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ABSTRACT 
 

The Influence of Environmental Exposures on Glucocorticoid Receptor Signaling 

Rosemarie de la Rosa 

Doctor of Philosophy in Environmental Health Sciences 

University of California, Berkeley 

Professor Martyn T. Smith, Chair 

 
Glucocorticoids (GCs) are hormones secreted in response to psychological stress. GCs have 
systemic effects on the endocrine, metabolic, cardiovascular, immune, reproductive, and central 
nervous systems. The physiological effects of GCs are mediated by the glucocorticoid receptor 
(GR), which is expressed in nearly every cell of the body. Environmental chemicals that disrupt 
GR signaling and/or cortisol homeostasis could adversely affect human health. A major 
challenge in identifying environmental chemicals that alter GR signaling in humans is a lack of 
adequate screening methods. The overall objective of this dissertation is to investigate the impact 
of environmental exposures on GR signaling and human GC levels. Chapter 1 discusses 
regulation of GC levels and presents evidence that environmental chemicals modulate GR 
signaling. Chapter 2 provides the field with a new bioassay to assess the endocrine disrupting 
effects of environmental chemicals on GR signaling. Results from this work demonstrate that 
this bioassay can be used to identify environmental chemicals that modulate GR activation and to 
screen serum samples for differences in total GC levels. Chapter 3 examines the persistent effect 
of early-life arsenic exposure on GC levels in a human population study. This is the first 
epidemiology study to investigate associations between early-life environmental exposures and 
GC levels in adulthood. Lastly, Chapter 4 evaluates prediction models of GR ligand mixtures. As 
a whole, this research aims to inform risk assessment of endocrine disrupting chemicals by 
developing methods to evaluate their impact on GR signaling and human health. 
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Chapter 1: Introduction  
 
1.1 The Hypothalamic-Pituitary-Adrenal (HPA) Axis and Human Health 
The HPA axis regulates the secretion of steroid hormones called glucocorticoids (GCs) that 
influence the metabolic, cardiovascular, immune, reproductive, and central nervous systems 
(Sapolsky et al. 2000). Cortisol is the endogenous GC found in humans. Corticotropin-releasing 
hormone (CRH) is secreted by the hypothalamus in response to stress, which stimulates the 
release of adrenocorticotropic hormone (ACTH) from the anterior pituitary gland and induces the 
synthesis and release of cortisol from the adrenal cortex into the blood stream (Herman and 
Cullinan 1997). In blood, cortisol is mostly bound to corticosteroid-binding globulin (CBG) until 
it is released and enters a target cell where it binds the glucocorticoid receptor (GR) in the 
cytoplasm. Intracellular levels of cortisol are also regulated by 11β-HSD2, which converts 
cortisol to its inactive form called cortisone, and by 11β-HSD1 that catalyzes the reverse reaction 
(Tomlinson and Stewart 2001). Together, these factors regulate circulating cortisol levels. 
 
HPA activity follows a circadian rhythm where the peak cortisol secretion occurs 30 minutes 
after waking and continues to decline throughout the day (Kirschbaum and Hellhammer 1989). 
The HPA axis is regulated by negative feedback loops that function to maintain homeostatic 
levels of circulating cortisol. Chronic activation of the HPA axis can cause “wear and tear” on 
these regulatory mechanisms and alter cortisol homeostasis (McEwen 1998). For example, there 
is evidence that chronic stress during early-life alters cortisol levels and GR signaling (Miller et 
al. 2009; Repetti et al. 2002). Moreover, aberrant HPA axis activity can also influence health and 
disease (DeMorrow 2018). Hypercortisolism, also known as Cushing’s Syndrome, has been 
linked to adverse health effects including cardiovascular disease, osteoporosis, glaucoma, central 
obesity, hyperglycemia, and psychiatric disorders (Kadmiel and Cidlowski, 2013). In contrast, 
Addison’s disease results in cortisol deficiency and is associated with impaired stress resistance, 
lymphoid tissue hypertrophy, weight loss, and hypoglycemia (Nieman and Chanco Turner 2006). 
Consequently, environmental exposures that act at any level of the HPA axis can have 
implications for human health. Odermatt et al. proposes that environmental chemicals can also 
modulate cortisol hormone action by disrupting: 
1. Regulation of the HPA axis 
2. Activity of enzymes with a role in steroidogenesis 
3. Binding capacity of serum proteins 
4. GC uptake into target cells  
5. Intracellular metabolism of GCs by 11-HSD enzymes 
6. Activation of GR 
7. Function of GR-associated proteins 
8. Binding to the promoter of a given target gene 
9. GC export from the cell  
10. Degradation and excretion of the steroid hormone  
This dissertation aims to examine the influence of environmental chemicals on regulation of the 
HPA axis (1) and activation of GR (6).  
 
1.2 Environmental Exposures and the HPA Axis  
There is limited evidence that environmental chemicals disrupt HPA axis activity, which is 
typically assessed by measuring cortisol levels. Table 1.1 summarizes environmental exposures 
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associated with altered cortisol levels in epidemiological studies. The relationship between 
environmental exposures and cortisol varies by chemical. For example, arsenic (Sinha et al. 
2014), cadmium (Bochud et al. 2018), dioxins (Kido et al. 2014; Manh et al. 2013), 
organophosphate pesticides (Cecchi et al. 2012), ozone (Miller et al. 2016), and particulate 
matter (Brook et al. 2010) were all associated with increased cortisol levels. Alternatively, 
blunted cortisol levels were observed in individuals exposed to bisphenol A (Giesbrecht et al. 
2016), mercury (Gump et al. 2012; Schreier et al. 2015), and organochlorine pesticides (Araki et 
al. 2018). Despite inconsistencies in the direction of effect, it is clear that environmental 
exposures influence HPA axis activity. 
 
Most studies to date have examined the relationship between lead exposure and HPA activity 
(Braun et al. 2014; Fortin et al. 2012, 2012; Gump et al. 2008; Souza-Talarico et al. 2017). Lead 
exposure has been associated with altered cortisol levels in both children and adults. However, 
results were inconsistent across studies, possibly due to differences in age, duration, and intensity 
of exposure. In children, the association between lead exposure and cortisol levels changed over 
a 6-12 month period demonstrating that this relationship is dynamic (Tamayo y Ortiz et al. 
2016). No study has investigated the effect of early-life environmental exposures in adulthood. 
Since the diurnal cortisol rhythm develops in infancy and continues throughout early childhood, 
exposures that occur during this critical period may have long-term consequences on HPA axis 
activity (Gunnar and Quevedo 2007). Therefore, an objective of this dissertation is to examine 
the effect of early-life exposures on GC levels in adulthood.  
 
1.3 Measuring Differences in Glucocorticoid Levels  
GC concentrations are routinely measured using antibody-based methods, such as enzyme-linked 
immunosorbent assay (ELISA), or by liquid chromatography-mass spectrometry/mass 
spectrometry (LC-MS/MS). While both of these techniques quantify the amount of a specific 
GC, they often require sample preparation, are expensive, and do not measure the biological 
effect of endogenous and exogenous GCs present in the biological matrix (Xu et al. 2014). 
Alternatively, receptor-based bioassays have also been used in epidemiologic studies to measure 
differences in plasma hormone bioactivity between individuals (Brouwers et al. 2011; Murk et 
al. 1997; Van Wouwe et al. 2004). These reporter assays link the expression of a luciferase gene 
to glucocorticoid response elements (GREs), thus providing a light-based readout that is 
proportional to the degree of glucocorticoid receptor activity (Figure 1.1). Several studies thus 
far have demonstrated that bioassays are able to measure differences in serum/plasma GC levels 
(Fejerman et al. 2016; Kajantie et al. 2004; Perogamvros et al. 2011; Raivio et al. 2002; Turner 
et al. 2010; Vermeer et al. 2003). For example, plasma GC levels were elevated after synthetic 
GC administration and differences in GR potency could be detected (Raivio et al. 2002). Most of 
these bioassays were created using mammalian cells that do not endogenously express GR (e.g. 
COS-1 and HEK293) and may not reflect the physiological receptor levels present in normal 
cells. One study did address this limitation by using transiently transfected cells that 
endogenously express GR (Perogamvros et al. 2011). This approach could be improved by using 
a stable cell line that increases reproducibility and power to detect smaller differences in GC 
levels between groups. Fejerman et al. identified an association between plasma GC levels and 
alcohol consumption using the stable AR/GR reporter cells, MDA-Kb2 (Fejerman et al. 2016). 
However, this cell line contains both the androgen and glucocorticoid reporter, which could 
affect specificity. Ideally, serum/plasma GC levels would be measured using a stable reporter 
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cell line that endogenously expresses GR, and no other nuclear receptor. Part of this dissertation 
work focuses on the development of a bioassay to detect GR modulation by environmental 
chemicals and GCs present in human serum/plasma.  
 
1.4 Environmental Exposures and GR Signaling 
HPA axis activity is controlled by negative feedback mechanisms mediated by GR (Myers et al. 
2012). GR also mediates the physiological effects of GCs. After binding cortisol, GR undergoes 
a conformational change that allows it to dissociate from the heat-shock protein complex and 
translocate to the nucleus, where it regulates transcription of 10-20 percent of the human genome 
(Oakley and Cidlowski 2013). The ubiquitous expression of GR in almost all human tissues 
highlights the importance of this biological pathway (Pujols et al. 2002). Consequently, 
environmental chemicals that alter GR signaling can have drastic effects on HPA axis activity 
and human physiology. 
 
Most studies thus far have focused on identifying environmental compounds that either induce 
(agonists) or inhibit (antagonists) GR transcription. The Tox21 program has tested over 8000 
chemicals and identified 569 potential agonists and 472 antagonists of GR (US EPA 2017). 
Table 1.2 also provides a list of chemicals reported in the literature to modify GR transcription. 
Interestingly, two chemicals on the list (p,p-DDE and PCB-153) enriched GR signaling in the 
human cord blood transcriptome  (Remy et al. 2016). However, few studies have examined the 
effect of GR modulators on human cortisol levels (Table 1). Furthermore, the mechanism of 
altered GR transcription for most of these compounds is unknown.  
 
GR signaling can be modified through several different mechanisms. Chemicals can interfere 
with transcriptional activation by hindering cortisol binding, GR translocation, or GR binding to 
GREs in the promoter region of target genes. Chemically induced epigenetic modifications can 
also influence GR signaling. For example, cadmium enhanced methylation of the GR gene exon 
1, which corresponded to lower GR expression levels (Castillo et al. 2012). The network of GR 
transcription is also determined by cellular and physiological context (Weikum et al. 2017). 
Therefore, chemicals that influence cell-specific cofactor interactions can also modify GR 
transcription. Arsenic was selected as the focus of this dissertation because it is the most 
comprehensively studied environmental compound for all of the above-mentioned mechanisms. 
  
1.5 Arsenic Disruption of GR Signaling and HPA Axis Activity 
Arsenic is a known human carcinogen that is also associated with adverse developmental, 
neurological, cardiovascular, metabolic and immunological effects (Naujokas et al. 2013). The 
mechanism by which arsenic causes these health effects is unknown. An analysis of 12 human 
pregnancy cohort studies found that GR signaling was associated with increased susceptibility to 
infectious disease (e.g. respiratory infection and diarrhea) from prenatal arsenic exposure (Rager 
et al. 2014). These results were confirmed using a chick embryo model where treatment with a 
GR inhibitor protected the embryos from developing arsenic-induced birth defects. 
Epidemiological studies have also observed increased GR methylation in placental tissues 
relative to prenatal arsenic exposure (Appleton et al. 2017; Cardenas et al. 2015). Together, these 
studies provide some evidence that arsenic-related disease may be mediated by GR signaling.  
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Multiple in vitro studies have demonstrated that arsenic disrupts GR transcriptional activity 
(Gosse et al. 2014; Bodwell et al. 2004; Kaltreider et al. 2001). Sodium arsenite treatments 
ranging from 0.3–3.3µM significantly reduced GC-induced expression of phosphoenolpyruvate 
carboxykinase, a GR target gene, in H4IIE rat hepatoma cells (Kaltreider et al. 2001). This same 
study demonstrated that arsenic does not affect GR nuclear localization or the ability of GCs to 
bind GR. Interestingly, a bi-phasic dose-response was observed between arsenic treatment and 
another GR target gene, tyrosine aminotransferase, in EDR3 hepatoma cells (Bodwell et al. 
2004). Stimulatory effects on GR-mediated gene expression were observed for arsenic 
concentrations between 0.05-1µM. Conversely, treatment with higher arsenic concentrations 
produced inhibitory effects on GR-mediated gene expression. One possible mechanism by which 
arsenic decreases GR transcription is through impaired recruitment of co-activator proteins, such 
as CARM1, to GREs (Barr et al. 2009).  
 
There is also strong evidence that arsenic disrupts HPA axis regulation in rodents. Adult male 
mice exposed to drinking water containing 50ppb of arsenic during the perinatal period show 
depressive-like behaviors, blunted stress responses to a predator-scent stressor, and a 2-fold 
increase in basal plasma GCs (Goggin et al. 2012; Martinez et al. 2008). Prenatally exposed mice 
also had reduced GR and glycosylated 11β-HSD1 protein expression in the hippocampus 
(Goggin et al. 2012). Expression of GR target genes important for learning and memory were 
reduced in the hippocampus of perinatally exposed mice (Martinez-Finley et al. 2011). 
Therefore, the reduction in hippocampal GR may link arsenic exposure to deficiencies in 
cognitive development. Similar decreases in GR and 11β-HSD1 protein were also observed at 
embryonic day 14 and 18 suggesting that prenatal arsenic exposure impairs negative feedback 
mechanisms of the HPA axis during development and that this effect is sustained into adulthood 
(Caldwell et al. 2015). While these studies indicate that early-life arsenic exposure alters HPA 
axis and GR signaling in mice, it is unclear whether similar responses occur in humans. This 
dissertation aims to conduct the first study to evaluate the effect of early-life arsenic exposure on 
GC levels in a human population.  
   
1.6 Mixture Effects of Endocrine Disrupting Compounds  
Studies on individual chemicals, such as arsenic, have demonstrated that environmental 
exposures can alter GR signaling and HPA axis activity. With over 80,000 chemicals on the U.S. 
market, the challenge lies in prioritizing which ones to evaluate for endocrine-related endpoints. 
Chemical screening programs like Tox21 have attempted to rank and prioritize chemicals based 
on their in vitro bioactivity profiles across hundreds of assay endpoints, including GR 
transcriptional activation and binding assays (Richard et al. 2016). However, testing individual 
chemicals is not representative of mixtures present in the human environment. For example, a 
survey conducted by the Environmental Working Group found that the average American adult 
uses 9 personal care products each day with 126 unique chemical ingredients (EWG 2004). 
Therefore, evaluating the effect of single chemicals may underestimate human health risk since it 
does not account for potential mixture effects (Kortenkamp and Faust 2018). Studies have also 
demonstrated that mixtures of endocrine disrupting compounds can elicit a response, even when 
each chemical is present at concentrations that individually produce unnoticeable effects (Orton 
et al. 2014; Silva et al. 2002). Researchers have attempted to model these additive effects using 
formulas based on knowledge of individual dose-response curves (Rider et al. 2018). Developing 
accurate prediction models not only improves estimation of additive effects but also helps inform 
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risk assessment of chemical mixtures. Most studies thus far have focused on modeling the 
mixture effects of chemicals on the estrogen, androgen, and thyroid receptors (Kortenkamp 
2007). This dissertation work explores the application of a recently developed mixture model to 
predict the additive effect of chemicals on GR signaling.  
 
1.7 Summary 
The overall objective of this dissertation is to investigate the impact of environmental exposures 
on GR signaling and human GC levels. This work also provides the field with new 
methodologies to assess the endocrine disrupting effects of environmental chemicals on GR 
signaling. Chapter 2 describes the development of a bioassay to measure GR signaling and HPA 
axis activity. The effect of early-life arsenic exposure on human GC levels is discussed in 
Chapter 3. Results from this chapter will determine whether arsenic has persistent effects on 
HPA axis activity, thus providing a novel mechanism of arsenic-related disease. The final 
chapter of this dissertation uses the bioassay developed in Chapter 1 to evaluate prediction 
models of GR ligand mixtures. As a whole, this research aims to inform risk assessment of 
endocrine disrupting chemicals by developing methods to evaluate their impacts on GR signaling 
and human health.  
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Tables and Figures 
 
Figure 1.1: Schematic of GR bioassay. Transcription of the luciferase reporter gene provides a 
light-based readout that is proportional to the degree of glucocorticoid receptor activity.  
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Table 1.1: Effect of environmental exposures on human cortisol levels. 
Chemical  Population Mean Age 

(Years) 
Effect Reference 

Arsenic Women  
(N=267) 

38  Increased serum cortisol levels Sinha et al. 2014 

Bisphenol A Pregnant women  
(N=174) 

31.5 Decreased salivary cortisol at 
waking & flatter daytime pattern 

Giesbrecht et al. 2016 

Cadmium Adults  
(N=1000) 

47.3 Increased urinary cortisol 
metabolite 

Bochud et al. 2018  

Dioxins Lactating women  
(N=109) 

26.7 Increased salivary and serum 
cortisol levels 

Kido et al. 2014 

 Lactating women 
(N=25) 

23.2 Increased salivary cortisol levels Manh et al. 2013  

Lead Older Adults   
(N=126) 

65.9 Increased salivary cortisol levels Souza-Talarico et al. 2017 

 12-month-old infants  
(N=255) 

- Decreased salivary cortisol 
levels 

Tamayo y Ortiz et al. 2016 

 18–24-month-old infants  
(N=150) 

- Increased salivary cortisol levels Tamayo y Ortiz et al. 2016 

 Pregnant women  
(N=936) 

27.8 Decreased cortisol awakening 
response & flatter diurnal slope 

Braun et al. 2016  

 Occupationally exposed 
males (N=70) 

46.4 Decreased serum cortisol levels Fortin et al. 2012  

 Children  
(N=169) 

2.6 Increased salivary cortisol 
response to stressor 

Gump et al. 2008 

Mercury Pregnant women  
(N=732) 

27.4 Blunted morning cortisol 
response with high stress 

Schreier et al. 2015 

 Children  
(N=100) 

10 Blunted diurnal cortisol levels Gump et al. 2012 

Organochlorine pesticides  
(Mirex & trans-nonachlor) 

Pregnant women  
(N=514) 

30.4  Decreased cortisol levels in cord 
blood 

Araki et al. 2018 

Organophosphate pesticides  Pregnant women  
(N=97) 

24 Increased serum cortisol levels 
in 1st trimester 

Cecchi et al. 2012  

Ozone Health young adults  
(N=24) 

25.6 Increased serum cortisol levels Miller et al. 2016 

Particulate matter (<2.5µM) College students  
(N=55) 

20.2 Increased serum cortisol levels Li et al. 2017 
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Table 1.2: Chemicals that modify GR transcription 
Chemical Effect Reference 

Bisphenols 

Bisphenol A Agonist Sargis et al. 2010 

 Antagonist Kojima et al. 2019; Roelofs et al. 2015; Vrzal et al. 2015 

Bisphenol AF Antagonist Kojima et al. 2019 

Bisphenol AP Antagonist Kojima et al. 2019 

Bisphenol B Antagonist Kojima et al. 2019 

Bisphenol F Agonist Kolšek et al. 2015 

 Antagonist Roelofs et al. 2015 

BHEPS Agonist Kolšek et al. 2015 

Brominated Flame Retardants 

BDE-47 Agonist Wilson et al. 2016 

BDE-85 Antagonist Kojima et al. 2009 

BDE-99 Antagonist Kojima et al. 2009 

BDE-100 Antagonist Kojima et al. 2009 

TBBPA  Antagonist Roelofs et al. 2015 

4-MeO-BDE-90 Antagonist Kojima et al. 2009 

4’-HO-BDE-49 Antagonist Kojima et al. 2009 

4’-HO-BDE-17 Antagonist Kojima et al. 2009 

Heavy Metals 

Barium chloride Antagonist Zhang et al. 2018 

Cadmium chloride Antagonist Simons et al. 1990 

Cobalt chloride Antagonist Zhang et al. 2018 

Copper chloride Antagonist Zhang et al. 2018 

Lead Nitrate Antagonist Zhang et al. 2018 

Lithium chloride Antagonist Zhang et al. 2018 

Tin chloride Antagonist Zhang et al. 2018 

Zinc chloride Antagonist Zhang et al. 2018 

Sodium arsenite Antagonist Kaltreider et al. 2001; Simons et al. 1990 

 Biphasic Bodwell et al. 2006 

Organochlorine Pesticides 

Endrin Agonist Sargis et al. 2010 

Methoxychlor Antagonist Zhang et al. 2016 

o,p’-DDT Antagonist Zhang et al. 2016 

p,p’-DDE Antagonist Wilson et al. 2016; Zhang et al. 2016 

p,p’-DDT Antagonist Zhang et al. 2016 

Organophosphate Flame Retardants 

TPHP Antagonist Kojima et al. 2016 

HO-m-TPHP Antagonist Kojima et al. 2016 

HO-p-TPHP Antagonist Kojima et al. 2016 

Organotins 

Dibutyltin  Antagonist Gumy et al. 2008 

Tributyltin  Agonist Gumy et al. 2008 

Triphenyltin Agonist Gumy et al. 2008 
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Chemical Effect Reference 

Parabens 

Butylparaben Agonist Klopčič et al. 2015; Kolšek et al. 2015 

Ethylparaben Agonist Kolšek et al. 2015 

Methylparaben Agonist Kolšek et al. 2015 

Propylparaben Agonist Klopčič et al. 2015; Kolšek et al. 2015 

Perfluorinated compounds (PFCs) 

PFOS Agonist Wilson et al. 2016 

PFDA Agonist Wilson et al. 2016 

Phthalates 

Benzylbutyl phthalate Agonist Sargis et al. 2010 

Diethylhexyl phthalate Agonist Klopčič et al. 2015 

Polychlorinated biphenyls (PCBs) 

PCB101 Agonist Antunes-Fernandes et al. 2011 

PCB118 Agonist Antunes-Fernandes et al. 2011 

PCB153 Agonist Antunes-Fernandes et al. 2011 

PCB19 Antagonist Antunes-Fernandes et al. 2011 

PCB28 Antagonist Antunes-Fernandes et al. 2011 

PCB47 Antagonist Antunes-Fernandes et al. 2011 

PCB51 Antagonist Antunes-Fernandes et al. 2011 

PCB52 Antagonist Antunes-Fernandes et al. 2011 

PCB53 Antagonist Antunes-Fernandes et al. 2011 

PCB95 Antagonist Antunes-Fernandes et al. 2011 

PCB100 Antagonist Antunes-Fernandes et al. 2011 

3’OH-PCB180 Antagonist Antunes-Fernandes et al. 2011 

3’OH-PCB182 Antagonist Antunes-Fernandes et al. 2011 

4’OH-PCB172 Antagonist Antunes-Fernandes et al. 2011 

5-OH-PCB183 Antagonist Antunes-Fernandes et al. 2011 

30 OH-PCBs Antagonist Takeuchi et al. 2011 

3-MeSO2-CB101 Antagonist Johansson et al. 2005 

3-MeSO2-CB149 Antagonist Johansson et al. 2005 

Pyrethroids 

Bifenthrin Antagonist Zhang et al. 2016 

λ-cyhalothrin Antagonist Zhang et al. 2016 

Cypermethrin Antagonist Zhang et al. 2016 

Resmethrin Antagonist Zhang et al. 2016 

3-PBA Antagonist Zhang et al. 2016 

Tetramethrin Agonist Klopčič et al. 2015 

Other pesticides 

Atrazine Antagonist Zhang et al. 2016 

Ethiofencarb Antagonist Zhang et al. 2016 

M2 (Vinclozolin Metabolite) Antagonist Molina-Molina et al. 2006 

Paraquat Antagonist Vrzal et al. 2015 

Parathion Antagonist Vrzal et al. 2015 

Tolylfluanid Agonist Sargis et al. 2010 

 Antagonist Zhang et al. 2016 
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Abstract  
Glucocorticoids (GCs) are hormones secreted in response to psychological stress. GCs have 
systemic effects on the endocrine, metabolic, cardiovascular, immune, reproductive, and central 
nervous systems. The physiological effects of GCs are mediated by the glucocorticoid receptor 
(GR), which is expressed in nearly every cell of the body. Environmental chemicals that disrupt 
GR signaling and/or cortisol homeostasis could adversely affect human health. A major 
challenge in identifying environmental chemicals that alter GR signaling in humans is a lack of 
adequate screening methods. To address this, we constructed a novel cell-based bioassay that 
specifically measures GR activity and screened a library of 176 structurally diverse 
environmental chemicals at concentrations up to 10µM both in the absence and presence of 
cortisol (100nM). Although we did not identify any GR agonists or antagonists in the chemical 
screening library, three chemicals amplified cortisol induced GR activity. In addition to 
screening chemicals, we also optimized this bioassay to measure GC levels in human serum 
using samples collected from 12 healthy individuals at four time points over a year. Serum GC 
estimates from the bioassay were highly correlated with a cortisol enzyme-linked 
immunosorbent assay. Notably, the between-person variability for these subjects was much 
greater than the within-person variability. Technical variability accounted for <2% of total 
variability in serum GC levels. These results demonstrate that our novel GR bioassay can be used 
to identify environmental chemicals that modulate GR activity and to screen serum samples for 
differences in total GC levels. 
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2.1 Introduction 
Glucocorticoids are steroid hormones that affect the cardiovascular, metabolic immune, 
reproductive, and central nervous systems (Sapolsky et al. 2000). GC secretion is regulated by 
the hypothalamus-pituitary-adrenal (HPA) axis in a circadian and stress-associated manner 
(Biddie et al. 2012). Cortisol is the predominant GC produced by humans and its excess 
production is associated with multiple chronic diseases, such as atherosclerosis, diabetes, and 
depression (McEwen 1998). The physiological effects of GCs are mediated by the glucocorticoid 
receptor (GR), which is expressed in nearly every cell of the body (Pujols et al. 2002). The 
ubiquitous expression of GR in almost all human tissues highlights the importance of this 
biological pathway for human health. Upon ligand-binding, GR undergoes a conformational 
change that allows it to dissociate from the heat-shock protein complex and translocate to the 
nucleus where it activates transcription of genes containing glucocorticoid response elements 
(GREs) (Evans 1988). GR influences transcription of 10-20 percent of the human genome 
(Oakley and Cidlowski 2013). Consequently, altered GR signaling can have drastic effects on 
gene transcription profiles and cellular function.  
 
Various xenobiotic compounds modify human GR signaling (Odermatt and Gumy 2008; 
Gulliver 2017). For example, synthetic GCs are often prescribed to treat many inflammatory and 
autoimmune diseases (Coutinho and Chapman 2011). Synthetic GCs have also been detected in 
waste and surface water samples collected globally, suggesting broad environmental exposure to 
these compounds (Schriks et al. 2010; Kolkman et al. 2013; Macikova et al. 2014; Suzuki et al. 
2015; Jia et al. 2016). In addition to synthetic GCs, in silico and in vitro methods have also 
demonstrated that environmental compounds can bind and affect GR transcriptional activity. 
Some examples include organochlorine and pyrethroid pesticides, parabens, phthalates, 
bisphenols, and organotins (Gumy et al. 2008; Kolšek et al. 2014; Zhang et al. 2016; Zhang et al. 
2017; Kojima et al. 2019). Furthermore, the Tox21 program tested over 8000 chemicals and 
identified 569 potential agonists and 472 antagonists of GR (US EPA 2017 Nov 1). 
Environmental exposures can also influence human GR signaling in target cells by modifying 
circulating cortisol levels. There is some evidence that environmental exposures, such as lead 
and organophosphate pesticides, can alter basal cortisol levels in humans (Cecchi et al. 2012; 
Fortin Marie C. et al. 2012; Braun et al. 2014; Tamayo y Ortiz et al. 2016). However, the number 
of epidemiological studies examining this relationship remains limited.  
 
Cell-based bioassays are one approach to identify environmental chemicals that impact human 
GR signaling. This method relies on cells that contain a reporter gene driven by a GRE, which 
produces a measurable response proportional to the degree of GR activation. A luciferase 
reporter model is frequently used since the assay is rapid, simple, relatively inexpensive, 
sensitive, and has a broad linear range (Smale 2010). Not only has this technology helped to 
identify chemicals that interfere with receptor-mediated effects, but studies have also 
demonstrated that GR bioassays can quantify total GC levels in human serum and plasma 
(Raivio et al. 2002; Vermeer et al. 2003; Kajantie et al. 2004; Turner et al. 2010; Perogamvros et 
al. 2011; Fejerman et al. 2016). While these studies highlight that cell-based bioassays can be 
used to evaluate the effect of environmental chemicals on GC levels, they are not without 
limitations. For instance, most bioassays were generated with mammalian cell lines that lack 
endogenous GR expression (e.g. COS-7, U2OS, HEK293, and CV-1) (Sedlák et al. 2011; 
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Campana et al. 2015). Cellular context is important since the absence of cell-specific co-
regulators could impact GR transcriptional activity (Weikum et al. 2017). Furthermore, the high 
level of homology between the glucocorticoid, mineralocorticoid, androgen, and progesterone 
receptors makes it particularly difficult to design specific bioassays (Kino 2017). For example, 
the MDA-Kb2 cell line is a commercially available bioassay derived from human breast cancer 
cells that responds to both androgens and GCs (Wilson et al. 2002). These bioassays could be 
improved by selecting a cell line devoid of homologous nuclear receptors and that endogenously 
expresses GR to preserve cellular context and attain specificity.  
 
This paper describes the development of a novel bioassay that measures GR activity. We stably 
transfected MDA-MB-231, a triple negative breast cancer cell line, with a luciferase reporter 
gene driven by three tandem GREs. These cells endogenously express high levels of GR and lack 
the androgen and progesterone receptors (Horwitz et al. 1978). We first characterized specificity 
of the bioassay by testing the response of 6 GCs, a GR antagonist, and 4 non-GC steroid 
hormones. We then used the bioassay to screen a library of 176 structurally diverse 
environmental chemicals for altered GR activity. Lastly, we optimized the bioassay to measure 
GC levels in human serum samples. These results were also compared to estimates from a 
cortisol enzyme-linked immunosorbent assay (ELISA) and the MDA-Kb2 bioassay. Our work 
establishes the first specific, breast cancer-derived GR bioassay that can be used to identify 
environmental exposures that alter GR activity and serum GC levels.  
 
2.2 Methods 
2.2.1 Chemicals 
Dexamethasone, hydrocortisone (cortisol), betamethasone, prednisolone, triamcinolone, 
corticosterone, mifepristone, aldosterone, estradiol, dihydrotestosterone and hydroxyflutamide 
were all purchased from Sigma-Aldrich. Compounds were dissolved in dimethyl sulfoxide 
(DMSO, Sigma-Aldrich). The chemical library was provided by Dr. Bruce Hammock 
(University of California, Davis) and contained 176 compounds at 10mM in DMSO. Chemicals 
included in the library plates are listed in Supplemental Material Table 2.1. MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was purchased from VWR. 
 
2.2.2 Cell Culture 
The human triple negative breast cancer cell line, MDA-MB-231, was obtained from the Cell 
Culture Facility at the University of California, Berkeley and authenticated using short tandem 
repeat profiling. MDA-MB-231 cells were cultured in Dulbecco’s Modified Eagle Medium 
(DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Atlanta Biologicals) at 37°C 
in an incubator with 5% CO2.  
 
MDA-Kb2 (ATCC CRL-2713), a human triple negative breast cancer cell line, was obtained 
from the American Tissue Culture Collection (ATCC). MDA-Kb2 cells were cultured in 
Leibovitz’s L-15 (L-15) (Gibco) supplemented with 10% FBS at 37 °C in an incubator without 
CO2. One week prior to luciferase experiments, cells were maintained in phenol red-free L-15 
supplemented with 10% charcoal-dextran FBS.  
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2.2.3 Stable Transfection  
The pGRE-Luc2P plasmid was provided by Dr. Zdenek Dvorak (Palacky University) and 
contained a luciferase reporter gene driven by three tandem GREs (Novotna et al. 2012). MDA-
MB-231 cells were seeded at a density of 2.5×104 in a 60 mm culture dish and transfected the 
following day with 5ug of pGRE-Luc2P using Lipofectamine 2000 (Invitrogen) according to the 
manufacturer’s protocol. Cells were placed on selection media containing 0.5mg/ml of 
hygromycin B (Calbiochem) 24 hours post-transfection. Selection media was changed every 2-3 
days for two weeks. Surviving cells were cloned by limited dilution in 96-well plates and 
maintained on selection media for two more weeks. Clones were transferred to 24 well plates and 
kept under selection for an additional three weeks prior to assessing dexamethasone-induced 
luciferase activity. The stable clone with the largest fold-change was renamed 231GRE. 
 
2.2.4 Screening Chemicals for GR Activity  
One week prior to luciferase experiments, 231GRE cells were maintained in phenol red-free 
DMEM (Hyclone) supplemented with 10% charcoal-dextran FBS (Atlanta Biologicals) to reduce 
interference from hormones present in media. 231GRE cells were seeded at a density of 2.5×104 
cells/well in white 96-well plates (Thermo Scientific Nunc). The next day, cells were incubated 
with chemical treatments for 18 hours at 37°C. Chemical treatments included: vehicle (DMSO, 
0.1%), dexamethasone (10pM-10µM), cortisol (100pM-100µM), betamethasone (10pM-10µM), 
prednisolone (10pM-10µM), triamcinolone (10pM-10µM), corticosterone (100pM-200µM), 
aldosterone (10pM-100µM), estradiol (10pM-10µM), dihydrotestosterone (10pM-10µM), or 
progesterone (10pM-10µM). Cells were also treated with RU486 (10pM-10µM), a competitive 
antagonist, in the presence of 100nM dexamethasone. Following the incubation period, cells 
were rinsed with PBS and lysed (1x cell lysis buffer, Promega). Luciferase activity was 
measured using a Berthold Centro XS3 LB 960 microplate luminometer with automatic injection 
of Luciferase Assay Reagent (Promega). All chemical treatments were conducted in triplicate 
and repeated as three independent experiments. 
 
The chemical library screen was performed in part with the High-Throughput Screening Facility 
at UC Berkeley, which provided the Agilent V11 Bravo Automated Liquid Handler and the 
Thermo Scientific Multidrop Combi Reagent Dispenser. The 10mM chemical library plate was 
diluted in DMSO to concentrations of 1mM, 100µM, 10µM, and 1µM with the Agilent V11 
Bravo liquid handler. For the agonist screen, 2µL of the chemical libraries were transferred to 
998µL of phenol-red free DMEM using a liquid handler. This same instrument was used to 
transfer 100µL of diluted compounds to the assay plates, bringing the final volume in each well 
to 200µL. All agonist assay plates included media only, negative control (0.1% v/v DMSO only), 
and positive control (100nM cortisol) wells. Cortisol was selected as a positive control since it is 
the endogenous GR ligand.  
 
The library compounds were also screened in the presence of 100nM cortisol to test for 
antagonism. This concentration was selected based on the half-maximal response concentration 
(EC50) of cortisol. For the antagonist screen, chemical libraries were diluted 1:250 in phenol-red 
free DMEM and 50µL of diluted compounds were transferred to assay plates. An additional 
50µL of cortisol-containing media was dispensed to all wells at a final volume and concentration 
of 200µL and 100nM, respectively. Each antagonist assay plate included media only, DMSO 
only, 100nM cortisol, and 100nM RU486 control wells.  
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231GRE cells were dispensed into 96-well plates with a Multidrop Combi Reagent Dispenser 
(Thermo Scientific) and treated the following day.	There were three replicate plates for each 
treatment. The final concentration of chemicals for both assays ranged from 1nM-10µM. All 
assay plates were covered with a rayon film (VWR) and incubated at 37°C for 18 hours prior to 
measuring luciferase activity with a BioTek Cytation 5 microplate reader.    
 
Luminescence measured in negative control wells was averaged and subtracted from all values 
on the plate. Background corrected relative light units (RLUs) were then normalized by dividing 
by luminescence measured in the positive control well. Cytotoxic concentrations of compounds, 
assessed by MTT and/or >20% reduction in basal luciferase activity, were not included in the 
statistical analysis. 
 
2.2.5 Cell Viability Assay 
The MTT assay was used to evaluate cytotoxicity of all tested compounds. 231GRE cells were 
plated in clear bottom 96-well plates and allowed to attach overnight. Cells were treated and 
incubated at 37°C for 18 hours. Afterwards, the media was replaced with 100µL media 
containing 0.5 mg/mL MTT and incubated for three hours at 37°C before removing the media 
and adding 100µl of DMSO to each well. Absorbance was measured at 570nm with a BioTek 
Cytation 5 microplate reader.  
 
2.2.6 Measuring Serum GC Levels 
Serum samples were collected from healthy individuals four times approximately 2-4 months 
apart over a one-year period. A sample size of N=12 healthy subjects were included in the study 
(exclusion criteria for volunteer subjects were chronic illness or pregnancy at the time of blood 
draws). A single blood sample was obtained from fasted participants between the hours of 8-
10AM. Serum was collected with glass BD Vacutainer® tubes and stored at -80°C until analysis. 
The Internal Review Board within the University of California Berkeley’s Human Research 
Protection Program approved data collection for this study and informed consent was obtained 
from all participants. 
 
231GRE cells were seeded at 2.7×104 cells/well in white 96-well plates and incubated at 37°C 
for 24 hours. Media was then removed and 100 µL of hormone-depleted media containing 
diluted human serum was added to wells in quadruplicate. Plates were incubated at 37°C 
overnight prior to measuring luciferase activity. Cortisol standards were included on each plate at 
the following concentrations: 0 (0.1% v/v DMSO only), 3.13, 6.25, 12.5, 25, 50nM. Readings for 
quadruplicate samples were averaged and converted to cortisol concentrations based on standard 
curves fit with a quadratic function.	These values were multiplied by the dilution factor to obtain 
cortisol equivalent values.  
 
A similar protocol was used to screen human serum with MDA-Kb2 cells for comparison with 
231GRE results. However, the androgen receptor is also capable of activating the luciferase 
reporter present in these cells. To address this limitation, treatments were performed in the 
presence of 1µM hydroxyflutamide, an androgen receptor inhibitor. Serum from female and male 
subjects was diluted 10 and 40-fold, respectively, to limit androgen receptor activation.  
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Serum cortisol was measured by competitive enzyme-linked immunoassay (ELISA) according to 
manufacturer’s instructions (Cayman Chemical, Ann Arbor, MI) and compared to concentrations 
obtained by the two GR cell-based assays. 
 
2.2.7 Statistics 
Dose–response curves were fit with a four-parameter Hill function using the R drc package to 
obtain half-maximal activity concentration (AC50) and maximum response values (Ritz et al. 
2015). All positive hits in the chemical screen had a statistically significant AC50<10µM. In the 
agonist screen, positive hits were defined as chemicals that induced a statistically significant 
increase in the maximum response parameter (p-value <0.05). Antagonists were defined as 
chemicals that inhibited activation of the reporter by cortisol. Chemicals that enhanced cortisol-
induced reporter activity were also considered hits. 
 
Comparisons between human serum treatments and media controls were made using one-way 
ANOVA with Dunnet’s post-hoc test. Differences with p-value <0.05 were considered 
statistically significant. A coefficient of variation (CV=100×standard deviation/mean) was 
computed for each serum sample to assess technical variability. Concordance correlation 
coefficients (and 95% confidence intervals) were calculated to compare cortisol equivalent 
values obtained by the bioassays to concentrations measured by ELISA. This estimate evaluates 
how far the observed data deviates from the line of perfect concordance. Values closer to 1 
indicated very good agreement between the bioassay and ELISA results.  
 
A random effects model was used to identify sources of variability in measured serum GC levels. 
The inter-individual (σh

2), time-specific (σi
2), intra-individual (σhi

2), and within sample (σe
2) 

variability components were defined by the following equation:  
Yhij = log(Xhij) = µy + αh + βi+ γhi + εhij 

 
for h=1,…,12 individuals; i= 1, 2, 3, 4 time points; and j= 1, 2, 3, 4 replicate samples, where 
Xhij= the serum GC levels for the hth  individual at the ith time point for the jth replicate and Yhij 
represents the natural log transformation of Xhij. In this model, µy represents the true logged 
mean of serum GC levels and αh represents the random effect of the hth individual. βi represents 
the time-specific random effect and γhi is the random effect of the hth individual at the ith 
timepoint. Lastly, εhij is the random-error effect of the jth replicate sample from the hth individual 
at the ith timepoint. It is assumed that αh, βi, γhi, and εhij are mutually independent and normally 
distributed with means of zero. The respective variance components of αh, βi, γhi, and εhij were 
σh

2 (variability between individuals), σi
2 (variability over time), σhi

2 (variability within 
individuals), and σe

2 (within sample + residual variability). 
 
2.3 Results 
2.3.1 Characterization of 231GRE Cell Line 
MDA-MB-231 cells were stably transfected with the pGRE-Luc2P reporter plasmid. Five 
monoclonal cell lines were generated and evaluated for dexamethasone-induced luciferase 
activity. Clone #7 exhibited the highest reporter activity in response to dexamethasone (1µM) 
with a fold change of 438 (Supplemental Material Figure 1). Luciferase activity was also 
detected in this clone for up to 24 passages, demonstrating stable integration of the reporter 
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plasmid (Supplemental Material Figures 2). Therefore, clone #7 was renamed 231GRE based on 
its wide dynamic range and stability.    
 
Specificity of the 231GRE cell line was then evaluated by testing multiple GCs and other non-
GC steroid hormones (Figure 2.1). Dose-response curves were generated for six GCs: 
dexamethasone (DEX), cortisol, betamethasone (BMZ), prednisolone (PRED), triamcinolone 
(TAC), and corticosterone. All GCs induced luciferase activity and produced EC50 values 
comparable to previously published bioassays (Table 2.1). Dexamethasone-induced reporter 
activity was also suppressed by RU486, a GR antagonist. Aldosterone (ALDO), a 
mineralocorticoid hormone, elicited a response since it is a partial GR agonist. As expected, 
estradiol (E2), progesterone (PROG), and dihydrotestosterone (DHT) had no effect on reporter 
activity. Collectively, these results demonstrate specificity of the 231GRE bioassay for GR 
ligands.      
 
2.3.2 High-throughput Screen of Environmental Chemicals 
A library of 176 structurally diverse environmental chemicals was tested for GR activity. 
231GRE cells were treated with 10-fold serial dilutions of the chemical library at concentrations 
ranging from 1nM-10µM. Cortisol (100nM) was the positive control and consistently induced 
GR activation. However, none of the environmental compounds produced a statistically 
significant increase in reporter activity (Supplemental Table 2.2). 231GRE cells were also treated 
with library compounds in the presence of 100nM cortisol to test for antagonism. Except for the 
positive control (RU486), none of the screened compounds inhibited cortisol-induced GR 
activity (Supplemental Table 2.3). Interestingly, three compounds (isopropyl-N-
phenylcarbamate, 3,4,4'-trichlorocarbanilide, and 2-(4-chlorophenyl)-benzothiazole) potentiated 
the effect of 100nM cortisol (Figure 2.2, Supplemental Table 2.3). Although the chemical screen 
did not identify any GR agonists or antagonists, this approach indicated chemicals that enhanced 
cortisol-induced GR activity.  
 
2.3.3 Measuring Serum GC Levels 
The 231GRE bioassay was also optimized to measure serum GC levels. Cells were treated with 
human serum obtained from a healthy individual that was diluted 10, 20, 30, 40 and 50-fold in 
cell culture media. All tested dilutions induced a statistically significant increase in reporter 
activity above the media only control (Figure 2.3). Relative luciferase units were then converted 
to cortisol equivalent values and directly compared to the concentration measured by ELISA 
(Table 2.2). The cortisol concentration was best estimated by serum diluted 10 and 20-fold. 
Variability in cortisol equivalent values was also lowest in the 1:10 serum dilution (CV=3.7%). 
Therefore, serum was diluted 10-fold for all other experiments.  
 
Serum GC levels were then measured in samples collected from twelve healthy individuals at 
four different time points over a one-year period with the 231GRE bioassay. Cortisol equivalent 
values were also compared to estimates from the MDA-Kb2 bioassay and concentrations 
determined by ELISA (Figure 2.4). The concordance correlation coefficients (rc) between the 
231GRE and ELISA concentrations were all statistically significant and ranged from 0.69 to 
0.94. However, concordance between MDA-Kb2 and ELISA concentrations was much lower (rc 
range: 0.06-0.20) and yielded 95% confidence intervals that contained zero, indicating a lack of 
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statistical significance. These comparisons demonstrate that cortisol concentrations were more 
closely approximated by the 231GRE bioassay than by MDA-Kb2.  
 
The 231GRE bioassay was also used to identify sources of variability in serum GC levels (Figure 
2.5). Variability between replicates was minimal with intra-assay CVs ranging from 0.6-11.8% 
(median: 4.7%). A random effects model estimated that the inter-individual, time-specific, intra-
individual, and within-sample variability were 64.5%, <0.01%, 33.6%, and 1.9%, respectively. 
These results demonstrate that morning serum GC levels varied more between individuals than 
within the same individual over a one-year period and that technical variability of the 231GRE 
bioassay was remarkably low.  
 
2.4 Discussion 
This paper describes the development of a specific and stable breast cancer-derived GR bioassay 
called 231GRE. We demonstrated that 231GRE cells were highly specific for GR ligands and 
did not respond to compounds from other steroid classes. Furthermore, all GR ligands had EC50 
values comparable with those reported for other stable reporter cell lines. We also conducted a 
high-throughput screen of 176 environmental chemicals with 231GRE cells to identify 
compounds that altered GR activity. None of the tested compounds were agonists or antagonists 
of GR. However, we identified three chemicals that potentiated cortisol-induced GR activity. We 
also optimized the 231GRE bioassay to measure GC levels in human serum. ELISA cortisol 
concentrations were in high concordance with 231GRE estimates. Additionally, we observed 
greater variability in serum GC levels between individuals than within the same individual over a 
one-year period. Collectively, these results highlight applications of the 231GRE cell line and 
how it could be used to identify environmental compounds that alter GR activity and/or serum 
GC levels. 
 
To our knowledge, this is the first specific GR bioassay generated in a breast cancer cell line. 
The only other available stable breast cancer-derived GR bioassay is the MDA-Kb2 cell line, 
which contains a reporter driven by the mouse mammary tumor virus (MMTV) promoter that 
responds to both androgens and GCs (Wilson et al. 2002). To overcome this limitation, we 
performed the stable transfection with a luciferase reporter gene driven by three tandem GREs, 
which provides greater specificity than the MMTV promoter. Additionally, MDA-MB-231 cells 
were selected for the bioassay since it endogenously expresses highly levels of GR and lacks 
homologous nuclear receptors, such as the progesterone and androgen receptors (Horwitz et al. 
1978). MDA-MD-231 cells are frequently utilized in breast cancer research and were recently 
used to show how GR activation promotes breast cancer metastasis and reduced survival in mice 
(Obradović et al. 2019). Therefore, our GR bioassay provides a valuable tool to evaluate the 
contribution of environmental exposures in the development and progression of breast cancer. 
 
The high-throughput screen did not identify any potential agonists or antagonists of GR in 
231GRE cells. While it is possible that concentrations used in this study were not high enough to 
observe changes in GR activity, human exposure to these compounds is unlikely to exceed 
10µM. Rappaport et al. found that blood pollutant levels ranged from 10–7µM to 10µM (median: 
2.4×10-4 µM), suggesting that concentrations tested in the present study reflect relevant human 
exposure levels. It is also intriguing that chemicals previously shown to modulate GR activity 
had no effect when tested in 231GRE cells. For example, pyrethroids (bifenthrin, λ-cyhalothrin, 
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cypermethrin, resmethrin) and organochlorine pesticides (o,p′-DDT, p,p′-DDT, methoxychlor) 
antagonized GR transcriptional activation in a Chinese hamster ovarian cell line that contained a 
MMTV-luciferase reporter (Zhang et al. 2016). This same study showed that chemicals had 
differential effects on downstream GR target genes, even within the same cell line. Therefore, 
the effect of chemicals on GR transcription may vary by gene promoter. It is also possible that 
the 231GRE bioassay lacks certain cofactors that influence the effect of chemicals on GR 
transcriptional activity. However, additional studies are needed to evaluate the influence of 
environmental chemicals on GR signaling across multiple cell types. 
 
Our results demonstrate that environmental chemicals can potentiate the effect of cortisol on GR 
activity. For example, we observed that 3,4,4'-trichlorocarbanilide (triclocarban) increased the 
amount of reporter activity induced by 100nM cortisol. Another study conducted with MDA-
Kb2 cells also found that 2µM triclocarban enhanced cortisol-induced GR activity (Kolšek et al. 
2015). Triclocarban is an antimicrobial agent that was recently banned by the US Food and Drug 
Administration in 2016 from consumer antiseptic washes due to its endocrine disrupting effects. 
However, this compound is still allowed in household plastics, industrial cleaning and hospital 
supplies, and other personal care products not covered by the regulation (Halden et al. 2017). 
Based on our findings, future regulation of triclocarban and other industrial chemicals should 
consider the additive effect of these compounds on endogenous hormone signaling. Enhanced 
cortisol-induced GR activity was also observed with the carbamate herbicide isopropyl-N-
phenylcarbamate (Propham) and the benzothiazole derivative 2-(4-chlorophenyl)-benzothiazole. 
Christodoulou et al. 2018 identified benzothiazole derivatives that influenced GR activity 
through allosteric binding. Moving forward, molecular docking is a promising approach to 
evaluate whether these compounds bind GR and modulate receptor-ligand interactions. 
Additionally, larger screens should be conducted to identify other environmental chemicals that 
enhance cortisol-induced GR signaling. 
 
Our work provides the field with a tool to measure total GC levels present in human serum. This 
technique is a rapid, sensitive, and cost-effective method to quantify cortisol levels. Serum 
cortisol concentrations are routinely measured using antibody-based methods, such as ELISA or 
by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). While both of 
these techniques quantify the amount of a specific compound present in a biospecimen, they 
often require sample preparation, are expensive, and do not measure the biological effect of 
exogenous and endogenous compounds present in serum (Xu et al. 2014). Alternatively, several 
studies thus far have used cell-based bioassays to detect differences in serum GC levels (Raivio 
et al. 2002; Vermeer et al. 2003; Kajantie et al. 2004; Turner et al. 2010; Perogamvros et al. 
2011; Fejerman et al. 2016). For example, elevated serum GC levels were detected after 
synthetic GC administration (Raivio et al. 2002). Therefore, cell-based bioassays such as ours 
can be used to quantify the overall net effect of both endogenous and exogenous molecules 
present in human serum. This method can also be coupled with other analytical approaches (e.g. 
LC-MS/MS) to identify environmental GR agonists and antagonists present in human serum 
(Smith et al. 2015; Smith et al. 2019).  
 
Comparisons with a cortisol ELISA demonstrated that plasma concentrations were more closely 
approximated by 231GRE than MDA-Kb2. It should be noted that although concordance 
between MDA-Kb2 and ELISA was relatively low (rc=0.14), these two assays were still highly 
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correlated (r=0.6). This means that both GR bioassays can be used to infer relative differences in 
plasma GC levels, but absolute differences are more accurately estimated by 231GRE. Our 
results also suggest that 231GRE may be more sensitive to GR activation than MDA-Kb2. 
However, the reason for this is unclear. There is some evidence that the androgen receptor (AR) 
and GR influence each other’s transcriptional activity (Chen et al. 1997). Therefore, androgens 
present in serum and/or hydroxyflutamide might interfere with GR activation in MDA-Kb2, 
since these cells also express AR. 
 
Characterizing sources of variation in biomarkers is important when designing epidemiological 
studies. Therefore, we measured sources of variability in serum GC levels using samples 
collected from healthy adults. Intra-assay CVs were below 15% for all tested serum samples 
indicating low technical variability of the 231GRE assay. Reproducibility of the bioassay was 
further supported by the fact that within-sample variance only accounted for <2% of variability 
in total serum GC levels. Interestingly, serum GC levels varied less within the same individual 
(intra-individual) than between individuals (inter-individual). This result corresponds with 
previous research that reported a high level of individual stability in morning cortisol 
concentrations (Huizenga et al. 1998). Evidence from twin studies suggests that genetic factors 
may play a role in regulating morning cortisol levels (Maxwell et al. 1969; Meikle et al. 1988). 
Consequently, the high amount of inter-individual variability in serum GC activity may reflect 
genetic differences in cortisol secretion and regulation between individuals. Collectively, these 
results suggest that our bioassay is reproducible and can be used to measure morning serum GC 
activity in epidemiological studies.  
 
In summary, we developed a novel method that can be used to identify environmental chemicals 
that modulate GR transcriptional activity and to screen human serum samples for differences in 
total GC levels. Given the significance of the GR pathway in human health and in development 
of disease, greater emphasis should be placed on identifying environmental chemicals that 
perturb GR signaling and cortisol homeostasis. 
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Tables and Figures 
 
Table 2.1: Comparison of EC50 (M) values for GR ligands between 231GRE and other published stable GR bioassays 
Chemical 231GRE AZ-GR  

(Novotna et al. 2012) 
 GR-BLA 

(TOX21) 
GR-CALUX 
(Bovee et al. 2011) 

Dexamethasone (DEX) 9.5E-9 9.5E-9  2.8E-9 2.2E-9 
Cortisol 1.4E-7 6.6E-8  3.8E-8 3.7E-8 
Betamethasone (BMZ) 1.3E-8 1.5E-8  4.9E-9 1.1E-8 
Prednisolone (PRED) 6.0E-8 4.5E-8  2.3E-8 1.2E-8 
Triamcinolone (TAC) 5.9E-8 5.4E-8  3.0E-8 1.9E-8 
Corticosterone 8.2E-7 2.4E-7  8.0E-8 8.0E-8 
Aldosterone (ALDO) 6.4E-6 1.1E-6  - 5.0E-7 

 
Table 2.2: Comparison of ELISA concentration to cortisol equivalent (CortEq) values for human serum dilutions 
Dilution CortEq (nM) SD CV (%) 
1:10 93 3.5 3.7 
1:20 144 9.6 6.6 
1:30 196 11.4 5.8 
1:40 225 14.7 6.5 
1:50 260 19.6 7.5 
ELISA 118   
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Figure 2.1: Dose-response curves of glucocorticoid receptor ligands and other steroid 
hormones. Plots represent mean data from three independent experiments (N=3) that were fit 
with a 4-parameter hill function.  
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Figure 2.2: Dose-response curves for chemicals that enhanced cortisol-induced GC activity. 
Data from triplicate wells for each concentration were used to plot 4-parameter Hill functions. 
The dashed line represents baseline activity of cortisol alone (100%).  
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Figure 2.3: Response of 231GRE cells treated with diluted human serum. The bars represent 
the average relative luciferase units measured for each dilution factor. Error bars represent the 
standard error of the mean (SEM) of quadruplicate wells. * Indicates a statistically significant 
difference between serum dilution and media only control (P-value <0.05). 
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Figure 2.4: Correlation between serum GC activity and cortisol ELISA concentrations for 
each time point. Cortisol equivalent values from the bioassays were plotted on the x-axis and 
ELISA concentrations on the y-axis. All concentrations are on the logarithmic scale. Fit lines for 
231GRE (red) and MDA-Kb2 (blue) were also plotted and compared to the black identity line 
(y=x). Concordance correlation coefficients for each bioassay are included in the plot legends. 
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Figure 2.5: Variability in serum GC activity. Cortisol equivalent values were plotted by time 
point. Each line represents a different individual. Error bars represent the standard deviation of 
quadruplicate wells. 
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Supplementary Materials 
 
Supplementary Table 2.1: List of chemicals in library plates 
Chemical Plate Well 
Atrazine  1 A2 
2-chloro-4-ethylamino-6-amino-s-triazine 1 A3 
Carbaryl  1 A4 
DNBP 1 A5 
Paraquat dichloride 1 A6 
Diphenylacetonitrile 1 A7 
Eptam  1 A8 
Pirimiphos - ethyl  1 A9 
3,5,6-trichloro-2-pyridinol 1 A10 
Tributyl (2,4-dichlorobenzyl)phosphonium chloride 1 A11 
2,4,5-T 1 A12 
Simazine  1 B2 
Ammelide 1 B3 
Propoxur 1 B4 
4.6-Dinitro-o-cresol  1 B5 
Diethyl phthalate 1 B6 
Maleic acid hydrazide 1 B7 
CDEC  1 B8 
Diazinon  1 B9 
o,o-diethylthiophosphate 1 B10 
Tributyl phosphorotrithioite 1 B11 
p,p-DDT 1 B12 
Simetryn 1 C2 
Ammeline 1 C3 
Aldicarb 1 C4 
Triclopyr  1 C5 
Bromacil 1 C6 
Nicotine  1 C7 
Ferbam  1 C8 
Malathion 1 C9 
Methidathion 1 C10 
Phosdrin  1 C11 
o,p-DDD 1 C12 
Cyanuric acid 1 D2 
Cyanazine 1 D3 
Aldoxycarb 1 D4 
Fluroxypyr 1 D5 
Rotenone 1 D6 
Ziram 1 D7 
Maneb  1 D8 
Chlorpyrifos  1 D9 
6-chloromethyl-4-hydroxy-2-isopropyl pyrimidine 1 D10 
Carbophenothion 1 D11 
p,p-DDD 1 D12 
Propazine 1 E2 
Terbutryn 1 E3 
Isopropyl-N-[m-chlorophenyl]carbamate  1 E4 
Clopyralid 1 E5 
Captan 1 E6 
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Chemical Plate Well 
Nabam  1 E7 
Zineb  1 E8 
Chlorpyrifos oxon  1 E9 
2-methoxy-3,5,6-trichloropyridine 1 E10 
Dichlorvos (DDVP) 1 E11 
p,p-DDE 1 E12 
Ametryn 1 F2 
Prometon 1 F3 
Isopropyl-N-phenylcarbamate 1 F4 
Picloram 1 F5 
Folpet  1 F6 
Metam sodium  1 F7 
Tetramethylthiuram disulfide  1 F8 
2-diethylamino-6-methylpyrimidin-4-ol 1 F9 
Parathion 1 F10 
o,o-dimethyl phosphochloridothioate 1 F11 
o,p-DDE 1 F12 
Prometryn 1 G2 
2-chloro-4,6-diamino-s-triazine 1 G3 
Oryzalin 1 G4 
Mecoprop 1 G5 
Cacodylic acid, Na salt  1 G6 
Molinate  1 G7 
s-propyl butylethylthiocarbamate 1 G8 
Methamidophos 1 G9 
Des-N-isopropyl isophenphos oxygen analog 1 G10 
Dichlorprop  1 G11 
2,4-dichlorophenoxybutyric acid (2,4-DB) 1 G12 
2-chloro-4-isopropyl-6-amino-s-triazine 1 H2 
Dazomet 1 H3 
2-methylheptyl-4,6-dinitrophenyl Crotonate 1 H4 
Glyphosate 1 H5 
Chloranocryl 1 H6 
Thiobencarb 1 H7 
Pirimiphos - methyl  1 H8 
Diethyl phosphate 1 H9 
Des-N-isopropyl isophenphos 1 H10 
2,4-Dichlorophenoxyacetic acid (2,4-D)  1 H11 
Dalapon 1 H12 
Heptachlor 2 A2 
2,4,6-trichlorophenol 2 A3 
2,4,5-Trichlorophenoxyacetic acid, isopropyl ester 2 A4 
Thiodan  2 A5 
Asana - Chemservice 2 A6 
cis-cypermethrin 2 A7 
1-Naphthaleneacetic acid 2 A8 
3-Indolebutyric acid 2 A9 
Irgasan 2 A10 
Triton X-100 2 A11 
Amgard CJ 2 A12 
Heptachlor epoxide 2 B2 
Chloranil 2 B3 
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Chemical Plate Well 
Silvex  2 B4 
4,4'-Dichloro-a-(trichloromethyl)benzhydrol 2 B5 
zeta-cypermethrin 2 B6 
Oxyfluorfen 2 B7 
1-Naphthaleneacetic acid, methyl ester 2 B8 
Gibberellic acid 2 B9 
Finasteride 2 B10 
SDS 2 B11 
Phosphoric acid triphenyl ester 2 B12 
Aldrin 2 C2 
Dichlone  2 C3 
Benzene hexachloride  2 C4 
Methoxychlor  2 C5 
Deltamethrin 2 C6 
Diuron 2 C7 
Chloracetic acid 2 C8 
N-m-Tolylphthalamic acid 2 C9 
Clomipramine 2 C10 
Phenanthrene 2 C11 
Carbamazepine 2 C12 
Dieldrin 2 D2 
o-Chlorophenoxyaceric acid  2 D3 
Lindane  2 D4 
Baythroid  2 D5 
Pyrethrum 2 D6 
Diflubenzuron 2 D7 
2,2-dichloropropionic acid 2 D8 
o-Dichlorobenzene 2 D9 
Anthracene 2 D10 
Tween - 20 2 D11 
Fluoxetine HCl 2 D12 
2,2'-methylenebis(4-chlorophenol)  2 E2 
p-Chlorophenoxyaceric acid 2 E3 
Chlorodane  2 E4 
a-Cypermethrin 2 E5 
Pyrethrum 2 E6 
Monuron  2 E7 
Trichloroacetic acid 2 E8 
p-Dichlorobenzene 2 E9 
Bis 2-Ethylhexyl phthalate (BEHP) 2 E10 
n-dodecyl phosphoric acid 2 E11 
1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane 2 E12 
Pentachlorophenol  2 F2 
2-methyl-4-chlorophenoxyacetic acid (MCPA)  2 F3 
Endrin  2 F4 
d-(cis/trans)phenothrin 2 F5 
Cypermethin (mix of isomers) 2 F6 
Fenuron -  2 F7 
2-Naphthoxyacetic acid 2 F8 
Naphthalene 2 F9 
Butylated hydroxyanisole (BHA) 2 F10 
Clofibric acid 2 F11 
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Chemical Plate Well 
N-cyclohexyl-2-benzothiazyl sulfenamide 2 F12 
2,3,4,6-Tetrachlorophenol  2 G2 
2,4-Dichlorophenoxyacetic acid, butyl ester 2 G3 
Toxaphene  2 G4 
Resmethrin 2 G5 
trans-Cypermethrin 2 G6 
3,4,4'-trichlorocarbanilide 2 G7 
Phenoxyacetic acid 2 G8 
1-Nitronaphthalene 2 G9 
Butylated hydroxytoluene (BHT) 2 G10 
2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) 2 G11 
2-(4-chlorophenyl)-benzothiazole 2 G12 
2,4,5-trichlorophenol  2 H2 
2,4-Dichlorophenoxyacetic acid, isopropyl ester 2 H3 
Tedion  2 H4 
Bifenthrin 2 H5 
Sanmarton 2 H6 
1-Naphthaleneacetamide 2 H7 
2-Phenoxypropionic acid 2 H8 
Siduron 2 H9 
Bisphenol A 2 H10 
Pyrovatex CP 2 H11 
2hydroxybenzothiazole 2 H12 
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Supplemental Table 2.2: Hill function maximum and AC50 values for agonist screen  
Chemical Max (%) P-value AC50 (M) P-value 

Isopropyl-N-[m-chlorophenyl]carbamate  1.67 0.42 3.96E-06 0.75 

MCPA  1.46 0.96 2.85E-09 0.99 

2,4-Dichlorophenoxyacetic acid, butyl ester 1.46 0.96 2.85E-09 0.99 

Anthracene 1.27 0.85 1.17E-06 0.98 

BEHP 1.27 0.85 1.17E-06 0.98 

Aldrin 1.26 0.97 1.62E-10 0.87 

Diethyl phthalate 1.20 0.96 8.07E-08 0.99 

N-cyclohexyl-2-benzothiazyl sulfenamide 1.13 0.88 1.09E-07 0.98 

Tween - 20 0.95 0.92 3.72E-07 0.98 

PBDE-47 0.94 0.90 4.22E-09 0.98 

Diflubenzuron 0.83 0.72 3.96E-06 0.92 

Carbaryl  0.79 0.01 1.59E-06 0.72 

Propoxur 0.79 0.01 1.59E-06 0.72 

Resmethrin 0.73 0.95 8.75E-07 0.99 

Bifenthrin 0.73 0.95 8.75E-07 0.99 

Isopropyl-N-phenylcarbamate 0.73 0.03 1.64E-06 0.70 

1-Naphthaleneacetic acid 0.60 0.88 2.01E-07 0.99 

Phosphoric acid triphenyl ester 0.59 0.91 4.22E-09 0.96 

2,4,5-Trichlorophenoxyacetic acid, isopropyl ester 0.56 0.89 2.91E-07 0.99 

2hydroxybenzothiazole 0.54 0.96 5.33E-06 0.99 

Captan 0.52 0.99 1.31E-08 0.99 

Chloranocryl 0.49 0.00 1.49E-06 0.83 

Ziram 0.49 0.96 2.62E-09 0.99 

trans-Cypermethrin 0.46 0.98 5.07E-08 0.99 

cis-cypermethrin 0.45 0.88 2.95E-06 0.98 

Pyrovatex CP 0.41 0.96 8.17E-08 0.99 

2,4,5-trichlorophenol  0.39 0.75 1.38E-06 0.95 

2,4-Dichlorophenoxyacetic acid, isopropyl ester 0.39 0.39 4.09E-06 0.90 

Dichlone  0.38 0.94 9.20E-09 0.97 

Chloranil 0.36 0.89 3.07E-07 0.97 

n-dodecyl phosphoric acid 0.36 0.92 8.72E-06 0.90 

Methoxychlor  0.33 0.98 3.33E-07 0.99 

Finasteride 0.29 0.91 4.11E-07 0.97 

Malathion 0.28 0.97 1.19E-08 1.00 

Heptachlor 0.28 0.91 1.83E-07 0.99 

Simetryn 0.28 0.89 9.72E-09 0.97 

Ferbam  0.26 0.95 1.36E-09 0.98 

Methamidophos 0.24 0.96 3.71E-09 0.99 

Silvex  0.24 0.88 1.26E-08 0.98 

Tedion  0.23 0.24 1.46E-09 0.88 
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Chemical Max (%) P-value AC50 (M) P-value 

2-Naphthoxyacetic acid 0.16 0.68 5.51E-06 0.79 

4.6-Dinitro-o-cresol  0.16 0.92 8.50E-09 0.98 

Heptachlor epoxide 0.15 0.93 2.56E-08 0.99 

Cyanuric acid 0.13 0.95 2.53E-10 0.95 

Propazine 0.13 0.95 2.53E-10 0.95 

d-(cis/trans)phenothrin 0.13 0.94 8.25E-09 0.99 

Ametryn 0.13 0.96 4.88E-09 0.98 

Diphenylacetonitrile 0.11 0.08 9.49E-07 0.40 

2,4-D  0.11 0.03 1.02E-08 0.37 

2,4,5-T 0.11 0.03 1.02E-08 0.37 

Atrazine  0.11 0.99 2.67E-08 1.00 

Simazine  0.11 0.99 2.67E-08 1.00 

Chlorpyrifos oxon  0.10 0.06 4.59E-08 0.82 

2-diethylamino-6-methylpyrimidin-4-ol 0.10 0.06 4.59E-08 0.82 

Des-N-isopropyl isophenphos 0.10 0.08 6.83E-08 0.72 

Tributyl (2,4-dichlorobenzyl)phosphonium chloride 0.10 0.08 6.83E-08 0.72 

Tributyl phosphorotrithioite 0.10 0.08 6.83E-08 0.72 

Rotenone 0.10 0.99 4.08E-09 1.00 

Carbophenothion 0.10 0.02 3.76E-07 0.96 

Paraquat dichloride 0.08 0.04 1.26E-07 0.74 

Metam sodium  0.08 0.16 4.71E-07 0.85 

DNBP 0.08 0.07 1.67E-08 0.90 

o-Chlorophenoxyaceric acid  0.08 0.89 4.62E-10 0.96 

Diazinon  0.07 0.98 3.30E-07 1.00 

o,o-diethylthiophosphate 0.07 0.17 9.51E-08 0.38 

Methidathion 0.07 0.17 9.51E-08 0.38 

p,p-DDT 0.06 0.13 1.48E-10 0.90 

Bromacil 0.06 0.18 1.21E-07 0.58 

BHT 0.06 0.25 1.18E-08 0.73 

Phenoxyacetic acid 0.05 0.98 2.92E-09 0.99 

2-methoxy-3,5,6-trichloropyridine 0.05 0.32 2.50E-08 0.88 

Parathion 0.05 0.32 2.50E-08 0.88 

Endrin  0.05 0.38 1.04E-07 0.55 

DDVP  0.05 0.29 7.69E-08 0.62 

Fluoxetine HCl 0.04 0.48 9.80E-09 0.23 

Pentachlorophenol  0.03 0.60 3.69E-10 0.81 

Oxyfluorfen 0.02 0.71 9.33E-10 0.87 

Pyrethrum2 0.01 0.87 3.38E-07 0.98 

Clomipramine 0.00 0.95 1.20E-07 0.48 

Gibberellic acid 0.00 0.95 3.93E-10 0.73 

Molinate  -0.01 0.84 1.24E-07 0.77 

Maleic acid hydrazide -0.03 0.51 1.43E-07 0.83 
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Chemical Max (%) P-value AC50 (M) P-value 

Nabam  -0.03 0.57 2.55E-07 0.84 

Cyanazine -0.04 0.17 6.51E-09 0.04 

Terbutryn -0.04 0.17 6.51E-09 0.04 

Prometon -0.04 0.17 6.51E-09 0.04 

2-chloro-4,6-diamino-s-triazine -0.04 0.17 6.51E-09 0.04 

Chemicals not listed were either: cytotoxic, model did not converge, or AC50 >10µM 
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Supplemental Table 2.3: Hill function parameters for antagonist screen  
Chemical Min P-value Max P-value AC50 P-value 

2-(4-chlorophenyl)-benzothiazole 106.88 8.76E-09 432.84 1.22E-13 4.26E-06 0.001 

3,4,4'-trichlorocarbanilide 103.14 3.00E-09 219.70 3.29E-10 9.30E-07 0.007 

Isopropyl-N-phenylcarbamate 98.19 1.23E-13 124.07 2.08E-11 9.09E-07 0.028 

Chloranocryl 98.61 6.15E-12 113.79 1.39E-12 1.15E-07 0.122 

Simetryn 97.80 2.59E-15 104.70 1.28E-15 1.28E-07 0.138 

Isopropyl-N-[m-chlorophenyl]carbamate  99.77 9.84E-14 169.15 1.32E-11 1.43E-06 0.155 

Diflubenzuron 98.48 4.32E-10 144.36 2.55E-09 7.05E-07 0.268 

2-Phenoxypropionic acid -76.71 9.89E-06 109.71 2.06E-12 3.70E-10 0.303 

3-Indolebutyric acid -76.71 9.89E-06 109.71 2.06E-12 3.70E-10 0.303 

Anthracene 99.93 2.06E-11 133.93 7.03E-10 1.41E-06 0.334 

Fluoxetine HCl 101.49 9.57E-12 119.87 4.27E-10 5.84E-07 0.334 

Thiobencarb 102.53 8.07E-11 112.71 3.02E-11 1.13E-07 0.381 

2-methylheptyl-4,6-dinitrophenyl Crotonate 101.34 6.64E-12 109.01 3.03E-12 9.97E-08 0.392 

2,4,5-trichlorophenol  100.31 1.05E-11 107.64 4.13E-11 3.90E-08 0.405 

Irgasan 99.03 1.29E-08 110.74 6.03E-14 3.56E-06 0.470 

Cyanazine 99.25 7.56E-15 112.68 1.62E-14 2.89E-07 0.481 

1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane 104.03 6.43E-10 115.19 1.90E-09 3.30E-08 0.553 

MCPA  71.50 1.45E-02 99.79 1.34E-08 2.82E-06 0.570 

o,p-DDE 93.36 1.23E-06 111.57 1.12E-15 1.77E-06 0.624 

Benzene hexachloride  92.65 5.98E-11 97.42 8.99E-14 1.36E-08 0.656 

o,o-dimethyl phosphochloridothioate 93.11 2.71E-10 103.43 4.50E-15 3.31E-06 0.658 

BHA 93.28 2.20E-10 108.72 1.89E-10 4.35E-08 0.659 

Pyrethrum1 78.09 2.66E-09 102.09 8.09E-14 2.52E-06 0.672 

DDVP  92.09 2.05E-10 105.89 2.89E-15 3.10E-06 0.672 

2,4-DB 90.46 1.86E-07 104.43 2.27E-15 4.10E-06 0.676 

Dieldrin 29.24 3.29E-02 99.30 5.95E-07 3.62E-10 0.684 

Chlorpyrifos oxon  91.03 2.66E-09 104.39 8.99E-16 3.48E-06 0.718 

n-dodecyl phosphoric acid 99.54 5.87E-11 125.77 2.29E-05 2.89E-06 0.719 

Clofibric acid 99.54 5.87E-11 125.77 2.29E-05 2.89E-06 0.719 

Asana - Chemservice 91.23 8.18E-10 108.20 2.85E-14 3.44E-06 0.726 

Carbaryl  118.79 3.50E-08 85.60 2.05E-01 1.26E-10 0.727 

Siduron 25.17 2.76E-02 199.98 4.77E-10 1.93E-07 0.728 

Heptachlor 94.93 2.86E-08 106.02 5.52E-11 6.83E-07 0.730 

Silvex  93.28 3.58E-11 100.93 9.19E-12 1.56E-07 0.737 

Phenanthrene 98.42 7.39E-13 102.81 3.29E-13 4.98E-08 0.738 

Dalapon 89.13 8.58E-08 110.31 5.46E-14 3.97E-06 0.747 

Methamidophos 96.41 1.50E-11 101.54 5.98E-11 2.43E-07 0.754 

Diuron 91.72 1.03E-07 108.06 5.95E-06 2.73E-07 0.762 

Diazinon  93.00 5.49E-02 106.96 2.04E-14 7.87E-06 0.763 

o-Dichlorobenzene 84.52 1.36E-03 104.73 6.50E-06 2.75E-10 0.774 

Des-N-isopropyl isophenphos oxygen analog 84.65 2.99E-05 102.80 1.66E-13 3.04E-06 0.775 
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Chemical Min P-value Max P-value AC50 P-value 

Trichloroacetic acid 92.92 1.70E-11 104.76 4.18E-11 3.37E-08 0.796 

Fenuron -  96.25 2.18E-11 104.99 7.63E-11 3.21E-08 0.797 

Parathion 97.85 3.26E-06 103.02 9.27E-16 5.00E-06 0.816 

BEHP 66.49 1.15E-01 102.50 1.86E-08 4.47E-06 0.818 

N-cyclohexyl-2-benzothiazyl sulfenamide 40.34 1.82E-03 185.93 9.97E-10 1.63E-07 0.820 

Chloracetic acid 93.39 5.47E-14 100.03 2.64E-15 3.17E-08 0.821 

Terbutryn 89.51 1.02E-06 110.31 3.78E-08 1.23E-08 0.828 

Malathion 87.82 3.63E-06 104.71 1.05E-13 2.15E-06 0.831 

2,3,4,6-Tetrachlorophenol  99.87 1.40E-10 105.54 6.85E-10 3.39E-08 0.831 

Maneb  75.51 1.83E-01 103.57 1.95E-13 3.35E-06 0.832 

Zineb  75.51 1.83E-01 103.57 1.95E-13 3.35E-06 0.832 

2-Naphthoxyacetic acid 57.88 9.61E-05 144.37 1.37E-08 5.00E-08 0.846 

BHT 96.17 8.24E-11 111.63 1.47E-10 2.79E-08 0.853 

Bisphenol A 96.17 8.24E-11 111.63 1.47E-10 2.79E-08 0.853 

Chlorpyrifos  81.62 4.87E-02 103.62 3.66E-16 3.55E-06 0.855 

Phosphoric acid triphenyl ester 74.33 1.00E-04 104.15 1.66E-11 3.92E-06 0.859 

2-diethylamino-6-methylpyrimidin-4-ol 32.92 7.27E-03 164.76 4.30E-09 1.78E-07 0.868 

Bromacil 49.54 2.83E-04 145.76 9.70E-09 1.34E-07 0.869 

o,o-diethylthiophosphate 64.97 3.26E-05 133.56 2.92E-08 2.04E-07 0.870 

Tedion  94.35 4.62E-06 102.77 3.43E-13 4.23E-06 0.876 

Resmethrin 92.63 2.55E-05 101.87 1.02E-09 1.31E-06 0.878 

Thiodan  74.49 6.48E-01 105.60 1.37E-13 6.77E-06 0.880 

Pentachlorophenol  92.19 8.98E-11 103.88 2.20E-10 3.36E-08 0.886 

a-Cypermethrin -2.03 8.42E-01 194.11 6.90E-10 5.70E-08 0.886 

Deltamethrin 42.20 1.20E-03 143.32 1.46E-08 1.97E-07 0.905 

Aldrin 89.12 2.12E-03 97.07 2.62E-13 2.98E-09 0.908 

PBDE-47 103.40 1.09E-11 124.35 4.27E-01 8.73E-06 0.909 

Amgard CJ 95.85 1.19E-06 144.10 1.88E-08 3.51E-08 0.910 

Triclopyr  90.81 1.95E-02 99.14 4.63E-16 5.51E-06 0.915 

Carbophenothion 69.10 6.01E-08 104.91 3.85E-13 3.18E-06 0.919 

Methoxychlor  74.82 8.15E-01 96.95 8.84E-15 8.32E-06 0.923 

Ziram 89.90 5.82E-05 102.09 5.87E-12 4.21E-06 0.929 

Ammelide 79.28 4.07E-06 119.44 7.58E-08 1.66E-07 0.932 

Phenoxyacetic acid 77.12 7.31E-06 128.31 4.73E-08 3.40E-08 0.935 

Clopyralid -1.14 9.12E-01 201.09 5.10E-10 8.79E-09 0.935 

2,4-Dichlorophenoxyacetic acid, butyl ester 95.33 8.19E-08 103.31 2.65E-07 6.03E-09 0.940 

d-(cis/trans)phenothrin 75.49 4.50E-05 98.49 1.11E-12 3.05E-06 0.941 

2hydroxybenzothiazole 85.16 4.28E-01 115.95 5.41E-08 1.97E-09 0.946 

Ametryn 70.59 2.24E-05 131.30 4.90E-08 2.98E-08 0.947 

2,4,5-Trichlorophenoxyacetic acid, isopropyl ester 99.60 3.10E-03 108.23 1.37E-09 5.01E-07 0.952 

Heptachlor epoxide 82.99 7.39E-01 99.29 1.14E-15 7.08E-06 0.954 

Naphthalene 57.05 9.45E-01 149.69 8.58E-01 4.39E-10 0.961 
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Chemical Min P-value Max P-value AC50 P-value 

Cyanuric acid -8.36 9.98E-01 214.17 9.37E-01 6.10E-10 0.963 

Propazine -8.36 9.98E-01 214.17 9.37E-01 6.10E-10 0.963 

Aldicarb 61.45 5.89E-05 133.98 2.93E-08 7.89E-09 0.965 

p,p-DDD 57.63 8.93E-01 110.07 3.19E-14 3.45E-06 0.966 

SDS 88.53 2.84E-06 116.34 1.92E-07 8.31E-07 0.969 

4,4'-Dichloro-a-(trichloromethyl)benzhydrol 75.90 8.75E-01 97.76 2.65E-13 6.81E-06 0.970 

Phosdrin  53.16 9.33E-01 147.76 8.33E-01 1.47E-07 0.974 

p-Dichlorobenzene 84.94 3.16E-06 113.72 1.76E-07 9.95E-09 0.975 

o-Chlorophenoxyaceric acid  96.32 9.20E-06 80.39 9.51E-01 1.19E-07 0.977 

CDEC  73.17 8.17E-01 125.10 7.20E-01 2.16E-07 0.979 

Simazine  73.06 1.74E-05 123.03 1.03E-07 4.80E-09 0.979 

Methidathion 29.82 9.69E-01 173.90 8.27E-01 1.41E-08 0.981 

2-methoxy-3,5,6-trichloropyridine 26.53 9.73E-01 168.29 8.41E-01 4.11E-07 0.982 

Diethyl phosphate 18.52 9.82E-01 201.29 8.11E-01 3.99E-09 0.982 

s-propyl butylethylthiocarbamate 95.85 2.27E-07 107.60 7.05E-08 2.71E-10 0.982 

Pirimiphos - methyl  95.85 2.27E-07 107.60 7.05E-08 2.71E-10 0.982 

Monuron  69.15 2.57E-05 132.25 4.31E-08 9.02E-07 0.983 

6-chloromethyl-4-hydroxy-2-isopropyl pyrimidine 8.38 9.94E-01 203.99 8.64E-01 1.95E-08 0.983 

2,4,5-T 48.03 9.57E-01 181.61 8.43E-01 1.36E-08 0.985 

Diphenylacetonitrile 57.95 9.39E-01 158.32 8.44E-01 2.40E-08 0.985 

Sanmarton 65.24 9.34E-01 145.70 8.63E-01 2.80E-08 0.985 

cis-cypermethrin 65.24 9.34E-01 145.70 8.63E-01 2.80E-08 0.985 

Oxyfluorfen 65.24 9.34E-01 145.70 8.63E-01 2.80E-08 0.985 

p,p-DDE 56.44 9.52E-01 155.67 8.78E-01 6.50E-08 0.985 

4.6-Dinitro-o-cresol  85.16 7.44E-01 114.42 6.65E-01 4.67E-10 0.986 

Pirimiphos - ethyl  40.95 9.62E-01 173.56 8.50E-01 1.92E-08 0.986 

Mecoprop 65.20 9.10E-01 133.84 8.17E-01 1.18E-09 0.986 

3,5,6-trichloro-2-pyridinol 24.30 9.85E-01 190.10 8.89E-01 3.66E-08 0.986 

2-chloro-4-ethylamino-6-amino-s-triazine 65.04 9.09E-01 145.93 8.11E-01 3.34E-08 0.986 

p-Chlorophenoxyaceric acid 40.63 9.97E-01 99.99 1.24E-06 1.27E-07 0.987 

Eptam  70.80 9.28E-01 142.22 8.65E-01 4.39E-08 0.987 

Ferbam  66.49 9.12E-01 136.49 8.30E-01 3.46E-08 0.987 

Tetramethylthiuram disulfide  63.28 9.23E-01 141.77 8.38E-01 2.50E-08 0.987 
Tributyl (2,4-dichlorobenzyl)phosphonium 
chloride 59.91 9.40E-01 154.65 8.54E-01 2.70E-08 0.987 

Tributyl phosphorotrithioite 59.91 9.40E-01 154.65 8.54E-01 2.70E-08 0.987 

Ammeline 71.31 8.90E-01 130.33 8.12E-01 1.96E-08 0.989 

Nabam  91.00 4.19E-01 103.94 3.81E-01 1.87E-08 0.989 

Prometon 64.22 9.13E-01 137.49 8.17E-01 2.56E-09 0.991 

Metam sodium  16.55 9.95E-01 182.19 9.49E-01 1.11E-07 0.993 

Molinate  16.55 9.95E-01 182.19 9.49E-01 1.11E-07 0.993 

Cacodylic acid, Na salt  29.88 9.83E-01 169.35 9.09E-01 2.50E-09 0.994 
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Chemical Min P-value Max P-value AC50 P-value 

Aldoxycarb 65.54 9.30E-01 135.08 8.68E-01 1.31E-08 0.994 

Captan 1.67 1.00E+00 199.45 9.46E-01 3.56E-08 0.995 

Nicotine  90.94 7.31E-01 108.72 7.02E-01 6.22E-08 0.995 

Paraquat dichloride 104.58 5.03E-01 107.25 5.40E-01 1.39E-08 0.996 

Dichlorprop  43.78 9.71E-01 152.83 9.10E-01 2.46E-08 0.997 

Cypermethin (mix of isomers) 74.39 1.64E-07 98.97 4.86E-12 2.94E-06 0.998 

Rotenone 88.28 9.25E-01 103.03 9.36E-01 2.82E-09 0.998 

Chemicals not listed were either: cytotoxic, model did not converge, or AC50 >10µM 
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Supplementary Figure 2.1: Fold-change in reporter activity induced by 1µM dexamethasone 
for different stably transfected clones 
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Supplementary Figure	2.2:	Fold-change in 231GRE reporter activity over 24 passages 
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Abstract 
Over 100,000 individuals were exposed to arsenic-contaminated drinking water in Antofagasta, 
Chile from 1958-1970. To date, very high rates of cancer, lung disease, cardiovascular disease, 
hypertension and other outcomes have been documented in people born during this high 
exposure period. The mechanism by which arsenic causes these health effects is unknown. The 
objective of this study was to investigate the long-term effect of early-life arsenic exposure on 
morning plasma glucocorticoid (GC) levels. Data on lifetime arsenic exposure and plasma GC 
levels were collected from a convenience sample recruited from Antofagasta in 2013 and 2017. 
Participants included 121 individuals born in Antofagasta during the high exposure period and 
129 subjects born elsewhere who are now ages 36-59. Information on self-reported weight, 
height, education, smoking, and other factors were also obtained. Plasma GC levels did not differ 
by in utero arsenic exposure. Cumulative arsenic exposure was associated with decreased GC 
levels. In females, a 20% reduction in GC levels was observed with cumulative arsenic exposure. 
The relationship between cumulative arsenic exposure and adjusted cortisol equivalent values 
was modified by obesity status. GC levels decreased in a dose-dependent manner among non-
obese individuals (p-trend=0.01). This is the first study to investigate the effect of early-life 
arsenic on GC levels in humans. Our work provides preliminary evidence that arsenic may act as 
an endocrine disruptor by altering GC levels. Future studies should assess whether this 
mechanism links other early-life exposures to disease in adulthood. 
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3.1 Introduction 
Millions of people worldwide are exposed to arsenic-contaminated drinking water, including 50 
million in Bangladesh, 30 million in India, 15 million in China, and tens of millions more in 
Europe and South and Central America (Ravenscroft et al., 2009). In the US, approximately 5% 
of all public water systems (2,302 of 43,443) have arsenic concentrations greater than 10 µg/L, 
the current US standard (US EPA, 2000). Arsenic also occurs in foods like apple juice, rice and 
rice products (US FDA, 2011, 2013). Overall, many individuals in the US and worldwide are 
exposed to elevated levels of arsenic through contaminated drinking water and food. 
 
An exposure of this magnitude poses a threat to global public health since chronic arsenic 
ingestion is an established cause of lung, bladder, and skin cancer, and has also been associated 
with skin lesions, cardiovascular disease, hypertension, diabetes, and other conditions (National 
Research Council, 2013). Early-life arsenic exposure is also associated with adverse 
developmental and reproductive outcomes (Farzan et al., 2013). For example, high arsenic 
exposure has been associated with increased risk of infant mortality (Milton et al., 2005; von 
Ehrenstein et al., 2006), spontaneous abortion (Milton et al., 2005), and stillbirth (Rahman et al., 
2010). Furthermore, early-life arsenic exposure has been linked to increased disease risk in 
adulthood. Ecological studies conducted in Northern Chile found that young adults exposed to 
high levels of arsenic in contaminated drinking water in utero and during early childhood had 
higher mortality rates from bronchiectasis (Smith et al., 2006), acute myocardial infarction 
(Yuan et al., 2007), and cancer (Yuan et al., 2010; Smith et al., 2012) than those who were lesser 
exposed or exposed only as adults. Follow-up studies in this population also observed impaired 
lung-function (Dauphiné et al., 2011; Steinmaus et al., 2016) and higher risk of lung and bladder 
cancer (Steinmaus et al., 2014) among individuals with early-life arsenic exposure. These studies 
indicate that early-life exposure may enhance susceptibility to arsenic-related disease.  
 
The biological processes underlying the persistent effects of early-life arsenic exposure are 
largely unknown. Some of the proposed mechanisms include altered epigenetic reprogramming, 
immune modulation, and oxidative stress (Bailey et al., 2016; Vahter, 2008). However, there is 
also increasing evidence that early-life arsenic exposure may disrupt the endocrine system (Sun 
et al., 2016). Prenatal exposure to 50 ppb of arsenic increased plasma glucocorticoid (GC) levels 
2-fold in adult male mice (Martinez et al., 2008). GCs are steroid hormones that have widespread 
effects on the metabolic, cardiovascular, immune, reproductive, and central nervous systems 
(Sapolsky et al., 2000). Secretion of GCs is regulated by the hypothalamic-pituitary-adrenal 
(HPA) axis in a circadian and stress-related manner. Mice prenatally exposed to arsenic also had 
impaired HPA axis regulation and exhibited depressive-like behaviors later in life (Martinez et 
al., 2008; Goggin et al., 2012). Therefore, disrupted GC levels may partially explain associations 
between early-life arsenic exposure and adverse health effects observed in adulthood. 
 
No study thus far has looked at the effect of early-life arsenic exposure on circulating GC levels 
in humans. In fact, only one epidemiologic study has ever examined the effect of arsenic 
exposure on plasma cortisol levels, the endogenous GC present in humans. Women from West 
Bengal, India currently exposed to drinking water containing11-50 µg/L of arsenic had almost 2-
fold higher plasma cortisol levels than women with less that 10 µg/L of exposure (Sinha et al., 
2014). While this study suggests that arsenic may alter cortisol levels in humans, additional 
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epidemiological studies are needed to further evaluate the influence of arsenic exposure on GC 
homeostasis.   
 
For several reasons, Northern Chile is one of the best places in the world to study the human 
health effects of arsenic. This area includes the Atacama Desert, one of the driest places on earth. 
Because it is so dry, there are few water sources and essentially each city has its own single 
water supply. Records on arsenic concentrations in all major water sources in the area are 
available for past decades. Except for the installation of arsenic treatment plants in some areas, 
these concentrations have been remarkably stable over time (Ferreccio et al., 2000). Until 
recently few people consumed bottled water or used water filters. Because there are relatively 
few water sources and because there are good historical records on each, accurate estimates can 
be made of people’s lifetime arsenic exposure, from birth through adulthood, simply by knowing 
the cities in which they have lived. This type of information on lifetime exposure is unique in 
environmental epidemiology. Another unique feature is that the largest city in the area, 
Antofagasta, had a well-documented distinct period of past high exposure. This began in 1958 
when a growing population led to supplementation of the city’s water supply with rivers with 
arsenic concentrations near 800 µg/L, and ended in 1970 when a treatment plant was installed. 
Overall, this resulted in a 13-year period during which over 100,000 people were exposed to 
arsenic concentrations of about 860 µg/L. Since there was no other water source in the city, 
essentially everyone was exposed. This scenario, with its distinct start and stop, large population, 
and good exposure records is unprecedented in environmental epidemiology. This exposure 
situation has provided a rare opportunity to investigate the long-term consequences of early-life 
arsenic exposure. To date, very high rates of cancer, lung disease, cardiovascular disease, 
hypertension and other outcomes have been documented in people born during this high 
exposure period (Hall et al., 2017; Smith et al., 2012; Steinmaus et al., 2014). Evidence from this 
population suggests that early-life arsenic exposure induces persistent alterations that promote 
disease in adulthood.  
 
Here, we present the first study to investigate the effect of early-life arsenic exposure on plasma 
GC levels in humans. We used an exposure situation in Northern Chile to examine the impacts of 
early-life arsenic exposure on GC production in adults. Plasma samples were collected from 250 
adults currently living in Antofagasta and included individuals born in Antofagasta during the 
high exposure period in addition to subjects who were born elsewhere in Chile with lower levels 
of exposure. A rapid and low-cost cell-based bioassay was used to measure differences in plasma 
GC levels between individuals with high versus low early-life arsenic exposure. This exposure 
situation provides a rare opportunity to investigate the long-term consequence of early-life 
arsenic exposure on basal GC levels in adulthood. 
 
3.2 Methods 
3.2.1 Participants 
Participants were a convenience sample of employees from the Antofagasta Hospital and 
University of Antofagasta. Recruitment occurred during two time periods: November 2013-
January 2014 and May-July 2017. A total of 250 participants were included in the study. All 
participants were residents of Antofagasta at the time of recruitment and were of the age where 
they would have been in utero during the 1958-1970 high exposure period in Antofagasta. The 
study consisted of 129 participants who were born in Antofagasta and 121 comparison 
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participants who lived in Antofagasta at the time of recruitment but were born elsewhere and 
moved there after the high exposure period. Exclusion criteria included antibiotic use in the past 
3 months, use of enemas or laxatives more than once per month or use of steroids or 
immunosuppressants. Institutional review boards within the University of California, Berkeley 
and the School of Medicine at the Pontificia Universidad Católica de Chile approved data and 
sample collection for this study.  
 
3.2.2 Data Collection 
Using a standard questionnaire, participants were asked to provide all residences lived in ≥6 
months, water source at each residence (e.g. bottled water, tap), all jobs held ≥6 months, and 
workplace exposures like silica and asbestos. Questions regarding tobacco covered age smoking 
began, periods quit, cigarettes per day, and secondhand smoke. Subjects were asked about height 
and typical weight, all medical conditions and medications, highest education or grade achieved, 
and typical daily water intake currently and 20 years ago. A single fasted blood sample was 
collected in EDTA tubes from each willing participant between the hours of 6:00AM and 
12:00PM. Research personnel recorded blood collection times for all participants. All samples 
were processed on site and frozen at -80˚C for 2-8 weeks before being transported on dry ice to 
the University of California, Berkeley where they were stored until analysis.  
 
3.2.3 Arsenic Exposure 
Arsenic water measurements were obtained for >90% of all subject residences from government 
agencies, water companies, and other sources (Ferreccio et al., 2000). For each subject, city of 
residence was linked to a water arsenic measurement for the years they lived there so that an 
arsenic concentration could be assigned to each year of each subject’s life. High in utero 
exposure was defined as having been born in Antofagasta during the high exposure period. In 
addition, the study included participants that previously lived in other cities in Northern Chile 
that also had arsenic water concentrations ≥10 ug/L in the past. Therefore, lifetime cumulative 
arsenic exposure was calculated for each participant by summing the yearly concentrations. 
Cumulative arsenic exposure categories were defined by quartiles. Sensitivity analyses were also 
conducted to evaluate whether changing exposure cut-offs had any impact on results. 
 
3.2.4 Plasma GC Measurement  
The 231GRE cell-based bioassay that we developed and that is described elsewhere was used to 
measure plasma GC levels (manuscript in submission). Briefly, the MDA-MB-231 cell line was 
stably transfected with a luciferase reporter gene plasmid driven by three copies of a simple 
glucocorticoid-response element. 231GRE cells wereå cultured in Dulbecco’s Modified Eagle 
Medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Atlanta Biologicals) 
at 37°C in an incubator with 5% CO2. Cells were switched to phenol red-free DMEM (Hyclone) 
containing charcoal-dextran FBS (Atlanta Biological) one week prior to luciferase experiments 
to remove interference from hormones present in media. To quantify plasma GC levels, 231GRE 
cells were seeded at 2.7×104 cells/well in white 96-well plates and incubated at 37°C and 
allowed to attach overnight. The next day, media in quadruplicate wells was replaced with 
100µL of diluted human plasma samples (1:20 dilution in hormone-depleted media). A common 
reference plasma sample was included on every plate. Cortisol standards were also included on 
each plate at the following concentrations: 0 (0.1% v/v DMSO only), 1.56, 3.13, 6.25, 12.5, 
25nM. Cells were incubated with plasma treatments for 24 hours at 37°C prior to rinsing with 
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PBS and lysing with 1x cell lysis buffer (Promega). Luciferase activity was measured using a 
Berthold Centro XS3 LB 960 microplate luminometer with automatic injection of Luciferase 
Assay Reagent (Promega). Luciferase production was measured as relative light units (RLUs), 
which are proportional to the degree of glucocorticoid receptor activity. RLUs were adjusted for 
batch and plate effects based on the reference plasma sample since each collection period was 
run separately. Standard curves were used to convert adjusted RLUs to cortisol concentrations. 
Quadruplicate samples were averaged and multiplied by the dilution factor (20) to obtain cortisol 
equivalent values. Intra-assay coefficient of variation (CV) values ranged from 0.7 to 26.3% 
(median: 6.4%). 
 
3.3.5 Statistical Analysis 
Socioeconomic variables were compared between subjects with and without high in utero arsenic 
exposures using Fisher’s exact test. Wilcoxon tests and correlation coefficients were used to 
evaluate differences in unadjusted cortisol equivalent values by sociodemographic variables. 
Males and females were also analyzed separately since cortisol equivalent values differ by sex. 
Cortisol equivalent values were right-skewed and therefore log-transformed for regression 
analyses. Multivariate regression was used to compare differences in mean log-transformed 
cortisol equivalent values across early-life arsenic exposure levels in analyses adjusted for sex, 
age (<50 vs. ≥50 years old), education (≤ high school vs. >high school), obesity (body mass 
index ≥30), time of sample collection (before vs. after 9AM), and study collection period (2013 
vs. 2017). 
 
3.3 Results 
A total of 250 subjects were recruited for the study and included 121 participants (48.4%) with 
high in utero arsenic exposure. Sex, age, collection time, obesity, smoking, education, and 
collection period was not associated with in utero exposure (Table 3.1). Individuals were most 
exposed to arsenic between birth and the age of 10 years (Figure 3.1). Subjects with high 
cumulative exposure were more likely to be older and have less education (Table 3.1). 
Cumulative exposure was also higher in the second study collection period since it included 
older participants.    
 
Table 3.2 lists mean cortisol equivalent values stratified by sociodemographic variables. For all 
subjects combined, lower cortisol equivalent values were associated with later collection time 
(further from 6:00 AM) (p<0.001), higher BMI (p=0.01), and the second study collection period 
(p=0.03). Median cortisol equivalent values were higher for male than female participants (175.5 
vs. 143.9, p<0.001). In the sex-stratified analysis, cortisol equivalent values were inversely 
associated with collection time for both females and males. Cortisol equivalent values were also 
lower among female participants with higher BMI and less education. Age and current smoking 
status were not associated with cortisol equivalent values in all subjects or when stratified by sex. 
 
The relationship between early-life arsenic exposure and log-transformed cortisol equivalent 
values was examined with linear regression (Table 3.3). There was no statistically significant 
difference in cortisol equivalent values between individuals with high versus low in utero arsenic 
exposure, even after adjusting for sex, age, obesity, education, collection time, and study 
collection period. Similar null results were observed in analyses stratified by sex. Interestingly, 
all quartiles of cumulative arsenic exposure were associated with a statistically significant 
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decrease in cortisol equivalent values. After adjusting for potential confounders, there was an 
11.8% decrease in cortisol equivalent values among participants in the highest exposure quartile 
(p=0.05). Cumulative arsenic exposure was also associated with a decreasing trend in cortisol 
equivalent values that was borderline statistically significance (p-trend=0.07). The inverse 
relationship between cumulative arsenic exposure and cortisol equivalent values was stronger in 
females than in males. For example, females in the second and highest quartile of exposure had a 
20.2% (p=0.02) and 21.1% (p=0.02) reduction in plasma cortisol equivalent levels, respectively. 
Decreases in plasma cortisol levels were also observed in male participants with cumulative 
arsenic exposure, but differences were much smaller and not statistically significant. The 
relationship between cumulative arsenic exposure and adjusted cortisol equivalent values was 
also modified by obesity status (p-interaction=0.04). In non-obese individuals, cortisol 
equivalent values decreased in a dose-dependent manner (p-trend=0.01). Similar results were not 
seen in analyses confined to obese participants. 
 
3.4 Discussion 
This study provides the first evidence that early-life arsenic exposure has long-term 
consequences on plasma GC levels in humans. Morning GC levels were measured in adults 
currently living in Antofagasta using a rapid and low-cost cell-based bioassay. Cumulative 
arsenic exposure was associated with decreased GC levels. This association was stronger among 
female and non-obese participants. In females, a 20.1% reduction in plasma GC levels was seen 
with cumulative arsenic expsosure above 1287.9 µg/L-years. Our results demonstrate that 
cumulative arsenic exposure during early-life is associated with decreased morning GC levels in 
adulthood.  
 
Our results for sociodemographic factors and GC levels were consistent with the literature. For 
example, GC levels decreased with sample collection time since peak cortisol secretion occurs 
30 minutes after waking and continue to decline throughout the day (Kirschbaum and 
Hellhammer, 1989). Additionally, plasma GC levels were lower in females possibly due to the 
fact that they produce less cortisol than men (Vierhapper et al., 1998; Zumoff et al., 1974). 
Obesity was also associated with decreased morning GC levels in females suggesting a sex-
dependent effect. This is most likely because obesity influences cortisol metabolism differently 
in males and females. Obesity enhances cortisol metabolism by 5α‐reductase cortisol in both 
males and females (Andrew et al., 1998). However, reactivation of cortisol from cortisone is also 
enhanced in obese males (Andrew et al., 1998).  
 
The decrease in morning GC levels observed among female participants suggests that early-life 
arsenic exposure may have caused long-term or persistent changes in HPA axis regulation that 
lead to a blunting of diurnal cortisol variation (lower in the morning higher in the evening) in 
adulthood. According to the “attenuation hypothesis,” chronic over-activation of the HPA axis 
by long-term and severe exposure to an external stressor eventually down regulates cortisol 
secretion (Gunnar and Vazquez, 2001; Susman, 2006; Trickett et al., 2010). Decreased cortisol 
secretion is an adaptive response to prolonged cortisol exposure, which has deleterious effects on 
brain structures (e.g. hippocampus and frontal cortex) as well as cardiovascular and 
immunological functions (Trickett et al., 2010). Lower morning GC levels have been previously 
linked to both early-life exposures to environmental and social stressors (e.g smoking, lead, 
childhood adversity) and higher levels of cardiovascular risk factors including blood pressure 



	

 57 

(Stroud et al., 2014; Braun et al., 2014; Power et al., 2012; Kuras et al., 2017; Rosmond and 
Björntorp, 2000). Consequently, early-life arsenic exposure may increase the risk of 
cardiovascular disease via altered cortisol secretion and HPA axis regulation. It is unclear why 
associations were observed in females and not men. One possibility is that estrogens influence 
the association between early-life arsenic exposure and GC levels. Estrogen administration has 
been shown to decrease morning cortisol levels (Edwards and Mills, 2008). No study has 
examined the effect of arsenic on estradiol levels, but in utero arsenic exposure increased 
estrogen receptor expression and signaling in the lungs of female mice (Shen et al., 2007). The 
relationship between arsenic, estrogen, and GC levels should be further investigated in this 
population.  
 
These results are inconsistent with the only other study that assessed the relationship between 
arsenic exposure and cortisol. Sinha et al. investigated the effect of low-level arsenic exposure 
(11-50 µg/L) on serum cortisol in females from West Bengal and observed a 2-fold increase in 
serum cortisol levels (Sinha et al., 2014). Thus, differences between the two studies might be 
related to differences in exposure levels (860 vs. 50 µg/L). Another possible reason for these 
contradicting results is that women in West Bengal were currently exposed as adults, whereas 
individuals in Antofagsta were only exposed during early-life. Age at exposure may influence 
the effects of arsenic on cortisol. For example, in utero exposure was not associated with plasma 
GC levels in this study. Cumulative arsenic concentrations capture both intensity and duration of 
exposure, whereas in utero exposure only reflects concentration levels at birth. Since basal 
cortisol patterns develop from the age of 3 until the end of puberty (Netherton et al., 2004; 
Panagiotakopoulos and Neigh, 2014; Watamura et al., 2004), individuals cumulatively exposed 
to arsenic during this critical period may have lasting effects on HPA axis programming. For 
example, women that experienced childhood abuse had decreased basal cortisol levels in 
adulthood, suggesting that early-life exposures can have persistent effects on the HPA axis 
(Heim et al., 2001). Additional studies are needed to better characterize the dose-response 
relationship and to identify critical windows of susceptibility. 
 
Altered GC levels were observed 40-50 years after the exposure period ended, suggesting that 
arsenic has a persistent effect on HPA axis function. The HPA axis is controlled by negative 
feedback mechanisms mediated by the glucocorticoid receptor (GR) (Myers et al., 2012). 
Consequently, epigenetic regulation of the GR gene is a potential mechanism linking early-life 
arsenic exposure to long-term changes in GC levels. Studies have shown that epigenetic marks 
set by early-life exposures at the GR gene locus remain stable throughout life (McGowan et al., 
2009; Radtke et al., 2011). The most commonly studied method of epigenetic regulation is DNA 
methylation. Increased GR methylation has previously been linked to altered cortisol reactivity 
in adulthood (Edelman et al., 2012). Epidemiological studies have also shown that prenatal 
arsenic exposure was associated with increased GR gene methylation in placental tissues 
(Appleton et al., 2017; Cardenas et al., 2015). Therefore, early-life arsenic exposure may alter 
GC levels by increasing GR methylation, but further studies are needed to confirm this 
mechanism. 
 
A dose-dependent decrease in GC levels was also observed with increasing arsenic exposure 
only among non-obese participants. These results may reflect opposing effects of arsenic and 
obesity on 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) the enzyme that converts 
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cortisone to cortisol. Adult mice prenatally exposed to arsenic have decreased 11β-HSD1 gene 
and protein expression (Goggin et al., 2012). Therefore, arsenic may decrease plasma GC levels 
by blocking reactivation of cortisol by 11β-HSD1. This effect is most likely masked in obese 
individuals since obesity is associated with increased 11β-HSD1 expression in adipose tissue 
(Paulsen et al., 2007). Future studies should investigate whether arsenic influences cortisol 
metabolite levels and the implications for human health.  
 
Total GC levels were measured using a cell-based bioassay and could reflect changes in other 
factors present in plasma. For example, arsenic itself has been shown to impair glucocorticoid 
receptor signaling (Gosse et al., 2014; Bodwell et al., 2004; Kaltreider et al., 2001). However, 
arsenic is rapidly excreted following ingestion, has a short half-life in plasma, and all study 
participants lived in Antofagasta during the collection period and were not currently exposed to 
arsenic concentrations in drinking water ≥ 10 ug/L. Therefore, it is unlikely that arsenic present 
in plasma explains observed reductions in GC levels. In a study of 12 healthy human subjects, 
serum GC estimates from the cell-based bioassay were highly correlated with a cortisol enzyme-
linked immunosorbent assay (manuscript in submission). Therefore, GC levels measured in this 
study most likely reflect plasma cortisol concentrations but should be confirmed by other 
analytical techniques such as mass spectrometry.   
 
A limitation of this study was the relatively small sample size, despite including participants 
from both the 2013 and 2017 study collection periods. Similar patterns were seen when study 
collection periods were analyzed separately (data not shown). However, combining the two 
collection periods may have also increased variability and consequently reduced the ability to 
detect differences. Many samples are needed to detect changes in cortisol levels given the high 
amount of inter-individual variability (Almeida et al., 2009). Despite the small sample size, 
statistically significant associations were still observed. Associations between early-life arsenic 
exposure and plasma GC levels should be investigated in a larger sample with adequate 
statistical power.  
 
Confounding is also possible but adjustments for other factors including current smoking status 
and chronic medical conditions (hypertension, diabetes, or cancer) had little impact on results. 
Misclassification of arsenic exposure may have occurred in our study from inaccurate recall of 
residential history or non-water sources of arsenic. However, inaccurate recall of residential 
history is unlikely since individuals usually know where they live. Furthermore, similar results 
were seen with arsenic exposure metrics that incorporated information on drinking water source. 
Arsenic exposure may also occur through food or air, but most food in this population is 
imported from areas with low arsenic water concentrations since climate in the study area is so 
dry. Intra-individual variability in plasma GC levels could also lead to misclassification. Plasma 
samples were collected and analyzed from all subjects using the same protocols. Therefore, the 
resulting bias would most likely be non-differential and towards the null. GC levels were also 
only measured in a single morning plasma sample. Future studies should collect samples that 
capture the diurnal variation of GC levels to better evaluate the effect of early-life arsenic 
exposure on HPA axis regulation. 
 
There could also be possible confounding of cumulative exposure by age. However, age was not 
strongly associated with GC levels, both in all subjects and when stratified by sex. Furthermore, 
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effect sizes changed very little with adjustment for age. For example, the association between the 
highest cumulate arsenic exposure group and GC levels in female participants was β= -0.24 and 
β= -0.23 with and without adjustment for age, respectively. Effects were still present when 
adjusting for age as a continuous variable. Therefore, effects observed with cumulative arsenic 
exposure are unlikely due to age. 
 
Studies examining the relationship between environmental exposures and basal cortisol levels in 
humans remain limited. This work provides preliminary evidence that arsenic may have 
endocrine disrupting effects in humans. The adverse effect of arsenic on endocrine-related 
endpoints should be considered in regulatory standards. Future studies should assess whether GC 
levels mediate the association between early-life arsenic exposure and disease later in life. 
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Tables and Figures 
 
  

Table 3.1: Associations between arsenic exposure and sociodemographic variables 
  Arsenic In Utero  Arsenic Cumulative1 

Variable Category No Yes OR (95% CI)  Low High OR (95% CI) 

Sex Female 56 56 Ref  73 65 Ref 

 Male 73 65 1.23 (0.66, 1.91)  52 60 1.29 (0.76, 2.20) 

         

Age 
 

≤50 years 66 48 Ref  84 30 Ref 

>50 years 63 73 1.59 (0.94, 2.72)  41 95 6.43 (3.60, 11.76) 

         

Obesity BMI <30 83 79 Ref  87 75 Ref 

 BMI ≥30 46 42 1.16 (0.67, 2.03)  38 50 1.52 (0.88, 2.67) 

         

Smoking Non-smoker 88 86 Ref  89 85 Ref 

 Current 41 35 0.87 (0.49, 1.55)  36 40 1.16 (0.65, 2.07) 

         

Education High School or Below 60 71 Ref  52 79 Ref 

 Beyond High School 68 49 0.67 (0.39, 1.14)  72 45 0.42 (0.24, 0.71) 

         

Collection 
Time 

Before 9am 67 59 Ref  60 66 Ref 

 After 9am 62 62 1.14 (0.67, 1.92)  65 59 0.83 (0.49, 1.40) 

         

Collection 
Period 

2013 59 42 Ref  63 38 Ref 

 2017 70 79 1.58 (0.92, 2.73)  62 87 2.32 (1.34, 4.04) 

Abbreviations: BMI, body mass index; Ref, reference group; SD, standard deviation 
1. Cut-off points for low vs. high cumulative exposure was 3584 µg/L (median) 
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Table 3.3: Differences in cortisol equivalents by arsenic exposure levels: linear regression 

Arsenic metric Group Arsenic 
level 

  Unadjusted   Adjusted1 

N β SE % Δ  p  β SE % Δ  p 

In utero2 All No 129          

  Yes 121 -0.04 0.04 -3.6 0.41  -0.01 0.04 -1.0 0.80 

 Females No 73          

  Yes 65 -0.01 0.05 -0.9 0.87  -0.02 0.07 -1.7 0.80 

 Males No 56          

  Yes 56 -0.06 0.07 -5.6 0.40  0.02 0.05 1.7 0.75 

 BMI <30 No 83          

  Yes 79 0.01 0.05 0.5 0.92  0.00 0.05 0.3 0.95 

 BMI ≥30 No 46          

  Yes 42 -0.12 0.07 -11.0 0.12  -0.01 0.07 -1.3 0.85 

             

Cumulative2 All 0 63          

  1 62 -0.13 0.06 -12.1 0.04  -0.08 0.06 -7.3 0.19 

  2 62 -0.13 0.06 -11.9 0.04  -0.06 0.06 -6.1 0.29 

  3 63 -0.13 0.06 -12.5 0.03  -0.13 0.06 -11.8 0.05 

      p-trend 0.04    p-trend 0.07 

 Females 0 27          

  1 25 -0.26 0.10 -23.2 0.01  -0.22 0.10 -20.2 0.02 

  2 34 -0.13 0.09 -12.6 0.14  -0.08 0.10 -7.3 0.41 

  3 26 -0.29 0.10 -24.8 0.00
3  -0.24 0.10 -21.1 0.02 

      p-trend 0.02    p-trend 0.06 

 Males 0 36          

  1 37 -0.04 0.08 -4.1 0.58  0.03 0.07 3.4 0.65 

  2 28 -0.10 0.08 -9.3 0.23  -0.07 0.08 -7.1 0.34 

  3 37 -0.03 0.08 -2.9 0.69  -0.02 0.08 -1.7 0.83 

      p-trend 0.58    p-trend 0.53 

 BMI <30 0 44          

  1 43 -0.13 0.07 -12.0 0.08  -0.07 0.07 -6.4 0.36 

  2 33 -0.16 0.08 -14.8 0.04  -0.12 0.08 -11.2 0.13 

  3 42 -0.19 0.07 -17.4 0.01  -0.22 0.08 -19.7 0.01 

      p-trend 0.01    p-trend 0.01 

 BMI ≥30 0 19          

  1 19 -0.13 0.12 -12.3 0.26  -0.06 0.10 -6.2 0.54 

  2 29 -0.02 0.10 -2.7 0.80  0.03 0.10 3.1 0.75 

  3 21 -0.00 0.11 -0.4 0.97  0.07 0.10 6.8 0.55 

      p-trend 0.78    p-trend 0.39 
Abbreviations: β, difference in mean of log (cortisol equivalent values) between low and high arsenic exposure groups; SE: Standard Error;  
% Δ: percent change in untransformed cortisol equivalents between reference and arsenic exposed group estimated by the formula: 𝑒! − 1 ×100 
1. Adjustments are sex, age (<50 vs. ≥50 years old), obesity, education, collection time (before vs. after 9AM), and study collection period  
2. Arsenic exposure levels are the same as in first table 
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Figure 3.1: Cumulative arsenic exposure by age. Boxplot of cumulative exposure (ug/L-years) 
that occurred during the ages of 0-10, 10-20, and >20 years old.  
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Abstract 
Environmental exposures often occur in complex mixtures and at low concentrations. There is a 
need for improved prediction models that evaluate the toxic effect of simultaneous human 
exposures. Generalized concentration addition (GCA) is a method used to estimate the joint 
effect of receptor ligands that vary in efficacy. GCA models have been successfully applied to 
mixtures of aryl hydrocarbon receptor (AhR) and peroxisome proliferator-activated receptor 
gamma (PPARγ) ligands, each of which can be modeled as a receptor with a single binding site. 
One requirement of GCA is specification of the mathematical form for the dose response curves. 
The glucocorticoid receptor (GR) is a homodimer nuclear receptor that is activated by stress 
hormones (e.g., cortisol) and synthetic glucocorticoids. Here, we evaluated whether GCA could 
be applied to homodimer nuclear receptors, which have two binding sites, to predict the 
combined effect of full GR agonists with partial agonists or competitive antagonists. We 
measured transcriptional activation of GR using a cell-based bioassay. Individual dose response 
curves for dexamethasone (full agonist), prednisolone (full agonist), medroxyprogesterone 17-
acetate (partial agonist), and mifepristone (antagonist) were generated and applied in three 
additivity models, GCA, effect summation (ES), and toxic equivalency factor (TEF), to generate 
response surfaces.  GCA and TEF yielded adequate predictions of the experimental data for two 
full agonists. However, GCA fit experimental data significantly better than ES and TEF for all 
other binary mixtures. This work extends the application of GCA to homodimer nuclear 
receptors and improves prediction accuracy of mixture effects from single chemical dose-
response curves.  
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4.1 Introduction 
Humans are exposed to multiple environmental contaminants and nonchemical stressors on a 
daily basis. The complexity of human exposures poses a challenge to risk assessment, which has 
traditionally evaluated individual chemicals (Carlin et al. 2013). Evaluating single chemicals is 
problematic and underestimates health risk since it does not account for potential mixture effects 
(Kortenkamp and Faust 2018). However, epidemiological studies are limited in their ability to 
assess mixture effects, and it is impractical to test all chemical combinations experimentally 
(Braun et al. 2016; Webster 2018). Consequently, alternative approaches are needed to address 
the mixture problem.  
 
One approach is to predict mixture effects from individual dose-response curves with additivity 
models. This method requires defining a null hypothesis based on an assumed model (Rider et al. 
2018). Independent action is a model traditionally applied to compounds with differing 
mechanisms of action. Alternatively, effect summation (ES) is often used for compounds with 
the same biological target and assumes that the joint effect is equivalent to the sum of the 
individual responses. ES is generally regarded as an inadequate model for evaluating mixtures 
because it allows predictions to exceed response boundaries and is only applicable to chemicals 
with linear dose-response curves (Berenbaum 1989). Concentration addition (CA) is another 
model used for compounds that act via similar mechanism, where the joint effect is estimated by 
the sum of each component scaled by their relative potency, which may in general depend on 
effect level. Silva et al. 2002 demonstrated the ability of CA to predict the additive effect of 
compounds with low potencies. The eight weakly estrogenic compounds tested in their study 
differed in relative potency but had similar dose-response shapes and efficacies, resulting in a 
special case of CA known as toxic equivalency factor (TEF) or relative potency factor (RFP). 
However, CA and TEF cannot be applied to mixtures containing partial agonists since it assumes 
that all compound have the same maximum effect level. 
 
Generalized concentration addition (GCA) addresses this limitation and allows mixture 
components to differ in efficacy (Howard and Webster 2009). Previous work demonstrates that 
GCA can be applied to mixtures of aryl hydrocarbon receptor (AhR) and peroxisome 
proliferator-activated receptor gamma (PPARγ) ligands (Howard et al. 2010; Watt et al. 2016). 
One requirement of GCA is specification of the dose-response function for each component in 
the model. For receptors with a single binding site, such as AhR and PPARγ, a Hill function with 
a coefficient of 1 is used to define the dose-response function. However, a different approach is 
required for receptors with two ligand-binding sites (e.g. homodimers), since the Hill coefficient 
is expected to exceed 1 and violate the invertibility requirement of GCA. For this reason, we 
used a pharmacodynamic concentration-response function that can be applied to receptors that 
homodimerize. 
 
Steroid nuclear receptors are an important class of homodimer receptors that mediate the adverse 
effects of endocrine disrupting chemicals (Maqbool et al. 2016). Steroid receptors translocate 
from the cytoplasm to the nucleus after ligand binding and form homodimers that activate 
transcription. The glucocorticoid receptor (GR) is a steroid nuclear receptor expressed in nearly 
all human tissues and regulates transcription of 10-20% of genes in the human genome (Oakley 
and Cidlowski 2013). Glucocorticoid steroid hormones are endogenous GR ligands secreted in a 
circadian pattern and in response to stress (Biddie et al. 2012). Synthetic glucocorticoids also 
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have been developed as anti-inflammatory and immunosuppressive drugs. The prevalence of 
long-term synthetic glucocorticoid usage in the United States is approximately 1.2% of the 
population (Overman et al. 2013). Environmental compounds, such as heavy metals and 
pesticides, are also capable of binding and modifying GR signaling (Odermatt and Gumy 2008; 
Gulliver 2017). Given the importance of this biological pathway and likelihood of concurrent 
exposure to GR ligands from multiple sources, the mixture effects of GR ligands warrant further 
investigation. 
 
Here, we applied GCA to mixtures of GR ligands using a dose-response function for receptors 
that homodimerize. We used a cell line stably transfected with a glucocorticoid response 
element-dependent luciferase reporter to obtain individual dose-response curves for GR ligands, 
including two full agonists and a partial agonist. We also generated experimental data for binary 
mixtures of GR ligands to evaluate the response surface predictions generated by the GCA, ES 
and TEF additivity models.  
 
4.2 Materials and Methods 
4.2.1 Chemicals 
Dexamethasone (DEX, cat.), prednisolone (PRED), and medroxyprogesterone 17-acetate were 
all purchased from Sigma-Aldrich (St. Louis, MO). 
 
4.2.2 Measurement of GR activity (231GRE) 
The 231GRE cell-based bioassay that we recently developed was used to measure plasma GC 
levels (manuscript in submission). Briefly, the MDA-MB-231 cell line was stably transfected 
with a luciferase reporter gene plasmid driven by three copies of a simple glucocorticoid-
response element. 231GRE cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM; 
Gibco) supplemented with 10% fetal bovine serum (FBS; Atlanta Biologicals) at 37°C in an 
incubator with 5% CO2. Cells were switched to phenol red-free DMEM (Hyclone) containing 
charcoal-dextran FBS (Atlanta Biologicals) one week prior to luciferase experiments to 
minimize interference from hormones present in media. For luciferase experiments, 100µL of 
231GRE cells were seeded at a density of 2.5x104 cells/well in white 96-well plates (Thermo 
Scientific Nunc). The following day, cells were treated, either alone or in combination, with 
DEX (1×10-11-1×10-5M), PRED (1×10-11-10-5M) or MPA (1×10-11-5×10-5M). Concentrations 
tested were nontoxic in the MTT assay (data not shown). Untreated (media only), vehicle 
(DMSO 0.1%) and positive control (100nM DEX) wells were included on every plate. Cells 
were incubated with chemical treatments for 18 hours at 37°C prior to rinsing with PBS and 
lysing with 1x cell lysis buffer (Promega). Luciferase activity was measured using a Berthold 
Centro XS3 LB 960 microplate luminometer with automatic injection of Luciferase Assay 
Reagent (Promega). Luminescence measured in DMSO only wells was averaged and subtracted 
from all values on the plate. Background corrected relative light units (RLUs) were then 
normalized by dividing by luminescence measured in the 100nM dexamethasone positive control 
well. Negative numbers were assigned a value of “0.”  
 
4.2.3 Mathematical models and significance testing 
4.2.3.1 Fitting Individual Dose-Response Functions: We recently derived a dose-response 
function that reflects the pharmacodynamics (PDM) of homodimer nuclear receptors (Webster 
and Schlezinger 2019).  This model assumes a three-step reaction: A+R ⇌ AR ⇌ AR* ⇌ 
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AR**RA. According to this kinetic equation, a ligand (A) reversibly binds its receptor (R) and 
the ligand-receptor complex (AR) undergoes a conformational change (AR*) that allows 
homodimers (AR**RA) to form and induce transcription. For a single ligand, the dose-response 
function is defined by the composite function:  
 

𝜙 = 𝑓! 𝐴 = 𝑔 𝜃! 𝐴      (1a) 

𝜃! 𝐴 =
!!

!
!!

!! !!!

        (1b) 

𝑔 𝜃! = 𝜆 − !
!!
+ !

!!
! + 4

!

    (1c) 

Where KA, 𝛼!, and λ are all positive parameters. KA is a macroscopic equilibrium constant and 
the maximum response for a compound is determined by 𝛼!and λ. A ligand independent scaling 
factor (λ) is included to reflect assay specific variables that influence the measured response (ϕ), 
such as receptor number. Although these parameters are similar to those obtained by a standard 
Hill model, they differ in their derivation. It should also be noted that (1c) is slightly different 
from the equation in Webster and Schlezinger 2019, but is still translatable to the other version 
via a reparameterization without altering the shape of the dose-response function. Comparisons 
were made between homodimer functions and Hill functions fit using the drc R package (Ritz et 
al. 2015).  
 
4.2.3.2 Generalized Concentration Addition (GCA): One requirement of GCA is specification of 
an invertible dose-response function for each ligand in the mixture (Howard and Webster 2009). 
The definition of GCA for two ligands is: 
 

1 = [!]
!!
!! !

+ [!]
!!
!! !

      (2) 

The inverted dose-response functions for ligands A and B are represented by 𝑓!!! 𝜙  and 
𝑓!!! 𝜙 . Substituting the inverse homodimer dose-response function: 
 

𝑓!!! 𝐸 = 𝜃!!! 𝑔!! 𝜙      (3a) 

𝜃 = 𝑔!! 𝜙 =
! !

!

!!!!
       (3b) 

𝐴 = 𝜃!!! 𝜃 = 𝐾!
!

!!!!
      (3c) 

into (4) produces the joint response function of: 

𝐸!"# = 𝑓!" 𝐴 , 𝐵 = 𝑔[𝜃 𝐴,𝐵 ]     (4a) 
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𝜃 𝐴 , 𝐵 =
!!

!
!!

!!!
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!!
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     (4b) 

𝑔 𝜃 = 𝜆 − !
!
+ !

!!
+ 4

!

     (4c) 

With a common λ defined for two compounds that differ in αi and Ki.  
 
4.2.3.3 Toxic Equivalency Factor (TEF): The TEF model assumes that two compounds have 
dose-response curves with parallel slopes and the same efficacy. TEF is a special case of GCA 
only when these two assumptions are valid. For TEF, the joint effect of two ligands was 
predicted using the following equation:   
 

𝐸!"# = 𝑓!" 𝐴 , 𝐵 = 𝑓! 𝐴 + 𝛾 𝐵     (5) 
 
where 𝛾 is the relative potency of compound B compared to the reference compound A based on 
their EC50s obtained by fitting a Hill Function for each compound. DEX was used at the 
reference compound, described by 𝑓! 𝐴 , since it had the highest potency and efficacy of all 
tested GR ligands.  
 
4.2.3.4 Effect Summation (ES): The ES model assumes that the total mixture effect is equivalent 
to the sum of the individual responses. For ES, the joint effect of two ligands was predicted using 
the following equation: 
 

𝐸!" = 𝑓!" 𝐴 , 𝐵 = 𝑓! 𝐴 )+ 𝑓!( 𝐵    (6) 

4.2.3.5 Software and Statistics: The R wireframe() function was used to plot the experimental 
and modeled response surfaces. The nonparametric Wilcoxon rank sum test was used to compare 
the fit of model predictions to experimental data. This test evaluates whether the experimental 
and modeled data come from the same distribution. A p-value<0.05 indicated a statistically 
significant difference between the two distributions. 
 
4.3 Results 
4.3.1 Characterizing Independent Dose-Response Functions 
The 231GRE cell line was treated with GR ligands, and independent dose-response functions 
were fit using the homodimer PDM dose-response function (Figure 4.1). Comparisons were also 
made between the homodimer PDM dose-response function and four-parameter Hill functions fit 
with a Hill coefficient of 1, which assumes a single ligand-binding site (Figure 4.1). Model 
parameters for each compound are listed in Table 4.1. DEX and PRED were both full agonists 
with similar maximum effect levels. MPA was less efficacious than DEX and PRED, 
characterizing this ligand as a partial agonist. The Hill and homodimer models had similar 
RMSE values suggesting that both were comparable. However, the Hill functions were not 
invertible since they all produced Hill coefficients greater than one. The homodimer PDM dose-
response function better characterized the data than the model previously used for receptors with 
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a single ligand-binding site, especially at low concentrations (Figure 4.1). Therefore, the 
homodimer PDM function was used to apply GCA to mixtures of GR ligands.  
 
4.3.2 Full Agonist Mixtures 
Experimental data for activation of GR by two full agonists were generated using binary 
mixtures of DEX and PRED. The experimental dose-response surface for two full agonists are 
show in Figure 4.2A, with the edge of the box reflecting the marginal dose-responses curves of 
DEX and PRED. Comparisons were made between the experimental dose-response surface and 
the joint effects predicted by GCA, TEF, and ES (Figure 4.2B-D). Non-significant p-values in 
the Wilcoxon rank-sum test indicated that GCA (p=0.59) and TEF (p=0.35) fit the experimental 
data reasonably well. However, predictions made by ES were almost significantly different from 
the experimental data (p=0.08). 
 
4.3.3 Full and Partial Agonist Mixtures 
An experimental dose-response surface for a full and partial agonist mixture was generated using 
binary combinations of DEX and MPA (Figure 4.3A). MPA increased the GR response at 
concentrations with lower effect levels. At higher concentrations, where the effect level exceeds 
the efficacy of the partial agonist, MPA antagonizes the effect of DEX. GCA accounts for this 
behavior (Figure 4.3B) and adequately predicted the joint effect of a full and partial agonist 
(p=0.89). However, predictions made by TEF (p=8×10-4) and ES (p=0.05) were a poor fit of the 
experimental data since they did not adjust for antagonism produced by high concentrations of a 
partial agonist (Figure 4.3C, D). 
 
4.4 Discussion  
This study extends the application of GCA to receptors that homodimerize. We demonstrate that 
GCA can be applied to ligands that activate GR, a homodimer nuclear receptor. In order to 
satisfy the requirements of GCA, we used invertible dose-response functions for GR ligands 
based on pharmacodynamic models for homodimer receptors. We found that individual dose-
response data was fit well by the homodimer function. Overall, GCA was the most versatile 
additivity model. It is able to accommodate mixtures containing either a full or partial agonist. 
Given that ligands with submaximal efficacy are common for steroid receptors, our extension of 
GCA to homodimers is an important improvement in the ability to assess and predict the 
activation of steroid receptors by mixtures of ligands.  
 
The dose-response function used to describe receptors that homodimerize is a fundamental 
difference between this study and previous work on GCA. For receptors that bind a single ligand, 
the dose-response relationship can usually be modeled by a Hill function with a Hill coefficient 
of one (Howard et al. 2010; Watt et al. 2016). This function is invertible, thereby satisfying a 
critical requirement of GCA. However, an alternative dose-response function is required for 
ligands of receptors with two binding sites since the Hill coefficient is greater that one, and the 
inverse Hill function produces imaginary numbers when the response values exceed the 
estimated maximum value of a compound (Webster and Schlezinger 2019). GR agonists have 
Hill coefficients greater than 1 since the dose-response function is approximately quadratic at 
low concentrations. Therefore, we applied GCA to mixtures of GR ligands using 
pharmacodynamic models for receptors that homodimerize. The composite dose-response 
function describes binding and activation of the ligand-receptor complex as well as the formation 
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of homodimers from the ligand-receptor monomers. Our model is applicable to multiple 
biological pathways since the glucocorticoid, mineralocorticoid, androgen, and progesterone 
receptors are highly homologous and homodimerize (Wahli and Martinez 1991).  
 
Few studies have applied GCA to ligands of homodimer receptors. Brinkmann et al. 2018 
demonstrated that GCA more accurately predicted the estrogenic effect of mixtures containing 
full and partial agonists than CA. The authors applied GCA using our previous approach that 
assumed a single ligand-binding site for the receptor (Hill function with a Hill coefficient=1). 
Another recent paper also found that GCA, and not CA, predicted the joint effect of binary 
mixtures containing GR full and partial agonists (Medlock Kakaley et al. 2019). However, the 
authors fit dose-response curves using four-parameter Hill functions that had Hill coefficients 
greater than one, thereby violating the invertibility requirement of GCA. While these studies 
highlight the improvement of GCA over CA in predicting the response of mixtures containing 
partial agonists, our approach goes one step further by using a more appropriate function to fit 
dose-response data. The homodimer function met the requirements of GCA and improved 
prediction accuracy of GR ligands, particularly at low doses. This model also provides 
information about the underlying biology of an important ligand-receptor interaction.  
 
Synthetic glucocorticoids were used to test whether GCA adequately predicts mixture effects of 
GR ligands. Nevertheless, this research translates to relevant human exposures. In 2016 the 
number of prescriptions for prednisolone and dexamethasone in the United States exceeded 4 
and 1 million, respectively (Kane, 2018). Furthermore, pharmaceutical glucocorticoids have also 
been detected in wastewater samples worldwide (Schriks et al. 2010; Kolkman et al. 2013; 
Macikova et al. 2014; Suzuki et al. 2015; Jia et al. 2016). Humans also endogenously secrete a 
glucocorticoid called cortisol in response to stress. Hydrocortisone, the synthetic version of 
cortisol, had 15% lower efficacy for GR than dexamethasone and prednisolone when tested in 
Tox21(US EPA 2017 Nov 1). Consequently, the response induced by prescribed glucocorticoids 
could be impaired by high concentrations of circulating cortisol.  
 
There is also evidence that environmental compounds modulate GR activity. Multiple paraben 
compounds and diethylhexyl phthalate have been shown to behave as partial agonists with low 
efficacy (Klopčič et al. 2015; Kolšek et al. 2015). However, the majority of tested environmental 
chemicals antagonize GR activation, some of which include persistent organic pollutants (PCBs, 
PBDEs and organochlorine pesticides), pyrethroids, metals, and bisphenol compounds (Kojima 
et al. 2009; Antunes-Fernandes et al. 2011; Zhang et al. 2016; Zhang et al. 2018; Kojima et al. 
2019). Therefore, future studies should evaluate whether GCA can predict joint effects of GR 
antagonists. Additionally, GCA should be applied to more complex mixtures of GR ligands that 
reflect human exposures. 
 
We used an in vitro bioassay to quantify the amount of GR activation induced by ligand 
mixtures. Our cell line stably expresses a luciferase reporter gene driven by a glucocorticoid 
responsive element, which produces a response that is directly proportional to the amount of GR 
activity. This model allows us to characterize the molecular initiating event (MIE), defined as the 
initial interaction between a chemical and biological target (Ankley et al. 2010). Therefore, 
evaluating mixture effects of MIEs has broad implications for risk assessment. Future work 
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should examine how predictions made by GCA for MIEs, such as homodimer nuclear receptors, 
translate to downstream outcomes along the causal pathway.  
 
In conclusion, this study demonstrates that GCA predicts mixture effects of GR ligands. 
Moreover, our model extends GCA to the broader class of homodimer nuclear receptors (e.g. 
androgen, mineralocorticoid, and progesterone receptors). We also show that at lower 
concentrations, the homodimer function describes the dose-response data of GR ligands better 
than the Hill function previously used for single ligand-binding receptors. Finally, we 
demonstrate that the GCA model for homodimer receptors adequately fit experimental data of 
binary GR ligand mixtures, unlike other commonly used additivity models. Future work should 
evaluate whether GCA can be used to predict mixture effects of pharmaceutical, endogenous, 
and environmental GR ligands on more downstream biological endpoints. Developing prediction 
models that reflect these biological processes not only improves accuracy but also informs risk 
assessment of chemical mixtures.  
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Tables and Figures  
 
Table 4.1: Parameters of the Hill and Homodimer Functions 
  Hill Model  Homodimer Model 
Ligand Max (%) EC50 (M) Coefficient RMSE  λ αA KA RMSE 
DEX 100 9.7×10-9 1.56 14.4  100 0.68 7.0×10-9 18.6 
PRED 92 5.0×10-8 1.47 21.9   0.64 3.4×10-8 23.2 
MPA 31 2.3×10-7 1.24 9.9   0.30 1.1×10-7 9.6 

Abbreviations: EC50, half maximal concentration; RMSE, Root-mean square error 
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Figure 4.1: Dose response analysis of GR activation. Reporter data were generated in 231GRE 
cells treated with Vh (DMSO, 0.1%) or GR ligands for 18 hrs. Dose response data were fit with 
either a Hill function with a Hill coefficient of 1 (dashed) or a pharmacodynamics (PDM) 
homodimer function (solid). Error bars represent SEM from three independent experiments 
(N=3). 
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Figure 4.2: Response surfaces for dexamethasone (DEX) and prednisolone (PRED) 
mixtures. The experimental data (A) was compared to predictions made by the GCA (B), TEF 
(C), and ES (D) models. DEX and PRED concentrations are logarithmic. The experimental data 
surface reflects the mean of three independent experiments. 
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Figure 4.3: Response surfaces for dexamethasone (DEX) and medroxyprogesterone 17-acetate 
(MPA) mixtures. The experimental data (A) was compared to predictions made by the GCA (B), 
TEF (C), and ES (D) models. DEX and MPA concentrations are logarithmic. The experimental 
data surface reflects the mean of three independent experiments. 
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