonorthogonal interferer, the components of the autocorrelation

matrix for the interference are given by

RI(k, l) =
Ei

N

2 − 2 cos(2παi)

1 − ej
2π
N

(mi+αi−k) − e−j 2π
N

(m+α−l) + ej
2π
N

(l−k)
, k, l = 0, . . . , N − 1. (6.7)

To find the weights one could use (6.7) and invert (5.31). However, since RI is rank-

1, having one dominant eigenvalue, RI can be approximated using the singular value

decomposition (SVD) [56] as

RI = USVH

≈ λ1uvH , (6.8)

where λ1 = NEi is the non-zero eigenvalue of RI , u is the first column of U, and v is the

first column of V. Then using the Sherman-Morrison formula [56], the MMSE combiner

weights are derived to be

W =

(

A1 −
λ1A1uvHA1

1 + λ1vHA1u

)

EsH̃B, (6.9)

where A1 = diag

([

1

Es|H̃0|2+σ2
n

, 1

Es|H̃1|2+σ2
n

, . . . , 1

Es|H̃N−1|2+σ2
n

])

.

Again, the estimates of the transmitted data symbols are given by

D̂ = WHX. (6.10)

6.2 Conventional Erasure Insertion for OFDM

A technique that can make a coded OFDM system more robust to narrowband

interference is erasure insertion. The idea is to insert an erasure, which is a LLR repre-

senting no information, on the tones that are suspected of experiencing interference prior

to decoding. A similar approach is discussed in [118], while a more robust approach to

detection and decoding is proposed in [76].

The Bayesian erasure insertion rule proposed by Baum and Pursely [10] is con-

sidered in this work. An erasure is inserted if the following expression is satisfied:

maxj πjf(Xk|Dj)
∑M−1

i=0 πif(Xk|Di)
≤ (1 − γ) , (6.11)
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Figure 6.1: BICM OFDM system model with the PEF.

where πi is the a priori probability of transmitting Di, f(Xk|Di) is the conditional

probability density function (pdf) of Xk given that Di was transmitted, M is the size of

the constellation, and γ ∈ [0, 1] is a threshold. Note that γ = 1 is the case of no erasure

insertion.

A genie-aided system is considered, where the interference power on each tone,

σ2
I,k, is known at the receiver. The sum of the noise and interference is then assumed

to be distributed as a zero-mean Gaussian random variable with variance given by σ2
k =

σ2
n + σ2

I,k. The conditional probability density function per tone in (6.11) is given by

f(Xk|Di) =
1

√

2πσ2
k

e
− (Xk−Di)

2

2σ2
k . (6.12)

Note that the genie provides the information of the interference only to the erasure

insertion rule. The LLRs calculated by the decoder do not have any knowledge of the

interference statistics.

6.3 Erasure Insertion using the Prediction-Error Filter for

OFDM

6.3.1 Receiver with Prediction-Error Filter

The PEF is implemented before the removal of the cyclic prefix as seen in Figure

6.1. Let the one-step predictor weights from (2.64) be defined in (2.67) and the con-

volution of the filter and channel be defined as a = wPEF ∗ h. It is assumed that the

overall length of a is less than the length of the cyclic prefix (i.e. Lh +Mpef − 1 ≤ Ng)

to ensure that there is no ISI or intercarrier interference (ICI). Therefore, the effective

channel matrix, A, is circulant. Then, the filtered signal in the frequency-domain can

be written as
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X = FAFHD + FZ (icp + ncp)

= ÃD + FZ (icp + ncp) , (6.13)

where Ã is the diagonal matrix of the eigenvalues of A, icp and ncp are length-(N +Ng)

vectors of interference and noise samples, respectively that are not cyclically extended

and Z is the N × (N +Ng) filtering matrix for the noise and interference that is defined

as

Z =

[

0N,Ng−Mpef
, Toeplitz

([

w∗
PEF,Mpef

,01,N−1

]T
, [Pw∗

PEF,01,N−1]

)]

, (6.14)

where the Toeplitz operator, Toeplitz (column, row), generates a Toeplitz matrix from a

column vector and a row vector and P is an (Mpef + 1)× (Mpef + 1) permutation matrix

that has unity on the anti-diagonal, while the remaining entries are zero. Note that Ã

in (6.13) can also be defined as

Ã = H̃W̃, (6.15)

where W̃ =
√
NF

[

w∗
PEF 01,N−(Mpef+1)

]T
is the sampled frequency response of the

notch filter and H̃ is given by (5.17).

Let the uncanceled interference and noise be grouped into one general noise term,

Ñ = FZ (icp + ncp) . (6.16)

It is clear from (6.16) that the noise samples, Ñk, are correlated due to the PEF matrix,

Z. It is also noted that the noise samples Ñk are assumed to be Gaussian random

variables. As stated in [74], this system is difficult to analyze when the noise samples

are not strictly independent, however, due to the fact that the noise power in the main

tap (wPEF,0 = 1) is much larger than in the remaining taps (approximately 1
Mpef

for the

scenario of interest in this paper), it is reasonable to assume that the noise samples are

independent, especially when Mpef is large. Note that K reaches a maximum of 1/Mpef

and as the SIR increases, K decreases toward zero. Therefore, let σ2
Ñ,k

be the variance
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of the noise on tone k, given by

σ2
Ñ,k

= E

[

ÑkÑ
H
k

]

=
[
FZ

(
Ri + σ2

nIN

)
ZHFH

]

kk

=
[
FZRiZ

HFH
]

kk
+
[
σ2

nFZZHFH
]

kk

= σ2
ĩ,k

+ σ2
ñ,k. (6.17)

Note that the variances given in (6.17) are scaled according to the notch filter that is

used to suppress the interference.

Finally, one-tap equalization is performed and the estimates of the transmitted

data symbols are given by

D̂ = X/diag
(

Ã
)

. (6.18)

Note that this equalization does not affect the independence assumption because Ã is a

diagonal matrix.

An analytic expression for the BER of this OFDM system in the case of BPSK

uncoded transmission is simply the average of the per-subcarrier BERs, given by

Pb =
1

N

N−1∑

k=0

Q





√
√
√
√

|Ãk|2Eb

σ2
Ñ,k



 , (6.19)

where Q (·) is the well known Q-function [97]. Simulation results are shown with the

results of (6.19) in Figure 6.2 for an AWGN channel. It is clear that the simulation

and theoretical results agree quite well, validating the assumption of independent noise

samples. This is true for longer PEF lengths, Mpef = 16 (using the entire cyclic prefix),

and even when Mpef = 4. It is also apparent, that a longer PEF provides improved

performance. This arises from the fact the PEF is a whitening filter, and becomes ideal

as Mpef approaches infinity.

6.3.2 LLR Calculation

Conventional decoding of convolutional codes make the assumption that the noise

variance is constant over all inputted symbols. If this is the case, the noise term can be

dropped from the LLR calculation. However, the noise variance, (6.16), is not constant

for all subcarriers because the notch formed by the PEF attenuates the tones closest to

the interference. This results in metric mismatch when decoding [76].
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In this scenario, it is important to note that the interference statistics (i.e. Ri)

are not known when calculating the LLR, thus the term, σ2
Ñ,k

, is not available. For

example, the LLR inputted into the Viterbi decoder when BPSK modulation is utilized,

is given by

Λ(Dk|D̂k) =
2<{|Ãk|2D̂k}

σ2
ñ,k

, (6.20)

where <{·} is the real operator and σ2
ñ,k is simply the variance of the AWGN after

filtering, defined in (6.17). The LLR can also be written in an equivalent manner as

Λ(Dk|Xk) =
2<{A∗

kXk}
σ2

ñ,k

. (6.21)

Notice that this is the same calculation performed on a per-antenna basis when using

maximal-ratio combining [97].

6.3.3 Performance Analysis

The error rate performance of the Viterbi algorithm is considered after deinter-

leaving the frequency-domain bits. An upper bound on the bit error rate for a convolu-

tional code of rate Rc = kc/nc is obtained using the union bound, given as

Pb ≤
1

kc

∞∑

d=dmin

wdP2(d), (6.22)

where wd is the total information weight of all information sequences which produce

codewords of weight d. The pairwise error probability (PEP), P2(d), is the probability

of an error event occurring between the all-zero codeword (assumed to be transmitted)

and a codeword that differs by d bits. The use of the all-zero codeword arises from the

linearity of the code, though may not be possible for certain constellation sizes [118].

For the case of no interference/erasures, the PEP for independent Rayleigh fading

channels can be found in closed-form [15,97] as

P2(d) =

(
1 − ψ

2

)d d−1∑

n=0

(
d− 1 + n

n

)(
1 + ψ

2

)n

, (6.23)

where ψ is defined as

ψ =

√

RcEb/N0

1 +RcEb/N0
. (6.24)

This result is the same as in the case of maximal-ratio combining (as mentioned in Section

6.3.2). This PEP calculation requires averaging out a chi-square random variable with

2d degrees of freedom [97, pp. 824-825].



102

For a general case of channel and coding conditions, the PEP has been determined

in [16,24]. A brief review of the analysis is provided here for completeness. The PEP is

the probability of choosing a different codeword (Ĉ) instead of the transmitted codeword

(C) from the received vector (R). This probability is determined when the metric

M(R, Ĉ) is greater than M(R,C). Letting Γ = M(R,C) −M(R, Ĉ), allows the PEP

to be written as

P2(d) = Pr(Γ < 0). (6.25)

This probability can be obtained by noting that the Laplace transform of the random

variable, Γ, is defined as

ΦΓ(s) = E
[
e−sΓ

]
=

∫ ∞

−∞
e−sΓpΓ(x)dx, (6.26)

where pΓ(x) is the probability density function of Γ. The PEP is then given as

Pr(Γ < 0) =
1

2πj

∫ a+j∞

a−j∞
ΦΓ(s)

ds

s
, (6.27)

where a is a positive real number within the convergence region of ΦΓ(s).

This integral can be calculated exactly [24] using the residue theorem [121, Ap-

pendix A.3], giving the PEP as

Pr(Γ < 0) =







1 +
∑

LH poles Residue
[

ΦΓ(s)
s

]

,

∑

RH poles Residue
[

ΦΓ(s)
s

]

,
(6.28)

where the first summation occurs over the left-hand poles in the complex s-plane and

the second summation is over the right-hand poles.

In general, when the system is particularly complicated (as in the case of convo-

lutional coding), (6.28) may not be tractable. For example, if ΦΓ(s) has multiple poles

or essential singularities, the calculation of (6.28) requires a number of derivatives.

To make the calculation of the PEP more tractable, [16] proposes a number

of options. The PEP can be upper bounded by the well-known Chernoff bound. This

involves minimizing ΦΓ(s). Another option involves a numerical calculation using Gauss-

Chebyshev quadrature rules. The PEP is then given by

Pr(Γ < 0) ≈ 1

n

n/2
∑

k=1

[<{ΦΓ (c+ jcτk)} + τk={ΦΓ (c+ jcτk)}] , (6.29)
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where τk = tan (2k−1)π
2n , ={·} is the imaginary operator, and n is an even number.

The value, c affects the choice of the value n, and is often chosen such that ΦΓ(c) is a

minimum. See [16] for further discussion.

Further bounding the probability of error for this convolutional coded system

using the PEF is very difficult. This arises from the fact that the PEF does not insert

true erasures. However, a simplified analysis is obtained if the notched values are assumed

to be erased, similar to Li, et al. [76], while the remaining subcarriers are assumed to

be unaffected by the filter. As described in [44], the erasures cause a reduction in the

weight of the codeword, that is, a codeword of Hamming weight d can have its weight

reduced by erasures to d− d′, for 0 ≤ d′ ≤ d. The erasures are considered to be inserted

randomly (due to interleaving) with probability, δ = NE/N , where NE is the number

of erasures per OFDM symbol. The probability of weight reduction to d − d′ is given

by
(

d
d′

)
δd′ (1 − δ)d−d′ . The average PEP for a d-weight codeword with erasures inputted

with probability, δ, is then given by

P2(d) =
d∑

d′=0

(
d

d′

)

δd′ (1 − δ)d−d′ P2(d− d′). (6.30)

After some manipulations, the average probability of error is upper bounded as

Pb ≤
1

k

∞∑

d=dmin

wdP2(d) =
1

k

∞∑

d=dmin

wd

d∑

d′=0

(
d

d′

)

δd′ (1 − δ)d−d′ P2(d− d′). (6.31)

This equation can be further rewritten as

Pb ≤
1

k

∞∑

d=dmin

ŵdP2(d), (6.32)

where ŵd is an average weight structure (associated with the erasures) that is based on

the original weight structure, wd, and is defined as

ŵd =
1 − δd

δ

∞∑

n=d

(
n

d

)

wnδ
n. (6.33)

6.4 Results

6.4.1 Simulation Parameters

The OFDM system considered in this paper is equipped with N = 64 data-

carrying subcarriers and a cyclic prefix of Ng = 16 samples. The data on each subcarrier
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is BPSK modulated. Note that for larger constellation sizes, Gray encoding is utilized.

The encoder uses the industry-standard generator polynomials, g0 = 1338 and g1 = 1778,

giving the rate as Rc = 1
2 . The minimum distance of this code is dmin = 10. Note that

higher rates can be obtained by puncturing the output of the encoder. One codeword

encompasses 64 OFDM symbols. The Viterbi decoder is used to decode the codeword

utilizing soft decisions out of the symbol demapper. Specifically, the LLRs, as described

in Section 5.4.2 are inputted into the Viterbi decoder.

The channel is modeled as independent complex Gaussian random variables as

discussed in Section 5.1. It is assumed that the channel is constant over each OFDM sym-

bol and subsequently changes upon transmission of the next symbol. It is also assumed

for this work that the channel is known at the receiver. The narrowband interference

is randomly distributed within the spectrum for each OFDM symbol transmission. The

PEF weights given in (2.65) are assumed to be known at the receiver, though they can

quickly be obtained through adaptive means.

6.4.2 Uncoded Results

MC-CDMA and OFDM with the PEF are compared in an uncoded scenario in

Figure 6.3. For reference, the theoretical BER curves for both AWGN and Rayleigh

fading are provided. Each system is simulated for the cases of no interference and one

nonorthogonal interferer. An 8× 8 block interleaver is implemented within each OFDM

symbol. The plot for MC-CDMA with no interference indicates that frequency diversity

provides a benefit in a frequency-selective channel. The performance of MC-CDMA

with a single nonorthogonal interferer is very close to the case of no interference. In this

case, the combiner utilizes the statistics of the channel and interference to successfully

recombine the transmitted signal. The deviation from the case of no interference is quite

small.

The PEF used with OFDM assumes knowledge of the MMSE weights given in

(2.65). In the presence of no interference the performance of the system reduces to that

of Rayleigh fading, as is expected. When the interference is present and is mitigated

using the PEF, the performance approximates the case of Rayleigh fading at low Eb/N0

values, however at high Eb/N0 values, an error floor arises. This is due to the notch filter

that removes a few tones when mitigating the interference.

For both MC-CDMA and OFDM with PEF, the interference must be estimated
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in order to be implemented in a real world communication system. As mentioned earlier,

the PEF is easily implemented using the low-complexity LMS algorithm without training

symbols. This allows the interference to be adaptively estimated and removed. In the

case of MC-CDMA, the correlation matrix of the interference is required when deter-

mining the MMSE combiner weights. This can accomplished using training symbols to

provide an estimate for the received signal correlation matrix, as discussed in Chapter

3.

Finding the combiner weights requires solving (5.31). This requires inversion of

the N × N Toeplitz matrix, RX . From Section 3.5.2 efficient matrix inversion requires

3N2/2+7N/2+1 complex multiplications, as well as the transmission of training symbols.

On the other hand, the complexity of the LMS PEF is O(Mpef) where Mpef is generally

less than N/4 = Ng and the PEF is a blind algorithm. This demonstrates that mitigation

of the narrowband interference is less complex when using OFDM and the PEF, however,

it requires the use of forward error correction in all scenarios to attain frequency diversity.

6.4.3 Conventional Erasure Insertion

Using the results of Section 6.2, the case of narrowband interference mitigation

is considered using genie-aided erasure insertion as described in [10]. The results are

demonstrated in Figure 6.4 for independent fading (see next section). As a reference,

the case of no interference is also plotted. The erasure mechanism utilizes two threshold

values, γ ∈ [0.3, 1]. Recall that γ = 1 is the case of using no erasures. From the

plot it can be seen that when erasures are inserted (i.e. γ = 0.3), an improvement

is achieved for all SIRs. However, the amount of improvement decreases as the SIR

decreases. This is due to the increased amount of spectral leakage that occurs with

larger interferences. The required number of erasures increases, thereby compromising

the code’s error correction capability. Note that for SIR = -20 dB, the use of erasures

provides little to no improvement in performance.
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Figure 6.4: Probability of bit error versus Eb/N0 for the coded scenario and independent
fading when γ = 0.3, 1 and SIR = 0,−10,−20 dB.
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6.4.4 Prediction-Error Filtering

Independent Fading

Under the assumption of independent fading, the analysis for the approximate

PEP is simplified [16]. It is first noted that the overall path metric is defined as

Γ =
∑

k∈K
Γk, (6.34)

where K is the set of positions where C and Ĉ differ, with cardinality, |K| = d, and

Γk = M(Rk, Ck) − M(Rk, Ĉk). The computation of the Laplace transform using the

independence assumption becomes

ΦΓ(s) = E
(
e−sΓ

)
=
∏

k∈K
ΦΓk

(s). (6.35)

Finally, if the codeword is binary,

ΦΓ(s) = [ΦΓk
(s)]d . (6.36)

To obtain independence for this theoretical scenario, an ideal interleaver is nec-

essary. In this work, the interleaver is designed such that neighboring symbols are trans-

mitted in different OFDM symbols. That is the first OFDM symbol consists of symbols

[D0,DN ,D2N , . . . ]
T , and the second OFDM symbol consists of [D1,DN+1,D2N+1, . . . ]

T ,

etc.

The following figures demonstrate the results for independent fading. Figure 6.5

shows results for the case of Lh = 5,Mpef = 12, and both SIR = -20 dB and the case

of no interference. Also plotted are the theoretical curves for uncoded AWGN, uncoded

Rayleigh fading, and the coded bound for AWGN. It can be seen that for the case of

no interference, the simulation and the theoretical results obtained using (6.22) and

(6.29) match up quite well. This is also the case when SIR = -20 dB. The theoretical

result is obtained by setting NE = 1. This indicates that the PEF essentially inserts

one erasure in each OFDM symbol. The bound obtained given in (6.32) provides a

good approximation to the simulation. In this case it is seen that the PEF is effective in

canceling out the interference, by scaling the LLRs in the codeword around the interferer

location. The redundancy provided by the code allows for these erasures to be corrected.

The improvement over uncoded Rayleigh fading is due to the frequency diversity that is

obtained through the application of forward error correction across the subcarriers.
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Figure 6.5: Probability of bit error versus Eb/N0 for the coded scenario and independent
fading with Lh = 5,Mpef = 12, SIR = -20 dB. The upper bound is obtained using
NE = 1.

Figure 6.6 shows results for the case of Lh = 10,Mpef = 7 and both SIR = -20

dB and the case of no interference. It is clear that the results seen in Figure 6.6 are

identical to the results seen in Fig. 6.5. This result is not surprising because the fading

is independent, and thus independent of the the length of the channel (Lh). The change

in predictor taps (from Mpef = 12 in Figure 6.5 to Mpef = 7 in Fig. 6.6) arises from the

effort to make the cyclic prefix fully utilized by both the channel and the PEF. Reducing

the number of predictor taps changes the characteristics of the notch, which now has a

shallower notch. However, notice that the assumption that NE = 1 still holds from the

comparison of the simulation and theoretical results.

Correlated Fading

The drawback of the previous interleaver design is that there is a delay associated

with the system. The receiver must wait for all the OFDM symbols to be received before

the Viterbi decoder can begin to decode the codeword. In many cases, this delay may be

unacceptable. To remove the delay constraint associated with independent fading, the
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Figure 6.6: Probability of bit error versus Eb/N0 for the coded scenario and independent
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Figure 6.7: Real part of the channel correlation for Lh = 5, 10, 100

interleaver is designed such that the symbols within each OFDM symbol are interleaved.

This technique is similar to the block interleaver used in the IEEE 802.11a WLAN

standard [63]. The drawback of this implementation is that the channel coefficients in

the frequency-domain, H̃k, are correlated. The channel correlation in the frequency-

domain [25] is found to be

RH̃(n) = E

[

H̃kH̃
∗
k−n

]

=

Lh−1
∑

l=0

σ2
he

−j 2π
N

ln, n = 0, 1, . . . , N − 1

= σ2
h

(

1 − e−j 2π
N

nLh

1 − e−j 2π
N

n

)

. (6.37)

This channel correlation is plotted for Lh = 5, 10, 100, where the real and imaginary

parts are depicted in Figures 6.7 and 6.8, respectively. It is clearly seen that there is

substantial correlation, and that as Lh increases, the correlation becomes smaller.

The results demonstrated in Figures 6.9 and 6.10 are for interleaving within

OFDM symbols, specifically a 16×4 block interleaver is used. In Figure 6.9, the channel

length is set to Lh = 5 and the number of predictor taps is varied (Mpef = 7, 12) for SIR

= -20 dB. This plot clearly demonstrates that as the number of predictor taps decreases,
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Figure 6.8: Imaginary part of the channel correlation for Lh = 5, 10, 100

so does the performance. This fact arises from the decrease in spectral resolution that

occurs when fewer taps are used. Recall that the PEF becomes ideal as the number of

predictor taps increases toward infinity.

In Figure 6.10, two cases are demonstrated, Lh = 5,Mpef = 12 and Lh =

10,Mpef = 7 for both SIR = -20 dB and the case of no interference. Also plotted

are the independent fading bound with no interference (discussed in the previous sec-

tion) and the coded AWGN bound. Note that the simulation comparison here examines

the case when the whole cyclic prefix is utilized in both cases. It can first be seen that

there is a substantial degradation in performance of correlated fading as compared to

independent fading. This is due to the fact that the Viterbi algorithm operates optimally

when sequential symbols are independent [97]. Secondly, it is seen that the results when

using the PEF are very close to the case when no interference is present. Next notice

that there is improvement of the case of Lh = 10 over the case of Lh = 5. This arises

from the longer channel that provides an increase in diversity. However, note that there

is a limit on the maximum diversity that can be obtained, and has been shown to be

equal to min (dmin, Lh) [2]. Finally, comparing the use of the PEF when Mpef = 12 and
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Mpef = 7, it can again be seen that there is more degradation between the case of no

interference and SIR = -20 dB when the length of the PEF is short.

Figure 6.11 demonstrates the results for the coded simulation of MC-CDMA and

OFDM with the PEF for the cases of no interference and one nonorthogonal interferer,

for Lh = 5, Mpef = 12, SIR = -20 dB. Also plotted are the theoretical BER curves for

uncoded Rayleigh fading and a BER bound for AWGN. It can be clearly seen that the

performance of both systems in the presence of narrowband interference is very close to

the case of no interference. Also note that the performance of OFDM with frequency

diversity provided by coding and the PEF as an erasure insertion technique is equivalent

to that of coded MC-CDMA for which frequency diversity is obtained through spreading.

The coding gain is also apparent when comparing the coded results with Figure 6.3

6.4.5 Hybrid System

The erasure insertion method is shown to be useful when the SIR is relatively

large (i.e. SIR > 0 dB), while the PEF has been shown to perform well when the
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interference is strong (i.e. SIR < 0 dB). These results suggest the use a hybrid approach

for mitigating narrowband interference. Such an idea was proposed by Kelleci et al. [67],

using a mixed-mode approach to mitigate narrowband interference over a range of SIRs.

The authors utilize digital erasure insertion for SIR > 0 dB and an adaptive analog

notch filter for SIR < 0 dB. In this work the potential hybrid system is designed in the

digital-domain consisting of Bayesian erasure insertion and prediction-error filtering.

Figure 6.12 demonstrates the performance of Bayesian erasure insertion and

prediction-error filtering over a range of SIRs when Eb/N0 = 7 dB. Erasures are in-

serted with a threshold of γ = 0.3 and the PEF is of length Mpef = 12. Also plotted

is the case of no interference. From the plot it can be seen that when the fading is

independent the PEF outperforms erasures over all SIR values. The erasure insertion

method suffers at low SIRs because of the need for a large number of erasures. As the

SIR increases, the performance improves, approaching that of the PEF. However, if the

fading is in fact correlated, a substantial loss in performance for both techniques is no-

ticed over all SIR values. The PEF is seen to outperform the erasure insertion method

over a range of SIR values, however, notice that when the SIR is in the range of 4-14

dB, the PEF performance suffers as compared to the erasure insertion method.

For the independent fading case, it is clear that a hybrid system is unnecessary.

The performance of the PEF is excellent over all SIR values. In the case of correlated

fading, the use of a hybrid system may be warranted, however, the gain provided by the

erasure insertion method over the PEF is not substantial.

6.5 Summary

In this chapter, two block modulated multi-carrier systems, MC-CDMA and

OFDM, are compared in the presence of severe narrowband interference and frequency-

selective fading. MC-CDMA obtains frequency diversity by utilizing a code matrix to

spread each symbol into all the subcarriers and requires a combiner at the receiver to

recover the data. This diversity provides robustness against interference in the uncoded

scenario as compared to OFDM.

Forward error correction coding and interleaving is used in conjunction with

OFDM to provide frequency diversity and obtain results similar to MC-CDMA. The

prediction-error filter (PEF) is proposed as an interference mitigation technique in a

bit-interleaved coded modulated OFDM system. The PEF effectively places erasures
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around the interference in the codeword by scaling the log-likelihood ratios (LLRs) that

are inputted into the Viterbi decoder. Results indicate excellent performance of the

PEF in conjunction with coding as compared to the case of no interference. A hybrid

system of the PEF and erasures is considered, and it is shown that the PEF performs

better than erasure insertion over a range of SIRs when the fading between subcarriers

is independent. If the fading is correlated, a hybrid system may be warranted.

Chapter 6, in part, is a reprint of material as it appears in A. Batra and J. R. Zei-

dler, “Narrowband Interference Mitigation in OFDM systems,” in Proceedings of the

Military Communications (MILCOM) Conference, San Diego, CA, Nov. 2008, A. Batra

and J. R. Zeidler, “Narrowband Interference Mitigation in BICM OFDM systems,” in

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP), Taipei, Taiwan, pp. 2605-2608, Apr. 2009, A. Batra, J. R. Zeidler,

J. G. Proakis, and L. B. Milstein, “Interference Rejection and Management,” in New

Directions in Wireless Communications Research, V. Tarokh, Ed. New York: Springer,

2009 and is currently being prepared for submission for publication of the material.

A. Batra and J. R. Zeidler, “Narrowband Interference Mitigation in OFDM systems us-

ing the Prediction-Error Filter,” in preparation, 2009. The dissertation author was the

primary investigator and author of these papers.



7 Conclusions

In this dissertation, techniques for mitigating severe narrowband interference are

investigated for single-carrier and multi-carrier systems. Interferers that dominate the

signal of interest degrade communication links, making them unusable. In many practical

cases, a priori knowledge of the interference is not available. This forces receivers to

utilize adaptive signal processing methods to suppress the interference, especially in

scenarios where the information is transmitted in short packets. Specifically, well known

structures that include time-domain equalizers and the prediction-error filter (PEF) are

considered as means for removing the interference.

In the case of single-carrier systems, the large interference power causes long con-

vergence times for the adaptive equalizers. These structures use the least-mean square

(LMS) or its derivative, the normalized LMS (NLMS) algorithms as the adaptive mech-

anism. Traditional analysis of these algorithms are based on the metric of mean-squared

error (MSE), however, in this work bit error rate (BER) performance is considered. Two

techniques are proposed to reduce the number of training symbols needed: data-aided

initialization and a two-stage approach utilizing pre-filtering.

In Chapter 3, the adaptive decision-directed equalizer (DDE) and the adaptive

decision-feedback equalizer (DFE) are compared in the presence of severe narrowband

interference and a two-tap multipath channel. For the case of the DDE, significant BER

improvement was obtained over the time-invariant Wiener filter, due to the non-Wiener

effects induced by the narrowband interference, even in the presence of a multipath chan-

nel. The BER performance of this structure also approaches the BER performance of

the DFE when both structures use essentially the same information. Note that the DFE

does not experience the non-Wiener effects due to its nonlinear nature. The drawback

of suppressing the interference with these structures, is the extended convergence time

required. To combat this, a data-aided initialization (DAI) technique is proposed that

119
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generates estimates for the Wiener filter based on correlation matrices formed from the

training data. This is shown to substantially reduce the number of training symbols

needed for convergence by approximately two orders of magnitude. To obtain the esti-

mates of the DFE Wiener filter, two computationally efficient techniques are compared

in terms of complexity and performance relative to that of the theoretical Wiener filter

for the DFE. The parametric approach to the direct matrix inversion (DMI) solution has

the least complexity, however, the performance degrades due to assumptions made on

the structure of the correlation matrix. These assumptions only hold when a large num-

ber of training symbols are used, making the technique undesirable. On the other hand

the conjugate gradient (CG) multistage Wiener filter (MSWF) has larger complexity,

yet requires fewer training symbols to approach the BER performance of the theoretical

DFE Wiener filter.

In Chapter 4, a two-stage approach is investigated that aims to improve the

convergence of the LMS DFE. The delay in convergence can be attributed to the fact that

the DFE does not have a direct reference for the interference. Instead it must adapt based

solely on the training data. To improve the convergence, a pre-filter composed of the LMS

PEF is proposed for the LMS DFE. This system is shown to improve the convergence

of the system by approximately two orders of magnitude. This is accomplished without

any substantial degradation in the steady-state BER performance. In fact the BER of

the two-stage system is shown to approximate the BER of the DFE-only. This indicates

that it is possible to split the LMS DFE into an LMS PEF pre-filter followed by an LMS

DFE, improving the convergence and having approximately the same BER performance.

Finally, a blind implementation is proposed that reduces the complexity of the overall

system, at the cost of a small degradation in BER performance.

The two approaches described in Chapters 3 and 4 can be compared in terms of

performance and complexity. The DAI technique using CG MSWFs provides excellent

BER performance as compared to the theoretical Wiener DFE using only 250 training

symbols when M = 3 is the number of side taps of the one-sided feedforward filter (and

also equal to the number of feedback taps). This approach suffers from higher complexity

which scales as O(M2). Conversely, the complexity of two-stage approach scales as O(M)

where M is the number taps of the PEF (and also equal to the number of feedback taps).

The BER performance also approaches the steady-state theoretical DFE performance,

however, for the case of M = 3 this system requires at least 450 training symbols. Thus,
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there is a trade-off between complexity and the number of training symbols needed.

In the case multi-carrier systems, two block modulated multi-carrier systems

are examined the presence of severe narrowband interference operating in a frequency-

selective channel. The spectral leakage of interference power causes a large number of

subcarriers to be degraded. This occurs when the interference is nonorthogonal to the

subcarriers. When the interference is orthogonal to the subcarriers (other than the mth

subcarrier), the interference is limited to single tone.

In Chapter 6, multi-carrier code division multiple access (MC-CDMA) and or-

thogonal frequency division multiplexing (OFDM) are investigated. MC-CDMA differs

from OFDM in that it spreads each data symbol into all the subcarriers using spreading

codes. If the spreading matrix is the identity matrix, then MC-CDMA becomes OFDM.

The spreading codes provide MC-CDMA with frequency diversity, however, it requires a

combiner at the receiver to extract the transmitted data. The optimal combining weights

are derived under the MMSE criterion for both cases of interference. In practical situa-

tions, determining the optimal weights requires the inversion of a correlation matrix with

complexity that scales as O(N2), where N is the number of subcarriers. The use of the

optimal weights in an uncoded scenario provides a substantial improvement in BER per-

formance over the case of OFDM. To improve the performance of OFDM, it is combined

with bit-interleaved coded modulation. In particular, a convolutional code is utilized

with a block interleaver at the transmitter, and a corresponding block deinterleaver with

a Viterbi decoder at the receiver. The code and interleaver provide OFDM with the fre-

quency diversity it was lacking in the uncoded scenario. This system is compared with

a genie-erasure insertion method proposed by Baum and Pursley [10], and it is shown

that simply using erasures is inadequate for severe narrowband interference. This is due

to the fact that a large number of erasures is needed, thereby compromising the code’s

error correction capability. The PEF is proposed as an erasure insertion mechanism that

localizes erasures around the interference location. This process is performed by the

notch of the PEF that utilizes the unused portion of the cyclic prefix (normally designed

to deal with delay spread of the channel) and is implemented in the time-domain prior

to demodulation. The BER performance of this technique is excellent as compared to

the case of no interference and the complexity scales with the number of prediction taps.

Analysis for an upper bound on the BER of coded OFDM with the PEF is performed.

Finally, a hybrid system of the PEF and erasures is considered over a range of SIR values.
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It is determined that PEF performs better than the erasure method over almost all SIR

values.

Future work consists of determining an analytical upper bound on the BER

specifically for correlated fading. This situation is more relevant due to the delay re-

quirements in processing of the received data. This is seen specifically in 802.11a [63]

systems, where the interleaving is performed within each OFDM symbol. Another point

of interest, is the length of the PEF that is necessary for mitigating the interference in

an OFDM system. It is possible for the PEF to have a large number of taps, thereby

increasing the spectral resolution of the notch, to remove the tone closest to the inter-

ference. This then causes ISI and ICI, however, it is deterministic and can be removed.

In terms of MC-CDMA, methods for obtaining MMSE combiner weights can be investi-

gated. This requires an estimation procedure that could be equivalent to the DAI for the

equalizer weights. The performance and complexity must be considered for this situation

as well.
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This can be written as
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(n+ α). (A.7)

This finite summation can be simplified [135],

Ei

N2
(1 − cos 2πα)

N2

2
csc2

(

N
πα

N

)

. (A.8)

After some simple math,

Ei(1 − cos 2πα)
1

1 − cos 2πα
. (A.9)

Finally,

1

N

N−1∑

k=0

Ei

N

1 − cos 2πα

1 − cos 2π
N (m− k + α)

= Ei. (A.10)



Abbreviations

ADC analog-to-digital converter
AGC automatic gain control
ANC adaptive noise canceler
AR autoregressive
AWGN additive white Gaussian noise
BER bit error rate
BICM bit-interleaved coded modulation
BPSK binary phase-shift keying
CDMA code division multiple access
CFO carrier frequency offset
CG conjugate gradient
CMA constant modulus algorithm
CP cyclic prefix
dB decibels, 10 log10(·)
DAC digital-to-analog converter
DAI data-aided initialization
DDE decision-directed equalizer
DFE decision-feedback equalizer
DFT discrete Fourier transform
DMI direct matrix inversion
DS direct sequence
FDE frequency-domain equalizer
FDM frequency division multiplexing
FFT fast Fourier transform
FIR finite impulse response
FM frequency modulation
HSDPA high speed downlink packet access
Hz Hertz (1 cycle/s)
ICI intercarrier interference
IDFT inverse discrete Fourier transform
IEEE Institute of Electrical and Electronic Engineers
IFFT inverse fast Fourier transform

INR interference-to-noise ratio
ISI intersymbol interference
LAN local area network
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LE linear equalizer
LLR log-likelihood ratio
LMS least-mean square
LOS line-of-sight
LP linear prediction
MAP maximum a posteriori
MB multi-band
MC-CDMA multi-carrier code division multiple access
MF matched filter
ML maximum likelihood
MMSE minimum mean-squared error
MSE mean-squared error
MSWF multistage Wiener filter
NIR noise-to-interference ratio
NLMS normalized least-mean square
OFDM orthogonal frequency division multiplexing
PAPR peak-to-average power ratio
PEF prediction-error filter

PEP pairwise error probability
PLL phase locked loop
QAM quadrature-amplitude modulation
QPSK quadrature phase-shift keying
RLS recursive least square
SAW surface acoustic wave
SINR signal-to-interference-plus-noise ratio
SIR signal-to-interference ratio
SNR signal-to-noise ratio
SS spread spectrum
SVD singular value decomposition
TI time-invariant
UWB ultra-wideband
WiMAX worldwide interoperability for microwave access
WLAN wireless local area network



Symbols

| · | absolute value
arg(·) argument
(·
·
)

binomial coefficient
d·e ceiling function
[·] closed interval
(·)∗ complex conjugate
x · · · x
︸ ︷︷ ︸

m

m copies

csc(·) cosecant
cos(·) cosine
diag(·) diagonal matrix returned from vector argument
δ(·) Dirac delta function
E[·] expectation operator
b·c floor function
Q(·) Gaussian Q-function
> greater than
≥ greater than or equal
(·)H Hermitian (complex conjugate transpose) operator
j

√
−1

Ji(·) ith-order modified Bessel function of the first kind
={·} imaginary part
∩ intersection operator
(·)−1 inverse
δm Kronecker delta function

< less than
≤ less than or equal
lim limit
x ∗ y linear convolution
log logarithm
[·]kl matrix value at index (k, l)
max maximum
min minimum
� much greater than
� much less than
∏N

n=1 multiple product
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∑N
n=1 multiple sum

x× y multiplication
<{·} real part
{x, . . . , y} set of elements
sinc(·) sinc function
sin sine
tan tangent
Toeplitz(c, r) Toeplitz matrix: column vector c, row vector, r
(·)T transpose operator
‖ · ‖ 2-norm
∪ union operator
x→ y x approaches y
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