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Abstract

The subcallosal cingulate (SCC) area is a putative hub in the brain network underlying

depression. Deep brain stimulation (DBS) targeting a particular subregion of SCC,

identified as the intersection of forceps minor (FM), uncinate fasciculus (UCF), cingu-

lum and fronto-striatal fiber bundles, may be critical to a therapeutic response in

patients with severe, treatment-resistant forms of major depressive disorder (MDD).

The pattern and variability of the white matter anatomy and organization within SCC

has not been extensively characterized across individuals. The goal of this study is to

investigate the variability of white matter bundles within the SCC that structurally

connect this region with critical nodes in the depression network. Structural and dif-

fusion data from 100 healthy subjects from the Human Connectome Project data-

base were analyzed. Anatomically defined SCC regions were used as seeds to

perform probabilistic tractography and to estimate the connectivity from the SCC to

subject-specific target areas believed to be involved in the pathology of MDD includ-

ing ventral striatum (VS), UCF, anterior cingulate cortex (ACC), and medial prefrontal

cortex (mPFC). Four distinct areas of connectivity were identified within SCC across

subjects: (a) postero-lateral SCC connectivity to medial temporal regions via UCF,

(b) postero-medial connectivity to VS, (c) superior-medial connectivity to ACC via cin-

gulum bundle, and (d) antero-lateral connectivity to mPFC regions via forceps minor.

Assuming white matter connectivity is critical to therapeutic response, the improved

anatomic understanding of SCC as well as an appreciation of the intersubject variabil-

ity are critical to developing optimized therapeutic targeting for SCC DBS.

K E YWORD S

anatomy, depression, probabilistic Tractography, subcallosal cingulate

1 | INTRODUCTION

The subcallosal cingulate (SCC) area has been strongly implicated in

the pathophysiology of depression (Mayberg, 2009) given its connec-

tivity with brain regions involved in major depressive disorder (MDD)

and its key role in the processing and regulation of emotions (Drevets,

Price, & Furey, 2008). Functional alterations of the SCC have been

found to relate to antidepressant response to treatment (Argyelan

et al., 2016; Drevets, Savitz, & Trimble, 2008). Also, MDD patients

demonstrate increased SCC cerebral blood flow relative to controls

(Mayberg et al., 1999; Seminowicz et al., 2004; Siegle, Carter, &

Thase, 2006) while various somatic and behavioral treatment
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modalities appear to decrease blood flow or glucose metabolism

within the SCC (Dougherty et al., 2003; Goldapple, Segal, Garson, &

Lau, 2004; Kennedy et al., 2007; Mayberg et al., 1999, 2000;

Mottaghy et al., 2002; Nobler et al., 2000, 2001; Pardo et al., 2008;

Wu et al., 1999).

The SCC is the most studied (Choi, Riva-Posse, Gross, &

Mayberg, 2015; Holtzheimer et al., 2012; Lozano et al., 2008, 2011;

Mayberg et al., 2005; Neimat et al., 2008; Puigdemont et al., 2012;

Riva-Posse et al., 2014) deep brain stimulation (DBS) target area for

treatment resistant depression (TRD). Despite growing interest as a

therapeutic target and appreciation of widespread connectivity to the

limbic system, thalamus, hypothalamus, and brainstem nuclei

(Gutman, Holtzheimer, Behrens, Johansen-Berg, & Mayberg, 2009;

Hamani et al., 2011) the internal anatomic organization of this region

is still incompletely defined. In particular, very limited work has been

done to investigate the consistency and variability of white matter

tracts within this region (Johansen-Berg et al., 2007). Connectivity-

based parcellation of SCC has not been investigated or described

across a large cohort of subjects, particularly with a focus on variabil-

ity across individuals.

Understanding the underlying neuroanatomical organization is

likely of clinical importance as well. A number of studies have investi-

gated the potential role of specific axonal pathways in mediating the

anti-depressant effects of DBS. Using a SCC DBS activation model,

the engagement of cortical (ventromedial prefrontal cortex, vmPFC),

sub-cortical (ventral striatum [VS]), and cingulate pathways (cingulum

bundle) has been suggested to be necessary to achieve improved clini-

cal outcomes (Lujan et al., 2013). Comparisons between SCC DBS

responders and nonresponders likewise suggest that when a combina-

tion of subject-specific white matter fibers are within the volume of

activated tissue (forceps minor (FM), uncinate fasciculus (UCF), cingu-

lum bundle (CM) and fronto-striatal fibers), improved clinical outcome

may be expected (Riva-Posse et al., 2014; Tsolaki, Espinoza, &

Pouratian, 2017). A subsequent finer grained analysis suggests that

the direct activation of right CB, left CB, and FM pathways could be

the most likely therapeutic pathways when targeting and stimulating

SCC (Howell et al., 2019). In another study, the “best” overall

response to SCC DBS was associated with structural connectivity to

bilateral ventromedial frontal cortex (via UCF and FM) and cingulate

cortex (via cingulum bundle) (Choi et al., 2015). As proof of impor-

tance of using subject-specific mapping, a recent pilot SCC DBS study

explored the value of individualized, patient-specific, deterministic

tractography targeting of SCC (Riva-Posse et al., 2018). While the rel-

ative importance of individual tracts remains to be defined, taken

together these studies highlight the importance of better defining the

internal white matter anatomy of the SCC and its interindividual vari-

ability more systematically, in order to define both the need for

subject-specific mapping and to develop improved methods for

selecting therapeutic targets within SCC.

The connectivity of SCC to these distant regions is relevant as

these other regions have likewise been implicated in depression. FM

contains axonal projections to the lateral and medial prefrontal cortex

(mPFC) through the anterior corpus callosum, forming part of the

fronto-limbic circuitry that may assist in regulating depressive symp-

toms (Johnstone, van Reekum, Urry, Kalin, & Davidson, 2007; Phillips,

2003). Cingulum bundle represents a major association fiber tract of

the limbic-cortical networks involved in depression (Mayberg, 2003).

It forms a distinctive white matter tract that appears to almost encir-

cle the corpus callosum and enter the temporal lobe. It consists of

three different subdivisions: parahippocampal, retrosplenial, and sub-

genual that occupy different medial–lateral locations (Jones,

Christiansen, Chapman, & Aggleton, 2013). The VS has a prominent

role in the reward processing pathway and maintains connectivity

with other emotion generators and regions associated with the antici-

pation and receipt of monetary or social rewards (Izuma, Saito, &

Sadato, 2008). This network is related to abnormalities in hedonic

tone and motivation (Nestler et al., 2002), which are key features of

depression. UCF is the largest white matter association tract con-

necting the prefrontal cortex and the mesial temporal lobe (Olson,

Der, Alm, & Vyas, 2015; Simmonds, Hallquist, Asato, & Luna, 2014;

Von Der Heide, Skipper, Klobusicky, & Olson, 2013) and it is charac-

terized by reduced white matter integrity in the subgenual stem in

depression (Bhatia, Henderson, Hsu, & Yim, 2018).

Given the role of SCC in a dense neural network of high rele-

vance to the clinical and behavioral manifestations of MDD, under-

standing the neuroanatomy of white matter pathways within SCC is

important. This anatomic understanding of variability will provide a

key framework for informing our understanding of this critical brain

region as well as potentially provide a critical reference for the design

of future clinical trials. Importantly, we remain agnostic about the

clinical relevance of each pathway and believe that our functional

understanding will evolve with further clinical trials and experience.

The goal of this study is to characterize the underlying pattern and

interindividual variability of white matter pathways within SCC with

an eye toward the relevance of this anatomy for individualized DBS

targeting for simultaneous engagement of multiple white matter

pathways.

2 | METHODS

2.1 | Imaging data

An informed consent form was obtained from all subjects. Each sub-

ject underwent MR imaging using a multi-slice spin-echo sequence

with multi-band where each gradient table included approximately

90 diffusion-weighted directions plus 6 b0 acquisitions interspersed

within each run (field of view (FOV) = 210 × 180 × 138 mm3,

b value = 0, 1,000, 2,000, 3,000 s/mm2, voxel size = 1.25 × 1.25 ×

1.25 mm3, repetition time/echo time = 5,520/289.5 ms, flip angle

(FA) = 78�, refocusing flip angle (rFA) = 160�, Bandwidth (BW) =

1,488 Hz per pixel, multiband factor = 3, echo spacing (ES) = 0.78 ms,

and gradient strength = 100 mT/m) and a high resolution, motion

corrected multi-echo MPRAGE T1-weighted sequence (TEs/TR =

2.14/2400 ms, TI = 1,000 ms, FA = 8�, FOV = 180 × 224 × 224 mm3,

voxel size = 0.7 × 0.7 × 0.7 mm3). The preprocessed data with respect
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to image distortion correction and registration to common structural

space were used from the HCP database.

2.2 | Definition of seed and target areas

SCC seed: Anatomical SCC seed regions were initially defined as

5 × 5 × 5 voxel ROIs centered at x = ±6, y = +26, z = −10 (Gutman

et al., 2009) in MNI152 (2 mm) standard space in the left and right

hemisphere as center points. The expanded ROI (5 × 5 × 5 voxels)

was chosen to be purposefully generous and inclusive of the region

described as SCC in the literature to account for interindividual ana-

tomic variability in subsequent steps of analysis. These standard space

masks were then transformed into the common structural space of

the HCP dataset using the nonlinear transformation files provided by

HCP (standard2acpc_dc) and nearest neighbor interpolation.

Subject-specific regions of interest: Using the atlas-defined left and

right SCC seeds (Gutman et al., 2009), probabilistic tractography was

performed with FDT in each subject's high-resolution T1 space

(Behrens et al., 2003). Tractography parameters included 5,000 sam-

ples, 0.2 curvature threshold, loopcheck termination, 2,000 maximum

number of steps, 0.5 mm step length and 0.01 subsidiary fiber fraction

threshold using a whole brain target, and cerebrospinal fluid as an

exclusion mask (80% threshold based on the maximum intensity value

of the whole brain map). The whole brain tract map was then trans-

formed to MNI152 space using nonlinear transformations provided by

HCP (acpc_dc2standard) and nearest neighbor interpolation. To

reduce the false positive connectivity voxels of the transformed maps,

a low threshold (500) was applied in order to keep only those voxels

with at least 500 streamlines from SCC.

Subject-specific white matter pathways were defined in a semi-

automated fashion, using methods previously described (Tsolaki et al.,

2017). For each tract or target region, we predefined larger regions of

interest (illustrated in blue in Figure 1, Table 1). We then evaluated

where each individual's whole brain SCC tract map intersected with

these extended areas of interest in order to define subject-specific

projection targets (illustrated in yellow in Figure 1). For each anatomi-

cally defined target, the coordinates of the voxel with maximum inten-

sity value in the target area were used as a center point to create

each subject-specific target mask (mPFC: 5 × 5 × 5 voxel ROI, ACC:

5 × 5 × 5 voxel ROI, UCF = 2 × 2 × 2 voxel ROI and VS: voxel ROI in

MNI_152 (2 mm); Figure 1iii).

2.3 | SCC to target probabilistic tractography

Using the same tractography parameters described above, probabilis-

tic tractography was performed to estimate the ipsilateral connectivity

from left and right SCC to VS, UCF, and ACC termination regions in

both hemispheres, and to the left and right mPFC termination regions

separately (SCC-to-mPFC connections include association as well as

commissural pathways via the forceps minor). Each target mask was

defined as a waypoint mask in order to discard tracts that do not pass

through the target, a termination mask in order to terminate the path-

ways as soon as they enter the termination mask, and a classification

mask in order to quantify connectivity values between the seed and

target mask (Behrens et al., 2003).

To find the average SCC connectivity to each target region, each

subject's probabilistic SCC map for each target was first registered

nonlinearly to MNI152 space (acpc_dc2standard, nearest neighbor

interpolation) and then divided by the total number of streamlines

that were sent out from the seed. Finally, since the goal was to delin-

eate the existence of connectivity between SCC and the targets with-

out considering the strength of the connectivity, each SCC

probabilistic map was normalized to have values between zero and

one. An average probabilistic map for each target was then created

across subjects. Finally, average SCC connectivity tracts to each target

region were calculated across subjects. First, each tract map was

divided by the total number of streamlines generated from the seed

area and binarized at 0.005 threshold. Then the average fiber pathway

to each target was calculated across all subjects.

2.4 | Defining the variability of the “tractography
optimized target”

We define the “tractography optimized target” (TOT) within SCC as

the subregion with the highest joint probability of connectivity with

all four target areas (Tsolaki et al., 2017). First, the SCC probability

maps for each target were smoothed using a Gaussian kernel (2 mm),

multiplied on a voxel-by-voxel basis and then high pass filtered in

order to include only voxels with probability higher than 10% of the

maximum joint probability value. The voxel within TOT with the maxi-

mum joint probability of connectivity to all targets (TOT_Max) was

identified in each subject.

2.5 | Statistical analysis

The variability in the spatial distributions of the voxel within SCC with

maximum connectivity with each target was both visually and quanti-

tatively assessed. Since the distributions were not symmetrical, the

nonparametric Wilcoxon Signed-Rank test was used to assess

pairwise differences in the distributions along each axis. The null

hypothesis was that the difference between the pairs follows a sym-

metric distribution around zero. To correct for multiple comparisons,

the Bonferroni correction was applied. The same approach was

followed to evaluate the difference between the TOT_Max and the

voxel with maximum probability of connectivity with each target

within SCC.

3 | RESULTS

To evaluate the population-level probability of connectivity of each

voxel in SCC to each of the four targets, we calculated voxel-by-voxel
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averages of target-specific probabilities across subjects in MNI space

(Figure 2). For reference, the distribution of subject-specific target

coordinates used for SCC mapping and segmentation are illustrated in

Figure S1, highlighting variability in the target region between sub-

jects and the rationale of using subject-specific targets. Four different

connectivity patterns were identified in the group-level SCC segmen-

tation maps for each target, with the voxels with highest probability

of connectivity (probability >.8) delineated in yellow (Figure 2). Four

patterns emerged: (a) SCC-UCF fibers are in the posterior-lateral area

of the anatomically-defined SCC (b) SCC-VS fibers are also observed

posteriorly, but more medially than SCC-UCF (c) SCC-ACC fibers orig-

inate in the superior-medial region of SCC (d) SCC-mPFC fibers center

anteriolaterally. The voxels corresponding to the maximum probability

of connectivity to each target are detailed in Table 2.

F IGURE 1 Subject-specific target identification. (i) The SCC (red masks) connectivity with the whole brain was delineated (green map). (ii) The
major fiber pathways of forceps minor, uncinate fasciculus, cingulum and fronto-striatal bundles were identified to the resulted whole brain
tractography map. Then, using predefined anatomical areas (blue masks) as identified by a neurosurgeon, that correspond to extended UCF, VS,
ACC, and mPFC areas, the termination area of each fiber was determined to each predefined anatomical region. (iii) To each predefined area, the
maximum intensity value of the voxel with the highest probability of connectivity within the area was determined and was used as center point to
create subject-specific targets masks (yellow masks)

2008 TSOLAKI ET AL.



While the analyses displayed in Figure 2 illustrate the voxel-by-

voxel distribution of connectivity probabilities to each of the four tar-

gets averaged across subjects, further analyses were conducted to

assess the intersubject variability in the spatial distribution of proba-

bilities (Figure 3). For each subject, we identified the voxel (in MNI

space) with the maximum probability of connectivity and plotted his-

tograms for each of the four targets (Figure 3). For example, for SCC-

UCF, more than 80% of subjects were found to have maximum con-

nectivity to UCF in the lateral aspect of SCC. The same pattern of

skewness was observed in the SCC-mPFC maps for both hemi-

spheres, with most subjects showing maximum connectivity in the lat-

eral aspects of SCC. However, maximal mPFC connectivity was more

frequently superior and anterior compared to the connectivity to the

UCF target, where the SCC-UCF fibers were found in posterior

regions of SCC. It is noteworthy that no single MNI coordinate

accounted for more than 60% of the connectivity to any target across

subjects. The average SCC tracts to each target for a single subject

and across all the subjects are illustrated in Figure S2.

Although the TOT requires further clinical validation, we evalu-

ated its variability as well. First, for each subject, we determined a

voxel-wise joint probability of connectivity with all four targets and

mapped these across subjects (Figure 4a). The voxels with the highest

probability of joint connectivity were found in superior-lateral parts of

SCC in left hemisphere and in superior but more medial parts of SCC

in right hemisphere. To evaluate intersubject variability, we evaluated

the TOT_max, or the single voxel (in MNI space) for each subject with

the highest joint probability of connectivity with all four targets

(Figure 4a, red-yellow overlay). The distribution of TOT_max voxels

along the x, y, and z axes are depicted in Figure 4b. Along the

X dimension, approximately 80 subjects were found to have TOT_max

in the lateral region of SCC. Compared to the left hemisphere,

TOT_Max was more medial in the right hemisphere. Along the z axis,

the majority of subjects had maximum TOT connectivity in the supe-

rior part of SCC bilaterally (MNI coordinates: X-axis left/right hemi-

sphere: mean = 99.1/83.0, SD = 0.7/1.1, median = 99.0/83.0, Y-axis

left/right hemisphere mean = 152.3/152.9, SD = 2.0/1.9, median =

153.0/153.0, Z-axis left/right hemisphere mean = 64.8/64.9, SD =

1.1/1.3, median = 65.0/65.0). TOT_Max is located near the mean

coordinates of the voxels with maximum connectivity within SCC

(Table 3).

The spatial distributions of the voxel with maximum probability of

connectivity to each of the four targets along the each x, y, and z axes

were nearly all statistically different (p <.0001, Table 4). Only few pair

comparisons failed to reject null hypothesis. Specifically, along the x

axis, the comparison between SCC-UCF and SCC-mPFC in bilateral

hemispheres (Z = −2.054, p = .040) and between SCC-mPFC_L and

SCC-mPFC_R on the left hemisphere (Z = −5.44, p = .587) did not

show significant differences. Along the y axis, right hemisphere SCC-

UCF and SCC-VS (Z = −.442, p = .658) spatial distributions also did

not differ. Finally, along the z axis, the comparison between SCC-ACC

and SCC-mPFC_R were not significantly different in both hemispheres

(left: Z = −.053, p = .958, right: Z = −.053, p = .958).

The same approach was followed to evaluate the difference

between TOT_Max and SCC distributions for each target, demonstrat-

ing significant differences for all four targets for both hemispheres

along the x axis (p <.00001). Along the y axis, the comparison between

TOT_Max and SCC connectivity distributions to UCF, VS, and contra-

lateral mPFC targets for both hemispheres rejected the hull hypothe-

sis (p <.00001). Finally, the TOT_Max distribution along the z axis was

significantly different compared to SCC connectivity distributions to

UCF and VS and contralateral mPFC targets for both hemispheres.

The Box plots (Figure 5) illustrate the pattern of symmetry across

hemispheres and the degree of dispersion of each SCC and TOT_Max

connectivity distribution. Of note, TOT_Max appears to be centered

in the x-dimension, while being within or near the hotspots for mPFC

and ACC in the y dimension and mPFC in the z dimension.

4 | DISCUSSION

In most but not all individuals, we identified four relatively subregions

within the SCC, each with distinct connectivity patterns: a posterior-

lateral region with connectivity to UCF, a posterior-medial region with

connectivity to VS, a superior-medial region with connectivity to ACC

and an anterior-lateral region with connectivity to mPFC. Characteri-

zation of the local architecture of SCC is important as it has been

described as having significant variability and lacks clear anatomical

landmarks that can be identified with routine in vivo structural/ana-

tomic imaging (Riva-Posse et al., 2018). Previous studies were

restricted to delineation of the structural connectivity of SCC with the

whole brain (Gutman et al., 2009) or investigated the connectivity of

SCC with areas with functional changes after DBS treatment

(Johansen-Berg et al., 2007) without examining different connectivity

patterns of subregions within the SCC. In this study, using data from

TABLE 1 The range of X, Y, and Z
coordinate locations for each predefined
region-of-interest

UCF VS ACC mPFC

L R L R L R L R

X −24:20 20:24 −8:−16 16:8 −2:−12 12:2 −6:−26 26:6

Y 12:16 12:16 6:12 6:12 22:34 22:34 44:56 44:56

Z −16:−12 −16:−12 −12:−8 −12:−8 8:24 8:24 −12:4 −12:4

Note: The range of X, Y, and Z coordinate locations for each predefined region-of-interest (ROI) chosen

based on termination points of the forceps minor, uncinate fasciculus, cingulum and fronto-striatal fiber

bundles in MNI 152 standard space.
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F IGURE 2 Legend on next page.

2010 TSOLAKI ET AL.



F IGURE 2 Average SCC probabilistic maps and distribution of connectivity across subjects. To calculate the average SCC probabilistic map to
each target, first each SCC map was divided by the total number of streamlines that were sent out from the seed and then normalized to have
values between zero and one in order to highlight the connectivity to the target area. Finally, to evaluate the population-level probability of
connectivity of each voxel in SCC to each of the four targets, we calculated voxel-by-voxel averages of target-specific probabilities across the
100 subjects in MNI space The resulted SCC topographic maps to UCF, VS, ACC, and mPFC presented distinct connectivity patterns to each
target. SCC-UCF map's region that sent out the maximum number of streamlines was found in the posterior-lateral area of SCC. SCC-VS fibers
were also observed posteriorly, but more medially compared to SCC-UCF map. SCC-ACC fibers originated in the superior-medial region of SCC,
while SCC-mPFC fibers centered anterolaterally. The voxels (yellow color) of SCC maps with higher probability of connectivity (probability >.8) to
UCF, VS, ACC and mPFC were overlaid on the segmentation maps

TABLE 2 Coordinates of voxels within SCC average maps that presented maximum probability of connectivity to each target

UCF VS ACC mPFC R mPFC L

L R L R L R L R L R

X −10 10 −8 5 −8 5 −10 10 −10 10

Y 22 22 22 22 27 26 26 30 27 30

Z −8 −9 −9 −8 −6 −6 −6 −6 −6 −6

Note: MNI152 coordinates of the voxels within average SCC probabilistic maps to UCF, VS, ACC, and mPFC that sent out the maximum number of fibers

to each ROI.

F IGURE 3 Distribution of maximum SCC connectivity across subjects. X, Y, and Z coordinates of maximum connectivity voxel within SCC
probabilistic maps: The histogram distribution displayed differences in SCC probabilistic maps (blue histograms) to each target. Across subjects
the areas within SCC with the maximum number of streamlines were found posterior-lateral for SCC-UCF, posterior-medial for SCC-VS, superior-
medial for SCC-ACC map, and anterior-lateral for SCC-mPFC maps

TSOLAKI ET AL. 2011



the Human Connectome Project, we provide a more comprehensive

group-level characterization of the general patterns of connectivity of

SCC to areas critical to depression (Riva-Posse et al., 2014). Impor-

tantly, there is a symmetry across hemispheres of the location of max-

imum SCC connectivity for most targets with the exception of ACC

and mPFC targets. This asymmetry may be due to higher intrinsic vari-

ability of connectivity of these areas since these tracts are responsible

for the most variability in targeting.

Despite some consistency in the patterns of white matter con-

nectivity in SCC, perhaps equally important is the variability of the

underlying anatomy. The voxel within SCC with maximum connectiv-

ity to each target varied with a standard deviation of 1–3 mm across

subjects (Table 3). Furthermore, not a single voxel in MNI space

accounted for more than 60% of the connectivity for any target. This

variability highlights differences in interindividual anatomy and poten-

tially can have important implications for therapeutic translation. The

long-tailed distributions and the difference of SCC connectivity pat-

tern between the hemispheres suggest an inherent sensitivity of spa-

tial positioning with the proposed model of targeting.

The findings of the current study are of potential clinical interest

in refining the targeting for SCC DBS. Despite the promising results of

SCC DBS, the best stimulation target within SCC is still an open issue

that requires further investigation. In the first open label studies, the

most efficacious targets were localized to the gray-white matter junc-

tion close to Broadman area 25 (Lozano et al., 2008, 2011; Mayberg

et al., 2005). Studies trying to associate the anatomical position of the

lead placement with effective clinical outcome found no differences

between responders and nonresponders (Hamani et al., 2009; Lozano

F IGURE 4 Tractography optimized target and distribution of connectivity across subjects. (a) TOT Average Probabilistic Map: The TOT maps
present highest probability of connectivity within the superior-lateral parts of SCC with a variability between 1 and 8 mm along the y axis. The
voxels (red-yellow color) with higher probability of connectivity within TOT (TOT_Max) were overlaid on the average TOT maps. (b)The
distribution of the coordinates of the voxels within TOT that presented maximum connectivity to all four subject-specific targets (red histograms)
(TOT Max) presented the variance on the coordinates within the hot-spot area. The distribution showed that the majority of the subjects
presented TOT_Max within the superior-lateral (left hemisphere) and medial (right hemisphere) parts of SCC

TABLE 3 Mean X, Y, and Z
coordinates of voxels with maximum
connectivity within SCC probabilistic
maps and within TOT

Coordinates MNI 152

ROI X Y Z

Left hemisphere UCF 100.3 ± 1.0 148.7 ± 2.5 61.7 ± 3.4

VS 97.1 ± 1.5 148.3 ± 1.6 63.4 ± 1.9

ACC 98.1 ± 1.3 152.6 ± 2.9 66.0 ± 1.0

mPFC R 100.1 ± 2.2 151.9 ± 2.7 65.9 ± 1.6

mPFC L 100.1 ± 1.2 154.8 ± 2.1 64.4 ± 2.8

TOT_Max 99.1 ± 0.7 152.3 ± 2.0 64.8 ± 1.1

Right hemisphere UCF 79.7 ± 0.9 149.0 ± 2.6 61.8 ± 2.4

VS 84.9 ± 1.7 148.7 ± 2.3 63.6 ± 2.6

ACC 84.3 ± 1.4 153.1 ± 2.2 66.5 ± 0.8

mPFC R 80.5 ± 1.2 156.0 ± 1.4 65.3 ± 1.7

mPFC L 81.5 ± 1.9 153.3 ± 2.7 65.9 ± 1.4

TOT_Max 83.0 ± 1.1 152.9 ± 1.9 64.9 ± 1.3

Note: The mean values (standard deviation) of the maximum connectivity voxels was calculated. A

variability between 1 and 3 mm was observed across subjects with respect to the maximum connectivity

area within SCC. For both hemispheres, the TOT is located around the mean values of the X, Y, and Z

coordinates of the voxels of maximum connectivity within SCC.

2012 TSOLAKI ET AL.



et al., 2012). Still, subsequent studies have identified some putative

imaging biomarkers of successful SCC DBS. In one such study the best

stimulation area includes a cluster in the vicinity of the lateral border

of the SCC approximately 7 mm lateral to the midline and 4 mm ven-

tral to the corpus callosum (Merkl et al., 2013). In another, where a

sham controlled discontinuation phase was used, a long-term

response was observed when the stimulation site was closer to

Broadman area 24 (Puigdemont et al., 2015). The results of the cur-

rent study might contribute to the optimization of SCC DBS target

identification based on structural anatomy and connectivity. The cal-

culation of the average TOT maps across subjects highlights that the

TOT, as previously defined, is most often in the superior-lateral and

superior- medial aspects of the SCC. However, the variability that was

observed along the x (right hemisphere) and y (bilaterally) axes sug-

gests that group-level coordinates of hot spots should not be used for

individual targeting since there is a different structural connectivity

pattern based on subject-specific anatomy.

Given the network-basis of depression, the optimal DBS target

likely involves the convergence of white matter tracts implicated in

multiple key disease-related circuits (Accolla et al., 2016; Lujan et al.,

2012; Riva-Posse et al., 2018). However, this tractography approach

has not been validated beyond a single institution (Riva-Posse et al.,

2018) and it is based on iterative deterministic assessments, which is

prone to sampling limitations (Petersen et al., 2016). In the current

study a data-driven automated method for the definition of the TOT

area was used based on probabilistic approach. However, probabilis-

tic tractography is time consuming, its data-driven nature may pro-

vide a better practical approach in delineation of individualized

anatomy over deterministic, tends to capture more disperse trajecto-

ries than deterministic methods and may delineate more functionally

distinct fiber pathways (Behrens et al., 2003). To our knowledge, a

data-driven automated approach to define the optimal target and

provide a tomographic (visual) map to guide targeting does not exist.

This method could be used clinically in an intuitive fashion for DBS

targeting and programming. Finally, an interested follow up study

would be to compare TOT in a blind way with the DBS SCC target

area that was used in other centers and associate the results with

clinical outcome.

TABLE 4 Comparison of the medians of SCC and TOT_Max connectivity distributions along x,y, and z axes

Note: Wilcoxon Signed-Rank test was used to assess whether the medians of SCC and TOT_Max distributions of maximum probabilities to the four targets

along the each x, y, and z axes were different. The results indicated that overall the null hypothesis was rejected indicating that the medians of the pair

distributions were different along the axes for each X, Y, and Z coordinate (p <.0033 after Bonferroni correction). The green cells delineate the pair

comparisons that failed to reject null hypothesis indicating that the two medians were the same. The Z values that correspond to the magnitude of

difference between the medians of the pair distributions are illustrated on the table with blue color. The lighter blue corresponds to larger difference while

darker blue corresponds to smaller difference between the median of the pair distributions.
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Despite having implications for targeting DBS for TRD, the cur-

rent study evaluated healthy subjects from the HCP. While these

are two different populations, we note that while the integrity of

white matter tracts can change with disease (and disease severity),

disease does not eliminate or lead to structural rearrangement of

white matter tracts. Therefore, the overall spatial pattern of white

matter tracts, even in healthy subjects, is still relevant and useful to

study.

The identification of the optimal tracts to be targeted is still under

investigation with studies suggesting involvement of UCF, FM, and

cingulum bundles with improved acute intraoperative behavior

responses (Choi et al., 2015) and direct activation of right CB, left CB,

and FM pathways may be the most likely therapeutic targets for SCC

targets (Howell et al., 2019). The optimal pattern of white matter bun-

dle targeting and stimulation may ultimately depend on the constella-

tion of symptoms. A recent study reported positive results of SCC

DBS in treatment of PTSD, noting that involvement of UCF appears

to have more important role in this disorder than in depression

(Hamani et al., 2020). While further work is needed to define the opti-

mal white matter stimulation pattern, understanding the underlying

anatomy and intersubject variability still informs future approaches to

interventions. In the current study, the use of healthy subjects does

not allow the evaluation of clinical value of each of these white matter

pathways. Future studies should investigate the structural (and func-

tional) SCC connectivity to each target area in association with the

clinical outcome, and also the relationship between functional and

structural SCC connectivity. The reliability of the current results

should be investigated in future studies using cross validation using a

larger sample of subjects.

Regarding the methodology employed for tractography, there is a

controversy regarding which diffusion tractography analytic approach

is more reliable for reproducing known anatomy, with results highly

dependent on data quality, the algorithm selected, and the parameter

settings (Knösche, Anwander, Liptrot, & Dyrby, 2015; Thomas et al.,

F IGURE 5 Box plots of the SCC and TOT_Max connectivity distributions along x,y, and z axes. The Box plots illustrate the pattern of
symmetry and asymmetry across hemispheres and the degree of dispersion of each SCC and TOT_Max connectivity distribution
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2014). Deterministic tractography is a fast approach, but is character-

ized by increased uncertainty in dense areas and is prone to sampling

limitations (Avecillas-Chasin, Alonso-Frech, Parras, del Prado, &

Barcia, 2015). The probabilistic approach on the other hand is compu-

tationally demanding and time intensive compared to deterministic

and it can be more sensitive to nondominant fiber pathways and more

prone to false positives (Johansen-Berg et al., 2007). Probabilistic

tractography considers intravoxel crossing fibers (Behrens, Berg,

Jbabdi, Rushworth, & Woolrich, 2007) and estimates the pathways

that originate at any given seed voxel. For the questions posed here,

the current study shows the specific value of the probabilistic

approach to explore intersubject consistency and variability in subre-

gional white matter anatomy. However, its data-driven nature may

provide a better practical approach in delineation of individualized

anatomy over deterministic, tends to capture more disperse trajecto-

ries than deterministic methods and may delineate more functionally

distinct fiber pathways (Behrens et al., 2003).

5 | CONCLUSIONS

Probabilistic tractography-based parcellation of SCC revealed four dis-

tinct connectivity regions within the SCC, with relative constancy

across individuals but still with notable variability. Understanding the

pattern of fiber organization within SCC is important to understanding

the anatomic organization of the brain as well as advancing therapeu-

tic interventions using network-based approaches. Using patient-

specific methods to define connectivity patterns, as done here, may

be important to understanding the connectivity-based anatomy and

organization of other brain regions.
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