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Analysis of extreme hydrologic events
with Gumbel distributions: marginal
and additive cases

H. A. Loaiciga, R. B. Leipnik

Abstract The importance of the Gumbel probability distribution for the
description of extreme hydrologic events is examined in this article. The key
®ndings of this work are: (1) an iterative method of least squares was developed
and found to be well-suited for the ef®cient ®tting of the two-parameter Gumbel
distribution to hydrologic extremes; (2) negative truncation is necessary to
adequately describe hydrologic minima (non-negative) data, while the standard
Gumbel distribution for maxima is well-suited for modeling extreme (large)
hydrologic events; (3) the distribution function of the sum of two independent
Gumbel variables, of importance in hydrology, has been derived and successfully
applied to spring ¯ow data. Several examples that involve the modeling of
hydrologic extremes are presented and analyzed.

Introduction
The study of extreme hydrologic events has received considerable attention in the
hydrology literature. A signi®cant portion of past research on hydrologic ex-
tremes has focused on the probability distribution of precipitation and stream-
¯ow (National Research Council, 1988; Loaiciga and Marino, 1991). That research
has been largely motivated by the importance of extreme (very large) hydrologic
events in the planning and design of ¯ood control structures. The opposite end of
the spectrum, that is, low values, has also been the subject of long-standing
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interest in hydrology, mostly in association with studies of low-¯ow for water
supply, hydroelectric generation, navigation, and stream habitat support (Lo-
aiciga and Marino, 1988).

The Gumbel distribution (Gumbel, 1958; Galambos, 1978; Leipnik, 1998) has
been proposed, and used, to describe extreme phenomena in various disciplines,
hydrology included. Unlike previous research on the distribution of extremes,
however, this article deals with the sum of two Gumbel variables, either maxima
or minima, rather than with the analysis of a single variable. In hydrology, the
rationale for studying the sum of two Gumbel variables, which are assumed to be
statistically independent herein, is justi®ed on several grounds. For example,
stream¯ow from two rivers, or river basins, may combine to provide water supply
to a single region. Such is the case of the Colorado river (which drains through
seven western states in the United States) and the Sacramento river of California,
whose combined ¯ow determines a signi®cant fraction of the water supply for
agriculture, the environment, and urban centers (Loaiciga et al., 1992a; 1993).
Notice that the stream¯ows in the aforementioned rivers do not physically
combine; yet, water supply on a regional basis is determined by their combined
stream¯ow (California Department of Water Resources, 1998). In this particular
case, the occurrence of simultaneous low ¯ow is of utmost importance given the
regional water supply reliance on combined available stream¯ow. Another rele-
vant situation that involves the sum of hydrologic extremes concerns the con-
¯uence of two rivers whose combined ¯ows creates ¯ood hazards. The
Sacramento and American rivers in northern California illustrate the latter situ-
ation. Other examples are presented below.

The Gumbel distribution has been found to provide excellent goodness-of-®t to
extreme variables in many cases (Loaiciga et al., 1992b). A few examples will be
given below to reaf®rm this argument. Moreover, the distribution function of the
sum of Gumbel variables is more tractable mathematically than those of com-
peting models, such as the log-normal distribution (Leipnik, 1991). Among al-
ternative extreme probability models, the Gumbel distribution has been found by
the authors to be the only one that yields a distribution function for the sum of
two variables which is prone to calculation without excessive computational ef-
fort, as shown below.

The remainder of this article presents evidence to support the choice of the
Gumbel distribution as a suitable model of hydrologic extremes, demonstrates the
mathematical procedure for deriving the distribution function of the sum of two
Gumbel variables (maxima and minima), and provides an application example
that concerns the sum of spring ¯ow maxima. Parameter estimation, data ®tting
and truncation, and computational issues are also examined along the way.

The Gumbel distribution in extreme hydrologic characterization
The Gumbel distribution is a two-parameter model. For maxima, the probability
density function takes the following form:

f �x� � 1

b
eÿ

xÿa
b� � eÿe

ÿ xÿa
b� � ÿ1 � x � 1 �1�

in which a and b are parameters, b > 0. From Eq. (1) the Gumbel distribution
function for maxima is:

P�X � x� � F�x� � eÿe
ÿ xÿa

b� � ÿ1 � x � 1 �2�
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The Gumbel probability density function for minima is given by the following
expression:

g�x� � 1

b
e

xÿa
b� � eÿe

xÿa
b� � ÿ1 � x � 1 �3�

From which the Gumbel distribution function for minima is obtained:

P�X � x� � G�x� � 1ÿ eÿe
xÿa

b� � ÿ1 � x � 1 �4�
Fitting of the Gumbel distribution function for maxima, F(x), to data is most
conveniently done by the method of least squares. By taking natural logarithms
twice in Eq. (2), assisted by proper algebraic manipulation, the following linear
transformation of the Gumbel distribution arises:

y � ÿ x

b
� a

b
� b� x� a� ÿ1 � x � 1 �5�

in which y � lnfln�1=F�x�g. For a sample of size n, the cumulative probability
F(x) is ®rst estimated by the plotting positions m=�n� 1�, m � 1; 2; . . . ; n in
which m is the rank of the observations in the sample after sorting them in
descending order. The parameters a� and b� are initially estimated by least
squares, from which the distribution parameters are obtained at once from
b � ÿ1=b� and a � ÿa�=b�. Once the parameters a, b are estimated, the proba-
bility F(x) is recalculated analytically (by Eq. (2)) and the least-squares method is
applied again to Eq. (5) to obtain updated a, b parameters.

Figure 1 shows the results of applying the described least squares ®tting pro-
cedure to annual maximum 1-hr rainfall depths measured at the Chicago Airport
(Dingman, 1994) from 1949 to 1972. The ®tted linear equation was
y � ÿ0:984x� 2:997 (R2 = 0.97), where x is in cm; therefore, a = 3.046,
b = 1.0163. It is straightforward to verify that the ®tted distribution of annual
maximum 1-hr rainfall depth is such that P�X > 0� ! 1, i.e., the mass of the
distribution function lies almost entirely above zero. This means that the fact that
the distribution's domain includes negative real numbers, which are evidently
infeasible to represent rainfall, introduces only negligible bias in the estimation of
P(X < x), when x > 0.

Figure 2 shows the least-squares ®tted Gumbel distribution to annual maxi-
mum spring ¯ow (in m3 hr)1) in Comal Springs, Texas, for the years 1979 to 1989.
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Fig. 1. Fitted distribution to
1-hr annual maximum depths
at Chicago Airport (data from
Dingman, 1994)
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In this case, the linearly transformed Gumbel distribution was estimated to be
y � ÿ8:34 � 10ÿ5x� 2:78 (R2 = 0.96), from which the distribution parameters are
a = 33,333.3, b = 11,990.0. The probability P�X > 0� ! 1 in this case also, which
discards estimation bias that could otherwise be introduced by the distribution's
negative domain.

An additional example of a ®tted Gumbel distribution is presented in Fig. 3, in
which the ®tted data correspond to annual maximum spring ¯ow in San Marcos
Springs, Texas. The estimated least-squares transformed distribution was
y � ÿ2:76 � 10ÿ4x� 3:56 (R2 = 0.95), from which the distribution parameters
were obtained: a = 12,898.2, b = 3,623.2.

The ®tted Gumbel distributions to annual maximum spring ¯ows at Comal and
San Marcos Springs will be used below to illustrate some of the results concerning
the sum of two Gumbel variables. These two spring ¯ows merge downstream from
their source areas in the discharge zone of the Edwards Balcones Fault Zone
aquifer in south central Texas (Loaiciga et al., 1998). The Edwards aquifer is a
large karsti®ed formation spanning 15,600 km2 in surface area. The San Marcos
Springs and the Comal Springs derive their spring ¯ow from two different source
areas in the aquifer. Thus, there is a degree of independence in the magnitude of
these spring ¯ows, although the theoretical assumption of statistical indepen-
dence is only approximate for reasons to be elaborated upon later.
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Fig. 2. Fitted distribution to
annual maximum spring ¯ow
at Comal Springs, Texas
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Truncation of the Gumbel distribution function
in the case of minimum variables
Figure 4 shows the ®tted Gumbel distribution (in its linearly transformed form)
to the distribution of annual minimum spring ¯ow (in m3 hr)1) in Comal Springs,
Texas, from 1947 through 1959. Truncation was needed in this case, as the
standard distribution of Gumbel minima given in Eq. (4) did not provide an
adequate ®t to the data. In general, when dealing with hydrologic minima, it is
necessary to impose the physical constraint that the variable of interest, be it
rainfall, stream¯ow, or something else, must be positive. Thus, the truncation
constraint X > 0 is imposed to yield the following truncated Gumbel distribution
function for minima (Loaiciga et al., 1992):

P�X � xjX > 0� � GT�x� � eÿe
ÿ a

b ÿ eÿe
xÿa

b� �

eÿe
ÿ a

b
x > 0 �6�

The truncated distribution in Eq. (6) can be transformed into an equivalent
linear form suitable for least squares estimation. Taking the natural logarithm
twice in Eq. (6), coupled with suitable algebraic manipulation, the linear trans-
formation of the truncated Gumbel distribution for minima becomes:

y � x

b
ÿ a

b
� b� x� a� x > 0 �7�

in which

y � ln ln
1

P�X > 0��1ÿ GT�
� �� �

�8�

The procedure applied to ®t the annual minimum spring ¯ow data in Fig. 4
requires initial estimates of the distribution parameter a, b to approximate
P�X > 0� � exp�ÿ exp�ÿa=b��. This is done by the method of moments, relying
on the fact that the mean and variance of the distribution function of Gumbel
minima (see Eq. (4)) are aÿ bC and b2�p2=6�, respectively, in which
C = 0.577215... is Euler's constant. From the data, the sample mean and variance
are calculated, and from these, the parameters a and b are solved for. The
truncated cumulative distribution function, GT, which is given in Eq. (6), is
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Fig. 4. Fitted distribution to
truncated annual minimum
spring ¯ow at Comal Springs,
Texas
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initially estimated by the plotting positions m/(n + 1), in a manner identical to
that used in the procedure applied to ®tting Gumbel maxima. Next, Eq. (7) is
®tted by least squares, from which the parameters a, b are updated. P(X > 0) and
GT are also updated (the update of GT is done by means of Eq. (6)) and a new
least-squares ®t of Eq. (7) is carried out. Parameter updates and least-squares
®tting are iterated until parameter convergence is achieved. Our experience with
the data sets examined (annual minimum spring ¯ows at Comal Springs and San
Marcos Springs, Texas) indicates that convergence is achieved in three to four
iterations.

Figure 4 shows that the least squares truncated Gumbel distribution ®tted to
the Comal Springs annual minimum spring ¯ow was y � 4:95 � 10ÿ5xÿ 0:74
(R2 = 0.99), from which the distribution parameters were estimated as
a = 14,949.5, and b = 20,202. In this instance, the probability
P�X > 0� � exp�ÿ exp�ÿa=b�� � 0:62, which implies that the mass of the non-
truncated Gumbel distribution which falls below zero (i.e., P(X < 0)) is approx-
imately 0.38, a non-negligible value. Since, in actuality, spring ¯ow is a positive
variable, the ®tting of a non-truncated Gumbel distribution to spring ¯ow minima
would result in large errors. The same conclusion applies to other positive-valued
hydrologic minima in which P(X < 0) does not approach zero.

The distribution of the sum of two independent Gumbel variables
There are several formal methods that in theory could be utilized to derive the
distribution function of the sum (Z = X + Y) of two independent Gumbel vari-
ables X and Y with probability density functions fX(x) and fY(y), respectively. One
of them involves an inverse transformation on a vector-valued function of (X,Y),
which involves X + Y (see, e.g., Bickel and Doksum, 1977, p. 10 and 11). Another
classical approach is by convolution of the distributions of X and Y (see, e.g.,
Ross, 1993, p. 53). When applied to two-parameter Gumbel variables, either
minima or maxima, these two methods yield complex results that cannot be
resolved in terms of a well-de®ned probability density function for the sum of two
variables. A third approach to obtain the distribution density of two independent
Gumbel variables (and exploited in Leipnik, 1998) is by means of the Fourier
transform pair de®ned by the probability density function, fZ, and the charac-
teristic function, /Z, of the sum of Gumbel variables Z = X + Y (Lukacs, 1960).
Let t be a real variable, i be the complex number i2 � ÿ1, E(�) denote the
statistical expectation operator. Then:

/Z�t� � E
ÿ
eit�X�Y�� � Z1

ÿ1
eitz fZ�z�dz �

Z1
ÿ1

Z1
ÿ1

eit�x�y� fX�x� fY�y�dx dy �9�

and

fZ�z� � 1

2p

Z1
ÿ1

eÿitz /Z�t�dt �10�

Equation (9) implies that, due to the independence of X and Y, the characteristic
function of the their sum Z is simply the product of the individual characteristic
functions, which are known. In the case of the sum of Gumbel maxima, the
characteristic function of Z is then:

/Z�t� � /X�t� /Y�t� � eit�a1�a2�C�1ÿ itb1�C�1ÿ itb2� �11�
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in which (a1, b1) and (a2, b2) are the parameters of the distributions of X and Y,
respectively, and C(�) is the gamma function (see e.g., Gradshteyn and Ryzhik,
1994, for a treatment of the gamma function). If X and Y are truncated minima,
the characteristic function of their sum is:

/Z�t� �
eit�a1�a2�

e
ÿ e

ÿa1
b1�e

ÿa2
b2

� � C�eÿ
a1
b1 ; 1� itb1� C�eÿ

a2
b2 ; 1� itb2� �12�

in which C(�, �) is the incomplete gamma function.
The probability density function, fZ(z), of the sum of two independent Gumbel

maxima is derived by applying the Fourier transform (10) to the characteristic
function given in Eq. (11). The distribution function FZ(z) is then obtained by
integration of fZ(z) by the method of residues. The result is (where z¢ = z)a1)a2):

FZ�z� � 1ÿ p
X1
n�1

�ÿ1�nÿ1

�nÿ 1�!
b2

b1
eÿ

n
b1

z0 � csc�np b2

b1
�

C�1� n b2

b1
� �

b1

b2
eÿ

n
b2

z0 � csc�np b1

b2
�

C�1� n b1

b2
�

" #
�13�

in which csc = 1/sin and the argument of the function is in radians. The distri-
bution function of the sum of two truncated Gumbel minima can be obtained in a
similar fashion as done with the sum of two Gumbel maxima, although the results
involve a higher degree of complexity than that involved in deriving Eq. (13). The
authors are at present developing the distribution function of the sum of two
truncated Gumbel minima.

The calculation of probabilities via Eq. (13) presents dif®culties when z! 0
because the summation must be carried out for a large number of terms, say,
n � 100 to preserve accuracy in the calculations. High-precision arithmetic is
thus required to prevent over¯ow in the computations. To illustrate the appli-
cation of Eq. (13), we have used the distribution functions ®tted to the Comal
Springs annual maximum spring ¯ow (see Fig. 2) and to the San Marcos Springs
annual maximum spring ¯ow (shown in Fig. 3). Annual maximum spring ¯ows at
Comal Springs and at San Marcos Springs are not strictly independent, as theory
assumes in the previous developments, in spite of the fact that their drainage
basins are different. This is due to the fact that many storms that recharge their
drainage basins are of a mesoscale nature, which introduces a pattern of climatic
similarity in the recharge feeding the two springs. Nevertheless, annual maximum
spring ¯ows at Comal Springs and San Marcos Springs do not necessarily occur
simultaneously due to different lag times between the time of recharge and the
time of discharge at each spring. [Loaiciga et al. (1992) have examined various
formal statistical methods to test for statistical independence of hydrologic
variables.] Thus, the analysis of the sum of Comal and San Marcos annual
maximum spring ¯ows is meaningful only if it is interpreted in a broader context.
Speci®cally, the joint occurrence of annual spring ¯ow maxima is a temporal
stochastic process, which happens in a given time period with a probability p,
which can be estimated from historical records. Thus, the probability of attaining
a sum of maxima less than z is given by p � FZ�z�.

Figure 5 shows the calculated distribution function FZ(z) of the sum of annual
maximum spring ¯ow at Comal Springs and San Marcos Springs. Equation (13)
was programmed in Fortran 90 and special functions (cosecant, gamma, factorial,
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exponential) were evaluated in double precision. The International Mathematical
Subroutine Library (IMSL) was used to evaluate the gamma function. It can be
seen in Fig. 5 how the distribution becomes negligible below 30,000 m3 hr)1.
Equation (13) allows the calculation of quantiles, such as, for example, Q10 and
Q100, the 10- and 100-yr combined spring ¯ows, which are equal to 76,000 and
105,000 m3 hr)1, respectively.

Conclusions
The importance of the Gumbel probability distribution for the description of
extreme hydrologic events has been examined in this paper. The key ®ndings of
this article are: (1) an iterative method of least squares was developed and found
to be well-suited for the ef®cient ®tting of the two-parameter Gumbel distribution
to hydrologic extremes; (2) truncation of negative values is necessary to ade-
quately describe hydrologic minima (non-negative) data, while the standard
Gumbel distribution for maxima is well-suited for modeling extreme (large)
hydrologic events; (3) the distribution function of the sum of two independent
Gumbel variables, of importance in hydrology, has been derived and successfully
applied to spring ¯ow data. Future work involves the development of the dis-
tribution function of the sum of two Gumbel (truncated) minima as well as the
analysis of the temporal joint occurrence of hydrologic maxima and minima.
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