UCSF

UC San Francisco Electronic Theses and Dissertations

Title

Functional characterization of the HIV genome by genetic footprinting

Permalink https://escholarship.org/uc/item/19w212c5

Author Laurent, Louise Chang

Publication Date 1998

Peer reviewed|Thesis/dissertation

Functional Characterization of the HIV Genome

by Genetic Footprinting

by

Louise Chang Laurent

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Biochemistry

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA SAN FRANCISCO

University Librarian

Degree Conferred:

Date

Copyright 1998

by

Louise Chang Laurent

To Marc

Acknowledgements

Many thanks are due to the many members of the Brown lab, past and present. Foremost among these are fellow genetic footprinters Rachel Adams Crowley and Mari Olsen. Working with Rachel has made the struggle through graduate school a much more rewarding (and yes, even enjoyable) experience. I have benefited from her many abilities and personal strengths as we wrestled with the myriad difficulties, technical and ideological, involved in genetic footprinting. I will never be able to express how much I appreciate all of the help Mari has provided over the last few, very busy, years. I must thank Brian Scottoline and Liz Wilson for sharing their benches with me when I was orphaned by the Varmus lab. Thanks to Pat Brown, who has provided a stimulating environment in which to learn and taught me to true meaning of independence. Thanks to the other "virus people," including Richard.

Many thanks are due to the many mentors I have found in the scientific world. Thanks to Mrs. McPherson, my ninth-grade chemistry teacher. Thanks to Mr. Hozinsky, my tenth-grade biology teacher and the one who suggested that I roam the halls at the University of Chicago asking for someone to teach me about lab stuff. Thanks to Vikas Sukhatme, who took me into his lab and accepted the challenge of trying to teach a high school student molecular biology. Thanks to Jeremy Knowles and Betsy Komives, who were my mentors during my undergraduate years. Thanks to Mike Bishop and Harold Varmus for

iv.

convincing me to come to UCSF for my graduate training and playing large parts in that experience.

Many thanks are due to my friends. Here I tread lightly, as I am sure to leave someone out. I will restrict myself to thanking the members of my MSTP class and their spouses for making the past several years more than just school.

Many thanks are due to Jana and Sue, who have made life incredibly easy.

Many thanks are due to the many members of my family. My husband, Marc, has provided much support, moral and computeral. My daughter, Clara, has made the last eight months a joy and a challenge. This challenge has been greatly decreased by help received from our friend and guardian angel, Agnes Leturgie, and advice received from my elder sister and mother of four, Cindy. My family-in-law, and especially my mother-in-law, has been steadfastly supportive. And finally, and most importantly, infinite thanks to my parents.

Abstract

Functional Characterization of the HIV Genome

by Genetic Footprinting

In this report, I present a detailed analysis of the functional characteristics of the 1000 nucleotides at the 5' end of the HIV RNA genome. The effects of one hundred and thirty-four independent insertions mutations were examined in a quantitative manner at three points in the viral replication cycle. I studied the abilities of mutants 1) to make stable viral RNA, 2) to assemble and release viral-RNA-containing viral particles, 3) to enter host cells, complete reverse transcription, enter the nuclei of host cells, and generate proviruses in the host genome by integration. In order to carry out a thorough investigation on a large number of mutations, a modification of the genetic footprinting technique was employed. Using this method, all of the mutants were constructed and analyzed en masse, greatly decreasing the labor typically involved in mutagenesis studies. The presence of several functional features previously assigned to the region of the HIV genome under investigation was confirmed, and evidence for a number of novel features was found. Among these new features were cis-acting sequences that appeared to contribute to formation of stable viral transcripts, viral RNA packaging, or an early step in viral replication. These sequences were distinct from previously identified sequences that have been shown to be important for these steps in the viral life cycle. An unanticipated trans-acting role for sequences near the N-terminus of matrix in the formation of stable viral RNA transcripts was also seen. Finally, in contrast to previous reports, the results of

vi.

this study suggested that mutations detrimental to viral replication in sequences encoding the matrix and capsid proteins principally interfered with assembly.

Ri. Ph

Table of Contents

Chapter 1
Retrovirology1
Mutagenesis4
High-resolution Genetic Footprinting6
The Current System9
Chapter 2
Introduction to High-resolution Genetic Footprinting of HIV14
Chapter 3
Materials and Methods18
Chapter 4
Results and Discussion26
Chapter 5
The Future of Genetic Footprinting47
References

Appendix A Nucleotide sequence of HIV puro79
Appendix B Local nucleotide and peptide sequences of mutants
Appendix C Oligonucleotides used for genetic footprinting
Appendix D Documentation for software developed for genetic footprinting 103
Appendix E Code for software developed for genetic footprinting

List of Figures

Figure 1	Mutagenesis scheme61
Figure 2	The genetic footprinting analysis procedure62
Figure 3	The retroviral replication cycle63
Figure 4A	The 5' end of the HIV genome64
Figure 4B	Expected phenotypes of representative mutants
Figure 5	Isolation of a specific mutant66
Figure 6	Diagram of the mutagenized region of the HIV genome 67
Figure 7	Normalization of data68
Figure 8	Outline of transfection experiments
Figure 9	An example of raw genetic footprinting data70
Figure 10	Summary of data from single-cycle replication experiments71
Figure 11	Detailed phenotypes of mutants in cis-acting elements72
Figure 12	Detailed phenotypes of putative polyadenylation mutants73
Figure 13	Detailed phenotypes of matrix mutants74
Figure 14	Detailed phenotypes of capsid mutants75
Figure 15	Matrix and capsid in assembly and early replication76
Figure 16	Structure of mutagenic oligonucleotides
Figure 17	Making a library of mutants by PCR78

Chapter 1

General Overview of Retrovirology

The first reports describing the disease that is now called AIDS (acquired immunodeficiency syndrome) were made in 1981 (Gottlieb et al. 1981; Masur et al. 1981; Siegal et al. 1981). The afflicted patients displayed an unusual series of symptoms and findings. They were all young, previously healthy men, a disproportionate number of whom were homosexual and/or substance abusers. They suffered from fulminant herpes simplex, candida, and cytomegalovirus infections and pneumocystis carinnii pneumonia. At the time, these types of infections were very rare and found only in severely immunocompromised persons, such as premature infants and transplant patients undergoing immunosuppressive therapy. In the subsequent months and years, many more patients with the same constellation of findings were described. The pathogenic agent responsible for this epidemic was isolated in 1984 (Popovic et al. 1984) and in very short order the genome of this pathogen, the human immunodeficiency virus (HIV), was cloned and sequenced (Shaw et al. 1984). In the intervening years, HIV has been the focus of much attention and progress in understanding HIV has been rapid on many fronts.

HIV is a retrovirus, a class of viruses previously called RNA tumor viruses. This older and somewhat inaccurate nomenclature refers to two characteristics of retroviruses: the genomes of these diploid viruses consist of two molecules of linear single-stranded RNA; and many (though not all) retroviruses are associated with neoplasms. The current appellation "retrovirus" is the result of the discovery of reverse transcriptase in 1970 (Baltimore 1970, Temin and Mizutani 1970). All retroviruses encode a reverse transcriptase, or RNA-directed DNA polymerase, that converts the single-stranded RNA viral genome found in virions into a double-stranded DNA form. Another virally-encoded enzyme, integrase, then integrates this linear DNA into the genome of a host cell, where it is called a provirus.

The rapid progress in understanding the biology of HIV was largely due to the work done on other retroviruses in the seventy or so years before AIDS was described. During the first decade of the twentieth century, two studies on tumors in chickens led to the discovery of the avian sarcoma/leukosis viruses (ASLV) (Ellerman and Bang 1908, Rous 1911). From the time of these initial reports until the 1960's, many more retroviruses were discovered and described in terms of their host range and the natural histories of the diseases they caused. Due to advances in biochemical, structural, cell culture, and molecular techniques, the emphasis in retrovirology in recent decades has been on cellular pathogenesis and a molecular description of retroviruses and retroviral replication. By the time HIV was isolated and shown to be the pathogenic agent in AIDS, the major protein components of retroviruses, their basic replication cycle, the general structure of the retroviral genome, and the nucleotide sequences of certain specific retroviruses had been described. Since the discovery of HIV, the field of retrovirology has expanded and progress has accelerated even more.

Mutants have been very useful tools in the study of retroviruses. With the advent of molecular biology, directed mutations have been made and screens of random mutations have been done to determine the functions of various parts of the retroviral genome. For HIV, the combination of knowing the nucleotide sequence of the genome and having structural information on most of the proteins makes it very interesting to have a detailed description of the phenotypes of mutants throughout the genome. Ideally, one would be able to study the effects of different types of mutations (point mutations, deletions, insertions, replacements) at every position in the genome on different points in the replication cycle (transcription, translation, packaging, budding, host-cell attachment, entry, uncoating, reverse transcription, nuclear entry, integration). Making individual mutants and studying their phenotypes one by one is now possible, but not experimentally feasible. Therefore, we have developed a method to study large numbers of mutants in parallel. This technique is restricted to two classes of mutations (insertions and replacements), but allows the collection of quantitative information on the effects of many mutations on several steps of the viral replication cycle in a highly parallel manner.

Overview of Mutagenesis

Mutagenesis is a versatile and powerful tool in studying the function of nucleic acids. Mutagenesis can be performed either in vivo or in vitro, on a small piece of cloned DNA or on the intact genome of an organism, randomly or in a directed fashion. There are three types of mutagens in common use: chemicals (e.g. alkylating agents), radiation (e.g. X-rays or UV radiation), and enzymes (e.g. Taq polymerase in PCR mutagenesis or transposases in transposon-mediated mutagenesis). Standard methods of random mutagenesis involve subjecting the nucleic acid of interest to mutagenesis and either selecting/screening the resulting mutant population for a particular phenotype (e.g. resistance to an antibiotic) or isolating mutant clones and testing the characteristics of individual mutants one at a time (e.g. rate of replication). Directed mutagenesis involves constructing and testing mutants one at a time. These two basic strategies are useful in certain circumstances: the isolation of mutants where one has a good positive selection and the examination of a limited number of individual mutants. However, these techniques quickly become tedious if the goal is to quantitatively determine the behavior of large numbers of mutants. Recently, several methods aimed at assessing large numbers of mutants in parallel have been reported, including signature-tagged transposon mutagenesis (Hensel et al. 1995), genome-scale genetic footprinting (Smith et al. 1996), and high-resolution genetic footprinting (Singh et al. 1997).

The objective of this study was to obtain a detailed functional map of a portion of the HIV genome by examining between 100 and 200 insertional

mutations distributed over a 1000 nucleotide region, which encompassed the 5'-LTR (Long Terminal Repeat), the p17 (matrix, MA) gene, and p24 (capsid, CA) gene of HIV. Each mutant was to be mapped at single-nucleotide resolution and quantitatively assessed for its affect on viral replication. Given these criteria, the high-resolution genetic footprinting technique was the method of choice.

High-resolution Genetic Footprinting

High resolution genetic footprinting was developed as a method to make and gather quantitative information on large numbers of mutants en masse. The basic concept consists of constructing a library of insertion or replacement mutants, where the different mutants contain the same insertion or replacement sequence, differing only in the position of the mutation. The idea for using an integrase or transposase enzyme to make the mutations and analyzing the population of mutants by PCR originated from a paper by Pryciak and Varmus (Pryciak and Varmus 1992). These authors were actually studying the effect of DNA conformation on target site preferences of retroviral integrases. However, their work showed that large numbers of integration events could be tracked in parallel and mapped to single-nucleotide resolution.

Moloney Murine Leukemia Virus integrase can be used to integrate short double-stranded oligonucleotides in a concerted fashion into a circular doublestranded DNA target in vitro. In this concerted reaction, the terminal two nucleotides of the upper strands of two double-stranded oligonucleotides are clipped off, leaving two-nucleotide 5' overhangs. The newly exposed terminal 3' hydroxyl groups of these oligonucleotides are then used to attack 5' phosphates in the target DNA staggered by 4 base-pairs, producing a linear target DNA with an oligonucleotide covalently joined to each end. There are 4-nucleotide gaps in the target DNA and an extra 2-nucleotide 5' extension on the oligonucleotides at each end. Both of these features can be eliminated by doing a run-off reaction using a DNA polymerase such as Tag polymerase. MLV integrase is relatively

insensitive to the sequence of the target DNA, resulting in integration events at many different sites.

In 1997, Singh, Crowley, and Brown demonstrated the utility of MLV integrase as a tool for genetic footprinting in high-resolution functional mapping of the SupF gene, which encodes an amber suppressor tRNA. The oligonucleotide used for integration contained three types of sequences: a viral end sequence that allowed MLV integrase to recognize the oligonucleotide as a substrate; a Bsg I restriction enzyme site; and a Not I restriction enzyme site. Insertion mutants were made by digesting the products of the concerted integration reaction with Not I, creating complementary cohesive ends, and recircularizing the target DNA by ligation. The resulting insertions included a 4base-pair duplication in the target DNA and a central Not I site. Replacement mutants were generated by digesting with Bsg I, a type IIs restriction enzyme that cuts 16/14 nucleotides away from its recognition sequence, allowing cleavage within the target DNA sequence. The 12 base-pairs deleted from the target DNA sequence in this way were replaced by ligating in a 12-base-pair oligonucleotide containing an Nde I site. Both the insertion and replacement libraries were subjected to a selection that required the function of the SupF gene. The libraries before and after selection were analyzed and compared using PCRbased assays. To analyze the insertion library samples, PCR was performed using one oligonucleotide primer complementary to the sequence of the insert oligonucleotide and a second, ³²P-labelled, primer complementary to a fixed position in the target DNA. Each mutant in the library gave a product of unique

size that depended on the position of the insertion. Since the library consisted of mutants at many different positions, subjecting the products of the PCR reactions to electrophoresis through a denaturing polyacrylamide gel resulted in a ladder of bands. Bands that represented clones defective in SupF function were present in the pre-selection library and absent in the post-selection library, giving a functional footprint of the SupF gene. The oligonucleotide used for the replacement library was too short for efficient priming for PCR. Therefore, an alternative PCR strategy (which I will refer to as the "flanking PCR/restriction digestion" method) was designed to analyze the replacement library samples. Two fixed-position primers to target DNA sequences were used, one of which was labelled with ³²P. The PCR products were digested with Nde I, which cleaved within the replacement sequence, yielding a unique-sized radioactively-labeled product for each mutant, the size of which again depended on the position of the replacement.

Overview of the Genetic Footprinting Aspect of the Current system

Several modifications to the method reported by Singh, Crowley, and Brown (1997) were required to adapt it for the study of the HIV genome. Most significantly, the enzyme used for mutagenesis was changed from MLV integrase to MuA transposase. The basic strategy for introducing insertions into a target sequence remained the same, including a concerted integration reaction followed by gap-repair, restriction endonuclease digestion, and ligation reactions (figure 1). MLV integrase performs the concerted reaction inefficiently, requiring amplification of the integration products by PCR. Since the mixture of integration products is composed of circularly permuted linear pieces of DNA, troublesome PCR side-reactions tend to occur, with template DNAs priming off of one another. These reactions occur less frequently when smaller template DNAs are used, limiting the target DNA size to approximately 1000 base-pairs. This size limitation was unduly restrictive for the experiments on HIV, which involved mutagenizing stretches of the genome of up to 1.5 kilobases cloned into a 2.5 kilobase vector. MuA transposase is a much more efficient and robust enzyme, allowing the intermediate PCR amplification step to be eliminated. The most serious drawback to MuA transposase is that it is more finicky about the sequence of the target DNA. This property leads to an uneven representation of mutants, such that fewer mutants can be conveniently analyzed. An incidental difference between MLV integrase and MuA transposase is that MuA transposase produces a 5 base-pair rather than a 4 base-pair duplication. A

second modification was the optimization of the analysis procedure. The insertions made in HIV contained only 10 unique base-pairs, too short for efficient priming. However, the insertions contained a Not I site, permitting the use of the flanking PCR/restriction enzyme digestion analysis method. The samples in the HIV experiment were more complex that those in the SupF studies, leading to higher background from incomplete PCR extension products. The level of these background products was greatly reduced by performing the PCR using one ³²P-labelled target DNA primer and one biotinylated target DNA primer, treating the products of the PCR reactions with a single-stranded binding resin, adsorbing the PCR products to streptavidin-agarose beads, and digesting the products off of the beads with Not I (figure 2). Using this technique, bands visible on the denaturing polyacrylamide gel result from PCR products containing both a radioactive and a biotinylated primer, eliminating incomplete extension products.

The proviral HIV clone used in the work described here is approximately 9000 base-pairs long, and is carried in an approximately 2500 base-pair vector, making a total of 11500 base-pairs in the plasmid. During the mutagenesis procedure, it is necessary to separate the products of concerted integration by MuA transposase (linear) from the unintegrated target molecules (supercoiled circular) and products of single integration events (branched circular) by agarose gel electrophoresis. It is difficult to cleanly separate these species if the target molecule is more than 5000 base-pairs in length. Moreover, during the analysis step, only 200 to 300 base-pairs are examined at any given time. If 11500 base-

pairs are mutagenized, the fraction of PCR products containing insertions in a average 300 base-pair segment would be 300/11500, or 2.6%. This value would result in an unacceptably low signal-to-noise ratio on the footprinting gel. Therefore, segments of the HIV genome ranging from 500 to 1600 base-pairs were subcloned for mutagenesis (corresponding to a plasmid size of 3000 to 4100 base-pairs). In order to ensure a good representation of mutant clones in the libraries, we wanted to achieve an average of at least 100 "hits" per base-pair. For a 4100 base-pair construct, therefore, we would aim for a library with at least 410,000 elements, a number which we found to be experimentally feasible to attain.

The mutagenized proviral segments were recloned into a plasmid containing the complete sequence of the provirus. Since a fraction of the "hits" were in vector sequences (the fraction being approximately proportional to the percentage of the entire plasmid composed of vector sequences), approximately 60% to 80% of the clones in the resulting libraries contained no insertions. This situation was to our advantage, since the wild-type clones did not interfere with testing mutations in cis-acting elements, and were actually desired to provide helper functions during the first round of infection for testing mutations in coding sequences. Fewer undesired side-products were obtained during cloning if the mutagenesis was done on proviral fragments carried in an ampicillin-selectable vector and the intact provirus was carried in a kanamycin-selectable vector. The principle potential troublemakers resulted from ligations between two insertcontaining vector fragments (i.e. vector fragments that had been "hit" during

mutagenesis), which could then homologously recombine using the insert sequences, generating very small plasmids which replicate very quickly and take over the culture.

A library of 15-nucleotide insertion mutants was made using MuA transposase in a replication-defective HIV background carrying the puromycin resistance gene in place of the env gene. The insertions contained a Not I restriction enzyme site, which was used in the analysis phase of the experiments. This library of replication-defective mutagenized proviruses was introduced into producer cells (details on the design of specific experiments are given in Chapter 4). Pseudotyping with VSV-G, a single round of viral production and infection was carried out. Nucleic acid samples were collected at various steps (figure 3), and footprinting these samples allowed us to examine the effect of different mutations on several steps in the replication cycle in parallel (figure 4). For example, samples of producer cell RNA ("cellular RNA") contained lower proportions of transcripts from proviruses containing mutations that interfere with transcription, mRNA stability, or polyadenylation than samples of producer cell genomic DNA. Similarly, RNAs with mutations that preclude efficient translation, dimerization and packaging of viral RNA, assembly of viral particles, or viral budding were underrepresented in pools of RNA in extracellular virions ("virion RNA") compared with pools of viral RNA in producer cells ("cellular RNA"). After infection of a fresh population of host cells with these virions, mutants defective in such processes as packaging of the tRNA primer, entry, uncoating, reverse transcription, nuclear entry, or integration were less well represented in pools of

integrated viral DNA ("infected cell genomic DNA ") than in pools of virion RNA. This scheme permitted the assignment of defects in viral replication caused by individual mutants to phases in the viral life cycle without the necessity of testing each mutant alone.

One could isolate interesting mutant clones in one of two ways. First, if one identified specific clones by footprinting, one could PCR those clones out of the mutant library using primers that would prime only from clones with an insert at the desired location (see figure 5). Second, if one were interested in isolating clones that were enriched by a selection scheme, one could PCR a region out of a sample of post-selection nucleic acid and clone the PCR products en masse. To eliminate wild-type clones, one could digest the population of plasmids with Not I and purify the linearized plasmids (those that have a Not I-containing insert).

In the experiments described here, mutants were selected for their ability to perform various steps in the viral replication cycle. Selection strategies other than the one described here can be easily used. For example, to study viral resistance to therapeutic agents one could subject a libary of mutants in protease to a protease inhibitor and use footprinting to identify regions where insertions lead to resistant mutants.

Chapter 2

Introduction to High-resolution Genetic Footprinting of HIV

The retroviral life cycle is fairly well understood mechanistically and genetically. Mechanistically, the molecular events involved in virion production and infection are known in outline. Various processes, particularly transcription, assembly, reverse transcription, and integration, have been investigated and described in some detail (reviewed recently in Coffin et al. 1997). The genomes of several retroviruses have been subjected to extensive mutagenesis, both natural and experimental. As a result, functional regions of the viral genome, such as the long terminal repeats (LTRs) and sequences encoding the viral proteins, have been mapped. However, the mutations that have been made thus far are unevenly distributed across the genome and diverse (e.g. point mutations, insertions, and deletions of different sizes and sequences). Moreover, the effects of many of these mutations have not been studied in a uniform or comprehensive manner.

In the experiments described in this report, the goal was to create a highresolution map of a one kilobase segment near the 5' end of the HIV RNA genome defining features essential for major steps in the viral replication cycle. This region of the HIV genome contains several previously identified functional elements (see figure 6), including several cis-acting elements and sequences encoding the matrix and capsid proteins. By studying a large number of mutants of uniform construction in a thorough and quantitative manner, we strove to gain detailed insight into known elements in the viral genome and to define novel features.

Many of the cis-acting sequences overlap with each other of with coding sequences. The multifunctional nature of certain sequences in the HIV genome can create difficulties in assigning unambiguous functions to these sequences. The TAR stem-loop structure is important in transcription of the viral genome (Berkhout et al. 1989; Selby et al. 1989; Roy et al. 1990a; Roy et al. 1990b; Feng and Holland 1988; Dingwall et al. 1989; Cordingly et al. 1990; Gait and Kam 1993) and overlaps with the sequences in R that are used during the first strandtransfer event in reverse transcription (Coffin and Haseltine 1977; Haseltine et al. 1977; Schwartz et al. 1977; Stoll et al. 1977; Coffin et al. 1978). R also contains a polyadenylation signal. At the 3' end of U5 resides the sequence encoding the 3' att site, a short (~15 base-pair) sequence required by integrase for efficient integration of the viral genome into host cell genomic DNA (Bushman and Craigie 1991; LaFemina et al. 1991; Leavitt et al; 1992, Sherman et al. 1992; van den Ent et al. 1994; Vicenzi et al. 1994). Adjacent to the att site is the primer binding site, an eighteen nucleotide sequence complementary to the eighteen terminal nucleotides of tRNA-Lys, which is used to prime the negative strand during reverse transcription. This sequence also plays a role in the second strandtransfer step of reverse transcription (Rhim et al. 1991). The region of the genome from the end of the LTR into the beginning of the matrix coding sequence contains an AP-1/AP-3 site, a DBF-1 site, and a SP-1 site (Verdin et al. 1990;Van Lint et al. 1991), a splice donor sequence used to produce the

mRNA for the envelope protein, and sequences that contribute to dimerization and packaging of the viral single-stranded RNA genome (Lever et al. 1989; Luban and Goff 1994; McBride and Panganiban 1996; Laughrea et al. 1997a; Laughrea et al. 1997b; Clever and Parslow 1997).

The matrix and capsid proteins of retroviruses are translated as part of the gag polyprotein and subsequently cleaved from the polyprotein by a retrovirallyencoded protease. Matrix contains a N-terminal myristoyl group and a nearby basic region, both of which assist in targeting the unprocessed gag polyprotein to the host cell plasma membrane during assembly (Gottlinger et al. 1989; Bryant and Ratner 1990; Zhou et al. 1994). Matrix also interacts with the cytoplasmic tail of the viral envelope protein (Yu et al. 1992b; Facke et al. 1993). In some, but not all, experiments, HIV matrix has been demonstrated to assist in nuclear entry of the HIV pre-integration complex (Bukrinsky et al. 1993; Gallay et al. 1995a; Gallay et al. 1995b; von Schwedler et al. 1994; Fouchier et al. 1997; Freed et al. 1995). There are indications that the C terminus of matrix may play a role in uncoating (Yu et al. 1992a), and it has been suggested that matrix can bind to RNA (Bukrinskaya et al. 1992). HIV capsid is thought to be the major structural protein making up the viral core. Mutations in capsid have been shown to be defective in viral assembly or in an early step in viral replication, between entry and reverse transcription (Mammano et al. 1994; Wang and Barklis 1993; Reicin et al. 1995; Reicin et al. 1996; Dorfman et al. 1994a). Capsid interacts with a host protein, cyclophilin A, which is specifically incorporated into viral

particles and seems to play a role in uncoating (Luban et al. 1993; Braaten et al. 1996; Franke et al. 1994; Thali et al. 1994).

High-resolution genetic footprinting has been used to map functionally important domains in the SupF gene (Singh et al. 1997). We have employed a modification of this method to define functional domains in a portion of the HIV genome. A library of insertion mutants was made in a region of the HIV genome using MuA transposase and selected en masse for the ability to undergo various phases of the viral life cycle. Each mutant contained a single insertion, which included a restriction endonuclease recognition sequence at a "random" position (in fact the MuA transposase demonstrates preferences for certain target sequences). An assay involving a PCR reaction and a restriction endonuclease digestion was then performed on nucleic acid samples of the library taken before and after each phase to asses the recovery of each mutant through that phase. This assay generated a product of unique length for each mutation; the length depended on the position of the insertion in the HIV sequence. Therefore, the nucleic acid samples analyzed, which were mixtures of mutants, produced mixtures of products of different lengths, which were resolved as bands on denaturing polyacrylamide gels. Mutants defective for a given phase of the viral life cycle were eliminated at that step, leading to a depletion of the corresponding bands. This scheme permitted the assignment of defects in viral replication caused by individual mutants to phases in the viral life cycle without the necessity of testing each mutant alone.

Chapter 3

Materials and Methods

Plasmids

The HIV replication-defective proviral clone mutagenized in this report (HIV puro) was derived from pHIV-AP Δ env Δ Vif Δ Vpr (Sutton et al. 1998) and subcloned into either Bluescript KS+ (Stratagene) or pBS -Kan (a Bluescript KS+-derived vector where the ampicillin-resistance gene was replaced by the kanamycin-resistance gene). pHIV-AP Δ env Δ Vif Δ Vpr was constructed from HIV-AP, an HIV proviral clone containing the human placental alkaline phosphatase in place of nef (He and Landau 1995), by making a large deletion to eliminate most of env, vif, and vpr. To make HIV puro, the human placental alkaline phosphatase gene was replaced by the puromycin resistance gene driven by the SV40 promoter (Morgenstern and Land 1990). In addition, host DNA sequences flanking the proviral sequences were eliminated. PCR mutagenesis was used to eliminate the five Bsg I sites originally present in the plasmid (G \rightarrow C at position 1222, C \rightarrow G at position 2574, A \rightarrow C at position 4856, A \rightarrow T at position 5755, and A \rightarrow C at position 5884. These changes did not detectably affect viral replication. Fragments of HIV puro were subcloned into Bluescript KS+, mutagenized (see below) in the context of these smaller plasmids, and subsequently cloned back into HIV puro to generate libraries of mutant proviruses.

Mutagenesis

The mutagenesis procedure was a modification of the method described by Singh et al. 1997. MuA transposase was a generous gift from Kiyoshi Mizuuchi and Harri Savilahti. The double-stranded oligonucleotide (Not15) used for mutagenesis was made by annealing Not15A (5'-

TGCGGCCGCGCACGAAAAACGCGAAAGCGTTTCACGATAAATGCGAAAAC-3') and Not15B (5'-

GTTTTCGCATTTATCGTGAAACGCTTTCGCGTTTTTCGTGCGCGGCCGCA-3') in 50 mM NaCI. The integration reaction was performed by incubating 25 pmol of Not15, 5 µg target plasmid, and 50 pmol MuA transposase (the volume of MuA transposase used was determined by a series of titration experiments) with 25 mM Tris pH 8.0, 100 µg/ml BSA, 15% glycerol (w/v), 144 mM NaCl, 0.1% Triton X-100 (v/v), 10 mM MgCl₂, and 15% DMSO (v/v) in a 0.5 ml reaction volume at 30 °C for 1 hour (Savalahti et al. 1995). Reaction products were phenol/chloroform extracted once, chloroform extracted once, precipitated in 0.3 M NaOAc pH 5.2 and 70% ethanol, washed with 70% ethanol, dried briefly under vacuum, and resuspended in 10 mM Tris.HCl/1 mM EDTA pH 8.0. Plasmids linearized by concerted integration events were separated from plasmids that had undergone single-ended integrations events or no integration events by agarose gel electrophoresis. The products of concerted integration events were purified (Qiaquick gel extraction kit) and the 5-nucleotide gaps resulting from the integration events were repaired by Taq DNA polymerase-mediated nick translation (incubation in 1x Tag DNA polymerase buffer (Perkin Elmer), 2.5 mM

MgCl₂, 2.5 mM dATP, 2.5 mM dCTP, 2.5 mM dGTP, 2.5 mM dTTP, and 2 units Taq DNA polymerase at 72 °C for 10 minutes in a 100 μ l reaction volume). The products of these nick translation reactions were purified (Qiaquick PCR purification kit), then digested with Not I (New England Biolabs). Recircularization of the linear plasmids by ligation of the cohesive ends resulted in 15 base-pair insertions.

Cell culture

293, 293T, and HOS cells were grown in Dulbecco's Modified Eagle's Medium containing 4.5 g/l glucose and 10% Defined Fetal Calf Serum (Hyclone). 293T cells were used for all transient transfection experiments. 293 cells were used for all stable transfection experiments and infections by virions produced by transient transfection. HOS cells were used for infections by virions produced from infected or stably transfected cells. Cells were grown at 37 °C in 5% CO₂ in a water-jacketed incubator. Puromycin selection was performed using 2.5 ug/ml puromycin (Sigma) for 293 cells and 5 μ g/ml puromycin for HOS cells.

Transfections

Transient and stable transfections using the Lipofectamine Plus kit (Gibco/BRL) were performed according to the recommended protocol. 30 μ g total plasmid DNA, 60 μ l Plus reagent, and 40 μ l Lipofectamine were used for each 15 cm tissue culture dish. For stable transfections, puromycin selection was initiated 48

hours post-transfection. For transient transfections, the media was changed 48 hours post-transfection and virus was harvested 72 hours post-transfection.

Infection

Viral stocks were diluted to the desired concentraton in media containing 4 μ g/ml polybrene (Sigma) and used to infect cells for 2 hours at 37 °C. Puromycin selection was initiated 48 hours or post-infection.

Nucleic acid preparation

<u>Plasmid DNA:</u> Plasmid DNA was purified using the Qiagen plasmid DNA kit and subsequently banded in a cesium chloride gradient (Sambrook et al. 1989). <u>Genomic DNA:</u> The Qiagen Blood and Cell Culture Genomic DNA kit was used

to prepare genomic DNA from tissue culture samples.

<u>Total cellular RNA</u>: Total cellular RNA was prepared using the Qiagen RNeasy total RNA kit.

<u>Viral RNA:</u> Viral RNA was prepared by pelleting virions by ultracentrifugation (28,000 rpm for 2 hours at 4 °C in a Beckman SW 28 rotor), pouring off the supernatant, resuspending the viral pellet in the residual media, and using the Qiagen Oligotex direct mRNA kit.

Sequencing reactions

Sequencing reactions were performed using the Sequenase sequencing kit from USB.

Reverse transcription

Reverse transcription of cellular RNA and virion RNA samples was performed using 100 ng template RNA with the HIV-specific oligonucleotides HIV521 (5'-GGGAGCTCTCTGGCTAACTAGGG -3') and HIV1573r (5'-CATCCTATTTGTTCCTGAAGGG -3') according to the manufacturer's instructions (Titan reverse transcription kit (Boehringer-Mannheim)).

PCR

PCR was performed in 20 mM Tris.HCl pH 8.55, 150 ng/ml BSA, 16 mM $(NH_4)_2SO_4$, 3.5 mM MgCl₂, 625 uM each dNTP, 0.25 μ M each primer, and 1 unit per 50 μ l reaction Taq DNA polymerase (AmpliTaq from Perkin-Elmer). "Cold" PCR conditions consisted of 2 minutes at 94 °C followed by 30 cycles of 30 seconds at 94 °C, 30 seconds at 55 °C, and 2 minutes at 72 °C. "Hot" PCR conditions consisted of 2 minutes at 94 °C followed by 25 cycles of 30 seconds at 94 °C, 30 seconds at 55 °C, and 1 minute at 72 °C.

Pretreatment of streptavidin-agarose beads

Streptavidin agarose beads (Sigma) were incubated in the presence of poly dldC (200 ug per ml streptavidin agarose slurry) in 1x binding buffer (12% glycerol (v/v), 12 mM Hepes pH 7.9, 4 mM Tris.HCl pH 8.0, 60 mM KCl, 1 mM EDTA, 1 mM DTT) for one hour at 25 °C. The beads were then washed four times in 1x binding buffer (1 ml buffer/ml slurry) and finally resuspended in 1x binding buffer to reconstitute the initial volume of slurry.

Single-stranded Affinity Matrix (SSAM) treatment of PCR reactions

8 μ l of 8M Lithium chloride and 10 μ l of SSAM (Clontech) were added to each 50 μ l PCR reaction. The mixture was incubated for 10 minutes at room temperature with agitation every two minutes. The SSAM resin was then removed by passing the mixture through a 0.45 μ m spin filter (Millipore). Alternatively, BNDC resin (Sigma) was suspended in 1M Lithium chloride (0.5 g resin in 2.5 ml 1M Lithium chloride) for 60 minutes at room temperature. 50 μ l of this suspension was used per PCR reaction.

Footprinting

Initial amplification of nucleic acid samples was done according to the "cold" PCR protocol using HIV-specific primers HIV37 (5'-

TGGAAGGGCTAATTCACTCCCAAAG -3'), HIV493 (5'-

TCTCTCTGGTTAGACCAGATCTG -3'), HIV521(5'-

GGGAGCTCTCTGGCTAACTAGGG -3') and HIV1573r (5'-

CATCCTATTTGTTCCTGAAGGG -3'). 10 ng of plasmid samples, one-tenth of the products of reverse transcription reactions (equivalent to 10 ng input RNA), or 0.5 μ g genomic DNA samples were used as templates. 10 ng of "cold" PCR products were used for "hot" PCR reactions. For "hot" PCR reactions, one HIVspecific primer was labeled with ³²P (T4 polynucleotide kinase, New England Biolabs) while the other primer was biotinylated (Operon). High-specific-activity 32P-gamma-ATP (160 μ Ci/mmol, 23 pmol/ μ l, ICN) was used for radiolabelling at a stoichiometry of 1 pmol ATP/1 pmol oligonucleotide. "Hot" PCR products were

treated with SSAM, purified (Qiaguick PCR purification kit), then adsorbed to 50 µl pretreated streptavidin-agarose beads (Sigma) in 1x binding buffer for one hour at 25 °C. The beads were then washed twice with 0.5 ml 1x binding buffer for 15 minutes at 25 °C, washed once with 0.5 ml 1x restriction enzyme buffer 3 (New England Biolabs), and incubated in 50 μ l 1x restriction enzyme buffer 3 (New England Biolabs) containing 20 units Not I restriction enzyme (New England Biolabs) for 1 hour at 37 °C. The supernatant from this digestion step was separated from the beads by centrifugation through a Micro Bio-spin column (Bio-rad) at 3,000 rpm for 1 minute at room temperature in a tabletop microfuge. The supernatant was then precipitated in 0.3 M NaOAc pH 5.2 and 70% ethanol in the presence of 5 μ g linear acrylamide, washed with 70% ethanol, dried briefly under vacuum, and resuspended in 3 μ l 10 mM Tris.HCl/1 mM EDTA pH 8.0 + 3 ul 2x formamide loading dve (95% deionized formamide/25 mM EDTA pH 8.0/0.25% bromophenol blue/0.25% xylene cyanol). Samples were heated at 95 ^oC for 2 minutes, placed immediately onto ice, and analyzed by electrophoresis through 6% acylamide (19:1 acrylamide:bis-acrylamide)/1x TBE/7 M urea sequencing gels (2 µl sample per lane). Gels were dried for 1.5 hours at 80 °C under vacuum and exposed to Biomax MR film (Kodak).

Quantitation

Autoradiographs were scanned using a flatbed scanner (Hewlett-Packard) at 300 dpi resolution, with brightness and contrast set at 125 (50%). Scanned images were read into a Matlab-based application (see Appendices D and E) by which

individual bands were selected and quantitated for peak intensity values. Data from different footprinting reactions and different gels were normalized by fitting profiles of the relative intensities of bands within each run using an algorithm that minimizes the sum of the coefficients of variance for the mutants weighted for the number of measurements for each mutant (figure 7). The normalized data were then averaged. Data from triplicate experiments were normalized using the same algorithm and averaged (see Appendices D and E).
Chapter 4

Results

Creation of a library of insertion mutants

The objective was to make a large number of mutations of the same type at diverse positions in a one kilobase stretch of the HIV genome and to assess the performance of each mutant at several points in the viral replication cycle. A library of 15-base-pair insertion mutants was constructed by in vitro transposition in a replication-defective HIV provirus containing the puromycin acetyltransferase gene driven by an internal promoter in place of the env gene. The mutations were made specifically in the segment of the HIV genome (positions 37-1550) including the 5'-LTR, the 5' untranslated region, the complete matrix gene and the 5' half of the capsid gene. Mutants are numbered according to the nucleotide position immediately 5' to the insertion.

The MuA enzyme was used to perform an in vitro transposition reaction, introducing a pair of double-stranded DNA oligonucleotides into a doublestranded circular target DNA molecule (figure 1). The oligonucleotides contained both sequences necessary for recognition by MuA and sequences recognized by the Not I restriction endonuclease. MuA inserts the oligonucleotides into the target DNAs in a staggered fashion, such that the products of the transposition reaction were gapped linear double-stranded DNA molecules, with an oligonucleotide located at either end. After filling in the gaps by nick translation, the reaction products were digested Not I, generating compatible cohesive ends, which were ligated. The final products were circular DNA molecules containing

the inserted sequence, 5'-TGCGGCCGCA-3', flanked by five base-pair duplications of the target sequence. The insertions retained the Notl recognition sequence, which was used during the analysis procedure. Insertional mutants were generated using MuA transposase rather than MLV integrase, the enzyme used in the original footprinting experiments, since MuA transposase executes the necessary in vitro concerted integration reaction more robustly (Crowley et al., manuscript in preparation). Sixteen individual mutant clones, at positions 189, 238, 268, 358, 557, 622, 776, 926, 1012, 1045, 1067, 1175, 1264, 1267, 1277, and 1399, were isolated and sequenced. These clones were used as markers to determine the location of insertions during analysis.

Insertions were designed such that mutations in coding sequences would be in-frame insertions of five codons. The identity of the amino acids encoded by the insertions depended on both the reading frame and the sequences in the target DNA adjacent to the insertion site.

The positions of insertion mutants for which data were obtained are indicated in figure 6. Although the collection of mutants is extensive, the sequence space was not saturated, since MuA transposase does not make insertions at the same frequency at all sites. Moreover, since transcription starts at R in the 5'-LTR, the effects of mutations in U3 could not be assessed. Examination of nucleic acid samples before and after a single round of transcription by genetic footprinting confirmed this loss of mutants in U3 at transcription, indicating that nucleic acid samples were not contaminated with plasmid DNA from the initial transfections.

Sampling populations of mutants at different steps in the viral replication cycle

To study the effects of insertions on cis-acting elements (e.g. transcriptional modulators, the packaging sequence, and the viral att site), the library was either transiently or stably transfected into producer cells. A plasmid encoding VSV-G was transiently transfected into the producer cells to pseudotype the env-defective virions. A single round of infection was then performed. Nucleic acid samples were collected at various steps during this experiment (see figure 3). Depletion of mutants at different steps in the viral replication cycle was followed by analyzing these nucleic acid samples by genetic footprinting.

A similar strategy was utilized to determine the effects of insertions in trans-acting sequences. Since more than one piece of DNA often enters a given cell during transfection, complementation can occur in a mixed population between trans-acting elements in a transfection experiment (see figure 8). In order to study the functions of trans-acting factors in the absence of complementation, a first round of transient transfection was conducted, cotransfecting the mutant library with a VSV-G expression construct. The goal was to produce a VSV-G pseudotyped, phenotypically mixed population in which mutants with defective trans-acting functions were rescued by complementation. Since approximately half of the clones in the library were wild-type (i.e. did not contain an insertion), this complementation was easy to achieve. These virions were then used to infect fresh host cells at a low multiplicity of infection (1

infectious unit for every 20 cells) such that each cell would receive only one viral genome. According to a Poisson distribution, 95.12% of the cells would receive 0 virions, 4.76% of the cells would receive 1 virion, and 0.12% of the cells would receive more than 1 virion. Hence, of the cells that received at least one virion, approximately 2.5% received more than one virion. The infected cells were selected using puromycin, and this pool of cells was used as the starting population of producer cells for a single round of infection. Nucleic acids were purified at various steps during this experiment and analyzed by genetic footprinting, allowing us to study the effects of mutations on the functions of trans-acting sequences.

From results obtained in these studies, it is now clear that complementation of trans-acting factors occurred very efficiently during the first round of infection in our transient transfection experiments but not to any appreciable degree in our stable transfection experiments. The number of proviruses per cell has not been directly measured. However, if the number of proviruses per cell is T for our transient transfection experiments and S for our stable transfection experiments, our results suggest that T is greater than S. In the simple case where the wild-type version of a gene is dominant and a mutant version is recessive, we would expect T to be greater than or equal to two and S to be equal to one. However, the viral proteins studied in our experiments probably function as oligomers, such that mutants might display dominant negative phenotypes. Thus, in our experiments, S might be larger than one, with T significantly larger than S. In fact, as mentioned above, multiple pieces of DNA

can enter a single cell during transfection, leading us to expect S to be larger than one.

Description of footprinting analysis procedure (figure 2)

Nucleic acid samples collected at various points in the viral life cycle were subjected to an initial round of amplification by either PCR (for DNA samples) or RT-PCR (for RNA samples). PCR was then performed on these pre-amplified samples using one ³²P-labelled DNA primer and one biotinylated DNA primer. The primers were complementary to HIV sequences and flanked the region to be analyzed. The products of this second PCR reaction were first treated with a single-stranded binding resin to remove incomplete extension products and then bound to streptavidin-agarose beads. The radioactively labeled portions of the PCR products containing Not I sites were digested off the beads with Not I, concentrated, and subjected to electrophoresis on denaturing polyacrylamide-urea gels. A typical gel is shown in figure 9.

Cis-acting versus trans-acting elements

Mutations in cis-acting and trans-acting features can often be distinguished by differential behavior in complemented versus uncomplemented infection cycles. One would expect mutations in cis-acting sequences to show their phenotypes in the presence or absence of complementation, while mutations in trans-acting sequences should be apparent only when uncomplemented. Trans-acting sequences are typically considered to be coding

sequences. However, due to the pseudodiploid nature of retroviruses and peculiarities in certain steps of viral life cycle (such as assembly and reverse transcription), there can conceivably be trans-acting sequences in the HIV genome that act at the nucleic acid level.

Data showing the behavior of individual mutants in single-cycle infections are given in figure 10. Figure 10A shows survival of mutants through one round of complemented infection (first round transient transfection), while figure 10B shows the behavior of mutants through one round of uncomplemented infection (second round transient transfection). Mutations that affect replication in both complemented and uncomplemented infections to a significant degree (greater than 55% depletion during one round of infection) appear to be localized to the region 5' to position 847. Since most of this region appears to be composed of noncoding sequences (up to position 828, where the matrix coding sequence begins), it is not surprising that we found cis-acting elements in this area of the genome. Insertions in sequences between positions 847 and 1524 display no clearly discernible effects in complemented infections, while many of these insertions interfere with infection in the uncomplemented situations. Since coding sequences for matrix and capsid lie in this stretch of the genome, one might have expected to find trans-acting functions here.

Mutants in non-coding sequences defective in transcript formation or stability

The six mutants in the TAR region (492-542) were severely compromised in their ability to replicate. The primary deficiency was in transcript production or stability (only qualitative data is given as the region surveyed is too close to the end of the viral RNA for accurate quantitation). Most likely, these mutants are defective for tat binding, which would result in a low efficiency of transcription. The phenotype appears in the presence of complementation, reconfirming the cis-acting nature of the affected noncoding sequences.

In the transient transfection experiment, insertions at positions 564, 573, and 583 had detrimental effects on the second, but not the first, round of infection (figure 10). For the second round of the transient transfection experiment, the effects of the insertions at all three positions were most pronounced during transcript formation (figure 11). However, in the stable transfection experiment, the mutations at positions 564 and 583 resulted in decreases in fitness in the phase of the life cycle occurring between collection of the cellular RNA and viral RNA samples (figure 12). The most probable explanation for these observations is that these mutations, which are in and around the polyadenylation consensus sequence (563-568), interfered with polyadenylation. This defect would not be observed in the first round of infection since only the 5'-LTR was mutagenized and it was not until the first round of reverse transcription that mutations were transferred to the 3'-LTR, where the operative polyadenylation signal lies. In addition, the mutations at positions 564 and 583 might interrupt partially trans-

complementable sequences that contribute to packaging of the viral RNA genome (see below for further discussion of packaging sequences). The dramatic depletion at a previous step (i.e. transcript formation) might be masking the same effect on viral assembly during the second round of the transient transfection experiment.

The other cis-acting mutations that appeared to affect transcript abundance (at positions 578, 727, 728, 730, 758, and 791) manifested moderately to severely decreased transcript levels in producer cells under all conditions tested. These mutations may affect the performance of cis-acting transcriptional enhancer elements.

Mutations in cis-acting sequences that affect viral assembly

A cis-acting RNA packaging signal has been previously mapped to the few hundred base pairs around the 5' splice donor site and the 5' end of gag. Here, we have observed that mutations in the interval between positions 739 and 846 were depleted between transcription and release of cell-free virus in all (complemented and uncomplemented) experiments (figure 12). This region encompasses the "kissing loop" dimerization and packaging signal, the 5' splice donor site, and two stem-loop structures which have been found to bind in vitro to gag and nucleocapsid proteins (Berkowitz and Goff 1994; Berkowitz et al. 1993; Clever et al. 1995; Sakaguchi et al. 1993).

The existence of a supplementary packaging signal is implied by a report by Vicenzi et al. 1994, where a deletion of the 5' one-third of U5 results in a 10-

fold decrease in RNA packaging. In our turn, we have found additional mutations in U5 (at positions 564, 583, 607, 621, and 640) that appear to be defective in viral RNA packaging (figure 12).

In general, the phenotypes of these packaging mutants were more severe in the absence of complementation (figure 10 and data not shown). If viral genomes with insertions at these positions are still able to form dimers, dimerization with wild-type viral genomes may partially rescue the packaging defect of these mutant genomes.

Cis-acting mutants defective in late replication events

Mutations at positions 607-654 and 758-791 resulted in a reduction in recovery during the early part of the viral life cycle, which includes viral entry, uncoating, reverse transcription, nuclear entry, and integration (figure 12). The mutations between positions 607-654 are located in U5, just 5' to the att site. Although no specific function for this region of U5 has been previously defined, its proximity to the att site raises the possibility that sequences in this region contribute to recognition of the viral genome by integrase. These mutations are also reasonably close to the primer binding site, and may interfere with initiation of reverse transcription (Leis et al. 1993). The second group of mutations, between positions 758-791, is in the "kissing loop" motif and the 5' splice donor sequence. A function for sequences in this area in early replication events has not been previously described.

The paucity of mutants displaying significant and specific defects in early steps of viral replication is probably due to the design of our experimental system. It is likely that elimination of mutants at steps in the viral life cycle occurring earlier in our series of experiments (e.g. transcription or assembly) prevents our recognition of additional defects in entry, reverse transcription, or integration. For example, two mutations (at positions 683 and 684) located in the primer binding site were severely depleted in the virion RNA sample (transient transfection experiment, data not shown), such that it was not possible to distinguish further reductions in the infected cell genomic DNA sample. Due to the sequence preferences of MuA transposase and the introduction of five basepair duplications during the mutagenesis procedure, our pool of insertion mutants did not include any detectable mutations that destroyed the att site in U5, another feature in this segment of the genome known to be essential for integration.

Mutations in matrix

Sequences at the 5' end of the matrix coding sequence (positions 827-838) appeared to contribute to viral RNA packaging in cis (see above). A few mutations near the 5' end of the matrix gene (positions 876-929) appeared to result in defects in the production of stable transcripts (figure 13). These transacting mutations, which could be rescued by complementation, were located in the sequences that encode the C-terminal end of helix 1, a loop between helix 1 and helix 2, and the N-terminal half of helix 2. This region contains many basic residues, and is at the edge of the globular domain of matrix that faces away

from the trimer interfaces. The phenotype of these mutants suggests that matrix might have a role in enhancing transcription or stabilizing the viral RNA genome in the producer cell prior to budding. Supporting this possibility, it has been proposed that matrix has RNA-binding activity (Bukrinskaya et al.1992).

Most of the mutants with insertions from positions 937-1131 demonstrated primary losses in fitness in the portion of the life cycle from translation through assembly to budding (figures 13 and 15). These mutations could be rescued in trans and were in the portion of the matrix gene encoding the core of the globular domain of matrix. Mutations in this region are likely to interfere with the proper folding of the matrix protein and thus produce defects in viral assembly, as seen in our results.

As reported previously (Freed et al. 1994; Dorfman et al. 1994a), mutations in the C-terminal domain of matrix (positions 1141-1211 in this study), which consists of a long alpha-helical tail that extends away from the globular domain, were well-tolerated (figures13 and 15).

Mutations in capsid

In accordance with other reports (Dorfman et al. 1994b; Mammano et al. 1994), we found that mutations in the sequence encoding the N-terminal half of the capsid protein were severely detrimental to viral replication (figure 10B). Capsid mutants with insertions between positions 1276 and 1464 were defective both at a step in viral production (assembly or release) and at an early step in replication (figures 14 and 15). Preliminary results indicate that the defect in

early replication occurs before the completion of reverse transcription. This result is quite striking, particularly in comparison to the bulk of our matrix mutants, which appeared to be specifically defective at the assembly/budding step (figure 15).

Mutants with insertions in and immediately adjacent to the N-terminal B hairpin (1244-1264) and the cyclophilin A binding region (1479-1508) of capsid were able to form viral particles, but were defective in a step in early replication (figures 14 and 15). X-ray crystallographic studies (Wlodawer and Erickson 1993; Gitti et al. 1996) support the theory that the β hairpin structure forms only after proteolytic maturation of the viral particle. An extended, relatively disordered conformation during assembly may account for the fact that insertions in this region do not cause a drop in viral particle formation. The β hairpin and the cyclophilin A binding regions are the only regions in the N-terminal domain of capsid that protrude from a tightly packed helical core. These structural differences might explain the differential effects of insertions in these regions on assembly. It has been suggested that the disassembly of the viral core (uncoating) that occurs after viral entry and before the initiation of reverse transcription depends on an interaction between capsid and cyclophilin A (Braaten et al. 1996; Gamble et al. 1996). Therefore, one might expect insertions in the cyclophilin A binding region that interfere with this interaction to affect uncoating.

Discussion

Expected results and novel observations

In the course of these experiments, we have identified several features in the HIV genome, some of which have not been previously described. We mapped three types of cis-acting sequences: those that function in transcript formation/stability, those that are involved in viral RNA packaging, and those that are important for an early step in viral replication. Some of these sequences were found in areas previously mapped for these functions (e.g. TAR, the "kissing loop" motif) and others were found in novel locations. Several mutations near the N-terminus of matrix suggest an unforeseen trans-acting function for matrix in transcript formation or stabilization. In constrast to previous reports, we have observed that many mutations in the globular core of matrix have marked effects on assembly, and mutations in the helical core of the N-terminal domain of capsid cause defects in both assembly and an early step (perhaps disassembly) in viral replication (see below). Finally, mutations in the β hairpin and cyclophilin A binding regions of capsid primarily result in early replication defects. The behavior of the mutations in the cyclophilin A binding region are consistent with the postulated function of this region in uncoating.

How can the same mutation in capsid cause defects in both assembly and disassembly? The answer to this question may lie in the fact that assembly and disassembly are not simply reverse processes. Most obviously, assembly involves the aggregation of gag and gag-pol polyproteins whereas disassembly normally occurs after proteolysis of these polyproteins into several smaller

entities. A mutation that decreases the efficiency of assembly may cause the viral proticles that do form to be aberrant in some way. This notion is supported by observations of abnormal viral core morphology in viruses with mutations in the N-terminal half of capsid (Dorfman et al. 1994b; Reicin et al. 1996). These particles may have problems that interfere with steps that are prerequisites to uncoating. For example, perhaps a decreased ratio of gag-pol to gag compromises proteolytic maturation. Alternatively, essential host factors such as cyclophilin A might be inefficiently incorporated.

Sources of variability in the data

Approximately one kilobase of the HIV genome was analyzed using ten primer pairs. Each primer pair was used to examine an interval of 200 to 300 base-pairs. Each mutant was examined with at least two primer pairs. Moreover, each series of transfection/infection experiments was carried out in triplicate. It was therefore necessary to develop a normalization procedure (see Materials and Methods) so that data from separate gels and different replicates could be combined in determining the quantitative effect of each mutation. Data were normalized based on previous findings that certain areas of the viral genome, such as the C-terminus of matrix, are consistently tolerant to small, inframe insertions.

The normalized data was examined to determine whether the variability in the data arose primarily from variability in the transfection/infection experiments (which could result from sampling error) or variability in the genetic footprinting

procedure. Data for thirty mutants from the stable transfection experiment cellular RNA sample were tabulated and the weighted average of the variances were calculated for the complete data set, data "within replicates," and data "within gels." The normalized intensity measurements for these thirty samples ranged between 7.1 and 111.6. The abundance of each mutant was measured four or five times per replicate. Data within a replicate were derived from separate genetic footprinting reactions using different primer pairs performed on the same nucleic acid sample and run on separate gels. Data within a gel were derived from separate genetic footprinting reactions using the same primer pairs performed on different nucleic acid samples and run on the same gel. The weighted average of the variances was 63.8 for the complete data set, 65.9 "within replicates", and 16.7 "within gels". Therefore, most of the variability appears to arise from differences between gels or primers rather than sampling error incurred during the selection procedure, variability between PCR reactions, or inconsistencies in other nucleic acid manipulations.

Mutations that appear to confer an increase in replication-competence

Mutations at a few positions appear to result in proviruses with an enhanced ability to carry out certain step in viral replication. This finding is somewhat unexpected, as one might expect the wild-type virus to be optimized for replication. However, the system used for the experiments described here is significantly different from the environment in which wild-type HIV evolved. Viral production and infection was carried out in a tissue culture system, rather than in

the context of a whole organism. In this context, the virus does not need to contend with the same complexity of virus-host interactions, such as evasion of the host immune defenses. The sequences encoding env and the accessory factors vif, vpr, vpu, and nef were removed from the proviral clone used, and VSV-G protein was used to pseudotype this defective proviral construct. The use of a pseudotyping system removes several constraints on the viral genome, including the preservation of a functional 5' splice donor sequence and retention of the env-interacting function of matrix. In summary, since the same constraints do not apply in the system used here and in the environment in which HIV evolved, mutations detrimental in one case may be beneficial in the other case.

Incomplete depletion of mutant proviruses

For mutations that severely compromise viral replication, the system presented here may overestimate the ability of these mutants to replicate. This error may stem from three sources. First, there is a certain amount of error in the analysis and quantitation procedures used. Second, the insertion sequence used in these experiments includes a 10 base-pair palindrome, which may form a nucleic acid hairpin structure. This type of mutation may be less disruptive to cisacting sequences that depend on nucleic acid secondary structure than other types of mutations, such as deletions, substitutions, or non-palindromic insertions. Third, in the selection strategy, the uncomplemented infection cycles were carried out using either stably transfected cells or cells that had been infected at low m.o.i as producer cells. As discussed above, it is possible (and

even likely) that some degree of complementation occurred in the stably transfected cells. As for the cells infected at low m.o.i., the measured m.o.i was 0.05. If the infection followed a Poisson distribution, approximately 2.5% of the cells that were infected by one virus were actually infected by more than one virus, allowing complementation to occur in those cells. Hence, for trans-acting factors, one would expect a background reading of approximately 2.5% of wildtype for recessive mutations.

Observed discrepancies with previously published results

The inconsistencies between our results and those found in other reports can be grouped into two classes. First, mutations at certain positions in the matrix gene resulted in severe defects in replication in our study, while it has been reported elsewhere that mutations at the same positions were tolerated (Freed et al. 1994). Second, we found that many mutations in the N-terminal half of capsid were defective in viral assembly. In contrast, others have reported that residues important for gag multimerization and viral assembly reside in the Cterminal domain of capsid (Jowett et al. 1992; Dorfman et al. 1994b; Von Poblotzki et al. 1993; Reicin et al. 1995), while viruses with mutations in the Nterminal domain of capsid were competent for viral assembly, although many formed viral particles with abnormal core morphologies (Dorfman et al. 1994b; Wang and Barklis 1993; Franke et al. 1994; Reicin et al. 1995, Reicin et al. 1996). The discrepancies between our results and those found in other reports may result from differences in experimental method or interpretation.

First, the precise locations and types of mutations differ between all the reports. Different point mutations at the same position in a given gene can lead to different phenotypes. The types of mutations employed vary widely between (and even within) reports, and include point mutations, small deletions, large deletions, and insertions in various combinations.

Second, the methods used to assess replication-competence differ between reports. Wang and Barklis (1993) performed single-round infectivity assays by measuring infection of a marker gene. Other groups followed exogenous RT activities or production of viral proteins in spreading infections over the course of several weeks (Freed et al. 1994 and Reicin et al. 1995; Dorfman et al. 1994a; Dorfman et al. 1994b). We looked at data from two types of experiments: one single-round infection without complementation and two single-round infections in series, the first of which was complemented and the second of which was not complemented. This approach stands in contrast to experiments with spreading infections, where it is difficult to know how many rounds of infection have occurred, which in turn makes it difficult to measure infectivity quantitatively.

Third, viral assembly has been measured in a variety of ways, including exogenous RT assays, RNase protection, western blotting for viral proteins, and electron micrography. These methods do not always assess whether the viral particles contain viral RNA; some are qualitative or yield highly variable results. We believe that none of these methods is as rigorous as the method employed in

this report, where we assessed the relative representation of mutants in the viral RNA sample itself.

Fourth, in all of the other reports the viral particles studied were generated by transient transfection, while the viral RNA samples we footprinted were purified from virions produced from either stably transfected or cells infected at low m.o.i. In our experiments, the titer of virus produced by transient transfection was 10- to 100-fold higher than the titer of virus produced from stably transfected or infected cells. If this difference in titer reflected a difference in expression of the viral genome, the requirements for viral assembly and packaging of the viral RNA genome in our experiments were 10- to 100-fold more stringent than in the experiments described in the other reports. The mutants that have quantitative defects in assembly or packaging might appear to be competent for these functions by less stringent methods.

Finally, in the strategy presented here, a large number of mutants with insertions at diverse positions were followed en masse through two rounds of replication. This strategy permits a comprehensive examination of viral replication. Selection and analysis of the mutants in parallel provided built-in internal controls for variables such as sample recovery and efficiency of analysis procedures.

Future directions

Our examination of three nucleic acid samples per round of replication yielded a relatively crude breakdown of the HIV life cycle. Refinement of our

picture of viral replication can be achieved by footprinting samples from more finely differentiated steps. For example, we could study the effects of mutations on nuclear export of viral RNA by comparing nuclear and cytoplasmic RNA samples from producer cells. Other interesting steps in the viral life cycle amenable to clarification by genetic footprinting are reverse transcription and nuclear entry. We could investigate these steps by collecting additional nucleic acid samples, such as intermediates in the reverse transcription reaction (minusstrand strong stop DNA and plus-strand strong stop DNA), full-length unintegrated viral DNA in the host cell cytoplasmic fraction, and full-length unintegrated viral DNA in host cell nuclear fraction. Of course, genetic footprinting can be performed on the rest of the HIV genome. In addition, we have developed methods to introduce and analyze a variety of mutations, including insertions of different lengths and sequences and substitutions of various types (Singh et al. 1997 and unpublished results).

Generalizability of the genetic footprinting technique

In the original report describing the genetic footprinting technique, this method was used to generate a high-resolution functional map of a small (200 base-pair) gene encoding an RNA molecule (Singh et al. 1997). A functional selection was carried out in a prokaryotic system, and the footprinted nucleic acid samples consisted of purified plasmids. Here we present modifications to genetic footprinting that permitted us to analyze a much larger (1000 base-pair) stretch of nucleic acid including both cis- and trans-acting sequences. The

experiments presented here involved the isolation and analysis of complex nucleic acid samples, including cellular RNA, virion RNA, and genomic DNA samples from a selection scheme in eukaryotic cells. Thus, genetic footprinting can be used to map the functional features in any DNA sequence if an appropriate selection scheme exists. In such a scheme, the abundance of the sequence encoding a given mutant in a nucleic acid sample collected after selection varies directly with the ability of that mutant to survive the selection. In addition, we have developed methods to analyze genetic footprinting data in a quantitative manner. These tools not only reduce the labor involved in analysis of such data, but also allow a more objective assessment of the data.

Chapter 5

The Future of Genetic Footprinting

It is evident that the genetic footprinting method as it exists offers many advantages over traditional methods of mutagenesis and analysis of mutants. Genetic footprinting enables an investigator to perform the mutagenesis, functional selection, and analysis steps en masse, collecting quantitative data on hundreds of mutants at once. There are four major limitations to the present genetic footprinting technology.

First, the distribution of measurable mutants in a gene is largely limited by the sequence bias displayed by the enzyme utilized for mutagenesis. The current favorite enzyme, MuA transposase performs the desired concerted integration event robustly, but displays a sequence selectivity for integration that spans at least three orders of magnitude. The current analysis method covers two orders of magnitude and data can be obtained for only one out of six basepair positions on average.

Second, the existing repertoire of enzymatic functions limits the design of mutations. The genesis of any mutant library must begin with the construction of a library of insertion mutants, where the palindromic insertions contain a five base-pair duplication in the target sequence and the recognition sequence for a restriction enzyme. This sequence must not occur anywhere else in the vector used for mutagenesis, and must be tolerated by MuA transposase. The range of mutants has been expanded by introducing a linker containing a type IIs restriction enzyme recognition sequence at each insertion. Type IIs restriction

enzymes cleave some number of nucleotides away from their recognition sites, the number being specific to the enzyme. The linker can be designed such that digestion with the type IIs restriction enzyme either precisely excises the insertion or creates a deletion. Finally, a new linker of desired sequence is inserted into the gap. The most significant drawback to this approach is the lack of type IIs restriction enzymes that cut more than 16/14 nucleotides away from their recognition sequences.

Third, there are several restrictions imposed by the current analysis method. Two strategies for analysis have been employed, both of which rely on the polymerase chain reaction. The initial strategy used, the "direct PCR" approach, involved using one fixed primer complementary to a sequence in the target gene outside the region under inspection and one "mobile" primer complementary to the insertion sequence. The lengths of the products of this type of PCR reaction correspond to the positions of the inserts relative to the position of the fixed sequence. However, if one wishes to examine the effects of a short insertion or replacement, the direct PCR method proves to be unsatisfactory. A fifteen base-pair insertion contains a unique sequence of only ten base-pairs, too short for sufficiently specific priming. The solution to this problem has been to use the "flanking PCR/restriction digestion" technique. Here, a PCR reaction is performed using two fixed primers complementary to sequences in the target gene flanking the region of interest. The products of this reaction are digested with a restriction enzyme that recognizes a site in the insertion sequence. The obvious limitation to this method is that the insertion

must be palindromic and contain a restriction site (if the sequence is not palidromic, each position of insertion will yield two products of different size, depending on the orientation of the insertion in the gene).

Finally, the gel-based detection method is cumbersome and introduces a significant amount of error into our results. In fact, using the current system, the analysis procedure appears to be responsible for much more variation than the selection scheme.

I believe there is a technically feasible alternate approach that eliminates the problems enumerated above. The investigator would be able to specify the positions and relative abundances of mutants, assuring more uniform coverage of the gene of interest. A much wider variety of mutations would be available, including insertions or replacements of as few as three base-pairs, with no limitations on the content of the introduced sequence. Even deletions can be examined, as long as one is willing to introduce a few unique base-pairs at the deletion site (see figure 16 for sketches of possible types of mutations). The analysis method would involve a flanking PCR step followed by hybridization of the PCR products to an array of oligonucleotides and scanning using a fluorescence detection system. A specific description of this approach follows.

First, one must make a library of mutants (see figure 17). This step involves the synthesis of two unique oligonucleotides for each mutant desired, in addition to two common oligonucleotides complementary to sequences flanking the region under mutagenesis. For example, in order to replace all the residues

in a 300 amino acid protein with alanine, one would need 600 + 2 oligonucleotides. These mutagenic oligonucleotides are also used in the analysis process. The two unique oligonucleotides for a given mutant are complementary to each other, and contain two types of sequences. At the edges, the oligonucleotides are complementary to target gene sequences on either side of the site of mutagenesis. The middle of each oligonucleotide contains the insertion or replacement sequence. The lengths of the "edge" sequences are adjusted such that the oligonucleotides for all of the mutants have approximately the same melting temperature. Now all the mutagenic oligonucleotides complementary to the top strand of the target gene are mixed together in one pot and all the mutagenic oligonucleotides complementary to the bottom strand are mixed together in another pot, adjusting the ratios of the individual oligonucleotides according to the desired proportions of each mutant in our starting library. For instance, in order to start with twice as many mutants at position A as at position B, one would add twice as many oligonucleotides for position A as for position B. Then, two PCR reactions are performed. The template for both reactions is the gene to be mutagenized. One reaction contains the fixed oligonucleotide complementary to the bottom strand of the template and the mixture of mutagenic oligonucleotides complementary to the top strand of the template, and the other reaction contains the other set of oligonucleotide primers. In order to minimize the introduction of unwanted mutations due to misincorporation by the enzyme used for PCR, a proofreading polymerase is used and the number of cycles of PCR is minimized. Suppose

that one starts with approximately 12.5 pmol of each primer and 0.015 pmol of template. After five cycles of PCR with an annealing temperature corresponding to the predicted melting temperature for the "edge" sequences of the mutagenic oligonucleotides, about one pmol of mutants should be present. Then, ten cycles of PCR with an annealing temperature corresponding to the predicted melting temperature for the complete mutagenic oligonucleotides are performed. After a purification step to eliminate any unincorporated primers, the products of the two PCR reactions are mixed together. Another PCR reaction including only the fixed, flanking oligonucleotides is performed, using an annealing temperature corresponding to the predicted melting temperature for the complete mutagenic oligonucleotides. The products of the initial round of PCR will prime off of each other if they overlap precisely, as they will when they correspond to the same mutant. Then, the flanking primers will amplify the population of mutants, which can be cloned into an appropriate vector for selection.

After a functional selection is performed, the relevant nucleic acid sample is purified. Both the original library of mutants and the selected nucleic acid sample are subjected separately to PCR using the flanking oligonucleotides. During this amplification step, fluorescent labels are incorporated, one color for the pre-selection sample and another color for the post-selection sample. The products of these two PCR reactions are then mixed and used as a probe to hybridize to an oligonucleotide array. The elements of this array are the original mutagenic oligonucleotides (one can of course use the fixed oligonucleotides as positive controls and normalization standards). PCR products containing

mutations hybridize to the corresponding mutagenic oligonucleotides. It has been shown that existing array hybridization technology allows discrimination of one mismatch in an oligonucleotide octomer. This level of specificity should be adequate for the purposes of this type of experiment. The arrays are then scanned and quantitated. The ratios of the two colors at each spot on the array reflect the ability of the corresponding mutant to survive the selection.

References

Baltimore, D. (1970). RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226, 1209-11.

Berkhout, B., Silverman, R. H., and Jeang, K. T. (1989). Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59, 273-82.

Berkowitz, R. D., Luban, J., and Goff, S. P. (1993). Specific binding of human immunodeficiency virus type 1 gag polyprotein and nucleocapsid protein to viral RNAs detected by RNA mobility shift assays. Journal of Virology 67, 7190-200.

Berkowitz, R. D., and Goff, S. P. (1994). Analysis of binding elements in the human immunodeficiency virus type 1 genomic RNA and nucleocapsid protein. Virology 202, 233-46.

Braaten, D., Franke, E. K., and Luban, J. (1996). Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. Journal of Virology 70, 3551-60.

Bryant, M., and Ratner, L. (1990). Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proceedings of the National Academy of Sciences of the United States of America 87, 523-7.

Bukrinskaya, A. G., Vorkunova, G. K., and Tentsov, Y. (1992). HIV-1 matrix protein p17 resides in cell nuclei in association with genomic RNA. Aids Research and Human Retroviruses 8, 1795-801.

Bukrinsky, M. I., Haggerty, S., Dempsey, M. P., Sharova, N., Adzhubel, A., Spitz, L., Lewis, P., Goldfarb, D., Emerman, M., and Stevenson, M. (1993). A nuclear localization signal within HIV-1 matrix protein that governs infection of nondividing cells [see comments]. Nature 365, 666-9.

Bushman, F. D., and Craigie, R. (1991). Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proceedings of the National Academy of Sciences of the United States of America 88, 1339-43.

Clever, J., Sassetti, C., and Parslow, T. G. (1995). RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1. Journal of Virology 69, 2101-9.

Clever, J. L., and Parslow, T. G. (1997). Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation. Journal of Virology 71, 3407-14.

Coffin, J. M., and Haseltine, W. A. (1977). Terminal redundancy and the origin of replication of Rous sarcoma virus RNA. Proceedings of the National Academy of Sciences of the United States of America 74, 1908-12.

Coffin, J. M., Hageman, T. C., Maxam, A. M., and Haseltine, W. A. (1978). Structure of the genome of Moloney murine leukemia virus: a terminally redundant sequence. Cell 13, 761-73.

Coffin, J. M., Hughes, S. H., and Varmus, H. (1997). Retroviruses (Plainview, N.Y.: Cold Spring Harbor Laboratory Press).

Cordingley, M. G., LaFemina, R. L., Callahan, P. L., Condra, J. H., Sardana, V. V., Graham, D. J., Nguyen, T. M., LeGrow, K., Gotlib, L., Schlabach, A. J., and et al. (1990). Sequence-specific interaction of Tat protein and Tat peptides with the transactivation-responsive sequence element of human immunodeficiency virus type 1 in vitro. Proceedings of the National Academy of Sciences of the United States of America 87, 8985-9.

Dingwall, C., Ernberg, I., Gait, M. J., Green, S. M., Heaphy, S., Karn, J., Lowe, A. D., Singh, M., Skinner, M. A., and Valerio, R. (1989). Human immunodeficiency virus 1 tat protein binds trans-activation-responsive region (TAR) RNA in vitro. Proceedings of the National Academy of Sciences of the United States of America 86, 6925-9.

Dorfman, T., Mammano, F., Haseltine, W. A., and Göttlinger, H. G. (1994a). Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. Journal of Virology 68, 1689-96.

Dorfman, T., Bukovsky, A., Ohagen, A., Höglund, S., and Göttlinger, H. G. (1994b). Functional domains of the capsid protein of human immunodeficiency virus type 1. Journal of Virology 68, 8180-7.

Ellerman, V., and Bang, O. (1908). Experimentelle Leukamie bei Huhnern. Zentralbl. Bakteriol. Parasitenkd. Infectionskr. Hyg. Abt. Orig. 46, 595-609.

Fäcke, M., Janetzko, A., Shoeman, R. L., and Kräusslich, H. G. (1993). A large deletion in the matrix domain of the human immunodeficiency virus gag gene redirects virus particle assembly from the plasma membrane to the endoplasmic reticulum. Journal of Virology 67, 4972-80.

Feng, S., and Holland, E. C. (1988). HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334, 165-7.

Fouchier, R. A., Meyer, B. E., Simon, J. H., Fischer, U., and Malim, M. H. (1997). HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for postentry nuclear import. Embo Journal 16, 4531-9.

Franke, E. K., Yuan, H. E., and Luban, J. (1994). Specific incorporation of cyclophilin A into HIV-1 virions [see comments]. Nature 372, 359-62.

Freed, E. O., Orenstein, J. M., Buckler-White, A. J., and Martin, M. A. (1994). Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. Journal of Virology 68, 5311-20.

Freed, E. O., Englund, G., and Martin, M. A. (1995). Role of the basic domain of human immunodeficiency virus type 1 matrix in macrophage infection. Journal of Virology 69, 3949-54.

Gait, M. J., and Karn, J. (1993). RNA recognition by the human immunodeficiency virus Tat and Rev proteins. Trends in Biochemical Sciences 18, 255-9.

Gallay, P., Swingler, S., Song, J., Bushman, F., and Trono, D. (1995a). HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell 83, 569-76.

Gallay, P., Swingler, S., Aiken, C., and Trono, D. (1995b). HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator. Cell 80, 379-88.

Gamble, T. R., Vajdos, F. F., Yoo, S., Worthylake, D. K., Houseweart, M., Sundquist, W. I., and Hill, C. P. (1996). Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285-94.

Gitti, R. K., Lee, B. M., Walker, J., Summers, M. F., Yoo, S., and Sundquist, W. I. (1996). Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273, 231-5.

Gottlieb, M. S., Schroff, R., Schanker, H. M., Weisman, J. D., Fan, P. T., Wolf, R. A., and Saxon, A. (1981). Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. New England Journal of Medicine 305, 1425-31.

Göttlinger, H. G., Sodroski, J. G., and Haseltine, W. A. (1989). Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences of the United States of America 86, 5781-5.

Haseltine, W. A., Panet, A., Smoler, D., Baltimore, D., Peters, G., Harada, F., and Dahlberg, J. E. (1977). Interaction of tryptophan tRNA and avian

myeloblastosis virus reverse transcriptase: further characterization of the binding reaction. Biochemistry 16, 3625-32.

He, J., and Landau, N. R. (1995). Use of a novel human immunodeficiency virus type 1 reporter virus expressing human placental alkaline phosphatase to detect an alternative viral receptor. Journal of Virology 69, 4587-92.

Hensel, M., Shea, J. E., Gleeson, C., Jones, M. D., Dalton, E., and Holden, D. W. (1995). Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400-3.

Jowett, J. B., Hockley, D. J., Nermut, M. V., and Jones, I. M. (1992). Distinct signals in human immunodeficiency virus type 1 Pr55 necessary for RNA binding and particle formation [published erratum appears in J Gen Virol 1993 May;74(Pt 5):943]. Journal of General Virology 73, 3079-86.

LaFemina, R. L., Callahan, P. L., and Cordingley, M. G. (1991). Substrate specificity of recombinant human immunodeficiency virus integrase protein. Journal of Virology 65, 5624-30.

Laughrea, M., and Jetté, L. (1997a). HIV-1 genome dimerization: kissing-loop hairpin dictates whether nucleotides downstream of the 5' splice junction contribute to loose and tight dimerization of human immunodeficiency virus RNA. Biochemistry 36, 9501-8.

Laughrea, M., Jetté, L., Mak, J., Kleiman, L., Liang, C., and Wainberg, M. A. (1997b). Mutations in the kissing-loop hairpin of human immunodeficiency virus type 1 reduce viral infectivity as well as genomic RNA packaging and dimerization. Journal of Virology 71, 3397-406.

Leavitt, A. D., Rose, R. B., and Varmus, H. E. (1992). Both substrate and target oligonucleotide sequences affect in vitro integration mediated by human immunodeficiency virus type 1 integrase protein produced in Saccharomyces cerevisiae. Journal of Virology 66, 2359-68.

Leis, J., Aiyar, A., and Cobrinik, D. (1993). Regulation of initiation of reverse transcription in retroviruses. In Reverse Transcriptase, A. M. Skalka and S. P. Goff, eds. (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press), pp. 33-48.

Lever, A., Gottlinger, H., Haseltine, W., and Sodroski, J. (1989). Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. Journal of Virology 63, 4085-7.

Luban, J., Bossolt, K. L., Franke, E. K., Kalpana, G. V., and Goff, S. P. (1993). Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067-78.

Luban, J., and Goff, S. P. (1994). Mutational analysis of cis-acting packaging signals in human immunodeficiency virus type 1 RNA. Journal of Virology 68, 3784-93.

Mammano, F., Ohagen, A., Höglund, S., and Göttlinger, H. G. (1994). Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis. Journal of Virology 68, 4927-36.

Masur, H., Michelis, M. A., Greene, J. B., Onorato, I., Stouwe, R. A., Holzman, R. S., Wormser, G., Brettman, L., Lange, M., Murray, H. W., and Cunningham-Rundles, S. (1981). An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. New England Journal of Medicine 305, 1431-8.

McBride, M. S., and Panganiban, A. T. (1996). The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures [published erratum appears in J Virol 1997 Jan;71(1):858]. Journal of Virology 70, 2963-73.

Morgenstern, J. P., and Land, H. (1990). Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Research 18, 3587-96.

Popovic, M., Sarngadharan, M. G., Read, E., and Gallo, R. C. (1984). Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224, 497-500.

Pryciak, P. M., and Varmus, H. E. (1992). Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69, 769-80.

Reicin, A. S., Paik, S., Berkowitz, R. D., Luban, J., Lowy, I., and Goff, S. P. (1995). Linker insertion mutations in the human immunodeficiency virus type 1 gag gene: effects on virion particle assembly, release, and infectivity. Journal of Virology 69, 642-50.

Reicin, A. S., Ohagen, A., Yin, L., Hoglund, S., and Goff, S. P. (1996). The role of Gag in human immunodeficiency virus type 1 virion morphogenesis and early steps of the viral life cycle. Journal of Virology 70, 8645-52.

Rhim, H., Park, J., and Morrow, C. D. (1991). Deletions in the tRNA(Lys) primerbinding site of human immunodeficiency virus type 1 identify essential regions for reverse transcription. Journal of Virology 65, 4555-64.

Rous, P. (1911). A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13, 397-411.

Roy, S., Delling, U., Chen, C. H., Rosen, C. A., and Sonenberg, N. (1990). A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes and Development 4, 1365-73.

Roy, S., Parkin, N. T., Rosen, C., Itovitch, J., and Sonenberg, N. (1990). Structural requirements for trans activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by tat: importance of base pairing, loop sequence, and bulges in the tat-responsive sequence. Journal of Virology 64, 1402-6.

Sakaguchi, K., Zambrano, N., Baldwin, E. T., Shapiro, B. A., Erickson, J. W., Omichinski, J. G., Clore, G. M., Gronenborn, A. M., and Appella, E. (1993). Identification of a binding site for the human immunodeficiency virus type 1 nucleocapsid protein. Proceedings of the National Academy of Sciences of the United States of America 90, 5219-23.

Sambrook, J., Maniatis, T., and Fritsch, E. F. (1989). Molecular cloning : a laboratory manual, 2nd Edition (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory).

Savilahti, H., Rice, P. A., and Mizuuchi, K. (1995). The phage Mu transpososome core: DNA requirements for assembly and function. Embo Journal 14, 4893-903.

Schwartz, D. E., Zamecnik, P. C., and Weith, H. L. (1977). Rous sarcoma virus genome is terminally redundant: the 3' sequence. Proceedings of the National Academy of Sciences of the United States of America 74, 994-8.

Selby, M. J., Bain, E. S., Luciw, P. A., and Peterlin, B. M. (1989). Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes and Development 3, 547-58.

Shaw, G. M., Hahn, B. H., Arya, S. K., Groopman, J. E., Gallo, R. C., and Wong-Staal, F. (1984). Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the acquired immune deficiency syndrome. Science 226, 1165-71. Sherman, P. A., Dickson, M. L., and Fyfe, J. A. (1992). Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions. Journal of Virology 66, 3593-601.

Siegal, F. P., Lopez, C., Hammer, G. S., Brown, A. E., Komfeld, S. J., Gold, J., Hassett, J., Hirschman, S. Z., Cunningham-Rundles, C., Adelsberg, B. R., and et al. (1981). Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions. New England Journal of Medicine 305, 1439-44.

Singh, I. R., Crowley, R. A., and Brown, P. O. (1997). High-resolution functional mapping of a cloned gene by genetic footprinting. Proceedings of the National Academy of Sciences of the United States of America 94, 1304-9.

Smith, V., Chou, K. N., Lashkari, D., Botstein, D., and Brown, P. O. (1996). Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274, 2069-74.

Stoll, E., Billeter, M. A., Palmenberg, A., and Weissmann, C. (1977). Avian myeloblastosis virus RNA is terminally redundant: implications for the mechanism of retrovirus replication. Cell 12, 57-72.

Sutton, R. E., Wu, H. T., Rigg, R., Böhnlein, E., and Brown, P. O. (1998). Human immunodeficiency virus type 1 vectors efficiently transduce human hematopoietic stem cells. Journal of Virology 72, 5781-8.

Temin, H. M., and Mizutani, S. (1970). RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226, 1211-3.

Thali, M., Bukovsky, A., Kondo, E., Rosenwirth, B., Walsh, C. T., Sodroski, J., and Göttlinger, H. G. (1994). Functional association of cyclophilin A with HIV-1 virions [see comments]. Nature 372, 363-5.

van den Ent, F. M., Vink, C., and Plasterk, R. H. (1994). DNA substrate requirements for different activities of the human immunodeficiency virus type 1 integrase protein. Journal of Virology 68, 7825-32.

Van Lint, C., Burny, A., and Verdin, E. (1991). The intragenic enhancer of human immunodeficiency virus type 1 contains functional AP-1 binding sites. Journal of Virology 65, 7066-72.

Verdin, E., Becker, N., Bex, F., Droogmans, L., and Burny, A. (1990). Identification and characterization of an enhancer in the coding region of the genome of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences of the United States of America 87, 4874-8. Vicenzi, E., Dimitrov, D. S., Engelman, A., Migone, T. S., Purcell, D. F., Leonard, J., Englund, G., and Martin, M. A. (1994). An integration-defective U5 deletion mutant of human immunodeficiency virus type 1 reverts by eliminating additional long terminal repeat sequences. Journal of Virology 68, 7879-90.

von Poblotzki, A., Wagner, R., Niedrig, M., Wanner, G., Wolf, H., and Modrow, S. (1993). Identification of a region in the Pr55gag-polyprotein essential for HIV-1 particle formation. Virology 193, 981-5.

von Schwedler, U., Kornbluth, R. S., and Trono, D. (1994). The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America 91, 6992-6.

Wang, C. T., and Barklis, E. (1993). Assembly, processing, and infectivity of human immunodeficiency virus type 1 gag mutants. Journal of Virology 67, 4264-73.

Wlodawer, A., and Erickson, J. W. (1993). Structure-based inhibitors of HIV-1 protease. Annual Review of Biochemistry 62, 543-85.

Yu, X., Yu, Q. C., Lee, T. H., and Essex, M. (1992a). The C terminus of human immunodeficiency virus type 1 matrix protein is involved in early steps of the virus life cycle. Journal of Virology 66, 5667-70.

Yu, X., Yuan, X., Matsuda, Z., Lee, T. H., and Essex, M. (1992b). The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. Journal of Virology 66, 4966-71.

Zhou, W., Parent, L. J., Wills, J. W., and Resh, M. D. (1994). Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. Journal of Virology 68, 2556-69.

Figure 1. Mutagenesis scheme using MuA tranposase. Oligonucleotides used for mutagenesis are bold lines (**SER**), the target DNA plasmid is drawn as thin lines, and sequences in the target DNA duplicated during mutagenesis are empty lines (**SE**).

Figure 2. Genetic footprinting scheme using flanking PCR and restriction digestion. A collection of insertion mutants is subjected to PCR using one radioactively labelled primer (\checkmark) and one biotinylated primer (\checkmark). The PCR products are bound to streptavidin-agarose resin (\checkmark) and digested with a restriction enzyme that recognizes a site in the insertion sequence. The radioactively labelled ends of the PCR products are released.

Figure 3. The retroviral life cycle. Nucleic acid samples analyzed in this study are boxed.

Figure 4A. . Schematic representation of the 5' end of the HIV genome, which includes TAR, the U5 att site, the primer binding site (PBS), the splice donor for the env message, the start of the matrix coding sequence, and the packaging sequence (ty).

Figure 4B. Selection of mutants defective in TAR (#1), att site(#2), primer binding site (#3), and packaging sequence (#4) functions at different steps during the viral life cycle and the nucleic acid samples where one would observe these selections. The illustrated mutations and the phenotypes depicted for them are based on results from previous reports. "WT" indicates a wild-type, replication-competent viral genome.

Figure 5. Isolating a specific mutant by PCR. Sequences introduced during the mutagenesis procedure are in bold lines (**11**). Primers are indicated by arrows. Note that primers that contains both wild-type and mutant sequences (\leftarrow) will selectively prime off of template DNAs that have a mutation at the selected site.

ID DO OID CYPA	H1 H2 H3 H4 CyPA	capsid	111 1111111111111111111111111111111111
*	β		224 1
(1111)	H5		mm mm
8	H4	ntrix	
8	F	ma	++
k an :an	SL H1 BR H2		28 111 111 111 1
Jul	KLD s.d.SL		
5	PBS		673 † † †
att	att	U5	
	TAR poly-A	н	

Figure 6. Diagram of mutations evaluated in this study mapped onto the HIV genome. Features described previously are TAR (TAR), the polyadenylation signal (poly-A), the att site (att), the primer binding site (PBS), the kissing loop domain (KLD), the splice donor (s.d.)for the env message, two gag-binding stem-loop structures (SL), helices 1-5 (H1-H5) of matrix, the basic region of matrix (BR), the beta hairpin of capsid (β), helices 1-4 (H1-H4) of capsid, and the cyclophilin A binding region of capsid (CyPA). Numbers indicate nucleotide positions at the borders of major regions in the HIV genome. Arrows indicate positions of insertional mutations evaluated in this study.

Figure 7. Example of quantitative data before and after normalization. Data shown is from genetic footprinting experiments on the library of mutagenized proviruses. Nucleotide positions of mutations for which data were obtained are given on the X-axis. Intensity of bands measured from autoradiograms is given in arbitrary units on the Y-axis. The different colored traces represent data measured from different gels.

Figure 8. Diagram of transfection and infection experiments. The library of mutagenized proviruses was either transiently or stably transfected into cells to produce populations of mutant virions. In our experiments, the viral genomes of mutants defective in trans-acting factors were efficiently rescued during the transient transfection by phenotypic mixing, but were not detectably rescued during the stable transfection. The virus produced in the transient transfection experiment was used to infect fresh, uninfected cells at a low multiplicity, resulting in a population of producer cells that contained a single provirus per cell. Wild-type viralgenome(∞), replication-defective viral genome with mutation in trans-acting factor (\blacktriangleleft), wild-type viral protein (\bullet), mutant viral protein (\bullet).

_					nutant libi sellular RN irrion RNA	
% m	utant lit	orary sa	ample			
mutant library	cellular RNA	virion RNA	genomic DNA			Nucleic Acid
100	80	13	6	1120	-	AAGACAACCAA TGCGGCCGCA ACCAAGGAAG
100	158	23	17	1126		CCAAGGAAGC TGCGGCCGCA GAAGCCTTAG
100 100 100	91 60 93	60 42 80	62 58 76	1141 1142 1146		ATAAG <u>ATAGA</u> TGCGGCCGCA <u>ATAGAG</u> GAAG TAAGA <u>TAGAG</u> TGCGGCCGCA <u>TAGAG</u> GAAGA ATAGA <u>GGAAG</u> TGCGGCCGCA <u>GGAAG</u> AGCAA
100 100	149 105	136 45	137 65	1174 1175		AAAAG <u>GCACA TGCGGCCGCA GCACA</u> GCAAG AAAGG <u>CACAG TGCGGCCGCA CACAG</u> CAAGC
100	109	188	121	1184		GCAAGCAGCA TGCGGCCGCA CAGCAGCTGA
100	206	194	249	1105		CAGCAGCAG TGCGGCCGCA AGCAGC TGAC
100	135	89	123	1195		CTGACACAGGTGCGGCCGCAACAGGAAACA
100 100	78 85	64 108	63 136	1209 1211		AACAG <u>CCAGGTGCGGCCGCA</u> CC <u>AGG</u> TCAGC CAGCC <u>AGGTCTGCGGCCGCAAGGTC</u> AGCCA

ANA

Figure 9. Genetic footprinting of library of mutagenized proviruses and nucleic acid samples from the transient transfection experiment, second round (the uncomplemented round) of viral production and infection (cellular RNA, viral RNA, and infected cell genomic DNA). Numbers directly to the left of the gel indicate exact positions of insertions. The first nucleotide of the HIV provirus is at position 37. Quantitative data averaged from normalized measurements are also given to the left of the gel. The nucleic acid sequences of the mutants are written to right of the gel. The sequences derived from the insertion oligonucleotide are bpxed, while the target sequence duplications are underlined.

Figure 10. Percent recovery of mutants through single-cycle infections. Data are not shown for mutants where the coefficient of variation between triplicate experiments was greater than 0.5, except in cases where the observed phenotypes were confirmed by re-analysis. Graphs are plotted on a log scale. Red bars indicate mutants that display significant depletions (<45% recovery). Mutations that compromise replication both in the presence and the absence of complementation are considered to be located in cis-acting sequences, while those that affect only uncomplemented replication cycles are considered to be located in cis-acting sequences. A. Percent recovery of mutants after a single round of infectionin the presence of complementation. Data are from the transient transfection experiment, first round of infectionin the transient transfection complementation. B. Percent recovery of mutants after a single round of infectioni. B. Percent recovery of mutants after a single round of infectioni. B. Percent recovery of mutants after a single round of infection. Data are from the transient transfection complementation. Data are from the transient transfection complementation. Data are from the transient transfection complementation. Data are from the transient transfection for mutants whose abundance was very low after the first round of infection. Data are not given for mutants whose abundance was very low after the first round of infection.

Figure 11. Behavior of selected mutants in cis-acting sequences in the transient transfection experiment. These mutants are replication competent in the first round of infection, but defective for transcript formation in the second round, possibly indicating that the cis-acting element interrupted by the insertions is active in the 3' LTR.

Figure 13. Percent recovery of mutations in matrix at several steps of a single-cycle uncomplemented infection. Samples were collected from the transient transfection experiment, second round of viral production and infection. Percent recovery was calculated by dividing the abundance of a mutant in a given nucleic acid sample by the abundance of that mutant in the infected cell genomic DNA sample from the first round of infection. Data are not shown for points where the abundance of a particular mutant was very low in the preceding nucleic acid sample, or the coefficient of variation between triplicate experiments was greater than 0.5. Graphs are plotted on a log scale. Red bars indicate mutants that display significant depletions (<45% of preceding nucleic acid sample). Mutants which were depleted in the cellular RNA sample are considered to be defective in transcript formation, mutants which were depleted in the virion RNA sample are considered to be defective in asample, and mutants which were depleted in the infected cell genomic DNA sample are considered to be defective in an early step in viral replication.

Figure 15. Percent recovery of matrix and capeid mutants through the viral assembly process and the early steps of the viral life cycle. Data are derived from single-round uncomplemented viral production and infection cycles. A schematic of the phases of the life cycle tested is drawn above the graphs. Numbers to the right of each point indicate the number of mutants from which data were averaged. Below each data point is a schematic of the region of matrix or capsid evaluated. Error bars indicate 95% confidence intervals. A. Data for the matrix protein. Data are shown for insertions between amino acid positions 1-132 (complete matrix protein), 1-35 (N-terminal region), 36-102 (central region), and 104-130 (C-terminal region). B. Data for the N-terminal half of the capsid protein. Data are shown for insertions between amino acid positions between amino acid positions 1-101 (N-terminal half), 1-15 (N-terminal beta hairpin), 17-81 (central helical region), and 85-96 (Cyclophillin A binding region).

Figure 16. Design of oligonucleotides used to make different types of mutations by PCR.

Figure 17. Strategy for achieving saturating mutagenesis of a stretch of DNA using PCR.

Appendix A. Complete nucleotide sequence of HIV puro (the plasmid used for mutagenesis).

1	ACATGTAGCC	CCAGTTCTAC	TTACACCAAG	AAAGGCTGGA	AGGGCTAATT	CACTCCCAAA
61	GAAGACAAGA	TATCCTTGAT	CTGTGGATCT	ACCACACACA	AGGCTACTTC	CCTGATTGGC
121	AGAACTACAC	ACCAGGGCCA	GGGGTCAGAT	ATCCACTGAC	CTTTGGATGG	TGCTACAAGC
181	TAGTACCAGT	TGAGCCAGAT	AAGGTAGAAG	AGGCCAATAA	AGGAGAGAAC	ACCAGCTTGT
241	TACACCCTGT	GAGCCTGCAT	GGAATGGATG	ACCCTGAGAG	AGAAGTGTTA	GAGTGGAGGT
301	TTGACAGCCG	CCTAGCATTT	CATCACGTGG	CCCGAGAGCT	GCATCCGGAG	TACTTCAAGA
361	ACTGCTGACA	TCGAGCTTGC	TACAAGGGAC	TTTCCGCTGG	GGACTTTCCA	GGGAGGCGTG
421	GCCTGGGCGG	GACTGGGGAG	TGGCGAGCCC	TCAGATGCTG	CATATAAGCA	GCTGCTTTTT
481	GCCTGTACTG	GGTCTCTCTG	GTTAGACCAG	ATCTGAGCCT	GGGAGCTCTC	TGGCTAACTA
541	GGGAACCCAC	TGCTTAAGCC	TCAATAAAGC	TTGCCTTGAG	GGAGTGCTTC	AAGTAGTGTG
601	TGCCCGTCTG	TTGTGACTCT	GGTAACTAGA	GATCCCTCAG	ACCCTTTTAG	TCAGTGTGGA
661	AAATCTCTAG	CAGTGGCGCC	CGAACAGGGA	CTTGAAAGCG	AAAGTAAAGC	CAGAGGAGAT
721	CTCTCGACGC	AGGACTCGGC	TTGCTGAAGC	GCGCACGGCA	AGAGGCGAGG	GGCGGCGACT
781	GGTGAGTACG	CCAAAAATTT	TGACTAGCGG	AGGCTAGAAG	GAGAGAGATG	GGTGCGAGAG
841	CGTCGGTATT	AAGCGGGGGA	GAATTAGATA	AATGGGAAAA	AATTCGGTTA	AGGCCAGGGG
901	GAAAGAAACA	АТАТАААСТА	AAACATATAG	TATGGGCAAG	CAGGGAGCTA	GAACGATTCG
961	CAGTTAATCC	TGGCCTTTTA	GAGACATCAG	AAGGCTGTAG	ACAAATACTG	GGACAGCTAC
1021	AACCATCCCT	TCAGACAGGA	TCAGAAGAAC	TTAGATCATT	ATATAATACA	ATAGCAGTCC
1081	TCTATTGTGT	GCATCAAAGG	ATAGATGTAA	AAGACACCAA	GGAAGCCTTA	GATAAGATAG
1141	AGGAAGAGCA	AAACAAAAGT	AAGAAAAAGG	CACAGCAAGC	AGCAGCTGAC	ACAGGAAACA
1201	ACAGCCAGGT	CAGCCAAAAT	TACCCTATAG	TCCAGAACCT	CCAGGGGCAA	ATGGTACATC
1261	AGGCCATATC	ACCTAGAACT	TTAAATGCAT	GGGTAAAAGT	AGTAGAAGAG	AAGGCTTTCA
1321	GCCCAGAAGT	AATACCCATG	TTTTCAGCAT	TATCAGAAGG	AGCCACCCCA	CAAGATTTAA
1381	ATACCATGCT	AAACACAGTG	GGGGGACATC	AAGCAGCCAT	GCAAATGTTA	AAAGAGACCA
1441	TCAATGAGGA	AGCTGCAGAA	TGGGATAGAT	TGCATCCAGT	GCATGCAGGG	CCTATTGCAC
1501	CAGGCCAGAT	GAGAGAACCA	AGGGGAAGTG	ACATAGCAGG	AACTACTAGT	ACCCTTCAGG
1561	AACAAATAGG	ATGGATGACA	CATAATCCAC	CTATCCCAGT	AGGAGAAATC	TATAAAAGAT
1621	GGATAATCCT	GGGATTAAAT	AAAATAGTAA	GAATGTATAG	CCCTACCAGC	ATTCTGGACA
1681	TAAGACAAGG	ACCAAAGGAA	CCCTTTAGAG	ACTATGTAGA	CCGATTCTAT	ААААСТСТАА
1741	GAGCCGAGCA	AGCTTCACAA	GAGGTAAAAA	ATTGGATGAC	AGAAACCTTG	TTGGTCCAAA
1801	ATGCGAACCC	AGATTGTAAG	ACTATTTTAA	AAGCACTGGG	ACCAGGAGCG	ACACTAGAAG
1861	AAATGATGAC	AGCATGTCAG	GGAGTGGGGG	GACCCGGCCA	TAAAGCAAGA	GTTTTGGCTG
1921	AAGCAATGAG	CCAAGTAACA	AATCCAGCTA	CCATAATGAT	ACAGAAAGGC	AATTTTAGGA
1981	ACCAAAGAAA	GACTGTTAAG	TGTTTCAATT	GTGGCAAAGA	AGGGCACATA	GCCAAAAATT
2041	GCAGGGCCCC	TAGGAAAAAG	GGCTGTTGGA	AATGTGGAAA	GGAAGGACAC	CAAATGAAAG
2101	ATTGTACTGA	GAGACAGGCT	AATTTTTTAG	GGAAGATCTG	GCCTTCCCAC	AAGGGAAGGC
2161	CAGGGAATTT	TCTTCAGAGC	AGACCAGAGC	CAACAGCCCC	ACCAGAAGAG	AGCTTCAGGT
2221	TTGGGGAAGA	GACAACAACT	CCCTCTCAGA	GGCAGGAGCC	GATAGACAAG	GAACTGTATC
2281	CTTTAGCTTC	CCTCAGATCA	CTCTTTGGCA	GCGACCCCTC	GTCACAATAA	AGATAGGGGG
2341	GCAATTAAAG	GAAGCTCTAT	TAGATACAGG	AGCAGATGAT	ACAGTATTAG	AAGAAATGAA
2401	TTTGCCAGGA	AGATGGAAAC	CAAAAATGAT	AGGGGGAATT	GGAGGTTTTA	TCAAAGTAAG
2461	ACAGTATGAT	CAGATACTCA	TAGAAATCTG	CGGACATAAA	GCTATAGGTA	CAGTATTAGT
2521	AGGACCTACA	CCTGTCAACA	TAATTGGAAG	AAATCTGTTG	ACTCAGATTG	GGTGCACTTT
2581	AAATTTTTCCC	ATTAGTCCTA	TTGAGACTGT	ACCAGTAAAA	TTAAAGCCAG	GAATGGATGG
2641	CCCAAAAGTT	AAACAATGGC	CATTGACAGA	AGAAAAAATA	AAAGCATTAG	TAGAAATTTG
2701	TACAGAAATG	GAAAAGGAAG	GAAAAATTTC	AAAAATTGGG	CCTGAAAATC	CATACAATAC
2761	TCCAGTATTT	GCCATAAAGA	AAAAAGACAG	TACTAAATGG	AGAAAATTAG	TAGATTTCAG
2821	AGAACTTAAT	AAGAGAACTC	AAGATTTCTG	GGAAGTTCAA	TTAGGAATAC	CACATCCTGC
2881	AGGGTTAAAA	CAGAAAAAAT	CAGTAACAGT	ACTGGATGTG	GGCGATGCAT	ATTTTTCAGT
2941	TCCCTTAGAT	AAAGACTTCA	GGAAGTATAC	TGCATTTACC	ATACCTAGTA	TAAACAATGA

3001	GACACCAGGG	ATTAGATATC	AGTACAATGT	GCTTCCACAG	GGATGGAAAG	GATCACCAGC
3061	AATATTCCAG	TGTAGCATGA	CAAAAATCTT	AGAGCCTTTT	AGAAAACAAA	ATCCAGACGT
3121	AGTCATCTAT	CAATACATGG	ATGATTTGTA	TGTAGGATCT	GACTTAGAAA	TAGGGCAGCA
3181	TAGAACAAAA	ATAGAGGAAC	TGAGACAACA	TCTGTTGAGG	TGGGGATTTA	CCACACCAGA
3241	СААААААСАТ	CAGAAAGAAC	CTCCATTCCT	TTGGATGGGT	TATGAACTCC	ATCCTGATAA
3301	ATGGACAGTA	CAGCCTATAG	TGCTGCCAGA	AAAGGACAGC	TGGACTGTCA	ATGACATACA
3361	GAAATTAGTG	GGAAAATTGA	ATTGGGCAAG	TCAGATTTAT	GCAGGGATTA	AAGTAAGGCA
3421	ATTATGTAAA	CTTCTTAGGG	GAACCAAAGC	ACTAACAGAA	GTAGTACCAC	TAACAGAAGA
3481	AGCAGAGCTA	GAACTGGCAG	AAAACAGGGA	GATTCTAAAA	GAACCGGTAC	ATGGAGTGTA
3541	TTATGACCCA	TCAAAAGACT	TAATAGCAGA	AATACAGAAG	CAGGGGCAAG	GCCAATGGAC
3601	ATATCAAATT	TATCAAGAGC	CATTTAGAAA	TCTGAAAACA	GGAAAGTATG	CAAGAATGAA
3661	GGGTGCCCAC	ACTAATGATG	TGAAACAATT	AACAGAGGCA	GTACAAAAAA	TAGCCACAGA
3721	AAGCATAGTA	ATATGGGGAA	AGACTCCTAA	ΑΤΤΤΑΑΑΤΤΑ	CCCATACAAA	AGGAAACATG
3781	GGAAGCATGG	TGGACAGAGT	ATTGGCAAGC	CACCTGGATT	CCTGAGTGGG	AGTTTGTCAA
3841	TACCCCTCCC	TTAGTGAAGT	TATGGTACCA	GTTAGAGAAA	GAACCCATAA	TAGGAGCAGA
3901	AACTTTCTAT	GTAGATGGGG	CAGCCAATAG	GGAAACTAAA	TTAGGAAAAG	CAGGATATGT
3961	AACTGACAGA	GGAAGACAAA	AAGTTGTCCC	CCTAACGGAC	ACAACAAATC	AGAAGACTGA
4021	GTTACAAGCA	АТТСАТСТАС	CTTTGCAGGA	TTCGGGATTA	GAAGTAAACA	TAGTGACAGA
4081	СТСАСААТАТ	GCATTGGGAA	TCATTCAAGC	ACAACCAGAT	AAGAGTGAAT	САСАСТТАСТ
4141	САСТСАААТА	ATAGAGCAGT	таатаааааа	GGAAAAGTC	TACCTGGCAT	GGGTACCAGC
4201	ACACAAAGGA	ATTGGAGGAA			GTCAGTGCTG	GAATCAGGAA
4261	ACTACTATT	TTAGATGGAA	TAGATAAGCC	CCAAGAAGAA	Сатсасааат	ATCACAGTAA
4321	TTCCACACCA	ATGCCTACTC		ACCACCTGTA	CTACCAAAAG	ALCHCHOIM
1381	САССТСТСАТ	ALCOCIACIO	TAAAAGGGGA	ACCCATCCAT	CCACAACTAC	ACTICATACCCC
4301	ACCAMUATCC	CACCUACAUT	CTACACACAT	AGCCAIGCAI	GUACAAGIAG GUUNAUCUUCG	TCCCACTTCA
4501	TOTACCACT	CCATATATAC	AACCACAACT	AGAAGGAAAA	GAGACACCCC	ANGANACAGO
4561	ATACTTCCTC	TTAAATTAG	CACCAACATC	CCCACTAAAA	ACAGTACATA	CAGACAATCG
4501	CACCAATTTC	ACCAGTACTA	CAGGARGAIG	CCCCTCTTCTCC	TCCCCCCCAA	TCAACCACCA
4021	ATTTCCCATT	CCCTACAATC	CCCAAGTCA	ACCACTANTA	CAATCTATCA	ATAAACAATT
4001	ALLIGGCALL	ATACCACACC	TAACACATCA	CCCTCAACAT	CTTALCACAC	CACTACAAAT
4/41	CCCACTATTC	ATAGGACAGG	TANGAGAICA	ACCCCCCATT	CITAGACAG	CAGIACAAAI
4001	AACAATACTA	CACATAATAC	CAACACACAT	AGGGGGGAII	CAATTACAAA	AACAAATTAC
4001	AAGAAIAGIA	AATTATAG		CCACACCACA	CATCCACTT	CCARACTIAC
4961	AAAAAIICAA	CTCTCCAAAC	CTCAACCCCC	ACMACHAGCAGA	CARCEAGITI	CUCYCYUNY
4901 5041	AGCAAAGCIC	ACAACAAAAG	CAAAGGGGGC	CACCCAMMAN	CCANGAIAAIA	GIGACAIAAA TCCCACCTCA
5041	MGIAGIGCCA	CCAACMACAC	ACCAMCACCA		CAAAAACAGA	CUNNNCOCC
5161	AMAMCCCACM	CCAAGIAGAC	AGGAIGAGGA	TIAACACAIG	CCCCTTTTA	CAMMICACC
5101	MINIGGGAGI	ACAMACCACA	ATAAGAATIC	CTCCACACAC	CACACCAACA	AMCCACCCA
5221		CACTAGEAGA	CTCCAACCAT	CICGACAGAG	ACCOMANA	MAIGGAGCCA
5201	ADDCCDADD	GACIAGAGCC			CULLERANC	AAAACCCTTA
5341	CCCATCTCCT	ATCCCACCAA	CAACCCCACA	CACCCACCAA	GILLCALGAC	CARCAGECTIA
5461	ACTICATION	CULCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCUCU	AAGCGGAGA AAACCACTAA	CHOCGACGAA	CCCCCCCCA	TCTCCCACCA
5601	ACTCATCAAG	CLICICIAIC	CCCCTCCCAT	CACTECACA	AMERCAECCA	CATCAAATA
5541 6601	MGIAGGAAAA	CERTIFICIAL	CACATCCCAT	TAGIGGACAA	ATTAGAIGIT	ACAUCHARIAI
5561	ACCECCACCA	CIAIIAACAA	GAGAIGGIGG	CACAACTAACAAC	MAIGGGICCG	AGAICIICAG
5041	ACCIGGAGGA	COMMACCAC	GGGACAATIG	CAGAAGIGAA	ACA ACACTEC	TARAGIAGI TCCTCACACA
5701	AAAAATIGAA	CCATTAGGAG	TAGCACCCAC	CAAGGCAAAG	AGAAGAGIGG	TGCTGAGAGA
5/01	AAAAAGAGCA	GIGGGAATAG	GAGCTATIGTT	ACACCOCACA A		
502L	TATGGGCGCA	A CA AMONOCO		ACAGGCCAGA	CAATTATIGT	CIGAIAIAGI TCCNACTCAC
5001 50/1		AMCAATTIGC	TGAGGGCTAT	A A MCCMCCCM	CHOCANCIGT	ACCURACICAC
5741 6001	MGICIGGGGC	CICCARACAGC	CCCCMMCCMC	MAILLIGGUT	JUDGAAAGAT	CUCCUCUCUC
6001				IGGAAAACTC	MITTIGUAUUA	
6101	TIGGAATGCT	AGIIGGAGTA	ATAAATCTCT			
6101	GGAGTGGGAC	AGAGAAATTA	ACAATTACAC	AAGCTTAATA		I IGAAGAATC
C 7 4 1	GCAAAACCAG		A TGAACAAGA	ATTATTGGAA		
0241 6201	GIGGAATIGG		CAAATTGGCT	GIGGIATATA moomoma omm	MAATTATTCA	AATGATAGT
C3C1	AGGAGGCTTG	GIAGGI'I'I'IAA	GAATAGTTTTT	IGUIGIAUTT	AMCCCCA	AIAGAGTTAG
0201	GCAGGGATAT	ICACCATTAT	CGITTICAGAC	CLACUTUUA	AICCGAGGG	GALLUGALAG

6421	GCCCGAAGGA	ATAGAAGAAG	AAGGTGGAGA	GAGAGGCAGA	GACAGATCCA	TTCGATTAGT
6481	GAACGGATCC	TTGGCACTTA	TCTGGGACGA	TCTGCGGAGC	CTGTGCCTCT	TCAGCTACCA
6541	CCGCTTGAGA	GACTTACTCT	TGATTGTAAC	GAGGATTGTG	GAACTTCTGG	GACGCAGGGG
6601	GTGGGAAGCC	CTCAAATATT	GGTGGAATCT	CCTACAGTAT	TGGAGTCAGG	AACTAAAGAA
6661	TAGTGCTGTT	AGCTTGCTCA	ATGCCACAGC	CATAGCAGTA	GCTGAGGGGA	CAGATAGGGT
6721	TATAGAAGTA	GTACAAGGAG	CTTGTAGAGC	TATTCGCCAC	ATACCTAGAA	GAATAAGACA
6781	GGGCTTGGAA	AGGATTTTGC	TATAAGATGG	GTGGCAAGTG	GTCAAAAAGT	AGTGTGATTG
6841	GATGGCTTAC	TGTAAGGGAA	AGAATGAGAC	GAGCTGAGCC	AGCAGCAGAT	GGGGTGGGAG
6901	CAGCATGCGG	CCCTCTAGAC	GACCCTGTGG	AATGTGTGTC	AGTTAGGGTG	TGGAAAGTCC
6961	CCAGGCTCCC	CAGCAGGCAG	AAGTATGCAA	AGCATGCATC	TCAATTAGTC	AGCAACCAGG
7021	TGTGGAAAGT	CCCCAGGCTC	CCCAGCAGGC	AGAAGTATGC	AAAGCATGCA	TCTCAATTAG
7081	TCAGCAACCA	TAGTCCCGCC	CCTAACTCCG	CCCATCCCGC	CCCTAACTCC	GCCCAGTTCC
7141	GCCCATTCTC	CGCCCCATGG	CTGACTAATT	TTTTTTATTT	ATGCAGAGGC	CGAGGCCGCC
7201	TCGGCCTCTG	AGCTATTCCA	GAAGTAGTGA	GGAGGCTTTT	TTGGAGGCCT	AGGCTTTTGC
7261	AAAAAGCTCT	TGACATGATA	GAAGCACTCT	ACTATATTCT	CAATAGGTAG	CTTACCATGA
7321	CCGAGTACAA	GCCCACGGTG	CGCCTCGCCA	CCCGCGACGA	CGTCCCCCGG	GCCGTACGCA
7381	CCCTCGCCGC	CGCGTTCGCC	GACTACCCCG	CCACGCGCCA	CACCGTCGAC	CCGGACCGCC
7441	ACATCGAGCG	GGTCACCGAG	CTGCAAGAAC	TCTTCCTCAC	GCGCGTCGGG	CTCGACATCG
7501	GCAAGGTGTG	GGTCGCGGAC	GACGGCGCCG	CGGTGGCGGT	CTGGACCACG	CCGGAGAGCG
7561	TCGAAGCGGG	GGCGGTGTTC	GCCGAGATCG	GCCCGCGCAT	GGCCGAGTTG	AGCGGTTCCC
7621	GGCTGGCCGC	GCAGCAACAG	ATGGAAGGCC	TCCTGGCGCC	GCACCGGCCC	AAGGAGCCCG
7681	CGTGGTTCCT	GGCCACCGTC	GGCGTCTCGC	CCGACCACCA	GGGCAAGGGT	CTGGGCAGCG
7741	CCGTCGTGCT	CCCCGGAGTG	GAGGCGGCCG	AGCGCGCCGG	GGTGCCCGCC	TTCCTGGAGA
7801	CCTCCGCGCC	CCGCAACCTC	CCCTTCTACG	AGCGGCTCGG	CTTCACCGTC	ACCGCCGACG
7861	TCGAGGTGCC	CGAAGGACCG	CGCACCTGGT	GCATGACCCG	CAAGCCCGGT	GCCTGACGCC
7921	CGCCCCACGA	CCCGCAGCGC	CCGACCGAAA	GGAGCGCACG	ACCCATCGCT	CGAGACCTAG
7981	AAAAACATGG	AGCAATCACA	AGTAGCAATA	CAGCAGCTAA	CAATGCTGCT	TGTGCCTGGC
8041	TAGAAGCACA	AGAGGAGGAA	GAGGTGGGTT	TTCCAGTCAC	ACCTCAGGTA	CCTTTAAGAC
8101	CAATGACTTA	CAAGGCAGCT	GTAGATCTTA	GCCACTTTTT	AAAAGAAAAG	GGGGGGACTGG
8161	AAGGGCTAAT	TCACTCCCAA	AGAAGACAAG	ATATCCTTGA	TCTGTGGATC	TACCACACAC
8221	AAGGCTACTT	CCCTGATTGG	CAGAACTACA	CACCAGGGCC	AGGGGTCAGA	TATCCACTGA
8281	CCTTTGGATG	GTGCTACAAG	CTAGTACCAG	TTGAGCCAGA	TAAGGTAGAA	GAGGCCAATA
8341	AAGGAGAGAA	CACCAGCTTG	TTACACCCTG	TGAGCCTGCA	TGGAATGGAT	GACCCTGAGA
8401	GAGAAGTGTT	AGAGTGGAGG	TTTGACAGCC	GCCTAGCATT	TCATCACGTG	GCCCGAGAGC
8461	TGCATCCGGA	GTACTTCAAG	AACTGCTGAC	ATCGAGCTTG	CTACAAGGGA	CTTTCCGCTG
8521	GGGACTTTCC	AGGGAGGCGT	GGCCTGGGCG	GGACTGGGGA	GTGGCGAGCC	CTCAGATGCT
8581	GCATATAAGC	AGCTGCTTTT	TGCCTGTACT	GGGTCTCTCT	GGTTAGACCA	GATCTGAGCC
8641	TGGGAGCTCT	CTGGCTAACT	AGGGAACCCA	CTGCTTAAGC	CTCAATAAAG	CTTGCCTTGA
8701	GGGAGTGCTT	CAAGTAGTGT	GTGCCCGTCT	GTTGTGACTC	TGGTAACTAG	AGATCCCTCA
8761	GACCCTTTTA	GTCAGTGTGG	AAAATCTCTA	GCACCCAGGA	GGTAGAGGTT	GCAGTGAGCC
8821	AAGATCGCGC	CACTGCATTC	CAGCCTGGGC	AAGAAAACAA	GACTGTTTAA	ААТААТААТА
8881	ATAAGTTAAG	GGTATTAAAT	ATATTTATAC	ATGGAGGTCA	ТАААААТАТА	TATATTTGGG
8941	CTGGGCGCAG	TGGCTCACAC	ATGCGCCCGG	CCCTTTGGGA	GGCCGAGGCA	GGTGGATCAC
9001	CTGAGTTTGG	GAGTTCCAGA	CCAGCCTGAC	CAACATGGAG	AAACCCCTTC	TCTGTGTATT
9061	TTTAGTAGAT	TTTATTTAT	GTGTATTTTA	TTCACAGGTA	TTTCTGGAAA	ACTGAAACTG
9121	TTTTTTCTTCT	ACTCTGATAC	CACAAGAATC	ATCAGCACAG	AGGAAGACTT	CTGTGATCAA
9181	ATGTGGTGGG	AGAGGGAGGT	TTTCACCAGC	ACATGAGCAG	TCAGTTCTGC	CGCAGACTCG
9241	GCGGGTGTCC	TTCGGTTCAG	TTCCAACACC	GCCTGCCTGG	AGAGAGGTCA	GACCACAGGG
9301	TGAGGGCTCA	GTCCCCAAGA	CATAAACACC	CAAGACATAA	ACACCCAACA	GGTCCACCCC
9361	GCCTGCTGCC	CAGGCAGAGC	CGATTCACCA	AGACGGGAAT	TAGGATAGAG	AAAGAGTAAG
9421	TCACACAGAG	CCGGCTTTCC	CCGTCAAGCT	CTAAATCGGG	GGCTCCCTTT	AGGGTTCCGA
9481	TTTAGTGCTT	TACGGCACCT	CGACCCCAAA	AAACTTGATT	AGGGTGATGG	TTCACGTAGT
9541	GGGCCATCGC	CCTGATAGAC	GGTTTTTCGC	CCTTTGACGT	TGGAGTCCAC	GTTCTTTAAT
9601	AGTGGACTCT	TGTTCCAAAC	TGGAACAACA	CTCAACCCTA	TCTCGGTCTA	TTCTTTTGAT
9661	TTATAAGGGA	TTTTGCCGAT	TTCGGCCTAT	TGGTTAAAAA	ATGAGCTGAT	TTAACAAAAA
9721	TTTAACGCGA	ATTTTAACAA	AATATTAACG	TTTACAATTT	CAGGTGGCAC	TTTTCGGGGA
9781	AATGTGCGCG	GAACCCCTAT	TTGTTTATTT	TTCTAAATAC	ATTCAAATAT	GTATCCGCTC

9841	ATGAGACAAT	AACCCTGATA	AATGCTTCAA	TAATATTGAA	AAAGGAAGAG	TATGAGTATT
9901	CAACATTTCC	GTGTCGCCCT	TATTCCCTTT	TTTGCGGCAT	TTTGCCTTCC	TGTTTTTGCT
9961	CACCCAGAAA	CGCTGGTGAA	AGTAAAAGAT	GCTGAAGATC	AGTTGGGTGC	ACGAGTGGGT
10021	TACATCGAAC	TGGATCTCAA	CAGCGGTAAG	ATCCTTGAGA	GTTTTCGCCC	CGAAGAACGT
10081	TTTCCAATGA	TGAGCACTTT	TAAAGTTCTG	CTATGTGGCG	CGGTATTATC	CCGTATTGAC
10141	GCCGGGCAAG	AGCAACTCGG	TCGCCGCATA	CACTATTCTC	AGAATGACTT	GGTTGAGTAC
10201	TCACCAGTCA	CAGAAAAGCA	TCTTACGGAT	GGCATGACAG	TAAGAGAATT	ATGCAGTGCT
10261	GCCATAAGCA	TGAGTGATAA	CACTGCGGCC	AACTTACTTC	TGACAACGAT	CGGAGGACCG
10321	AAGGAGCTAA	CCGCTTTTTT	TCACAACATG	GGGGATCATG	TAACTCGCCT	TGATCGTTGG
10381	GAACCGGAGC	TGAATGAAGC	CATACCAAAC	GACGAGCGTG	ACACCACGAT	GCCTGTAGCA
10441	ATGGCAACAA	CGTTGCGCAA	ACTATTAACT	GGCGAACTAC	TTACTCTAGC	TTCCCGGCAA
10501	CAATTAATAG	ACTGGATGGA	GGCGGATAAA	GTTGCAGGAC	CACTTCTGCG	CTCGGCCCTT
10561	CCGGCTGGCT	GGTTTATTGC	TGATAAATCT	GGAGCCGGTG	AGCGTGGGTC	TCGCGGTATC
10621	ATTGCAGCAC	TGGGGCCAGA	TGGTAAGCCC	TCCCGTATCG	TAGTTATCTA	CACGACGGGC
10681	AGTCAGGCAA	CTATGGATGA	ACGAAATAGA	CAGATCGCTG	AGATAGGTGC	CTCACTGATT
10741	AAGCATTGGT	AACTGTCAGA	CCAAGTTTAC	TCATATATAC	TTTAGATTGA	TTTAAAACTT
10801	CATTTTTAAT	TTAAAAGGAT	CTAGGTGAAG	ATCCTTTTTG	ATAATCTCAT	GACCAAAATC
10861	CCTTAACGTG	AGTTTTCGTT	CCACTGAGCG	TCAGACCCCG	TAGAAAAGAT	CAAAGGATCT
10921	TCTTGAGATC	CTTTTTTTCT	GCGCGTAATC	TGCTGCTTGC	АААСАААААА	ACCACCGCTA
10981	CCAGCGGTGG	TTTGTTTGCC	GGATCAAGAG	CTACCAACTC	TTTTTCCGAA	GGTAACTGGC
11041	TTCAGCAGAG	CGCAGATACC	AAATACTGTC	CTTCTAGTGT	AGCCGTAGTT	AGGCCACCAC
11101	TTCAAGAACT	CTGTAGCACC	GCCTACATAC	CTCGCTCTGC	TAATCCTGTT	ACCAGTGGCT
11161	GCTGCCAGTG	GCGATAAGTC	GTGTCTTACC	GGGTTGGACT	CAAGACGATA	GTTACCGGAT
11221	AAGGCGCAGC	GGTCGGGCTG	AACGGGGGGT	TCGTGCACAC	AGCCCAGCTT	GGAGCGAACG
11281	ACCTACACCG	AACTGAGATA	CCTACAGCGT	GAGCATTGAG	AAAGCGCCAC	GCTTCCCGAA
11341	GGGAGAAAGG	CGGACAGGTA	TCCGGTAAGC	GGCAGGGTCG	GAACAGGAGA	GCGCACGAGG
11401	GAGCTTCCAG	GGGGGGAACGC	CTGGTATCTT	TATAGTCCTG	TCGGGTTTCG	CCACCTCTGA
11461	CTTGAGCGTC	GATTTTTGTG	ATGCTCGTCA	GGGGGGGCCGA	GCCTATGGAA	AAACGCCAGC
11521	AACGCGGCCT	TTTTACGGTT	CCTGGCCTTT	TGCTGGCCTT	TTGCTCACAT	GT

		left flanking	Inc	right flanking	
		nucleotide sequence	insertion	nucleotide sequence	peptide sequence
1	× C	A	TGCGGCCGCA	ACATGTAGCCCCAGTT	AAATCSPS
3	Ă	ACA	TGCGGCCGCA	ACATGTAGCCCCAGTTCT	MRPQHVAPV
4	T	ACAT	TGCGGCCGCA	ACATGTAGCCCCAGTTCTA	IAAATCSPSS
5	G	ACATG	TGCGGCCGCA	ACATGTAGCCCCAGTTCTAC	MCGRNM*PQFY
<u>6</u>	T	ACATGT	TGCGGCCGCA	CATGTAGCCCCAGTTCTACT	MLRPHM*PQFY
	Â	ACATGIA	TGCGGCCGCA	TGTAGCCCCAGTTCTACTTA	
9	č	ACATGTAGC	TGCGGCCGCA	GTAGCCCCAGTTCTACTTAC	M*LRPQ*PQFYL
10	Č	ACATGTAGCC	TGCGGCCGCA	TAGCCCCAGTTCTACTTACA	M'PAAA'PQFYL
11	С	ACATGTAGCCC	TGCGGCCGCA	AGCCCCAGTTCTACTTACAC	M*PCGRKPQFYLH
12	c	ACATGTAGCCCC	TGCGGCCGCA	GCCCCAGTTCTACTTACACC	M*PLRPQPQFYLH
13	A	ACATGTAGCCCCA	TGCGGCCGCA	CCCCAGITCTACITACACCA	
15	T	ACATGTAGCCCCAGT	TGCGGCCGCA	CCAGTTCTACTTACACCAAG	
16	Ť	ACATGTAGCCCCAGTT	TGCGGCCGCA	CAGTTCTACTTACACCAAGA	M*PQFAAAQFYLHQ
17	Ċ	ACATGTAGCCCCAGTTC	TGCGGCCGCA	AGTTCTACTTACACCAAGAA	M*PQFCGRKFYLHQE
18	T	ACATGTAGCCCCAGTTCT	TGCGGCCGCA	GTTCTACTTACACCAAGAAA	M*PQFLRPQFYLHQE
19	A	ACATGTAGCCCCAGTTCTA	TGCGGCCGCA	TTCTACTTACACCAAGAAAG	M'PQFYAAAFYLHQE
20	T		TGCGGCCGCA		M*POFYL PPHYLHOER
22	┝╶╈╶┤	ATGTAGCCCCAGTTCTACTT	TGCGGCCGCA	TACTTACACCAAGAAAGGCT	M*PQFYFAAAYLHQER
23	À	TGTAGCCCCAGTTCTACTTA	TGCGGCCGCA	ACTTACACCAAGAAAGGCTG	*PQFYLCGRNLHQERL
24	C	GTAGCCCCAGTTCTACTTAC	TGCGGCCGCA	CTTACACCAAGAAAGGCTGG	*PQFYLLRPHLHQERL
25	A	TAGCCCCAGTTCTACTTACA	TGCGGCCGCA	TTACACCAAGAAAGGCTGGA	*PQFYLHAAALHQERL
20			TGCGGCCGCA		
28	Ă	CCCCAGTICTACTTACACCA	TGCGGCCGCA		POFYL HHAAAHOFRI F
29	Â	CCCAGTTCTACTTACACCAA	TGCGGCCGCA	ACCAAGAAAGGCTGGAAGGG	QFYLHQCGRNQERLEG
30	G	CCAGTTCTACTTACACCAAG	TGCGGCCGCA	CCAAGAAAGGCTGGAAGGGC	QFYLHQVRPHQERLEG
31	<u>A</u>	CAGTTCTACTTACACCAAGA	TGCGGCCGCA	CAAGAAAGGCTGGAAGGGCT	QFYLHQDAAAQERLEG
32	A		TGCGGCCGCA	AAGAAAGGCTGGAAGGGCTA	
34	Ĝ		TGCGGCCGCA		FYLHOESAAAFRI EGI
35	Ğ	TCTACTTACACCAAGAAAGG	TGCGGCCGCA	AAAGGCTGGAAGGGCTAATT	YLHQERCGRKRLEGLI
36	С	CTACTTACACCAAGAAAGGC	TGCGGCCGCA	AAGGCTGGAAGGGCTAATTC	YLHQERLRPQRLEGU
37	T	TACTTACACCAAGAAAGGCT	TGCGGCCGCA	AGGCTGGAAGGGCTAATTCA	YLHQERLAAARLEGLI
38	G		TGCGGCCGCA	GGCTGGAAGGGCTAATTCAC	
39	G		TGCGGCCGCA	CTGGAAGGGCTAATTCACTC	
41	Â	TACACCAAGAAAGGCTGGAA	TGCGGCCGCA	TGGAAGGGCTAATTCACTCC	HQERLECGRMEGLIHS
42	G	ACACCAAGAAAGGCTGGAAG	TGCGGCCGCA	GGAAGGGCTAATTCACTCCC	HQERLEVRPQEGLIHS
43	G	CACCAAGAAAGGCTGGAAGG	TGCGGCCGCA	GAAGGGCTAATTCACTCCCA	HQERLEGAAAEGLIHS
44	G	ACCAAGAAAGGCTGGAAGGG	TGCGGCCGCA	AAGGGCTAATTCACTCCCAA	
45	C T		TGCGGCCGCA	AGGGCTAATTCACTCCCAAA	
47	Å		TGCGGCCGCA	GGCTAATTCACTCCCAAAGA	ERLEGLCGRRLIHSOR
48	Â	AGAAAGGCTGGAAGGGCTAA	TGCGGCCGCA	GCTAATTCACTCCCAAAGAA	ERLEGLMRPQLIHSQR
49	T	GAAAGGCTGGAAGGGCTAAT	TGCGGCCGCA	CTAATTCACTCCCAAAGAAG	ERLEGLIAAALIHSQR
50	T	AAAGGCTGGAAGGGCTAATT	TGCGGCCGCA	TAATTCACTCCCAAAGAAGA	RLEGLICGRIIHSQRR
51	C		TGCGGCCGCA	ATTCACTCCCAAAGAAGAC	
53	$-\hat{c}$		TGCGGCCGCA	TTCACTCCCAAAGAAGACAA	I FGLIHCGRIHSORRO
54	Ť	GCTGGAAGGGCTAATTCACT	TGCGGCCGCA	TCACTCCCAAAGAAGACAAG	LEGLIHLRPHHSQRRQ
55	C	CTGGAAGGGCTAATTCACTC	TGCGGCCGCA	CACTCCCAAAGAAGACAAGA	LEGLIHSAAAHSQRRQ
56	C	TGGAAGGGCTAATTCACTCC	TGCGGCCGCA	ACTCCCAAAGAAGACAAGAT	EGLIHSCGRNSQRRQD
57	C	GGAAGGGCTAATTCACTCCC	TOCOGOCOCA		
20 50	-		TGCGGCCGCA		
60		AGGGCTAATTCACTCCCAAA	TGCGGCCGCA	CCAAAGAAGACAAGATATCC	GLIHSQMRPHQRRQDI
61	G	GGGCTAATTCACTCCCAAAG	TGCGGCCGCA	CAAAGAAGACAAGATATCCT	GLIHSQSAAAQRRQDI
62	A	GGCTAATTCACTCCCAAAGA	TGCGGCCGCA	AAAGAAGACAAGATATCCTT	LIHSQRCGRKRRQDIL
63	A	GCTAATTCACTCCCAAAGAA	TGCGGCCGCA	AAGAAGACAAGATATCCTTG	
64	G		TGCGGCCGCA	AGAAGACAAGATATCCTTGA	
66	ĉ	AATTCACTCCCAAAGAAGAC	TGCGGCCGCA	AAGACAAGATATCCTTGATC	IHSORRLRPORODILD
67	_A	ATTCACTCCCAAAGAAGACA	TGCGGCCGCA	AGACAAGATATCCTTGATCT	IHSQRRHAAARQDILD
68	A	TTCACTCCCAAAGAAGACAA	TGCGGCCGCA	GACAAGATATCCTTGATCTG	HSQRRQCGRRQDILDL
69	G	TCACTCCCAAAGAAGACAAG	TGCGGCCGCA	ACAAGATATCCTTGATCTGT	HSQRRQVRPQQDILDL
70	_ _		TGCGGCCGCA	CAAGATATCCTTGATCTGTG	
11			TGCGGCCGCA	AGATATCCTIGATCTGTGGA	
73		TCCCAAAGAAGACAAGATAT	TGCGGCCGCA	GATATCCTTGATCTGTGGAT	SORRODIAAADII DI W
74	ċ	CCCAAAGAAGACAAGATATC	TGCGGCCGCA	ATATCCTTGATCTGTGGATC	QRRQDICGRNILDLWI
75	Ć	CCAAAGAAGACAAGATATCC	TGCGGCCGCA	TATCCTTGATCTGTGGATCT	QRRQDILRPHILDLWI
76	T	CAAAGAAGACAAGATATCCT	TGCGGCCGCA	ATCCTTGATCTGTGGATCTA	QRRQDILAAAILDLWI
77	<u> </u>	AAAGAAGACAAGATATCCTT	TGCGGCCGCA	TCCTTGATCTGTGGATCTAC	RRQDILCGRILDLWIY
78	<u> </u>		TGCGGCCGCA	CTTGATCTGTGGATCTACCA	
		Aunanonauniniouilua			

81	C	AAGACAAGATATCCTTGATC	TGCGGCCGCA	TGATCTGTGGATCTACCACA	RQDILDLRPHDLWIYH
82	T	AGACAAGATATCCTTGATCT	TGCGGCCGCA	GATCTGTGGATCTACCACAC	RODILDLAAADLWIYH
83	G	GACAAGATATCCTTGATCTG	TGCGGCCGCA	ATCTGTGGATCTACCACACA	QDILDLCGRNLWIYHT
84	T	ACAAGATATCCTTGATCTGT	TGCGGCCGCA	TCTGTGGATCTACCACACAC	QDILDLLBPHLWIYHT
85	G	CAAGATATCCTTGATCTGTG	TGCGGCCGCA	CTGTGGATCTACCACACACA	ODIL DI CAAAI WIYHT
86	G	AAGATATCCTTGATCTGTGG	TGCGGCCGCA	TGTGGATCTACCACACAA	DIL DL WCGBMWIYHTO
87	A	AGATATCCTTGATCTGTGGA	TGCGGCCGCA	GTGGATCTACCACACACAAG	DIL DI WMBPOWIYHTO
88	Ŧ	GATATCCTTGATCTGTGGAT	TGCGGCCGCA	TGGATCTACCACACACAAGG	DIL DI WIAAAWIYHTO
89	Ċ	ATATCCTTGATCTGTGGATC	TGCGGCCGCA	GGATCTACCACACACAAGGC	ILDLWICGRRIYHTQG
90	T	TATCCTTGATCTGTGGATCT	TGCGGCCGCA	GATCTACCACACACAAGGCT	ILDLWILBPOIYHTQG
91	A	ATCCTTGATCTGTGGATCTA	TGCGGCCGCA	ATCTACCACACACAAGGCTA	IL DL WIYAAAIYHTOG
92	ĉ	TCCTTGATCTGTGGATCTAC	TGCGGCCGCA	TCTACCACACACAAGGCTAC	LDLWIYCGRIYHTQGY
93	C	CCTTGATCTGTGGATCTACC	TGCGGCCGCA	CTACCACACACAAGGCTACT	LDLWIYLBPHYHTQGY
94	Δ	CTTGATCTGTGGATCTACCA	TGCGGCCGCA	TACCACACACAAGGCTACTT	LDLWIYHAAAYHTQGY
95	C	TTGATCTGTGGATCTACCAC	TGCGGCCGCA	ACCACACACAAGGCTACTTC	DLWIYHCGRNHTQGYF
96	A	TGATCTGTGGATCTACCACA	TGCGGCCGCA	CCACACACAAGGCTACTTCC	DLWIYHMRPHHTQGYF
97	C	GATCTGTGGATCTACCACAC	TGCGGCCGCA	CACACACAAGGCTACTTCCC	DLWIYHTAAAHTQGYF
98	A	ATCTGTGGATCTACCACACA	TGCGGCCGCA	ACACACAAGGCTACTTCCCT	LWIYHTCGRNTQGYFP
99	C	TCTGTGGATCTACCACACAC	TGCGGCCGCA	CACACAAGGCTACTTCCCTG	LWIYHTLRPHTQGYFP
100	A	CTGTGGATCTACCACACACA	TGCGGCCGCA	ACACAAGGCTACTTCCCTGA	LWIYHTHAAATQGYFP
101	A	TGTGGATCTACCACACACAA	TGCGGCCGCA	CACAAGGCTACTTCCCTGAT	WIYHTQCGRTQGYFPD
102	G	GTGGATCTACCACACACAAG	TGCGGCCGCA	ACAAGGCTACTTCCCTGATT	WIYHTQVRPQQGYFPD
103	G	TGGATCTACCACACACAAGG	TGCGGCCGCA	CAAGGCTACTTCCCTGATTG	WIYHTQGAAAQGYFPD
104	С	GGATCTACCACACACAAGGC	TGCGGCCGCA	AAGGCTACTTCCCTGATTGG	IYHTQGCGRKGYFPDW
105	T	GATCTACCACACACAAGGCT	TGCGGCCGCA	AGGCTACTTCCCTGATTGGC	IYHTQGLRPQGYFPDW
106	A	ATCTACCACACACAAGGCTA	TGCGGCCGCA	GGCTACTTCCCTGATTGGCA	IYHTQGYAAAGYFPDW
107	C	TCTACCACACACAAGGCTAC	TGCGGCCGCA	GCTACTTCCCTGATTGGCAG	YHTQGYCGRSYFPDWQ
108	T	CTACCACACACAAGGCTACT	TGCGGCCGCA	CTACTTCCCTGATTGGCAGA	YHTQGYLRPHYFPDWQ
109	T	TACCACACACAAGGCTACTT	TGCGGCCGCA	TACTTCCCTGATTGGCAGAA	YHTQGYFAAAYFPDWQ
110	C	ACCACACACAAGGCTACTTC	TGCGGCCGCA	ACTTCCCTGATTGGCAGAAC	HIQGYFCGRNFPDWQN
111	C	CCACACACAAGGCTACTTCC	TGCGGCCGCA	CTICCCTGATTGGCAGAACT	HIQGYFLRPHFPDWQN
112	C	CACACACAAGGCTACTTCCC	IGCGGCCGCA	TICCCTGATTGGCAGAACTA	HIQGYFPAAAFPDWQN
113	T	ACACACAAGGCTACTTCCCT	TGCGGCCGCA	ICCCTGATTGGCAGAACTAC	TOCYFPUGHIPDWQNY
114	G	CACACAAGGCTACTTCCCTG	TGCGGCCGCA	CCCTGATTGGCAGAACTACA	TOCYFPVHPHPDWQNY
115	A	ACACAAGGCTACTTCCCTGA	TGCGGCCGCA	CCTGATTGGCAGAACTACAC	TOGTFPDAAAPDWQNT
116	+	CACAAGGCTACTTCCCTGAT	TGCGGCCGCA	CIGATIGGCAGAACTACACA	OCVERDI PRHOWONYT
11/	-	ACAAGGCTACTTCCCTGATT	TGCGGCCGCA	IGATIGGCAGAACTACACAC	QGTFPDLRPHDWQNTT
118	G	CAAGGCTACTICCCTGATTG	TGCGGCCGCA	GATTGGCAGAACTACACACC	CYEDDWCCDNWQNYT
100	G	AAGGCTACTTCCCTGATTGG	TOCOCOCOCA	TTOCCAGAACTACACACCAC	GTFPDWCGRNWQNTTP
120	0	AGGUTACTTCCCTGATTGGC	TOCOCOCCA	TOCCACAGAACTACACCACCAC	CYEDDW/HAAAW/ONIVTD
121	A	GGUTACTTCCCTGATTGGCA	TOCOCCOCA		VEDDWOCCPDONVTPC
122	G	GUTACITUCUTGATTGGCAG	TOCOCCCCCA	GGCAGAACTACACCACCAGGG	VERDWOMPROONVTRG
123	A	TACTTCCCTGATTGGCAGA	TGCGGCCGCA	CAGAACTACACACCAGGGCC	VEPDWONAAAONVTPG
124	C A	ACTTCCCTGATTGGCAGAAC	TGCGGCCGCA	AGAACTACACACCAGGGCCA	FPDWONCGRKNYTPGP
125	Ť	CTTCCCTGATTGGCAGAACT	TGCGGCCGCA	GAACTACACACCAGGGCCAG	FPDWONI BPONYTPGP
127	Δ	TTCCCTGATTGGCAGAACTA	TGCGGCCGCA	AACTACACACCAGGGCCAGG	FPDWONYAAANYTPGP
128	ĉ	TCCCTGATTGGCAGAACTAC	TGCGGCCGCA	ACTACACACCAGGGCCAGGG	PDWQNYCGRNYTPGPG
129	A	CCCTGATTGGCAGAACTACA	TGCGGCCGCA	CTACACACCAGGGCCAGGGG	PDWQNYMRPHYTPGPG
130	C	CCTGATTGGCAGAACTACAC	TGCGGCCGCA	TACACACCAGGGCCAGGGGT	PDWQNYTAAAYTPGPG
131	A	CTGATTGGCAGAACTACACA	TGCGGCCGCA	ACACACCAGGGCCAGGGGTC	DWQNYTCGRNTPGPGV
132	C	TGATTGGCAGAACTACACAC	TGCGGCCGCA	CACACCAGGGCCAGGGGTCA	DWQNYTLRPHTPGPGV
133	С	GATTGGCAGAACTACACACC	TGCGGCCGCA	ACACCAGGGCCAGGGGTCAG	DWQNYTPAAATPGPGV
134	Α	ATTGGCAGAACTACACACCA	TGCGGCCGCA	CACCAGGGCCAGGGGTCAGA	WQNYTPCGRTPGPGVR
135	G	TTGGCAGAACTACACACCAG	TGCGGCCGCA	ACCAGGGCCAGGGGTCAGAT	WQNYTPVRPQPGPGVR
136	G	TGGCAGAACTACACACCAGG	TGCGGCCGCA	CCAGGGCCAGGGGTCAGATA	WQNYTPGAAAPGPGVR
137	G	GGCAGAACTACACACCAGGG	TGCGGCCGCA	CAGGGCCAGGGGTCAGATAT	QNYTPGCGRTGPGVRY
138	C	GCAGAACTACACACCAGGGC	TGCGGCCGCA	AGGGCCAGGGGTCAGATATC	QNYTPGLRPQGPGVRY
139	C	CAGAACTACACACCAGGGCC	TGCGGCCGCA	GGGCCAGGGGTCAGATATCC	QNYTPGPAAAGPGVRY
140	A	AGAACTACACACCAGGGCCA	TGCGGCCGCA	GGCCAGGGGTCAGATATCCA	NYTPGPCGRRPGVRYP
141	G	GAACTACACACCAGGGCCAG	TGCGGCCGCA	GCCAGGGGTCAGATATCCAC	NYTPOPOPOPOPOPOPOP
142	G	AACTACACACCAGGGCCAGG	TGCGGCCGCA	CLAGGGGTCAGATATCCACT	VTDODOGODTOVOVO
143	G	ACTACACACCAGGGCCAGGG	TOCOGOCOGCA	CAGGGGTCAGATATCCACTG	VTPGPGCGRIGVRYPL
144	G	TACACACCACCACCCACGGGG	TOCOCCOCA	AGGGGTCAGATATCCACTGA	VTPGPGVAAAGVPVPL
145	-	ACACACCAGGGGCCAGGGGGT	TOCOGCOCOCA	GGGTCAGATATCCACTGAC	TROPOVCOPPUPUPUT
140	0		TGCGGCCGCA	GGTCAGATATCCACTGACCT	TPGPGVMRPOVPVDIT
147	G	ACACCAGGGCCAGGGGTCAG	TGCGGCCGCA	GTCAGATATCCACTGACCTT	TPGPGVSAAAVPVPLT
140	A	CACCAGGGCCAGGGGTCAGA	TGCGGCCGCA	TCAGATATCCACTGACCTTT	PGPGVBCGBIBVPITE
150	÷	ACCAGGGCCAGGGGTCAGAT	TGCGGCCGCA	CAGATATCCACTGACCTTTC	PGPGVBL BPHBVPI TE
151	A	CCAGGGCCAGGGGTCAGATA	TGCGGCCGCA	AGATATCCACTGACCTTTGG	PGPGVRYAAARYPI TF
152	T	CAGGGCCAGGGGTCAGATAT	TGCGGCCGCA	GATATCCACTGACCTTTGGA	GPGVRYCGRRYPL TFG
153	Ċ	AGGGCCAGGGGTCAGATATC	TGCGGCCGCA	ATATCCACTGACCTTTGGAT	GPGVRYLRPQYPLTFG
154	C	GGGCCAGGGGTCAGATATCC	TGCGGCCGCA	TATCCACTGACCTTTGGATG	GPGVRYPAAAYPLTFG
155	A	GGCCAGGGGTCAGATATCCA	TGCGGCCGCA	ATCCACTGACCTTTGGATGG	PGVRYPCGRNPLTFGW
156	C	GCCAGGGGTCAGATATCCAC	TGCGGCCGCA	TCCACTGACCTTTGGATGGT	PGVRYPLRPHPLTFGW
157	T	CCAGGGGTCAGATATCCACT	TGCGGCCGCA	CCACTGACCTTTGGATGGTG	PGVRYPLAAAPLTFGW
158	G	CAGGGGTCAGATATCCACTG	TGCGGCCGCA	CACTGACCTTTGGATGGTGC	GVRYPLCGRTLTFGWC
159	A	AGGGGTCAGATATCCACTGA	TGCGGCCGCA	ACTGACCTTTGGATGGTGCT	GVRYPLMRPQLTFGWC
160	С	GGGGTCAGATATCCACTGAC	TGCGGCCGCA	CTGACCTTTGGATGGTGCTA	GVRYPLTAAALTFGWC
161	C	GGGTCAGATATCCACTGACC	TGCGGCCGCA	TGACCTTTGGATGGTGCTAC	VRYPLTCGRMTFGWCY
162	Т	GGTCAGATATCCACTGACCT	TGCGGCCGCA	GACCTTTGGATGGTGCTACA	VRYPLTLRPQTFGWCY
163	Т	GTCAGATATCCACTGACCTT	TGCGGCCGCA	ACCTTTGGATGGTGCTACAA	VRYPLTFAAATFGWCY
164	Т	TCAGATATCCACTGACCTTT	TGCGGCCGCA	CCTTTGGATGGTGCTACAAG	RYPLTFCGRTFGWCYK
165	G	CAGATATCCACTGACCTTTG	TGCGGCCGCA	CTITGGATGGTGCTACAAGC	RYPLTFVRPHFGWCYK
166	G	AGATATCCACTGACCTTTGG	TGCGGCCGCA	TTTGGATGGTGCTACAAGCT	RYPLTFGAAAFGWCYK

144		CATATOCACTO ACCTTTOCAL	TOCOCOCO	TTOCATOCTACAAOCTA	VDI TEOCODIOWOVICI
167	<u>A</u>	GATATCCACTGACCTTTGGA	IGCGGCCGCA	TIGGATGGTGCTACAAGCTA	TPLIFGCGRIGWCTKL
168	T	ATATCCACTGACCTTTGGAT	TGCGGCCGCA	TGGATGGTGCTACAAGCTAG	YPLTFGLRPHGWCYKL
160	G	TATCCACTGACCTTTGGATG	TOCOCCCCA	CONTROLOCTACAAGCTAGT	VDI TECCAAAGWCVKI
108		TATCCACTUACCTITUUATU	TacaaccacA	GGATGGTGCTACAAGOTAGT	THE THOUGH AND THE
170	G	ATCCACTGACCTTTGGATGG	TGCGGCCGCA	GATGGTGCTACAAGCTAGTA	PLIFGWCGRRWCYKLV
171	Т	TCCACTGACCTTTGGATGGT	TGCGGCCGCA	ATGGTGCTACAAGCTAGTAC	PLTEGWLBPOWCYKLV
170		OCACTO ACCTITICO ATOCTO	TOCOCOOA	TOOTOOTACAACCTACTACC	DI TECINICA A ANICYNI V
1/2	<u> </u>	CLACIGACCITIGGATGGIG	TUCUUCUCA	TGGTGCTACAAGCTAGTACC	PLIFUTCAAAWCTKLV
173	C	CACTGACCTTTGGATGGTGC	TGCGGCCGCA	GGTGCTACAAGCTAGTACCA	
174	T	ACTGACCTTTGGATGGTGCT	A JONGOOGOT	GTGCTACAAGCTAGTACCAG	I TEGWCI BPOCYKI VP
117			TacadocacA	TOOTAOAAGOTAOAAOT	
1/5	A	CIGACCITIGGAIGGIGCIA	IGCGGCCGCA	IGCIACAAGCIAGIACCAGI	LIFGWCTAAACTKLVP
176	C	TGACCTTTGGATGGTGCTAC	TGCGGCCGCA	GCTACAAGCTAGTACCAGTT	TFGWCYCGRSYKLVPV
177	Ā	GACCTITCCATCCTCCTACA	TOCOCCCCA	CTACAAGCTACTACCACTTC	TEGWCYMPPHYKI VDV
		GACCTITIGGATGGTGCTACA	TacaaccacA	CIACAAGCIAGIACCAGIIG	TROWOTHINFITTREVEV
178	1 A _	ACCTITGGATGGTGCTACAA	TGCGGCCGCA	TACAAGCTAGTACCAGTTGA	TFGWCYNAAAYKLVPV
179	G	CCTTTGGATGGTGCTACAAG	TGCGGCCGCA	ACAAGCTAGTACCAGTTGAG	FGWCYKCGRNKLVPVE
100	C C	CTTTCCATCCTCCTACAACC	TOCOCCCCA	CAACCTACTACCACTTCACC	ECWCYKI DDHKI VDVE
100		CTITIGUATUGTUCTACAAGC	TUCUUCCUCA	CAAGCTAGTACCAGTTGAGC	FOWCTKLAFAKLVFVL
181	T	TTTGGATGGTGCTACAAGCT	TGCGGCCGCA	AAGCTAGTACCAGTTGAGCC	FGWCYKLAAAKLVPVE
182		TTGGATGGTGCTACAAGCTA	TGCGGCCGCA	AGCTAGTACCAGTTGAGCCA	GWCYKLCGRKLVPVEP
102	2	TOCATCOTOCTACAACCTAC	TCCCCCCCA	COTACTACCACTTCACCCAC	CWCYKI VPPOL VPVEP
103	G	IGGATGGTGCTACAAGCTAG	TUCUUCUCA	GUTAGTACCAGTTGAGCCAG	GWCTKLVHFQLVFVCF
184] T	GGATGGTGCTACAAGCTAGT	TGCGGCCGCA	CTAGTACCAGTTGAGCCAGA	GWCYKLVAAALVPVEP
185		GATGGTGCTACAAGCTAGTA	TGCGGCCGCA	TAGTACCAGTTGAGCCAGAT	WCYKI VCGBIVPVEPD
100	2	ATCOTOCTACAACCTACTAC	TOCCCCCCA	ACTACCACTTCACCCACATA	WCYKLVI DDOVDVEDD
100		AIGGIGCIACAAGCIAGIAC	TGCGGCCGCA	AGTACCAGTIGAGCCAGATA	WCTKLVLRPQVPVEPD
187	C	TGGTGCTACAAGCTAGTACC	TGCGGCCGCA	GTACCAGTTGAGCCAGATAA	WCYKLVPAAAVPVEPD
188	Δ	GGTGCTACAAGCTAGTACCA	TGCGGCCGCA	TACCAGTTGAGCCAGATAAG	CYKL VPCGBIPVEPDK
100	2	CTCCTACAACCTACTACCAC	TCCCCCCCA	ACCACTTCACCCACATAACC	CYKI VDVDDODVEDDK
108	<u> </u>	GIGUTACAAGUTAGTACCAG	TUCUUCA	AUCAGITGAGCCAGATAAGG	OTALVEVALUEVEPUN
<u>190</u>	T	TGCTACAAGCTAGTACCAGT	<u>IGCGGCCGCA</u>	CCAGTTGAGCCAGATAAGGT	CYKLVPVAAAPVEPDK
191	T	GCTACAAGCTAGTACCAGTT	TGCGGCCGCA	CAGTTGAGCCAGATAAGGTA	YKLVPVCGRTVEPDKV
100	i i	CTACAAGCTACTACCACTTC	TOCOCCO	AGTIGAGCCAGATAAGGTAC	VKI VRVVRPOVERDKV
184	<u> </u>	CIACAAGCIAGIACCAGIIG		AGTIGAGUCAGATAAGUTAG	
193	A	TACAAGCTAGTACCAGTTGA	IGCGGCCGCA	GIIGAGCCAGATAAGGTAGA	TRLVPVDAAAVEPDKV
194	G	ACAAGCTAGTACCAGTTGAG	TGCGGCCGCA	TTGAGCCAGATAAGGTAGAA	KLVPVECGRIEPDKVE
105	2	CAAGCTACTACCACTTCACC	TGCCCCCCC	TGAGCCAGATAACCTACAAC	KI VOVEL DOMEDOMVE
192	<u> </u>	CAAGCTAGTACCAGTTGAGC	TUCUUCCUCA	TGAGCCAGATAAGGTAGAAG	REVEVELOPHERURVE
196	C	AAGCTAGTACCAGTTGAGCC	TGCGGCCGCA	GAGCCAGATAAGGTAGAAGA	KLVPVEPAAAEPDKVE
197	A	AGCTAGTACCAGTTGAGCCA	TGCGGCCGCA	AGCCAGATAAGGTAGAAGAG	LVPVEPCGRKPDKVEE
100	1	CCTAGTACCAGTTCACCCAC	TGCCCCCCC	GCCAGATAAGGTAGAAGAGG	I VAVEAVABOADYVEE
190	<u>u</u>	GUIAGIACCAGIIGAGCCAG	TOUGULULA	GULAGATAAGGIAGAGAGG	
199	A	CTAGTACCAGTTGAGCCAGA	TGCGGCCGCA	CCAGATAAGGTAGAAGAGGC	
200	Т	TAGTACCAGTTGAGCCAGAT	TGCGGCCGCA	CAGATAAGGTAGAAGAGGCC	VPVEPDCGRTDKVEEA
201		ACTACCACTTCACCCACATA	TOCOCCCCA	AGATAACCTACAACACCCCA	VAVEDDURDODKVEEA
201	A	AGTACCAGTTGAGCCAGATA	TUCUUCU	AGATAAGGTAGAAGAGGCCA	VEVEPDMRPQDRVEEA
202	A	GTACCAGTTGAGCCAGATAA	TGCGGCCGCA	GATAAGGTAGAAGAGGCCAA	VPVEPDNAAADKVEEA
203	G	TACCAGTTGAGCCAGATAAG	TGCGGCCGCA	ATAAGGTAGAAGAGGCCAAT	PVEPDKCGRNKVEEAN
204	G	ACCAGTTGAGCCAGATAAGG	AJ9JJ99J9T	TAAGGTAGAAGAGGCCAATA	PVEPDKVRPHKVEFAN
205	Ŧ	CCACTTCACCCACATAACCT	TCCCCCCCA	AACCTACAACACCCCAATAA	DVEDDKVAAAKVEEAN
205		CCAGITGAGCCAGATAAGGT	TUCUUCUCA	AAGGTAGAAGAGGCCAATAA	FVEFURVAAARVEEAR
206	A	CAGITGAGCCAGATAAGGTA	IGCGGCCGCA	AGGIAGAAGAGGCCAATAAA	VEPUKVCGHKVEEANK
207	G	AGTTGAGCCAGATAAGGTAG	TGCGGCCGCA	GGTAGAAGAGGCCAATAAAG	VEPDKVVRPQVEEANK
208	A	GTTGAGCCAGATAAGGTAGA	TGCGGCCGCA	GTAGAAGAGGCCAATAAAGG	VEPDKVDAAAVEEANK
200	A	TTGAGCCAGATAAGGTAGAA	TOCOCCOCA	TAGAAGAGGCCAATAAAGGA	EDDKVECGDIEEANKG
010	2	TCACCCACATAACCTACAAC	TCCCCCCCA	ACAACACCCCAATAAACCAC	EDDKVEVBDOEEANKC
210	G	TGAGCCAGATAAGGTAGAAG	TUCUUCCUCA	AGAAGAGGCCAATAAAGGAG	EFDRVEVHFUELANKU
211	A	GAGCCAGATAAGGTAGAAGA	TGCGGCCGCA	GAAGAGGCCAATAAAGGAGA	EPDKVEDAAAEEANKG
212	G	AGCCAGATAAGGTAGAAGAG	TGCGGCCGCA	AAGAGGCCAATAAAGGAGAG	PDKVEECGRKEANKGE
213	G	GCCAGATAAGGTAGAAGAGG	TGCGGCCGCA	AGAGGCCAATAAAGGAGAGA	PDKVEEVBPQEANKGE
214	2	CCACATAACGTAGAAGAGGC	TOCOCCOCA	GAGGCCAATAAAGGAGAGAA	PDKVEEAAAAEANKCE
214	<u> </u>	CCAGATAAGGTAGAAGAGGC	Tacaaccaca	GAGGCCAATAAAGGAGAGAGA	PURVEEAAAAEAIIKGE
215	L.	CAGATAAGGTAGAAGAGGGCC	IGCGGCCGCA	AGGCCAATAAAGGAGAGAGAAC	DRVEEACGRRANKGEN
216	A	AGATAAGGTAGAAGAGGCCA	TGCGGCCGCA	GGCCAATAAAGGAGAGAACA	DKVEEAMRPQANKGEN
217		GATAAGGTAGAAGAGGCCAA	TGCGGCCGCA	GCCAATAAAGGAGAGAACAC	DKVEEANAAAANKGEN
010	÷	ATAACCTACAACACCCCCAAT	TOCOCOCO	CCAATAAACCACACACACC	KVEEANCODTNKCENT
210		ATAAGGTAGAAGAGGCCAAT	TUCUUCCUCA	CCAATAAAGGAGAGAGAACACC	RVEEANCORTINKGENT
219	A	TAAGGTAGAAGAGGCCAATA	TGCGGCCGCA	CAATAAAGGAGAGAACACCA	KVEEANMRPHNKGENT
220	A	AAGGTAGAAGAGGCCAATAA	TGCGGCCGCA	AATAAAGGAGAGAACACCAG	KVEEANNAAANKGENT
221		ACCTACAACACCCCAATAAA	TOCOCCCCA	ATAAAGGAGAGAACACCAGC	VEEANKCOPNKCENTS
	- 2-		TOODOCCOC	TAAAOOAOAOAAOAOOAOO	VERANKVODUKOENTO
222	G	GGTAGAAGAGGCCAATAAAG	IGUGGCCGCA	TAAAGGAGAGAGAACACCAGCT	VELANKVHPHKGENIS
223	G	GTAGAAGAGGCCAATAAAGG	TGCGGCCGCA	AAAGGAGAGAACACCAGCTT	VEEANKGAAAKGENTS
224	A	TAGAAGAGGCCAATAAAGGA	TGCGGCCGCA	AAGGAGAGAGAACACCAGCTTC	FEANKGCGRKGENTSI
1 657	- 2-	ACAACACCCCCLATAAAGGA	TOCCCCCCCC	ACCACACAACACCACACAC	EEANKC//PDOCENTOL
225	<u> </u>	AGAAGAGGCCAATAAAGGAG	TULUULUULA	AGGAGAGAGAGACACCAGCTIGT	CLANKGVAPUGENISL
226	<u>A</u>	GAAGAGGCCAATAAAGGAGA	IGCGGCCGCA	GGAGAGAACACCAGCTTGTT	ELANKGDAAAGENTSL
227	G	AAGAGGCCAATAAAGGAGAG	TGCGGCCGCA	GAGAGAACACCAGCTTGTTA	EANKGECGRRENTSLL
220	Ā	AGAGGCCAATAAAGGAGAGA	TGCGGCCGCA	AGAGAACACCAGCTTGTTAC	FANKGEMBROENTSLI
440		CACCOCATALACCACACA	TOCOCCOCC		
229	A	GAGGUCAATAAAGGAGAGAGAA	IGUGGUUGUA	GAGAALACCAGUTIGITACA	CANNGENAAAENISLL
230	C	AGGCCAATAAAGGAGAGAAAC	TGCGGCCGCA		ANKGENCGRKNTSLLH
231	A	GGCCAATAAAGGAGAGAACA	TGCGGCCGCA	GAACACCAGCTTGTTACACC	ANKGENMRPONTSLLH
222	r -	GCCAATAAAGGAGAGAAGAA	TGCCCCCCA	AACACCAGCTTGTTACACCC	ANKGENTAAANTSIIU
234	- `	CONTAMOGAGAGAGACAC	TODOCCUCA		NKOCHTOODUTOUUU
233	<u> </u>	CUAATAAAGGAGAGAGAACACC	IGUGGCCGCA	ALACCAGCIIGIIACACCCT	NINGENICGHNISLLHP
234	A	CAATAAAGGAGAGAACACCA	TGCGGCCGCA	CACCAGCTTGTTACACCCTG	NKGENTMRPHTSLLHP
235	G	AATAAAGGAGAGAACACCAG	TGCGGCCGCA	ACCAGCTTGTTACACCCTGT	NKGENTSAAATSLLHP
226	1	ATAAAGGAGAGAACACCACC	TGCCCCCA	CCAGCTTGTTACACCCTGTG	KGENTSCOPTSLUPV
	₩	TAAACCACACAAAAAAAAAAAAAA	TOCOCOCOC	CACOTTOTTACACOCTOTOA	KOENTEL DOUGLEURY
23/	<u> </u>	TAAAGGAGAGAGACACCAGCT	TUCUUCCUCA	CAGCITOTIACACCCIGIGA	KOLNISLAFASLLAFV
238	T	AAAGGAGAGAGAACACCAGCTT	IGCGGCCGCA	AGUTTGTTACACCCTGTGAG	RGENISFAAASLLHPV
239	G	AAGGAGAGAACACCAGCTTG	TGCGGCCGCA	GCTTGTTACACCCTGTGAGC	GENTSLCGRSLLHPVS
240	T	AGGAGAGAGAACACCAGCTTGT	TGCGGCCGCA	CTTGTTACACCCTGTGAGCC	GENTSLLRPHLLHPVS
241	Ť	GGAGAGAGACACCAGCTTOTT	TGCGGCCGCA	TTGTTACACCCTGTGAGCCT	GENTSI FAAALI HOVS
		CACACAACACCACCTTOTTA	TOCCCCCCCC	TOTTACACCOTOTOACCOTO	
242	- 2-	GAGAGAACACCAGCITGITA	TOCOULCULA	INTIACACCCININAGULIN	
243	C	AGAGAACACCAGCTTGTTAC	IGCGGCCGCA	GITACACCCTGTGAGCCTGC	ENISLLERPOLHPVSL
244	A	GAGAACACCAGCTTGTTACA	TGCGGCCGCA	TTACACCCTGTGAGCCTGCA	ENTSLLHAAALHPVSL
245	C	AGAACACCAGCTTGTTACAC	TGCGGCCGCA	TACACCCTGTGAGCCTGCAT	NTSLLHCGRIHPVSLH
246	Č	GAACACCACCTTCTTACACC	TGCGGCCGCA	ACACCCTGTGAGCCTGCATG	NTSLI HI BPOHPVSI H
440	1×		TOCCCCCCCC	CACCOTOTOACCOTOCATOC	
247	<u> </u>	AACACCAGCTIGTTACACCC	IGUGGUGCA	LACCUIGIGAGCUIGCAIGG	NISLLIPAAAHPVSLH
248	T	ACACCAGCTTGTTACACCCT	IGCGGCCGCA		ISLLHPCGRNPVSLHG
249	G	CACCAGCTTGTTACACCCTG	TGCGGCCGCA	CCCTGTGAGCCTGCATGGAA	TSLLHPVRPHPVSLHG
250	T	ACCAGCTTGTTACACCCTGT	TGCGGCCGCA	CCTGTGAGCCTGCATGGAAT	TSLLHPVAAAPVSLHG
254	à	CCAGCTTGTTACACCCTCTC	TGCGGCCGCA	CTGTGAGCCTGCATCGAATC	SI I HPVCGPTVSI HOM
431	<u> </u>		TOOCOCCOC	TOTOLOOOTOCATGOAATG	
1 252	A		IGCGGCA	TUTUAGECTGCATGGAATGG	SLLAPVMKPHVSLHGM

253	G	AGCTTGTTACACCCTGTGAG	TGCGGCCGCA	GTGAGCCTGCATGGAATGGA	SLLHPVSAAAVSLHGM
254	C	GCTTGTTACACCCTGTGAGC	TGCGGCCGCA	TGAGCCTGCATGGAATGGAT	LLHPVSCGRMSLHGMD
255	Č	CTTGTTACACCCTGTGAGCC	TGCGGCCGCA	GAGCCTGCATGGAATGGATG	LI HPVSI BPOSI HGMD
255	Ť	TTGTTACACCCTGTGAGCCT	TGCGGCCGCA	AGCCTGCATGGAATGGATGA	LI HPVSLAAASI HGMD
250	-	TOTTACACCCTGTGAGCCTG	TGCGGCCGCA	CCCTCCATCCATCCATCAC	LHPVSI CGRSI HGMDD
257	G	TGTTACACCCTGTGAGCCTG	TGCGGCCGCA	GCCTGCATGGATGGATGAC	
258	C	GTTACACCCTGTGAGCCTGC	TGCGGCCGCA	CETGEATGGAATGGATGACE	
259	A	TTACACCCTGTGAGCCTGCA	TGCGGCCGCA	CIGCAIGGAAIGGAIGACCC	LHPVSLHAAALHGMDD
260	Т	TACACCCTGTGAGCCTGCAT	TGCGGCCGCA	TGCATGGAATGGATGACCCT	HPVSLHCGRMHGMDDP
261	G	ACACCCTGTGAGCCTGCATG	TGCGGCCGCA	GCATGGAATGGATGACCCTG	HPVSLHVRPQHGMDDP
262	G	CACCCTGTGAGCCTGCATGG	TGCGGCCGCA	CATGGAATGGATGACCCTGA	HPVSLHGAAAHGMDDP
263	A	ACCCTGTGAGCCTGCATGGA	TGCGGCCGCA	ATGGAATGGATGACCCTGAG	PVSLHGCGRNGMDDPE
264	A	CCCTGTGAGCCTGCATGGAA	TGCGGCCGCA	TGGAATGGATGACCCTGAGA	PVSLHGMRPHGMDDPE
265	T	CCTGTGAGCCTGCATGGAAT	TGCGGCCGCA	GGAATGGATGACCCTGAGAG	PVSLHGIAAAGMDDPE
266	G	CTGTGAGCCTGCATGGAATG	TGCGGCCGCA	GAATGGATGACCCTGAGAGA	VSLHGMCGRRMDDPER
267	G	TGTGAGCCTGCATGGAATGG	TGCGGCCGCA	AATGGATGACCCTGAGAGAG	VSLHGMVRPQMDDPER
268	Δ	GTGAGCCTGCATGGAATGGA	TGCGGCCGCA	ATGGATGACCCTGAGAGAGA	VSLHGMDAAAMDDPER
260	÷	TGAGCCTGCATGGAATGGAT	TGCGGCCGCA	TGGATGACCCTGAGAGAGAA	SLHGMDCGRMDDPERE
203	Ġ	CAGCCTCCATGGAATGGATG	TGCGGCCGCA	CGATGACCCTGAGAGAGAAG	SLHGMDVBPODDPERE
270	A	ACCCTCCATCCAATCCATCA	TGCGGCCGCA	CATGACCCTGAGAGAGAGT	SLHGMDDAAADDPERE
2/1	A	AGCCTGCATGGAATGGATGA	TOCOCCOCA	ATCACCCTCACACACACA	LIGMDDCCRNDPEREV
212	6	GCCTGCATGGATGGATGAC	TGCGGCCGCA	TOACCCTGAGAGAGAGAGTG	
2/3	6	CUIGCAIGGAAIGGAIGACC	TGCGGCCGCA	IGACCCIGAGAGAGAGIGI	LIGNDDDAAADDEDEV
2/4	C	CIGCAIGGAAIGGAIGACCC	TGCGGCCGCA	GACCCTGAGAGAGAGAGTGTT	LIGMDDPAAADPEREV
275	T	TGCATGGAATGGATGACCCT	TGCGGCCGCA	ACCCTGAGAGAGAGAGTGTTA	HGMDDPCGRNPEREVL
276	G	GCATGGAATGGATGACCCTG	TGCGGCCGCA	CCCTGAGAGAGAGAGTGTTAG	HGMDDPVRPHPEREVL
277	A	CATGGAATGGATGACCCTGA	TGCGGCCGCA	CCTGAGAGAGAGAGTGTTAGA	HGMDDPDAAAPEREVL
278	G	ATGGAATGGATGACCCTGAG	TGCGGCCGCA	CTGAGAGAGAGAGTGTTAGAG	GMDDPECGRTEREVLE
279	A	TGGAATGGATGACCCTGAGA	TGCGGCCGCA	TGAGAGAGAAGTGTTAGAGT	GMDDPEMRPHEREVLE
280	G	GGAATGGATGACCCTGAGAG	TGCGGCCGCA	GAGAGAGAAGTGTTAGAGTG	GMDDPESAAAEREVLE
281	A	GAATGGATGACCCTGAGAGA	TGCGGCCGCA	AGAGAGAAGTGTTAGAGTGG	MDDPERCGRKREVLEW
282	G	AATGGATGACCCTGAGAGAG	TGCGGCCGCA	GAGAGAAGTGTTAGAGTGGA	MDDPERVRPQREVLEW
283	A	ATGGATGACCCTGAGAGAGA	TGCGGCCGCA	AGAGAAGTGTTAGAGTGGAG	MDDPERDAAAREVLEW
284	A	TGGATGACCCTGAGAGAGAA	TGCGGCCGCA	GAGAAGTGTTAGAGTGGAGG	DDPERECGRREVLEWR
285	G	GGATGACCCTGAGAGAGAGAG	TGCGGCCGCA	AGAAGTGTTAGAGTGGAGGT	DDPEREVRPOEVI EWR
205	T	CATGACCCTGAGAGAGAGA	TGCGGCCGCA	CAAGTGTTAGAGTGGAGGTT	DDDEREVAAAEVI EWR
200	-	ATCACCCTCACACACAACA	TOCOCCOCA	AAGTGTTAGAGTGGAGGTTT	DDEDEVCODKVI EWDE
28/	G	ATGACCCTGAGAGAGAGAGTG	TGCGGCCGCA	AAGTGTTAGAGTGGAGGTTT	DPEREVCGRKVLEWRF
288	1	IGACCCIGAGAGAGAGAGIGI	TGCGGCCGCA	AGIGITAGAGIGGAGGITIG	DPEREVLEPQVLEWEF
289	T	GACCCTGAGAGAGAGAGTGTT	TGCGGCCGCA	GTGTTAGAGTGGAGGTTTGA	DPEREVFAAAVLEWRF
290	A	ACCCTGAGAGAGAAGTGTTA	TGCGGCCGCA	TGTTAGAGTGGAGGTTTGAC	PEREVLCGRMLEWRFD
291	G	CCCTGAGAGAGAGAGTGTTAG	TGCGGCCGCA	GTTAGAGTGGAGGTTTGACA	PEREVLVRPQLEWRFD
292	A	CCTGAGAGAGAGAGTGTTAGA	TGCGGCCGCA	TTAGAGTGGAGGTTTGACAG	PEREVLDAAALEWRFD
293	G	CTGAGAGAGAGAGTGTTAGAG	TGCGGCCGCA	TAGAGTGGAGGTTTGACAGC	EREVLECGRIEWRFDS
294	T	TGAGAGAGAGAGTGTTAGAGT	TGCGGCCGCA	AGAGTGGAGGTTTGACAGCC	EREVLELRPQEWRFDS
295	G	GAGAGAGAAGTGTTAGAGTG	TGCGGCCGCA	GAGTGGAGGTTTGACAGCCG	EREVLECAAAEWRFDS
296	G	AGAGAGAAGTGTTAGAGTGG	TGCGGCCGCA	AGTGGAGGTTTGACAGCCGC	REVLEWCGRKWRFDSR
297	A	GAGAGAAGTGTTAGAGTGGA	TGCGGCCGCA	GTGGAGGTTTGACAGCCGCC	REVLEWMRPQWRFDSR
298	G	AGAGAAGTGTTAGAGTGGAG	TGCGGCCGCA	TGGAGGTTTGACAGCCGCCT	REVLEWSAAAWRFDSR
299	G	GAGAAGTGTTAGAGTGGAGG	TGCGGCCGCA	GGAGGTTTGACAGCCGCCTA	EVLEWRCGRRRFDSRL
300	Ť	AGAAGTGTTAGAGTGGAGGT	TGCGGCCGCA	GAGGTTTGACAGCCGCCTAG	EVLEWBLBPOBEDSBL
301	Ť	GAAGTGTTAGAGTGGAGGTT	TGCGGCCGCA	AGGTTTGACAGCCGCCTAGC	EVLEWREAAABEDSBL
302	Ť	AAGTGTTAGAGTGGAGGTTT	TGCGGCCGCA	GGTTTGACAGCCGCCTAGCA	VI EWRECGRREDSRI A
302	Ġ	AGTGTTAGAGTGGAGGTTTG	TGCGGCCGCA	GTTTGACAGCCGCCTAGCAT	VI EWBEVBPOEDSBLA
204	A	CTCTTACACTCCACCTTTCA	TGCGGCCGCA	TTTGACAGCCGCCTAGCATT	VI EWPEDAAAEDSPI A
205	C A	TOTTACACTOCACCTTTCAC	TGCGGCCGCA	TTCACAGCCGCCTAGCATT	LEWREDCODIDODI AE
305		OTTACACTOCACCTTTCACA	TOCOCCOCA	TOACAGOCGCCTAGCATTTC	LEWAPDOUDODLAF
306	A	GTTAGAGTGGAGGTTTGACA	TGCGGCCGCA	IGACAGCCGCCTAGCATTTC	
307	G	TAGAGIGGAGGITIGACAG	TOCOCOCOCOCA	ACAGOCOCOCTAGOATTTOAT	EWREDSCODUCDLAFU
308	6	AGAGIGGAGGITIGACAGC	TOCOGOCOCA	ACAGECGECTAGEATTICAT	EWAPDOL DDUODI AFH
309	C	AGAGIGGAGGIIIGACAGCC	TGCGGCCGCA	CAGCCGCCTAGCATTICATC	EWRFDSLHPHSHLAFH
310	G	GAGTGGAGGTTTGACAGCCG	IGCGGCCGCA	AGCCGCCTAGCATTICATCA	EWRFDSHAAASRLAFH
311	C	AGIGGAGGITTGACAGCCGC	TGCGGCCGCA	GCCGCCTAGCATTICATCAC	WRFDSHCGRSRLAFHH
312	C	GTGGAGGTTTGACAGCCGCC	IGCGGCCGCA	CCGCCTAGCATTTCATCACG	WRFDSRLRPHRLAFHH
313	T	TGGAGGTTTGACAGCCGCCT	TGCGGCCGCA	CGCCTAGCATTTCATCACGT	WRFDSRLAAARLAFHH
314	A	GGAGGTTTGACAGCCGCCTA	TGCGGCCGCA	GCCTAGCATTTCATCACGTG	REDSRLCGRSLAFHHV
315	G	GAGGTTTGACAGCCGCCTAG	TGCGGCCGCA	CCTAGCATTTCATCACGTGG	RFDSRLVRPHLAFHHV
316	C	AGGTTTGACAGCCGCCTAGC	TGCGGCCGCA	CTAGCATTTCATCACGTGGC	RFDSRLAAAALAFHHV
317	A	GGTTTGACAGCCGCCTAGCA	TGCGGCCGCA	TAGCATTTCATCACGTGGCC	FDSRLACGRIAFHHVA
318	T	GTTTGACAGCCGCCTAGCAT	TGCGGCCGCA	AGCATTTCATCACGTGGCCC	FDSRLALRPQAFHHVA
319	T	TTTGACAGCCGCCTAGCATT	TGCGGCCGCA	GCATTTCATCACGTGGCCCG	FDSRLAFAAAAFHHVA
320	T	TTGACAGCCGCCTAGCATTT	TGCGGCCGCA	CATTTCATCACGTGGCCCGA	DSRLAFCGRTFHHVAR
321	C	TGACAGCCGCCTAGCATTTC	TGCGGCCGCA	ATTTCATCACGTGGCCCGAG	DSRLAFLRPQFHHVAR
322	A	GACAGCCGCCTAGCATTTCA	TGCGGCCGCA	TTTCATCACGTGGCCCGAGA	DSRLAFHAAAFHHVAR
323	T	ACAGCCGCCTAGCATTTCAT	TGCGGCCGCA	TTCATCACGTGGCCCGAGAG	SRLAFHCGRIHHVARE
324	C	CAGCCGCCTAGCATTTCATC	TGCGGCCGCA	TCATCACGTGGCCCGAGAGC	SRLAFHLRPHHHVARE
325	A	AGCCGCCTAGCATTTCATCA	TGCGGCCGCA	CATCACGTGGCCCGAGAGCT	SRLAFHHAAAHHVARE
326	C	GCCGCCTAGCATTTCATCAC	TGCGGCCGCA	ATCACGTGGCCCGAGAGCTG	BLAFHHCGRNHVAREI
327	G	CCGCCTAGCATTTCATCACC	TGCGGCCGCA	TCACGTGGCCCGAGAGCTGC	RI AFHHVRPHHVAPEI
200	T	CGCCTAGCATTTCATCACCT	TGCCGCCCCCA	CACGTGGCCCCGAGAGCTGCA	RI AEHHVAAAHVADEI
328	Ċ	COCTACCATTTOATCACGT	TOCOOCOCCA	ACCTOCCCCCACACCTCCAT	
329	G	GCTAGCATTICATCACGIG	TOCOGOCOCA	ACGIGGEEEGAGAGEIGEAI	LAFHIVCGRNVARELH
330	G	CUTAGCATTICATCACGTGG	TGCGGCCGCA	CGTGGCCCGAGAGCTGCATC	LAFHHVVRPHVARELH
331	C	CTAGCATTICATCACGTGGC	TGCGGCCGCA	GIGGCCCGAGAGCTGCATCC	LAFHHVAAAAVARELH
332	C	TAGCATTICATCACGTGGCC	IGCGGCCGCA	TGGCCCGAGAGCTGCATCCG	AFHHVACGRMARELHP
333	C	AGCATTTCATCACGTGGCCC	TGCGGCCGCA	GGCCCGAGAGCTGCATCCGG	AFHHVALRPQARELHP
334	G	GCATTTCATCACGTGGCCCG	TGCGGCCGCA	GCCCGAGAGCTGCATCCGGA	AFHHVARAAAARELHP
	-			0000101001001700010	CHINA DOODTDELLIDE
335	A	CATTTCATCACGTGGCCCGA	TGCGGCCGCA	CCCGAGAGCIGCATCCGGAG	FHHVARCGRIRELHPE
335 336	A G	CATTTCATCACGTGGCCCGA ATTTCATCACGTGGCCCGAG	TGCGGCCGCA	CCGAGAGCTGCATCCGGAG	FHHVARCGRTRELHPE
335 336 337	A G A	CATTTCATCACGTGGCCCGA ATTTCATCACGTGGCCCGAG TTTCATCACGTGGCCCGAGA	TGCGGCCGCA TGCGGCCGCA TGCGGCCGCA	CCCGAGAGCTGCATCCGGAG CCGAGAGCTGCATCCGGAGT CGAGAGCTGCATCCGGAGTA	FHHVARCGRTRELHPE FHHVARVRPHRELHPE FHHVARDAAARELHPE

330	C	TCATCACGTGGCCCGAGAGC	TGCGGCCGCA	AGAGCTGCATCCGGAGTACT	HHVARELRPOELHPEY
340	Ť	CATCACGTGGCCCGAGAGCT	TGCGGCCGCA	GAGCTGCATCCGGAGTACTT	HHVARELAAAELHPEY
241	G	ATCACGTCGCCCCAGAGCTC	TGCGGCCGCA	AGCTGCATCCGGAGTACTTC	HVARELCORKI HPEVE
240	G	TCACGTGGCCCGAGAGCTG	TOCOCCOCA	COTOCATCOGGAGTACTICA	HVADELI PROL HDEVE
342	0	TCACGTGGCCCCGAGAGCTGC	TOCOCCOCA	GCTGCATCCGGAGTACTTCAA	
343	A	CACGIGGCCCGAGAGCIGCA	TGCGGCCGCA	CIGCATCCGGAGTACTICAA	NYARELIAAALIPETE
344	1	ACGIGGCCCGAGAGCIGCAI	TGCGGCCGCA	TGCATCCGGAGTACTTCAAG	VARELICGRMHPETEK
345	C	CGTGGCCCGAGAGCTGCATC	TGCGGCCGCA	GCATCCGGAGTACTTCAAGA	VARELHLRPQHPEYFK
346	С	GTGGCCCGAGAGCTGCATCC	TGCGGCCGCA	CATCCGGAGTACTTCAAGAA	VARELHPAAAHPEYFK
347	G	TGGCCCGAGAGCTGCATCCG	TGCGGCCGCA	ATCCGGAGTACTTCAAGAAC	ARELHPCGRNPEYFKN
348	G	GGCCCGAGAGCTGCATCCGG	TGCGGCCGCA	TCCGGAGTACTTCAAGAACT	ARELHPVRPHPEYFKN
349	Α	GCCCGAGAGCTGCATCCGGA	TGCGGCCGCA	CCGGAGTACTTCAAGAACTG	ARELHPDAAAPEYFKN
350	G	CCCGAGAGCTGCATCCGGAG	TGCGGCCGCA	CGGAGTACTTCAAGAACTGC	RELHPECGRTEYFKNC
351	T	CCGAGAGCTGCATCCGGAGT	TGCGGCCGCA	GGAGTACTTCAAGAACTGCT	RELHPELRPQEYFKNC
352	A	CGAGAGCTGCATCCGGAGTA	TGCGGCCGCA	GAGTACTTCAAGAACTGCTG	RELHPEYAAAEYFKNC
353	C	GAGAGCTGCATCCGGAGTAC	TGCGGCCGCA	AGTACTTCAAGAACTGCTGA	ELHPEYCGRKYFKNC*
354	T	AGAGCTGCATCCGGAGTACT	TGCGGCCGCA	GTACTTCAAGAACTGCTGAC	ELHPEYLBPOYEKNC*
355	Ť	GAGCTGCATCCGGAGTACTT	TGCGGCCGCA	TACTTCAAGAACTGCTGACA	EL HPEYEAAAYEKNC*
355	-	ACCTOCATCCCCACTACTTC	TOCOGCOCOCA	ACTTCAAGAACTCCTCACAT	LADEVECCONEKNC*H
350	-	COTOCATOCOCACTACTTCA	TOCOCCOCA	CTTCAAGAACTGCTGACATC	
357	A	GUIGCATECGGAGTACTICA	TGCGGCCGCA	TTOAAGAACTGCTGACATC	
358	A	CIGCATCCGGAGTACTICAA	TGCGGCCGCA	TICAAGAACIGCIGACAICG	
359	G	TGCATCCGGAGTACTTCAAG	TGCGGCCGCA	TCAAGAACIGCIGACAICGA	HPEYFKCGHIKNC"HH
360	A	GCATCCGGAGTACTTCAAGA	TGCGGCCGCA	CAAGAACTGCTGACATCGAG	HPEYFKMRPHKNC*HR
361	A	CATCCGGAGTACTTCAAGAA	TGCGGCCGCA	AAGAACTGCTGACATCGAGC	HPEYFKNAAAKNC*HR
362	С	ATCCGGAGTACTTCAAGAAC	TGCGGCCGCA	AGAACTGCTGACATCGAGCT	PEYFKNCGRKNC*HRA
363	Т	TCCGGAGTACTTCAAGAACT	TGCGGCCGCA	GAACTGCTGACATCGAGCTT	PEYFKNLRPQNC*HRA
364	G	CCGGAGTACTTCAAGAACTG	TGCGGCCGCA	AACTGCTGACATCGAGCTTG	PEYFKNCAAANC*HRA
365	C	CGGAGTACTTCAAGAACTGC	TGCGGCCGCA	ACTGCTGACATCGAGCTTGC	EYFKNCCGRNC*HRAC
366	Т	GGAGTACTTCAAGAACTGCT	TGCGGCCGCA	CTGCTGACATCGAGCTTGCT	EYFKNCLRPHC*HRAC
367	G	GAGTACTTCAAGAACTGCTG	TGCGGCCGCA	TGCTGACATCGAGCTTGCTA	EYFKNCCAAAC*HRAC
368	A	AGTACTTCAAGAACTGCTGA	TGCGGCCGCA	GCTGACATCGAGCTTGCTAC	YFKNC*CGRS*HRACY
369	C	GTACTICAAGAACTGCTGAC	TGCGGCCGCA	CTGACATCGAGCTTGCTACA	YFKNC*LBPH*HBACY
370	A	TACTTCAAGAACTCCTCACA	TGCGGCCGCA	TGACATCGAGCTTGCTACAA	YEKNC*HAAA*HBACY
274	T	ACTTCAACAACTCCTCACAT	TGCGGCCCCCA	GACATCGACCTTCCTACAAC	EKNC*HCGPPHPACYK
3/1	-	ACTICAAGAACTOCTCACAT	TOCOCOCOCO	ACATCGAGCTTCCTACAAG	EKNC*HI PROUBACYK
3/2	0	CTICAAGAACIGCIGACATC	TGCGGCCGCA	ACATCGAGCTTGCTACAAGG	FKNC HLAPQHAACTK
373	G	TICAAGAACIGCIGACAICG	TGCGGCCGCA	CATCGAGCTTGCTACAAGGG	FKNC-HRAAAHHACYK
374	A	TCAAGAACTGCTGACATCGA	TGCGGCCGCA	ATCGAGCTTGCTACAAGGGA	KNC*HRCGRNRACYKG
375	G	CAAGAACTGCTGACATCGAG	TGCGGCCGCA	TCGAGCTTGCTACAAGGGAC	KNC*HRVRPHRACYKG
376	С	AAGAACTGCTGACATCGAGC	TGCGGCCGCA	CGAGCTTGCTACAAGGGACT	KNC*HRAAAARACYKG
377	Т	AGAACTGCTGACATCGAGCT	TGCGGCCGCA	GAGCTTGCTACAAGGGACTT	NC*HRACGRRACYKGL
378	T	GAACTGCTGACATCGAGCTT	TGCGGCCGCA	AGCTTGCTACAAGGGACTTT	NC*HRALRPQACYKGL
379	G	AACTGCTGACATCGAGCTTG	TGCGGCCGCA	GCTTGCTACAAGGGACTTTC	NC*HRACAAAACYKGL
380	C	ACTGCTGACATCGAGCTTGC	TGCGGCCGCA	CTTGCTACAAGGGACTTTCC	C*HRACCGRTCYKGLS
381	T	CTGCTGACATCGAGCTTGCT	TGCGGCCGCA	TTGCTACAAGGGACTTTCCG	C*HRACLRPHCYKGLS
382	Δ	TGCTGACATCGAGCTTGCTA	TGCGGCCGCA	TGCTACAAGGGACTTTCCGC	C*HRACYAAACYKGLS
383	ĉ	GCTGACATCGAGCTTGCTAC	TGCGGCCGCA	GCTACAAGGGACTTTCCGCT	*HRACYCGRSYKGLSA
204	A	CTGACATCGAGCTTGCTACA	TGCGGCCGCA	CTACAAGGGACTTTCCGCTG	*HRACYMRPHYKGLSA
304	A	TCACATCCACCTTCCTACAA	TOCOCCOCA	TACAAGGGACTTTCCGCTGG	*HDACYNAAAYKCI SA
305	A	CACATOCACCTTOCTACAAC	TOCOCCOCA	ACAACCOACTTTCCCCCTCCC	HDACYKCCDNKCISAC
386	G	GACATCGAGCTTGCTACAAG	TGCGGCCGCA	ACAAGGGACTITCCGCTGGG	HRACT KCGRNKGLSAG
387	G	ACATCGAGCTTGCTACAAGG	TGCGGCCGCA	CAAGGGACTITICCGCTGGGG	HRACTKVHPHKGLSAG
388	G	CATCGAGCTTGCTACAAGGG	TGCGGCCGCA	AAGGGACTTTCCGCTGGGGA	HRACYKGAAAKGLSAG
389	A	ATCGAGCTTGCTACAAGGGA	TGCGGCCGCA	AGGGACTITCCGCTGGGGGAC	RACYKGCGRKGLSAGD
390	С	TCGAGCTTGCTACAAGGGAC	TGCGGCCGCA	GGGACTTTCCGCTGGGGACT	RACYKGLRPQGLSAGD
391	Т	CGAGCTTGCTACAAGGGACT	TGCGGCCGCA	GGACTTTCCGCTGGGGACTT	RACYKGLAAAGLSAGD
392	Т	GAGCTTGCTACAAGGGACTT	TGCGGCCGCA	GACTTTCCGCTGGGGGACTTT	ACYKGLCGRRLSAGDF
393	Т	AGCTTGCTACAAGGGACTTT	TGCGGCCGCA	ACTTTCCGCTGGGGGACTTTC	ACYKGLLRPQLSAGDF
394	C	GCTTGCTACAAGGGACTTTC	TGCGGCCGCA	CTTTCCGCTGGGGGACTTTCC	ACYKGLSAAALSAGDF
395	C	CTTGCTACAAGGGACTTTCC	TGCGGCCGCA	TTTCCGCTGGGGGACTTTCCA	CYKGLSCGRISAGDFP
396	G	TTGCTACAAGGGACTTTCCG	TGCGGCCGCA	TTCCGCTGGGGGACTTTCCAG	CYKGLSVRPHSAGDFP
397	C	TGCTACAAGGGACTTTCCGC	TGCGGCCGCA	TCCGCTGGGGGACTTTCCAGG	CYKGLSAAAASAGDEP
309	Ť	GCTACAAGGGACTTTCCCCCT	TGCGGCCGCA	CCGCTGGGGACTTTCCAGGG	YKGLSACGRTAGDEPG
300	G	CTACAAGGGACTTTCCCCCTC	TGCGGCCGCA	CGCTGGGGGACTTTCCAGGGA	YKGLSAVBPHAGDEPG
400	G	TACAAGGGACTTTCCCCTCC	TGCGGCCGCA	GCTGGGGACTTTCCAGGGAG	YKGI SAGAAAAGDEPG
400	G	ACAAGGGACTTTCCCCTGG	TOCOCCOCC	CTGGGGACTTTCCACCCACC	KGI SAGCOPTOPEDOP
401	G	CAAGGGACTITCCGCTGGG	TOCOCCOCCA	TCCCCACTTTCCACCCACCC	KGLSAGUBPHODEDOD
402	G	AAGGGACTTTCCGCTGGGGG	TOCOCOCOCA	COCOACTITICCAGGGAGGC	KOLSAGDAAAODEDOD
403	A	AAGGGACTTTCCGCTGGGGA	TGCGGCCGCA	GGGGACTITICCAGGGAGGCG	CL CA ODOODDOODDOODDO
404	C	AGGGACTITCCGCTGGGGAC	TGCGGCCGCA	GGGACTTTCCAGGGAGGCGT	GLSAGDCGRHDFPGRH
405	T	GGGACTITCCGCTGGGGACT	TGCGGCCGCA	GGACTITCCAGGGAGGCGTG	GLSAGDLRPQDFPGRR
406	Т	GGACTTTCCGCTGGGGACTT	TGCGGCCGCA	GACTITCCAGGGAGGCGTGG	GLSAGDFAAADFPGRR
407	T	GACTTTCCGCTGGGGACTTT	TGCGGCCGCA	ACTITCCAGGGAGGCGTGGC	LSAGDFCGRNFPGRRG
408	C	ACTTTCCGCTGGGGACTTTC	TGCGGCCGCA	CTITCCAGGGAGGCGTGGCC	LSAGDFLRPHFPGRRG
409	C	CTTTCCGCTGGGGGACTTTCC	TGCGGCCGCA	TTTCCAGGGAGGCGTGGCCT	LSAGDFPAAAFPGRRG
410	A	TTTCCGCTGGGGGACTTTCCA	TGCGGCCGCA	TTCCAGGGAGGCGTGGCCTG	SAGDFPCGRIPGRRGL
411	G	TTCCGCTGGGGGACTTTCCAG	TGCGGCCGCA	TCCAGGGAGGCGTGGCCTGG	SAGDFPVRPHPGRRGL
412	G	TCCGCTGGGGGACTTTCCAGG	TGCGGCCGCA	CCAGGGAGGCGTGGCCTGGG	SAGDFPGAAAPGRRGL
413	G	CCGCTGGGGGACTTTCCAGGG	TGCGGCCGCA	CAGGGAGGCGTGGCCTGGGC	AGDFPGCGRTGRRGLG
414	A	CGCTGGGGGACTTTCCAGGGA	TGCGGCCGCA	AGGGAGGCGTGGCCTGGGCG	AGDFPGMRPOGRRGLG
415	G	GCTGGGGACTTTCCAGGGAG	TGCGGCCGCA	GGGAGGCGTGGCCTGGGCCGG	AGDEPGSAAAGBBGLG
415	G	CTGGGGACTTTCCAGGGAGG	TGCGGCCGCA	GGAGGCGTGGCCTGGGCGGG	GDEPGRCGRPPPGI GC
410	G	TOCOCACTTTCCACCOCACCO	TGCCCCCCCCA	GAGGCGTGGCCTGGCGCGG	GDEPGRI PROPPOLOG
417	0	CCCCACTTTCCACCCACCCACCC	TGCCCCCCCCA	ACCCATCCCCTCCCCCCCCCC	CDEPCEPEAAADDCLCC
418	G	GGGGACTITCCAGGGAGGCG	TOCOCOCOCA	AGGCGTGGCCTGGGGGGGGGGGGGGGGGGGGGGGGGGGG	DEPORPROCEPOROLOGT
419	-	GGGACTITICCAGGGAGGCGT	TOCOGOCOCOC	CONTROCTOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	DEPORPHORODOLOGT
420	G	GGACTITICCAGGGAGGCGTG	TGCGGCCGCA	GCGTGGCCTGGGGGGGCTG	DEPORTURALGE
421	G	GACTITICCAGGGAGGCGTGG	IGCGGCCGCA	CGIGGCCIGGGCGGGACTGG	DFPGRHGAAAHGLGGT
422	C	ACTITCCAGGGAGGCGTGGC	IGCGGCCGCA	GIGGCCIGGGCGGGACTGGG	FPGRHGCGRSGLGGTG
423	C	CTTTCCAGGGAGGCGTGGCC	TGCGGCCGCA	TGGCCTGGGCGGGACTGGGG	FPGRRGLRPHGLGGTG
424	T	TTTCCAGGGAGGCGTGGCCT	TGCGGCCGCA	GGCCTGGGCGGGACTGGGGA	FPGRRGLAAAGLGGTG

425	G	TTCCAGGGAGGCGTGGCCTG	TGCGGCCGCA	GCCTGGGCGGGGACTGGGGAG	PGRRGLCGRSLGGTGE
426	G	TCCAGGGAGGCGTGGCCTGG	TGCGGCCGCA	CCTGGGCGGGGACTGGGGGAGT	PGRBGLVBPHLGGTGE
427	G	CCAGGGAGGCGTGGCCTGGG	TGCGGCCGCA	CTGGGCGGGGACTGGGGGGGGGGGGGGGGGGGGGGGGGG	PGBBGI GAAAI GGTGE
420	C	CAGGGAGGCGTGGCCTGGGC	TGCGGCCGCA	TGGGCGGGACTGGGGAGTGG	CPPCI CCCPMCCTCEW
420	0	ACCOACCOCTCOCCTCCCC	TOCOCOCO	TGGGCGGGACTGGGGAGTGG	CPPCL CVPPCCCTCFW
429	G	AGGGAGGCGTGGCCTGGGCG	TGCGGCCGCA	GGGCGGGACTGGGGAGTGGC	GRAGLGVAPQGGTGEW
430	G	GGGAGGCGTGGCCTGGGCGG	TGCGGCCGCA	GGCGGGACTGGGGAGTGGCG	GRRGLGGAAAGGTGEW
431	G	GGAGGCGTGGCCTGGGCGGG	TGCGGCCGCA	GCGGGACTGGGGAGTGGCGA	RRGLGGCGRSGTGEWR
432	A	GAGGCGTGGCCTGGGCGGGA	TGCGGCCGCA	CGGGACTGGGGAGTGGCGAG	RRGLGGMRPHGTGEWR
433	С	AGGCGTGGCCTGGGCGGGAC	TGCGGCCGCA	GGGACTGGGGGAGTGGCGAGC	RRGLGGTAAAGTGEWR
434	T	GGCGTGGCCTGGGCGGGACT	TGCGGCCGCA	GGACTGGGGGAGTGGCGAGCC	RGLGGTCGRRTGEWRA
435	G	GCGTGGCCTGGGCGGGACTG	TGCGGCCGCA	GACTGGGGGAGTGGCGAGCCC	RGLGGTVRPQTGEWRA
436	G	CGTGGCCTGGGCGGGACTGG	TGCGGCCGCA	ACTGGGGGAGTGGCGAGCCCT	RGLGGTGAAATGEWRA
437	G	GTGGCCTGGGCGGGGACTGGG	TGCGGCCGCA	CTGGGGAGTGGCGAGCCCTC	GLGGTGCGRTGEWRAL
438	G	TGGCCTGGGCGGGACTGGGG	TGCGGCCGCA	TGGGGAGTGGCGAGCCCTCA	GLGGTGVBPHGEWBAL
430	A	GCCTGCCCGCGCACTGCGGA	TGCGGCCGCA	GGGGAGTGGCGAGCCCTCAG	GLGGTGDAAAGEWDAI
435	G	CCCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TGCGGCCGCA	GCCACTCCCCACCCCTCACA	LOCTOECODDEWDALD
440	T	COTOCOCOCACTOCOCACT	TOCOCCOCA	COACTOCCCACCCOTCACAT	LOGTOEL DROEWRALD
441	-	CCTGGGCGGGACTGGGGGAGT	TOCOGOCOCA	GGAGTGGCGAGCCCTCAGAT	LGGTGELAPQEWRALK
442	G	CIGGGCGGGACIGGGGAGIG	TGCGGCCGCA	GAGIGGCGAGCCCTCAGAIG	LGGIGECAAAEWHALK
443	G	IGGGCGGGACIGGGGAGIGG	TGCGGCCGCA	AGTGGCGAGCCCTCAGATGC	GGIGEWCGRKWHALHC
444	C	GGGCGGGGACTGGGGGAGTGGC	TGCGGCCGCA	GTGGCGAGCCCTCAGATGCT	GGTGEWLRPQWRALRC
445	G	GGCGGGACTGGGGAGTGGCG	TGCGGCCGCA	TGGCGAGCCCTCAGATGCTG	GGTGEWRAAAWRALRC
446	A	GCGGGACTGGGGAGTGGCGA	TGCGGCCGCA	GGCGAGCCCTCAGATGCTGC	GTGEWRCGRRRALRCC
447	G	CGGGACTGGGGAGTGGCGAG	TGCGGCCGCA	GCGAGCCCTCAGATGCTGCA	GTGEWRVRPQRALRCC
448	С	GGGACTGGGGAGTGGCGAGC	TGCGGCCGCA	CGAGCCCTCAGATGCTGCAT	GTGEWRAAAARALRCC
449	С	GGACTGGGGGAGTGGCGAGCC	TGCGGCCGCA	GAGCCCTCAGATGCTGCATA	TGEWRACGRRALRCCI
450	C	GACTGGGGGAGTGGCGAGCCC	TGCGGCCGCA	AGCCCTCAGATGCTGCATAT	TGEWRALRPQALRCCI
451	T	ACTGGGGAGTGGCGAGCCCT	TGCGGCCGCA	GCCCTCAGATGCTGCATATA	TGEWRALAAAALRCCI
452	C	CTGGGGAGTGGCGAGCCCTC	TGCGGCCGCA	CCCTCAGATGCTGCATATAA	GEWRALCGRTLRCCI*
453	A	TGGGGAGTGGCGAGCCCTCA	TGCGGCCGCA	CCTCAGATGCTGCATATAAG	GEWBALMBPHL BCCI*
454	G	GGGGAGTGGCGAGCCCTCAG	TGCGGCCGCA	CTCAGATGCTGCATATAAGC	GEWBALSAAAI BCCI*
455	A	GGGAGTGGCGAGCCCTCAGA	TGCGGCCGCA	TCAGATGCTGCATATAAGCA	EWBAL BCGBIBCCI*A
456	T	GGAGTGGCGAGCCCTCACAT	TGCGGCCGCA	CAGATGCTGCATATAAGCAG	EWBAL BI RPHRCCITA
457	G	GAGTGGCGAGCCCTCAGATG	TGCGGCCGCA	AGATGCTGCATATAAGCAGC	EWDALDCAAADCCITA
450	C	AGTGGCGAGCCCTCAGATGC	TGCGGCCGCA	CATCCTCCATATAACCACCT	WDAL DCCCDDCCItAA
450	T	GTGGCGAGCCCTCAGATGC	TGCGGCCGCA	ATCCTCCATATAAGCAGCT	WPAL DCL DDOCCITAA
459	-	TOCCOACCOTCACATOCT	TOCOCCOCA	TOCTOCATATAAGCAGCIG	WRALHCLAPQCCI AA
400	G	TGGCGAGCCCTCAGATGCTG	TGCGGCCGCA	IGCIGCATATAAGCAGCIGC	WHALHCCAAACCI'AA
461	C	GGCGAGCCCTCAGATGCTGC	TGCGGCCGCA	GCIGCATATAAGCAGCIGCI	RALRCCCGRSCFAAA
462	A	GCGAGCCCTCAGATGCTGCA	TGCGGCCGCA	CIGCATATAAGCAGCIGCII	RALRCCMHPHCI AAA
463	-	CGAGCCCTCAGATGCTGCAT	TGCGGCCGCA	TGCATATAAGCAGCTGCTTT	RALRCCIAAACI"AAA
464	A	GAGCCCTCAGATGCTGCATA	TGCGGCCGCA	GCATATAAGCAGCTGCTTTT	ALRCCICGRSI*AAAF
465	T	AGCCCTCAGATGCTGCATAT	TGCGGCCGCA	CATATAAGCAGCTGCTTTTT	ALRCCILRPHI*AAAF
466	A	GCCCTCAGATGCTGCATATA	TGCGGCCGCA	ATATAAGCAGCTGCTTTTTG	ALRCCIYAAAI*AAAF
467	A	CCCTCAGATGCTGCATATAA	TGCGGCCGCA	TATAAGCAGCTGCTTTTTGC	LRCCI*CGRI*AAAFC
468	G	CCTCAGATGCTGCATATAAG	TGCGGCCGCA	ATAAGCAGCTGCTTTTTGCC	LRCCI*VRPQ*AAAFC
469	С	CTCAGATGCTGCATATAAGC	TGCGGCCGCA	TAAGCAGCTGCTTTTTGCCT	LRCCI*AAAA*AAAFC
470	A	TCAGATGCTGCATATAAGCA	TGCGGCCGCA	AAGCAGCTGCTTTTTGCCTG	RCCI*ACGRKAAAFCL
471	G	CAGATGCTGCATATAAGCAG	TGCGGCCGCA	AGCAGCTGCTTTTTGCCTGT	RCCI*AVRPQAAAFCL
472	С	AGATGCTGCATATAAGCAGC	TGCGGCCGCA	GCAGCTGCTTTTTGCCTGTA	RCCI*AAAAAAAAFCL
473	Т	GATGCTGCATATAAGCAGCT	TGCGGCCGCA	CAGCTGCTTTTTGCCTGTAC	CCI*AACGRTAAFCLY
474	G	ATGCTGCATATAAGCAGCTG	TGCGGCCGCA	AGCTGCTTTTTGCCTGTACT	CCI*AAVRPQAAFCLY
475	C	TGCTGCATATAAGCAGCTGC	TGCGGCCGCA	GCTGCTTTTTGCCTGTACTG	CCI*AAAAAAAAFCLY
476	T	GCTGCATATAAGCAGCTGCT	TGCGGCCGCA	CTGCTTTTTGCCTGTACTGG	CI*AAACGRTAFCLYW
477	T	CTGCATATAAGCAGCTGCTT	TGCGGCCGCA	TGCTTTTTGCCTGTACTGGG	CI*AAALRPHAFCLYW
478	T	TGCATATAAGCAGCTGCTTT	TGCGGCCGCA	GCTTTTTGCCTGTACTGGGT	CI*AAAFAAAAFCLYW
479	T	GCATATAAGCAGCTGCTTTT	TGCGGCCGCA	CTTTTTGCCTGTACTGGGTC	I*AAAFCGRTECLYWV
480	T	CATATAAGCAGCTGCTTTTT	TGCGGCCGCA	TTTTTGCCTGTACTGGGTCT	I*AAAFLBPHECLYWV
481	G	ATATAAGCAGCTGCTTTTTG	TGCGGCCGCA	TTTTGCCTGTACTGGGTCTC	I*AAAFCAAAFCI YWV
482	C	TATAAGCAGCTGCTTTTTGC	TGCGGCCGCA	TITECCTETACTEGETCTCT	*AAAECCGBICLYWVS
483	C	ATAAGCAGCTGCTTTTTGCC	TGCGGCCGCA	TIGCCIGIACIGGGICICIC	*AAAECI RPHCI VWVS
484	Ť	TAAGCAGCTGCTTTTTGCCT	TGCGGCCGCA	TGCCTGTACTGCGTCTCTCT	*AAAFCI AAACI YWWS
485	G	AAGCAGCTGCTTTTTGCCTG	TGCGGCCGCA	GCCTGTACTGGGTCTCTCTC	AAAFCI CGRSI VWVSI
486	Ť	AGCAGCTGCTTTTTGCCTGT	TGCGGCCGCA	CCTGTACTGGGTCTCTCTCC	AAAFCI I PPHI YW/VSI
487	A	GCAGCTGCTTTTTGCCTGTA	TGCGGCCGCA	CTGTACTGGGTCTCTCTCGGT	AAAECI VAAAI VAVICI
489	ĉ	CAGCTGCTTTTTCCCTCTAC	TGCGGCCGCA	TGTACTGGGTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	AAECI VCGPHVMVCI V
490	Ť	AGCTGCTTTTTCCCTCTACT	TGCGGCCCCCA	GTACTGGGTCTCTCTCTCTCTCTC	AAECI VI PROVMOJELV
400	Ġ	GCTGCTTTTTCCCTCTACTC	TGCGGCCCCCA	TACTGGGTCTCTCTCTCTCTCTCTC	AAECI VCAAAVMOVELV
490	G	CTGCTTTTTCCCTCTACTCC	TOCOCCOCA	ACTOCOTOTOTOTOTOTOT	AECI VWCCPHINICI VIC
400	0	TGCTTTTTCCCTCTACTCCC	TGCGGCCCCCA	CTGGGTCTCTCTCCTCTCCTTACAC	AFCLYWVPPHWVSLVR
492	T	GCTTTTTCCCTCTACTOCCT	TOCOCCOCC	TOCOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT	AFCL WWWAAAAWWUSLVA
493	-	CTTTTTCCCTCTACTCCCGG	TOCOCOCOCA	COOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO	FOLYWW/COPOUCIUDD
494	T	TTTTTCCCTGTACTGGGTC	TOCOGOCOCOCA	GGGTCTCTCTGGTTAGACCA	FOLYWYCGRHVSLVHP
495	-	TTTTOOCTOTACTGGGTCT	TOCOGOCOCCA	GGICICICIGGITAGACCAG	FOLYWYLRPQVSLVRP
496	C	TTTOOCTGTACTGGGTCTC	TOCOGCCGCA	GICICICIGGITAGACCAGA	CLYWVSAAAVSLVRP
497	-	TIGCCIGIACIGGGICTCT	TGCGGCCGCA	TCTCTCTGGTTAGACCAGAT	CLYWVSCGRISLVRPD
498	C	TIGCCIGIACTGGGTCTCTC	IGCGGCCGCA	CICICIGGITAGACCAGATC	CLYWVSLRPHSLVRPD
499	T	TGCCTGTACTGGGTCTCTCT	IGCGGCCGCA	TCTCTGGTTAGACCAGATCT	CLYWVSLAAASLVRPD
500	G	GCCTGTACTGGGTCTCTCTG	TGCGGCCGCA	CICIGGTTAGACCAGATCTG	LYWVSLCGRTLVRPDL
501	G	CCTGTACTGGGTCTCTCTGG	TGCGGCCGCA	TCTGGTTAGACCAGATCTGA	LYWVSLVRPHLVRPDL
502	T	CTGTACTGGGTCTCTCTGGT	TGCGGCCGCA	CTGGTTAGACCAGATCTGAG	LYWVSLVAAALVRPDL
503	T	TGTACTGGGTCTCTCTGGTT	TGCGGCCGCA	TGGTTAGACCAGATCTGAGC	YWVSLVCGRMVRPDLS
504	A	GTACTGGGTCTCTCTGGTTA	TGCGGCCGCA	GGTTAGACCAGATCTGAGCC	YWVSLVMRPQVRPDLS
505	G	TACTGGGTCTCTCTGGTTAG	TGCGGCCGCA	GTTAGACCAGATCTGAGCCT	YWVSLVSAAAVRPDLS
506	A	ACTGGGTCTCTCTGGTTAGA	TGCGGCCGCA	TTAGACCAGATCTGAGCCTG	WVSLVRCGRIRPDLSL
507	C	CTGGGTCTCTCTGGTTAGAC	TGCGGCCGCA	TAGACCAGATCTGAGCCTGG	WVSLVRLRPHRPDLSL
508	C	TGGGTCTCTCTGGTTAGACC	TGCGGCCGCA	AGACCAGATCTGAGCCTGGG	WVSLVRPAAARPDLSL
509	Α	GGGTCTCTCTGGTTAGACCA	TGCGGCCGCA	GACCAGATCTGAGCCTGGGA	VSLVRPCGRRPDLSLG
510	G	GGTCTCTCTGGTTAGACCAG	TGCGGCCGCA	ACCAGATCTGAGCCTGGGAG	VSLVRPVRPQPDLSLG

511	Δ	GTCTCTCTGGTTAGACCAGA	TGCGGCCGCA	CCAGATCTGAGCCTGGGAGC	VSLVRPDAAAPDLSLG
512	T	TCTCTCTGGTTAGACCAGAT	TGCGGCCGCA	CAGATCTGAGCCTGGGAGCT	SLVRPDCGRTDLSLGA
512	Ċ	CTCTCTGGTTAGACCAGATC	TGCGGCCGCA	AGATCTGAGCCTGGGAGCTC	SLVBPDI BPODI SLGA
513	Ŧ	TOTOTOOTTAGACCAGATO	TOCOCCOCA	CATCTGACCCTGGGACCTCT	SI VPPDI AAADI SI GA
514	-	OTOTOOTTACACCACATOTO	TOCOCCOCA	ATCTCACCCTCCCACCTCTC	I VPPDI COPNI SI GAI
515	G	CICIGGITAGACCAGATCIG	TGCGGCCGCA	TOTOLOGOTOGOLOGOTOTOT	
516	A	TCTGGTTAGACCAGATCTGA	TGCGGCCGCA	TUTGAGCUTGGGAGCTUTUT	LVRPDLMRPHLSLGAL
517	G	CTGGTTAGACCAGATCTGAG	TGCGGCCGCA	CIGAGCCIGGGGAGCICICIG	LVHPDLSAAALSLGAL
518	С	TGGTTAGACCAGATCTGAGC	TGCGGCCGCA	TGAGCCTGGGAGCTCTCTGG	VRPDLSCGRMSLGALW
519	С	GGTTAGACCAGATCTGAGCC	TGCGGCCGCA	GAGCCTGGGAGCTCTCTGGC	VRPDLSLRPQSLGALW
520	Т	GTTAGACCAGATCTGAGCCT	TGCGGCCGCA	AGCCTGGGAGCTCTCTGGCT	VRPDLSLAAASLGALW
521	G	TTAGACCAGATCTGAGCCTG	TGCGGCCGCA	GCCTGGGAGCTCTCTGGCTA	RPDLSLCGRSLGALWL
522	G	TAGACCAGATCTGAGCCTGG	TGCGGCCGCA	CCTGGGAGCTCTCTGGCTAA	RPDLSLVRPHLGALWL
523	G	AGACCAGATCTGAGCCTGGG	TGCGGCCGCA	CTGGGAGCTCTCTGGCTAAC	RPDLSLGAAALGALWL
524	Δ	GACCAGATCTGAGCCTGGGA	TGCGGCCGCA	TGGGAGCTCTCTGGCTAACT	PDLSLGCGRMGALWLT
525	G	ACCAGATCTGAGCCTGGGAG	TGCGGCCGCA	GGGAGCTCTCTGGCTAACTA	PDLSLGVBPQGALWLT
526	C	CCAGATCTGAGCCTGGGAGC	TGCGGCCGCA	GGAGCTCTCTGGCTAACTAG	PDLSLGAAAAGALWLT
527	Ť	CAGATCTGAGCCTGGGAGCT	TGCGGCCGCA	GAGCTCTCTGGCTAACTAGG	DI SI GACGEBAI WI TE
521	<u> </u>	ACATCTCACCCTCCCACCTC	TGCGGCCGCA	ACCTCTCTCCCTAACTAGGG	DI SI GAL PROAL WITR
520	T	CATCTOACCCTCCCACCTC	TOCOCCCCA	COTOTOTOCOTAACTAGGGA	DI SI CALAAAAI WI TR
529	-	ATCTGAGCCTGGGAGCTCT	TOCOCCOCA	CTCTCTCCCCTAACTAGGGAA	I SI CALCOPTI WI TPE
530	U T	ATCTGAGCCTGGGGAGCTCTC	TGCGGCCGCA	TOTOTOCOTAACTAGGGAAC	LOLGALLOGHTLWLTDE
531	1	TCTGAGCCTGGGGAGCTCTCT	TGCGGCCGCA	OTOTOGOTAACTAGGGAAC	LOLGALCAAALWITDE
532	G	CTGAGCCTGGGAGCTCTCTG	TGCGGCCGCA	CICIGGCIAACIAGGGAACC	LSLGALCAAALWLIHE
533	G	TGAGCCTGGGAGCTCTCTGG	TGCGGCCGCA	TCTGGCTAACTAGGGAACCC	SLGALWCGRIWLTREP
534	C	GAGCCTGGGAGCTCTCTGGC	TGCGGCCGCA	CTGGCTAACTAGGGAACCCA	SLGALWLRPHWLTREP
535	Т	AGCCTGGGAGCTCTCTGGCT	TGCGGCCGCA	TGGCTAACTAGGGAACCCAC	SLGALWLAAAWLTREP
536	A	GCCTGGGAGCTCTCTGGCTA	TGCGGCCGCA	GGCTAACTAGGGAACCCACT	LGALWLCGRRLTREPT
537	A	CCTGGGAGCTCTCTGGCTAA	TGCGGCCGCA	GCTAACTAGGGAACCCACTG	LGALWLMRPQLTREPT
538	C	CTGGGAGCTCTCTGGCTAAC	TGCGGCCGCA	CTAACTAGGGAACCCACTGC	LGALWLTAAALTREPT
539	T	TGGGAGCTCTCTGGCTAACT	TGCGGCCGCA	TAACTAGGGAACCCACTGCT	GALWLTCGRITREPTA
540	A	GGGAGCTCTCTGGCTAACTA	TGCGGCCGCA	AACTAGGGAACCCACTGCTT	GALWLTMRPQTREPTA
541	G	GGAGCTCTCTGGCTAACTAG	TGCGGCCGCA	ACTAGGGAACCCACTGCTTA	GALWLTSAAATREPTA
542	G	GAGCTCTCTGGCTAACTAGG	TGCGGCCGCA	CTAGGGAACCCACTGCTTAA	ALWLTRCGRTREPTA*
542	G	AGCTCTCTCGCTAACTAGGG	TGCGGCCGCA	TAGGGAACCCACTGCTTAAG	AI WI TRVRPHREPTA*
543	A	CCTCTCTCCCTAACTAGGGA	TGCGGCCGCA	AGGGAACCCACTGCTTAAGC	ALWITRDAAAREPTA*
544	A	GETETETGGETAACTAGGGAA	TOCOCCOCA	AGGGAACCCACTGCTTAAGC	I WI TRECORRETATA
545	A	CICICIGGCIAACIAGGGAA	TGCGGCCGCA	GGGAACCCACTGCTTAAGCC	LWLTDEL DDOEDTA*A
546	C	TCTCTGGCTAACTAGGGAAC	TGCGGCCGCA	GGAACCCACIGCIIAAGCCI	LWLIRELRPQEPIAA
547	C	CTCTGGCTAACTAGGGAACC	TGCGGCCGCA	GAACCCACIGCITAAGCCIC	LWLIREPAAAEPIA'A
548	С	TCTGGCTAACTAGGGAACCC	TGCGGCCGCA	AACCCACTGCTTAAGCCTCA	WLTREPCGRKPTA-AS
549	A	CTGGCTAACTAGGGAACCCA	TGCGGCCGCA	ACCCACTGCTTAAGCCTCAA	WLTREPMRPQPTA*AS
550	С	TGGCTAACTAGGGAACCCAC	TGCGGCCGCA	CCCACTGCTTAAGCCTCAAT	WLTREPTAAAPTA*AS
551	Т	GGCTAACTAGGGAACCCACT	TGCGGCCGCA	CCACTGCTTAAGCCTCAATA	LTREPTCGRTTA*ASI
552	G	GCTAACTAGGGAACCCACTG	TGCGGCCGCA	CACTGCTTAAGCCTCAATAA	LTREPTVRPHTA*ASI
553	C	CTAACTAGGGAACCCACTGC	TGCGGCCGCA	ACTGCTTAAGCCTCAATAAA	LTREPTAAAATA*ASI
554	T	TAACTAGGGAACCCACTGCT	TGCGGCCGCA	CTGCTTAAGCCTCAATAAAG	TREPTACGRTA*ASIK
555	T	AACTAGGGAACCCACTGCTT	TGCGGCCGCA	TGCTTAAGCCTCAATAAAGC	TREPTALRPHA*ASIK
556	Δ	ACTAGGGAACCCACTGCTTA	TGCGGCCGCA	GCTTAAGCCTCAATAAAGCT	TREPTAYAAAA*ASIK
557	Δ	CTAGGGAACCCACTGCTTAA	TGCGGCCGCA	CTTAAGCCTCAATAAAGCTT	REPTA*CGRT*ASIKL
558	G	TAGGGAACCCACTGCTTAAG	TGCGGCCGCA	TTAAGCCTCAATAAAGCTTG	REPTA*VRPH*ASIKI
550	G	ACCCAACCCACTGCTTAAG	TGCGGCCGCA	TAAGCCTCAATAAAGCTTGC	PEPTA*AAAA*ASIKI
509	0	CCCAACCCACTCCTTAAGC	TGCGGCCGCA	AAGCCTCAATAAAGCTTGCC	EDTA*ACCORKASIKI A
500	U T	GGGAACCCACTGCTTAAGCC	TOCOCCOCA	AAGCCTCAATAAAGCTTGCC	EPTA AUGHRASIRLA
501	-	GGAACCCACTGCTTAAGCCT	TOCOCCOCA	AGCCTCAATAAAGCTTGCCT	EDTA*ACAAAACIKIA
562	C	GAACCCACIGCTTAAGCCTC	TGCGGCCGCA	GCCTCAATAAAGCTTGCCTT	EPTA ASAAAASIKLA
563	A	AACCCACIGCITAAGCCICA	TGCGGCCGCA	CUTCAATAAAGUTIGCUTIG	PTA ASCGRISIKLAL
564	A	ACCCACTGCTTAAGCCTCAA	TGCGGCCGCA	CTCAATAAAGCTTGCCTTGA	PTA'ASMRPHSIKLAL
565	Т	CCCACTGCTTAAGCCTCAAT	TGCGGCCGCA	TCAATAAAGCTTGCCTTGAG	PTA*ASIAAASIKLAL
566	A	CCACTGCTTAAGCCTCAATA	TGCGGCCGCA	CAATAAAGCTTGCCTTGAGG	TA*ASICGRTIKLALR
567	A	CACTGCTTAAGCCTCAATAA	TGCGGCCGCA	AATAAAGCTTGCCTTGAGGG	TA*ASIMRPQIKLALR
568	A	ACTGCTTAAGCCTCAATAAA	TGCGGCCGCA	ATAAAGCTTGCCTTGAGGGA	TA*ASINAAAIKLALR
569	G	CTGCTTAAGCCTCAATAAAG	TGCGGCCGCA	TAAAGCTTGCCTTGAGGGAG	A*ASIKCGRIKLALRE
570	C	TGCTTAAGCCTCAATAAAGC	TGCGGCCGCA	AAAGCTTGCCTTGAGGGAGT	A*ASIKLRPQKLALRE
571	Т	GCTTAAGCCTCAATAAAGCT	TGCGGCCGCA	AAGCTTGCCTTGAGGGAGTG	A*ASIKLAAAKLALRE
572	Т	CTTAAGCCTCAATAAAGCTT	TGCGGCCGCA	AGCTTGCCTTGAGGGAGTGC	*ASIKLCGRKLALREC
573	G	TTAAGCCTCAATAAAGCTTG	TGCGGCCGCA	GCTTGCCTTGAGGGAGTGCT	*ASIKLVRPQLALREC
574	C	TAAGCCTCAATAAAGCTTGC	TGCGGCCGCA	CTTGCCTTGAGGGAGTGCTT	*ASIKLAAAALALREC
575	C	AAGCCTCAATAAAGCTTGCC	TGCGGCCGCA	TTGCCTTGAGGGAGTGCTTC	ASIKLACGRIALRECF
576	T	AGCCTCAATAAAGCTTGCCT	TGCGGCCGCA	TGCCTTGAGGGAGTGCTTCA	ASIKLALRPHALRECF
577	T	GCCTCAATAAAGCTTGCCTT	TGCGGCCGCA	GCCTTGAGGGAGTGCTTCAA	ASIKLAFAAAALRECF
578	G	CCTCAATAAAGCTTGCCTTG	TGCGGCCGCA	CCTTGAGGGGGGGGGGCTTCAAG	SIKLALCGRTLRECFK
570	4	CTCAATAAAGCTTGCCTTGA	TGCGGCCGCA	CTTGAGGGAGTGCTTCAAGT	SIKLALMRPHL RECEK
580	G	TCAATAAAGCTTGCCTTGAG	TGCGGCCGCA	TTGAGGGAGTGCTTCAAGTA	SIKI AL SAAAI BECEK
500	0	CAATAAACCTTCCCTTCACC	TGCCGCCCCCA	TGAGGGAGTGCTTCAACTAC	IKI AI BCGBMBECEK*
501	G	AATAAAGOTTOOOTTOAGG	TOCOOCCOCA	CACCCACTCCTTCAAGTAG	
582	G	AATAAAGCTTGCCTTGAGGG	TOCOGOCOCA	ACCONCINCTICANGIAGI	
583	A	ATAAAGCTTGCCTTGAGGGA	TGCGGCCGCA	AGGGAGIGCTICAAGIAGIG	INLALHDAAAHECHK
584	G	TAAAGCTTGCCTTGAGGGAG	IGCGGCCGCA	GGGAGTGCTTCAAGTAGTGT	KLALRECGRRECFK"C
585	Т	AAAGCTTGCCTTGAGGGAGT	TGCGGCCGCA	GGAGTGCTTCAAGTAGTGTG	KLALRELRPQECFK*C
586	G	AAGCTTGCCTTGAGGGAGTG	TGCGGCCGCA	GAGTGCTTCAAGTAGTGTGT	KLALRECAAAECFK*C
587	C	AGCTTGCCTTGAGGGAGTGC	TGCGGCCGCA	AGTGCTTCAAGTAGTGTGTG	LALRECCGRKCFK*CV
588	Т	GCTTGCCTTGAGGGAGTGCT	TGCGGCCGCA	GTGCTTCAAGTAGTGTGTGC	LALRECLRPQCFK*CV
589	Т	CTTGCCTTGAGGGAGTGCTT	TGCGGCCGCA	TGCTTCAAGTAGTGTGTGCC	LALRECFAAACFK*CV
590	C	TTGCCTTGAGGGAGTGCTTC	TGCGGCCGCA	GCTTCAAGTAGTGTGTGCCC	ALRECFCGRSFK*CVP
591	A	TGCCTTGAGGGAGTGCTTCA	TGCGGCCGCA	CTTCAAGTAGTGTGTGCCCG	ALRECFMRPHFK*CVP
592	A	GCCTTGAGGGAGTGCTTCAA	TGCGGCCGCA	TTCAAGTAGTGTGTGTGCCCGT	ALRECFNAAAFK*CVP
593	G	CCTTGAGGGAGTGCTTCAAG	TGCGGCCGCA	TCAAGTAGTGTGTGTGCCCGTC	LRECFKCGRIK*CVPV
594	T	CTTGAGGGAGTGCTTCAAGT	TGCGGCCGCA	CAAGTAGTGTGTGTGCCCGTCT	LRECFKLRPHK*CVPV
595	Δ	TIGAGGGAGTGCTTCAAGTA	TGCGGCCGCA	AAGTAGTGTGTGTGCCCGTCTG	LRECFKYAAAK*CVPV
500	G	TGAGGGAGTGCTTCAACTAC	TGCGGCCGCA	AGTAGTGTGTGCCCCGTCTGT	BECEK*CGBK*CVPVC
390	UI .	TGAGGGAGTGGTTGAAGTAG	- acadocacA	Adiadadadadadadadada	ingoin ounit overo

597	1	GAGGGAGTGCTTCAAGTAGT	TGCGGCCGCA	GTAGTGTGTGCCCGTCTGTT	RECFK*LRPQ*CVPVC
598	Ġ	AGGGAGTGCTTCAAGTAGTG	TGCGGCCGCA	TAGTGTGTGCCCGTCTGTTG	RECFK*CAAA*CVPVC
599	Ŧ	GGGAGTGCTTCAAGTAGTGT	TGCGGCCGCA	AGTGTGTGCCCCGTCTGTTGT	ECFK*CCGRKCVPVCC
600	Ġ	GGAGTGCTTCAAGTAGTGTG	TGCGGCCGCA	GTGTGTGCCCGTCTGTTGTG	ECFK*CVRPQCVPVCC
601	Ť	GAGIGCTICAAGIAGIGIGI	TGCGGCCGCA	TGTGTGCCCGTCTGTTGTGA	ECFK*CVAAACVPVCC
602	à	AGTGCTTCAAGTAGTGTGTGTG	TGCGGCCGCA	GTGTGCCCGTCTGTTGTGAC	CFK*CVCGRSVPVCCD
603	č	GTGCTTCAAGTAGTGTGTGC	TGCGGCCGCA	TGTGCCCGTCTGTTGTGACT	CFK*CVLRPHVPVCCD
604	č	TGCTTCAAGTAGTGTGTGTGCC	TGCGGCCGCA	GTGCCCGTCTGTTGTGACTC	CFK*CVPAAAVPVCCD
605	č	GCTTCAAGTAGTGTGTGTGCCC	TGCGGCCGCA	TGCCCGTCTGTTGTGACTCT	FK*CVPCGRMPVCCDS
606	Ğ	CTTCAAGTAGTGTGTGTGCCCG	TGCGGCCGCA	GCCCGTCTGTTGTGACTCTG	FK*CVPVRPQPVCCDS
607	Ŧ	TTCAAGTAGTGTGTGTGCCCGT	TGCGGCCGCA	CCCGTCTGTTGTGACTCTGG	FK*CVPVAAAPVCCDS
608	Ċ	TCAAGTAGTGTGTGTGCCCGTC	TGCGGCCGCA	CCGTCTGTTGTGACTCTGGT	K*CVPVCGRTVCCDSG
609	Ť	CAAGTAGTGTGTGTGCCCGTCT	TGCGGCCGCA	CGTCTGTTGTGACTCTGGTA	K*CVPVLRPHVCCDSG
610	G	AAGTAGTGTGTGTGCCCGTCTG	TGCGGCCGCA	GTCTGTTGTGACTCTGGTAA	K*CVPVCAAAVCCDSG
611	T	AGTAGTGTGTGCCCGTCTGT	TGCGGCCGCA	TCTGTTGTGACTCTGGTAAC	*CVPVCCGRICCDSGN
612	T	GTAGTGTGTGCCCGTCTGTT	TGCGGCCGCA	CTGTTGTGACTCTGGTAACT	*CVPVCLRPHCCDSGN
613	G	TAGTGTGTGCCCGTCTGTTG	TGCGGCCGCA	TGTTGTGACTCTGGTAACTA	*CVPVCCAAACCDSGN
614	Ĩ	AGTGTGTGCCCGTCTGTTGT	TGCGGCCGCA	GTTGTGACTCTGGTAACTAG	CVPVCCCGRSCDSGN*
615	G	GTGTGTGCCCGTCTGTTGTG	TGCGGCCGCA	TTGTGACTCTGGTAACTAGA	CVPVCCVRPHCDSGN*
616	A	TGTGTGCCCGTCTGTTGTGA	TGCGGCCGCA	TGTGACTCTGGTAACTAGAG	CVPVCCDAAACDSGN*
617	С	GTGTGCCCGTCTGTTGTGAC	TGCGGCCGCA	GTGACTCTGGTAACTAGAGA	VPVCCDCGRSDSGN*R
618	T	TGTGCCCGTCTGTTGTGACT	TGCGGCCGCA	TGACTCTGGTAACTAGAGAT	VPVCCDLRPHDSGN*R
619	С	GTGCCCGTCTGTTGTGACTC	TGCGGCCGCA	GACTCTGGTAACTAGAGATC	VPVCCDSAAADSGN*R
620	T	TGCCCGTCTGTTGTGACTCT	TGCGGCCGCA	ACTCTGGTAACTAGAGATCC	PVCCDSCGRNSGN*RS
621	G	GCCCGTCTGTTGTGACTCTG	TGCGGCCGCA	CTCTGGTAACTAGAGATCCC	PVCCDSVRPHSGN*RS
622	G	CCCGTCTGTTGTGACTCTGG	TGCGGCCGCA	TCTGGTAACTAGAGATCCCT	PVCCDSGAAASGN*RS
623	Ţ	CCGTCTGTTGTGACTCTGGT	TGCGGCCGCA	CTGGTAACTAGAGATCCCTC	VCCDSGCGRTGN'RSL
624	_ <u>A</u>	CGTCTGTTGTGACTCTGGTA	TGCGGCCGCA	IGGTAACTAGAGATCCCTCA	VCCDSGMRPHGN'RSL
625	<u> </u>	GICIGIIGIGACTCIGGTAA	TOCOGOCOGCA	GGTAACTAGAGATCCCTCAG	CODSCNCODSNIPSL
626	ç	TO	TOCOGOCOCA	GIAACTAGAGATCCCTCAGA	CODSGNU DDUNIDOU D
627			TOCOCOCOCA	AACTAGAGATCCCTCAGAC	
628			TOCOCCCCA	ACTAGAGATCCCTCAGACCC	
620	<u>u</u>		TGCGGCCCCA	CTAGAGATCCCTCAGACCCT	CDSGN*MRDH*REI PD
631	- 2 -	TGTGACTCTGGTAACTAGAG	TGCGGCCGCA	TAGAGATCCCTCAGACCCTT	CDSGN*SAAA*RSI RP
622			TGCGGCCGCA	AGAGATCCCTCAGACCCTTT	DSGN*BCGBKBSI BPF
632	- ?	TGACTCTGGTAACTAGAGAT	ACCOCCA	GAGATCCCTCAGACCCTTT	DSGN*BI BPOBSI BPF
624		GACTETEGTAACTAGAGATE	A0000000T	AGATCCCTCAGACCCTTTTA	DSGN*RSAAARSI RPF
635	č	ACTCTGGTAACTAGAGATCC	A00000001	GATCCCTCAGACCCTTTTAG	SGN*BSCGBBSLBPF*
636	č	CTCTGGTAACTAGAGATCCC	AJ9JJJJJJJJJJJJJJJJJ	ATCCCTCAGACCCTTTTAGT	SGN*RSL RPOSL RPF*
637	Ť	TCTGGTAACTAGAGATCCCT	TGCGGCCGCA	TCCCTCAGACCCTTTTAGTC	SGN*RSLAAASLRPF*
638	ċ	CTGGTAACTAGAGATCCCTC	TGCGGCCGCA	CCCTCAGACCCTTTTAGTCA	GN*RSLCGRTLRPF*S
639	Ă	TGGTAACTAGAGATCCCTCA	TGCGGCCGCA	CCTCAGACCCTTTTAGTCAG	GN*RSLMRPHLRPF*S
640	G	GGTAACTAGAGATCCCTCAG	TGCGGCCGCA	CTCAGACCCTTTTAGTCAGT	GN*RSLSAAALRPF*S
641	Ā	GTAACTAGAGATCCCTCAGA	TGCGGCCGCA	TCAGACCCTTTTAGTCAGTG	N*RSLRCGRIRPF*SV
642	C	TAACTAGAGATCCCTCAGAC	TGCGGCCGCA	CAGACCCTTTTAGTCAGTGT	N*RSLRLRPHRPF*SV
643	С	AACTAGAGATCCCTCAGACC	TGCGGCCGCA	AGACCCTTTTAGTCAGTGTG	N*RSLRPAAARPF*SV
644	C	ACTAGAGATCCCTCAGACCC	TGCGGCCGCA	GACCCTTTTAGTCAGTGTGG	*RSLRPCGRRPF*SVW
645	Ť	CTAGAGATCCCTCAGACCCT	TGCGGCCGCA	ACCCTTTTAGTCAGTGTGGA	*RSLRPLRPQPF*SVW
646	T	TAGAGATCCCTCAGACCCTT	TGCGGCCGCA	CCCTTTTAGTCAGTGTGGAA	*RSLRPFAAAPF*SVW
647	T	AGAGATCCCTCAGACCCTTT	TGCGGCCGCA	CCTTTTAGTCAGTGTGGAAA	RSLRPFCGRTF*SVWK
648	T	GAGATCCCTCAGACCCTTTT	TGCGGCCGCA	CTTTTAGTCAGTGTGGAAAA	RSLRPFLRPHF*SVWK
649	<u>A</u>	AGATCCCTCAGACCCTTTTA	TGCGGCCGCA	TTTTAGTCAGTGTGGAAAAT	RSLRPFYAAAF'SVWK
650	G	GATCCCTCAGACCCTTTTAG	TGCGGCCGCA	TTTAGTCAGTGTGGAAAATC	SLRPF*CGRI*SVWKI
651		ATCCCTCAGACCCTTTTAGT	TGCGGCCGCA	TTAGTCAGTGTGGAAAATCT	SLHPF*LHPH*SVWKI
652	<u> </u>	ICCCTCAGACCCTTTTAGTC	TOCOGCCGCA	AGICAGIGIGGAAAATCTC	SLHPF'SAAA'SVWKI
653	<u>A</u>		TOCOGOCOCCA	AGICAGIGIGGAAAAICICT	
654	<u> </u>		TOCOCCOCA		
000			TGCGGCCGCA	CAGTGTGGAAAATCTCTAGC	BDE SVCGBTVWKIES
000	<u> </u>		TGCGGCCGCA	AGTGTGGAAAATCTCTAGCA	RPF*SVI RPOVWKISS
659		AGACCOTTTAGTCAGTGTG	TGCGGCCGCA	GTGTGGAAAATCTCTAGCAG	RPF*SVCAAAVWKISS
650	- 2	GACCCTITTAGTCAGTGTGG	TGCGGCCGCA	TGTGGAAAATCTCTAGCAGT	PF*SVWCGRMWKISSS
660		ACCCTTTTAGTCAGTGTGGA	TGCGGCCGCA	GTGGAAAATCTCTAGCAGTG	PF*SVWMRPQWKISSS
661		CCCTTTTAGTCAGTGTGGAA	TGCGGCCGCA	TGGAAAATCTCTAGCAGTGG	PF*SVWNAAAWKISSS
662	Â	CCTTTTAGTCAGTGTGGAAA	TGCGGCCGCA	GGAAAATCTCTAGCAGTGGC	F*SVWKCGRRKISSSG
663	Ä	CTTTTAGTCAGTGTGGAAAA	TGCGGCCGCA	GAAAATCTCTAGCAGTGGCG	F*SVWKMRPQKISSSG
664	T	TTTTAGTCAGTGTGGAAAAT	TGCGGCCGCA	AAAATCTCTAGCAGTGGCGC	F*SVWKIAAAKISSSG
665	Ċ	TTTAGTCAGTGTGGAAAATC	TGCGGCCGCA	AAATCTCTAGCAGTGGCGCC	*SVWKICGRKISSSGA
666	Ť	TTAGTCAGTGTGGAAAATCT	TGCGGCCGCA	AATCTCTAGCAGTGGCGCCC	*SVWKILRPQISSSGA
667	С	TAGTCAGTGTGGAAAATCTC	TGCGGCCGCA	ATCTCTAGCAGTGGCGCCCG	*SVWKISAAAISSSGA
668	T	AGTCAGTGTGGAAAATCTCT	TGCGGCCGCA	TCTCTAGCAGTGGCGCCCGA	SVWKISCGRISSSGAR
669	A	GTCAGTGTGGAAAATCTCTA	TGCGGCCGCA	CTCTAGCAGTGGCGCCCGAA	SVWKISMRPHSSSGAR
670	G	TCAGTGTGGAAAATCTCTAG	TGCGGCCGCA	TCTAGCAGTGGCGCCCGAAC	SVWKISSAAASSSGAR
671	С	CAGTGTGGAAAATCTCTAGC	TGCGGCCGCA	CTAGCAGTGGCGCCCGAACA	VWKISSCGRTSSGART
672	A	AGTGTGGAAAATCTCTAGCA	TGCGGCCGCA	TAGCAGTGGCGCCCGAACAG	VWKISSMRPHSSGART
673	G	GTGTGGAAAATCTCTAGCAG		AGCAGIGGCGCCCGAACAGG	VWKISSSAAASSGART
674	<u> </u>	TGTGGAAAATCTCTAGCAGT	IGCGGCCGCA		WKISSSCGRSSGARTG
675	G	GIGGAAAAICICTAGCAGTG	TOCOGCOCA		WKISSSCAAASCAPTO
676	ğ		TOCOCCOCA	GTGGCGCCCGAACACCCCACT	KISSSGCGPSGAPTOT
670	<u> </u>	GAAAATCTCTAGCAGTGGC	TACAGOCCOCA	TGGCGCCCGAACACCCACT	
0/8	<u>u</u>		TACAGCCACA	GCCCCCCGAACACCCGACTTC	
600	č	AAATCTCTAGCAGTGGCGCC	TGCGGCCGCA	GCGCCCGAACAGGGACTTGA	ISSSGACGRSAPTGT
691	- č -	AATCTCTAGCAGTGGCGCCC	A JAJJJJJJJJJ	CGCCCGAACAGGGACTTGAA	ISSSGAL BPHARTGT*
692	ĕ	ATCTCTAGCAGTGGCGCCCG	A JOJOGGOODT	GCCCGAACAGGGACTTGAAA	ISSSGARAAAATGT*
. 996					

					COSC A DOODTDTOTH/
683	A	TCTCTAGCAGTGGCGCCCGA	TGCGGCCGCA	CCCGAACAGGGACTTGAAAG	SSSGARCGRIRIGI*K
684	A	CTCTAGCAGTGGCGCCCGAA	TGCGGCCGCA	CCGAACAGGGACTTGAAAGC	SSSGARMRPHRTGT*K
695	C	TCTAGCAGTGGCGCCCGAAC	TGCGGCCGCA	CGAACAGGGACTTGAAAGCG	SSSGARTAAARTGT*K
005		OTAGOAGTOGOGOGAAGA	TOCOCOCOA	CAACACCCACTTCAAACCCA	SSCAPTCCPPTCT*KP
686	A	CTAGCAGTGGCGCCCGAACA	TGCGGCCGCA	GAACAGGGACTTGAAAGCGA	SSGARTCORRTGT KR
687	G	TAGCAGTGGCGCCCGAACAG	TGCGGCCGCA	AACAGGGACTTGAAAGCGAA	SSGARTVHPQTGT*KH
688	G	AGCAGTGGCGCCCGAACAGG	TGCGGCCGCA	ACAGGGACTTGAAAGCGAAA	SSGARTGAAATGT*KR
690	G	GCAGTGGCGCCCGAACAGGG	TGCGGCCGCA	CAGGGACTTGAAAGCGAAAG	SGARTGCGRTGT*KRK
003	G		TOCOCCOCA	ACCCACTTCAAACCCAAACT	SCAPTCMPPOCT*KPK
690	A	CAGIGGCGCCCGAACAGGGA	IGCGGCCGCA	AGGGACTIGAAAGCGAAAGT	SGANTGWINFGGT KAK
691	С	AGTGGCGCCCGAACAGGGAC	TGCGGCCGCA	GGGACTTGAAAGCGAAAGTA	SGARTGTAAAGT*KHK
692	Т	GTGGCGCCCGAACAGGGACT	TGCGGCCGCA	GGACTTGAAAGCGAAAGTAA	GARTGTCGRRT*KRK*
602	T	TOCCCCCCGAACAGGGACTT	TGCGGCCGCA	GACTTGAAAGCGAAAGTAAA	GARTGTI RPOT*KRK*
093	-	TGGCGCCCGAACAGGGACTT	TOCOCOCO	ACTTCAAAACCCAAAACTAAAC	CADTOTCAAAT*KOK*
694	G	GGCGCCCGAACAGGGACTTG	TGCGGCCGCA	ACTIGAAAGCGAAAGTAAAG	APTOTICOPTICOPTIC
695	A	GCGCCCGAACAGGGACTTGA	TGCGGCCGCA	CTTGAAAGCGAAAGTAAAGC	ARTGT*CGRT*KRK*S
696	A	CGCCCGAACAGGGACTTGAA	TGCGGCCGCA	TTGAAAGCGAAAGTAAAGCC	ARTGT*MRPH*KRK*S
697	Δ	GCCCGAACAGGGACTTGAAA	TGCGGCCGCA	TGAAAGCGAAAGTAAAGCCA	ARTGT*NAAA*KRK*S
007	~	COCCAACACCCACTTCAAAC	TOCOCCCCA	CAAACCCAAACTAAACCCAC	PTGT*KCGPPKPK*SO
698	G	CCCGAACAGGGGACTTGAAAG	TGCGGCCGCA	GAAAGCGAAAGTAAAGCCAG	ATGT KCGAAKAK SG
699	С	CCGAACAGGGACTTGAAAGC	TGCGGCCGCA	AAAGCGAAAGTAAAGCCAGA	RIGI'KLRPQKRK'SQ
700	G	CGAACAGGGACTTGAAAGCG	TGCGGCCGCA	AAGCGAAAGTAAAGCCAGAG	RTGT*KRAAAKRK*SQ
701	Δ	GAACAGGGACTTGAAAGCGA	TGCGGCCGCA	AGCGAAAGTAAAGCCAGAGG	TGT*KRCGRKRK*SQR
700	-	AACACCCACTTCAAACCCAA	TOCOCCOCA	CCGAAAGTAAAGCCAGAGGA	TGT*KRMRPORK*SOR
102	A	AACAGGGACTTGAAAGCGAA	TacaaccacA	GCGAAAGTAAAGCCAGAGGAG	TOTIKONAAADKICOD
703	A	ACAGGGACTTGAAAGCGAAA	IGCGGCCGCA	CGAAAGTAAAGCCAGAGGAG	IGI KANAAAA Sun
704	G	CAGGGACTTGAAAGCGAAAG	TGCGGCCGCA	GAAAGTAAAGCCAGAGGAGA	GT*KRKCGRRK*SQRR
705	Т	AGGGACTTGAAAGCGAAAGT	TGCGGCCGCA	AAAGTAAAGCCAGAGGAGAT	GT*KRKLRPQK*SQRR
706	A	GGGACTTGAAAGCGAAAGTA	TGCGGCCGCA	AAGTAAAGCCAGAGGAGATC	GT*KRKYAAAK*SORR
700	A	CONCTRANCOUNANTA	TOCOCOCOCA	ACTAAACCCACACCACATOT	T*KPK*COPK*COPPC
707	A	GGACTIGAAAGCGAAAGTAA	TUCUUCUCA	AGTAAAGCCAGAGGAGATCT	THE OUNT SURNS
708	A	GACTTGAAAGCGAAAGTAAA	TGCGGCCGCA	GTAAAGCCAGAGGAGATCTC	T'KHK'MHPQ'SQRHS
709	G	ACTTGAAAGCGAAAGTAAAG	TGCGGCCGCA	TAAAGCCAGAGGAGATCTCT	T*KRK*SAAA*SQRRS
710	C	CTTGAAAGCGAAAGTAAAGC	TGCGGCCGCA	AAAGCCAGAGGAGATCTCTC	*KRK*SCGRKSORRSL
710	0	TTOAAAOOOAAAOTAAAOOO	TOCOCCOCC	AAGCCAGAGGAGATCTCTCC	*KRK*SI RPOSOPRSI
/11	C	TIGAAAGCGAAAGTAAAGCC	TUCUUCUCA	AAGCCAGAGGAGAGATCTCTCG	the second
712	A	TGAAAGCGAAAGTAAAGCCA	TGCGGCCGCA	AGCCAGAGGAGATCTCTCGA	KHK SHAAASQHHSL
713	G	GAAAGCGAAAGTAAAGCCAG	TGCGGCCGCA	GCCAGAGGAGATCTCTCGAC	KRK*SQCGRSQRRSLD
714	Δ.	AAAGCGAAAGTAAAGCCAGA	TGCGGCCGCA	CCAGAGGAGATCTCTCGACG	KRK*SQMRPHORRSLD
745		AACCGAAACTAAACCCACAC	TGCCCCCCCA	CAGAGGAGATCTCTCCACCC	KRK*SOSAAAOPPSI D
/15	G	AAGCGAAAGTAAAGCCAGAG	TGCGGCCGCA	CAGAGGAGATCTCTCGACGC	RAK SQSAAAQAASLD
716	G	AGCGAAAGTAAAGCCAGAGG	TGCGGCCGCA	AGAGGAGATCTCTCGACGCA	HK-SQHCGHKHHSLDA
717	A	GCGAAAGTAAAGCCAGAGGA	TGCGGCCGCA	GAGGAGATCTCTCGACGCAG	RK*SQRMRPQRRSLDA
718	G	CGAAAGTAAAGCCAGAGGAG	TGCGGCCGCA	AGGAGATCTCTCGACGCAGG	RK*SQRSAAARRSLDA
710		CAAACTAAACCCACACCACA	TOCOCCCCA	CCACATCTCTCCACCCACGA	K*SOBBCGBBBSI DAG
/19	A	GAAAGTAAAGCCAGAGGAGA	TOCOGCCOCA	GUAGATOTOTOGACGCAGGA	Kteoppi ppopei pAC
720	T	AAAGTAAAGCCAGAGGAGAT	TGCGGCCGCA	GAGATCTCTCGACGCAGGAC	K-SQHRLHPQHSLDAG
721	C	AAGTAAAGCCAGAGGAGATC	TGCGGCCGCA	AGATCTCTCGACGCAGGACT	K*SQRRSAAARSLDAG
722	T	AGTAAAGCCAGAGGAGATCT	TGCGGCCGCA	GATCTCTCGACGCAGGACTC	*SQRRSCGRRSLDAGL
702	ċ	CTAAACCCACACCACATCTC	TOCOCCOCA	ATCTCTCGACGCAGGACTCG	*SORRSI RPOSI DAGI
123	6	GTAAAGCCAGAGGAGATCTC	TacaaccacA	TOTOTOGACGOCAGGACTOG	tooppol AAACL DACL
724	T	TAAAGCCAGAGGAGATCTCT	TGCGGCCGCA	TCTCTCGACGCAGGACTCGG	SURHSLAAASLDAGL
725	С	AAAGCCAGAGGAGATCTCTC	TGCGGCCGCA	CTCTCGACGCAGGACTCGGC	SQRRSLCGRTLDAGLG
726	G	AAGCCAGAGGAGATCTCTCG	TGCGGCCGCA	TCTCGACGCAGGACTCGGCT	SQRRSLVRPHLDAGLG
727	A	ACCCAGAGGAGATCTCTCGA	TGCGGCCGCA	CTCGACGCAGGACTCGGCTT	SOBBSI DAAAL DAGLG
721	A	AGCCAGAGGAGATCTCTCGA	TOCOCCOCA	TOCACCOCACCACTCCCCTTC	OPPSI DCCPIDACI CI
728	C	GCCAGAGGAGATCTCTCGAC	IGCGGCCGCA	TCGACGCAGGACTCGGCTTG	QRASLDCGRIDAGLGL
729	G	CCAGAGGAGATCTCTCGACG	TGCGGCCGCA	CGACGCAGGACTCGGCTTGC	QRHSLDVRPHDAGLGL
730	C	CAGAGGAGATCTCTCGACGC	TGCGGCCGCA	GACGCAGGACTCGGCTTGCT	QRRSLDAAAADAGLGL
721	٨	AGAGGAGATCTCTCGACGCA	TGCGGCCGCA	ACGCAGGACTCGGCTTGCTG	BBSI DACGBNAGLGLL
700	-	CACCACCATCTCTCCACCCAC	TOCOCCOCA	CCCACCACTCCCCTCC	PPSI DAVPPHACI CI I
132	G	GAGGAGATCTCTCGACGCAG	TGCGGCCGCA	CGCAGGACTCGGCTTGCTGA	PROLOAVAFIAGLOLL
733	G	AGGAGATCTCTCGACGCAGG	TGCGGCCGCA	GCAGGACTCGGCTTGCTGAA	RHSLDAGAAAAGLGLL
734	A	GGAGATCTCTCGACGCAGGA	TGCGGCCGCA	CAGGACTCGGCTTGCTGAAG	RSLDAGCGRTGLGLLK
735	C	GAGATCTCTCGACGCAGGAC	TGCGGCCGCA	AGGACTCGGCTTGCTGAAGC	RSLDAGLRPQGLGLLK
726	Ŧ	ACATOTOCOCOCOCOCOC	TOCOCCOCA	CGACTCGGCTTGCTGAAGCG	BSI DAGI AAAGI GI I K
130	-	AGATCTCTCGACGCAGGACT	Tacadecaca	CACTOGOCTTOCTCAACCC	
737	C	GATCTCTCGACGCAGGACTC	TGUGGUUGCA	GACTEGGETTGETGAAGEGE	CL DAGLUGHALGLLKA
738	G	ATCTCTCGACGCAGGACTCG	TGCGGCCGCA	ACTCGGCTTGCTGAAGCGCG	SLDAGLVRPQLGLLKR
739	G	TCTCTCGACGCAGGACTCGG	TGCGGCCGCA	CTCGGCTTGCTGAAGCGCGC	SLDAGLGAAALGLLKR
740	C	CTCTCGACGCAGGACTCGGC	TGCGGCCGCA	TCGGCTTGCTGAAGCGCGCA	LDAGLGCGRIGLLKRA
744	T	TOTOGACGCAGGACTCCCCT	TGCGGCCCCA	CGGCTTGCTGAAGCGCGCAC	LDAGLGI RPHGLI KRA
741	1	OTOCACOCACOCACOCACOC	TOCOCOCOCA	CONTROTOLLOCOCOCOLOG	I DAGL GEAAACLI KDA
742	1	CICGACGCAGGACICGGCTT	TGCGGCCGCA	GGCTTGCTGAAGCGCGCACG	DAGLGFAAAGLLKAA
743	G	TCGACGCAGGACTCGGCTTG	IGCGGCCGCA	GCTTGCTGAAGCGCGCACGG	DAGLGLCGHSLLKHAH
744	C	CGACGCAGGACTCGGCTTGC	TGCGGCCGCA	CTTGCTGAAGCGCGCACGGC	DAGLGLLRPHLLKRAR
745	T	GACGCAGGACTCGGCTTGCT	TGCGGCCGCA	TTGCTGAAGCGCGCACGGCA	DAGLGLLAAALLKRAR
746	G	ACGCAGGACTCGGCTTGCTG	TGCGGCCGCA	TGCTGAAGCGCGCACGGCAA	AGLGLLCGRMI KRARO
740	4	CCCACCACTCCCCTTCCTCA	TOCOCCOCA	GCTGAAGCGCGCAAG	AGI GI I MRPOL KRAPO
141	A	CGCAGGACTCGGCTTGCTGA	TOCOUCCOCA	GUTGAAGUGUGUGUAAG	AGLOLLMARALKELOG
748	A	GCAGGACTCGGCTTGCTGAA	IGCGGCCGCA	CIGAAGCGCGCACGGCAAGA	AGLGLLNAAALKHAHQ
749	G	CAGGACTCGGCTTGCTGAAG	TGCGGCCGCA	TGAAGCGCGCACGGCAAGAG	GLGLLKCGRMKRARQE
750	C	AGGACTCGGCTTGCTGAAGC	TGCGGCCGCA	GAAGCGCGCACGGCAAGAGG	GLGLLKLRPOKRAROE
754	C	GGACTCGGCTTGCTGAAGCC	TGCGGCCCCCA	AAGCGCGCACGGCAAGAGGC	GLGLLKBAAAKBABOE
/51	G	CANTOCONTROCTOLACCON	TOCOCOCOCO	A0000000000000000000000000000000000000	LCI KRCCRKRAPOEA
752	C	GACTEGGETTGETGAAGEGE	IGUGGCCGCA	AGCGCGCACGGCAAGAGGCG	LOLLKOURKHANGEA
753	G	ACTCGGCTTGCTGAAGCGCG	TGCGGCCGCA	GCGCGCACGGCAAGAGGCGA	LGLLKRVRPQRARQEA
754	C	CTCGGCTTGCTGAAGCGCGC	TGCGGCCGCA	CGCGCACGGCAAGAGGCGAG	LGLLKRAAAARARQEA
755	Δ	TCGGCTTGCTGAAGCGCGCA	TGCGGCCGCA	GCGCACGGCAAGAGGCGAGG	GLLKRACGRSAROEAR
750	6	COOCTTOCTCAACCCCCCCAC	TGCGCCCCCA	CGCACGGCAAGAGGCGAGGG	GLI KRAL RPHAROEAR
150	0	COOLIGAAGCOCOCAC	TOOOCOCCA	0040000440400040000	CLLKDADAAAADOCAD
757	G	GGCTTGCTGAAGCGCGCACG	IGCGGCCGCA	GCACGGCAAGAGGCGAGGGG	GLLKHAHAAAAHQEAH
758	G	GCTTGCTGAAGCGCGCACGG	TGCGGCCGCA	CACGGCAAGAGGCGAGGGGC	LLKRARCGRTRQEARG
759	C	CTTGCTGAAGCGCGCACGGC	TGCGGCCGCA	ACGGCAAGAGGCGAGGGGGCG	LLKRARLRPQRQEARG
700		TTGCTGAAGCGCGCGCACGCCA	TGCGGCCGCA	CGGCAAGAGGCGAGGGGGGGGGGG	LLKRARHAAAROFARG
700	A	TOOTOMAGOGOGOGOGOGOGO	TOCOCOCOCO	CCCAACACCCCACCCCCCCCCCCCCCCCCCCCCCCCCCC	LKRAPOCOPROFADOC
761	A	IGUIGAAGUGUGUAUGGCAA	TGCGGCCGCA	GGCAAGAGGCGAGGGGGGGGGGG	LKRANGCGRAGEARGG
762	G	GCTGAAGCGCGCACGGCAAG	IGCGGCCGCA	GCAAGAGGCGAGGGGGGGGGGGG	LKHAHQVHPQQEARGG
763	A	CTGAAGCGCGCACGGCAAGA	TGCGGCCGCA	CAAGAGGCGAGGGGGGGGGGGA	LKRARQDAAAQEARGG
764	G	TGAAGCGCGCACGGCAAGAG	TGCGGCCGCA	AAGAGGCGAGGGGGGGGGGGGG	KRARQECGRKEARGGD
704	C	GAAGCGCGCGCGCGCAACACC	TGCGGCCGCA	AGAGGCGAGGGGGGGGGGGGGGGG	KRAROEVRPOEARGOD
/05	G	GAAGCGCGCACGGCAAGAGG	TOCOGCUGUA	AGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	KDADOGAALAFADOOD
766	C	AAGCGCGCACGGCAAGAGGC	IGCGGCCGCA	GAGGCGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	RANGEAAAAEAHGGD
767	G	AGCGCGCACGGCAAGAGGCG	TGCGGCCGCA	AGGCGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	RARQEACGRKARGGDW
768	A	GCGCGCACGGCAAGAGGCGA	TGCGGCCGCA	GGCGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	RARQEAMRPQARGGDW

7:00

N.d. Y I

1.7.5

THE JAN BRA ET

5

2000 2000 2000

1

277.

5-1-1

769	G	CGCGCACGGCAAGAGGCGAG	TGCGGCCGCA	GCGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	RARQEASAAAARGGDW
770	G	GCGCACGGCAAGAGGCGAGG	TGCGGCCGCA	CGAGGGGGGGGGGGGACTGGTGA	ARQEARCGRTRGGDW*
771	G	CGCACGGCAAGAGGCGAGGG	TGCGGCCGCA	GAGGGGCGGCGACTGGTGAG	ARQEARVRPQRGGDW*
772	G	GCACGGCAAGAGGCGAGGGG	TGCGGCCGCA	AGGGGCGGCGACTGGTGAGT	ARQEARGAAARGGDW*
773	<u> </u>	CACGGCAAGAGGCGAGGGGC	TGCGGCCGCA	GGGGCGGCGACTGGTGAGTA	RQEARGCGRRGGDWV
774	G	ACGGCAAGAGGCGAGGGGGCG	TGCGGCCGCA	GGGCGGCGACIGGIGAGIAC	ROEARGVRPQGGDW'V
775	G	CGGCAAGAGGCGAGGGGGCGG	TGCGGCCGCA	GGCGGCGACTGGTGAGTACG	RUEARGGAAAGGDW'V
776	C	GGCAAGAGGCGAGGGGGGGGG	TGCGGCCGCA	GCGGCGACIGGIGAGIACGC	QEARGGCGRSGDW VR
<u> </u>	G	GCAAGAGGCGAGGGGGGGGGGG	TGCGGCCGCA	CGGCGACIGGIGAGIACGCC	QEARGGVRPHGDW VR
1/8	A		TGCGGCCGCA	GGCGACTGGTGAGTACGCCA	EARCOCCOSOW*VPO
790	-¥	AGAGGCGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TGCGGCCGCA	CGACTGGTGAGTACGCCAAA	EARGOD RPHDW*VRO
791			TGCGGCCGCA	GACTGGTGAGTACGCCAAAA	EARGGDCAAADW*VRQ
782	Ğ	AGGCGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TGCGGCCGCA	ACTGGTGAGTACGCCAAAAA	ARGGDWCGBNW*VBOK
783	T	GCGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TGCGGCCGCA	CTGGTGAGTACGCCAAAAAT	ARGGDWLRPHW*VRQK
784	à	GCGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TGCGGCCGCA	TGGTGAGTACGCCAAAAATT	ARGGDWCAAAW*VRQK
785	Ă	CGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TGCGGCCGCA	GGTGAGTACGCCAAAAATTT	RGGDW*CGRR*VRQKF
786	G	GAGGGGCGGCGACTGGTGAG	TGCGGCCGCA	GTGAGTACGCCAAAAATTTT	RGGDW*VRPQ*VRQKF
787	T	AGGGGCGGCGACTGGTGAGT	TGCGGCCGCA	TGAGTACGCCAAAAATTTTG	RGGDW*VAAA*VRQKF
788	A	GGGGCGGCGACTGGTGAGTA	TGCGGCCGCA	GAGTACGCCAAAAATTTTGA	GGDW*VCGRRVRQKF*
789	С	GGGCGGCGACTGGTGAGTAC	TGCGGCCGCA	AGTACGCCAAAAATTTTGAC	GGDW*VLRPQVRQKF*
790	G	GGCGGCGACTGGTGAGTACG	TGCGGCCGCA	GTACGCCAAAAATTTTGACT	GGDW*VRAAAVRQKF*
791	C	GCGGCGACTGGTGAGTACGC	TGCGGCCGCA	TACGCCAAAAATTTTGACTA	GDW*VRCGRIRQKF*L
792	Ç	CGGCGACTGGTGAGTACGCC	TGCGGCCGCA	ACGCCAAAAATTTTGACTAG	GDW*VRLRPQRQKF*L
793		GGCGACTGGTGAGTACGCCA	IGCGGCCGCA	CGCCAAAAAIITTGACTAGC	GDW-VHHAAAHQKF'L
794	<u>A</u>	GCGACTGGTGAGTACGCCAA	TOCOGOCOCCA	GULAAAAATTTTOACTAGUG	DWIVROMPRHOKEN
795	<u> </u>		TGCGGCCGCA	CAAAAATTTCACTACCCCA	
707	<u>-</u>		TGCGGCCGCA	AAAAATTTTGACTAGCGGAG	WIVROKCORKKEI AE
700	- 		TGCGGCCGCA	AAAATTTTGACTAGCGGAGG	W*VBOKI RPOKE*I AF
700	-÷-	TGGTGAGTACGCCAAAAATT	TGCGGCCGCA	AAATTTTGACTAGCGGAGGC	W'VROKFAAAKF'I AF
800	÷	GGTGAGTACGCCAAAAATTT	TGCGGCCGCA	AATTTTGACTAGCGGAGGCT	*VRQKFCGRKF*LAFA
801	-÷-	GTGAGTACGCCAAAAATTTT	TGCGGCCGCA	ATTTTGACTAGCGGAGGCTA	*VRQKFLRPQF*LAEA
802	Ġ	TGAGTACGCCAAAAATTTTG	TGCGGCCGCA	TTTTGACTAGCGGAGGCTAG	*VRQKFCAAAF*LAEA
803	Ā	GAGTACGCCAAAAATTTTGA	TGCGGCCGCA	TTTGACTAGCGGAGGCTAGA	VRQKF*CGRI*LAEAR
804	C	AGTACGCCAAAAATTTTGAC	TGCGGCCGCA	TTGACTAGCGGAGGCTAGAA	VRQKF*LRPH*LAEAR
805	T	GTACGCCAAAAATTTTGACT	TGCGGCCGCA	TGACTAGCGGAGGCTAGAAG	VRQKF*LAAA*LAEAR
806	A	TACGCCAAAAATTTTGACTA	TGCGGCCGCA	GACTAGCGGAGGCTAGAAGG	RQKF*LCGRRLAEARR
807	G	ACGCCAAAAATTTTGACTAG	TGCGGCCGCA	ACTAGCGGAGGCTAGAAGGA	RQKF*LVRPQLAEARR
808	С	CGCCAAAAATTTTGACTAGC	TGCGGCCGCA	CTAGCGGAGGCTAGAAGGAG	RQKF*LAAAALAEARR
809	G	GCCAAAAATTTTGACTAGCG	TGCGGCCGCA	TAGCGGAGGCTAGAAGGAGA	QKF*LACGRIAEARRR
810	G	CCAAAAATTTTGACTAGCGG	TGCGGCCGCA	AGCGGAGGCTAGAAGGAGAG	QKF*LAVRPQAEARRR
811	A	CAAAAATTTTGACTAGCGGA	TGCGGCCGCA	GCGGAGGCTAGAAGGAGAGA	QKF LADAAAAEARRR
812	G	AAAAATTTTGACTAGCGGAG	TGCGGCCGCA	CGGAGGCTAGAAGGAGAGAG	KF"LAECGRTEARRRE
813	G	AAAATTTTGACTAGCGGAGG	TGCGGCCGCA	GGAGGCTAGAAGGAGAGAGAGA	
814	<u> </u>	AAATTTTGACTAGCGGAGGC	TGCGGCCGCA		
815		AATTTCACTAGCGGAGGCTA	TGCGGCCGCA		
010			TGCGGCCGCA	CCTAGAAGGAGAGAGAGAGGG	E*LAFASAAAABBBEM
01/	-	TTTGACTAGCGGAGGCTAGA	AJAJJAAJ	CTAGAAGGAGAGAGAGAGGGGT	1 AFARCGRTRRRFMG
210		TTGACTAGCGGAGGCTAGAA	TGCGGCCGCA	TAGAAGGAGAGAGAGAGGGTG	*LAFARMRPHRRBFMG
820	6	TGACTAGCGGAGGCTAGAAG	TGCGGCCGCA	AGAAGGAGAGAGAGATGGGTGC	*LAEARSAAARREMG
821	Ğ	GACTAGCGGAGGCTAGAAGG	TGCGGCCGCA	GAAGGAGAGAGAGATGGGTGCG	LAEARRCGRRRREMGA
822	Ă	ACTAGCGGAGGCTAGAAGGA	TGCGGCCGCA	AAGGAGAGAGAGATGGGTGCGA	LAEARRMRPQRREMGA
823	G	CTAGCGGAGGCTAGAAGGAG	TGCGGCCGCA	AGGAGAGAGAGATGGGTGCGAG	LAEARRSAAARREMGA
824	A	TAGCGGAGGCTAGAAGGAGA	TGCGGCCGCA	GGAGAGAGAGATGGGTGCGAGA	AEARRRCGRRREMGAR
825	G	AGCGGAGGCTAGAAGGAGAG	TGCGGCCGCA	GAGAGAGATGGGTGCGAGAG	AEARRRVRPQREMGAR
826	A	GCGGAGGCTAGAAGGAGAGA	TGCGGCCGCA	AGAGAGATGGGTGCGAGAGC	AEARRRDAAAREMGAR
827	G	CGGAGGCTAGAAGGAGAGAG	TGCGGCCGCA	GAGAGATGGGTGCGAGAGCG	EARRECGRREMGARA
828	A	GGAGGCTAGAAGGAGAGAGA	TGCGGCCGCA	AGAGATGGGTGCGAGAGCGT	LARREMRPOEMGARA
829	Ţ	GAGGCTAGAAGGAGAGAGAGAT		GAGATGGGTGCGAGAGCGTC	
830	G		TOCOGCCGCA	AGATGGGTGCGAGAGCGTCG	
831	G		TOCOCOCOCA	ATCCCTCCCACACCCTCCCT	
832	Gi		TOCOCCOCA		REPENCE CONCADASY
824	-	TAGAAGGAGAGAGAGAGAGAGAG	AJUJJUUUUU	GGGTGCGAGAGCGTCGGTAT	BRREMGVRPOGARASV
835	- C		AJDJJJJJJ	GGTGCGAGAGCGTCGGTATT	RREMGAAAAGARASV
836	<u>š</u>	GAAGGAGAGAGAGATGGGTGCG	TGCGGCCGCA	GTGCGAGAGCGTCGGTATTA	RREMGACGRSARASVL
837	Ă	AAGGAGAGAGAGATGGGTGCGA	TGCGGCCGCA	TGCGAGAGCGTCGGTATTAA	RREMGAMRPHARASVL
838	Ĝ	AGGAGAGAGAGATGGGTGCGAG	TGCGGCCGCA	GCGAGAGCGTCGGTATTAAG	RREMGASAAAARASVL
839	Ā	GGAGAGAGAGATGGGTGCGAGA	TGCGGCCGCA	CGAGAGCGTCGGTATTAAGC	REMGARCGRTRASVLS
840	G	GAGAGAGATGGGTGCGAGAG	TGCGGCCGCA	GAGAGCGTCGGTATTAAGCG	REMGARVRPQRASVLS
841	С	AGAGAGATGGGTGCGAGAGC	TGCGGCCGCA	AGAGCGTCGGTATTAAGCGG	REMGARAAAARASVLS
842	G	GAGAGATGGGTGCGAGAGCG	TGCGGCCGCA	GAGCGTCGGTATTAAGCGGG	EMGARACGRRASVLSG
843	T	AGAGATGGGTGCGAGAGCGT	TGCGGCCGCA	AGCGTCGGTATTAAGCGGGG	EMGARALRPQASVLSG
844	C	GAGATGGGTGCGAGAGCGTC	TGCGGCCGCA	GCGTCGGTATTAAGCGGGGG	EMGARASAAAASVLSG
845	G	AGATGGGTGCGAGAGCGTCG	TGCGGCCGCA	CGTCGGTATTAAGCGGGGGGA	MGARASCGRTSVLSGG
846	G	GATGGGTGCGAGAGCGTCGG	TGCGGCCGCA	GICGGTATTAAGCGGGGGGAG	MGARASVRPOSVLSGG
847	Ţ	ATGGGTGCGAGAGCGTCGGT	TGCGGCCGCA		MGAHASVAAASVLSGG
848	<u> </u>		TOCOGOCOCA		GARASVUGHTVLSGGE
849	Ē	GGGTGCGAGAGCGTCGGTAT	TOCOGOCOCA	GGTATTAAGCGGGGGGGGAGAAT	GARASVLAPUVLSGGE
850	-		TOCOCCCCA	TATTAAGCGGGGGGAGAATTA	ARASVI CORI SCOEL
851	A		TGCGGCCGCA	ATTAAGCGGGGGAGAATTAG	ARASVI MRPOI SOCEI
952	- 2	GCGAGAGCGTCGGTATTAAG	TGCGGCCGCA	TTAAGCGGGGGGGGAGAATTAGA	ARASVI SAAAI SGGEL
854	č	CGAGAGCGTCGGTATTAAGC	TGCGGCCGCA	TAAGCGGGGGGGGAGAATTAGAT	RASVLSCGRISGGELD

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
855	G	GAGAGCGTCGGTATTAAGCG	TGCGGCCGCA	AAGCGGGGGGGAGAATTAGATA	RASVLSVRPQSGGELD
050	Ğ	ACACCCTCCCTATTAACCCC	TOCOCCOCA	AGCGGGGGGGGAGAATTAGATAA	BASVI SGAAASGGELD
000	G	AGAGCGTCGGTATTAAGCGG	TacaaccacA	AGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	ASVI SCCOPSCCEI DK
857	Gi	GAGCGTCGGTATTAAGCGGG	IGCGGCCGCA	GCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	ASVESGCGHSGGEEDK
858	G	AGCGTCGGTATTAAGCGGGG	TGCGGCCGCA	CGGGGGGAGAATTAGATAAAT	ASVLSGVRPHGGELDK
859	G	GCGTCGGTATTAAGCGGGGG	TGCGGCCGCA	GGGGGGAGAATTAGATAAATG	ASVLSGGAAAGGELDK
000	A	COTCOCTATTAACCCCCCCCA	TGCGGCCGCA	GGGGAGAATTAGATAAATGG	SVI SGGCGBBGELDKW
000	A	COTCOGIATIAAGCGGGGGGA	TOCOCCOCA	COCACAATTACATAAATCCC	SVI SCOVPROCEI DKW
861	G	GICGGIAIIAAGCGGGGGGGAG	IGCGGCCGCA	GGGAGAATTAGATAAATGGG	SVLSGGVAFGGELDKW
862	A	TCGGTATTAAGCGGGGGGAGA	TGCGGCCGCA	GGAGAATTAGATAAATGGGA	SVLSGGDAAAGELDKW
863	Δ	CGGTATTAAGCGGGGGGAGAA	TGCGGCCGCA	GAGAATTAGATAAATGGGAA	VLSGGECGRRELDKWE
000		COTATTAACCCCCCACAAT	TOCOCCOCA	ACAATTACATAAATGGGAAA	VI SCCEL PROFI DKWE
864	1	GGTATTAAGCGGGGGGGAGAAT	TGCGGCCGCA	AGAATTAGATAAATGGGAAAA	VLOODEEAAAELDKWE
865	T	GTATTAAGCGGGGGGAGAATT	IGCGGCCGCA	GAATTAGATAAATGGGAAAA	VLSGGEFAAAELDKWE
866	A	TATTAAGCGGGGGGAGAATTA	TGCGGCCGCA	AATTAGATAAATGGGAAAAA	LSGGELCGRKLDKWEK
967	G	ATTAAGCGGGGGGGGAGAATTAG	TGCGGCCGCA	ΑΤΤΑGΑΤΑΑΑΤGGGAAAAAA	LSGGELVBPQLDKWEK
007	4	TTAACCCCCCCCCCACAATTACA	TOCOCCOCA	TTACATAAATGGGAAAAAAT	I SCCEL DAAAL DKWEK
868	A	TTAAGCGGGGGGGGAGAATTAGA	TGCGGCCGCA	TIAGATAAATGGGAAAAAAT	COOFL DOODIDKWEKI
869	Т	TAAGCGGGGGGGAGAATTAGAT	TGCGGCCGCA	TAGATAAATGGGAAAAAATT	SGGELDCGRIDKWENI
870	A	AAGCGGGGGGGAGAATTAGATA	TGCGGCCGCA	AGATAAATGGGAAAAAATTC	SGGELDMRPQDKWEKI
871	Δ	AGCGGGGGGGGAGAATTAGATAA	TGCGGCCGCA	GATAAATGGGAAAAAATTCG	SGGELDNAAADKWEKI
070	-	CCCCCCCACAATTACATAAA	TOCOCCOCA	ATAAATCGGAAAAATTCGG	GGELDKCGBNKWEKIB
8/2	A	GCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TacaaccacA	TIAAATGGGAAAAAATTCGG	
873	Т	CGGGGGGAGAATTAGATAAAT	TGCGGCCGCA	TAAATGGGAAAAAATTCGGT	GGELDKLRPHKWEKIR
874	G	GGGGGGAGAATTAGATAAATG	TGCGGCCGCA	AAATGGGAAAAAATTCGGTT	GGELDKCAAAKWEKIR
875	G	GGGGAGAATTAGATAAATGG	TGCGGCCGCA	AATGGGAAAAAATTCGGTTA	GELDKWCGRKWEKIRL
075	ä	COCACAATTACATAAATCCC	TOCOCCOCA	ATCCCAAAAATTCCCTTAA	GELDKWVBPOWEKIBI
876	G	GGGAGAATTAGATAAATGGG	TGCGGCCGCA	AIGGGAAAAAATICGGTTAA	
877	A	GGAGAATTAGATAAATGGGA	TGCGGCCGCA	TGGGAAAAAATTCGGTTAAG	GELDKWDAAAWEKIHL
878	A	GAGAATTAGATAAATGGGAA	TGCGGCCGCA	GGGAAAAAATTCGGTTAAGG	ELDKWECGRREKIRLR
870	Δ	AGAATTAGATAAATGGGAAA	TGCGGCCGCA	GGAAAAAATTCGGTTAAGGC	ELDKWEMRPQEKIRLR
000	A	GAATTAGATAAATCCCAAAAA	TGCGGCCCCCA	GAAAAAATTCGGTTAAGGCC	ELDKWENAAAEKIRI R
880	A	GAATTAGATAAATGGGAAAAA	TOCOUCCUCA		
881	A	AATTAGATAAATGGGAAAAA	IGCGGCCGCA	AAAAAATTCGGTTAAGGCCA	LUKWERCGHKKIRLHP
882	A	ATTAGATAAATGGGAAAAAA	TGCGGCCGCA	AAAAATTCGGTTAAGGCCAG	LDKWEKMRPQKIRLRP
883	T	TTAGATAAATGGGAAAAAAT	TGCGGCCGCA	AAAATTCGGTTAAGGCCAGG	LDKWEKIAAAKIRLBP
003	-	TACATAAATOOCAAAAAAAAT	TOCOCOCOC	AAATTCGGTTAACCCCACCC	DKWEKICGBKIBI BBG
884	L	TAGATAAATGGGAAAAAATT	TOCOGCCGCA	AAATTCGGTTAAGGCCAGGG	
885	C	AGATAAATGGGAAAAAATTC	TGCGGCCGCA	AATTCGGTTAAGGCCAGGGG	DKWEKILHPQIRLHPG
886	G	GATAAATGGGAAAAAATTCG	TGCGGCCGCA	ATTCGGTTAAGGCCAGGGGG	DKWEKIRAAAIRLRPG
997	G	ATAAATGGGAAAAATTCGG	TGCGGCCGCA	TTCGGTTAAGGCCAGGGGGA	KWEKIBCGBIBL BPGG
007	G	TAAATGGGAAAAAATTCGG	TOCOCCOCA	TCCCTTAACCCCACCCCCAA	KWEKIDI DDUDI DDCC
888	1	TAAATGGGAAAAAATTCGGT	IGCGGCCGCA	TCGGTTAAGGCCAGGGGGGAA	KWEKINLAFANLAFGG
889	T	AAATGGGAAAAAATTCGGTT	TGCGGCCGCA	CGGTTAAGGCCAGGGGGAAA	KWEKIRFAAARLRPGG
890	A	AATGGGAAAAAATTCGGTTA	TGCGGCCGCA	GGTTAAGGCCAGGGGGAAAG	WEKIRLCGRRLRPGGK
901		ATCCCAAAAAATTCCCTTAA	TOCOCCOCA	GTTAAGGCCAGGGGGAAAGA	WEKIRI MRPOL RPGGK
091	A .	TOOOAAAAAAATTOOOTTAAA	TOCOCCOCA	TTAACCCCACCCCAAACAA	WEKIDI SAAAI DOCCK
892	G	TGGGAAAAAATTCGGTTAAG	IGCGGCCGCA	TTAAGGCCAGGGGGAAAGAA	WENINLSAAALHPUUK
893	G	GGGAAAAAATTCGGTTAAGG	TGCGGCCGCA	TAAGGCCAGGGGGAAAGAAA	EKIRLRCGRIRPGGKK
894	C	GGAAAAATTCGGTTAAGGC	TGCGGCCGCA	AAGGCCAGGGGGAAAGAAAC	EKIRLRLRPQRPGGKK
007	0	CAAAAATTCCCTTAACCCC	TOCOCCOCA	ACCCCACCCCCAAACAAACA	EKIDI BDAAABDGGKK
895	C	GAAAAATTCGGTTAAGGCC	TGCGGCCGCA	AGGCCAGGGGGGAAAGAAGA	KIDI DDCCDDDCCKKO
896	A	AAAAAATTCGGTTAAGGCCA	TGCGGCCGCA	GGCCAGGGGGGAAAGAAACAA	KIHLHPCGHHPGGKKQ
897	G	AAAAATTCGGTTAAGGCCAG	TGCGGCCGCA	GCCAGGGGGGAAAGAAACAAT	KIRLRPVRPQPGGKKQ
898	G	AAAATTCGGTTAAGGCCAGG	TGCGGCCGCA	CCAGGGGGGAAAGAAACAATA	KIRLRPGAAAPGGKKQ
000	0	AAATTCOCTTAACCCCACCC	TGCGGCCGCA	CACCCCCAAACAACAATAT	IBI BPGCGBTGGKKOY
899	G	AAATTCGGTTAAGGCCAGGG	TacaaccacA		IDI DDCVDDOCCKKOV
900	G	AATTCGGTTAAGGCCAGGGG	IGCGGCCGCA	AGGGGGAAAGAAACAATATA	IRLAPGVAPQGGKKQT
901	G	ATTCGGTTAAGGCCAGGGGG	TGCGGCCGCA	GGGGGAAAGAAACAATATAA	IRLRPGGAAAGGKKQY
902	Δ	TTCGGTTAAGGCCAGGGGGA	TGCGGCCGCA	GGGGAAAGAAACAATATAAA	RLRPGGCGRRGKKQYK
002	-	TCCCTTAACCCCACCCCAA	TGCGGCCGCA	GGGAAAGAAACAATATAAAC	BI BPGGMBPOGKKOYK
903	A	TCGGTTAAGGCCAGGGGGAA	TacaaccacA	COMMANAAAACAATATAAAAC	DI DDCCNIA A ACKKOVK
904	A	CGGTTAAGGCCAGGGGGAAA	IGCGGCCGCA	GGAAAGAAACAATATAAACT	RERPGGNAAAGKKUTK
905	G	GGTTAAGGCCAGGGGGAAAG	TGCGGCCGCA	GAAAGAAACAATATAAACTA	LRPGGKCGRRKKQYKL
906	Δ	GTTAAGGCCAGGGGGAAAGA	TGCGGCCGCA	AAAGAAACAATATAAACTAA	LRPGGKMRPQKKQYKL
007	A	TTAACCCCACCCCCAAACAA	TGCGGCCGCA	ΑΛΟΑΛΑΛΟΑΛΤΑΤΑΛΑΛΟΤΑΛΑ	I BPGGKNAAAKKOYKI
907	A	TIAAGGCCAGGGGGGGAAAGAA	TOCOCOCA	ACAAACAATATAAACTAAAA	PROCKKCOPKKOVKLK
908	A	TAAGGCCAGGGGGAAAGAAA	IGCGGCCGCA	AGAAACAATATAAACTAAAA	AFGGKKCGAKKGTKLK
909	C	AAGGCCAGGGGGAAAGAAAC	TGCGGCCGCA	GAAACAATATAAACTAAAAC	HPGGKKLHPQKQYKLK
910	A	AGGCCAGGGGGAAAGAAACA	TGCGGCCGCA	AAACAATATAAACTAAAACA	RPGGKKHAAAKQYKLK
011	A	GGCCAGGGGGAAAGAAACAA	TGCGGCCGCA	AACAATATAAAACTAAAAACAT	PGGKKQCGBKQYKLKH
010	-		TOCOCOCOCA	ACAATATAAAACTAAAAACATA	PCCKKOL BPOOVKLKH
912		GCCAGGGGGGAAAGAAACAAT	TOCOGCUGCA		DOOKKOVALAOVKLKU
913	A	CCAGGGGGGAAAGAAACAATA	IGCGGCCGCA	CAATATAAACTAAAACATAT	PGGKKQTAAAQYKLKH
914	T	CAGGGGGGAAAGAAACAATAT	TGCGGCCGCA	AATATAAAACTAAAAACATATA	GGKKQYCGRKYKLKHI
915	A	AGGGGGAAAGAAACAATATA	TGCGGCCGCA	ATATAAACTAAAACATATAG	GGKKQYMRPQYKLKHI
016	A	GGGGGGAAAGAAACAATATAA	TGCGGCCGCA	TATAAACTAAAACATATAGT	GGKKQYNAAAYKLKHI
010	-	000000000000000000000000000000000000000	TGCCCCCCCCC	ATAAACTAAAACATATACTA	GKKOYKCGBNKI KHIV
917	A	GGGGAAAGAAACAATATAAA	TOCOULUCA	ATAAACTAAAACATATAGTA	
918	C	GGGAAAGAAACAATATAAAC	IGCGGCCGCA	TAAACTAAAACATATAGTAT	GKKGYKLHPHKLKHIV
919	T	GGAAAGAAACAATATAAACT	TGCGGCCGCA	AAACTAAAACATATAGTATG	GKKQYKLAAAKLKHIV
920	Δ	GAAAGAAACAATATAAAACTA	TGCGGCCGCA	AACTAAAACATATAGTATGG	KKQYKLCGRKLKHIVW
001	A	AAAGAAACAATATAAAACTAA	TGCGGCCGCA	ACTAAAACATATAGTATGGG	KKOYKI MBPOL KHIVW
921	A	AAAGAAACAATATAAACTAA	TODOCCOCA	OTAAAAOATATAOTATOOOO	KKOVKI NA AAI KURAW
922	A	AAGAAACAATATAAACTAAA	IGCGGCCGCA	CTAAAACATATAGTATGGGC	KAUTALNAAALKHIVW
923	A	AGAAACAATATAAACTAAAA	TGCGGCCGCA	TAAAACATATAGTATGGGCA	KQYKLKCGRIKHIVWA
924	C	GAAACAATATAAACTAAAAC	TGCGGCCGCA	AAAACATATAGTATGGGCAA	KQYKLKLRPQKHIVWA
005	A	ΑΛΑΓΑΛΤΑΤΑΛΑΓΤΑΛΑΑΓΑ	TGCGGCCGCA	AAACATATAGTATGGGCAAG	KOYKLKHAAAKHIVWA
925	A	AAACAATATATATATATATATATA	TOCOCOCOCA	AACATATACTATCCCCCAACC	OVKI KHCCPKHIMMAC
926	T	AACAATATAAACTAAAACAT	IGUGGCCGCA	AACATATAGTATGGGCAAGC	GINLKINGGANAIVWAS
927	A	ACAATATAAAACTAAAAACATA	TGCGGCCGCA	ACATATAGTATGGGCAAGCA	QYKLKHMRPQHIVWAS
928	T	CAATATAAAACTAAAAACATAT	TGCGGCCGCA	CATATAGTATGGGCAAGCAG	QYKLKHIAAAHIVWAS
020	A	ΑΑΤΑΤΑΑΑΑCΤΑΑΑΑCΑΤΑΤΑ	TGCGGCCGCA	ATATAGTATGGGCAAGCAGG	YKLKHICGBNIVWASB
329	-		TOCOCOCOCA	TATACTATCCCCAACCACCO	VKI KHIVPPHIVWACD
930	G	ATATAAACTAAAACATATAG	TUCUUCUCA	TATAGTATGGGCAAGCAGGG	MALKING A CONTRACT
931	T	TATAAACTAAAACATATAGT	TGCGGCCGCA	ATAGTATGGGCAAGCAGGGA	TKLKHIVAAAIVWASR
932	A	ATAAACTAAAACATATAGTA	TGCGGCCGCA	TAGTATGGGCAAGCAGGGAG	KLKHIVCGRIVWASRE
022	T	TAAACTAAAACATATAGTAT	TGCGGCCGCA	AGTATGGGCAAGCAGGGAGC	KLKHIVLRPOVWASRE
004	i c	AAACTAAAACATATACTATO	TOCOCCCCA	GTATGGGCAAGCAGGAGGT	KIKHIVCAAAVWASRE
934	G	AAACTAAAACATATAGTATG	TOCOUCCUCA	TITODOGLAGOAGGAGGT	I KUNANOODIWAODE
935	G	AACTAAAACATATAGTATGG	IGCGGCCGCA	TATGGGCAAGCAGGGAGCTA	LKHIVWCGHIWASHEL
936	G	ACTAAAACATATAGTATGGG	TGCGGCCGCA	ATGGGCAAGCAGGGAGCTAG	LKHIVWVRPQWASREL
037	C	CTAAAACATATAGTATGGGC	TGCGGCCGCA	TGGGCAAGCAGGGAGCTAGA	LKHIVWAAAAWASREL
000	-	TAAAACATATACTATCCCCA	TGCGGCCCCA	GGGCAAGCAGGAGCTAGAA	KHIVWACGPRASPELE
938	A	TAAAACATATAGTATGGGCA	TOCOGCUGUA	GGGCAAGCAGGAGCTAGAA	KUNWANDDOAODELE
939	A	AAAACATATAGTATGGGCAA	TGCGGCCGCA	GGCAAGCAGGGAGCTAGAAC	KHIVWAMHPQASRELE
040	G	AAACATATAGTATGGGCAAG	TGCGGCCGCA	GCAAGCAGGGAGCTAGAACG	KHIVWASAAAASRELE

7:0

1.1.1.

VU:

The stan

BRA

500 2000 2000

СЦ 1975.

\$ 17

941	C	AACATATAGTATGGGCAAGC	TGCGGCCGCA	CAAGCAGGGAGCTAGAACGA	HIVWASCGRTSRELER
942	Δ	ACATATAGTATGGGCAAGCA	TGCGGCCGCA	AAGCAGGGAGCTAGAACGAT	HIVWASMRPQSRELER
943	G	CATATAGTATGGGCAAGCAG	TGCGGCCGCA	AGCAGGGAGCTAGAACGATT	HIVWASSAAASRELER
944	G	ATATAGTATGGGCAAGCAGG	TGCGGCCGCA	GCAGGGAGCTAGAACGATTC	IVWASRCGRSRELERF
945	G	TATAGTATGGGCAAGCAGGG	TGCGGCCGCA	CAGGGAGCTAGAACGATTCG	IVWASRVRPHRELERF
046	A	ATAGTATGGGCAAGCAGGGA	TGCGGCCGCA	AGGGAGCTAGAACGATTCGC	IVWASRDAAABELERF
047	G	TAGTATGGGCAAGCAGGGAG	TGCGGCCGCA	GGGAGCTAGAACGATTCGCA	VWASBECGBBELEBEA
049	G	AGTATGGGCAAGCAGGGAGC	TGCGGCCGCA	GGAGCTAGAACGATTCGCAG	VWASBEL BPOEL EREA
040	Ŧ	CTATCCCCAACCACCACCACC	TGCGGCCGCA	GAGCTAGAACGATTCGCAGT	VWASBELAAAELEBEA
949	-	TATOCOCAACCAGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TOCOCCOCA	AGCTAGAACGATTCGCAGT	WASPELCORKI EREAV
950	A	ATCOCCAAGCAGGGAGCTAC	TOCOCCOCA	CCTACAACCATTCGCACTTA	WASPELVPPOLEPEAV
951	G	ATGGGCAAGCAGGGAGCTAG	TOCOCCOCA	GCTAGAACGATTCGCAGTTA	WASHELVHFULEHFAV
952	A	TGGGCAAGCAGGGAGCTAGA	TGCGGCCGCA	TAGAACGATTCGCAGTTAA	
953	A	GGGCAAGCAGGGAGCTAGAA	TGCGGCCGCA	TAGAACGATTCGCAGTTAAT	ASRELECGRIERFAVN
954	C	GGCAAGCAGGGAGCTAGAAC	TGCGGCCGCA	AGAACGATTCGCAGTTAATC	ASRELELAPQERFAVN
955	G	GCAAGCAGGGAGCTAGAACG	TGCGGCCGCA	GAACGATTCGCAGTTAATCC	ASRELERAAAERFAVN
956	A	CAAGCAGGGAGCTAGAACGA	TGCGGCCGCA	AACGATTCGCAGTTAATCCT	SRELERCGRKRFAVNP
957	Т	AAGCAGGGAGCTAGAACGAT	TGCGGCCGCA	ACGATTCGCAGTTAATCCTG	SRELERLRPQRFAVNP
958	Т	AGCAGGGAGCTAGAACGATT	TGCGGCCGCA	CGATTCGCAGTTAATCCTGG	SRELERFAAARFAVNP
959	С	GCAGGGAGCTAGAACGATTC	TGCGGCCGCA	GATTCGCAGTTAATCCTGGC	RELERFCGRRFAVNPG
960	G	CAGGGAGCTAGAACGATTCG	TGCGGCCGCA	ATTCGCAGTTAATCCTGGCC	RELERFVRPQFAVNPG
961	C	AGGGAGCTAGAACGATTCGC	TGCGGCCGCA	TTCGCAGTTAATCCTGGCCT	RELERFAAAAFAVNPG
962	Α	GGGAGCTAGAACGATTCGCA	TGCGGCCGCA	TCGCAGTTAATCCTGGCCTT	ELERFACGRIAVNPGL
963	G	GGAGCTAGAACGATTCGCAG	TGCGGCCGCA	CGCAGTTAATCCTGGCCTTT	ELERFAVRPHAVNPGL
964	Т	GAGCTAGAACGATTCGCAGT	TGCGGCCGCA	GCAGTTAATCCTGGCCTTTT	ELERFAVAAAAVNPGL
965	Т	AGCTAGAACGATTCGCAGTT	TGCGGCCGCA	CAGTTAATCCTGGCCTTTTA	LERFAVCGRTVNPGLL
966	A	GCTAGAACGATTCGCAGTTA	TGCGGCCGCA	AGTTAATCCTGGCCTTTTAG	LERFAVMRPQVNPGLL
967	A	CTAGAACGATTCGCAGTTAA	TGCGGCCGCA	GTTAATCCTGGCCTTTTAGA	LERFAVNAAAVNPGLL
968	T	TAGAACGATTCGCAGTTAAT	TGCGGCCGCA	TTAATCCTGGCCTTTTAGAG	ERFAVNCGRINPGLLE
969	C	AGAACGATTCGCAGTTAATC	TGCGGCCGCA	TAATCCTGGCCTTTTAGAGA	ERFAVNLRPHNPGLLE
970	C	GAACGATTCGCAGTTAATCC	TGCGGCCGCA	AATCCTGGCCTTTTAGAGAC	ERFAVNPAAANPGLLE
971	T	AACGATTCGCAGTTAATCCT	TGCGGCCGCA	ATCCTGGCCTTTTAGAGACA	RFAVNPCGRNPGLLET
972	G	ACGATTCGCAGTTAATCCTG	TGCGGCCGCA	TCCTGGCCTTTTAGAGACAT	RFAVNPVRPHPGLLET
973	G	CGATTCGCAGTTAATCCTGG	TGCGGCCGCA	CCTGGCCTTTTAGAGACATC	RFAVNPGAAAPGLLET
974	č	GATTCGCAGTTAATCCTGGC	TGCGGCCGCA	CTGGCCTTTTAGAGACATCA	FAVNPGCGRTGLLETS
075	č	ATTCGCAGTTAATCCTGGCC	TGCGGCCGCA	TGGCCTTTTAGAGACATCAG	FAVNPGLBPHGLLETS
076	Ť	TTCGCAGTTAATCCTGGCCT	TGCGGCCGCA	GGCCTTTTAGAGACATCAGA	FAVNPGLAAAGLLETS
077	÷	TCGCAGTTAATCCTGGCCTT	TGCGGCCGCA	GCCTTTTAGAGACATCAGAA	AVNPGLCGRSLLETSE
079	+	CCCAGTTAATCCTGGCCTTT	TGCGGCCGCA	CCTTTTAGAGACATCAGAAG	AVNPGLI RPHLI FTSE
9/0	+	CCACTTAATCCTCCCCCTTT	TGCGGCCGCA	CTTTTAGAGACATCAGAAGG	AVNPGLEAAALLETSE
9/9	-	CAGTTAATCCTGGCCTTTA	TGCGGCCGCA	TTTTAGAGACATCAGAAGGC	VNPGLI CGBIL FTSEG
980	A	CAGITAATCCTGGCCTTTTAC	TOCOCCOCA	TTTACACACATCACAAGGC	VNPGLI VPPHI ETSEG
981	G	AGITAATCCTGGCCTTTTAG	TOCOCCOCA	TTACACACATCACAAGGCTC	VNPGLLDAAALETSEG
982	A	GTTAATCCTGGCCTTTTAGA	TOCOCCOCA	TACACACATCACAAGGCTG	NPGLLECOPIETSEGC
983	G	TAATCCTGGCCTTTTAGAG	TOCOCCOCA	ACACACATCACAAGGCTGTA	NPGLLECGARETSEGC
984	<u>A</u>	TAATCCTGGCCTTTTAGAGA	TGCGGCCGCA	AGAGACATCAGAAGGCTGTA	NPGLLEMAFGETSEGC
985	C	AATCCTGGCCTTTTAGAGAC	TGCGGCCGCA	GAGACATCAGAAGGCTGTAG	DOLLETCODE TO CODE
986	A	ATCCTGGCCTTTTAGAGACA	TGCGGCCGCA	AGACATCAGAAGGCTGTAGA	POLLETU PROTECOP
987	1	TCCTGGCCTTTTAGAGACAT	TGCGGCCGCA	GACATCAGAAGGCTGTAGAC	POLLETCAAATCEOCO
988	C	CCTGGCCTTTTAGAGACATC	TGCGGCCGCA	ACATCAGAAGGCTGTAGACA	PGLLETSAAATSEGCR
989	A	CTGGCCTTTTAGAGACATCA	TGCGGCCGCA	CATCAGAAGGCTGTAGACAA	GLLETSUGRISEGURQ
990	G	TGGCCTTTTAGAGACATCAG	TGCGGCCGCA	ATCAGAAGGCTGTAGACAAA	GLLETSVHPQSEGCHQ
991	A	GGCCTTTTAGAGACATCAGA	TGCGGCCGCA	TCAGAAGGCTGTAGACAAAT	GLLEISDAAASEGCHQ
992	A	GCCTTTTAGAGACATCAGAA	TGCGGCCGCA	CAGAAGGCTGTAGACAAATA	LLETSECGRTEGCRQI
993	G	CCTTTTAGAGACATCAGAAG	TGCGGCCGCA	AGAAGGCTGTAGACAAATAC	LLEISEVRPQEGCRQI
994	G	CTTTTAGAGACATCAGAAGG	TGCGGCCGCA	GAAGGCTGTAGACAAATACT	LLETSEGAAAEGCRQI
995	С	TTTTAGAGACATCAGAAGGC	TGCGGCCGCA	AAGGCTGTAGACAAATACTG	LETSEGCGRKGCRQIL
996	т	TTTAGAGACATCAGAAGGCT	TGCGGCCGCA	AGGCTGTAGACAAATACTGG	LETSEGLRPQGCRQIL
997	G	TTAGAGACATCAGAAGGCTG	TGCGGCCGCA	GGCTGTAGACAAATACTGGG	LETSEGCAAAGCRQIL
998	Т	TAGAGACATCAGAAGGCTGT	TGCGGCCGCA	GCTGTAGACAAATACTGGGA	EISEGCCGRSCRQILG
999	A	AGAGACATCAGAAGGCTGTA	TGCGGCCGCA	CTGTAGACAAATACTGGGAC	EISEGCMRPHCRQILG
1000	G	GAGACATCAGAAGGCTGTAG	TGCGGCCGCA	TGTAGACAAATACTGGGACA	EISEGCSAAACRQILG
1001	A	AGACATCAGAAGGCTGTAGA	TGCGGCCGCA	GTAGACAAATACTGGGACAG	TSEGCRCGRSRQILGQ
1002	C	GACATCAGAAGGCTGTAGAC	TGCGGCCGCA	TAGACAAATACTGGGACAGC	TSEGCRLRPHRQILGQ
1003	Α	ACATCAGAAGGCTGTAGACA	TGCGGCCGCA	AGACAAATACTGGGACAGCT	ISEGCRHAAARQILGQ
1004	A	CATCAGAAGGCTGTAGACAA	TGCGGCCGCA	GACAAATACTGGGACAGCTA	SEGCRQCGRRQILGQL
1005	A	ATCAGAAGGCTGTAGACAAA	TGCGGCCGCA	ACAAATACTGGGACAGCTAC	SEGCRQMRPQQILGQL
1006	Т	TCAGAAGGCTGTAGACAAAT	TGCGGCCGCA	CAAATACTGGGACAGCTACA	SEGCRQIAAAQILGQL
1007	A	CAGAAGGCTGTAGACAAATA	TGCGGCCGCA	AAATACTGGGACAGCTACAA	EGCRQICGRKILGQLQ
1008	C	AGAAGGCTGTAGACAAATAC	TGCGGCCGCA	AATACTGGGACAGCTACAAC	EGCRQILRPQILGQLQ
1009	Т	GAAGGCTGTAGACAAATACT	TGCGGCCGCA	ATACTGGGACAGCTACAACC	EGCRQILAAAILGQLQ
1010	G	AAGGCTGTAGACAAATACTG	TGCGGCCGCA	TACTGGGACAGCTACAACCA	GCRQILCGRILGQLQP
1011	G	AGGCTGTAGACAAATACTGG	TGCGGCCGCA	ACTGGGACAGCTACAACCAT	GCRQILVRPQLGQLQP
1012	G	GGCTGTAGACAAATACTGGG	TGCGGCCGCA	CTGGGACAGCTACAACCATC	GCRQILGAAALGQLQP
1013	A	GCTGTAGACAAATACTGGGA	TGCGGCCGCA	TGGGACAGCTACAACCATCC	CRQILGCGRMGQLQPS
1014	C	CTGTAGACAAATACTGGGAC	TGCGGCCGCA	GGGACAGCTACAACCATCCC	CRQILGLRPQGQLQPS
1015	A	TGTAGACAAATACTGGGACA	TGCGGCCGCA	GGACAGCTACAACCATCCCT	CRQILGHAAAGQLQPS
1016	G	GTAGACAAATACTGGGACAG	TGCGGCCGCA	GACAGCTACAACCATCCCTT	RQILGQCGRRQLQPSL
1017	C	TAGACAAATACTGGGACAGC	TGCGGCCGCA	ACAGCTACAACCATCCCTTC	RQILGQLRPQQLQPSL
1018	T	AGACAAATACTGGGACAGCT	TGCGGCCGCA	CAGCTACAACCATCCCTTCA	RQILGQLAAAQLQPSL
1019	A	GACAAATACTGGGACAGCTA	TGCGGCCGCA	AGCTACAACCATCCCTTCAG	QILGQLCGRKLQPSLQ
1020	C	ACAAATACTGGGACAGCTAC	TGCGGCCGCA	GCTACAACCATCCCTTCAGA	QILGQLLRPQLQPSLQ
1021	A	CAAATACTGGGACAGCTACA	TGCGGCCGCA	CTACAACCATCCCTTCAGAC	QILGQLHAAALQPSLQ
1022	A	AAATACTGGGACAGCTACAA	TGCGGCCGCA	TACAACCATCCCTTCAGACA	ILGQLQCGRIQPSLQT
1023	C	AATACTGGGACAGCTACAAC	TGCGGCCGCA	ACAACCATCCCTTCAGACAG	ILGQLQLRPQQPSLQT
1024	C	ATACTGGGACAGCTACAACC	TGCGGCCGCA	CAACCATCCCTTCAGACAGG	ILGQLQPAAAQPSLQT
1025	A	TACTGGGACAGCTACAACCA	TGCGGCCGCA	AACCATCCCTTCAGACAGGA	LGQLQPCGRKPSLQTG
1026	T	ACTGGGACAGCTACAACCAT	TGCGGCCGCA	ACCATCCCTTCAGACAGGAT	LGQLQPLRPQPSLQTG

1982 C TGGGGACGGTACAGCATCC TGCGGCCGA LATCCCTTCAGACAGGATCAG GGLQPSCGTASTCGTS 1982 C GGGACAGGTACAACCATCCC TGCGGCCGA TCCCTTCAGACAGGATCAGA GGLQPSLAPBELIGTGS 1983 T GGGACAGGTACAGCTACCTTCA TGCGGCCGAC TCCCTTCAGACAGGATCAGAAGA GLQPSLAPBLIGTGS 1983 A GACGTACAGCATCCTTCA TGCGGCCGAC TCTCAGACAGGATCAGAAGA GLQPSLAPBLIGTGSE 1983 A GACTACAGCATCCTTCA TGCGGCCGAC TCTCAGACAGGATCAGAAGA GLQPSLAPBLIGTGSE 1984 G ACGTACAGCATCCTTCAGACA TGCGGCCGAC CAGACAGATCAGTTGSEEEE 1985 G ACCACCATCCTTCAGACA TGCGGCCGAC CAGACAGATCAGATGAGTTGSEEEE 1985 G ACCACCATCCTTCAGACAGA TGCGGCCGAC CAGACAGATCAGTAGATGGATGGATGGATGGAGGAGAGAGA	1027	C	CTGGGACAGCTACAACCATC	TOCOCCOCA	CCATCCCTTCAGACAGGATC	I GOLOPSAAAPSLOTG
1929 C GGGAAGCTACAACCATCCC TCCCTTCAAACAGGATCAG GGLOPELAMASLOTGE 1931 T GACAGCTACAACCATCCCT TCGGGCCGCA CCCTTCAAACAGGATCAGAA GLOPELAMASLOTGE 1931 T GACAGCTACAACCATCCCTTCAG TCGGGCCGCA CCCTTCAAACAGATCAGAAGA GLOPELAMALOTGEE 1933 G AGCTACAACCATCCTTCAG TCGGGCCGCA TCCATCAGAAGGATCAGAAGA LOPELAMALOTGEE 1934 G GCTCAACCCATCCTTCAGA TCGGGCCGCA CACAGAAGCATCGTTGAGA TCGGCCGCA CAGACAGATCATCGTTGAGAGAG TCGGGCCGCA CAGACGATCCTTCAGACAGG TCGGGCCGCA CAGACGATCCTTCAGACAGG TCGGCCCGCA CAGACGATCCTTCAGACAGG TCGGCCCGCA CAGAGATCGATCGTTGAGAGAG TCGGCCCGCA CAGAGATCGATCGTTGAGAGAG TCGGCCCGCA CAGAGATCGATCGATCGATCGATCGATCGAGAGATCGAGAGACTTAGAGAGATTGAG OPELOTGAGATGGATCGATCGATCGATCGATCGATCGAGAGATCGAGAGATTGAGAGATTGAGATGGATCGATC	1027	C	TOCOACACCTACAACCATCC	TGCGGCCGCA	CATCCCTTCAGACAGGATCA	COLOPSCOPTSLOTOS
1989 Y CEAACAGCTACAACCATCCCTT TECCETTCAGACAGGATCAGAA Cod PSL ARATITGSE 1983 C ACAGCTACAACCATCCTTT TECGECCCAC CCTTCAGACAGGATCAGAAG CLOPSL ARATITGSE 1983 C ACAGCTACAACCATCCTTTC TECGECCCAC CCTTCAGACAGGATCAGAAG CLOPSL ARATITGSE 1983 A GCTACAACCATCCCTTCAGAA TECGECCCAC CTTCAGACAGGATCAGAAGCA TECGECCCAC CAGACGTACAACATCCCTTCAGAA TECGECCCAC CAGACGATCACAATTGSEE 1983 A GCTACAACCATCCCTTCAGAC TECGECCCCAC CAGACGATCACAATTGSEE TECGECCCCAC CAGACATCCATTGAGACGAT TECGECCCCAC CAGACATCCATTGAGATGGATCAGAGAGATCAGAGAGAACTTGAGATS PSL OTGARTGSEEL R 1983 C CATCCCTTCAGACAGGATCAT TECGECCCCAC CAGGATCAGAAGAACTTGAGAT PSL OTGARTGSEEL R 1984 A CACTCCCTTCAGACAGGATCAT TECGECCCCAC CAGACATCATAGATGAT FLOTGARTGSEEL R 1984 A TECCTTCAGACAGGATCAT TECGECCCCAC CAGACATCATAGATGAT FLOTGARTGAGAER 1984 A TECCTTCAGACAGGATCAGAAGAT TECGECCCCAC CAGACATCCATAGATGATGAGAGATCAGAGAGATCAGAAGATTGAGATGATTGAT	1020	0	CCCACACCTACAACCATCC	TOCOCCOCA	ATCCCTTCACACACCATCAC	COLOPSI PROSLOTOS
1937 1 SACAGEY LABACCATECYTT INCORECCAL INCONTRACTAGAAC INCORE LOPELCENT TO SEE 1938 C ACAGCTACACCATCCCTTCA TECGECCAC INCORECCAL INCONTRACTAGAACA INCORE LOPELCENT 1938 A ACAGCTACACCATCCCTTCA TECGECCAC INCORECCAL INCORECCAL<	1029	÷	GGGACAGCTACAACCATCCC	TOCOCOCOCA	TOCOTTOACACACCATCACA	COLOPELAAASLOTOS
1 BALABY JALABCLAICCOTTL TRESCREACE CELL LEARGAREA LEARA CLUPELLARILLEARG 1033 A. CAGCTACACCATCCCTTCAG TREGGECCAC TECABACAGGATCAGAAGA LOPELCOPILLARALGTOSEE 1034 G. CAGCTACACCATCCCTTCAG TREGGECCAC TECABACAGGATCAGAAGA LOPELCOPILLARALGTOSEE 1035 A. GETLABACCATCCCTTCAGACAGGATCAGACGAC TECABACAGGATCAGAAGAAC LOPELCOPILLARALGTOSEE 1037 A. TACAACCATCCCTTCAGACAGG TECGGECCAC ACACGATCCATTCAGACAGGATC TECGGECCAC ACACGATCCCTTCAGACAGGATC TECGGECCAC ACACGATCCCTTCAGACAGGATC TECGGECCAC ACAGGATCAGAAGATTGAG OPELOTGAMTCSEE DEIOTGAMTCSEE	1030	-	GGACAGCTACAACCATCCCT	TGCGGCCGCA	TCCCTTCAGACAGGATCAGA	GULUPSLAAASLUTUS
1935 C ACAGC TACAACCATCCTTTC, TECGGCCCCA, CCT TCAGACAGATCAGAACAT LUPPEL/PPLICIBSE 1934 G ACG TCACACCATCCCTTCAGA TECGGCCCCA, TCAGACAGATCAGAACAT LOPELOMPRITURESE 1935 G TCACAACCATCCCTTCAGAAC TECGGCCCCA, TCAGACAGATCCCTTCAGACAGATCAGAAGAACT OPELOTYPETOSEE 1936 G TCAGACCATCCCTTCAGACAGA TECGGCCCCA, ACACAGACATCCCTTCAGACAGAGATCAGAGAGAACT OPELOTYPETOSEE 1937 G ACACCATCCCTTCAGACAGAGAT TECGGCCCCA, ACACGATCCCTTCAGACAGGAT OPELOTYPETOSEE 1948 G ACACCATCCCTTCAGACAGGAT TECGGCCCCA, ACAGATCCATCAGATCGATCGATCGAGAGATCA TECGGCCCCA, ACAGATCCATCAGAGATCA TECGGCCCCA, ACAGATCCATCAGAGATCGATCGATCGAGAGATCA TECGGCCCCA, TECGAGAGATCGAGAGATCGATCGATCGAGAGATCGATCGAGAGATCGAGAGATCGAGAGATCGAGAGATCGAGAGATCGAGAGATCGAGAGATCGAGAGATCGAGAGATCGAGAGATCGAGAGATCGAGAGATCGAGAGAGA	1031	1	GACAGCTACAACCATCCCTT	TGCGGCCGCA	CCCTTCAGACAGGATCAGAA	QLQPSLCGRILQIGSE
1933 A. CAGETACAACCATCCTTCAA TECGGCCGCA CTTCAAACAAGGATAAGAAGAAC CUPPSLIMAALUTSEE 1933 A. COTRCAAACCATCCCTTCAAAC TECGGCCCCA CAGACAAGGATCAAAGAACAAGAAC LQPSLUMAALUTSEE 1933 A. TACAACCATCCCTTCAAACA TECGGCCCCA CAGACAGGATCAGAAGAAC LQPSLUMPHOTGSEE 1933 A. TACAACCATCCCTTCAAACA TECGGCCCCA CAGACAGATCAGATCGATCGATCAGAAGAAC CAGACAGATCAGATCGATCGATCGATCGATCAGAAGAACT CAGACGATCGATCGATCGATCGATCGATCGATCGATCGAT	1032	C	ACAGCTACAACCATCCCTTC	TGCGGCCGCA	CCTTCAGACAGGATCAGAAG	QLQPSLLRPHLQTGSE
1934 G ACCTECAACCATCCCTTCAGL TCCGGCCCCAL TCCAGACAGGATCAGAAGAL LGPSL OGGNTOSEE 1937 A TACAACCATCCCTTCAGAL TGCGGCCCCAL ACACAGAAGCATCCCTTCAGACAG TGCGGCCCCAL ACACAGAACCTTCGTTCAGACAG TGCGGCCCCAL ACACGAACCTTCCTTCAGACAG TGCGGCCCCAL ACACGAACCTTCCTTCAGACAGG TGCGGCCCCAL ACACGAACCTTCCTTCAGACAGG TGCGGCCCCAL ACAGGAACCTAGACGAGT OPSLOTGMTYBEEL 1938 G CAACCCATCCCTTCAGACAGGATC TGCGGCCCCAL ACAGGAACTTAGATCAGATCAGATC OPSLOTGMTYBEEL 1938 G CAACCCATCCCTTCAGACAGGATC TGCGGCCCCAL ACAGGATCAGAAGATC TGCGGCCCACL ACAGGATCAGATCAGATCAGATCAGATCAGATCAGATCA	1033	A	CAGCTACAACCATCCCTTCA	TGCGGCCGCA	CTTCAGACAGGATCAGAAGA	QLQPSLHAAALQTGSE
1935 A. CCTAZACCATCCCTTCAGAL TGCGGCCCCC CAGACAGGATCAGAAGAGAC LOPEJOTALAGTISEE 1938 G. ACAACCATCCCTTCAGACAG TGCGGCCCCC ACAGGATCAGAAGACTTA OPEJOTGAAATGISEE 1938 G. ACAACCATCCTTCAGACAGG TGCGGCCCCCA ACAGGATCAGAAGACTTAGA OPEJOTGAAATGSEE 1949 A ACCATCCTTCAGACAGGAT TGCGGCCCCCA CAGGATCAGAAGAACTTAGA PEJOTGLIPPOSEELR 1941 A ACCATCCTTCAGACAGGATCA TGCGGCCCCA CAGGATCATGATAGA PEJOTGLIPPOSEELR 1943 C CATCCCTTCAGACAGGATCA TGCGGCCCCA CAGGATCATAGATCA SLOTGSCMREELRS 1944 A TCCCTTCAGACAGGATCAGA TGCGGCCCCA CAGAGACTTAGATCAT SLOTGSCMREELRS 1945 A TCCCTTCAGACAGGATCAGAGA TGCGGCCCCA CAGAGACTATATATA LOTSSECGAREELRS 1946 A TCCCTTCAGACAGGATCAGAGAGA TGCGGCCCCA CAGAGAGATCAGAAGAACTTA COTSSECGAREELRS 1947 A TCCCTTCAGACAGGATCAGAGAGACT TGCGGCCCCA CAGAGATCAGAAGAACTTA COTSSECGAREELRS 1948 C TCCAGACAGATCAG	1034	G	AGCTACAACCATCCCTTCAG	TGCGGCCGCA	TTCAGACAGGATCAGAAGAA	LQPSLQCGRIQTGSEE
1988 C. CTACAACCATCCCTTCAGAC. TEGGGCCCCC. AGACGGTCGAGAGAACT LOPELOTCGRHCGSEEL 1987 A. TACAACCATCCCTTCAGACAGG TEGGGCCCCC. ACAGGATCGAGAGAACTTAG OPELOTCGRHCGSEELR 1988 G. CAACCATCCCTTCAGACAGG TEGGGCCCCC. ACAGGATCGAGAGAACTTAG OPELOTCGAGAGAGATCG 1941 T. ACCATCCCTTCAGACAGGAT TEGGGCCCCC. AGGATCGAGAGAGACTTAGAT PELOTGGARTGSEELR 1941 T. ACCATCCCTTCAGACAGGATCGA TEGGGCCCCC. AGGATCGAGAGACTTAGAT PELOTGGARTGSEELR 1944 C. CCTCTCAGACAGGATCAGA TEGGGCCCCC. ACAGGATCGATAGAT LOTGSEGGAGACTAGAGAGAT 1945 A. TECCTTCAGACAGGATCAGA TEGGGCCCCC. ACAGGATCAGATAGA LOTGSEGGAGACAGAGAGAT 1946 A. TECCTTCAGACAGGATCAGAAGA TEGGGCCCCC. AGAGAGATTAGATAGAGAGAGAT LOTGSEGGAGAGAGAGAGATAGAAGAGA 1947 ACCCTTCAGACAGGAACTAGAAGA TEGGGCCCCCA. AGAGAGATCAGAAGAAGAGAGAGAGAGAGAGAGAGAGAGA	1035	A	GCTACAACCATCCCTTCAGA	TGCGGCCGCA	TCAGACAGGATCAGAAGAAC	LQPSLQMRPHQTGSEE
1937 A TACAACCATCCCTTCAAACAG TEGGGGCGCA ACAAGCATCCTTCAACAGAG CGGACGGATCAAGAGAGACTT OPELGTQRRTGSEEL 1938 G ACAACCATCCTTCAGACAGGAT TEGGGCCGCA ACAGGATCTGAAGAGGATC OPELGTQRRTSEEL 1941 G ACACCATCCTTCAGACAGGATC TEGGGCCGCA ACGATCGATCAGAGAGGATC PELGTGLRPGGSEELR 1942 C CATCCTTCAGACAGGATC TEGGGCCGCA GCATCAGATGAGAAGGATC SLOTGSCGGATGAGAA 1943 C CCCTTCAGACAGGATCAGAA TEGGGCCGCA ACAGAGATCTTGATA SLOTGSCGGATGAGAA 1944 C CCCTTCAGACAGGATCAGAA TEGGGCCGCA ACAGAGATCTTGATA SLOTGSCGGATGAGAAG 1945 C CCCTTCAGACAGGATCAGAAA TEGGGCCGCA ACAGAGATCATATATA LOTSSEELRSL 1946 C CCTTCAGACAGGATCAGAAGA TEGGGCCGCA ACGAGAGATCATATATA LOTSSEELRSL 1947 G CCTTCAGACAGGATCAGAAGA TEGGGCCGCA ACGAGAGATCATAGAAGACTT LOTSSEELAGAELRSL 1948 G CCTTCAGACAGGATCAGAAGAACTT TEGGGCCGCA ACGAGAGATCAGAAGAACTT LOTSSEELAGAELRSL 1958 T	1036	С	CTACAACCATCCCTTCAGAC	TGCGGCCGCA	CAGACAGGATCAGAAGAACT	LQPSLQTAAAQTGSEE
1938 G ACAACCATCCCTTCAGACAGG TGCGGCCCCA GACAGGATCAGAAGAGATTAG OPELOTGAAATGSEEL 1949 G CAACCATCCTTCAGACAGGA TGCGGCCCCA CAGGGATCAGAAGAACTTAGAT OPELOTGAAATGSEEL 1941 G AACCATCCTTCAGACAGGATCA TGCGGCCCCA CAGGGATCAGAAGACATGAATGAT SLOTGSCTGAGAAGAGATGA 1942 C CATCCCTTCAGACAGGATCA TGCGGCCCCA GATCAGAAGAACTTAGATCA SLOTGSCTGAGAAGAGAGATGA 1944 A TCCCTTCAGACAGGATCA TGCGGCCCCA CATCAGATCAGATAGAAGA SLOTGSCTGAAGAGAGATGAGAGAGA 1944 A TCCCTTCAGACAGGATCAGAGA TGCGGCCCCA CAGAGATCATTATA LOTGSEEVAPPOELRSL 1947 A TCCATCAGACAGATCAGAGAGA TGCGGCCCCA AGAGATCATATATA LOTGSEEVAPPOELRSL 1948 A TCCATCAGACAGATCAGAGAGA TGCGGCCCCA AGAGATCATATATA LOTGSEEVAPPOELRSL 1949 A TCCAGACAGGATCAGAGAGAT TGCGGCCCCA AGAGATCATAGATAGA TGCGGCCCCA AGAGATCAGAGAGATGAGAGAGATGA TGCGGCCCCA AGAGAATCAGAGAGATGAGAGACTAGATGA TGCGGCCCCA AGACAGATCAGAGAGAACTTAGATCGCGGCCCA AGACAGATCAGAGAGAACTTAGATCGCGGCCCA A	1037	A	TACAACCATCCCTTCAGACA	TGCGGCCGCA	AGACAGGATCAGAAGAACTT	QPSLQTCGRKTGSEEL
1939 G CAACCATICCTTCABACAGG TCCGGCCCCC ACGATCCTTAGA OPELOTGAAATGEEL 1940 A ACCATCCCTTCABACAGGAT TGCGGCCCCC AGGATCAGAAGACTTAGAT PELOTGCARTGSEELR 1941 T ACCATCCCTTCAGACAGGAT TGCGGCCCCC AGGATCAGAAGACTTAGAT PELOTGCARTGSEELR 1942 C.CATCCTTCAGACAGGATCAG TGCGGCCCCC AGGATCAGAAGAGTCAT SLOTGSDPAAASEELRS 1944 A TCCCTTCAGACAGGATCAGA TGCGGCCCCC CAGAGAGTCATAGAT LOTSSECUPROSELRS 1945 A CTCCCTTCAGACAGGATCAGAAG TGCGGCCCCC CAGAGAGTCATTAAT LOTSSECUPROSELRS 1946 A CTCCCTTCAGACAGGATCAGAAGA TGCGGCCCCC CAGAGAGTCATTAATAT LOTSSECUPROSELRS 1947 C CTCCAGACAGGATCAGAAGACT TGCGGCCCCC CAGAGACATTAAAACAGATTGATGGGGCCCC CAGAGAGAGTCAGAAGACT TGCGGCCCCC CAGAGACAGAAACTGAGAGAACTTAGAT CTGSSEELPROSELRS TGCGGCCCCC CAGAGACGAGAACTGAAGACT TGCGGCCCCCA CAGAGACGAGAACTGAGAAGACTTAGATTGCGGCCCCCA CAGAGACGAGAACTGAGAGACTTAGATTGCGGCCCCA CAGAGTCAGAAAGAACTTAGATTGCGGCCCCA CTGCGCCCCA TGCGGCCCCCA CGCCGGCCCA TGCGGCCCCCA <t< td=""><td>1038</td><td>G</td><td>ACAACCATCCCTTCAGACAG</td><td>TGCGGCCGCA</td><td>GACAGGATCAGAAGAACTTA</td><td>QPSLQTVRPQTGSEEL</td></t<>	1038	G	ACAACCATCCCTTCAGACAG	TGCGGCCGCA	GACAGGATCAGAAGAACTTA	QPSLQTVRPQTGSEEL
1040 X XACCATCCTTCAGACAGGAT TCCGGCCCCC AGGATCAGAAGAACTTAGAT PSLOTGLAPGOSELR 1041 T ACCATCCTTCAGACAGGATC TGCGGCCCCC GATCAGAAGACTTAGAT PSLOTGLAPGOSELR 1042 C CATCCTTCAGACAGGATCA TGCGGCCCCC GATCAGATAGATCATT SLOTGSCGGAAGASELRS 1046 A CCCTTCAGACAGGATCAGA TGCGGCCCCC ACAGAGATCATT SLOTGSCGGATCAGAAGA 1047 C CCTTCAGACAGGATCAGAAGA TGCGGCCCCC AGAGAGATCATATAT LOTGSSEGGATCAGAAGA 1048 A TCCCTTCAGACAGGATCAGAAGA TGCGGCCCCC AGAGAGATCATATAT LOTSSEGDAAGELRSL 1049 A TCCGAGACAGGAGATCAGAAGA TGCGGCCCCC AGAGAGATCATATATAT LOTSSEGDAAGELRSL 1048 A TCCGAGCCGCC AGAGAGATCAGAAGAACT TGCGGCCCCC AGAGAGATCAGAAGAACT TGCGGCCCCC AGAGAGATCAGAAGAACT TGCGGCCCCC AGAGAGATCAGAAGAACT TGCGGCCCCC AGAGAGATCAGAAGAACT TGCGGCCCCC TGCGGCCCCC TGCGGCCCCC AGAGAGATCAGAAGAACT TGCGGCCCCC TGCGGCCCCC TGCGGCCCCC TGCGGCCCCC TGCGGCCCCCC TGCGGCCCCC TGCGGC	1030	G	CAACCATCCCTTCAGACAGG	TGCGGCCGCA	ACAGGATCAGAAGAACTTAG	OPSI OTGAAATGSEEL
1041 T ACCATCCCTTCAGACAGGAT TECCGECCECA AGGATCAGAGAGATTGATC PELOTESAGAGGATCA 1042 C CCATCCCTTCAGACAGGATCA TECCGECCCAC GATCAGAAGACATTGATCA SLOTGSUMPOSEELRS 1044 A ATCCTTCAGACAGGATCA TECGGECCCAC ATCAGAGAGATCAATCA SLOTGSUMPOSEELRS 1045 A TECCTTCAGACAGGATCAAGA TECGGECCCAC ATCAGAGAGATCAATAT SLOTGSUMPOSEELRS 1046 A TECCTTCAGACAGGATCAAGA TECGGECCCAC AGAAGATCATAGATATAT LOTGSEEVAPOEELRS 1047 C CCTTCAGACAGGATCAGAAGA TECGGECCCAC AGAACATGATCATATATA LOTGSEEVAPOEELRS 1048 A CTTCAGACAGGATCAGAAGAACT TECGGECCCAC AGAACTAGATCATATATA LOTGSEEVAPOEELRS 1051 T <cagacaggatcagaagaactta< td=""> TECGGECCCAC AGAACTATATATATATA TOSEELAAAELRS 1051 T<cagacaggatcagaagaactta< td=""> TECGGECCCAC AGAACTATATATATATA TOSEELAAAELRS 1051 T<cagacagatcagaagaacttaga< td=""> TECGGECCCAC AGAACTATATATATATA TOSEELAAAELRS 1051 T<cagacagatcagaagaacttagat< td=""> TECGGECCCAC ACTATATAT</cagacagatcagaagaacttagat<></cagacagatcagaagaacttaga<></cagacaggatcagaagaactta<></cagacaggatcagaagaactta<>	1040	A	AACCATCCCTTCAGACAGGA	TGCGGCCGCA	CAGGATCAGAAGAACTTAGA	PSI OTGCGRTGSEEL R
1042 C CCATCCCTTCAGACAGGATC TecGGCCCCC GATCAGAAGACTTGAGTC PSLITSSAAGSEELRS 1043 A CATCCCTTCAGACAGGATCAG TECGGCCCCCA ATCAGATCAGT SLITGSCARRSEELRS 1044 A TCCCTTCAGACAGGATCAG TECGGCCCCCA ATCAGATCAGT SLITGSCARRSEELRS 1045 A TCCCTTCAGACAGGATCAGAA TECGGCCCCCA CAGAGAGTTAGTATT SLITGSSDAASEELRS 1046 A CCCTTCAGACAGGATCAGAAA TECGGCCCCA CAGAGACTATATTA CTGSSDAASEELRS 1048 A TTCCAGACAGGATCAGAAGAA TECGGCCCCA AGAACTTAGATCATTATATA CTGSSEDAASEELRS 1048 A TTCCAGACAGGATCAGAAGAAC TECGGCCCCA AGAACTTAGATCATTATATATA CTGSSEDAASEELRS 1049 TCCAGACAGGATCAGAAGACTTAGA TECGGCCCCA AGAATCATTATATATATA CTGSSEDAASEELRS 1049 TCCAGACAGGATCAGAAGACTTAGA TECGGCCCCA CAGAATCATATATATATATATATATATATATA CTGSSEDAASEELRS 1049 T CAGAGATCAGAAGAACTTAGA TECGGCCCCA CAGATCATATATATATATATATATATATATATATATATAT	1040	Ŧ	ACCATCCCTTCAGACAGGAT	TGCGGCCGCA	ACCATCACAACAACTTACAT	PSI OTGI PPOGSEEL P
1046 C. CATCOCCT LAGACAGGATCA, TOCOGCCOCA, CATAGAAGACTTAGATCA, ELGTGSVERDSCRRESELRS 1046 G. ATCCOTTCAGACAGGATCAGA, TGCCGCCCCA, ATCAGAAGAACTTAGATCAT, SLUTGSVERDSELRS 1046 G. CTCCTCAGACAGGATCAGA, TGCCGCCCCA, TCAGAGAACTTAGATCAT, SLUTGSVERDSELRS 1047 G. CCTTCAGACAGGATCAGA, TGCCGCCCCA, CAGAAGAACTTAGATCAT, LOTGSECGRTEELRS 1048 G. CCTTCAGACAGGATCAGAAGA, TGCGGCCCCA, AGAAGAACTTAGATCATTAT, LOTGSECGRTEELRS 1049 G. CCTTCAGACAGGATCAGAAGA, TGCGGCCCCA, AGAACTTAGATCATTATATA, COTGSECGRERERS, Y. 1058 G. CGACAGGATCAGAAGAAC, TGCGGCCCCA, AGAACTTAGATCATTATATA, CTGSEELAPPOELRSLY 1058 T. CGAACAGGATCAGAAGAACT, TGCGGCCCCA, ACTAGATCATTATATA, CTGSEELAPPOELRSLY 1058 T. GAGACAGGATCAGAAGAACTT, TGCGGCCCCA, ACTAGATCATTATATAAT, CTGSEELAPPOELRSLY 1058 A. CAGGATCAGAAGAACTTAGAT, TGCGGCCCCA, ACTAGATCATTATATAATACA, GSEELRRENSLY 1058 A. CAGGATCAGAAGAACTTAGAT, TGCGGCCCCA, ACATTATATATATATACA, GSEELRRENSLY 1058 A. CAGGATCAGAAGAACTTAGAT, TGCGGCCCCCA, CAGATCATTATATATATACAA. 1058 A. CAGGATCAGAAGAACTTAGAT, TGCGGCCCCCA, CAGATCATTATATATATATACAA. 1058 A. CAGGATCAGAAGACTTAGATCAT, TGCGGCCCCCA, CAGATCATTATATATATACAAT. 1058 A. CAGGATCAGAAGACTTAGATCAT, TGCGGCCCCCA, ATGATCATTATATATATACAAT. 1058 A. CAGGATCAGAAGAACTTAGATCAT, TGCGGCCCCCA, ATGATCATTAT	1041	-	ACCATCCCTTCAGACAGGAT	TOCOCCOCA	COATCACAACAACTTACATC	DEL OTOCAAAOCEEL D
1984 A. CALLCY IL CAMADAGANULA 1000000000000000000000000000000000000	1042	0	CCATCCCTTCAGACAGGATC	TGCGGCCGCA	GGATCAGAAGAACTTAGATC	PSLUIUSAAAUSEELN
1984 G. ALCCUT LCAMACAGGARICAG. IGUIDALCUT ELUISUPTUSEELHS 1967 A. CCCTTCGARCAGGARICAGA. TCCGGCCCCC. KAGAGARICTAGARICAGA. ICUIDALCUT ICUI	1043	A	CATCCCTTCAGACAGGATCA	TGCGGCCGCA	GATCAGAAGAACTTAGATCA	SLUIGSCGRRSEELRS
1968 A. TCCCTTCAGACAGGATCAGAN TGCGGCCGCA TCAGAAGGATCATA TGCGGCCGCA TGAGAAGTA TGCGGCCGCA CAGAAGTACTTAATCA TGTGSECGGCGCA 1968 A. CTTCAGACAGGATCAGAAGA TGCGGCCGCA AAGAACTTAGATCATTATA CTGSECGGTERERSLY 1969 A. TTCAGACAGGATCAGAAGAAC TGCGGCCGCA AAGAACTTAGATCATTATATA CTGSEECARELRSLY 1969 C. TCCAGACAGGATCAGAAGAACT TGCGGCCCCA AAGACTATTATATA CTGSEELARELRSLY 1965 T. CAGACAGGATCAGAAGAACTTAGAT TGCGGCCCCA ACTTAGATCATTATATATA CTGSEELARELRSLY 1965 T. GACAGGATCAGAAGAACTTAGAT TGCGGCCCCA ACATTAGATCATTATATATATA CTGSEELARELRSLY 1965 A. CAGGATCAGAAGAACTTAGATC TGCGGCCCCA TAGATCATTATATATATACA GSEELRINGHUSLY 1965 T. GGATCAGAAGACTTAGATCA TGCGGCCCCA TGCATTATATATATATACA GSEELRINGHUSLY 1968 T. GGATCAGAAGACTTAGATCA TGCGGCCCCA TGCATTATATATATATATATATACA GSEELRINGHUSLY 1968 T. GGATCAGAAGAACTTAGATCATTATAT TGCGGGCCCA TGCATT	1044	G	ATCCCTTCAGACAGGATCAG	TGCGGCCGCA	ATCAGAAGAACTTAGATCAT	SLUIGSVRPUSEELRS
1948 A. CCCTTCAGACAGGATCAGAA TGCGGCCCCA CAMAGGATTAGATA LOTISSEPREVENELSE. 1949 A. CTTCAGACAGGATCAGAAGAA TGCGGCCCCA AGAAACTTAGATCATTATAT CTGSEPERPEERSE. 1949 A. TTCAGACAGGATCAGAAGAAC. TGCGGCCCCA AGAAACTTAGATCATTATATA CTGSEPECAPEERSE. 1959 T. CAGACAGGATCAGAAGAAC. TGCGGCCCCA AGAACTTAGATCAGAAGAAC. TGCSEPECAPEERSE. 1951 T. CAGACAGGATCAGAAGAACTTA TGCGGCCCCA ACATTGATCATTATATATAT CTGSEPELGARELRSE. 1952 T. GACAGGATCAGAAGAACTTAGAT TGCGGCCCCA ACATTGATCATTATATATATACA CTGSEPELGARENESI. 1956 A. GACAGGATCAGAAGACTTAGAT TGCGGCCCCA AGATCATATATATATATACAAT GSEELROPARRESI. 1957 C. GGATCAGAAGACTTAGAT TGCGGCCCCA AGATCATATATATATATATATATATATATATATATATATA	1045	A	TCCCTTCAGACAGGATCAGA	TGCGGCCGCA	TCAGAAGAACTTAGATCATT	SLQTGSDAAASEELRS
1947 G CCTTCAGACAGGATCAGAAG TGCGGCCGCA GAAAGAACTTAGATCATTATAL LOTGSEVARAELENSL 1948 A CTTCAGACAGGATCAGAAGA TGCGGCCGCA GAAAGAACTTAGATCATTATAL LOTGSEVARAELENSL 1961 T <tcagacaggatcagaagaa< td=""> TGCGGCCGCA GAAAGAACTTAGATCATTATATA CTGSEELGARAELENSL 1951 T CAGACAGGATCAGAAGAACTTA CGCGGCCGCA GAACTATATATAAC CTGSEELGARAELENSL 1952 T GACAGGATCAGAAGAACTTA TGCGGCCGCA CATTATATATATA CTGSEELGARAELENSL 1958 G CAGGATCAGAAGAACTTAGATC TGCGGCCGCA CATAGATATATATATA CTGSEELGARAELENSL 1958 G CAGGATCAGAAGAACTTAGATC TGCGGCCGCA GATCATTATATATATAC GSEELRSCARAELYNT 1958 T ACGAGATCAGAAGACTTAGATC TGCGGCCGCA GATCATTATATATATATATATATATATATATATATATATA</tcagacaggatcagaagaa<>	1046	A	CCCTTCAGACAGGATCAGAA	TGCGGCCGCA	CAGAAGAACTTAGATCATTA	LQTGSECGRTEELRSL
1948 A CTTCAGACAGGATCAGAAGA TGCGGCCGCA AGAGACTTAGATCATTATA OTGSEECGAAAGEA 1959 C TCAGACAGGATCAGAAGAAC TGCGGCCGCA AGAACTTAGATCATTATA OTGSEECGRPELESLY 1952 T CAGACAGGATCAGAAGAAC TGCGGCCGCA AGAACTTATATA TGSEELGRPELESLY 1952 T CAGACAGGATCAGAAGAACTTA TGCGGCCGCA CATATATATATA TGSEELGRPELESLY 1953 A GACAGGATCAGAAGAACTTA TGCGGCCGCA CATAGATCATATATATA TGSEELGAAALRESLYN 1954 G CAGGATCAGAAGAACTTAGAT TGCGGCCGCA CATAGATATATATA TGSEELRASAALRESLYN 1955 A GGATCAGAAGACATTAGAT TGCGGCCGCA GATCATATATATATATA SEELRSGRAARSLYNT 1956 T CGGATCAGAAGACTTAGATC TGCGGCCGCA GATCATATATATATATATA SEELRSGRAARSLYNT 1957 C GGATCAGAAGACTTAGATC TGCGGCCGCA GATCATATATATATATA SEELRSGRAARSLYNT 1958 A GAGACATTAGATCATTATAT TGCGGCCGCA GATCATATATATAS SEELRSGRAARSLYNT 1958 A GAGACATTAGATCATTATAT TGCGGC	1047	G	CCTTCAGACAGGATCAGAAG	TGCGGCCGCA	AGAAGAACTTAGATCATTAT	LQTGSEVRPQEELRSL
1048 A TTCAGACAGGATCAGAAGAA TGCGGCCGCA AGACATTATATA OTGSEECGRKELRSLY 1059 C CAGACAGGATCAGAAGAACT TGCGGCCGCA AACATTAGATTATATA OTGSEELAAAELRSLY 1058 T CAGACAGGATCAGAAGAACT TGCGGCCGCA AACTTAGATCATTATATA TGSEELGAALRSLY 1058 T CAGACAGGATCAGAAGAACTTAGA TGCGGCCGCA AACTTAGATCATTATATATATA TGSEELGAAARSLYN 1058 A CAGGATCAGAAGAACTTAGAT TGCGGCCGCA TTAGATCATTATATATATAC GSEELRSAARSLYN 1056 T AGGATCAGAAGAACTTAGATCA TGCGGCCGCA TAGATTATATATACAAT GSEELRSAARSLYNT 1056 T AGGATCAGAAGAACTTAGATCAT TGCGGCCGCA ACTCATTATATATACAAT GSEELRSAARSLYNT 1058 A GATCAGAAGAACTTAGATCAT TGCGGCCGCA ACTCATTATATATACAAT GSEELRSAARSLYNT 1058 A GATCAGAAGAACTTAGATCAT TGCGGCCGCA ACTCATTATATACAAT GSEELRSAARSLYNT 1058 A GAACTAGAAGACTTAGATCATT TGCGGCCGCA ACTCATTATATACAATAGCAGT EELRSLPRPOSLYNTT 10591 T CAGAGAAGATGAGACTT	1048	Α	CTTCAGACAGGATCAGAAGA	TGCGGCCGCA	GAAGAACTTAGATCATTATA	LQTGSEDAAAEELRSL
1650 C TCAGACAGGATCAGAAGAACT TGCGGCCGCA GAAACTTAAATTAAA OTGSEELAPAGELRSLY 1651 T CAGACAGGATCAGAAGAACTT TGCGGCCGCA GAACTTAATAAAT TGSEELGFRURSLYN 1652 T GAACAGGATCAGAAGAACTTA TGCGGCCGCA AACTTAGATCATTATATAAT TGSEELGFRURSLYN 1654 G CACAGGATCAGAAGAACTTAGAT TGCGGCCGCA ACTTAGATCATTATATAAT TGSEELAPAALERSLYN 1656 G CAGGATCAGAAGAACTTAGATC TGCGGCCGCA TTAGATATATATACA GSEELRSPURPLIST 1657 C GGATCAGAAGAACTTAGATC TGCGGCCGCA ATCATTATATATACAT SEELRSPARAASIST 1658 A GATCGAGAGACTTAGATCAT TGCGGCCGCA ATCATTATATATACAATAG SEELRSPARAASIST 1659 T ATCAGAAGAACTTAGATCATT TGCGGCCGCA ATCATTATATATACAATAG SEELRSPARAASIST 1659 T ACGAGAGACTTAGATCATTA TGCGGCCGCA ATTATATATATACAATAGCA SEELRSPARASIST 1650 T ACTGAGAGACTTAGATCATTA TGCGGCCGCA ATTATATATATACAATAGCA SEELRSPARASIST 1650 T ACTGAGAGACTTAGATCATTATATA TGCGGCCGCA ATTATATATATACAATAGCAGT EELRSLIPRALPRINTIA	1049	A	TTCAGACAGGATCAGAAGAA	TGCGGCCGCA	AAGAACTTAGATCATTATAT	QTGSEECGRKELRSLY
1 CAGACAGGATCAGAAGAACT TGCGGCCGCA CAACTTAGATCATATATAA TGSEELAMAELRSLY 1952 T AGACAGGATCAGAAGAACTTA TGCGGCCGCA ACTTAGATCATATATATA TGSEELARPOLRSLYN 1954 G.CAGGATCAGAAGAACTTA TGCGGCCGCA CATTAGATCATATATATAC TGSEELARAALRSLYN 1954 G.CAGGATCAGAAGAACTTAGA TGCGGCCGCA CATTAGATCATATATATAC TGSEELARAALRSLYN 1956 G.CAGATCAGAAGACTTAGATCA TGCGGCCGCA CATTATATATACATCA GSEELRSCARASLYNT 1957 G.GGATCAGAAGACTTAGATCA TGCGGCCGCA ACGATATATATATATGATCAT SEELRSCARASLYNT 1958 A GATCAGAAGACTTAGATCAT TGCGGCCGCA ATCATATATATATAGATGAGC EELRSLGRORSLYNT 1969 T ACGAAGAACTTAGATCATTA TGCGGCCGCA ATATATATATAGATGAGCA EELRSLGRORSLYNT 1969 A GAAGAGACTTAGATCATTATATA TGCGGCCGCA ATATATATATAGATAGCAGE EELRSLGRORSLYNT 1968 A GAAGAGACTTAGATCATTATATA TGCGGCCGCA TATATATAGATAGCAGT EELRSLGRORSLYNT 1966 A GAAGATGAGACTTAGATCATTATATA TGCGGCGCCCA TATATATAGCAGTCCC	1050	C	TCAGACAGGATCAGAAGAAC	TGCGGCCGCA	AGAACTTAGATCATTATATA	QTGSEELRPQELRSLY
1952 T AGACAGGATCAGAAGAACTTA TGCGGCCGCA ACTTAGATCATTATATATA TGSEELCGRRL FSLYN 1953 A GACAGGATCAGAAGAACTTAG TGCGGCCGCA ACTTAGATCATTATATATA TGSEELSAAALRSLYN 1955 A CAGGATCAGAAGAACTTAGA TGCGGCCGCA ATTAGATCATTATATATAC GSEELSGARNSLYN 1956 T AGGATCAGAAGAACTTAGAT TGCGGCCGCA ATAGATCATTATATATAC GSEELSGARNSLYNT 1957 C GGATCAGAAGAACTTAGATCA TGCGGCCGCA AGATCATATATATATACA GSEELRSAARSLYNT 1958 A GATCAGAAGAACTTAGATCAT TGCGGCCGCA ACTATATATATACATAGC SEELRSCARSLYNT 1958 A GATCAGAAGACTTAGATCATTA TGCGGCCGCA ACTATATATATACAATAGCA SEELRSCARSLYNT 1959 T CAGAGAACTTAGATCATTATATA TGCGGCCGCA ATTATATATACAATAGCAG EELRSLEGRINYNTA 1952 T AGAAGACTTAGATCATTATATA TGCGGCCGCA ATTATATACAATAGCAGT EELRSLEGRINYNTA 1952 T AGAAGACTTAGATCATTATATA TGCGGCCGCA ATTATATACAATAGCAGT EELRSLEGRINYNTA 1952 T GAAGACTTAGATC	1051	T	CAGACAGGATCAGAAGAACT	TGCGGCCGCA	GAACTTAGATCATTATATAA	QTGSEELAAAELRSLY
 1983 A. GACAGGATCAGAAGAACTTA TGCGGCCCCA CTTAGATCATTATATAATAC TGSEELMRPOLISELW 1984 G. ACAGGATCAGAAGAACTTAGA TGCGGCCCCA CTTAGATCATTATAATACTAC GSEELACGMINSLYNT 1985 A. CAGGATCAGAAGAACTTAGAT TGCGGCCCCA CATAGATCATTATATAATACA 1986 T. AGGATCAGAAGAACTTAGATC TGCGGCCGCA TAGATCATTATATAATACAA 1987 C. GGATCAGAAGAACTTAGATCA TGCGGCCGCA AGATCATTATATATACAAT 1988 A. GATCAGAAGAACTTAGATCAT TGCGGCCGCA CATATATATATAATACAAT 1989 T. ATCAGAAGAACTTAGATCAT TGCGGCCGCA CATATATATATAATACAATA 1980 T. TCAGAAGAACTTAGATCAT TGCGGCCGCA CATATATATATAATACAATA 1980 T. CAGAAGAACTTAGATCAT TGCGGCCGCA CATTATATATATAATACAATAG 1980 T. CAGAAGAACTTAGATCATTATATATATATATATAATACAATAGCA 1980 T. CAGAAGAACTTAGATCATTA TGCGGCCGCA CATTATATATATACAATAGCA 1980 T. CAGAAGAACTTAGATCATTA TGCGGCCGCA CATTATATATATACAATAGCA 1980 T. CAGAAGAACTTAGATCATTATATATATATATATATATATA	1052	T	AGACAGGATCAGAAGAACTT	TGCGGCCGCA	AACTTAGATCATTATATAAT	TGSEELCGRKL RSL YN
 Libst G. XCAGGATCAGAAGATTAG. TGCCGCCCCAG. TTAGATCATTATATACAA. GAGGATCAGAAGAAGTTAGATCAG. TGCGGCCCAG. TTAGATCATTATATATACAA. GSELELR, BRHRSLYNT. TOSF C. GGATCAGAAGAAGTTAGATC. TGCGGCCCCA. TAGATCATTATATATACAAT. GSELELR, BRHRSLYNT. TOSS A. GATCAGAAGAAGTTAGATCA. TGCGGCCCCA. AGATCATTATATATATACAAT. GSELELR, BRHRSLYNT. T CAGAAGAAGTTAGATCAT. TGCGGCCCCA. ATCCAGAAGACTTAGATCAT. TGCGGCCCCA. ATCCAGAAGACTTAGATCAT. TGCGGCCCCA. ATCCAGAAGACTTAGATCAT. TGCGGCCCCA. ATTATATATACAATAGCA. SELERSLAPPSL.VNTI. T CAGAAGACTTAGATCATT. TGCGGCCCCA. ATTATATATAGCAATAGCA. ELRSLAPPSL.VNTI. T CAGAAGACTTAGATCATTA. TGCGGCCCCA. ATTATATATAGCAATAGCA. ELRSLCGRRLYNTI. TGCGGCCCCA. ATTATATATAGCAATAGCATTAGATCATTAT. TGCGGCCCCA. ATTATATATAGCAATAGCAT ELRSLCGRRLYNTIA. TGCGGCCCCA. ATTATATATAGCAATAGCAGTCE. ELRSLCGRRLYNTIA. TGCGGCCCCA. ATATATATAGCATTAGCATTATATAT. TGCGGCCCCA. ATATAGATCATTATATATATATAGCATGCCACCA. TAGATCATTATATATATATAGCATGCCCCA. ACTTAGATCATTATATATATAC. TGCGGCCCCA. ATACATAGCATCATTATATATACA. TGCGGCCCCA. ATGCATCATTATATATATACA. TGCGGCCCCA. ATATACATAGCAGTCCTCT. LRSLVMRPHNTIAVL TGGATCATTATATATACA. TGCGGCCCCA. ATGCATTATATATATATACA. TGCGGCCCCA. ATGCATTATATATATATACA. TGCGGCCCCA. ATGCATTATATATATATACA. TGCGGCCCCA. ATGCATTATATATATATACA. TGCGGCCCCA. TGCGCCCCA. TTAGATCATTATATATATACA. TGCGGCCCCA.	1053	•	GACAGGATCAGAAGAACTTA	TGCGGCCGCA	ACTTAGATCATTATATATA	TGSEELMBPOL BSLVN
1056 T CONDACT-CONTRACT-LOST CONSTRUCT-LOST	1054	G	ACAGGATCAGAAGAACTTAC	TGCGGCCGCA	CTTAGATCATTATATATAC	TGSEEL SAAAL DSL VN
1 Constructionanometri Lange Tubesbeteside Langebetering Construction	1054	4	CACCATCACAACAACTTACA	TGCGGCCGCA	TTAGATCATTATATATACA	GSEEL BCGBIDSI VNT
1 Addata Lawanuawa Lawahi Induk Cali Jalawa Besel Likity Phils Lini 1057 C GGATCAGAAGACTTAGATCA TGCGGCCGA AGATCATTATATATACATA GSEELRSCHRLYNTT 1058 A GATCAGAAGACTTAGATCA TGCGGGCCGA CATTATATATATACATAGA GSEELRSCHRLYNTT 1056 T TCGGAGAGATTGAGTCATTA TGCGGGCCGA CATTATATATACATAGCA SEELRSCHRLYNTT 1058 A GAAGAACTTAGATCATTA TGCGGCCCGA TTATATATACATAGCAG EELRSLLPPOLYNTTA 1058 A GAAGAACTTAGATCATTATAT TGCGGCCCCA ATATATACATAGCGATC EELRSLVAALYNTTA 1058 A GAAGACTTAGATCATTATATA TGCGGCCCCA ATATATACATAGCGATCC ELRSLVMAALYNTTA 1056 A GAACTTAGATCATTATATA TGCGGCCCCA ATATATACATAGCAGTCC ELRSLVMAALYNTAV 1056 A GAACTTAGATCATTATATATA TGCGGCCCCA ATATACAATAGCAGTCCT ELRSLVMAALYNTAV 1056 A GAACTTAGATCATTATATATA TGCGGCCCCA ATATATACATAGCAGTCCT ELRSLVMAALYNTAV 1056 A GAACTTAGATCATTATATATATACA TGCGGCCCA AT	1055	A	AGGATCAGAAGAACTTAGA	TOCOCOCOCA	TACATCATTATATATACAA	CEEL DI DOUDEI VIIT
1997 C. GUAALCARAAGACTTAGATCAT TGCGGCCGCA AGATCATTATATAATACAATA CSAFTA SEELHSAGRRSUTWI 1958 A GATCAGAGAACTTAGATCAT TGCGGCCGCA ATCATTATATAATACAATAGCAS 1960 T ATCAGAAGAACTTAGATCATT TGCGGCCGCA ATCATTATATAATACAATAGC 1960 T TCAGAGAGACTTAGATCATT TGCGGCCGCA ATCATTATATAATACAATAGC 1960 T TCAGAGAGACTTAGATCATTA TGCGGCCGCA ATCATTATATAATACAATAGC 1960 T CCAGAAGAACTTAGATCATTA TGCGGCCGCA ATCATTATATAATACAATAGCAS 1960 T ACAGAGATTAGATCATTA TGCGGCCGCA ATCATTATATAATACAATAGCAS 1960 T AGAGAGATTAGATCATTATA TGCGGCCGCA TATATATATAGCAATGCAGT 1965 A GAGACTTAGATCATTATAT TGCGGCCCCA TATATATATAGCAGTCC ELRSLYMAPYINTAY 1965 A GAACTTAGATCATTATATA TGCGGCCCGA TATATATACAATAGCAGT 1967 T AACTAGATCATTATATA TGCGGCCCGA TATATACATAGCAGTCC ELRSLYMAPYINTAY 1968 A GAACTTAGATCATTATATA TGCGGCCCGA TATATACAATAGCAGTCCT L RSLYMCRONNTAVL 1968 C TTAGATCATTATATATA TGCGGCCCGA TATATACAATAGCAGTCCT L RSLYMCGRNNTAVL 1968 C TTAGATCATTATATATA TGCGGCCCGA TATACAATAGCAGTCCTC L RSLYMCGRNNTAVL 1968 C TTAGATCATTATATATA TGCGGCCCGCA TATACAATAGCAGTCCTC L RSLYMCGRNNTAVL 1969 C TTAGATCATTATATATA TGCGGCCCGCA ATACACATAGCAGTCCTCT L RSLYMCGRNNTAVL 1970 A TTAGATCATTATATATAC TGCGGCCGCA ATACAATAGCAGTCCTCTAL RSLYNTGARNTAVL 1971 A TGGTCATTATATATACAAT GCGGCCGCCA ATACAATAGCAGTCCTCTAL RSLYNTGARNTAVL 1972 T AGATCATTATATATACAAT GCGGCCGCCA ATAGCAGTCCTCTAT RSLYNTGARNTAVLY 1973 A GATCATTATATATACAAT GCGGCCGCCA ATAGCAGTCCTCTATT RSLYNTGARNTAVLY 1974 G ATCATTATATATACAATAGCA TGCGGCCGCA ATAGCAGTCCTCTATTGTG SLYNTMPHYNTAVL 1975 C TCATTATATATAACAATAGC TGCGGCCGCA ATAGCAGTCCTCTATTGTG SLYNTMRPHIAVLYC 1976 G ACCATTATATATATACAATAGCA TGCGGCCGCA ATAGCAGTCCTCTATTGTG SLYNTMRPHYNAVLYCY 1979 C TATATATATAACAATAGCAGTC TGCGGCCGCA ATAGCAGTCCTCTATTGTGTGCATCAAN TYCYCYND 1979 C TATATATATATATAGCATGC GCGGCCGCA ATAGCAGTCCTCTATTGTGTGCATCAAN TYCYCYND 1979 C TATATATATATAACAATAGCAGTC TGCGGCCGCA AGCCCTCTATTGTGTGCATCAAN TYCYCYND 1979 C TATATATATATAGAATAGCAGTC TGCGGCCGCA ATAGCAGTCCTCTATTGTGTGCATCAAN TYCYCYND 1979 C TATATATATAACAATAGCAGTCC TGCGGCCGCA ACACTCATTGTGTGTGCATCAAN TYCYCYND 1979 C TATATATAATAGAATAGCGCCC	1056	-	AGGATCAGAAGAACTTAGAT	TOCOGOGOGOG	AGATCATTATATATACAA	COEFI DOAAADOL VAIT
Image Image A	105/	C	GGATCAGAAGAACTTAGATC	TOCOGOCOCA	AGATCATTATATATACAAT	CEEL DECODDOL VALT
1099 1 ALCAMAGAGATT JAVALCAL IGCGGCCGCA ALCATTATATATACAATAGC SEELHSEAAGATTAGATCATTA 1066 T CAGAAGACTTAGATCATTA TGCGGCCGCA CATTATATATACAATAGCS SEELHSEAGAST 1062 T AGAAGACTTAGATCATTATA TGCGGCCGCA CATTATATATACAATAGCAG EELRSLPRALVITIA 1062 AGAAGACTTAGATCATTATA TGCGGCCGCA TATATATACAATAGCAGT ELRSLPRALVITIA 1065 A GAAGACTTAGATCATTATATA TGCGGCCGCA ATATATACAATAGCAGTC ELRSLYMAAVITIAV 1066 A GAACTTAGATCATTATATA TGCGGCCGCA ATATAATACAATAGCAGTCC ELRSLYMAAVITIAV 1066 A GAACTTAGATCATTATATAATA TGCGGCCGCA ATATACAATAGCAGTCC ELRSLYMAAVITIAV 1067 T AACTTAGATCATTATATATA TGCGGCCGCA ATACAATAGCAGTCCC LRSLYMARMITIAVL 1068 A ACTTAGATCATTATATATA TGCGGCCGCA ATACAATAGCAGTCCCT LRSLYMARMITIAVL 1068 C CTTAGATCATTATATATACA TGCGGCCCCA ATACAATAGCAGTCCCT LRSLYMARMITAVL 1068 A ACTTAGATCATTATATATATACAATAGCAGCCCCCA	1058	A	GATCAGAAGAACTTAGATCA	TOCOGCCGCA	GATCATTATATATACAATA	SEELASUGHASLYNII
1066 T TCAGAAGAACTTAGATCATT TGCGGCCGCA TCATTATATAATACAATAGCA SEELHSFAAASLYNTI 1065 X CAGAAGAACTTAGATCATTAT TGCGGCCGCA ATTATATAATACAATAGCA EELHSLERBLERPOLYNTIA 1065 X GAAGAACTTAGATCATTATAT TGCGGCCGCA ATTATATAATAGCAATAGCAGT ELRSLYAAALYNTIA 1064 X GAAGAACTTAGATCATTATAT TGCGGCCGCA ATATAATACAATAGCAGT ELRSLYAAALYNTIA 1065 A GAAGAACTTAGATCATTATATA TGCGGCCGCA ATATAATAGCAGTCC ELRSLYMPROYNTIAV 1066 A GAAGAACTTAGATCATTATATA TGCGGCCGCA ATATAATAGCAGTCC ELRSLYMPROYNTIAV 1066 A CACTTAGATCATTATATATA TGCGGCCCCA ATACATAGCAGTCCCT ERSLYMPROYNTIAV 1067 A GTAGATCATTATATATATA TGCGGCCCCA ATACAATAGCAGTCCCTTAT ERSLYMPROYNTIAV 1070 A TTGAGTCATTATATATATACA TGCGGCCCCA ATACAATAGCAGTCCCTTAT ELSLYMPROYNTIAV 1071 A TGAGTCATTATATATAATACA TGCGGCCCCA ATACAATAGCAGTCCCTTAT ELSLYMPROYNTIAV 1072 X GACTATTATA	1059	1	ATCAGAAGAACTTAGATCAT	TGCGGCCGCA	AICAITATATATAATACAATAG	SEELRSLRPQSLYNTI
1061 A CAGAAGAACTTAGATCATTAT TGCGGCCGCA CATTATATAATACAATAGCA EELRSLCGRTLYNTIA 1062 T AGAAGAACTTAGATCATTATA TGCGGCCGCA TATATATATACAATAGCAGT EELRSLVGRUNTIA 1064 T AAGAACTTAGATCATTATATA TGCGGCCGCA TATATATACAATAGCAGTC ELRSLVGRUNTIAV 1065 A GGAACTTAGATCATTATATA TGCGGCCGCA ATATAATACAATAGCAGTCC ELRSLVMARAYNTIAV 1066 A GAACTTAGATCATTATATATA TGCGGCCGCA ATATAATACAATAGCAGTCC ELRSLVMARAYNTIAV 1067 T AACTTAGATCATTATATAATA TGCGGCCGCA ATAATACAATAGCAGTCCTC LIRSLVMIRPHYNTAVL 1068 A CTTAGATCATTATATAATACA TGCGGCCGCA ATAATACAATAGCAGTCCTCTA LRSLVMIRPHYNTAVL 1070 A TTAGATCATTATATAATACA TGCGGCCGCA ACATTAGCATTATATATATACAAT TGCGGCCGCA ACATTAGCATTATATATATATACAAT TGCGGCCGCA ACATTAGCATTATATATATATACAAT TGCGGCCGCA ACATTAGCATTATATATATACAAT TGCGGCCGCA ACATTAGCATTATATATATACAATAGCA TGCGGCCGCA ACATTAGCATTATATATATACAATAGCA TGCGGCCGCA ACATTAGCGCCTTATTGTGTGCATTATTATATATACAATAGCAGTCCTTATTGTGTGCATATTATATATA	1060	Т	TCAGAAGAACTTAGATCATT	TGCGGCCGCA	TCATTATATAATACAATAGC	SEELRSFAAASLYNTI
1062 T AGAAGAACTTAGATCATTAT TGCGGCGCA ATTATATATACAATAGCAG EELRSLLRPQLYNTIA 1068 T AGAAGACTTAGATCATTATATA TGCGGCCGCA TATATATACAATAGCAGTC ELRSLYKPGRIYNTIAV 1066 A GAACTTAGATCATTATATATA TGCGGCCGCA TATATATAGCAATAGCAGTCC ELRSLYKPGRIYNTIAV 1066 A GAACTTAGATCATTATATATA TGCGGCCGCA TATATACAATAGCAGTCCT ELRSLYKPGRIYNTIAV 1066 A GAACTTAGATCATTATATATATA TGCGGCCGCA TATATACAATAGCAGTCCTCT LRSLYNMAPAYNTIAV 1068 C CTTAGATCATTATATATACA TGCGGCCGCA TATACAATAGCAGTCCTCT LRSLYNMAPANTAVL 1070 A TTAGATCATTATATATACAA TGCGGCCGCA ATACAATAGCAGTCCTCTAT RSLYNTHRPHTNILVLY 1071 A GATCATTATATATATACAA TGCGGCCGCA ACAATAGCAGTCCTCTATT RSLYNTHRPHTNILVLY 1072 T AGATCATTATATATACAATAGCA TGCGGCCGCA ACAATAGCAGTCCTTATTG RSLYNTHRPHTNILVLY 1073 A GATCATTATATATATACAATAGCA TGCGGCCGCA ACAATAGCAGTCCTTATTG SLYNTHRPHTNILVLY 1076 C	1061	Α	CAGAAGAACTTAGATCATTA	TGCGGCCGCA	CATTATATAATACAATAGCA	EELRSLCGRTLYNTIA
1063 A GAAGAACTTAGATCATTATA T TCGGGCGCA TATATATACAATAGCAGT EELRSLYGAALVNTIA 1065 A GGAACTTAGATCATTATATA TGCGGCCGCA ATATAATACAATAGCAGTCC ELRSLYGAALVNTIAV 1066 A GAACTTAGATCATTATATA TGCGGCCGCA ATATAATACAATAGCAGTCC ELRSLYMAAPANTIAV 1067 T AACTTAGATCATTATATAATA TGCGGCCGCA ATATACAATAGCAGTCCTC LERSLYMAAPANTIAV 1068 A CTTAGATCATTATATAATACA TGCGGCCGCA ATATACAATAGCAGTCCTCTA LRSLYMINGRINNITAVL 1069 C CTTAGATCATTATATATACA TGCGGCCGCA ATACAATAGCAGTCCTCTAT RSLYNTKAANTAVL 1071 A TTAGATCATTATATAATACA TGCGGCCGCA ACAATAGCAGTCCTTAT RSLYNTKAANTAVL 1072 A GATCATTATATATACAATACA TGCGGCCGCA ACATAGCAGTCCTTATGT RSLYNTKAANTAVLY 1073 A GATCATTATATAATACAATAGCA TGCGGCCGCA AATAGCAGTCCTTATGT SLYNTKARANTAVLY 1074 G ATCATTATATAATACAATAGCAT TGCGGCCGCA AAGCAGTCCTTATGTGT SLYNTKARANTAVLY 1077 G ATTATATAATACAATAGCAGT TGCGGCCGCA AGCAGTCCTATTGGTGT SLYNTKARANTAVLY	1062	T	AGAAGAACTTAGATCATTAT	TGCGGCCGCA	ATTATATAATACAATAGCAG	EELRSLLRPQLYNTIA
1066 T AAGAACTTAGATCATTATATA TUCGGCCGCA TATATATAGACATAGGCGTC ELRSLYNPCAPT 1066 A GAACTTAGATCATTATATATA TUCGGCCGCA TATATACAATAGCAGTCCT ELRSLYNPCAPT 1067 T AACTTAGATCATTATATATAT TUCGGCCGCA TATATACAATAGCAGTCCT ELRSLYNPCAPT 1068 A ACTTAGATCATTATATATATA TUCGGCCGCA TATATACAATAGCAGTCCTCT LIRSLYNNAAANTAVL 1069 CTTAGATCATTATATATACA TUCGGCCGCA TATACAATAGCAGTCCTCTAT IRSLYNTMPHINTAVLY 1070 A TTAGATCATTATATATACA TUCGGCCGCA ACAATAGCAGTCCTCTAT RSLYNTMPHINTAVLY 1071 A TTAGATCATTATATATACAA TUCGGCCGCA ACAATAGCAGTCCTCTATT RSLYNTMPHINTAVLY 1072 T AGATCATTATATATACAATAGCA TUCGGCCGCA ACAATAGCAGTCCTCTATT RSLYNTMAAATAVLY 1073 A GATCATTATATATACAATAGCA TUCGGCCGCA ATAGCAGTCCTCTATT RSLYNTMPHINAVLY 1076 C TTATATATACAATAGCA TUCGGCCGCA ATAGCAGTCCTTATTATATATACAATAGCAGT TUCAATAGCAGTCCTCTATTGTGT LVNTUAAAAANAVLYCY 1077 T	1063	Α	GAAGAACTTAGATCATTATA	TGCGGCCGCA	TTATATAATACAATAGCAGT	EELRSLYAAALYNTIA
1065AGAACTTAGATCATTATATATGCGGCCGCAATATATCAATAGCAGTCCTELRSLYMRPQYNTIAV1067TAACTTAGATCATTATATATATGCGGCCGCAATAATACAATAGCAGTCCTCLRSLYNAAAYNTAV1068AACTTAGATCATTATATATATGCGGCCGCAATAACAATAGCAGTCCTCLRSLYNTGRNNTAVL1069CCTTAGATCATTATATATATATGCGGCCGCAATACAATAGCAGTCCTCTLRSLYNTGRNTAVLY1071ATTAGATCATTATATATACATGCGGCCGCAATACAATAGCAGTCCTCTATRSLYNTGRNTAVLY1071ATAGATCATTATATATACAATTGCGGCCGCAATACAATAGCAGTCCTCTATTRSLYNTGRNTAVLY1072TAGATCATTATATATACAATTGCGGCCGCAACAATAGCAGTCCTCTATTRSLYNTMRPHITAVLY1073AGATCATTATATATACAATATGCGGCCGCAATAGCAGTCCTCTATTGSLYNTWRPIAVLYC1074GATCATTATATATACAATAGCAGTGCGGCCGCAATAGCAGTCCTCTATTGGTSLYNTWRPIAVLYC1075CTCATTATATATAATAGCAATGCGTGCGGCCGCAAGCAGTCCTCTATTGGTGCLYNTAAAANUYC1076GACTATATATAATACAATAGCAGTGCGGCCGCAAGCAGTCCTCTATTGGTGCALYNTAAAAAUVCV1077GATTATATAATACAATAGCAGTCCTGCGGCCGCAAGCCTCTATTGGTGCATLYNTAAAAAVUVCV1079CTTATATAAACAATAGCAGTCCTTGCGGCCGCAAGCCTCTATTGGTGCATCAYNTAVAAAAVUVCV1079CTTATATAACAATAGCAGTCCTTGCGGCCGCAAGCCTCTATTGGTGCATCAAAGAGTYNTAVAAAVUVCV1079CTTATATAACAATAGCAGTCCTTGCGGCCGCAAGCCTCTATTGGTGCATCAAYNTAVAAAAVUVCV1079CTTATATAACAATAGCAGTCCT <td>1064</td> <td>Т</td> <td>AAGAACTTAGATCATTATAT</td> <td>TGCGGCCGCA</td> <td>TATATAATACAATAGCAGTC</td> <td>ELRSLYCGRIYNTIAV</td>	1064	Т	AAGAACTTAGATCATTATAT	TGCGGCCGCA	TATATAATACAATAGCAGTC	ELRSLYCGRIYNTIAV
1066AGAACTTAGATCATTATATATATGCGGCCGCATATATCAATAGCAGTCCTE.RSLYNAGAYNTAV1068AACTTAGATCATTATATATATTGCGGCCGCAATAATACAATAGCAGTCCTCLRSLYNAGRNNTAVL1070ATTAGATCATTATATATATATGCGGCCGCAATACAATAGCAGTCCTCTARSLYNTAAANTAVL1070ATTAGATCATTATATAATACATGCGGCCGCAATACAATAGCAGTCCTCTATRSLYNTAAANTAVL1071ATGAGTCATTATATAATACAATGCGGCCGCAACAATAGCAGTCCTCTATTRSLYNTAAANTAVLY1072TAGATCATTATATAATACAATTGCGGCCGCAACAATAGCAGTCCTCTATTGRSLYNTAAATAVLY1073AGATCATTATATAATACAATATGCGGCCGCAATAGCAGTCCTCTATTGTGSLYNTAAATAVLY1074GATTCATTATATATACAATAGCATGCGGCCGCAATAGCAGTCCTCTATTGTGSLYNTAAATAVLY1075CTCATTATATAATACAATAGCAGTGCGGCCGCAATAGCAGTCCTCTATTGTGTGSLYNTAAAAAVLYCV1076AATTATATATAACAATAGCAGTGCGGCCGCAAGCAGTCCTCTATTGTGTGCLYNTIAVPOAVLYCV1077GATTATATAACAATAGCAGTTGCGGCCGCACAGTCCTCTATTGTGTGCACLYNTIAVAAAAVLYCV1077GATATAATACAATAGCAGTCCTGCGGCCGCACAGTCCTCTATTGTGTGCACLYNTIAVAAAVLYCV1077GATATAATACAATAGCAGTCCTGCGGCCGCACAGTCCTCTATTGTGTGCACLYNTIAVAAAVLYCV1077GATATAATACAATAGCAGTCCTGCGGCCGCACAGTCCTCTATTGTGTGCACLYNTIAVAAAVLYCV1077GATTATATAACAATAGCAGTCCTGCGGCCGCACAGTCCTCATTGTGTGCACLYNTIAVAAAVLYCV1077GATTATATAACAATAGCAGTC	1065	A	AGAACTTAGATCATTATATA	TGCGGCCGCA	ATATAATACAATAGCAGTCC	ELRSLYMRPQYNTIAV
1967 T AACTTAGATCATTATATAT TEGGGCCGCA ATATACATAGCATCCTC L.RSLYNGGRNITAVL 1968 A ACTTAGATCATTATATATAT TEGGGCCGCA ATATCAATAGCAGTCCTCT LRSLYNTAAANTAVL 1970 A TTAGATCATTATATATATA TEGGGCCGCA ATACAATAGCAGTCCTCTAT RSLYNTGRNTAVLY 1971 A TAGATCATTATATATACA TEGGGCCGCA ATACAATAGCAGTCCTCTATT RSLYNTGRNTAVLY 1972 T AGATCATTATATATACAAT TEGGGCCGCA ACAATAGCAGTCCTCTATT RSLYNTMRPHITAVLY 1973 A GATCATTATATATACAATAGC TEGGGCCGCA ACAATAGCAGTCCTCTATTGT RSLYNTMRPHITAVLY 1974 G ATCATTATATATACAATAGC TEGGGCCGCA ATAGATCCTCTATTGTG SLYNTMAAAATACAATAGCAGT 1976 C TTATATATACAATAGCAATGCGGCGCA ATAGACATCCTTATTGTGTG LYNTNAVAAAAATACCCT 1976 A CATATATACAATAGCAGTCC TEGGGCCGCA AGCAGTCCTCTATTGTGTGCA LYNTNAVAAAYLVC 1976 A TTATATATACAATAGCAGTCC TEGGGCCGCA AGCAGTCCTATTGTGTGCAC LYNTNAVAAAYLVCV 1976 T TATATACAATAGCAGTCCT	1066	A	GAACTTAGATCATTATATAA	TGCGGCCGCA	TATAATACAATAGCAGTCCT	ELRSLYNAAAYNTIAV
1068 A. CTTAGATCATTATATAA TGCGGCCGCA TATACATAGCAGTCCTCT LRSLYNMRPHINTAVL 1070 A. TTAGATCATTATATATAC TGCGGCCGCA AATACAATAGCAGTCCTCTAL LRSLYNTGARNTAVLY 10771 A. TAGATCATTATATATACAA TGCGGCCGCA ATACAATAGCAGTCCTCTAT RSLYNTGARNTAVLY 10721 TAGATCATTATATATATACAAT TGCGGCCGCA ACAATAGCAGTCCTCTATT RSLYNTRAPHTAVLY 10723 A. GATCATTATATATACAATA TGCGGCCGCA CAATAGCAGTCCTCTATTG SLYNTRAPHTAVLY 1073 A. GATCATTATATATACAATAG TGCGGCCGCA CAATAGCAGTCCTCTATTGT SLYNTRAPHTAVLY 1074 G. ATCATTATATATACAATAGC TGCGGCCGCA ATAGCAGTCCTCTATTGTGT SLYNTRAPHTAVLY 1075 C. TATTATATATACAATAGCAGT TGCGGCCGCA ATAGCAGTCCTCTATTGTGTG L'NTTACGATAVLYCV 1076 A. CATTATATATACAATAGCAGT TGCGGCCGCA CAGCAGTCCTCTATTGTGTGCAL L'NTTACAGTVLYCV 1077 G. ATTATATATACAATAGCAGT TGCGGCCGCA CAGTCCTCTATTGTGTGCAL VTTAVAAAAVLYCV 1077 G. ATTATATATACAATAGCAGT TGCGGCCGCA CAGTCCTCTATTGTGTGCAL VTTAVAAAAVLYCV 1078 TTATATATACAATAGCAGTCCT TGCGGGCCGCA CCCTCTATTGTGTGCAL	1067	T	AACTTAGATCATTATATAAT	TGCGGCCGCA	ATAATACAATAGCAGTCCTC	LRSLYNCGRNNTIAVL
1069 C CTTAGATCATTATATAACC TGCGGCCGCA ATACAATAGCAGTCCTCTA LRSLYNTAAANTIAVL 1070 A TTAGATCATTATATAATACA TGCGGGCCGCA ATACAATAGCAGTCCTCTAT RSLYNTGGRNTAVLY 1071 A TAGATCATTATATAATACAAT TGCGGGCCGCA ACAATAGCAGTCCTCTATT RSLYNTGGRNTAVLY 1072 T AGATCATTATATAATACAATA TGCGGCCGCA CAATAGCAGTCCTCTATTGT RSLYNTGGRNTAVLY 1073 A GATCATTATATAATACAATAG TGCGGCCGCA CAATAGCAGTCCTCTATTGTG SLYNTURPPOLAVLYC 1074 C ATCATTATATAATACAATAGC TGCGGCCGCA ATAGCAGTCCTCTATTGTGTG SLYNTURAPAUVLYC 1075 C TCATTATATAATACAATAGCAGT TGCGGCCGCA ATAGCAGTCCTCTATTGTGTG L'NTINAAGAUVLYC 1076 A CATTATATAATACAATAGCAGT TGCGGCCGCCA AGCAGTCCTCTATTGTGTGCAT L'NTIAAGAUVLYC 1077 G ATTATAATACAATAGCAGTCC TGCGGCCGCCA CAGTCTCTATTGTGTGCATC L'NTIAAGAUVLYC 1078 T TTATATACAATAGCAGTCCT TGCGGCCGCA CAGTCTCTATTGTGTGCATC L'NTIAAGAUVLYCVHCV 1089 T TATATACAATAGCAGTCCTCT GCGGCCGCA CCCTATTGTGTGCATCAAAG NTAVLYAAAUV	1068	Δ	ACTTAGATCATTATATATA	TGCGGCCGCA	TAATACAATAGCAGTCCTCT	LRSLYNMRPHNTIAVL
1070ATTAGATCATTATATATATACATGCGGCCGCATACAATAGCAGTCCTCTATFSL YNTTGGRNTIAVLY1071ATAGATCATTATATATATACAATGCGGCCGCATACAATAGCAGTCCTCTATTFSL YNTTGRNTIAVLY1072TAGGTCATTATATATACAATTGCGGCCGCACAATAGCAGTCCTCTATTGFSL YNTTGRNTIAVLY1073AGATCATTATATATACAATATGCGGCCGCACAATAGCAGTCCTCTATTGSL YNTTGRNTIAVLY1073AGATCATTATATAATACAATAGCTGCGGCCGCAACAATAGCAGTCCTCTATTGTGSL YNTTGRNTIAVLY1074GATCATTATATAATACAATAGCATGCGGCCGCAAATAGCAGTCCTCTATTGTGTSL YNTTGARNAVLYC1075CTCATTATATAATACAATAGCAGTGCGGCCGCAAGCAGTCCTCTATTGTGTGCAL YNTTAVAPAAVLYCV1077GATTATATAATACAATAGCAGTTGCGGCCGCAAGCAGTCCTCTATTGTGTGCACL YNTTAVAPAAVLYCV1078CTATATATACAATAGCAGTCTGCGGCCGCAAGTCCTCTATTGTGTGCACTCYNTTAVCARTVLYCVH1081TTATAATACAATAGCAGTCCTTGCGGCCGCACCCTCTATTGTGTGCATCANTAVLRPQULYCVH1082CATAATACAATAGCAGTCCTCTGCGGCCGCACCCTCTATTGTGTGCATCAANTAVLRPQULYCVH1083TTAATACAATAGCAGTCCTCTATGCGGCCGCACCTCTATTGTGTGCATCAAANTAVLRPQULYCVH1084AAATACAATAGCAGTCCTCTATTGCGGGCCGCACTCTATTGTGTGCATCAAAGGANTAVLLCGRILYCVHQ1085TATACAATAGCAGTCCTCTATTGCGGGCCGCACTATTGTGTGCATCAAAGGATIAVLYCGRIVCHQR1086TACAATAGCAGTCCTCTATTGCGGGCCGCACTATTGTGTGCATCAAAGGATIAVLYCGRIVCHQR1086 <td>1069</td> <td>C</td> <td>CTTAGATCATTATATAATAC</td> <td>TGCGGCCGCA</td> <td>AATACAATAGCAGTCCTCTA</td> <td>I BSI YNTAAANTIAVI</td>	1069	C	CTTAGATCATTATATAATAC	TGCGGCCGCA	AATACAATAGCAGTCCTCTA	I BSI YNTAAANTIAVI
1071 A TAGATCATTATATATATACAA TGCGGCCGCA ACCATAGCAGTCCTCTATT RSL YHTMRPHTAVLY 1072 T AGATCATTATATATATACAAT TGCGGCCGCA ACAATAGCAGTCCTCTATTG RSL YHTMRPHTAVLY 1073 A GATCATTATATATATACAATAG TGCGGCCGCA CAATAGCAGTCCTCTATTGT SL YHTICGRTIAVLYC 1074 G ATCATTATATAATACAATAG TGCGGCCGCA CAATAGCAGTCCTCTATTGT SL YHTICGRTIAVLYC 1076 C CATTATATAATACAATAGCA TGCGGCCGCA ATAGCAGTCCTCTATTGTGTG LYNTIAVGRGAVLYCV 1076 A CATTATATAATACAATAGCAGT TGCGGCCGCA AGAGTCCTCTATTGTGTGC LYNTIAVGRGAVLYCV 1077 G ATTATATAATACAATAGCAGT TGCGGCCGCA AGAGTCCTCTATTGTGTGC LYNTIAVGRAVLYCV 1078 T TTATATACAATAGCAGTCC TGCGGCCGCA AGATCCTTATTGTGTGCACT YNTIAVAAQAVLYCV 1089 C ATATACAATAGCAGTCCTCT TGCGGCCGCA TGCTATTGTGTGCACTAA NTIAVLPOVLYCVH 1088 T TAAATACAATAGCAGTCCTCTATTGTGGGCGCA CTCTATTGTGTGCACTAAA NTIAVLAQAVLYCVH 1084 A ATACAATAGCAGTCCTCTATTGTGGGCGCGA CTCTATTGTGTGCACTAAAAG NTIAVLYAAAALYCVHQ <t< td=""><td>1070</td><td>Δ</td><td>TTAGATCATTATATAATACA</td><td>TGCGGCCGCA</td><td>ATACAATAGCAGTCCTCTAT</td><td>RSLYNTCGRNTIAVLY</td></t<>	1070	Δ	TTAGATCATTATATAATACA	TGCGGCCGCA	ATACAATAGCAGTCCTCTAT	RSLYNTCGRNTIAVLY
1072 T AGATCATTATATATACAATA TGCGGCCGCA ACAATAGCATCCTCTATTG RELVHITAAATAVLY' 1073 A GATCATTATATATACAATA TGCGGCCGCA ACAATAGCATCCTCTATTG SLYNTICGRTIAVLYC 1074 G ATCATTATATATACAATAG TGCGGCCGCA AATAGCAGTCCTCTATTGT SLYNTICGRTIAVLYC 1075 A CATTATATATACAATAGCA TGCGGCCGCA ATAGCAGTCCTCTATTGTG SLYNTIAAATAVLYC 1076 A CATTATATATAACAATAGCA TGCGGCCGCA AGCAGTCCTCTATTGTGTG L'INTIAVRPOAVLYCV 1077 G ATTATATATACAATAGCAGT TGCGGCCGCA GAGCGCCCTCATTGTGTGGCA L'INTIAVRPOAVLYCV 1078 T TATATAATACAATAGCAGTC TGCGGCCGCA CAGTCCTCTATTGTGTGCAT YNTIAVLRPAVLYCV 1079 C TATATAATACAATAGCAGTCCT TGCGGCCGCA AGCTCCTTATTGTGTGCATCA YNTIAVLRAAVLYCVH 1081 T TATATACAATAGCAGTCCCTT TGCGGCCGCA CCTCTATTGTGTGCATCAA YNTIAVLAAVLYCVH 1082 C ATATACAATAGCAGTCCTCTAT TGCGGCCGCA CCTCTATTGTGTGCATCAA NTIAVLARAVLYCVHO 1083 T TAAACAATAGCAGTCCTCTAT TGCGGCCGCA CTCTATTGTGTGCATCAA NTIAVLARAVLYCVHO	1071	Â	TAGATCATTATATATACAA	TGCGGCCGCA	TACAATAGCAGTCCTCTATT	RSI YNTMRPHTIAVLY
1073 A GATCATTATATAGATAGAATA TGCGGCCGCA CAATAGCAGTCTTATTGT DELYMTHCGRTIAVLYC 1074 G ATCATTATATAATACAATAG TGCGGCCGCA CAATAGCAGTCCTTATTGT SLYMTHCGRTIAVLYC 1075 C TCATTATATAATACAATAGC TGCGGCCGCA ATAGCAGTCCTCTATTGTGT SLYMTHCGRTIAVLYC 1076 A CATTATATAATACAATAGCA TGCGGCCGCA ATAGCAGTCCTCTATTGTGTG LYNTHACGRTIAVLYC 1077 G ATTATATAATACAATAGCAGT TGCGGCCGCA AGCAGTCCTCTATTGTGTGC LYNTHAVGARAVLYCV 1078 T TTATATAATACAATAGCAGT TGCGGCCGCA CAGGTCCTCTATTGTGTGCAC LYNTHAVGARAVLYCV 1079 C TATATACAATAGCAGTCC TGCGGCCGCA AGTCCTCTATTGTGTGCACT YNTHAVLARAVLYCVH 1080 C ATATACAATAGCAGTCCTCT TGCGGCCGCA AGTCCTCATTGTGTGGCACA YNTAVLARAVLYCVH 1081 T TAATACAATAGCAGTCCTCT TGCGGCCGCA CCTCTATTGTGTGCACA NTIAVLARAVLYCVH 1082 C ATAACAATAGCAGTCCTCTAT TGCGGCCGCA CCTCTATTGTGTGCACAAAA NTIAVLYAAAVLYCVHO 1083 T TAAACAATAGCAGTCCTCTAT TGCGGCCGCA CTCTATTGTGTGCACAAAAAA NTIAVLYCHOCRNUVCHOR </td <td>1072</td> <td>÷</td> <td>AGATCATTATATATACAAT</td> <td>TGCGGCCGCA</td> <td>ACAATAGCAGTCCTCTATTG</td> <td>RSI VNTIAAATIAVI V</td>	1072	÷	AGATCATTATATATACAAT	TGCGGCCGCA	ACAATAGCAGTCCTCTATTG	RSI VNTIAAATIAVI V
1074 G ATCATTATATAATACAATAG Tescecceca AATAGCAGTCOTTATTGT SLVNTIVERPGIAVLVC 1075 C TCATTATATAATACAATAGC TescegcccgCA ATAGCAGTCOTTATTGTG SLVNTIVERPGIAVLVC 1076 A CATTATATAATACAATAGCA TescegcccgCA ATAGCAGTCCTCTATTGTGTG LVNTIAVARAAIAVLVC 1077 G ATTATATATACAATAGCAGT TescegcccGCA AGCAGTCCTCTATTGTGTGGC LVNTIAVRPAUVLVCV 1078 T TTATATAATACAATAGCAGT TescegcccGCA AGCAGTCCTCTATTGTGTGCAC LVNTIAVLAAAVLVCV 1079 C TTATATACAATAGCAGTCC TescegcccGCA AGCATCCTCTATTGTGTGCAT VNTIAVLPROVLVCVH 1080 C ATATACAATAGCAGTCCTCT TescegcccGCA ACTCTATTGTGTGCATCA NTIAVLCGRILYCVH 1081 T TAATACAATAGCAGTCCTCTA TGCGGCCGCA ACTCTATTGTGTGCATCAAA NTIAVLCGRILYCVH 10821 T AATACAATAGCAGTCCTCTAT TGCGGCCGCA CTCTATTGTGTGCATCAAAG NTIAVLCGRILYCVH 1083 T AATACAATAGCAGTCCTCTAT TGCGGCCGCA CTCTATTGTGTGCATCAAAGGA NTIAVLYAAALVCVHQ 1084 A AATACAATAGCAGTCCTCTATT TGCGGCCGCA TTTGTGTGCATCAAAGGATA IA	1072	•	GATCATTATATATACAATA	TGCGGCCGCA	CAATAGCAGTCCTCTATTGT	SI VNTICGRTIAVI VC
1075 C TCATTATATACAATAGC TGCGGCCGCA ATAGCAGTCCTCTATTGTGT SLINNTHAGAAAALVLVC 1076 A CATTATATAATACAATAGCA TGCGGCCGCA TGCGGCCCTCTATTGTGTG L'YNTTAVGRIAVLVCV 1077 G ATTATATAATACAATAGCA TGCGGCCGCA AGCAGTCCTCTATTGTGTGG L'YNTTAVGRIAVLVCV 1078 T TTATATAATACAATAGCAGT TGCGGCCGCA AGCAGTCCTCTATTGTGTGCA L'YNTTAVGRIAVLVCV 1078 T TTATATAATACAATAGCAGTC TGCGGCCGCA AGCAGTCCTCTATTGTGTGCAL L'YNTTAVGRIVLVCVH 1080 C ATATAATACAATAGCAGTCCT TGCGGCCGCA AGTCCTCTATTGTGTGCATCAA NTIAVLAAVLVCVH 1081 T TATAACAATAGCAGTCCTCT TGCGGCCGCA CCTATTGTGTGGCATCAAA NTIAVLAAVLVCHQ 1082 C ATAACAATAGCAGTCCTCTAT TGCGGCCGCA CCTATTGTGTGCATCAAAG NTIAVLAAVLVCHQ 1083 T TAATACAATAGCAGTCCTCTAT TGCGGCCGCA CTATTGTGTGCATCAAAGG TIAVLVLPHLVCHQ 1084 A ATACAATAGCAGTCCTCTATT TGCGGCCGCA TTGTGTGCATCAAAGGATT NTAVLAAAVCGRIVCHQ 1085 T ACAATAGCAGTCCTCTATTG TGCGGCCGCA TTTGTGTGCATCAAAGGATT NTAVLVPHVHQAAAVCVHQ	1074	G	ATCATTATATATATACAATAC	TGCGGCCGCA	AATAGCAGTCCTCTATTGTG	SI VNTIVRPOIAVI VC
1075 C. CATTATATAATACAATAGCA TGCGGCCGCA TAGCAGTCCTCATTGTGTG LYNTIACGRIAVLYCV 1077 G. ATTATATAATACAATAGCAGT TGCGGCCGCA AGCAGTCCTCTATTGTGTGC LYNTIAVGRIVLYCV 1078 T TTATATAATACAATAGCAGT TGCGGCCGCA AGCAGTCCTCTATTGTGTGCAC LYNTIAVLARAAVLYCV 1079 C TATATAAATACAATAGCAGTC TGCGGCCGCA CAGTCCTCTATTGTGTGCAC LYNTIAVLARAAVLYCV 1080 C ATATATACAATAGCAGTCCT TGCGGCCGCA AGCTCCTCTATTGTGTGCATCA YNTIAVLPROLYCVH 1081 T TATATACAATAGCAGTCCTC TGCGGCCGCA GCTCTCATTGTGTGCATCA NTIAVLCGRILYCVHO 1082 C ATAATACAATAGCAGTCCTCT TGCGGCCGCA CTCTATTGTGTGCATCAAAG NTIAVLCRRILYCVHO 1083 T AAATACAATAGCAGTCCTCTAT TGCGGCCGCA CTCTATTGTGTGCATCAAAGG NTIAVLYAAALYCVHO 1084 A ATACAATAGCAGTCCTCTATT TGCGGCCGCA CTTGTGTGCATCAAAGGAAT IAVLYCGRRIVCVHOR 1085 T ACAATAGCAGTCCTCTATTG TGCGGCCGCA TTGTGTGCATCAAAGGAATA IAVLYCARANCVHOR 1086 G ATAGCAGTCCTCTATTGT TGCGGCCGCCA TTGTGTGCATCAAAGGAATA IAVLYCAAACV	1074	G	TCATTATATATACAATAC	TGCGGCCGCA	ATAGCAGTCCTCTATTGTGT	SI VNTIAAAAIAVI VC
1077 G ATTATATAACAATAGCA TGCGGCCGCA AGCAGTCCTCTATTGTGTGC LVNTLAVAPAQAVLYCV 1077 G ATTATAATACAATAGCAGT TGCGGCCGCA GCAGTCCTCTATTGTGTGCA LVNTLAVAPAQAVLYCV 1078 T TTATATAATACAATAGCAGTC TGCGGCCGCA GCAGTCCTCTATTGTGTGCAC LVNTLAVAAAAVLYCV 1079 C TATATAATACAATAGCAGTCC TGCGGCCGCA AGCTCCTCTATTGTGTGCATC YNTLAVLPPQVLYCVH 1080 C ATATAATACAATAGCAGTCCT TGCGGCCGCA AGCTCCTCATTGTGTGCATCAA NTLAVLAAVLYCVH 1081 T TAATACAATAGCAGTCCTCT TGCGGCCGCA TCCTCTATTGTGTGCATCAAA NTLAVLAAVLYCVHQ 1082 C ATAATACAATAGCAGTCCTCTAT TGCGGCCGCA TCTATTGTGTGCATCAAAG NTLAVLAAVLYCVHQ 1083 T TACAATAGCAGTCCTCTATT TGCGGCCGCA TCTATTGTGTGCATCAAAGGAT TLAVLYCAAVCVHQ 1084 A ATACAATAGCAGTCCTCTATTG TGCGGCCGCA TTGTGTGCATCAAAGGAT TLAVLYCAAVCVHQ 1085 T ATACAATAGCAGTCCTCTATTG TGCGGCCGCA TTGTGTGCATCAAAGGAT TLAVLYCAAVCVHQR 1086 T ACAATAGCAGTCCTCTATTGT TGCGGCCGCA TTGTGTGCATCAAAGGAT TLAVLYCAAVCVHQR	1075	-	CATTATATATACAATACCA	TGCGGCCGCA	TACCACTCCTCTATTCTCTC	I VNTIACOPIAVI VCV
1077 G ATTATAATACAATAGCAGT TIGCGGCCGCA AGCAGTCCTCTATTGTGTGCAC LVNTIAVAAAAVLYCV 1078 T TTATAATACAATAGCAGTC TGCGGCCGCA CAGTCCTCTATTGTGTGCAT VNTIAVLAPQVLYCVH 1080 C ATAATACAATAGCAGTCC TGCGGCCGCA CAGTCCTCTATTGTGTGCATC VNTIAVLAPQVLYCVH 1081 T TATAATACAATAGCAGTCCT TGCGGCCGCA GTCCTCTATTGTGTGCATCA NVTIAVLAPQVLYCVH 1082 C ATAATACAATAGCAGTCCTCT TGCGGCCGCA CTCTCTATTGTGTGCATCAAA NTIAVLAPQVLYCVHQ 1083 T TAATACAATAGCAGTCCTCTA TGCGGCCGCA CTCTATTGTGTGCATCAAAG NTIAVLAPPULYCVHQ 1084 A AATACAATAGCAGTCCTCTAT TGCGGCCGCA CTCTATTGTGTGCATCAAAG NTIAVLXAALYCVHQ 1085 T ATACAATAGCAGTCCTCTATT TGCGGCCGCA CTCTATTGTGTGCATCAAAGGAT TIAVLYCARIYCVHQ 1086 T CAATAGCAGTCCTCTATTGT <tgcggccgca< td=""> TGTGTGCATCAAAGGAT TIAVLYCARIYCVHQ TIAVLYCARIYCVHQ 1087 G ACAATAGCAGTCCTCTATTGT<tgcgcgcgca< td=""> TGTGTGCATCAAAGGAT TAVLYLRPHYCVHQ TIATGTGTGCATCAAAGGAT TAVLYLRPHYCVHQ 1088 T CAATAGCAGTCCTCTATTGT<tgcgcgcgca< td=""> TGTGTG</tgcgcgcgca<></tgcgcgcgca<></tgcggccgca<>	1070	A .	ATTATATATATACAATACCAC	TOCOCCOCA	ACCACICCICIATICICIC	
1078 TATAATACAATAGCAGT TIGCGGCCGCA GCAGTCCTCTATTGTGGCAT VTIAVLARAAVLTCV 1080 C ATATAATACAATAGCAGTCC TGCGGCCGCA AGTCCTCTATTGTGTGCATC YNTIAVLARAVLYCVH 1081 T TATAATACAATAGCAGTCCT TGCGGCCGCA AGTCCTCTATTGTGTGCATCA YNTIAVLARAVLYCVH 1082 C ATAATACAATAGCAGTCCT TGCGGCCGCA GTCCTCTATTGTGTGCATCAA NTIAVLCGRIL/VCVHQ 1083 T TAATACAATAGCAGTCCTCTA TGCGGCCGCA CCTCTATTGTGTGCATCAAAG NTIAVLYAAALYCVHQ 1084 A AATACAATAGCAGTCCTCTAT TGCGGCCGCA CTCTATTGTGTGCATCAAAGG NTIAVLYCHQ 1085 T ATACAATAGCAGTCCTCTATT TGCGGCCGCA CTCATTGTGTGCATCAAAGGA TTAVLYCHQ 1086 T TACAATAGCAGTCCTCTATTGT TGCGGCCGCA ATGTGTGCATCAAAGGAT TAVLYCCAAYCVHQR 1087 G ACAATAGCAGTCCTCTATTGT TGCGGCCGCA ATGTGTGCATCAAAGGAT IAVLYCCAAYCVHQR 1088 T CAATAGCAGTCCTCTATTGT TGCGGCCGCA TTGTGTGCATCAAAGGATAGAT IAVLYCVAACVHQR 1089 G AATAGCAGTCCTCTATTGTGT TGCGGCCGCA TGTGTGCATCAAAGGATAGAT IAVLYCVAACVHQR <	10//	G	ATTATATATACAATAGCAG	TGCGGCCGCA	AGCAGICCICIAIIGIGIGC	LINIAVAPGAVLICV
1079 C TATATACAATAGCAGTC TGCGGCCGCA CAGTCCTCTATTGTGTGCATC TIMAVCBHTVLYCVH 1080 C ATATATACAATAGCAGTCCT TGCGGCCGCA GGTCCTCTATTGTGTGCATCA NTIAVLAGNLVCVH 1081 T TATAATACAATAGCAGTCCT TGCGGCCGCA GTCCTCTATTGTGTGCATCA NTIAVLCGRILVCVH 1082 C ATAATACAATAGCAGTCCTCT TGCGGCCGCA CCTCTATTGTGTGCATCAA NTIAVLCGRILVCVHQ 1083 T TAATACAATAGCAGTCCTCTAT TGCGGCCGCA CTCTATTGTGTGCATCAAAG NTIAVLCGRILVCVHQ 1084 A AATACAATAGCAGTCCTCTAT TGCGGCCGCA CTCTATTGTGTGCATCAAAGG TAVLVCGRIVCVHQR 1085 T ACAATAGCAGTCCTCTATT TGCGGCCGCA ATTGTGTGCATCAAAGGAT TIAVLYCABAYCVHQR 1086 T CAATAGCAGTCCTCTATTGT TGCGGCCGCA ATTGTGTGCATCAAAGGAT TIAVLYCABAYCVHQR 1087 G AATAGCAGTCCTCTATTGT TGCGGCCGCCA ATTGTGTGCATCAAAGGATA IAVLYCCBRIVCVHQR 1088 T CAATAGCAGTCCTCTATTGT TGCGGCCGCA ATTGTGTGCATCAAAGGATAGA IAVLYCVHQR 1089 G AATAGCAGTCCTCTATTGTGTGTGTGTGCGCCGCA TGTGTGCATCAAAGGATAGAT IAVLYCVHQR	10/8	-	TIATATAATACAATAGCAGT	TGCGGCCGCA	GCAGICCICIAIIGIGIGCA	LINIAVAAAAVLICV
1080 C ATATAATACAATAGCAGTCC TGCGGCCGCA AGTCCTCTATTGTGTGCATCA YNTIAVLAPAVLYCVH 1081 T TAATAACAATAGCAGTCCTC TGCGGCCGCA GTCCTCTATTGTGTGCATCAA NTIAVLCGRILYCVHQ 1082 C ATAATACAATAGCAGTCCTC TGCGGCCGCA TCCTCTATTGTGTGCATCAAA NTIAVLLAAALVCVHQ 1083 T TAATACAATAGCAGTCCTCTA TGCGGCCGCA CCTCTATTGTGTGCATCAAAG NTIAVLAAALVCVHQ 1084 A AATACAATAGCAGTCCTCTAT TGCGGCCGCA CCTTATTGTGTGCATCAAAGGA TAVLYCGRIYCVHQR 1085 T ATACAATAGCAGTCCTCTATT TGCGGCCGCA TCTATTGTGTGCATCAAAGGA TAVLYCGRIYCHQR 1086 T TACAATAGCAGTCCTCTATTG TGCGGCCGCA TATTGTGTGCATCAAAGGATA IAVLYCCAAVCVHQR 1087 G ACAATAGCAGTCCTCTATTGT TGCGGCCGCA TTGTGTGCATCAAAGGATAG IAVLYCCAAVCVHQR 1088 T CAATAGCAGTCCTCTATTGTGT TGCGGCCGCA TTGTGTGCATCAAAGGATAGA IAVLYCVAAACVHQR 1089 G AATAGCAGTCCTCTATTGTGT TGCGGCCGCA TGTGTGCATCAAAGGATAGAT IAVLYCVCARPHVHQRID 1099 T ATGCAGTCCTCTATTGTGTGCAT TGCGGCCGCA TGTGTGCATCAAAGGATAGAT IAV	1079	C	TATATAATACAATAGCAGTC	TGCGGCCGCA	CAGICCICIAIIGIGIGCAI	YNTIAVCGRTVLYCVH
1081TTATAATACAATAGCAGTCCTTGCGGCCGCAGTCCTCTATTGTGTGCATCAAYNTIAVLCAAVLYCVH1082CATAATACAATAGCAGTCCTCTTGCGGCCGCATCCTCTATTGTGTGCATCAAANTIAVLCGRLYCVHQ1083TTAATACAATAGCAGTCCTCTATGCGGCCGCACCTCTATTGTGTGCATCAAAGNTIAVLYAAALYCVHQ1084AAATACAATAGCAGTCCTCTATTGCGGCCGCACTCTATTGTGTGCATCAAAGNTIAVLYCAALYCVHQ1085TATACAATAGCAGTCCTCTATTTGCGGCCGCATCTATTGTGTGCATCAAAGGTIAVLYCAALYCVHQR1086TTACAATAGCAGTCCTCTATTGTGCGGCCGCATGTGTGTGCATCAAAGGATTIAVLYCCARYCVHQR1087GACAATAGCAGTCCTCTATTGTGCGGCCGCATGTGTGCATCAAAGGATAIAVLYCCAAYCVHQR1088TCAATAGCAGTCCTCTATTGTTGCGGCCGCATGTGTGCATCAAAGGATAGIAVLYCVAAAVCVHQR1089GAATAGCAGTCCTCTATTGTTTGCGGCCGCATGTGTGCATCAAAGGATAGAIAVLYCVAAACVHQR1099GTAGCAGTCCTCTATTGTGTGTGTGCGGCCGCATGTGTGCATCAAAGGATAGATAVLYCVAAAACVHQR1099GTAGCAGTCCTCTATTGTGTGCATGCGGCCGCATGTGTGCATCAAAGGATAGATGAAVLYCVHAAAAVHQRID1099AGCAGTCCTCTATTGTGTGCATTGCGGCCGCATGTGTCATCAAAGGATAGATGTAAVLYCVHAAAAVHQRID1099AGCAGTCCTCTATTGTGTGCATCAATGCGGCCGCATGCATCAAAGGATAGATGTAAVLYCVHAAAAVHQRID1099AGCAGTCCTCTATTGTGTGCATCAATGCGGCCGCATGCATCAAAGGATAGATGTAAAVLYCVHARPAHVHQID1099AGCCTCTATTGTGTGCATCAATGCGGCCGCATGCATCAAAGGATAGATGTAAAVLYCVHARPAHVHQID<	1080	С	ATATAATACAATAGCAGTCC	TGCGGCCGCA	AGTCCTCTATTGTGTGCATC	YNTIAVLRPQVLYCVH
1082CATAATAGAATAGCAGTCCTCTGCGGCCGCATCCTCTATTGTGTGCATCAANTIAVLCGRILVCVHQ1083TTAATACAATAGCAGTCCTCTATGCGGCCGCACCTCTATTGTGTGCATCAAANTIAVLYAAALYCVHQ1084AAATACAATAGCAGTCCTCTATTGCGGCCGCACCTCTATTGTGTGCATCAAAGGNTIAVLYCARLYCVHQ1085TATACAATAGCAGTCCTCTATTGCGGCCGCACTATTGTGTGCATCAAAGGATIAVLYCARLYCVHQ1086TTACAATAGCAGTCCTCTATTGTGCGGCCGCACTATTGTGTGCATCAAAGGATTIAVLYCAARYCVHQR1087GACAATAGCAGTCCTCTATTGTTGCGGCCGCAATTGTGTGCATCAAAGGATAIAVLYCCGRNCVHQR1088TCAATAGCAGTCCTCTATTGTTGCGGCCGCAATTGTGTGCATCAAAGGATAGIAVLYCVAAACVHQR1089GAATAGCAGTCCTCTATTGTGTTGCGGCCGCATGTGTGCATCAAAGGATAGAIAVLYCVAAACVHQR1099TATAGCAGTCCTCTATTGTGTGTGCGGCCGCAGTGTGGCATCAAAGGATAGATAVLYCVCRPHCVHQR1099TATAGCAGTCCTCTATTGTGTGCATGCGGCCGCAGTGTGCATCAAAGGATAGATAVLYCVAAACVHQR1099TCAGCAGTCCTCTATTGTGTGCATTGCGGCCGCAGTGCATCAAAGGATAGATGAVLYCVHAAAVHQRID1092CAGCAGTCCTCTATTGTGTGCATTGCGGCCGCATGTGCATCAAAGGATAGATGAVLYCVHAAAVHQRID1093AGCAGTCCTCTATTGTGTGCATCATGCGGCCGCATGTCATCAAAGGATAGATGTAAVLYCVHAAAVHQRID1094TCAGTCCTCTATTGTGTGCATCATGCGGCCGCACATCAAAGGATAGATGTAAAVLYCVHAAAVHQRIDV1095CAGTCCTCTATTGTGTGCATCAATGCGGCCGCACATCAAAGGATAGATGTAAAVLYCVHAAAVHQRIDV1	1081	Т	TATAATACAATAGCAGTCCT	TGCGGCCGCA	GTCCTCTATTGTGTGCATCA	YNTIAVLAAAVLYCVH
1083TTAATACAATAGCAGTCCTCTTGCGGCCGCACCTCATTGTGTGCATCAAAGNTIAVLLRPHLYCVHQ1084AAATACAATAGCAGTCCTCTATTGCGGCCGCACTCTATTGTGTGCATCAAAGGNTIAVLYAAALYCVHQ1085TATACAATAGCAGTCCTCTATTTGCGGCCGCACTATTGTGTGCATCAAAGGATIAVLYCGRIYCVHQR1086TTACAATAGCAGTCCTCTATTTGCGGCCGCACTATTGTGTGCATCAAAGGATIAVLYCGRIYCVHQR1087GACAATAGCAGTCCTCTATTGTTGCGGCCGCAATTGTGTGCATCAAAGGATIAVLYCAAAYCVHQR1088TCAATAGCAGTCCTCTATTGTGTGCGGCCGCAATTGTGTGCATCAAAGGATAGIAVLYCVRPHCVHQR1089GAATAGCAGTCCTCTATTGTGTTGCGGCCGCATGTGTGCATCAAAGGATAGAIAVLYCVAAAYCVHQR1090TATAGCAGTCCTCTATTGTGTGTGCGGCCGCATGTGTGCATCAAAGGATAGATIAVLYCVAAACVHQR1091GTAGCAGTCCTCTATTGTGTGTGCGGCCGCAGTGTGCATCAAAGGATAGATAVLYCVCRPHVHQRID1092CAGCAGTCCTCTATTGTGTGCATGCGGCCGCAGTGTGCATCAAAGGATAGATGAVLYCVLRAAAVHQRID1093AGCCCTCTATTGTGTGCATCTGCGGCCGCAGCATCAAAGGATAGATGTAVLYCVHAAAVHQRID1094TCAGTCCTCTATTGTGTGCATCATGCGGCCGCACATCAAAGGATAGATGTAAVLYCVHAAAHVARID1095CAGTCCTCTATTGTGTGCATCAATGCGGCCGCACATCAAAGGATAGATGTAAAVLYCVHAGRANRDRIDV1096AGTCCTCTATTGTGTGCATCAAATGCGGCCGCAACACAAAGGATAGATGTAAAALYCVHQCAGRNQRIDVK1097ATCCTCTATTGTGTGCATCAAATGCGGCCGCAACACAAAGGATAGATGTAAAALYCVHQCAGRNQRIDVK1098<	1082	С	ATAATACAATAGCAGTCCTC	TGCGGCCGCA	TCCTCTATTGTGTGCATCAA	NTIAVLCGRILYCVHQ
1084AAATACAATAGCAGTCCTCTATTGCGGCCGCACTCTATTGTGTGCATCAAAGGNTAVLYAAALYCVHQ1085TATACAATAGCAGTCCTCTATTTGCGGCCGCATCTATTGTGTGCATCAAAGGTIAVLYCGRIYCVHQR1086TTACAATAGCAGTCCTCTATTTGCGGCCGCACTATTGTGTGCATCAAAGGATIAVLYCRAAYCVHQR1087GACAATAGCAGTCCTCTATTGTTGCGGCCGCAATTGTGTGCATCAAAGGATTIAVLYCAAAYCVHQR1088TCAATAGCAGTCCTCTATTGTTGCGGCCGCAATTGTGTGCATCAAAGGATAIAVLYCCGRNCVHQRI1089GAATAGCAGTCCTCTATTGTGTGCGGCCGCAATTGTGTGCATCAAAGGATAGAIAVLYCVRPHCVHQRI1099TATAGCAGTCCTCTATTGTGTTGCGGCCGCAGTGTGCATCAAAGGATAGATAVLYCVGRSVHQRI1091GTAGCAGTCCTCTATTGTGTGTGCGGCCGCAGTGTGCATCAAAGGATAGATGAVLYCVGGRSVHQRI1092CAGCAGTCCTCTATTGTGTGCATTGCGGCCGCATGCGTCCAAAGGATAGATGAVLYCVGGRSVHQRI1093AGCAGTCCTCTATTGTGTGCATTGCGGCCGCATGCATCAAAGGATAGATGAVLYCVHCGRMHQRIDV1094TCAGTCCTCTATTGTGTGCATCTGCGGCCGCATGCATCAAAGGATAGATGTAVLYCVHCRMHQRIDV1095CAGTCCTCTATTGTGTGCATCATGCGGCCGCAATCAAAGGATAGATGTAAAVLYCVHCGRMHQRIDV1096AGTCCTCTATTGTGTGCATCAATGCGGCCGCAATCAAAGGATAGATGTAAAAVLYCVHCGRMHQRIDV1097ATCCTCTATTGTGTGCATCAAATGCGGCCGCAATCAAAGGATAGATGTAAAAVLYCVHCGRMHQRIDV1097AGCCTCTATTGTGTGCATCAAATGCGGCCGCAATCAAAGGATAGATGTAAAAGLYCVHCGRMQRIDVK1099G<	1083	T	TAATACAATAGCAGTCCTCT	TGCGGCCGCA	CCTCTATTGTGTGCATCAAA	NTIAVLLRPHLYCVHQ
1085TATACAATAGCAGTCCTCTATTGCGGCCGCATCTATTGTGTGCATCAAAGGATIAVLYCGRIVCVHQR1086TTACAATAGCAGTCCTCTATTTGCGGCCGCACTATTGTGTGCATCAAAGGATIAVLYLRPHYCVHQR1087GACAATAGCAGTCCTCTATTGTTGCGGCCGCAATTGTGTGCATCAAAGGATIAVLYCCAAYCVHQR1088TCAATAGCAGTCCTCTATTGTTGCGGCCGCAATTGTGTGCATCAAAGGATAGIAVLYCCAAYCVHQR1089GAATAGCAGTCCTCTATTGTGTTGCGGCCGCAATTGTGTGCATCAAAGGATAGIAVLYCVAAAVCHQR1090TATAGCAGTCCTCTATTGTGTGTGCGGCCGCATGTGTGCATCAAAGGATAGAIAVLYCVAAAVHORI1091GTAGCAGTCCTCTATTGTGTGCTGCGGCCGCAGTGCATCAAAGGATAGATGAVLYCVCGRSVHQRID1092CAGCAGTCCTCTATTGTGTGCATGCGGCCGCAGTGCATCAAAGGATAGATGAVLYCVLRPHVHQRID1093AGCAGTCCTCTATTGTGTGCATTGCGGCCGCAGTGCATCAAAGGATAGATGTAVLYCVHAAAVHORID1094TCAGTCCTCTATTGTGTGCATTGCGGCCGCATGCATCAAAGGATAGATGTAAVLYCVHCARMHQRIDV1095CAGTCCTCTATTGTGTGCATCATGCGGCCGCACATCAAAGGATAGATGTAAAVLYCVHLRAAHORIDV1096AGTCCTCTATTGTGTGCATCAATGCGGCCGCACATCAAAGGATAGATGTAAAALYCVHQCGRNQRIDVK1097ATCCTCTATTGTGTGCATCAAATGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQCGRNQRIDVK1098ACCTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQCGRNQRIDVK1099GCTCATTGTGTGCATCAAAGTGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRAAARANDKDKD1101 <td< td=""><td>1084</td><td>A</td><td>AATACAATAGCAGTCCTCTA</td><td>TGCGGCCGCA</td><td>CTCTATTGTGTGCATCAAAG</td><td>NTIAVLYAAALYCVHQ</td></td<>	1084	A	AATACAATAGCAGTCCTCTA	TGCGGCCGCA	CTCTATTGTGTGCATCAAAG	NTIAVLYAAALYCVHQ
1086TTÁCAATAGCAGTCCTCTATTTGCGGCCGCACTATTGTGTGCATCAAAGGATIAVLYLRPHYCVHQR1087GACAATAGCAGTCCTCTATTGTGCGGCCGCATATTGTGTGCATCAAAGGATAIAVLYCAAAYCVHQR1088TCAATAGCAGTCCTCTATTGTTGCGGCCGCAATTGTGTGCATCAAAGGATAIAVLYCCGRNCVHQRI1089GAATAGCAGTCCTCTATTGTGTGCGGCCGCATTGTGTGCATCAAAGGATAGIAVLYCVCRPHCVHQRI1090TATAGCAGTCCTCTATTGTGTTGCGGCCGCATGTGTGCATCAAAGGATAGAIAVLYCVCAAACVHQRI1091GTAGCAGTCCTCTATTGTGTTGCGGCCGCAGTGTGCATCAAAGGATAGATAVLYCVCAAACVHQRI1092CAGCAGTCCTCTATTGTGTGCTGCGGCCGCATGTGTGCATCAAAGGATAGATGTAVLYCVLRPHVHQRID1093AGCAGTCCTCTATTGTGTGCATTGCGGCCGCATGCATCAAAGGATAGATGTVLYCVHAAAVHQRID1094TCAGTCCTCTATTGTGTGCATTGCGGCCGCAGCATCAAAGGATAGATGTAAVLYCVHAAAVHQRID1095CAGTCCTCTATTGTGTGCATCTGCGGCCGCAGCATCAAAGGATAGATGTAAVLYCVHAAAHQRIDV1096AGTCCTCTATTGTGTGCATCATGCGGCCGCAATCAAAGGATAGATGTAAAVLYCVHAAAHQRIDV1097ATCCTCTATTGTGTGCATCAAAGTGCGGCCGCAATCAAAGGATAGATGTAAAAGALYCVHQRGRNQRIDVK1098ACCTCTATTGTGTGCATCAAAGTGCGGCCGCAATCAAAGGATAGATGTAAAAGALYCVHQRGRQRNQKDVK1099GCTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRRQRNQRDVKD1100GTCTATTGTGTGCATCAAAGGATTGCGGCCGCAAAAGGATAGATGTAAAAGACCYCHQRRQRRNDVKD1101 <t< td=""><td>1085</td><td>Т</td><td>ATACAATAGCAGTCCTCTAT</td><td>TGCGGCCGCA</td><td>TCTATTGTGTGCATCAAAGG</td><td>TIAVLYCGRIYCVHQR</td></t<>	1085	Т	ATACAATAGCAGTCCTCTAT	TGCGGCCGCA	TCTATTGTGTGCATCAAAGG	TIAVLYCGRIYCVHQR
1087GACAATAGCAGTCCTCTATTGTGCGGCCGCATATTGTGTGCATCAAAGGATTIAVLYCAAAYCVHQR1088TCAATAGCAGTCCTCTATTGTTGCGGCCGCAATTGTGTGCATCAAAGGATAGIAVLYCCGRNCVHQRI1089GAATAGCAGTCCTCTATTGTGTGCGGCCGCATTGTGTGCATCAAAGGATAGAIAVLYCCGRNCVHQRI1090TATAGCAGTCCTCTATTGTGTTGCGGCCGCATGTGTGCATCAAAGGATAGAIAVLYCVAAACVHQRI1091GTAGCAGTCCTCTATTGTGTGTGCGGCCGCATGTGCATCAAAGGATAGATAVLYCVCRPHCVHQRID1092CAGCAGTCCTCTATTGTGTGCTGCGGCCGCATGTGCATCAAAGGATAGATGAVLYCVLRPHVHQRID1093AGCAGTCCTCTATTGTGTGCATTGCGGCCGCATGTGCATCAAAGGATAGATGTAVLYCVLRPHVHQRID1094TCAGTCCTCTATTGTGTGCATCTGCGGCCGCATGCATCAAAGGATAGATGTAAVLYCVHAAAVHQRID1095CAGTCCTCTATTGTGTGCATCTGCGGCCGCAACTCAAAGGATAGATGTAAAVLYCVHLRPQHQRIDV1096AGTCCTCTATTGTGTGCATCAATGCGGCCGCAATCAAAGGATAGATGTAAAAVLYCVHLRPQHQRIDV1097ATCCTCTATTGTGTGCATCAATGCGGCCGCAATCAAAGGATAGATGTAAAAGALYCVHQCGRNQRIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCAAAAGGATAGATGTAAAAGALYCVHQRAAQRIDVKD1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCAAAAGGATAGATGTAAAAGACLYCVHQRAAAQRIDVKD1099ACCTCTATTGTGTGCATCAAAGTGCGGCCGCAAAAGGATAGATGTAAAAGACLYCVHQRAAAQRIDVKD1099ACCTCTATTGTGTGCATCAAAGTGCGGCCGCAAAAGGATGAAAAGACCYCVHQRAAAAGRIDVKD1099 <td< td=""><td>1086</td><td>Т</td><td>TACAATAGCAGTCCTCTATT</td><td>TGCGGCCGCA</td><td>CTATTGTGTGCATCAAAGGA</td><td>TIAVLYLRPHYCVHQR</td></td<>	1086	Т	TACAATAGCAGTCCTCTATT	TGCGGCCGCA	CTATTGTGTGCATCAAAGGA	TIAVLYLRPHYCVHQR
1088TCAATAGCAGTCCTCTATTGTTGCGGCCGCAATTGTGTGCATCAAAGGATAIAVLYCCGRNCVHQRI1089GAATAGCAGTCCTCTATTGTGTTGCGGCCGCATTGTGTGCATCAAAGGATAGAIAVLYCVRPHCVHQRI1090TATAGCAGTCCTCTATTGTGTTGCGGCCGCATGTGTGCATCAAAGGATAGAIAVLYCVRAAACVHQRI1091GTAGCAGTCCTCTATTGTGTGTGCGGCCGCATGTGTGCATCAAAGGATAGATAVLYCVCAAACVHQRI1092CAGCAGTCCTCTATTGTGTGCTGCGGCCGCAGTGTGCATCAAAGGATAGATGAVLYCVLRPHVHQRID1093AGCAGTCCTCTATTGTGTGCATGCGGCCGCAGTGCATCAAAGGATAGATGTAVLYCVLRPHVHQRID1094TCAGTCCTCTATTGTGTGCATTGCGGCCGCAGTGCATCAAAGGATAGATGTAVLYCVHCGRMHORIDV1095CAGTCCTCTATTGTGTGCATCATGCGGCCGCAGCATCAAAGGATAGATGTAAVLYCVHLRPQHQRIDV1096AGTCCTCTATTGTGTGCATCATGCGGCCGCACATCAAAGGATAGATGTAAAAVLYCVHLRPQHQRIDV1097ATCCTCTATTGTGTGCATCAATGCGGCCGCACATCAAAGGATAGATGTAAAAVLYCVHLRPQHQRIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCACAAAGGATAGATGTAAAAALYCVHQCGRNQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGACYCVHQRRRPQRIDVKD1099GCTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACAYCVHQRRRPQRIDVKD1099GCTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACACYCVHQRRRPQRIDVKD1099GCTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACACCYCVHQRRRPQRIDVKD1	1087	G	ACAATAGCAGTCCTCTATTG	TGCGGCCGCA	TATTGTGTGCATCAAAGGAT	TIAVLYCAAAYCVHQR
1089GAATAGCAGTCCTCTATTGTGTGCGGCCGCATTGTGTGCATCAAAGGATAGAIAVLYCVRPHCVHQRI1090TATAGCAGTCCTCTATTGTGTGTGCGGCCGCATGTGTGCATCAAAGGATAGAIAVLYCVCAAACVHQRI1091GTAGCAGTCCTCTATTGTGTGTGCGGCCGCATGTGTGCATCAAAGGATAGATAVLYCVCARSVHQRID1092CAGCAGTCCTCTATTGTGTGCTGCGGCCGCATGTGCATCAAAGGATAGATGAVLYCVLRPHVHQRID1093AGCAGTCCTCTATTGTGTGCATTGCGGCCGCAGTGCATCAAAGGATAGATGTAVLYCVHAAAVHQRID1094TCAGTCCTCTATTGTGTGCATTGCGGCCGCAGTGCATCAAAGGATAGATGTAVLYCVHAAAVHQRID1095CAGTCCTCTATTGTGTGCATCTGCGGCCGCAGCATCAAAGGATAGATGTAAVLYCVHLRPQHQRIDV1096AGTCCTCTATTGTGTGCATCATGCGGCCGCACATCAAAGGATAGATGTAAAVLYCVHHAAAHQRIDV1097ATCCTCTATTGTGTGCATCAATGCGGCCGCAACAAGGATAGATGTAAAALYCVHQCGRNQRIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCAACAAGGATAGATGTAAAAGALYCVHQCRANQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRCGRKRIDVKD1100GTCTATTGTGTGCATCAAAGGATGCGGCCGCAAAAGGATAGATGTAAAAGACAYCVHQRCGRKRIDVKD1101ACTATTGTGTGCATCAAAGGATTGCGGCCGCAAAGGATAGATGTAAAAGACACCYCVHQRCGRKRIDVKDT1102TTATTGTGTGCATCAAAGGATAGATTGCGGCCGCAAGGATAGATGTAAAAGACACCYCVHQRCGRKRIDVKDT1103AATTGTGTGCATCAAAGGATAGATTGCGGCCGCAAGATAGATGTAAAAGACACCAAYCVHQRHRPQRIDVKDT <td< td=""><td>1088</td><td>Т</td><td>CAATAGCAGTCCTCTATTGT</td><td>TGCGGCCGCA</td><td>ATTGTGTGCATCAAAGGATA</td><td>IAVLYCCGRNCVHQRI</td></td<>	1088	Т	CAATAGCAGTCCTCTATTGT	TGCGGCCGCA	ATTGTGTGCATCAAAGGATA	IAVLYCCGRNCVHQRI
1090TATAGCAGTCCTCTATTGTGTTGCGGCCGCATGTGTGCATCAAAGGATAGAIAVLYCVAAACVHQRI1091GTAGCAGTCCTCTATTGTGTGTGCGGCCGCAGTGTGCATCAAAGGATAGATAVLYCVCGRSVHQRID1092CAGCAGTCCTCTATTGTGTGCTGCGGCCGCATGTGCATCAAAGGATAGATGAVLYCVLRPHVHQRID1093AGCAGTCCTCTATTGTGTGCATTGCGGCCGCAGTGCATCAAAGGATAGATGTAVLYCVHAAAVHQRID1094TCAGTCCTCTATTGTGTGCATCTGCGGCCGCAGTGCATCAAAGGATAGATGTAVLYCVHCGRMHQRIDV1095CAGTCCTCTATTGTGTGCATCTGCGGCCGCAGCACTCAAAGGATAGATGTAAVLYCVHCGRMHQRIDV1096AGTCCTCTATTGTGTGCATCATGCGGCCGCACATCAAAGGATAGATGTAAAVLYCVHCGRMQRIDVK1097ATCCTCTATTGTGTGCATCAATGCGGCCGCACATCAAAGGATAGATGTAAAALYCVHQCGRNQRIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCAATCAAAGGATAGATGTAAAAGLYCVHQCGRNQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCAAAAGGATAGATGTAAAAGALYCVHQCGRNQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCAAAAGGATAGATGTAAAAGALYCVHQCGRNQRIDVKD1101ACTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRCRRKIDVKD1102TTATTGTGTGCATCAAAGGATTGCGGCCGCAAGGATAGATGTAAAAGACACCCVHQRIDRAARIDVKD1103AATTGTGTGCATCAAAGGATATGCGGCCGCAAGGATAGATGTAAAAGACACCCVHQRIDRAARIDVKD1104GTTGTGTGCATCAAAGGATAGATTGCGGCCGCAATAGATGTAAAAGACACCAAGGVHQRIDVRADVKDTK1105 <td< td=""><td>1089</td><td>G</td><td>AATAGCAGTCCTCTATTGTG</td><td>TGCGGCCGCA</td><td>TTGTGTGCATCAAAGGATAG</td><td>IAVLYCVRPHCVHQRI</td></td<>	1089	G	AATAGCAGTCCTCTATTGTG	TGCGGCCGCA	TTGTGTGCATCAAAGGATAG	IAVLYCVRPHCVHQRI
1091GTAGCAGTCCTCTATTGTGTGTGCGGCCGCAGTGTGCATCAAAGGATAGATAVLYCVCGRSVHQRID1092CAGCAGTCCTCTATTGTGTGCTGCGGCCGCAGTGTGCATCAAAGGATAGATGAVLYCVLRPHVHQRID1093AGCAGTCCTCTATTGTGTGCATGCGGCCGCAGTGCATCAAAGGATAGATGAVLYCVLARPHVHQRID1094TCAGTCCTCTATTGTGTGCATTGCGGCCGCAGTGCATCAAAGGATAGATGTAVLYCVHAAAVHQRID1095CAGTCCTCTATTGTGTGCATCTGCGGCCGCAGCATCAAAGGATAGATGTAAVLYCVHCGRMHQRIDV1096AGTCCTCTATTGTGTGCATCATGCGGCCGCACATCAAAGGATAGATGTAAAVLYCVHLRPQHQRIDVK1097ATCCTCTATTGTGTGCATCAATGCGGCCGCACATCAAAGGATAGATGTAAAALYCVHQCGRNQRIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQCGRNQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGACYCVHQRGRRNQRIDVK1099GCTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRGRRNQRIDVK1099GCTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRGRRNDVKD1100GTCTATTGTGTGCATCAAAGGATTGCGGCCGCAAAGGATAGATGTAAAAGACACYCVHQRIAAARIDVKD1101ACTATTGTGTGCATCAAAGGATATGCGGCCGCAAAGGATAGATGTAAAAGACACCCVHQRIVRPOIDVKDT1102TTTTGTGTGCATCAAAGGATATGCGGCCGCAAAGGATAGATGTAAAAGACACCCVHQRINAAARIDVKD1103AATTGTGTGCATCAAAGGATAGATTGCGGCCGCAATGATGTAAAAGACACCAAGVHQRIDVRPQDVKDT1104<	1090	T	ATAGCAGTCCTCTATTGTGT	TGCGGCCGCA	TGTGTGCATCAAAGGATAGA	IAVLYCVAAACVHORI
1092CAGCAGTCCTCTATTGTGTGCATGCGGCCGCATGTGCATCAAAGGATAGATGAVLYCVLRPHVHQRID1093AGCAGTCCTCTATTGTGTGCATGCGGCCGCATGTGCATCAAAGGATAGATGAVLYCVLRPHVHQRID1094TCAGTCCTCTATTGTGTGCATTGCGGCCGCATGCATCAAAGGATAGATGTAVLYCVHLRPQHQRIDV1095CAGTCCTCTATTGTGTGCATCTGCGGCCGCAGCATCAAAGGATAGATGTAAVLYCVHLRPQHQRIDV1096AGTCCTCTATTGTGTGCATCATGCGGCCGCACATCAAAGGATAGATGTAAAVLYCVHLRPQHQRIDV1097ATCCTCTATTGTGTGCATCAATGCGGCCGCAATCAAAGGATAGATGTAAAALYCVHQCGRNQRIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCACAAAGGATAGATGTAAAAGLYCVHQAGARAQRIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQCGRNQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQSAAAQRIDVK1100GTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRCGRKRIDVKD1101ACTATTGTGTGCATCAAAGGATTGCGGCCGCAAAGGATAGATGTAAAAGACACYCVHQRIGARAIDVKD1102TTATTGTGTGCATCAAAGGATTGCGGCCGCAAGGATAGATGTAAAAGACACCCVHQRICARRIDVKD1103AATTGTGTGCATCAAAGGATAGATGCGGCCGCAGATAGATGTAAAAGACACCACVHQRIDAAAIDVKDT1104GTTGTGTGCATCAAAGGATAGATGCGGCCGCAATAGATGTAAAAGACACCAACVHQRIDAAAIDVKDT1105ATGTGTGCATCAAAGGATAGATTGCGGCCGCAATAGATGTAAAAGACACCAAGVHQRIDVRAAAVKDTK1106 <td< td=""><td>1091</td><td>G</td><td>TAGCAGTCCTCTATTGTGTG</td><td>TGCGGCCGCA</td><td>GTGTGCATCAAAGGATAGAT</td><td>AVLYCVCGRSVHORID</td></td<>	1091	G	TAGCAGTCCTCTATTGTGTG	TGCGGCCGCA	GTGTGCATCAAAGGATAGAT	AVLYCVCGRSVHORID
1093AGCAGTCCTCTATTGTGTGCATTGCGGCCGCAGTGCATCAAAGGATAGATGTA/L/YCVHAAAVHQRID1094TCAGTCCTCTATTGTGTGCATTGCGGCCGCATGCATCAAAGGATAGATGTAVLYCVHCGRMHQRIDV1095CAGTCCTCTATTGTGTGCATCTGCGGCCGCAGCATCAAAGGATAGATGTAVLYCVHCGRMHQRIDV1096AGTCCTCTATTGTGTGCATCATGCGGCCGCACATCAAAGGATAGATGTAAVLYCVHLAAAHQRIDV1096AGTCCTCTATTGTGTGCATCAATGCGGCCGCACATCAAAGGATAGATGTAAAAVLYCVHCAGRNQRIDVK1097ATCCTCTATTGTGTGCATCAATGCGGCCGCAATCAAAGGATAGATGTAAAALYCVHQCGRNQRIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCAAAAGGATAGATGTAAAAGALYCVHQCGRNQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQCGRNQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCAAAAGGATAGATGTAAAAGALYCVHQRCGRKRIDVKD1100GTCTATTGTGTGCATCAAAGGATGCGGCCGCAAAAGGATAGATGTAAAAGACACYCVHQRCGRKRIDVKD1101ACTATTGTGTGCATCAAAGGATTGCGGCCGCAAGGATAGATGTAAAAGACACCCVHQRIDAAARIDVKD1102TTATTGTGTGCATCAAAGGATAGTGCGGCCGCAGATAGATGTAAAAGACACCACVHQRIDAAARIDVKD1103AATTGTGTGCATCAAAGGATAGATTGCGGCCGCAGATAGATGTAAAAGACACCAACVHQRIDAAARIDVKDT1104GTTGTGTGCATCAAAGGATAGATTGCGGCCGCAATAGATGTAAAAGACACCAAGGVHQRIDVRDDVKDTK1105ATGTGTGCATCAAAGGATAGATTGCGGCCGCAATAGATGTAAAAGACACCAAGGVHQRIDVRDDVKDTK1	1002	C	AGCAGTCCTCTATTGTGTGC	TGCGGCCGCA	TGTGCATCAAAGGATAGATG	AVLYCVI RPHVHORID
1094TCAGTCCTCTATTGTGTGCATCTGCGGCCGCATGCATCAAAGGATAGATGTAVLYCVHCGRMHQRIDV1095CAGTCCTCTATTGTGTGCATCTGCGGCCGCAGCATCAAAGGATAGATGTAVLYCVHLRPQHQRIDV1096AGTCCTCTATTGTGTGCATCATGCGGCCGCACATCAAAGGATAGATGTAAAVLYCVHLRPQHQRIDV1097ATCCTCTATTGTGTGCATCAATGCGGCCGCACATCAAAGGATAGATGTAAAAVLYCVHLRPQHQRIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCACATCAAAGGATAGATGTAAAALYCVHQCGRNQRIDVK1099GCTCTATTGTGTGCATCAAATGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQCGRNQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGACLYCVHQRAAAQRIDVK1099GCTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRGRKRIDVKD1100GTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACACYCVHQRIAAARIDVKD1101ACTATTGTGTGCATCAAAGGATTGCGGCCGCAAAGGATAGATGTAAAAGACACCYCVHQRIAAARIDVKD1102TTATTGTGTGCATCAAAGGATATGCGGCCGCAGGATAGATGTAAAAGACACCCVHQRIVRPQIDVKDT1103AATTGTGTGCATCAAAGGATAGTGCGGCCGCAGATAGATGTAAAAGACACCAACVHQRIVRPQIDVKDT1104GTTGTGTGCATCAAAGGATAGATTGCGGCCGCAATAGATGTAAAAGACACCAAGGVHQRIDCGRIDVKDTK1105ATGTGTGCATCAAAGGATAGATTGCGGCCGCAATAGATGTAAAAGACACCAAGGVHQRIDVRPQDVKDTK1106TGTGTGCATCAAAGGATAGATTGCGGCCGCAAGATGTAAAAGACACCAAGGVHQRIDVRPQDVKDTK11	1002	4	GCAGTCCTCTATTCTCTCCCA	TGCGGCCGCA	GTGCATCAAAGGATAGATGT	AVI VCVHAAAVHORID
1095C. AGTCCTCATTGTGTGCATCTGCGGCCGCAGCATCAAAGGATAGATGTAAVLYCVHLRPQHQRIDV1095C. AGTCCTCATTGTGTGCATCATGCGGCCGCAGCATCAAAGGATAGATGTAAAVLYCVHLRPQHQRIDV1096A. GTCCTCTATTGTGTGCATCATGCGGCCGCACATCAAAGGATAGATGTAAAVLYCVHLARPQHQRIDVK1097A. TCCTCTATTGTGTGCATCAATGCGGCCGCAATCAAAGGATAGATGTAAAALYCVHQCGRNQRIDVK1098A. CCTCTATTGTGTGCATCAAATGCGGCCGCAATCAAAGGATAGATGTAAAAGLYCVHQCGRNQRIDVK1098G. CTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQCGRNQRIDVK1099G. CTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGACLYCVHQSAAAQRIDVK1100G. TCTATTGTGTGCATCAAAGGATGCGGCCGCAAAAGGATAGATGTAAAAGACAYCVHQRCGRKRIDVKD1101A. CTATTGTGTGCATCAAAGGATTGCGGCCGCAAAGGATAGATGTAAAAGACACYCVHQRICARRIDVKD1102T. TATTGTGTGCATCAAAGGATATGCGGCCGCAAGGATAGATGTAAAAGACACCCVHQRICARRIDVKD1103A. ATTGTGTGCATCAAAGGATAGTGCGGCCGCAGATAGATGTAAAAGACACCACVHQRICARRIDVKDT1104G. TTGTGTGCATCAAAGGATAGATGCGGCCGCAATAGATGTAAAAGACACCAACVHQRIDAAAIDVKDT1105A. TGTGTGCATCAAAGGATAGATTGCGGCCGCAATAGATGTAAAAGACACCAAGVHQRIDVRDVKDTK1106T. GTGTGCATCAAAGGATAGATTGCGGCCGCAAGATGTAAAAGACACCAAGGVHQRIDVRDVKDTK1106T. GTGGCATCAAAGGATAGATGTGCGGCCGCAAGATGTAAAAGACACCAAGGAVHQRIDVRDVKDTK1106T. GTGGCATCAAAGGATAGATGTGCGGCCGCAAGATGTAAAAGACACCAAGGAVHQRIDVRDVKDTK <td>1004</td> <td>÷</td> <td>CAGICCTCTATTCTCTCCAT</td> <td>TGCGGCCGCA</td> <td>TGCATCAAAGGATAGATGTA</td> <td>VIVCVHCGRMHOPIDV</td>	1004	÷	CAGICCTCTATTCTCTCCAT	TGCGGCCGCA	TGCATCAAAGGATAGATGTA	VIVCVHCGRMHOPIDV
1096AGTCCTCTATTGTGTGCATCATGCGGCCGCAGCATCAAAGGATAGATGTAAAVLTCVHLAAAHQRIDV1096AGTCCTCTATTGTGTGCATCAATGCGGCCGCACATCAAAGGATAGATGTAAAALYCVHQCGRNQRIDVK1097ATCCTCTATTGTGTGCATCAAATGCGGCCGCAATCAAAGGATAGATGTAAAALYCVHQCGRNQRIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCACAAAGGATAGATGTAAAAGLYCVHQCGRNQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQSAAAQRIDVK1100GTCTATTGTGTGCATCAAAGGTGCGGCCGCACAAAGGATAGATGTAAAAGACYCVHQRCGRKRIDVKD1101ACTATTGTGTGCATCAAAGGATGCGGCCGCAAAAGGATAGATGTAAAAGACACYCVHQRCGRKRIDVKD1102TTATTGTGTGCATCAAAGGATTGCGGCCGCAAGAGATAGATGTAAAAGACACYCVHQRIAAARIDVKD1102TTATTGTGTGCATCAAAGGATTGCGGCCGCAGGATAGATGTAAAAGACACCYCVHQRICGRRIDVKD1102TTATTGTGTGCATCAAAGGATATGCGGCCGCAGATAGATGTAAAAGACACCCVHQRICGRRIDVKD1103AATTGTGTGCATCAAAGGATAGATGCGGCCGCAGATAGATGTAAAAGACACCACVHQRIDAAAIDVKDT1105ATGTGTGCATCAAAGGATAGATGCGGCCGCAATAGATGTAAAAGACACCAAGVHQRIDVRDDVKDTK1106TGTGTGCATCAAAGGATAGATTGCGGCCGCAAGATGTAAAAGACACCAAGGVHQRIDVRADVKDTK1108TGTGCATCAAAGGATAGATGTTGCGGCCGCAAGATGTAAAAGACACCAAGGAVHQRIDVRADVKDTK1109ATGCATCAAAGGATAGATGTTGCGGCCGCAAGATGTAAAAGACACCAAGGAVHQRIDVAADVKDTK1109A	1005	Ċ	AGTOCTOTATTOTOTOCATO	TGCGGCCCCA	CCATCAAAGGATAGATGTAA	VI VCVHI BROHODIDV
1097AGTCCTCTATTGTGTGCATCAATGCGGCCGCACATCAAAGGATAGATGTAAAAVTCVHQCGRNQRIDVK1097ATCCTCTATTGTGTGCATCAAATGCGGCCGCAATCAAAGGATAGATGTAAAAALYCVHQCGRNQRIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCATCAAAGGATAGATGTAAAAGLYCVHQCGRNQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQRCGRKRIDVKD1109GTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRCGRKRIDVKD1101ACTATTGTGTGCATCAAAGGATGCGGCCGCAAAGGATAGATGTAAAAGACAYCVHQRDRDRDIDVKD1102TTATTGTGTGCATCAAAGGATTGCGGCCGCAAAGGATAGATGTAAAAGACACYCVHQRIAAARIDVKD1103AATTGTGTGCATCAAAGGATATGCGGCCGCAGGATAGATGTAAAAGACACCCVHQRIVRPQIDVKDT1104GTTGTGTGCATCAAAGGATAGTGCGGCCGCAGATAGATGTAAAAGACACCACVHQRIDRNPQIDVKDT1105ATGTGTGCATCAAAGGATAGATGCGGCCGCAATAGATGTAAAAGACACCAACVHQRIDVRPQIDVKDT1106TGTGTGCATCAAAGGATAGATTGCGGCCGCAAGATGTAAAAGACACCAAGGVHQRIDCGRIDVKDTK1107GTGTGCATCAAAGGATAGATGTGCGGCCGCAAGATGTAAAAGACACCAAGGAVHQRIDVRPQDVKDTK1108TGTGCATCAAAGGATAGATGTTGCGGCCGCAATGTAAAAGACACCAAGGAAHQRIDVCGRNVKDTKE1109ATGCATCAAAGGATAGATGTATGCGGCCGCAATGTAAAAGACACCAAGGAAHQRIDVAAADVKDTKE1108TGTGCATCAAAGGATAGATGTATGCGGCCGCAATGTAAAAGACACCAAGGAAHQRIDVCGRNVKDTKE1110<	1095	0	AGICCICIATIGIGIGCAIC	TOCOCOCOCA	CATCAAACCATACATCTAAA	VIVOVHHAAAHODIDV
1097ATCCTCTATTGTGTGCATCAATGCGGCCGCAATCAAAGGATAGATGTAAAAGLTCVHQCGRNQHIDVK1098ACCTCTATTGTGTGCATCAAATGCGGCCGCATCAAAGGATAGATGTAAAAGLYCVHQMRPHQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQMRPHQRIDVK1100GTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRCGRKRIDVKD1101ACTATTGTGTGCATCAAAGGATGCGGCCGCAAAGGATAGATGTAAAAGACAYCVHQRCGRKRIDVKD1102TTATTGTGTGCATCAAAGGATTGCGGCCGCAAGGATAGATGTAAAAGACACYCVHQRIAAARIDVKD1103AATTGTGTGCATCAAAGGATATGCGGCCGCAGGATAGATGTAAAAGACACCCVHQRICGRRIDVKD1104GTTGTGTGCATCAAAGGATAGATGCGGCCGCAGGATAGATGTAAAAGACACCACVHQRICGRRIDVKDT1105AATGTGTGCATCAAAGGATAGATGCGGCCGCAATAGATGTAAAAGACACCAACVHQRIDAAAIDVKDT1106TGTGTGCATCAAAGGATAGATTGCGGCCGCAAGATGTAAAAGACACCAAAGGVHQRIDVRPQIDVKDTK1107GTGTGCATCAAAGGATAGATGTGCGGCCGCAAGATGTAAAAGACACCAAAGGVHQRIDVRPQDVKDTK1108TGTGCATCAAAGGATAGATGTGCGGCCGCAAGATGTAAAAGACACCAAGGAVHQRIDVRPQDVKDTK1109ATGCATCAAAGGATAGATGTTGCGGCCGCAATGTAAAAGACACCAAGGAHQRIDVCGRNVKDTKE1109ATGCATCAAAGGATAGATGTATGCGGCCGCAATGTAAAAGACACCAAGGAAHQRIDVCGRNVKDTKE1110AGCATCAAAGGATAGATGTAATGCGGCCGCAATGAAAAGACACCAAGGAAHQRIDVCGRNVKDTKE1110A <td>1096</td> <td>A</td> <td>TOCTOTATIGIGIGCAICA</td> <td>TOCCOCCA</td> <td>ATCAAAGGATAGATGTAAA</td> <td>L VOVHOCODHODIDVIV</td>	1096	A	TOCTOTATIGIGIGCAICA	TOCCOCCA	ATCAAAGGATAGATGTAAA	L VOVHOCODHODIDVIV
1098ACCTCTATTGTGTGCATCAAAGTGCGGCCGCATCAAAGGATAGATGTAAAAGLTCVHQMHPHQRIDVK1099GCTCTATTGTGTGCATCAAAGTGCGGCCGCACAAAGGATAGATGTAAAAGALYCVHQSAAAQRIDVK1100GTCTATTGTGTGCATCAAAGGTGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRCGRKRIDVKD1101ACTATTGTGTGCATCAAAGGATGCGGCCGCAAAAGGATAGATGTAAAAGACYCVHQRCGRKRIDVKD1102TTATTGTGTGCATCAAAGGATTGCGGCCGCAAGGATAGATGTAAAAGACACYCVHQRIGRRIDVKD1103AATTGTGTGCATCAAAGGATATGCGGCCGCAGGATAGATGTAAAAGACACCVHQRICGRRIDVKDT1104GTTGTGTGCATCAAAGGATAGTGCGGCCGCAGATAGATGTAAAAGACACCACVHQRICGRRIDVKDT1105ATGTGTGCATCAAAGGATAGATGCGGCCGCAATAGATGTAAAAGACACCAACVHQRIDAAAIDVKDT1106TGTGTGCATCAAAGGATAGATTGCGGCCGCAAGATGTAAAAGACACCAAGVHQRIDVRDDVKDTK1108TGTGCATCAAAGGATAGATGTGCGGCCGCAAGATGTAAAAGACACCAAGGVHQRIDVRPQDVKDTK1109ATGCATCAAAGGATAGATGTTGCGGCCGCAAGATGTAAAAGACACCAAGGAVHQRIDVAAADVKDTK1109ATGCATCAAAGGATAGATGTATGCGGCCGCAATGTAAAAGACACCAAGGAAHQRIDVCGRNVKDTKE1110AGCATCAAAGGATAGATGTATGCGGCCGCAATGTAAAAGACACCAAGGAAHQRIDVCGRNVKDTKE1110AGCATCAAAGGATAGATGTAATGCGGCCGCAATGTAAAAGACACCAAGGAAGHQRIDVCGRNVKDTKE1110AGCATCAAAGGATAGATGTAATGCGGCCGCAGTAAAAGACACCAAGGAAGHQRIDVNAAAVKDTKE1110AGC	1097	A	COTOTATIGIGIGCAICAA	TOCOGOCOCA	TOAAAGGATAGATGTAAAA	LYCVHQUGHNQHIDVK
1099 G CTCTATTGTGTGCATCAAAGG TGCGGCCGCA CAAAGGATAGATGTAAAAGA LVCVHQRCGRKRIDVKD 1100 G TCTATTGTGTGCATCAAAGG TGCGGCCGCA CAAAGGATAGATGTAAAAGAC YCVHQRCGRKRIDVKD 1101 A CTATTGTGTGCATCAAAGGA TGCGGCCGCA AAGGATAGATGTAAAAGACA YCVHQRCGRKRIDVKD 1102 T TATTGTGTGCATCAAAGGAT TGCGGCCGCA AAGGATAGATGTAAAAGACAC YCVHQRIAAARIDVKD 1102 T TATTGTGTGCATCAAAGGATA TGCGGCCGCA AGGATAGATGTAAAAGACAC YCVHQRIAAARIDVKD 1103 A ATTGTGTGCATCAAAGGATA TGCGGCCGCA GATAGATGTAAAAGACACC CVHQRIVRPQIDVKDT 1104 G TTGTGTGCATCAAAGGATAGA TGCGGCCGCA GATAGATGTAAAAGACACCAA CVHQRIDAAARIDVKDT 1105 A TGTGTGCATCAAAGGATAGAT TGCGGCCGCA ATAGATGTAAAAGACACCAAG CVHQRIDAAADIVKDTK 1106 T GTGTGCATCAAAGGATAGAT TGCGGCCGCA AGATGTAAAAGACACCAAGG VHQRIDCGRIDVKDTK 1107 G TGTGCATCAAAGGATAGATG TGCGGCCGCA AGATGTAAAAGACACCAAGGA VHQRIDVRPQDVKDTK 1108 T GTGCATCAAAGGATAGATGTA TGCGGCCGCA AAGTGTAAAAGACACCAAGGAA HQRIDV	1098	A	CCTCTATIGIGIGCATCAAA	TGCGGCCGCA	TCAAAGGATAGATGTAAAAG	LTCVHQMRPHQRIDVK
1100 G TCTATTGTGTGCATCAAAGG TGCGGCCGCA AAAGGATAGATGTAAAAGAC YCVHQRCGRKRIDVKD 1101 A CTATTGTGTGCATCAAAGGA TGCGGCCGCA AAGGATAGATGTAAAAGACA YCVHQRMRPQRIDVKD 1102 T TATTGTGTGCATCAAAGGAT TGCGGCCGCA AAGGATAGATGTAAAAGACA YCVHQRMARPQRIDVKD 1102 T TATTGTGTGCATCAAAGGAT TGCGGCCGCA AGGATAGATGTAAAAGACAC YCVHQRIAAARIDVKD 1103 A ATTGTGTGCATCAAAGGATA TGCGGCCGCA AGGATAGATGTAAAAGACACC CVHQRIVRPQIDVKDT 1104 G TTGTGTGCATCAAAGGATAG TGCGGCCGCA AGATAGATGTAAAAGACACCA CVHQRIDARIDVKDT 1105 A TGTGTGCATCAAAGGATAGAT TGCGGCCGCA ATAGATGTAAAAGACACCAA CVHQRIDVKDTKDT 1106 T GTGTGCATCAAAGGATAGATG TGCGGCCGCA TAGATGTAAAAGACACCAAGG VHQRIDVRPQDVKDTK 1106 T GTGCATCAAAGGATAGATG TGCGGCCGCA AGATGTAAAAGACACCAAGG VHQRIDVRPQDVKDTK 1107 G TGTGCATCAAAGGATAGATGT TGCGGCCGCA AGATGTAAAAGACACCAAGGA VHQRIDVRPQDVKDTK 1108 T GTGCATCAAAGGATAGATGTA TGCGGCCGCA AGTGTAAAAGACACCAAGGAA HQRIDVCGRNVKDT	1099	G	CICIAIIGIGIGCATCAAAG	IGCGGCCGCA	CAAAGGATAGATGTAAAAGA	LTCVHQSAAAQRIDVK
1101ACTATTGTGTGCATCAAAGGATGCGGCCGCAAAGGATAGATGTAAAAGACAYCVHQRIAAARIDVKD1102TTATTGTGTGCATCAAAGGATTGCGGCCGCAAGGATAGATGTAAAAGACACYCVHQRIAAARIDVKD1103AATTGTGTGCATCAAAGGATATGCGGCCGCAGGATAGATGTAAAAGACACCCVHQRIAAARIDVKD1104GTTGTGTGCATCAAAGGATAGTGCGGCCGCAGGATAGATGTAAAAGACACCACVHQRICGRRIDVKDT1105ATGTGTGCATCAAAGGATAGATGCGGCCGCAATAGATGTAAAAGACACCACVHQRIDAAAIDVKDT1105ATGTGTGCATCAAAGGATAGATGCGGCCGCAATAGATGTAAAAGACACCAACVHQRIDAAAIDVKDT1106TGTGTGCATCAAAGGATAGATTGCGGCCGCAAGATGTAAAAGACACCAAGGVHQRIDVRPQDVKDTK1107GTGTGCATCAAAGGATAGATGTGCGGCCGCAAGATGTAAAAGACACCAAGGAVHQRIDVRPQDVKDTK1108TGTGCATCAAAGGATAGATGTTGCGGCCGCAAGATGTAAAAGACACCAAGGAVHQRIDVRPQDVKDTK1109ATGCATCAAAGGATAGATGTATGCGGCCGCAATGTAAAAGACACCAAGGAAHQRIDVCGRNVKDTKE1110AGCATCAAAGGATAGATGTAATGCGGCCGCAGTAAAAGACACCAAGGAAGHQRIDVCGRNVKDTKE1111ACATCAAAGGATAGATGTAAATGCGGCCGCAGTAAAAGACACCAAGGAAGCHQRIDVNAAAVKDTKE1112AATCAAAGGATAGATGTAAATGCGGCCGCAGTAAAAGACACCAAGGAAGCHQRIDVNAAAVKDTKE1112AATCAAAGGATAGATGTAAATGCGGCCGCATAAAAGACACCAAGGAAGCQRIDVNAAAVKDTKE	1100	G	TCTATTGTGTGCATCAAAGG	IGCGGCCGCA	AAAGGATAGATGTAAAAGAC	YCVHQHCGHKRIDVKD
1102 T TATTGTGTGCATCAAAGGAT TGCGGCCGCA AGGATAGATGTAAAAGACAC YCVHORIAAARIDVKD 1103 A ATTGTGTGCATCAAAGGATA TGCGGCCGCA GGATAGATGTAAAAGACACC CVHORICGRRIDVKDT 1104 G TTGTGTGCATCAAAGGATAG TGCGGCCGCA GATAGATGTAAAAGACACCA CVHORIVARDIDVKDT 1105 A TGTGTGCATCAAAGGATAGA TGCGGCCGCA GATAGATGTAAAAGACACCA CVHORIVARDIDVKDT 1106 T GTGTGCATCAAAGGATAGAT TGCGGCCGCA ATAGATGTAAAAGACACCAAG VHORIDAAAIDVKDT 1106 T GTGTGCATCAAAGGATAGAT TGCGGCCGCA AGATGTAAAAGACACCAAG VHORIDAAAIDVKDTK 1106 T GTGTGCATCAAAGGATAGATG TGCGGCCGCA AGATGTAAAAGACACCAAGG VHQRIDVRDVKDTK 1107 G TGTGCATCAAAGGATAGATG TGCGGCCGCA AGATGTAAAAGACACCAAGGA VHQRIDVRDVKDTKK 1108 T GTGCATCAAAGGATAGATGTA TGCGGCCGCA GATGTAAAAGACACCAAGGAA VHQRIDVAADVKDTKK 1109 A TGCATCAAAGGATAGATGTA TGCGGCCGCA ATGTAAAAGACACCAAGGAA HQRIDVCGRNVKDTKE 1110 A GC	1101	A	CTATTGTGTGCATCAAAGGA	TGCGGCCGCA	AAGGATAGATGTAAAAGACA	YCVHQRMRPQRIDVKD
1103 A ATTGTGTGCATCAAAGGATA TGCGGCCGCA GGATAGATGTAAAAGACACC CVHQRICGRRIDVKDT 1104 G TTGTGTGCATCAAAGGATAG TGCGGCCGCA GATAGATGTAAAAGACACCA CVHQRIVRPQIDVKDT 1105 A TGTGTGCATCAAAGGATAGA TGCGGCCGCA ATAGATGTAAAAGACACCAA CVHQRIDAADUVKDT 1106 T GTGTGCATCAAAGGATAGAT TGCGGCCGCA ATAGATGTAAAAGACACCAAA CVHQRIDCRIDVKDTK 1106 T GTGTGCATCAAAGGATAGAT TGCGGCCGCA ATAGATGTAAAAGACACCAAGG VHQRIDCGRIDVKDTK 1107 G TGTGCATCAAAGGATAGATG TGCGGCCGCA AGATGTAAAAGACACCAAGG VHQRIDVRPQDVKDTK 1108 T GTGCATCAAAGGATAGATGT TGCGGCCGCA GATGTAAAAGACACCAAGGA VHQRIDVRPQDVKDTK 1109 A TGCATCAAAGGATAGATGTA TGCGGCCGCA ATGTAAAAGACACCAAGGAA HQRIDVCGRNVKDTKE 1110 A GCATCAAAGGATAGATGTAA TGCGGCCGCA TGTAAAAGACACCAAGGAAG HQRIDVMAAVKDTKE 1111 A GCATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGC QRIDVMAAVKDTKE 1111 A CATCAAAGGATAGATGTAAAA TGCGGCCGCA GTAAAAGACACCCAAGGAAGC QRIDVMAAVKDTKE <td>1102</td> <td>T</td> <td>TATTGTGTGCATCAAAGGAT</td> <td>TGCGGCCGCA</td> <td>AGGATAGATGTAAAAGACAC</td> <td>YCVHQRIAAARIDVKD</td>	1102	T	TATTGTGTGCATCAAAGGAT	TGCGGCCGCA	AGGATAGATGTAAAAGACAC	YCVHQRIAAARIDVKD
1104 G TTGTGTGCATCAAAGGATAG TGCGGCCGCA GATAGATGTAAAAGACACCA CVHQRIVRPQIDVKDT 1105 A TGTGTGCATCAAAGGATAGA TGCGGCCGCA ATAGATGTAAAAGACACCAA CVHQRIVRPQIDVKDT 1106 T GTGTGCATCAAAGGATAGAT TGCGGCCGCA ATAGATGTAAAAGACACCAAG CVHQRIDCGRIDVKDTK 1106 T GTGTGCATCAAAGGATAGAT TGCGGCCGCA TAGATGTAAAAGACACCAAG VHQRIDCGRIDVKDTK 1107 G TGTGCATCAAAGGATAGATG TGCGGCCGCA AGATGTAAAAGACACCAAGG VHQRIDVRDVKDTK 1108 T GTGCATCAAAGGATAGATGT TGCGGCCGCA AGATGTAAAAGACACCAAGGA VHQRIDVAAADVKDTK 1109 A TGCATCAAAGGATAGATGTA TGCGGCCGCA ATGTAAAAGACACCAAGGAA HQRIDVCGRNVKDTKE 1109 A TGCATCAAAGGATAGATGTAA TGCGGCCGCA ATGTAAAAGACACCAAGGAAG HQRIDVCGRNVKDTKE 1110 A GCATCAAAGGATAGATGTAA TGCGGCCGCA ATGAAAGACACCAAGGAAG HQRIDVMAAVKDTKE 1111 A CATCAAAGGATAGATGTAAAA TGCGGCCGCA GTAAAGACACCAAGGAAGCC HQRIDVNAAAVKDTKE 1112 A	1103	A	ATTGTGTGCATCAAAGGATA	TGCGGCCGCA	GGATAGATGTAAAAGACACC	CVHQRICGRRIDVKDT
1105 A TGTGTGCATCAAAGGATAGA TGCGGCCGCA ATAGATGTAAAAGACACCAA CVHQRIDAAAIDVKDT 1106 T GTGTGCATCAAAGGATAGAT TGCGGCCGCA TAGATGTAAAAGACACCAAG VHQRIDCGRIDVKDTK 1107 G TGTGCATCAAAGGATAGAT TGCGGCCGCA AGATGTAAAAGACACCAAGG VHQRIDVRDVKDTK 1108 T GTGCATCAAAGGATAGATG TGCGGCCGCA AGATGTAAAAGACACCAAGGA VHQRIDVRPQDVKDTK 1108 T GTGCATCAAAGGATAGATGT TGCGGCCGCA AGATGTAAAAGACACCAAGGA VHQRIDVAAADVKDTK 1109 A TGCATCAAAGGATAGATGTA TGCGGCCGCA ATGTAAAAGACACCAAGGAA HQRIDVCGRNVKDTKE 1110 A GCATCAAAGGATAGATGTAA TGCGGCCGCA TGTAAAAGACACCAAGGAAG HQRIDVCGRNVKDTKE 1111 A CATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGC HQRIDVNAAAVKDTKE 1111 A CATCAAAGGATAGATGTAAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGC HQRIDVNAAAVKDTKE 1112 A ATCAAAGGATAGATGTAAAA TGCGGCCGCA TAAAAGACACCAAGGAAGCC QRIDVNAAAVKDTKE	1104	G	TTGTGTGCATCAAAGGATAG	TGCGGCCGCA	GATAGATGTAAAAGACACCA	CVHQRIVRPQIDVKDT
1106 T GTGTGCATCAAAGGATAGAT TGCGGCCGCA TAGATGTAAAAGACACCAAGG VHQRIDCGRIDVKDTK 1107 G TGTGCATCAAAGGATAGATG TGCGGCCGCA AGATGTAAAAGACACCAAGG VHQRIDVRPQDVKDTK 1108 T GTGCATCAAAGGATAGATG TGCGGCCGCA GATGTAAAAGACACCAAGGA VHQRIDVRPQDVKDTK 1109 A TGCATCAAAGGATAGATGTA TGCGGCCGCA GATGTAAAAGACACCAAGGAA HQRIDVCGRNVKDTKE 1109 A TGCATCAAAGGATAGATGTA TGCGGCCGCA ATGTAAAAGACACCAAGGAA HQRIDVCGRNVKDTKE 1110 A GCATCAAAGGATAGATGTAA TGCGGCCGCA GTAAAAGACACCAAGGAAG HQRIDVCGRNVKDTKE 1111 A CATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGC HQRIDVNAAAVKDTKE 1111 A CATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGC QRIDVNAAAVKDTKE 1112 A ATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGCC QRIDVNAAAVKDTKE	1105	A	TGTGTGCATCAAAGGATAGA	TGCGGCCGCA	ATAGATGTAAAAGACACCAA	CVHQRIDAAAIDVKDT
1107 G TGTGCATCAAAGGATAGATG TGCGGCCGCA AGATGTAAAAGACACCAAGG VHQRIDVRPQDVKDTK 1108 T GTGCATCAAAGGATAGATGT TGCGGCCGCA GATGTAAAAGACACCAAGGA VHQRIDVAAADVKDTK 1109 A TGCATCAAAGGATAGATGTA TGCGGCCGCA ATGTAAAAGACACCAAGGAA HQRIDVAAADVKDTK 1109 A TGCATCAAAGGATAGATGTA TGCGGCCGCA ATGTAAAAGACACCAAGGAA HQRIDVCGRNVKDTKE 1110 A GCATCAAAGGATAGATGTAA TGCGGCCGCA TGTAAAAGACACCAAGGAAG HQRIDVMRPHVKDTKE 1111 A CATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGC HQRIDVNAAAVKDTKE 1112 A ATCAAAGGATAGATGTAAA TGCGGCCGCA TAAAGACACCAAGGAAGCC QRIDVNAAAVKDTKE	1106	Т	GTGTGCATCAAAGGATAGAT	TGCGGCCGCA	TAGATGTAAAAGACACCAAG	VHQRIDCGRIDVKDTK
1108 T GTGCATCAAAGGATAGATGT TGCGGCCGCA GATGTAAAAGACACCAAGGA VHQRIDVAAADVKDTK 1109 A TGCATCAAAGGATAGATGTA TGCGGCCGCA ATGTAAAAGACACCAAGGAA HQRIDVCGRNVKDTKE 1110 A GCATCAAAGGATAGATGTAA TGCGGCCGCA ATGTAAAAGACACCAAGGAA HQRIDVCGRNVKDTKE 1111 A GCATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGC HQRIDVNAAAVKDTKE 1111 A CATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGC HQRIDVNAAAVKDTKE 1112 A ATCAAAGGATAGATGTAAAA TGCGGCCGCA TAAAGACACCAAGGAAGCC HQRIDVNAAAVKDTKE	1107	G	TGTGCATCAAAGGATAGATG	TGCGGCCGCA	AGATGTAAAAGACACCAAGG	VHQRIDVRPQDVKDTK
1109 A TGCATCAAAGGATAGATGTA TGCGGCCGCA ATGTAAAAGACACCAAGGAA HQRIDVCGRNVKDTKE 1110 A GCATCAAAGGATAGATGTAA TGCGGCCGCA TGTAAAAGACACCAAGGAAG HQRIDVMRPHVKDTKE 1111 A CATCAAAGGATAGATGTAA TGCGGCCGCA GTAAAAGACACCAAGGAAGC HQRIDVNAAVKDTKE 1112 A CATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGC HQRIDVNAAAVKDTKE 1112 A ATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGCC HQRIDVNAAAVKDTKE	1108	Т	GTGCATCAAAGGATAGATGT	TGCGGCCGCA	GATGTAAAAGACACCAAGGA	VHQRIDVAAADVKDTK
1110 A GCATCAAAGGATAGATGTAA TGCGGCCGCA TGTAAAAGACACCAAGGAAG HQRIDVMRPHVKDTKE 1111 A CATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCAAGGAAGC HQRIDVNAAAVKDTKE 1112 A ATCAAAGGATAGATGTAAA TGCGGCCGCA TAAAAGACACCAAGGAAGC HQRIDVNAAAVKDTKE 1112 A ATCAAAGGATAGATGTAAA TGCGGCCGCA TAAAAGACACCAAGGAAGCC QRIDVKCGRIKDTKEA	1109	A	TGCATCAAAGGATAGATGTA	TGCGGCCGCA	ATGTAAAAGACACCAAGGAA	HQRIDVCGRNVKDTKE
1111 A CATCAAAGGATAGATGTAAA TGCGGCCGCA GTAAAAGACACCCAAGGAAGC HQRIDVNAAAVKDTKE 1112 A ATCAAAGGATAGATGTAAAA TGCGGCCGCA TAAAAGACACCAAGGAAGCC QRIDVKCGRIKDTKEA	1110	A	GCATCAAAGGATAGATGTAA	TGCGGCCGCA	TGTAAAAGACACCAAGGAAG	HQRIDVMRPHVKDTKE
1112 A ATCAAAGGATAGATGTAAAA TGCGGCCGCA TAAAAGACACCAAGGAAGCC QRIDVKCGRIKDTKEA	1111	A	CATCAAAGGATAGATGTAAA	TGCGGCCGCA	GTAAAAGACACCAAGGAAGC	HQRIDVNAAAVKDTKE
	1112	A	ATCAAAGGATAGATGTAAAA	TGCGGCCGCA	TAAAAGACACCAAGGAAGCC	QRIDVKCGRIKDTKEA

1113	G	TCAAAGGATAGATGTAAAAG	TGCGGCCGCA	AAAAGACACCAAGGAAGCCT	QRIDVKVRPQKDTKEA
1114	A	CAAAGGATAGATGTAAAAGA	TGCGGCCGCA	AAAGACACCAAGGAAGCCTT	ORIDVKDAAAKDTKEA
1114	6	AAACCATACATCTAAAACAC	TGCGGCCGCA	AAGACACCAAGGAAGCCTTA	BIDVKDCGBKDTKFAL
1115		AAAGGATAGATGTAAAAGACA	TOCOCCOCA	AGACACCAAGGAAGCCTTAG	BIDVKDMBPODTKEAL
1110	A	AAGGATAGATGTAAAAGACA	TOCOCCOCA	CACACCAAGGAAGCCTTAGA	PIDVKDTAAADTKEAI
1117	C	AGGATAGATGTAAAAGACAC	TGCGGCCGCA	GACACCAAGGAAGCCTTAGA	IDVKDTOODNITKEALD
1118	C	GGATAGATGTAAAAGACACC	TGCGGCCGCA	ACACCAAGGAAGCCTTAGAT	DVKDTUDDUTKEALD
1119	A	GATAGATGTAAAAGACACCA	TGCGGCCGCA	CACCAAGGAAGCCTTAGATA	IDVKDTMHPHTKEALD
1120	A	ATAGATGTAAAAGACACCAA	TGCGGCCGCA	ACCAAGGAAGCCTTAGATAA	IDVKDINAAAIKEALD
1121	G	TAGATGTAAAAGACACCAAG	TGCGGCCGCA	CCAAGGAAGCCTTAGATAAG	DVKDTKCGRTKEALDK
1122	G	AGATGTAAAAGACACCAAGG	TGCGGCCGCA	CAAGGAAGCCTTAGATAAGA	DVKDTKVRPHKEALDK
1123	A	GATGTAAAAGACACCAAGGA	TGCGGCCGCA	AAGGAAGCCTTAGATAAGAT	DVKDTKDAAAKEALDK
1124	A	ATGTAAAAGACACCAAGGAA	TGCGGCCGCA	AGGAAGCCTTAGATAAGATA	VKDTKECGRKEALDKI
1125	G	TGTAAAAGACACCAAGGAAG	TGCGGCCGCA	GGAAGCCTTAGATAAGATAG	VKDTKEVRPQEALDKI
1126	C	GTAAAAGACACCAAGGAAGC	TGCGGCCGCA	GAAGCCTTAGATAAGATAGA	VKDTKEAAAAEALDKI
1107	C	TAAAAGACACCAAGGAAGCC	TGCGGCCGCA	AAGCCTTAGATAAGATAGAG	KDTKEACGRKALDKIE
1100	Ť	AAAAGACACCAAGGAAGCCT	TGCGGCCGCA	AGCCTTAGATAAGATAGAGG	KDTKEAL BPOAL DKIE
1120	+	AAAAGACACCAAGGAAGCCT	TOCOCCOCA	CCCTTAGATAAGATAGAGGA	KDTKEAEAAAAI DKIE
1129		AAAGACACCAAGGAAGCCTT	TOCOGCUGUA	GCCTTAGATAGAGAGAG	DTKEALCODTL DKIES
1130	A	AAGACACCAAGGAAGCCTTA	TGCGGCCGCA	CUTTAGATAGAGAGAA	DTKEALVODULDKIEE
1131	G	AGACACCAAGGAAGCCTTAG	TGCGGCCGCA	CTTAGATAAGATAGAGGAAG	DIKEALVAPHLUKIEE
1132	A	GACACCAAGGAAGCCTTAGA	TGCGGCCGCA	TTAGATAAGATAGAGGAAGA	DIKEALDAAALDKIEE
1133	T	ACACCAAGGAAGCCTTAGAT	TGCGGCCGCA	TAGATAAGATAGAGGAAGAG	TKEALDCGRIDKIEEE
1134	A	CACCAAGGAAGCCTTAGATA	TGCGGCCGCA	AGATAAGATAGAGGAAGAGC	TKEALDMRPQDKIEEE
1135	A	ACCAAGGAAGCCTTAGATAA	TGCGGCCGCA	GATAAGATAGAGGAAGAGCA	TKEALDNAAADKIEEE
1136	G	CCAAGGAAGCCTTAGATAAG	TGCGGCCGCA	ATAAGATAGAGGAAGAGCAA	KEALDKCGRNKIEEEQ
1137	A	CAAGGAAGCCTTAGATAAGA	TGCGGCCGCA	TAAGATAGAGGAAGAGCAAA	KEALDKMRPHKIEEEQ
1138	T	AAGGAAGCCTTAGATAAGAT	TGCGGCCGCA	AAGATAGAGGAAGAGCAAAA	KEALDKIAAAKIEEEQ
1130	A	AGGAAGCCTTAGATAAGATA	TGCGGCCGCA	AGATAGAGGAAGAGCAAAAC	EALDKICGRKIEEEQN
1140	G	GGAAGCCTTAGATAGATAG	TGCGGCCGCA	GATAGAGGAAGAGCAAAACA	EALDKIVRPQIEEEQN
1140	4	GAAGCCTTAGATAAGATAGA	TGCGGCCGCA	ATAGAGGAAGAGCAAAACAA	EALDKIDAAAIEEEON
1141	A	AAGCOTTAGATAAGATAGA	TGCGGCCGCA	TAGAGGAAGAGCAAAACAAA	AL DKIECGBIEFFONK
1142	G	AGCOTTACATAGATAGAG	TOCOCCOCC	AGAGGAAGAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ALDKIEVPPOEEEONK
1143	G	AGCCTTAGATAAGATAGAGG	TOCOCOCO	CACCAACACCAAAACAAAAC	ALDKIEDAAAEEEONK
1144	A	GCCTTAGATAGATAGAGGA	TOCOCOCOCOC	ACCAACACCAAAACAAAAG	I DKIEECODKEEONKO
1145	A	CCTTAGATAAGATAGAGGAA	TGCGGCCGCA	AGGAAGAGCAAAACAAAAGI	LDKIEECGRKEEQNKS
1146	G	CTTAGATAAGATAGAGGAAG	TGCGGCCGCA	GGAAGAGCAAAACAAAAGTA	LDKIEEVAPQEEQNKS
1147	A	TTAGATAAGATAGAGGAAGA	TGCGGCCGCA	GAAGAGCAAAACAAAAGTAA	LDKIEEDAAAEEQNKS
1148	G	TAGATAAGATAGAGGAAGAG	TGCGGCCGCA	AAGAGCAAAACAAAAGTAAG	DKIEEECGRKEQNKSK
1149	С	AGATAAGATAGAGGAAGAGC	TGCGGCCGCA	AGAGCAAAACAAAAGTAAGA	DKIEEELRPQEQNKSK
1150	Α	GATAAGATAGAGGAAGAGCA	TGCGGCCGCA	GAGCAAAACAAAAGTAAGAA	DKIEEEHAAAEQNKSK
1151	Α	ATAAGATAGAGGAAGAGCAA	TGCGGCCGCA	AGCAAAACAAAAGTAAGAAA	KIEEEQCGRKQNKSKK
1152	A	TAAGATAGAGGAAGAGCAAA	TGCGGCCGCA	GCAAAACAAAAGTAAGAAAA	KIEEEQMRPQQNKSKK
1153	A	AAGATAGAGGAAGAGCAAAA	TGCGGCCGCA	CAAAACAAAAGTAAGAAAAA	KIEEEQNAAAQNKSKK
1154	C	AGATAGAGGAAGAGCAAAAC	TGCGGCCGCA	AAAACAAAAGTAAGAAAAAG	IEEEQNCGRKNKSKKK
1155	Δ	GATAGAGGAAGAGCAAAACA	TGCGGCCGCA	AAACAAAAGTAAGAAAAAGG	IEEEQNMRPQNKSKKK
1156	A	ATAGAGGAAGAGCAAAACAA	TGCGGCCGCA	AACAAAAGTAAGAAAAAGGC	IEEEQNNAAANKSKKK
1157	A	TAGAGGAAGAGCAAAACAAA	TGCGGCCGCA	ACAAAAGTAAGAAAAAGGCA	EEEQNKCGRNKSKKKA
1158	A		TGCGGCCGCA	CAAAAGTAAGAAAAAGGCAC	EEEQNKMRPHKSKKKA
1159	G	GAGGAAGAGCAAAACAAAAG	TGCGGCCGCA	AAAAGTAAGAAAAAGGCACA	EEEQNKSAAAKSKKKA
1160	T	AGGAAGAGCAAAACAAAAGT	TGCGGCCGCA	AAAGTAAGAAAAAGGCACAG	EEQNKSCGRKSKKKAQ
1161	•	GGAAGAGCAAAACAAAAGTA	TGCGGCCGCA	AAGTAAGAAAAAGGCACAGC	EEQNKSMBPQSKKKAQ
1162	~	GAAGAGCAAAACAAAAGTAA	TGCGGCCGCA	AGTAAGAAAAAGGCACAGCA	FEONKSNAAASKKKAQ
1162	6		TGCGGCCGCA	GTAAGAAAAAGGCACAGCAA	FONKSKCGRSKKKAOO
1103	4		TGCGGCCGCA	TAAGAAAAAGGCACAGCAAG	FONKSKMBPHKKKAOO
1104	A .	CACCAAAACAAAACTAACAA	TGCGGCCGCA	AAGAAAAAGGCACAGCAAGC	FONKSKNAAAKKKAOO
1105	A	GAGCAAAACAAAAGTAAGAA	TOCOCCOCA	ACAAAAAGGCACAGCAAGCA	ONKSKKCOPKKKAOOA
1166	<u>A</u>	AGCAAAACAAAAGTAAGAAA	TOCOGCUGUA	AGAAAAAGGCACAGCAAGCA	ONKEKKMPPOKKAOOA
1167	A	GCAAAACAAAAGTAAGAAAA	TGCGGCCGCA	GAAAAAGGCACAGCAGCAG	ONKOKKNAAAKKAOOA
1168	A	CAAAACAAAAGTAAGAAAAA	TOCOGCICA	AAAAAGGCACAGCAAGCAGC	NKEKKKCOPKKAOOAA
1169	G	AAAACAAAAGTAAGAAAAAG	TGCGGCCGCA	AAAAGGCACAGCAAGCAGCA	NKSKKKCGHKKAQQAA
1170	G	AAACAAAAGTAAGAAAAAGG	IGCGGCCGCA	AAAGGCACAGCAAGCAGCAG	NKSKKVHPQKAQQAA
1171	C	AACAAAAGTAAGAAAAAGGC	TGCGGCCGCA	AAGGCACAGCAAGCAGCAGC	NKSKKKAAAAKAQQAA
1172	A	ACAAAAGTAAGAAAAAGGCA	TGCGGCCGCA	AGGCACAGCAAGCAGCAGCT	KSKKKACGRKAQQAAA
1173	С	CAAAAGTAAGAAAAAGGCAC	TGCGGCCGCA	GGCACAGCAAGCAGCAGCTG	KSKKKALRPQAQQAAA
1174	A	AAAAGTAAGAAAAAGGCACA	TGCGGCCGCA	GCACAGCAAGCAGCAGCTGA	KSKKKAHAAAAQQAAA
1175	G	AAAGTAAGAAAAAGGCACAG	TGCGGCCGCA	CACAGCAAGCAGCAGCTGAC	SKKKAQCGRTQQAAAD
1176	C	AAGTAAGAAAAAGGCACAGC	TGCGGCCGCA	ACAGCAAGCAGCAGCTGACA	SKKKAQLRPQQQAAAD
1177	A	AGTAAGAAAAAGGCACAGCA	TGCGGCCGCA	CAGCAAGCAGCAGCTGACAC	SKKKAQHAAAQQAAAD
1178	A	GTAAGAAAAAGGCACAGCAA	TGCGGCCGCA	AGCAAGCAGCAGCTGACACA	KKKAQQCGRKQAAADT
1179	G	TAAGAAAAAGGCACAGCAAG	TGCGGCCGCA	GCAAGCAGCAGCTGACACAG	KKKAQQVRPQQAAADT
1180	C	AAGAAAAAGGCACAGCAAGC	TGCGGCCGCA	CAAGCAGCAGCTGACACAGG	KKKAQQAAAAQAAADT
1181	A	AGAAAAAGGCACAGCAAGCA	TGCGGCCGCA	AAGCAGCAGCTGACACAGGA	KKAQQACGRKAAADTG
1182	G	GAAAAAGGCACAGCAAGCAG	TGCGGCCGCA	AGCAGCAGCTGACACAGGAA	KKAQQAVRPQAAADTG
1182	C	AAAAAGGCACAGCAAGCAGC	TGCGGCCGCA	GCAGCAGCTGACACAGGAAA	KKAQQAAAAAAAADTG
1194	A	AAAAGGCACAGCAAGCAGCA	TGCGGCCGCA	CAGCAGCTGACACAGGAAAC	KAQQAACGRTAADTGN
1195	G	AAAGGCACAGCAAGCAGCAG	TGCGGCCGCA	AGCAGCTGACACAGGAAACA	KAQQAAVBPQAADTGN
1196	C	AAGGCACAGCAAGCAGCAGC	TGCGGCCGCA	GCAGCTGACACAGGAAACAA	KAQQAAAAAAAADTGN
1107	Ť	AGGCACAGCAAGCAGCAGCAGC	TGCGGCCGCA	CAGCTGACACAGGAAACAAC	AQQAAACGRTADTGNN
1107	0	GGCACAGCAAGCAGCAGCAGCTC	TGCGGCCGCA	AGCTGACACAGGAAACAACA	AQQAAAVRPOADTGNN
1100	A	GCACAGCAAGCAGCAGCAGCTCA	TGCGGCCGCA	GCTGACACAGGAAACAACA	AQQAAADAAAADTGNN
1109	A	CACAGCAAGCAGCAGCAGCTGAG	TGCGGCCGCA	CTGACACAGGAAACAACACC	QQAAADCGPTDTCNNS
1190		ACAGCAACCACCACCTCACC	TGCCCCCCCCA	TGACACACGAAACAACACC	QQAAADMPPHDTCNNS
1191	A		TGCGGCCCCA	GACACAGGAAACAACAGCCCA	OOAAADTAAADTONNS
1192	C		TOCOCOCOCO	ACACACCACCAACAACAACAACAACAACAACAACAACAA	OAAADTCCPNITCNNCO
1193	A	AGCAAGCAGCAGCIGACACA	TOCOCOCOCO	CACACCAAACAACAACAGCCAG	OAAADT/PPUTCHNSQ
1194	G	GCAAGCAGCAGCTGACACAG	TOCOGCUCA	LACAGGAAACAACAGCCAGG	OAAADTGAAATCHINGO
1195	G	CAAGCAGCAGCIGACACAGG	TOCOGOCOCA	ACAGGAAACAACAGCCAGGT	AAADTGCCDTCHNCOV
1196	A	AAGCAGCAGCIGACACAGGA	TOCOGCOCCA		AAADTGUGATGUNSQV
1 1197	A	AGCAGCAGCTGACACAGGAA	TGCGGCCGCA	AGGAAACAACAGCCAGGTCA	AAADTGWAPUGNNSUV
1101	-		A TELEVISION FOR THE TELEVISION	International and Alstall Alstall Als	

1100	C	CAGCAGCTGACACAGGAAAC	TGCGGCCGCA	GAAACAACAGCCAGGTCAGC	AADTGNCGRRNNSQVS
1000		ACCACCTCACACCACCAAACA	TGCGGCCGCA	AAACAACAGCCAGGTCAGCC	AADTGNMBPONNSOVS
1200	A .		TCCCCCCCA	AACAACAGCCAGGTCAGCCA	AADTGNNAAANNSOVS
1201	A	GCAGCIGACACAGGAAACAA	TOCOCCOCA	ACAACAGCCAGGTCAGCCAA	ADTGNNCGRNNSOVSO
1202	C	CAGCIGACACAGGAAACAAC	TGCGGCCGCA	ACAACAGECAGGTCAGECAA	ADTONNADDUNGOVSO
1203	A	AGCTGACACAGGAAACAACA	TGCGGCCGCA	CAACAGCCAGGTCAGCCAAA	ADTONNAPHNSQVSQ
1204	G	GCTGACACAGGAAACAACAG	TGCGGCCGCA	AACAGCCAGGTCAGCCAAAA	ADIGNNSAAANSQVSQ
1205	С	CTGACACAGGAAACAACAGC	TGCGGCCGCA	ACAGCCAGGTCAGCCAAAAT	DIGNNSCGRNSQVSQN
1206	С	TGACACAGGAAACAACAGCC	TGCGGCCGCA	CAGCCAGGTCAGCCAAAATT	DTGNNSLRPHSQVSQN
1207	Α	GACACAGGAAACAACAGCCA	TGCGGCCGCA	AGCCAGGTCAGCCAAAATTA	DTGNNSHAAASQVSQN
1208	G	ACACAGGAAACAACAGCCAG	TGCGGCCGCA	GCCAGGTCAGCCAAAATTAC	TGNNSQCGRSQVSQNY
1209	G	CACAGGAAACAACAGCCAGG	TGCGGCCGCA	CCAGGTCAGCCAAAATTACC	TGNNSQVRPHQVSQNY
1210	T	ACAGGAAACAACAGCCAGGT	TGCGGCCGCA	CAGGTCAGCCAAAATTACCC	TGNNSQVAAAQVSQNY
1211	Ċ	CAGGAAACAACAGCCAGGTC	TGCGGCCGCA	AGGTCAGCCAAAATTACCCT	GNNSQVCGRKVSQNYP
1010	-	AGGAAACAACAGCCAGGTCA	TGCGGCCGCA	GGTCAGCCAAAATTACCCTA	GNNSQVMBPQVSQNYP
1212	A .	CCAAACAACAACCAGGTCAG	TGCGGCCGCA	GTCAGCCAAAATTACCCTAT	GNNSOVSAAAVSONYP
1213	G	CAAACAACAACAGCCAGGTCAG	TGCGGCCGCA	TCAGCCAAAATTACCCTATA	NNSOVSCGRISONYPI
1214	C	GAAACAACAGCCAGGTCAGC	TOCOGCCOCA	CAGCCAAAATTACCCTATAC	NNSOVEL DDHSONVDI
1215	C	AAACAACAGCCAGGTCAGCC	TGCGGCCGCA	CAGCCAAAATTACCCTATAG	NNCOVCHAAACONVDI
1216	A	AACAACAGCCAGGTCAGCCA	TGCGGCCGCA	AGCCAAAATTACCCTATAGT	NIGOVCOCODCONVDIV
1217	A	ACAACAGCCAGGTCAGCCAA	TGCGGCCGCA	GCCAAAATTACCCTATAGTC	NSQVSQCGRSQNTPIV
1218	Α	CAACAGCCAGGTCAGCCAAA	TGCGGCCGCA	CCAAAATTACCCTATAGTCC	NSQVSQMRPHQNTPIV
1219	A	AACAGCCAGGTCAGCCAAAA	TGCGGCCGCA	CAAAATTACCCTATAGTCCA	NSQVSQNAAAQNYPIV
1220	Т	ACAGCCAGGTCAGCCAAAAT	TGCGGCCGCA	AAAATTACCCTATAGTCCAG	SQVSQNCGRKNYPIVQ
1221	T	CAGCCAGGTCAGCCAAAATT	TGCGGCCGCA	AAATTACCCTATAGTCCAGA	SQVSQNLRPQNYPIVQ
1222	A	AGCCAGGTCAGCCAAAATTA	TGCGGCCGCA	AATTACCCTATAGTCCAGAA	SQVSQNYAAANYPIVQ
1223	C	GCCAGGTCAGCCAAAATTAC	TGCGGCCGCA	ATTACCCTATAGTCCAGAAC	QVSQNYCGRNYPIVQN
1224	C	CCAGGTCAGCCAAAATTACC	TGCGGCCGCA	TTACCCTATAGTCCAGAACC	QVSQNYLRPHYPIVQN
1005	C	CAGGTCAGCCAAAATTACCC	TGCGGCCGCA	TACCCTATAGTCCAGAACCT	QVSQNYPAAAYPIVON
1220	Ŧ	ACCTCACCCAAAATTACCCC	TGCGGCCGCA	ACCCTATAGTCCAGAACCTC	VSONYPCGBNPIVONI
1220	-	COTCACCCAAAATTACCCTA	TGCGGCCGCA	CCCTATAGTCCAGAACCTCC	VSONYPMBPHPIVONI
1227	A	GGTCAGCCAAAATTACCCTA	TOCOCOCOCA	COTATACTOCACAACOTOCA	VSONVDIAAADIVONI
1228	1	GICAGCCAAAATTACCCTAT	TOCOCOCOCOC	CTATAGTCCAGAACCTCCA	SONVEICOPTIVONILO
1229	A	TCAGCCAAAATTACCCTATA	TOOGGCCGCA	TATAGTCCAGAACCTCCAG	SONVEIVEEUVONLO
1230	G	CAGCCAAAATTACCCTATAG	IGCGGCCGCA	TATAGICCAGAACCICCAGG	CONVENIER
1231	Т	AGCCAAAATTACCCTATAGT	TGCGGCCGCA	ATAGTCCAGAACCTCCAGGG	SQNYPIVAAAIVQNLQ
1232	С	GCCAAAATTACCCTATAGTC	TGCGGCCGCA	TAGTCCAGAACCTCCAGGGG	QNYPIVCGRIVQNLQG
1233	С	CCAAAATTACCCTATAGTCC	TGCGGCCGCA	AGTCCAGAACCTCCAGGGGC	QNYPIVLRPQVQNLQG
1234	A	CAAAATTACCCTATAGTCCA	TGCGGCCGCA	GTCCAGAACCTCCAGGGGCA	QNYPIVHAAAVQNLQG
1235	G	AAAATTACCCTATAGTCCAG	TGCGGCCGCA	TCCAGAACCTCCAGGGGCAA	NYPIVQCGRIQNLQGQ
1236	A	AAATTACCCTATAGTCCAGA	TGCGGCCGCA	CCAGAACCTCCAGGGGCAAA	NYPIVQMRPHQNLQGQ
1237	Δ	AATTACCCTATAGTCCAGAA	TGCGGCCGCA	CAGAACCTCCAGGGGCAAAT	NYPIVQNAAAQNLQGQ
1238	C	ATTACCCTATAGTCCAGAAC	TGCGGCCGCA	AGAACCTCCAGGGGCAAATG	YPIVQNCGRKNLQGQM
1230	C	TTACCCTATAGTCCAGAACC	TGCGGCCGCA	GAACCTCCAGGGGCAAATGG	YPIVONLBPONLOGOM
1239	Ť	TACCCTATAGTCCAGAACCT	TGCGGCCGCA	AACCTCCAGGGGCAAATGGT	YPIVONI AAANLOGOM
1240	-	ACCOTATACTCCAGAACCTC	TGCGGCCGCA	ACCTCCAGGGGCAAATGGTA	PIVONI CGBNI OGOMV
1241	0	ACCUTATAGTCCAGAACCTC	TOCOCCOCA	CCTCCAGGGGCAAATGGTAC	PIVONI L RPHLOGOMV
1242	C	CCCTATAGTCCAGAACCTCC	TOCOGCCOCA	OTOCAGOGGGGAAATGGTACA	DIVONIL HAAALOGOMV
1243	A	CCTATAGTCCAGAACCTCCA	TGCGGCCGCA	CICCAGGGGCAAAIGGIACA	IVONLOCODIOCOMV/H
1244	G	CTATAGTCCAGAACCTCCAG	TGCGGCCGCA	TCCAGGGGCAAATGGTACAT	IVONLOCGHIQGOMVH
1245	G	TATAGTCCAGAACCTCCAGG	TGCGGCCGCA	CCAGGGGCAAATGGTACATC	IVONLOVAPHQGQMVH
1246	G	ATAGTCCAGAACCTCCAGGG	TGCGGCCGCA	CAGGGGCAAATGGTACATCA	IVQNLQGAAAQGQMVH
1247	G	TAGTCCAGAACCTCCAGGGG	TGCGGCCGCA	AGGGGCAAATGGTACATCAG	VQNLQGCGRKGQMVHQ
1248	С	AGTCCAGAACCTCCAGGGGC	TGCGGCCGCA	GGGGCAAATGGTACATCAGG	VQNLQGLRPQGQMVHQ
1249	A	GTCCAGAACCTCCAGGGGCA	TGCGGCCGCA	GGGCAAATGGTACATCAGGC	VQNLQGHAAAGQMVHQ
1250	Α	TCCAGAACCTCCAGGGGGCAA	TGCGGCCGCA	GGCAAATGGTACATCAGGCC	QNLQGQCGRRQMVHQA
1251	A	CCAGAACCTCCAGGGGCAAA	TGCGGCCGCA	GCAAATGGTACATCAGGCCA	QNLQGQMRPQQMVHQA
1252	T	CAGAACCTCCAGGGGCAAAT	TGCGGCCGCA	CAAATGGTACATCAGGCCAT	QNLQGQIAAAQMVHQA
1253	G	AGAACCTCCAGGGGCAAATG	TGCGGCCGCA	AAATGGTACATCAGGCCATA	NLQGQMCGRKMVHQAI
1254	G	GAACCTCCAGGGGCAAATGG	TGCGGCCGCA	AATGGTACATCAGGCCATAT	NLQGQMVRPQMVHQAI
1255	T	AACCTCCAGGGGCAAATGGT	TGCGGCCGCA	ATGGTACATCAGGCCATATC	NLQGQMVAAAMVHQAI
1255		ACCTCCAGGGGCAAATCOTA	TGCGGCCGCA	TGGTACATCAGGCCATATCA	LOGOMVCGRMVHOAIS
1250	A	CCTCCAGGGGCAAATGGTAC	TGCGGCCGCA	GGTACATCAGGCCATATCAC	LOGOMVL BPOVHOAIS
1257		CTCCAGGGGGGAAATGGTAC	TGCCCCCCCCA	GTACATCAGGCCATATCACC	LOGOMVHAAAVHOAIS
1258	A	TOCAGGGGGGAAATGGTACA	TOCOCOCOCA	TACATCAGGCCATATCACCT	OGOMVHCCPIHOAISP
1259	-	TCCAGGGGCAAATGGTACAT	TOCOCOCOCA	ACATCAGGCCATATCACCTA	OCOMVHI PROHOAISP
1260	C	CCAGGGGGCAAAIGGIACATC	TOOGOCOCCA	ACATCAGGCCATATCACCTA	OCOMVHHAAAHOAIOD
1261	A	CAGGGGCAAATGGTACATCA	TGCGGCCGCA	CATCAGGCCATATCACCTAG	COMUNICATION
1262	G	AGGGGCAAATGGTACATCAG	IGCGGCCGCA	ATCAGGCCATATCACCTAGA	COMVHQUGHNQAISPH
1263	G	GGGGCAAATGGTACATCAGG	TGCGGCCGCA	TCAGGCCATATCACCTAGAA	GUMVHQVHPHQAISPR
1264	C	GGGCAAATGGTACATCAGGC	TGCGGCCGCA	CAGGCCATATCACCTAGAAC	GOMVHQAAAAQAISPR
1265	C	GGCAAATGGTACATCAGGCC	TGCGGCCGCA	AGGCCATATCACCTAGAACT	QMVHQACGRKAISPRT
1266	A	GCAAATGGTACATCAGGCCA	TGCGGCCGCA	GGCCATATCACCTAGAACTT	QMVHQAMRPQAISPRT
1267	Т	CAAATGGTACATCAGGCCAT	TGCGGCCGCA	GCCATATCACCTAGAACTTT	QMVHQAIAAAAISPRT
1268	A	AAATGGTACATCAGGCCATA	TGCGGCCGCA	CCATATCACCTAGAACTTTA	MVHQAICGRTISPRTL
1269	T	AATGGTACATCAGGCCATAT	TGCGGCCGCA	CATATCACCTAGAACTTTAA	MVHQAILRPHISPRTL
1270	C	ATGGTACATCAGGCCATATC	TGCGGCCGCA	ATATCACCTAGAACTTTAAA	MVHQAISAAAISPRTL
1271	A	TGGTACATCAGGCCATATCA	TGCGGCCGCA	TATCACCTAGAACTTTAAAT	VHQAISCGRISPRTLN
1272	C	GGTACATCAGGCCATATCAC	TGCGGCCGCA	ATCACCTAGAACTTTAAATG	VHQAISLRPQSPRTLN
1273	C	GTACATCAGGCCATATCACC	TGCGGCCGCA	TCACCTAGAACTTTAAATGC	VHQAISPAAASPRTLN
1274	T	TACATCAGGCCATATCACCT	TGCGGCCGCA	CACCTAGAACTITAAATGCA	HQAISPCGRTPRTLNA
1075	1	ACATCAGGCCATATCACCTA	TGCGGCCGCA	ACCTAGAACTITAAATGCAT	HOAISPMBPOPRTINA
1070	A	CATCAGGCCATATCACCTAC	TGCGGCCGCA	CCTAGAACTTTAAATCCATC	HOAISPSAAAPRTINA
12/6	G	ATCACCCCATATCACCTAG	TOCOCCOCA	CTAGAACTTTAAATCCATCC	OAISPRCGRTPTI NAW
12//	A	TOACCOUNTATION	TOCOCOCOCA	TAGAACTITAAATGGATGG	OAISPRMPPHPTI NAW
1278	A	TCAGGCCATATCACCTAGAA	TOCOCOCOCA	AGAACTITAAATGCATGGG	OAISPRIAAADTI NAW
1279	C	CAGGCCATATCACCTAGAAC	TOCGGCCGCA	AGAACTITAAATGCATGGGT	AISPRICAPPTIALAN
1280	T	AGGCCATATCACCTAGAACT	IGCGGCCGCA	GAACTITAAATGCATGGGTA	AISPHICGHHILNAWV
1281	T	GGCCATATCACCTAGAACTT	IGCGGCCGCA	AACTITAAATGCATGGGTAA	AISPHILRPUILNAWV
1282	T	GCCATATCACCTAGAACTTT	IGCGGCCGCA	ACTITAAATGCATGGGTAAA	AISPHIFAAAILNAWV
1283	A	CCATATCACCTAGAACTTTA	IGCGGCCGCA	CITTAAATGCATGGGTAAAA	ISPHILCGHILNAWVK
		CATATCACCTACAACTTTAA	TREACCOCA	TTTAAATGCATGGGTAAAAG	ISPHILMRPHINAWVK
1005		ATATCACCTAGAACTTTAAA	TGCGGCCGCA	TTAAATGCATGGGTAAAAGT	ISPRTLNAAALNAWVK
--------	----------	------------------------	--------------	------------------------	---------------------
1285	A	TATCACCTACAACTITAAA	TGCGGCCGCA	TAAATGCATGGGTAAAAGTA	SPRTI NCGRINAWVKV
1286	-	TATCACCTAGAACTITAAAT	TOCOCCOCA	AAATCCATCCCTAAAACTAG	SPRTI NVRPONAWVKV
1287	G	ATCACCTAGAACTITAAATG	TGCGGCCGCA	AATOOATOOOTAAAAGTAG	SPRTI NAAAANAWVKV
1288	С	TCACCTAGAACTITAAATGC	TGCGGCCGCA	AATGCATGGGTAAAAGTAGT	DDTI NACODNAWO/KV/V
1289	Α	CACCTAGAACTTTAAATGCA	TGCGGCCGCA	ATGCATGGGTAAAAGTAGTA	PRILNACGRNAWVKVV
1290	Т	ACCTAGAACTTTAAATGCAT	TGCGGCCGCA	TGCATGGGTAAAAGTAGTAG	PRILNALRPHAWVKVV
1291	G	CCTAGAACTTTAAATGCATG	TGCGGCCGCA	GCATGGGTAAAAGTAGTAGA	PRTLNACAAAAWVKVV
1292	G	CTAGAACTTTAAATGCATGG	TGCGGCCGCA	CATGGGTAAAAGTAGTAGAA	RTLNAWCGRTWVKVVE
1293	G	TAGAACTTTAAATGCATGGG	TGCGGCCGCA	ATGGGTAAAAGTAGTAGAAG	RTLNAWVRPQWVKVVE
1294	T	AGAACTTTAAATGCATGGGT	TGCGGCCGCA	TGGGTAAAAGTAGTAGAAGA	RTLNAWVAAAWVKVVE
1205	A	GAACTITAAATGCATGGGTA	TGCGGCCGCA	GGGTAAAAGTAGTAGAAGAG	TLNAWVCGRRVKVVEE
1295	A .	AACTTTAAATGCATGGGTAA	TGCGGCCGCA	GGTAAAAGTAGTAGAAGAGA	TLNAWVMRPQVKVVEE
1290	A .	ACTITAAATGCATGGGTAAA	TGCGGCCGCA	GTAAAAGTAGTAGAAGAGAA	TLNAWVNAAAVKVVEE
1297	A .	ACTITAAATOCATOCOTAAAA	TOCOCCOCA	TAAAAGTAGTAGAAGAGAAG	I NAWVKCGRIKVVEEK
1298	A	CTITAAATGCATGGGTAAAA	TOCOCCOCA	AAAAGTAGTAGAAGAGAAGG	I NAWVKVBPOKVVEEK
1299	G	TTTAAATGCATGGGTAAAAG	TOCOCCOCA	AAAAGTAGTAGAAGAAGAAGG	LNAWVKVAAAKVVEEK
1300	T	TTAAATGCATGGGTAAAAGT	IGCGGCCGCA	AAAGTAGTAGAAGAGAAGAG	
1301	A	TAAATGCATGGGTAAAAGTA	TGCGGCCGCA	AAGTAGTAGAAGAGAAGAGGCT	NAWVKVCGRKVVEEKA
1302	G	AAATGCATGGGTAAAAGTAG	TGCGGCCGCA	AGTAGTAGAAGAGAAGGCTT	NAWVKVVHPQVVEEKA
1303	т	AATGCATGGGTAAAAGTAGT	TGCGGCCGCA	GTAGTAGAAGAGAAGGCTTT	NAWVKVVAAAVVEEKA
1304	A	ATGCATGGGTAAAAGTAGTA	TGCGGCCGCA	TAGTAGAAGAGAAGGCTTTC	AWVKVVCGRIVEEKAF
1305	G	TGCATGGGTAAAAGTAGTAG	TGCGGCCGCA	AGTAGAAGAGAAGGCTTTCA	AWVKVVVRPQVEEKAF
1306	A	GCATGGGTAAAAGTAGTAGA	TGCGGCCGCA	GTAGAAGAGAAGGCTTTCAG	AWVKVVDAAAVEEKAF
1307	Δ	CATGGGTAAAAGTAGTAGAA	TGCGGCCGCA	TAGAAGAGAAGGCTTTCAGC	WVKVVECGRIEEKAFS
1308	G	ATGGGTAAAAGTAGTAGAAG	TGCGGCCGCA	AGAAGAGAAGGCTTTCAGCC	WVKVVEVRPQEEKAFS
1200	A	TGGGTAAAAGTAGTAGAAGA	TGCGGCCGCA	GAAGAGAGGGCTTTCAGCCC	WVKVVEDAAAEEKAFS
1210	-	CCGTAAAAGTAGTAGAAGAA	TGCGGCCGCA	AAGAGAAGGCTTTCAGCCCA	VKVVEECGRKEKAFSP
1011	G	COTAAAAOTACTACAACACA	TGCGGCCCCCA	AGAGAAGGCTTTCAGCCCAG	VKVVEEMBPOEKAESP
1311	A	GGTAAAAGTAGTAGAAGAGA	TOCOCOCOCA	CACAAGGCTTTCACCCCACA	VKVVEENAAAEKAESP
1312	A	GTAAAAGTAGTAGAAGAGAA	TOCOCOCOCOCA	ACAACCOTTTCACCCCACAA	KVVEEKCGRKKAESDE
1313	G	TAAAAGTAGTAGAAGAAGAAG	TGCGGCCGCA	AGAAGGUTTTCAGCCCAGAA	KWEEKVPPOKAEOPE
1314	G	AAAAGTAGTAGAAGAGAAGA	IGCGGCCGCA	GAAGGCTTTCAGCCCAGAAG	KINEEKVHPUKAFSPE
1315	C	AAAGTAGTAGAAGAGAAGAG	TGCGGCCGCA	AAGGCTTTCAGCCCAGAAGT	NVEEKAAAAKAFSPE
1316	Т	AAGTAGTAGAAGAGAAGGCT	TGCGGCCGCA	AGGCTTTCAGCCCAGAAGTA	VVEEKACGHKAFSPEV
1317	Т	AGTAGTAGAAGAGAAGGCTT	TGCGGCCGCA	GGCTTTCAGCCCAGAAGTAA	VVEEKALRPQAFSPEV
1318	T	GTAGTAGAAGAGAAGGCTTT	TGCGGCCGCA	GCTTTCAGCCCAGAAGTAAT	VVEEKAFAAAAFSPEV
1319	C	TAGTAGAAGAGAAGGCTTTC	TGCGGCCGCA	CTTTCAGCCCAGAAGTAATA	VEEKAFCGRTFSPEVI
1320	Δ	AGTAGAAGAGAGAGGCTTTCA	TGCGGCCGCA	TTTCAGCCCAGAAGTAATAC	VEEKAFMRPHFSPEVI
1321	G	GTAGAAGAGAGGGCTTTCAG	TGCGGCCGCA	TTCAGCCCAGAAGTAATACC	VEEKAFSAAAFSPEVI
1322	č	TAGAAGAGAGGGCTTTCAGC	TGCGGCCGCA	TCAGCCCAGAAGTAATACCC	EEKAFSCGRISPEVIP
1222	č	AGAAGAGAAGGCTTTCAGCC	TGCGGCCGCA	CAGCCCAGAAGTAATACCCA	EEKAFSLRPHSPEVIP
1224	č	GAAGAGAAGGCTTTCAGCCC	TGCGGCCGCA	AGCCCAGAAGTAATACCCAT	EEKAFSPAAASPEVIP
1324	-	AACACAACCCTTTCACCCCA	TGCGGCCGCA	GCCCAGAAGTAATACCCATG	EKAESPCGRSPEVIPM
1325	A	AAGAGAAGGCTTTCAGCCCA	TOCOCCOCA	CCCAGAAGTAATACCCATGT	EKAESPVRPHPEVIPM
1326	G	AGAGAAGGCTTTCAGCCCAG	TOCOCCOCA	CCACAAGTAATACCCATGT	EKAESPDAAAPEVIPM
1327	<u>A</u>	GAGAAGGCTTTCAGCCCAGA	TOCOCCOCA	CACAACTAATACCCATCTTT	KAESPECGRTEVIPME
1328	<u>A</u>	AGAAGGCTTTCAGCCCAGAA	TGCGGCCGCA	CAGAAGTAATACCCATGTTT	KAESDEVDDOEVIDME
1329	G	GAAGGCTTTCAGCCCAGAAG	TGCGGCCGCA	AGAAGTAATACCCATGTTT	KAESDEVAAAEVIDME
1330	T	AAGGCTTTCAGCCCAGAAGT	TGCGGCCGCA	GAAGTAATACCCATGTTTC	AFOPEVAAAEVIFWIF
1331	A	AGGCTTTCAGCCCAGAAGTA	TGCGGCCGCA	AAGTAATACCCATGTTTCA	AFSPEVCGRKVIPMFS
1332	A	GGCTTTCAGCCCAGAAGTAA	TGCGGCCGCA	AGTAATACCCATGTTTTCAG	AFSPEVMRPQVIPMFS
1333	т	GCTTTCAGCCCAGAAGTAAT	TGCGGCCGCA	GTAATACCCATGTTTTCAGC	AFSPEVIAAAVIPMFS
1334	A	CTTTCAGCCCAGAAGTAATA	TGCGGCCGCA	TAATACCCATGTTTTCAGCA	FSPEVICGRIIPMFSA
1335	С	TTTCAGCCCAGAAGTAATAC	TGCGGCCGCA	AATACCCATGTTTTCAGCAT	FSPEVILRPQIPMFSA
1336	C	TTCAGCCCAGAAGTAATACC	TGCGGCCGCA	ATACCCATGTTTTCAGCATT	FSPEVIPAAAIPMFSA
1337	C	TCAGCCCAGAAGTAATACCC	TGCGGCCGCA	TACCCATGTTTTCAGCATTA	SPEVIPCGRIPMFSAL
1338	A	CAGCCCAGAAGTAATACCCA	TGCGGCCGCA	ACCCATGTTTTCAGCATTAT	SPEVIPMRPQPMFSAL
1330	Ť	AGCCCAGAAGTAATACCCAT	TGCGGCCGCA	CCCATGTTTTCAGCATTATC	SPEVIPIAAAPMFSAL
1340	G	GCCCAGAAGTAATACCCATG	TGCGGCCGCA	CCATGTTTTCAGCATTATCA	PEVIPMCGRTMFSALS
1241	T	CCCAGAAGTAATACCCATGT	TGCGGCCGCA	CATGTTTTCAGCATTATCAG	PEVIPMLRPHMFSALS
1041	+	CCACAAGTAATACCCATCTT	TGCGGCCGCA	ATGTTTTCAGCATTATCAGA	PEVIPMEAAAMESALS
1342	+	CAGAAGTAATACCCATGTT	TGCGGCCGCA	TGTTTTCAGCATTATCAGAA	EVIPMECGRMESALSE
1343	-	CAGAAGTAATACCCATGTTT	TOCOCCOCA	CTTTTCAGCATTATCAGAAC	EVIPMEI REOESALSE
1344	-	AGAAGTAATACCCATGTTT	TOCOCOCOCO	TTTTCAGCATTATCACAACC	EVIPMESAAAESALSE
1345	0	GAAGTAATACCCATGTTTC	TOCCOCCOCC	TTTCAGCATTATCACAACCA	VIPMESCOPISALSEC
1346	A	AAGTAATACCCATGTTTTCA	TOCOGOCOCA	TTOAGCATTATCAGAAGGA	VIDMESVDDHCALCEC
1347	G	AGTAATACCCATGTTTTCAG	TOCGGCCGCA	TOAGCATTATCAGAAGGAG	VIDMESAAAACALOEO
1348	С	GTAATACCCATGTTTTCAGC	IGCGGCCGCA	TCAGCATTATCAGAAGGAGC	IDUESAGODTALOFOA
1349	A	TAATACCCATGTTTTCAGCA	TGCGGCCGCA	CAGCATTATCAGAAGGAGCC	IPMFSACGHTALSEGA
1350	Т	AATACCCATGTTTTCAGCAT	TGCGGCCGCA	AGCATTATCAGAAGGAGCCA	IPMFSALHPQALSEGA
1351	Т	ATACCCATGTTTTCAGCATT	TGCGGCCGCA	GCATTATCAGAAGGAGCCAC	IPMFSAFAAAALSEGA
1352	A	TACCCATGTTTTCAGCATTA	TGCGGCCGCA	CATTATCAGAAGGAGCCACC	PMFSALCGRTLSEGAT
1353	Т	ACCCATGTTTTCAGCATTAT	TGCGGCCGCA	ATTATCAGAAGGAGCCACCC	PMFSALLRPQLSEGAT
1354	С	CCCATGTTTTCAGCATTATC	TGCGGCCGCA	TTATCAGAAGGAGCCACCCC	PMFSALSAAALSEGAT
1355	A	CCATGTTTTCAGCATTATCA	TGCGGCCGCA	TATCAGAAGGAGCCACCCCA	MFSALSCGRISEGATP
1356	G	CATGTTTTCAGCATTATCAG	TGCGGCCGCA	ATCAGAAGGAGCCACCCCAC	MFSALSVRPQSEGATP
1357	A	ATGTTTTCAGCATTATCAGA	TGCGGCCGCA	TCAGAAGGAGCCACCCCACA	MFSALSDAAASEGATP
1358	A	TGTTTTCAGCATTATCAGAA	TGCGGCCGCA	CAGAAGGAGCCACCCCACAA	FSALSECGRTEGATPQ
1359	G	GTTTTCAGCATTATCAGAAG	TGCGGCCGCA	AGAAGGAGCCACCCCACAAG	FSALSEVRPQEGATPQ
1360	G	TTTTCAGCATTATCAGAAGG	TGCGGCCGCA	GAAGGAGCCACCCCACAAGA	FSALSEGAAAEGATPQ
1361	4	TTTCAGCATTATCAGAAGGA	TGCGGCCGCA	AAGGAGCCACCCCACAAGAT	SALSEGCGRKGATPQD
1362	G	TTCAGCATTATCAGAAGGAG	TGCGGCCGCA	AGGAGCCACCCCACAAGATT	SALSEGVRPQGATPQD
1202	C	TCAGCATTATCAGAAGGAGC	TGCGGCCGCA	GGAGCCACCCCACAAGATTT	SALSEGAAAAGATPQD
1303	č	CAGCATTATCAGAAGGAGGAGG	TGCGGCCGCA	GAGCCACCCCACAAGATTTA	ALSEGACGRRATPODL
1004	-	AGCATTATCAGAAGCAGCAC	TGCGGCCGCA	AGCCACCCCACAAGATTTAA	ALSEGAMBPOATPODL
1305	-	CONTINICAGAAGGAGGAGGAG	TGCGGCCGCA	GCCACCCCACAAGATTTAAA	ALSEGATAAAATPODL
1300	0	CATTATCACAAGCACCACCACC	TGCGGCCGCA	CCACCCCACAAGATTTAAAT	LSEGATCGRTTPODI N
1367	0	ATTATCAGAACCACCCACC	TGCGGCCGCA	CACCCCACAAGATTTAAATA	LSEGATL RPHTPODLN
1368	0	TTATCACAACCACCCACCC	TOCOCCOCA	ACCCCACAAGATTTAAATAC	L SEGATPAAATPODI N
1369	Ċ	TATCAGAAGGAGCCACCCC	TOCOCOCOCO	CCCCACAACATTTAAATAC	SEGATECORTEODINT
1 1370	A	TATCAGAAGGAGCCACCCCA	IGUGGCUGCA	CCCCACAAGATTTAAATACC	SEGATFOORTFOOLIT

į,

T. 11.

Ł

-

2 2

4

>

C

121

0

1371	C	ATCAGAAGGAGCCACCCCAC	TGCGGCCGCA	CCCACAAGATTTAAATACCA	SEGATPLRPHPQDLNT
1272	A	TCAGAAGGAGCCACCCCACA	TGCGGCCGCA	CCACAAGATTTAAATACCAT	SEGATPHAAAPODLNT
1072	A	CAGAAGGAGCCACCCCACAA	TGCGGCCGCA	CACAAGATTTAAATACCATG	EGATPOCGRTODLNTM
13/3	A		TOCOCCOCA	ACAACATTTAAATACCATGC	EGATPOVEPOODINTM
13/4	G	AGAAGGAGCCACCCCACAAG	TOCOCOCO	CAACATTTAAATACCATCCT	EGATPODAAAODINTM
1375	A	GAAGGAGCCACCCCACAAGA	TGCGGCCGCA	CAAGATTTAAATACCATGCT	CATRODOCODKDLNTM
1376	T	AAGGAGCCACCCCACAAGAT	TGCGGCCGCA	AAGATTTAAATACCATGCTA	GATPQDCGRKDLNTML
1377	T	AGGAGCCACCCCACAAGATT	TGCGGCCGCA	AGATTTAAATACCATGCTAA	GATPQDLRPQDLNTML
1378	T	GGAGCCACCCCACAAGATTT	TGCGGCCGCA	GATTTAAATACCATGCTAAA	GATPQDFAAADLNTML
1379	A	GAGCCACCCCACAAGATTTA	TGCGGCCGCA	ATTTAAATACCATGCTAAAC	ATPQDLCGRNLNTMLN
1380	A	AGCCACCCCACAAGATTTAA	TGCGGCCGCA	TTTAAATACCATGCTAAACA	ATPQDLMRPHLNTMLN
1381	A	GCCACCCCACAAGATTTAAA	TGCGGCCGCA	TTAAATACCATGCTAAACAC	ATPQDLNAAALNTMLN
1382	T	CCACCCCACAAGATTTAAAT	TGCGGCCGCA	TAAATACCATGCTAAACACA	TPQDLNCGRINTMLNT
1383	A	CACCCCACAAGATTTAAATA	TGCGGCCGCA	AAATACCATGCTAAACACAG	TPQDLNMRPQNTMLNT
1394	6	ACCCCACAAGATTTAAATAC	TGCGGCCGCA	AATACCATGCTAAACACAGT	TPODLNTAAANTMLNT
1004	č	CCCCACAACATTTAAATACC	TGCGGCCGCA	ATACCATCCTAAACACAGTG	PODI NTCGRNTMI NTV
1000	-	CCCACAACATTTAAATACCA	TOCOOCCOCA	TACCATCCTAAACACAGTGG	PODI NTMRPHTMI NTV
1380	A	CCCACAAGATTTAAATACCA	TOCOCOCO	ACCATOCTAAACACACAGTGG	PODI NITIA A ATMI NTV
1387	1	CCACAAGATTTAAATACCAT	TOCOGCUGUA	ACCATGCTAAACACAGTGGG	ODI NITHCODTHI NTVO
1388	G	CACAAGATTTAAATACCATG	TGCGGCCGCA	CCATGCTAAACACAGTGGGG	QDENTMCGRTMENTVG
1389	C	ACAAGATTTAAATACCATGC	TGCGGCCGCA	CATGCTAAACACAGTGGGGG	QUENTMERPHMENTVG
1390	T	CAAGATTTAAATACCATGCT	TGCGGCCGCA	ATGCTAAACACAGTGGGGGGG	QDLNIMLAAAMLNIVG
1391	A	AAGATTTAAATACCATGCTA	TGCGGCCGCA	TGCTAAACACAGTGGGGGGA	DLNTMLCGRMLNTVGG
1392	A	AGATTTAAATACCATGCTAA	TGCGGCCGCA	GCTAAACACAGTGGGGGGGAC	DLNTMLMRPQLNTVGG
1393	A	GATTTAAATACCATGCTAAA	TGCGGCCGCA	CTAAACACAGTGGGGGGGACA	DLNTMLNAAALNTVGG
1394	C	ATTTAAATACCATGCTAAAC	TGCGGCCGCA	TAAACACAGTGGGGGGGACAT	LNTMLNCGRINTVGGH
1395	Δ	TTTAAATACCATGCTAAACA	TGCGGCCGCA	AAACACAGTGGGGGGGACATC	LNTMLNMRPQNTVGGH
1396	C	TTAAATACCATGCTAAACAC	TGCGGCCGCA	AACACAGTGGGGGGGACATCA	LNTMLNTAAANTVGGH
1307	A	TAAATACCATGCTAAACACA	TGCGGCCGCA	ACACAGTGGGGGGGGACATCAA	NTMLNTCGBNTVGGHO
1200	G	AAATACCATGCTAAACACAC	TGCGGCCGCA	CACAGTGGGGGGGGGACATCAAG	NTMLNTVBPHTVGGHO
1390	T	AATACCATCCTAAACACAC	TGCGGCCCCCA	ACAGTGGGGGGGGGACATCAAGC	NTMINTVAAATVOCHO
1399		ATACCATOCTAAACACAGT	TOCOCOCOCA	CAGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TMINTVCGRTVCCHOA
1400	G	ATACCATGCTAAACACAGTG	TOCOCOCOCO	ACTOCCCCCACATCAAGCA	TMINTV/PPOVCCHOA
1401	G	TACCATGCTAAACACAGTGG	TGCGGCCGCA	AGTGGGGGGGGCACATCAAGCAG	TMLNTVOAAAVOOLOA
1402	G	ACCATGCTAAACACAGTGGG	IGCGGCCGCA	GIGGGGGGGACATCAAGCAGC	MUNTYGAAAVGGHQA
1403	G	CCATGCTAAACACAGTGGGG	TGCGGCCGCA	TGGGGGGGACATCAAGCAGCC	MLNTVGCGRMGGHQAA
1404	G	CATGCTAAACACAGTGGGGG	TGCGGCCGCA	GGGGGGGACATCAAGCAGCCA	MLNTVGVRPQGGHQAA
1405	G	ATGCTAAACACAGTGGGGGGG	TGCGGCCGCA	GGGGGACATCAAGCAGCCAT	MLNTVGGAAAGGHQAA
1406	A	TGCTAAACACAGTGGGGGGGA	TGCGGCCGCA	GGGGACATCAAGCAGCCATG	LNTVGGCGRRGHQAAM
1407	C	GCTAAACACAGTGGGGGGGAC	TGCGGCCGCA	GGGACATCAAGCAGCCATGC	LNTVGGLRPQGHQAAM
1408	A	CTAAACACAGTGGGGGGGACA	TGCGGCCGCA	GGACATCAAGCAGCCATGCA	LNTVGGHAAAGHQAAM
1409	T	TAAACACAGTGGGGGGGACAT	TGCGGCCGCA	GACATCAAGCAGCCATGCAA	NTVGGHCGRRHQAAMQ
1410	C	AAACACAGTGGGGGGGACATC	TGCGGCCGCA	ACATCAAGCAGCCATGCAAA	NTVGGHLRPQHQAAMQ
1411	Δ	AACACAGTGGGGGGGGACATCA	TGCGGCCGCA	CATCAAGCAGCCATGCAAAT	NTVGGHHAAAHQAAMQ
1412	Δ	ACACAGTGGGGGGGGACATCAA	TGCGGCCGCA	ATCAAGCAGCCATGCAAATG	TVGGHQCGRNQAAMQM
1413	G	CACAGTGGGGGGGGACATCAAG	TGCGGCCGCA	TCAAGCAGCCATGCAAATGT	TVGGHQVRPHQAAMQM
1414	C	ACAGTGGGGGGGGACATCAAGC	TGCGGCCGCA	CAAGCAGCCATGCAAATGTT	TVGGHQAAAAQAAMQM
1415	Ā	CAGTGGGGGGGGACATCAAGCA	TGCGGCCGCA	AAGCAGCCATGCAAATGTTA	VGGHQACGRKAAMQML
1416	G	AGTGGGGGGGGACATCAAGCAG	TGCGGCCGCA	AGCAGCCATGCAAATGTTAA	VGGHQAVBPQAAMQML
1410	C	GTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TGCGGCCGCA	GCAGCCATGCAAATGTTAAA	VGGHQAAAAAAMQMI
1410	č	TCCCCCCACATCAACCACC	TGCGGCCGCA	CAGCCATGCAAATGTTAAAA	GGHQAACGRTAMOMLK
1410		CCCCCCACATCAACCACCCA	TGCGGCCGCA	AGCCATGCAAATGTTAAAAG	GGHQAAMBPQAMQMLK
1419	A T	COCCACATCAACCACCCAT	TGCGGCCGCA	CCCATCCAAATGTTAAAAGA	GGHOAAIAAAAMOMI K
1420	-	GGGGGACATCAAGCAGCCATC	TOCOCCCCA	CCATCCAAATGTTAAAAGAG	CHOAAMCCRTMOMI KE
1421	G	GGGGACATCAAGCAGCCATG	TOCOCOCOCA	CATOCAAATOTTAAAAGAGA	CHOAAMI DDUMOMI KE
1422	C	GGGACATCAAGCAGCCATGC	TGCGGCCGCA	CATGCAAATGTTAAAAGAGA	CHOAAMLAF AMOMLKE
1423	A	GGACATCAAGCAGCCATGCA	TGCGGCCGCA	AIGCAAAIGIIAAAAGAGAC	GHQAAMHAAAMQMLKE
1424	A	GACATCAAGCAGCCATGCAA	TGCGGCCGCA	TGCAAAIGIIAAAAGAGACC	HQAAMQCGRMQMLKET
1425	A	ACATCAAGCAGCCATGCAAA	TGCGGCCGCA	GCAAATGTTAAAAGAGACCA	HQAAMQMRPQQMLKET
1426	T	CATCAAGCAGCCATGCAAAT	TGCGGCCGCA	CAAATGTTAAAAGAGACCAT	HQAAMQIAAAQMLKET
1427	G	ATCAAGCAGCCATGCAAATG	TGCGGCCGCA	AAATGTTAAAAGAGACCATC	QAAMQMCGRKMLKETI
1428	T	TCAAGCAGCCATGCAAATGT	TGCGGCCGCA	AATGTTAAAAGAGACCATCA	QAAMQMLRPQMLKETI
1429	T	CAAGCAGCCATGCAAATGTT	TGCGGCCGCA	ATGTTAAAAGAGACCATCAA	QAAMQMFAAAMLKETI
1430	A	AAGCAGCCATGCAAATGTTA	TGCGGCCGCA	TGTTAAAAGAGACCATCAAT	AAMQMLCGRMLKETIN
1431	A	AGCAGCCATGCAAATGTTAA	TGCGGCCGCA	GTTAAAAGAGACCATCAATG	AAMQMLMRPQLKETIN
1432	A	GCAGCCATGCAAATGTTAAA	TGCGGCCGCA	TTAAAAGAGACCATCAATGA	AAMQMLNAAALKETIN
1433	A	CAGCCATGCAAATGTTAAAA	TGCGGCCGCA	TAAAAGAGACCATCAATGAG	AMQMLKCGRIKETINE
1434	G	AGCCATGCAAATGTTAAAAG	TGCGGCCGCA	AAAAGAGACCATCAATGAGG	AMQMLKVRPQKETINE
1435	-	GCCATGCAAATGTTAAAAGA	TGCGGCCGCA	AAAGAGACCATCAATGAGGA	AMOMLKDAAAKETINE
1433	A	CCATGCAAATGTTAAAAGAG	TGCGGCCGCA	AAGAGACCATCAATGAGGAA	MOMI KECGBKETINEE
1430	- CI	CATCCAAATCTTAAAACACA	TGCGGCCGCA	AGAGACCATCAATGAGGAAG	MOMI KEMBPOETINEE
143/	A	ATCCAAATCTTAAAACACAC	TGCGGCCCCCA	GAGACCATCAATGAGGAAGC	MOMI KETAAAETINEE
1436	0	TOCAMATOTTAAAAGAGAG	TOCOCCOCA	AGACCATCAATGAGGAAGCT	OMI KETCORKTINEEA
1439	U.	COAAATGTTAAAAGAGAGACC	TOCOCOCOCA	CACCATCAATCAACCAACCTC	OMI KETMPROTINEEA
1440	A	GCAAATGTTAAAAGAGAGACCA	TOCOGOCOCOCA	ACCATCAATCAACCAACCTCC	OMI KETIAAATINEEA
1441	I	CAAAIGIIAAAAGAGACCAT	TOCOGOCOCA	ACCATCAATGAGGGAGGTGC	MIKETICODTINEEAA
1442	C	AAATGTTAAAAGAGACCATC	TOOGGCCGCA	CLATCAATGAGGAAGCTGCA	MLKETIMODUINEEAA
1443	A	AATGTTAAAAGAGACCATCA	TOCOGCCGCA	ATCAATGAGGAAGCTGCAG	MIKETINAAADUEEAA
1444	A	ATGTTAAAAGAGACCATCAA	IGCGGCCGCA	ATCAATGAGGAAGCTGCAGA	MLKETINAAAINEEAA
1445	T	TGTTAAAAGAGACCATCAAT	TGCGGCCGCA	TCAATGAGGAAGCTGCAGAA	LKETINCGRINEEAAE
1446	G	GTTAAAAGAGACCATCAATG	TGCGGCCGCA	CAATGAGGAAGCTGCAGAAT	LKETINVHPHNEEAAE
1447	A	TTAAAAGAGACCATCAATGA	TGCGGCCGCA	AATGAGGAAGCTGCAGAATG	LKETINDAAANEEAAE
1448	G	TAAAAGAGACCATCAATGAG	TGCGGCCGCA	ATGAGGAAGCTGCAGAATGG	KETINECGRNEEAAEW
4440	G	AAAAGAGACCATCAATGAGG	TGCGGCCGCA	TGAGGAAGCTGCAGAATGGG	KETINEVRPHEEAAEW
1449			TOCOCCOCA	GAGGAAGCTGCAGAATGGGA	KETINEDAAAEEAAEW
1449	A	AAAGAGACCATCAATGAGGA	IGCGGCCGCA		
1449 1450 1451	A	AAAGAGACCATCAATGAGGA AAGAGACCATCAATGAGGAA	TGCGGCCGCA	AGGAAGCTGCAGAATGGGAT	ETINEECGRKEAAEWD
1449 1450 1451 1452	A A G	AAAGAGACCATCAATGAGGA AAGAGACCATCAATGAGGAA AGAGACCATCAATGAGGAAG	TGCGGCCGCA TGCGGCCGCA	AGGAAGCTGCAGAATGGGAT GGAAGCTGCAGAATGGGATA	ETINEECGRKEAAEWD ETINEEVRPQEAAEWD
1449 1450 1451 1452 1453	A A G C	AAAGAGACCATCAATGAGGA AAGAGACCATCAATGAGGAA AGAGACCATCAATGAGGAAG GAGACCATCAATGAGGAAGC	TGCGGCCGCA TGCGGCCGCA TGCGGCCGCA	AGGAAGCTGCAGAATGGGAT GGAAGCTGCAGAATGGGATA GAAGCTGCAGAATGGGATAG	ETINEECGRKEAAEWD ETINEEVRPQEAAEWD ETINEEAAAAEAAEWD
1449 1450 1451 1452 1453 1454	A A G C T	AAAGAGACCATCAATGAGGA AAGAGACCATCAATGAGGAA AGAGACCATCAATGAGGAAG GAGACCATCAATGAGGAAGC AGACCATCAATGAGGAAGCT	TGCGGCCGCA TGCGGCCGCA TGCGGCCGCA TGCGGCCGCA	AGGAAGCTGCAGAATGGGAT GGAAGCTGCAGAATGGGATA GAAGCTGCAGAATGGGATAG AAGCTGCAGAATGGGATAGA	ETINEECGRKEAAEWD ETINEEVRPQEAAEWD ETINEEAAAAEAAEWD TINEEACGRKAAEWDR
1449 1450 1451 1452 1453 1454 1455	A A G C T G	AAAGAGACCATCAATGAGGA AAGAGACCATCAATGAGGAA AGAGACCATCAATGAGGAAG GAGACCATCAATGAGGAAGC AGACCATCAATGAGGAAGCT GACCATCAATGAGGAAGCTG	TGCGGCCGCA TGCGGCCGCA TGCGGCCGCA TGCGGCCGCA TGCGGCCGCA	AGGAAGCTGCAGAATGGGAT GGAAGCTGCAGAATGGGATA GAAGCTGCAGAATGGGATAG AAGCTGCAGAATGGGATAGA AGCTGCAGAATGGGATAGAT	ETINEECGRKEAAEWD ETINEEVRPQEAAEWD ETINEEAAAAEAAEWD TINEEACGRKAAEWDR TINEEAVRPQAAEWDR

1457	A	CCATCAATGAGGAAGCTGCA	TGCGGCCGCA	CTGCAGAATGGGATAGATTG	INEEAACGRTAEWDRL
1458	G	CATCAATGAGGAAGCTGCAG	TGCGGCCGCA	TGCAGAATGGGATAGATTGC	INEEAAVRPHAEWDRL
1459	A	ATCAATGAGGAAGCTGCAGA	TGCGGCCGCA	GCAGAATGGGATAGATTGCA	INEEAADAAAAEWDRL
1460	A	TCAATGAGGAAGCTGCAGAA	TGCGGCCGCA	CAGAATGGGATAGATTGCAT	NEEAAECGRTEWDRLH
1461	Т	CAATGAGGAAGCTGCAGAAT	TGCGGCCGCA	AGAATGGGATAGATTGCATC	NEEAAELRPQEWDRLH
1462	G	AATGAGGAAGCTGCAGAATG	TGCGGCCGCA	GAATGGGATAGATTGCATCC	NEEAAECAAAEWDRLH
1463	G	ATGAGGAAGCTGCAGAATGG	TGCGGCCGCA	AATGGGATAGATTGCATCCA	EEAAEWCGRKWDRLHP
1464	G		TGCGGCCGCA	AIGGGAIAGAIIGCAICCAG	
1465	- A		TGCGGCCGCA		
1400			TGCGGCCGCA	GGGATAGATTGCATCCAGTGC	
1467	â	GAAGCTGCAGAATGGGATAG	TGCGGCCGCA	GATAGATIGCATCCAGTGCA	EAAEWDSAAADRI HPV
1469	Ă	AAGCTGCAGAATGGGATAGA	TGCGGCCGCA	ATAGATTGCATCCAGTGCAT	AAFWDBCGBNBL HPVH
1470	Ŧ	AGCTGCAGAATGGGATAGAT	TGCGGCCGCA	TAGATTGCATCCAGTGCATG	AAEWDRLRPHRLHPVH
1471	Ť	GCTGCAGAATGGGATAGATT	TGCGGCCGCA	AGATTGCATCCAGTGCATGC	AAEWDRFAAARLHPVH
1472	G	CTGCAGAATGGGATAGATTG	TGCGGCCGCA	GATTGCATCCAGTGCATGCA	AEWDRLCGRRLHPVHA
1473	С	TGCAGAATGGGATAGATTGC	TGCGGCCGCA	ATTGCATCCAGTGCATGCAG	AEWDRLLRPQLHPVHA
1474	A	GCAGAATGGGATAGATTGCA	TGCGGCCGCA	TTGCATCCAGTGCATGCAGG	AEWDRLHAAALHPVHA
1475	T	CAGAATGGGATAGATTGCAT	TGCGGCCGCA	TGCATCCAGTGCATGCAGGG	EWDRLHCGRMHPVHAG
1476	C	AGAATGGGATAGATTGCATC	TGCGGCCGCA	GCATCCAGTGCATGCAGGGC	EWDRLHLRPQHPVHAG
1477	C	GAATGGGATAGATTGCATCC	TGCGGCCGCA		
14/8	A	ATCCCATACATTCCATCCAC	TGCGGCCGCA	TCCACTCCATCCACGCCCTA	
14/9	<u> </u>	TGGGATAGATTGCATCCAG	TGCGGCCGCA	CCAGTGCATGCAGGGCCTAT	
1481	Ġ	GGGATAGATTGCATCCAGTG	TGCGGCCGCA	CAGTGCATGCAGGGCCTATT	DRLHPVCGRTVHAGPI
1482	5	GGATAGATTGCATCCAGTGC	TGCGGCCGCA	AGTGCATGCAGGGCCTATTG	
1483	Ă	GATAGATTGCATCCAGTGCA	TGCGGCCGCA	GTGCATGCAGGGCCTATTGC	DRLHPVHAAAVHAGPI
1484	T	ATAGATTGCATCCAGTGCAT	TGCGGCCGCA	TGCATGCAGGGCCTATTGCA	RLHPVHCGRMHAGPIA
1485	G	TAGATTGCATCCAGTGCATG	TGCGGCCGCA	GCATGCAGGGCCTATTGCAC	RLHPVHVRPQHAGPIA
1486	С	AGATTGCATCCAGTGCATGC	TGCGGCCGCA	CATGCAGGGCCTATTGCACC	RLHPVHAAAAHAGPIA
1487	A	GATTGCATCCAGTGCATGCA	TGCGGCCGCA	ATGCAGGGCCTATTGCACCA	LHPVHACGRNAGPIAP
1488	G	ATTGCATCCAGTGCATGCAG	TGCGGCCGCA	TGCAGGGCCTATTGCACCAG	LHPVHAVRPHAGPIAP
1489	G	TTGCATCCAGTGCATGCAGG	TGCGGCCGCA	GCAGGGCCTATTGCACCAGG	
1490	G	IGCATCCAGTGCATGCAGGG	IGCGGCCGCA		HPVHAGCGRTGPIAPG
1491	C	GCATCCAGTGCATGCAGGGC	TGCGGCCGCA	AGGGCCTATIGCACCAGGCC	
1492	÷		TOCOCCOCA	GGGCCTATTGCACCAGGCCAG	
1493			TGCGGCCGCA	GCCTATTGCACCAGGCCAGA	
1495	÷	CCAGTGCATGCAGGGCCTAT	TGCGGCCGCA	CCTATTGCACCAGGCCAGAT	PVHAGPIAAAPIAPGO
1496	Ť	CAGTGCATGCAGGGCCTATT	TGCGGCCGCA	CTATTGCACCAGGCCAGATG	VHAGPICGBTIAPGOM
1497	Ġ	AGTGCATGCAGGGCCTATTG	TGCGGCCGCA	TATTGCACCAGGCCAGATGA	VHAGPIVRPHIAPGQM
1498	C	GTGCATGCAGGGCCTATTGC	TGCGGCCGCA	ATTGCACCAGGCCAGATGAG	VHAGPIAAAAIAPGQM
1499	A	TGCATGCAGGGCCTATTGCA	TGCGGCCGCA	TTGCACCAGGCCAGATGAGA	HAGPIACGRIAPGOMR
1500	C	GCATGCAGGGCCTATTGCAC	TGCGGCCGCA	TGCACCAGGCCAGATGAGAG	HAGPIALRPHAPGQMR
1501	C	CATGCAGGGCCTATTGCACC	TGCGGCCGCA	GCACCAGGCCAGATGAGAGA	HAGPIAPAAAAPGQMR
1502	A		TGCGGCCGCA		
1503	90	GCAGGGCCTATTGCACCAG	TGCGGCCGCA		
1505	č	CAGGGCCTATTGCACCAGGC	TGCGGCCGCA		GPIAPGCGRTGOMREP
1506	Č	AGGGCCTATTGCACCAGGCC	TGCGGCCGCA	AGGCCAGATGAGAGAACCAA	GPIAPGLRPQGQMREP
1507	A	GGGCCTATTGCACCAGGCCA	TGCGGCCGCA	GGCCAGATGAGAGAACCAAG	GPIAPGHAAAGQMREP
1508	G	GGCCTATTGCACCAGGCCAG	TGCGGCCGCA	GCCAGATGAGAGAACCAAGG	PIAPGQCGRSQMREPR
1509	<u>A</u>	GCCTATTGCACCAGGCCAGA	TGCGGCCGCA	CCAGATGAGAGAACCAAGGG	PIAPGQMRPHQMREPR
1510	<u> </u>	CCTATIGCACCAGGCCAGAT	TGCGGCCGCA		PIAPGQIAAAQMHEPR
1511	G		TGCGGCCGCA		
1512	~		TGCGGCCGCA		
1514	Ă	TTGCACCAGGCCAGATGAGA	TGCGGCCGCA	TGAGAGAACCAAGGGGAAGT	APGOMRCGRMRFPRGS
1515	Ĝ	TGCACCAGGCCAGATGAGAG	TGCGGCCGCA	GAGAGAACCAAGGGGAAGTG	APGQMRVRPQREPRGS
1516	Â	GCACCAGGCCAGATGAGAGA	TGCGGCCGCA	AGAGAACCAAGGGGAAGTGA	APGQMRDAAAREPRGS
1517	A	CACCAGGCCAGATGAGAGAA	TGCGGCCGCA	GAGAACCAAGGGGAAGTGAC	PGQMRECGRREPRGSD
1518	С	ACCAGGCCAGATGAGAGAAC	TGCGGCCGCA	AGAACCAAGGGGAAGTGACA	PGQMRELRPQEPRGSD
1519	C	CCAGGCCAGATGAGAGAACC	TGCGGCCGCA	GAACCAAGGGGAAGTGACAT	PGQMREPAAAEPRGSD
1520	Ă.	CAGGCCAGATGAGAGAACCA	TGCGGCCGCA	AACCAAGGGGAAGTGACATA	
1521	-		TOCOGCCGCA		
1522	20	GCCAGATGAGAGAACCAACC	TACAGOCCA		OMREPROGREDOCIA
1523	2	CCAGATGAGAGAACCAAGG	TGCGGCCGCA		OMREPRVRPORGEDIA
1525	Ğ	CAGATGAGAGAACCAAGGGG	TGCGGCCGCA	AGGGGAAGTGACATAGCAGG	OMREPRGAAARGSDIA
1526	Ă	AGATGAGAGAACCAAGGGGA	TGCGGCCGCA	GGGGAAGTGACATAGCAGGA	MREPRGCGRRGSDIAG
1527	A	GATGAGAGAACCAAGGGGAA	TGCGGCCGCA	GGGAAGTGACATAGCAGGAA	MREPRGMRPQGSDIAG
1528	G	ATGAGAGAACCAAGGGGAAG	TGCGGCCGCA	GGAAGTGACATAGCAGGAAC	MREPRGSAAAGSDIAG
1529	T	TGAGAGAACCAAGGGGAAGT	TGCGGCCGCA	GAAGTGACATAGCAGGAACT	REPRGSCGRRSDIAGT
1530	G	GAGAGAACCAAGGGGAAGTG	TGCGGCCGCA	AAGTGACATAGCAGGAACTA	REPRGSVRPQSDIAGT
1531	<u>A</u>	AGAGAACCAAGGGGAAGTGA	IGCGGCCGCA	AGIGACATAGCAGGAACTAC	HEPRGSDAAASDIAGT
1532	C		TOCOCOCOCO		EPHGSDUGHSDIAGTT
1533	.		TOCOCCCCA		
1534			TGCGGCCGCA		PRGSDICGRNIAGTTS
1536	Ĝ	ACCAAGGGGAAGTGACATAG	TGCGGCCGCA	CATAGCAGGAACTACTAGT	PRGSDIVRPHIAGTTS
1537	č	CCAAGGGGAAGTGACATAGC	TGCGGCCGCA	ATAGCAGGAACTACTAGT	PRGSDIAAAAIAGTTS
1538	A	CAAGGGGAAGTGACATAGCA	TGCGGCCGCA	TAGCAGGAACTACTAGT	RGSDIACGRIAGTTS
1539	G	AAGGGGAAGTGACATAGCAG	TGCGGCCGCA	AGCAGGAACTACTAGT	RGSDIAVRPQAGTTS
1540	G	AGGGGAAGTGACATAGCAGG	TGCGGCCGCA	GCAGGAACTACTAGT	RGSDIAGAAAAGTTS
1541	<u>A</u>	GGGGAAGTGACATAGCAGGA	TGCGGCCGCA	CAGGAACTACTAGT	GSDIAGCGRTGTTS
1542	A	GGGAAGTGACATAGCAGGAA	IGCGGCCGCA		GSUIAGMRPQGTTS

.

1543	C	GGAAGTGACATAGCAGGAAC	TGCGGCCGCA	GGAACTACTAGT	GSDIAGTAAAGTTS
1544	T	GAAGTGACATAGCAGGAACT	TGCGGCCGCA	GAACTACTAGT	SDIAGTCGRRTTS
1545	A	AAGTGACATAGCAGGAACTA	TGCGGCCGCA	AACTACTAGT	SDIAGTMRPQTTS
1546	C	AGTGACATAGCAGGAACTAC	TGCGGCCGCA	ACTACTAGT	SDIAGTTAAATTS
1547	T	GTGACATAGCAGGAACTACT	TGCGGCCGCA	CTACTAGT	DIAGTTCGRTTS
1548	A	TGACATAGCAGGAACTACTA	TGCGGCCGCA	TACTAGT	DIAGTTMRPHTS
1549	G	GACATAGCAGGAACTACTAG	TGCGGCCGCA	ACTAGT	DIAGTTSAAATS
1550	T	ACATAGCAGGAACTACTAGT	TGCGGCCGCA	CTAGT	IAGTTSCGRTS

<u>Oligo Name</u>	Sequence	<u>T_m (°C)</u>
HIV1	5'-ACATGTAGCCCCAGTTCTACTTACACC	80
HIV37	5'-TGGAAGGGCTAATTCACTCCCAAAG	74
HIV251	5'-GAGCCTGCATGGAATGGATG	62
HIV270r	5'-CATCCATTCCATGCAGGCTC	62
HIV361	5'-ACTGCTGACATCGAGCTTGC	62
HIV400r	5'-CCAGCGGAAAGTCCCTTGATGC	66
HIV492r	5'-CCCAGTACAGGCAAAAAGCAGC	65
HIV493	5'-TCTCTCTGGTTAGACCAGATCTG	63
HIV501	5'-GTTAGACCAGATCTGAGCCTGGG	66
HIV521	5'-GGGAGCTCTCTGGCTAACTAGGG	68
HIV591r	5'-TGAAGCACTCCCTCAAGGCAAGC	66
HIV592	5'-AGTAGTGTGTGCCCGTCTGTTG	65
HIV644r	5'-GGGTCTGAGGGATCTCTAGTTACC	74
HIV672r	5'-TGCTAGAGATTTTCCACACTGAC	66
HIV751	5'-GCGCACGGCAAGAGGCGAGG	71
HIV770r	5'-CCTCGCCTCTTGCCGTGCGC	71
HIV905r	5'-CTTTCCCCCTGGCCTTAACCG	68
HIV1027	5'-CCCTTCAGACAGGATCAGAAGAAC	65
HIV1224	5'-CCTATAGTCCAGAACCTCCAG	64
HIV1244r	5'-CTGGAGGTTCTGGACTATAGG	64
HIV1539	5'-GGAACTACTAGTACCCTTCAGG	66
HIV1573r	5'-CATCCTATTTGTTCCTGAAGGG	64

Appendix C. Oligonucleotides used for genetic footprinting.

Appendix D.

Documentation for software developed for genetic footprinting

The Footprinting Utilities are a set of tools to gather, manipulate, and present quantitative data from scanned gels using Excel and Matlab. From a set of footprinting gels and the sequence of the mutagenized DNA, you will be able to quantitatively assess band intensities, normalize data gathered from different gels, consolidate data from many spreadsheets into a single spreadsheet, and color code this data.

<u>Top</u>

Scanning a Gel

Your gel must be scanned:

- at 300 DPI.
- without auto levelling (contrast and brightness at 50%, or 125), and no enhancement (e.g. use DeskScan's "Black and White Photo," <u>NOT</u> "Sharp Black and White Picture").
- in 256 gray scale.

Save the gel image as a TIFF file. Include no more than 8 characters in the filename and make sure that the file has a ".tif" extension.

The gel should be scanned vertically. Matlab takes care of rotating the image to better fit the screen. Since gels are often larger than the window of the scanner, for better image quality, a weight should be put on top of the scanner's lid to properly push the gel against the glass. It is a good idea to crop the gel image as much as possible, as it will speed up the program. In cases where you have extremely large gel images, it may be worth saving half of the gel (i.e. the top half) in one file and the other half (i.e. the bottom half) in another file in the interest of speed. Using a gel image that is twice as big may slow down the program much more than two-fold.

<u>Top</u>

Excel Utilities

Footprinting: 💡 🕰 🚋 🕒 🗐 🐩 🔀 💩 🚍 📠 🗠

——Tools: The Excel utilities enable you to:

- Create Excel sheets to hold your data.
- Start the Matlab Quantitation Utility.

- Correct mistakes in band assignments from previous Matlab Quantitation Utility sessions.

- Consolidate data from many spreadsheets into a single spreadsheet.
- Color-code numerical data in Excel spreadsheets.
- Format data for the Normalization Utility.

Excel Sheets: A Footprinting spreadsheet is composed of 2 sheets. Sheet 1 is **the summary sheet**. It displays the sequence of the target gene vertically. The position of each nucleotide is indicated in the column to the left of the target gene sequence. To the right of each nucleotide in the target sequence is written the structure of a mutant at that position, both in nucleotide form and in peptide form. Sheet 2 is **the data sheet**. It contains only the position numbers and target sequence until Matlab sends more data. Do not rename the sheets since Matlab sends the data to Sheet 2. Footprinting spreadsheets can be generated, saved, and reopened at a later time to add data using Matlab. Data can be entered to the same spreadsheet over several sessions. Simply open the appropriate spreadsheet before starting the <u>Matlab Quantitation Utility</u> at the beginning of each session and save your data at the end of each session. A Footprinting spreadsheet must be open before using the Matlab Quantitation Utility.

Help: Launch a HTML browser with this help file.

Make Footprinting Sheets: To create a Footprinting spreadsheet, first open a blank Excel Workbook, then click on the icon. It will take you through the entire process using several prompts. You may choose to start the Matlab Quantitation Utility directly after creating this spreadsheet in order to select bands on a gel image.

Select Peptide Reading Frame: This icon allows you to change the translation frame for the peptides displayed on the summary sheet.

Make Data Sheet: This icon allows you to create only the second sheet (the data sheet) in case you don't want the summary sheet. You can enter data using Matlab Utilities in this data sheet.

Start the Matlab Quantitation Utility: This icon starts Matlab Quantitation Utility. You will be using the Matlab Quantitation Utility to select the bands you want to quantitate and to send the resulting data to the data sheet. Each time you click on this icon, you will start a new Matlab session. It is a good idea to have only one Matlab session open at a given time, so close the current session before opening a new one. <u>Matlab Quantitation Utility</u> are explained more fully below. The Matlab Quantitation Utility can be started directly from Matlab by typing "foot" in the Matlab Command Window.

Change Number: If you want to change the number of a band after it has been entered by Matlab, open the appropriate data sheet, select the cell with the nucleotide number you want to change from and click on this icon. You will be asked to enter the nucleotide number to which you want the data to move. This operation will move the data on the Excel data sheet from the old nucleotide position to the new position, as well as change the label of the band on the gel image.

Regroup Data: This icon allows you to import data from many spreadsheets into one spreadsheet. Open the destination spreadsheet (a new, blank sheet) and click on the icon. You will be asked to select a source file (Excel spreadsheet). The rows holding data will be imported into the destination spreadsheet. If you want to import data from several source files, do not click anywhere except on this icon to repeat the operation. This tool will only work with unmodified data sheets generated by <u>Matlab Quantitation Utility</u> as the source files.

Paste Column: This icon allows you to import columns from many spreadsheets into one spreadsheet. For example, a given nucleic acid sample (called

George) would typically be analyzed using several different primer pairs. The data for George would therefore end up on several data sheets. If you made sure that the data for George was always entered in a specific column (e.g. column B), you could use this tool to consolidate all of the data for George into a single spreadsheet. Open the destination spreadsheet and click anywhere in the column into which you wish to import data. Any data in this column will be erased. You will be asked which column number you wish to copy. In Excel, column headings are letters, so you must convert the letter of the desired column into a number (e.g. A=1, B=2, C=3,...). Next, you will be asked how many columns you wish to skip between pastes. If you wish to paste data into consecutive columns, enter "0" here. Finally, select the spreadsheet from which you wish to copy a column number will be accessed for each spreadsheet. When you have finished, click the 'Cancel' button. This tool will work using any type of Excel spreadsheet as the source file.

Color Code Numerical Data: This icon color codes cell values on a 56-shade grayscale. White is assigned to the number 1 and black is assigned to the numbers 100 and higher. You may scale your data as you wish to fit this scale. Highlight the cells holding the data you wish to color code and click on the icon. Unfortunately, due to a Microsoft bug, using this tool will change the entire color scheme of the current spreadsheet!

Formating for the Normalization Utility: To use the Matlab Normalization Utility, you must get your data into the proper format. Paste the values for your data into the upper left-hand corner of a blank Excel worksheet (to paste only values and not formulae, use Edit | Paste Special... | "as Text"). Eliminate any non-data information (e.g. data labels, nucleotide position numbers, column headings) -- the normalization program will try to normalize anything you give it. Your data should be organized such that a given column contains data from a single gel and a given row contains data for a given nucleotide position. Highlight the region of the spreadsheet where you have data. Hit the "NaN" function icon. NaN ("Not a Number") will appear in all the blank cells in the area where you have your data. Save your worksheet as "Text -- Tab-delimited." A ".txt" extension should automatically appear on your file. This specific extension is required by the <u>Matlab Normalization Utility</u>. Put the files you want to normalize into a dedicated folder. Do not put extraneous files into this folder -- the normalization utility will try to normalize them. You will not mess up your files, but the utility will crash.

Start the Matlab Normalization Utility: This icon starts the <u>Matlab</u> <u>Normalization Utility</u>. The Matlab Normalization Utility can be started directly from Matlab by typing "normalize" in the Matlab Command Window.

<u> Top</u>

The Matlab Quantitation Utility

Number of Bands per Set Main Dialog Screen Figure Menu

Create or open the appropriate spreadsheet in Excel and click on this icon

Number of Bands per Set

Enter the number of bands that you wish quantitate per nucleotide position, or hit Cancel to simply view the gel (the Zoom will then automatically be turned on).

Main Dialog Screen

Place Box: Enter the nucleotide position number in the edit box. Then press 'Return', or click 'Place Box'. The pointer becomes a long crosshair, indicating that you can select the first box of a set. Click on the band you are interested in. Two boxes and a number will appear:

The first box around the band will remain; it indicates the area where data is taken.

The second box shows the area used to determine the background and will disappear.

A number will temporarily appear; this number is the value of the data read (with background subtracted). It will disappear when you select the next band.

At this point you may decide to keep this data by

selecting the next band, or delete it (giving you a chance to re-select it) by pressing 'Enter'.

When you reach the last band at a given position, you will receive a "last band" prompt. You can either keep the data by clicking anywhere on the figure, or delete it and re-select it by pressing 'Enter'.

Every time you hit the 'Enter' key, you will delete the data from one band, starting from the most recent band selected and proceeding backwards in time. However, you can only delete data at the nucleotide position where you are placing bands. Once you make the final click after the "last band" prompt, you cannot go back and delete data for that position using the 'Enter' key. You can always "Quit" without saving and start all over again.

Zoom: When the zoom is enabled, the cursor icon changes and you can Left-click to zoom in, Right-click to zoom out, or drag a box around the area you want to zoom. When you have zoomed to the level of magnification you want to work with, press 'Enter'.

Area: You probably won't be using this tool. It calculates the volume that lies

between the plane defined by the background and the surface defined by the band. At any given point, the elevation is the intensity.

All Done: Hit this button when you are finished entering data for your gel. It will then send the data to the Excel spreadsheet (the correct spreadsheet should already be open). It will then save the gel file with the boxes and position numbers. You will be prompted for the title of each column (if no titles are desired, or the titles are already in the spreadsheet, just hit 'Cancel'). Make sure to save the Excel spreadsheet with your new data before closing it.

Help: This will start a Web Browser if one is not already running and display this document.

Color: Click here to set the color you wish for the boxes and the text on the gel.

Color	2 ×				
Basic colors:					
Custom colors:					
Define Custom Colors >>					
OK Ca	ncel				

Quit: By clicking this button, you will exit the program, without saving anything. An "Are you sure?" is there in case you didn't really mean to quit without saving.

Figure Menu

Print: Click here to print the current gel image, including boxed and labelled bands. To resume or finish your quantitation session, find the "Select an option" button on the taskbar at the bottom of your screen and click on it to reactivate the <u>Main Dialog Screen</u>.

Colormap: Click here to open another window displaying the current gel image next to a colorbar showing the color scheme used to pseudocolor the gel image. To resume or finish your quantitation session, close this colorbar window, find the "Select an option" button on the taskbar at the bottom of your screen, and click on it to reactivate the <u>Main</u> <u>Dialog Screen</u>.

Top

The Matlab Normalization Utility

This tool allows you to merge data for the same nucleic acid sample between different gels or different exposures of the same gel.

First, make sure your data is in the proper format and in a dedicated folder, as described in the section on <u>Formating for the Normalization Utility</u>. Then <u>start the Matlab</u> <u>Normalization Utility</u>. You will be asked to select any file in the dedicated folder. The Normalization Utility will proceed to normalize every file in that folder. The program will run for a while, perhaps a long while if you are comparing many gels (we have normalized up to sixty gels in one .txt file). When the program is finished, a series of graphs will pop up on the screen. The top graph displays the data before normalization, the middle graph displays the data after one round of normalization, and the bottom graph displays the data after the second round of normalization. The highlighted blue curves, one per graph, represents the calculated average of the curves in that graph. Your real results will consist of a series of normalization factors, and are saved in ".res" files which will appear in the dedicated folder. To get your normalized data, you multiply the original values (i.e. the values you read off of the gel image) for a given gel by the normalization factor for that gel. The Matlab Normalization Utility can be started directly from Matlab by typing "normalize" in the Matlab Command Window.

<u>Top</u>

Methods

Methods for the Matlab Quantitation Utility Methods for the Matlab Normalization Utility

------ Methods for the Matlab Quantitation Utility

——Pseudocolors: The scanned gel is a large 2-dimensional matrix, where each element of the matrix represents a pixel location and holds a number between 1 and 256 indicating the intensity of the gray. For pseudocolor, the image (= matrix) is searched for the biggest of the 10 smallest values of gray and the smallest of the 10 biggest values of gray. This gives us a good low and high boundaries for the gray present in the image. Then, a custom-made colormap (= set of 256 different colors) is stretched to fit exactly between the two boundaries. The use of this tailored pseudocoloring scheme helps when selecting bands on the gel. To see the colormap of a given gel, start the Matlab Utility and at the "Number of Bands per Set" prompt hit 'Cancel'. The menu should then have a 'ColorMap' option. Values that are outside the dynamic range of the film are colored bright red to indicate saturation.

-----Data Values:

For each band, an area around the band (60 X 10 pixels) is considered. In this area, the darkest 50 pixels are averaged to give the raw reading. The background value (see below) is then subtracted to give the data. It is a number between 1 (light) and 256 (dark). This value is temporarily displayed on the gel as the user selects bands.

Background Subtraction:

For background subtraction, a longer and narrower area than the one used for collecting the data is considered (30 X 160 pixels). This area is divided into 16 vertical strips (30 X 10 pixels). For each strip, the darkest 50 pixels are averaged. The lowest of these 16 averages is considered the value of the background. The background value is subtracted from the value read in the Data Area (above).

- Methods for the Matlab Normalization Utility

You may wish to merge data for the same nucleic acid sample between different gels or different exposures of the same gel. As you might expect, the normalization algorithm works better if you have more positions in common between gels. The goal of the algorithm is to minimize the weighted sum of the coefficients of variation for each position. First, the Normalization Utility pre-processes the data in three ways:

- It eliminates values that exceed the "<u>maxgrey</u>" value. Values that are beyond the dynamic range of the film are meaningless.

- It eliminates nucleotide positions that contain only one value.
- It eliminates gels that contain only one value.

Next, the average value at each nucleotide position is calculated. These average values (the Starting Averages for round 1) are kept throughout the first round of normalization. At a given nucleotide position, a weighted coefficient of variation is calculated using the values for the data points as well as the Starting Average. The Starting Average is assigned a weight that is equal to the total number of data points at this position. For example, suppose you have three data points (x_1, x_2, x_3) at position 637, with a Starting Average of AV. x1, x2, and x3 are each given a weight of 1, while AV is given a weight of 3. A weighted sum of the weighted coefficients of variation is taken. The weighted coefficient of variation at a given position is assigned a weight according to the number of data points (not including the synthetic "average value" data points) present at that position. A position with two data points is given a weight of 2, a position with three data points is given a weight of 3, and so on. The Normalization Utility tries by iteration to minimize this weighted sum by adjusting each gel. The adjustment is achieved by multiplying the data from each gel by a factor (a different factor for each gel, but the same factor for all data points within a gel). We stop the iteration process when the variation in the weighted sum is less than the "precision" value or after a defined number ("iteration") of iterations has been performed.

A new set of average values is calculated using the normalization factors from the first round of normalization. These average values (the Starting Averages for round 2) are kept throughout the second round of normalization. The second round of normalization is carried out exactly like the first round.

Your results will consist of a series of normalization factors, one for each gel (note that if a gel was eliminated during pre-processing, it will not receive a normalization factor). To get your normalized data, you multiply the original values (i.e. the values you read off of the gel image) for a given gel by the normalization factor for that gel.

The default values for "maxgrey", "precision", and "iteration" are 110, 0.001, and 10000, respectively. You can modify these values. For example, type "maxgrey = 120" in the Matlab Command Window to set "maxgrey" to 120. Your modifications will not be saved between Matlab sessions. To verify the current values for these properties, type "maxgrey", "precision", or "iteration" in the Matlab Command Window (case-sensitive).

Appendix E. Code for software developed for genetic footprinting

CODE FOR MATLAB FOORPRINTING UTILITIES

FILE FOOT.M

```
function Foot
₽.
8
  Utility for gathering data on scanned gels for foot printing.
¥
% Initialize
global Dir
try
  cd(Dir.GelDir)
catch
  h = msgbox('The Default Gel Directory path is wrong. Edit
''Startup.m'' to correct the path.');
  drawnow
  waitfor(h)
end
clear S
global S
S.Data = [];
S.Image = [];
0 = NaN;
ZoomPointer = [ ...
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0;...
0 1 1 2 2 2 2 2 1 1 0 0 0 0 0;...
0 1 2 2 1 1 1 2 2 1 0 0 0 0 0;...
1 2 2 1 0 0 0 1 2 2 1 0 0 0 0;...
1 2 1 0 0 0 0 1 2 1 0 0 0 0;...
1 2 1 0 0 1 0 0 1 2 1 0 0 0 0;...
1 2 1 0 0 0 0 1 2 1 0 0 0 0;...
1 2 2 1 0 0 0 1 2 2 1 0 0 0 0;...
1 1 2 2 1 1 1 2 2 1 0 0 0 0 0;...
0 1 1 2 2 2 2 2 1 1 1 0 0 0 0;...
0 0 0 1 1 1 1 1 0 1 1 1 0 0 0;...
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0;...
000000000011100;...
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1;
% Open Gel
% Get a file
```

```
[ImFile, ImPath] = uigetfile('*.tif');
if max(ImFile == 0)
   return
end
warning off
ImFile = [ImPath, ImFile];
im = imread(ImFile, 'tiff');
warning on
% Put it horizontal and show it
S.Image = rot90(im);
imshow(S.Image)
S.FigH = gcf;
S.AxeH = gca;
SetBestColorMap
% Add print to menu, and add setup for pretty printing
set(S.FigH, 'NumberTitle', 'off')
set(S.FigH, 'Name', ImFile)
set(S.FigH, 'Color',[1 1 1], ...
   'PaperOrientation', 'Landscape')
set(S.FigH, 'PaperUnits', 'inches');
PaperSize = get(S.FigH, 'PaperSize');
PaperPos=[0.3 0.3 (PaperSize(1)-.3) (PaperSize(2)-0.3)];
set(S.FigH, 'PaperPosition', PaperPos);
h1 = uimenu('Parent',S.FigH, ...
   'Callback', 'printdlg', ...
   'Label','&Print', ...
   'Tag', 'MnPrint');
h1 = uimenu('Parent', S.FigH, ...
   'Callback', 'Colors', ...
   'Label','&ColorMap', ...
   'Tag', 'MnColors');
% Try to load previous lines if needed
[LineFile, rem] = strtok(ImFile, '.');
LineFile = strcat(LineFile, '.fig');
EvalStr = ['hgload( ''',LineFile, ''');'];
eval(EvalStr, '');
% Get general info about gel
figure(S.FigH)
drawnow
% Play sound
try
   [a,b,c] = wavread('Utopia Windows Start.wav');
   playsnd(a,b,c);
catch
end
List = \{ '2', '3', '4', '5', '6', '7', '8', '9', \ldots \}
      '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', ...
      '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', ...
      '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40'};
[NumCol,v] = listdlg('PromptString', 'How many lines per set?',...
   'SelectionMode', 'single',...
```

```
'ListString',List);
S.NumCol = NumCol+1;
if \mathbf{v} == 0
   set(S.FigH, 'Pointer', 'custom', 'PointerShapeCData', ZoomPointer,
'PointerShapeHotSpot', [6 6])
   zoom
  return
end
i = 0;
while(1)
  drawnow
  S.Ret = 'PBOuit';
  DlgH = FgWhatNext;
  CenterFigure(S.FigH, DlgH);
  waitfor(DlgH)
   if S.Ret == 'PBDone'
      % Get out
      break
   elseif S.Ret == 'PBQuit'
      % Make sure and quit
      ButtonName=questdlg('Do you really want to quit WITHOUT saving
?', 'Are you nuts?', ...
                          'Quit', 'No', 'No');
      if strcmp(ButtonName, 'Quit')
         set(S.FigH, 'Pointer', 'arrow')
         return
      end
   elseif S.Ret == 'PBColo'
      TheColor = uisetcolor;
      if size(TheColor,2) == 3
         Child = get(gca, 'Children');
         for i = 1 : size(Child) - 1
            set(Child(i), 'Color', TheColor)
         end
      end
   elseif S.Ret == 'PBArea'
      GetArea
   elseif S.Ret == 'PBHelp'
      % show help
      set(S.FigH, 'Pointer', 'watch')
      try
         web(Dir.HelpPage)
      catch
         h = msgbox('The Help Page path is wrong. Edit ''Startup.m''
to correct the path.');
         drawnow
         waitfor(h)
      end
      set(S.FigH, 'Pointer', 'arrow')
   elseif S.Ret == 'PBZoom'
      % Zoom
      set(S.FigH, 'Name', [ImFile, ' - Zoom'])
      set(S.FigH, 'Pointer', 'custom', 'PointerShapeCData',
ZoomPointer, 'PointerShapeHotSpot', [6 6])
      zoom on
      Key = 0;
```

```
while Key == 0
      Key = waitforbuttonpress;
   end
   zoom off
   set(S.FigH, 'Pointer', 'arrow')
   set(S.FigH, 'Name', ImFile)
elseif S.Ret == 'EdNumb'
   % Do it!
   i = i+1;
   iMax = i;
   S.Data(i).Place = str2num(S.EdNumber);
   set(S.FigH, 'Name', [ImFile, ' - ', S.EdNumber])
   j = 1;
  LastAction = 'Put';
  while j <= S.NumCol+1
      [x, y] = ginput(1);
      if isempty(x)
         if (j > 1)
            if (j == S.NumCol+1)
               % Remove 2 boxes and text
               NumChildren = 10;
            elseif (LastAction ~= 'Rmv')
               % Remove 2 boxes
               NumChildren = 9;
            else
               % Remove 1 box
               NumChildren = 4;
            end
            % Last was an error, erase (Enter was hit)
            Children = get(S.AxeH, 'children');
            delete(Children(1: NumChildren))
            LastAction = 'Rmv';
            j = j -1;
         else
            S.Data(i) = [];
            i = i - 1;
            break
         end
      else
         if (j ~= S.NumCol+1)
            if (j ~= 1)
               % Remove line across from previous
               if (LastAction ~= 'Rmv')
                  Children = get(S.AxeH, 'children');
                  delete(Children(1:5))
               end
            end
            LastAction = 'Put';
            if (j == S.NumCol)
               text(x+2, y-30, S.EdNumber, ...
                  'Color', 'w', ...
                   'Rotation', 90, ...
                   'FontWeight', 'bold');
            end
            % Start getting data
            x = round(x);
```

```
y = round(y);
               S.Data(i).BoxVal(j) = BoxTopAverage(S.Image, x, y);
               text(x+10, y, num2str(S.Data(i).BoxVal(j)), ...
                      'Color', 'w', ...
                     'FontWeight', 'bold');
               if (S.Data(i).BoxVal(j) < 0.0)
                  h = msgbox('Value < 0 !!!');
                  drawnow
                  waitfor(h)
                  drawnow
                  S.Data(i).BoxVal(j) = 0;
               end
            else
               % Remove line across from previous
               Children = get(S.AxeH, 'children');
               delete(Children(1:5))
            end
            j = j+1;
            % Tell that this was the last one to give a chance to
delete it
            if j == S.NumCol+1
               h = msgbox('Last one.','','custom',S.Image,S.ColorMap);
               drawnow
               pause(1)
               try
                  delete(h)
               catch
               end
               drawnow
            end
         end
      end
   end
   [SFile,rem] = strtok(ImFile, '.');
   SFile = strcat(SFile, '.mat');
   save(SFile, 'S')
end
% Save the picture under bitmap format with colormap
%[BmpFile,rem] = strtok(ImFile, '.');
%BmpFile = strcat(BmpFile, '.bmp');
%imwrite(S.Image, S.ColorMap, BmpFile, 'bmp')
if ~isempty(S.Data)
   %Check that spreadsheet is open
   try
      Channel = ddeinit('excel', 'book1.xls:Sheet2');
      DNAStart = ddereq(Channel, 'r3c1:r3c1');
      ddeterm(Channel);
   catch
      msg = sprintf('Your Excel Spreadsheet doesn''t seem to be open.
\nOpen it FIRST and THEN press OK.');
      h = msgbox(msg, 'Error', 'Error');
      drawnow
      waitfor(h)
   end
```

```
% Save the S structure
   [SFile,rem] = strtok(ImFile, '.');
   SFile = strcat(SFile, '.mat');
   save(SFile, 'S')
   % Save the lines
   ChildH = get(S.AxeH, 'Children');
   LinesH = ChildH(1 : size(ChildH, 1)-1);
   hgsave(LinesH, LineFile);
   % Send it to excel
   % Get the right page in Excel
   Channel = ddeinit('excel', 'book1.xls:Sheet2');
   DNAStart = ddereq(Channel, 'r3c1:r3c1');
   ddeterm(Channel);
   % Put file name at top of spreadsheet
   Channel = ddeinit('excel', 'book1.xls:Sheet2');
   ddepoke(Channel, 'r1c4:r1c4', ImFile);
   ddeterm(Channel);
   % Send the data, first
   for i = 1 : iMax
      disp(S.Data(i).Place)
      for j = 1 : S.NumCol
         Row = num2str(S.Data(i).Place - DNAStart + 3);
         Col = num2str(2 + (4*(j-1)) + 2);
         ColPlus1 = num2str(2 + (4*(j-1)) + 2 + 1);
         CellStr = ['r', Row, 'c', Col,':r', Row, 'c', Col];
         Channel = ddeinit('excel', 'book1.xls:Sheet2');
         ddepoke(Channel, CellStr, S.Data(i).BoxVal(j));
         ddeterm(Channel);
      end
   end
   % Then format Spread sheet columm
   for i = 1 : S.NumCol
      Tmp = inputdlg(['Enter the title for column ',num2str(i), ' on
the Excel Spreadsheet'],...
          'Cool Title', 1);
      if isempty(Tmp)
         Tmp = '';
      elseif isempty(Tmp{1,:})
         Tmp = '';
      else
         Tmp = Tmp\{1,:\};
      end
      Channel = ddeinit('excel', 'book1.xls:Sheet2');
      ddepoke(Channel, 'r1c1:r1c1', i);
      ddeterm(Channel);
      Channel = ddeinit('excel', 'book1.xls:Sheet2');
      ddepoke(Channel, 'r1c2:r1c2', Tmp);
      ddeterm(Channel);
      Channel = ddeinit('excel', 'book1.xls:Sheet2');
      ddeexec(Channel, '[run("''Foot Printing.xls''!FormatGelCol")]');
      ddeterm(Channel);
   end
end
warning off
```

```
[im, map] = imread('face.tif');
warning on
msgbox('All done','Clara dit:','custom',im, map)
set(S.FigH, 'Name', ImFile)
```

FILE STARTUP.M

```
iptsetpref('ImshowBorder', 'tight')
iptsetpref('ImshowTruesize', 'manual')
set(0, 'DefaultFigureMenuBar', 'none')
set(0, 'DefaultFigurePosition',[2, 70, 1022, 657])
set(0, 'DefaultFigureInvertHardCopy', 'on')
global S
global Dir
% Edit following if you change the directories
Dir.GelDir = 'd:\data';
Dir.HelpPage = 'd:\foot printing\help\foothelp.htm';
Dir.CodeDir = 'd:\foot printing\code matlab';
try
  cd(Dir.CodeDir);
catch
  h = msgbox('The Footprinting Code path is wrong. Edit ''Startup.m''
to correct the path.');
   drawnow
  waitfor(h)
end
disp(' ')
disp(' Type ''Foot'' to start the Footprinting utility.');
disp(' ')
Setup % for gel curve fitting
```

FILE SETUP.M

global V
global sV
global Curves
global Points
precision = 1.e-3;
iteration = 10000;
maxgrey = 110;

```
function fig = FgWhatNext()
% This is the machine-generated representation of a Handle Graphics
object
% and its children. Note that handle values may change when these
objects
% are re-created. This may cause problems with any callbacks written to
% depend on the value of the handle at the time the object was saved.
% To reopen this object, just type the name of the M-file at the MATLAB
% prompt. The M-file and its associated MAT-file must be on your path.
load FgWhatNext
h0 = figure('Color',[0.8 0.8 0.8], ...
   'Colormap', mat0, ...
   'MenuBar', 'none', ...
   'Name', 'Select an option:', ...
   'NumberTitle', 'off', ...
   'PointerShapeCData', mat1, ...
   'Position', [503 205 195 254], ...
   'Tag', 'Fig1');
h1 = uicontrol('Parent',h0, ...
   'Units', 'points', ...
   'BackgroundColor', [1 1 1], ...
   'Callback', 'FgWhatNextGUI EdNumber', ...
   'HorizontalAlignment', 'left', ...
   'ListboxTop',0, ...
   'Position', [75 153.75 63.75 18.75], ...
   'Style', 'edit', ...
   'Tag', 'EdNumber');
h1 = uicontrol('Parent',h0, ...
   'Units', 'points', ...
   'Callback', 'FgWhatNextGUI PBNumber', ...
   'ListboxTop',0, ...
   'Position', [7.5 153.75 63.75 18.75], ...
   'String', 'Place Box:', ...
   'Tag', 'PBNumber');
h1 = uicontrol('Parent',h0, ...
   'Units', 'points', ...
   'Callback', 'FgWhatNextGUI PBZoom', ...
   'ListboxTop',0, ...
   'Position', [41.25 131.25 63.75 18.75], ...
   'String', 'Zoom', ...
   'Tag', 'PBZoom');
h1 = uicontrol('Parent',h0, ...
   'Units', 'points', ...
   'Callback', 'FgWhatNextGUI PBDone', ...
   'ListboxTop',0, ...
   'Position', [41.25 86.25 63.75 18.75], ...
   'String', 'All Done', ...
   'Tag', 'PBDone');
h1 = uicontrol('Parent',h0, ...
```

```
'Units', 'points', ...
   'Callback', 'FgWhatNextGUI PBQuit', ...
   'ListboxTop',0, ...
   'Position', [41.25 7.5 63.75 18.75], ...
   'String','Quit', ...
   'Tag', 'PBQuit');
h1 = uicontrol('Parent',h0, ...
   'Units', 'points', ...
   'Callback', 'FgWhatNextGUI PBHelp', ...
   'ListboxTop',0, ...
   'Position', [41.25 52.5 63.75 18.75], ...
   'String', 'Help', ...
   'Tag', 'PBHelp');
h1 = uicontrol('Parent',h0, ...
   'Units', 'points', ...
   'Callback', 'FgWhatNextGUI PBColor', ...
   'ListboxTop',0, ...
   'Position', [41.25 30 63.75 18.75], ...
   'String', 'Color', ...
   'Tag', 'PBColor');
h1 = uicontrol('Parent',h0, ...
   'Units', 'points', ...
   'Callback', 'FgWhatNextGUI PBArea', ...
   'ListboxTop',0, ...
   'Position', [41.25 108.75 63.75 18.75], ...
   'String','Area', ...
   'Tag', 'PBArea');
if nargout > 0, fig = h0; end
```

FILE FGWHATNEXTGUI.M

```
function FgWhatNextGUI(action)
global S
€.
8
  Callback's for FgWhatNext GUI page
8
FigH = gcf;
switch action
case {'EdNumber', 'PBNumber'}
   S.EdNumber = get(findobj('tag', 'EdNumber'), 'string');
   if isempty(S.EdNumber) | max(isletter(S.EdNumber))
      MsgBox('Please enter a number.');
      set(findobj('tag', 'EdNumber'), 'string', '');
   else
      S.Ret = 'EdNumb';
      delete(FigH)
   end
case 'PBZoom'
```

```
S.Ret = 'PBZoom';
   delete(FigH)
case 'PBDone'
   S.Ret = 'PBDone';
   delete(FigH)
case 'PBArea'
   S.Ret = 'PBArea';
   delete(FigH)
case 'PBColor'
   S.Ret = 'PBColo';
  delete(FigH)
case 'PBHelp'
   S.Ret = 'PBHelp';
  delete(FigH)
case 'PBQuit'
  S.Ret = 'PBQuit';
  delete(FigH)
otherwise
  msgbox('ERROR...')
  S.Ret = 'ERROR_';
```

end

FILE WAITSCREEN.M

```
function fig = WaitScreen()
% This is the machine-generated representation of a Handle Graphics
object
% and its children. Note that handle values may change when these
objects
% are re-created. This may cause problems with any callbacks written to
% depend on the value of the handle at the time the object was saved.
8
% To reopen this object, just type the name of the M-file at the MATLAB
% prompt. The M-file and its associated MAT-file must be on your path.
load WaitScreen
h0 = figure('Color',[0.8 0.8 0.8], ...
   'Colormap', mat0, ...
   'MenuBar', 'none', ...
   'Name', 'Please wait while MATLAB updates its data...', ...
   'NextPlot', 'replacechildren', ...
   'NumberTitle', 'off', ...
   'PointerShapeCData', mat1, ...
   'Position', [273 265 377 257], ...
   'Tag', 'Fig1');
```

```
h1 = axes('Parent',h0, ...
   'Box','on', ...
   'CameraUpVector',[0 1 0], ...
   'Color',[1 1 1], ...
   'ColorOrder', mat2, ...
   'DataAspectRatioMode', 'manual', ...
   'Layer','top', ...
   'Position',[0 0 1 1], ...
   'Tag', 'Axes1', ...
   'TickDir', 'out', ...
   'TickDirMode', 'manual', ...
   'Visible','off', ...
   'WarpToFill', 'off', ...
   'XColor',[0 0 0], ...
   'XLim',[0.5 417.5], ...
   'XLimMode', 'manual', ...
   'YColor',[0 0 0], ...
   'YDir', 'reverse', ...
   'YLim',[0.5 284.5], ...
   'YLimMode', 'manual', ...
   'ZColor',[0 0 0]);
h2 = image('Parent', h1, ...
   'BusyAction', 'cancel', ...
   'CData', mat3, ...
   'Interruptible', 'off', ...
   'Tag', 'Axes1Image1', ...
   'XData',[1 417], ...
   'YData', [1 284]);
h2 = text('Parent', h1, ...
   'Color',[0 0 0], ...
   'HandleVisibility','off', ...
   'HorizontalAlignment', 'center', ...
   'Position', [207.890625 -7.265625 2523.127598358505], ...
   'Tag', 'Axes1Text4', ...
   'VerticalAlignment', 'bottom');
set(get(h2, 'Parent'), 'Title',h2);
h2 = text('Parent', h1, ...
   'Color',[0 0 0], ...
   'HandleVisibility','off', ...
   'HorizontalAlignment', 'center', ...
   'Position', [207.890625 315.5625 2523.127598358505], ...
   'Tag', 'Axes1Text3', ...
   'VerticalAlignment', 'cap');
set(get(h2, 'Parent'), 'XLabel',h2);
h2 = text('Parent', h1, ...
   'Color',[0 0 0], ...
   'HandleVisibility','off', ...
   'HorizontalAlignment', 'center', ...
   'Position', [-39.5000000000001 143.609375 2523.127598358505], ...
   'Rotation',90, ...
   'Tag', 'Axes1Text2', ...
   'VerticalAlignment', 'baseline');
set(get(h2,'Parent'),'YLabel',h2);
h2 = text('Parent', h1, ...
   'Color',[0 0 0], ...
   'HandleVisibility','off', ...
   'HorizontalAlignment', 'right', ...
```

```
'Position',[-0.67187500000001 1.609375 2523.127598358505], ...
'Tag','Axes1Text1', ...
'Visible','off');
set(get(h2,'Parent'),'ZLabel',h2);
if nargout > 0, fig = h0; end
```

FILE CENTERFIGURE.M

```
function CenterFigure(MainFgH, NewFgH)
global S
¥
€
  Centers the new figure in the previous(MainFgH) figure
8
    or center on screen if no previous figure(MainFgH = 0)
8
MainUnits = get(MainFgH, 'Units');
NewUnits = get(NewFgH, 'Units');
set(NewFgH, 'Units', MainUnits);
if (MainFgH == 0)
   % Center on screen
   MainPos = get(MainFgH, 'ScreenSize');
else
   MainPos = get(MainFgH, 'Position');
end
NewPos = get(NewFgH, 'Position');
set(NewFgH, 'Position', ...
   [MainPos(1) + (MainPos(3)/2) - (NewPos(3)/2) ...
   MainPos(2) + (MainPos(4)/2) - (NewPos(4)/2) ...
   NewPos(3) ...
   NewPos(4)])
set(NewFgH, 'Units', NewUnits);
```

FILE ZOOM.M

```
This Matlab file (Revision: 5.34 Date: 1997/12/02 21:08:55) was
modified:
Line 226:
if isempty(state),
    %ML added
    LocPointer = get(fig, 'Pointer');
    %ML end Added
    state = uisuspend(fig);
    setuprop(fig,'ZOOMFigureState',state);
    end
    %ML changed
    %set(fig,'windowbuttondownfcn','zoom down', ...
    % 'windowbuttonupfcn','ones;', ...
```

```
8
       'windowbuttonmotionfcn','','buttondownfcn','', ...
       'interruptible','on');
   8
   set(fig, 'windowbuttondownfcn', 'zoom down', ...
      'windowbuttonupfcn', 'ones;', ...
      'windowbuttonmotionfcn','','buttondownfcn','', ...
      'Pointer',LocPointer, ...
      'interruptible','on');
   %ML end Changed
Line 371:
÷.
% Actual zoom operation
ℜ
%ML added
LocPointer = get(fig, 'Pointer');
set(fig, 'Pointer', 'watch')
%ML end Changed
Line 445 (end of function):
%ML Added
drawnow
set(fig, 'Pointer', LocPointer)
%ML end added
```

FILE SETBESTCOLORMAP.M

```
function SetBestColorMap
global S
8
% Sets the best color map based on the picture
8
%Min = double(min(min(S.Image)));
%Max = double(max(max(S.Image)));
Tmp = sort(double(min(S.Image)));
Min = Tmp(5);
Tmp = sort(double(max(S.Image)));
Max = Tmp(size(Tmp, 2) - 5);
Total = Max-Min;
Half = round(Total/2);
OtherHalf = Total - Half;
OneQuarter = round(OtherHalf/2);
OtherQuarter = OtherHalf - OneQuarter;
Bleu2Black = [];
for i =1 : OtherQuarter
   Bleu2Black(i) = (i-1)*(.5625/OtherQuarter);
end
Bleu2Black = Bleu2Black';
Bleu2Black = [zeros(OtherQuarter,1), zeros(OtherQuarter,1),
Bleu2Black];
```

```
Satur = 10;
TmpMap = bone(OneQuarter-Satur);
for i =1 : OneQuarter-Satur
   Black2White(i,:) = TmpMap(OneQuarter-Satur-i+1,:);
end
BeforePad = [ones(Min, 1), ones(Min, 1), ones(Min, 1)];
AfterPad = [ones(256-Max, 1)*.5, zeros(256-Max, 1), zeros(256-Max, 1)];
Saturation = [ones(Satur, 1)*1, ones(Satur, 1)*.0, ones(Satur, 1)*0];
for i = 1 : Satur
    Saturation(i,:) = [1, ((i-1)/(Satur-1))^2, ((i-1)/(Satur-1))^2];
8
%end
GelMap = [BeforePad; Saturation; Black2White; Bleu2Black; jet(Half);
AfterPad];
set(S.FigH, 'ColorMap', GelMap)
S.ColorMap = GelMap;
```

FILE COLORS.M

global S
figure
imshow(S.Image)
colormap(S.ColorMap)
colorbar

FILE RECT.M

```
function rect(x, y)
%
% draw a rectangle from x(1),y(1) to x(2),y(2)
%
line([x(1), x(1)],[y(1), y(2)], 'Color', 'w')
line([x(1), x(2)],[y(2), y(2)], 'Color', 'w')
line([x(2), x(2)],[y(2), y(1)], 'Color', 'w')
line([x(2), x(1)],[y(1), y(1)], 'Color', 'w')
```

FILE BOXTOPAVERAGE.M

function BoxRet = BoxTopAverage(im, x,y)

```
global S
₽.
% Return the average of the 10 most dark points in a rectangle around
x,y
% minus the background color (== 5 brigthest points on line accross)
% Average and box
HalfH = 30;
HalfW = 5;
rect([x+HalfW, x-HalfW], [y+HalfH, y-HalfH])
Tmp = im(y-HalfH : y+HalfH, x-HalfW : x+HalfW);
Tmp = reshape(Tmp, size(Tmp,1)*size(Tmp,2),1);
Tmp = sort(double(Tmp));
BoxAverage = 255 - (sum(Tmp(1:50))/50);
% Background and line
HalfW = 80;
HalfH = 15;
XMinus = x-HalfW;
XPlus = x+HalfW;
YMinus = y-HalfH;
YPlus = y+HalfH;
Size1 = size(im,1);
Size2 = size(im, 2);
if XMinus < 0
   XPlus = XPlus - XMinus;
   XMinus = 1;
elseif XPlus > Size2
   XMinus = XMinus - (XPlus - Size2);
   XPlus = Size2;
end
if YMinus < 0
   YPlus = XPlus - XMinus;
   YMinus = 1;
elseif YPlus > Sizel
   YMinus = YMinus - (YPlus - Sizel);
   YPlus = Size1;
end
rect([XPlus, XMinus], [YPlus, YMinus])
Incr = HalfW*2/16;
for i = 1 : 16
   Tmp1(i).Tmp = im(YMinus : YPlus, XMinus +((i-1)*Incr) : XMinus
+(i*Incr));
   Tmp1(i).Tmp = reshape(Tmp1(i).Tmp,
size(Tmp1(i).Tmp,1)*size(Tmp1(i).Tmp,2),1);
   Tmp1(i).Tmp = sort(double(Tmp1(i).Tmp));
   BackGround(i) = 255 - (sum(Tmp1(i).Tmp(1:50))/50);
end
BackGround = min(BackGround);
BoxRet = BoxAverage - BackGround;
```

```
function GetArea
global S
€
% Calculates the integral under the curve
€
%clear c3
%clear P3
%clear Pl
%clear BackGround
%clear Tmp1
[x,y] = ginput(1);
% Average and box
HalfH = 30;
HalfW = 5;
%rect([x+HalfW, x-HalfW], [y+HalfH, y-HalfH])
warning off
Tmp = S.Image(y-HalfH : y+HalfH, x-HalfW : x+HalfW);
Tmp = reshape(Tmp, size(Tmp,1)*size(Tmp,2),1);
Tmp = sort(double(Tmp));
BoxAverage = 255 - (sum(Tmp(1:50))/50);
warning on
% Background and line
HalfW = 80;
HalfH = 15;
XMinus = x-HalfW;
XPlus = x+HalfW;
YMinus = y-HalfH;
YPlus = y+HalfH;
Size1 = size(S.Image,1);
Size2 = size(S.Image,2);
if XMinus < 0
   XPlus = XPlus - XMinus;
   XMinus = 1;
elseif XPlus > Size2
   XMinus = XMinus - (XPlus - Size2);
   XPlus = Size2;
end
if YMinus < 0
   YPlus = XPlus - XMinus;
   YMinus = 1;
elseif YPlus > Size1
   YMinus = YMinus - (YPlus - Sizel);
   YPlus = Size1;
end
warning off
%rect([XPlus, XMinus], [YPlus, YMinus])
Incr = HalfW*2/16;
```

```
for i = 1 : 16
   Tmp1(i).Tmp = S.Image(YMinus : YPlus, XMinus +((i-1)*Incr) : XMinus
+(i*Incr));
   Tmp1(i).Tmp = reshape(Tmp1(i).Tmp,
size(Tmp1(i).Tmp,1)*size(Tmp1(i).Tmp,2),1);
   Tmp1(i).Tmp = sort(double(Tmp1(i).Tmp));
   BackGround(i) = 255 - (sum(Tmp1(i).Tmp(1:50))/50);
end
warning on
BackGround = min(BackGround);
BoxRet = BoxAverage - BackGround;
ii = 0;
xx = 15;
\mathbf{x} = \operatorname{round}(\mathbf{x});
y = round(y);
TheArea = 0;
for i = y - 30 : y + 30
   ii = ii + 1;
   c3t(ii).Data = 255-double(S.Image(i, x-xx:x+xx));
   c3tB(ii).Data = 255-double(S.Image(i, x-xx:x+xx))-BackGround;
   for j = 1 : size(c3tB(ii).Data,2)
      if c3tB(ii).Data(j) < 0
         c3tB(ii).Data(j) = 0;
      end
   end
   TheArea = TheArea + trapz(c3tB(ii).Data);
end
rect([x+xx, x-xx], [y+30, y-30])
TheArea
for i = 1 : ii
   P3(i,:) = c3t(i).Data;
end
scrsz = get(0, 'ScreenSize');
figure('Position',[20 20 500 500])
surface(P3, 'linestyle', 'none')
set(gca, 'CLim', [1, 256])
set(gca, 'ZLim', [0,255])
title(['Area = ', num2str(TheArea), ' (Close this Window and hit
''Enter'' to continue)']);
try
   for i = 1 : size(S.ColorMap)
      TmpMap(i,:) = S.ColorMap(257-i,:);
   end
   set(gcf, 'ColorMap', TmpMap)
catch
end
view([-26, 46])
hold
Pl = ones(size(P3,1),size(P3, 2))*BackGround;
surface(Pl, 'linestyle', 'none')
pause
Children = get(S.AxeH, 'children');
delete(Children(1:4))
```

FILE CHANGENUMBER.M

```
function ChangeNumber
global S
€
€
Я
hh = WaitScreen;
drawnow
Data=1:64;Data=(Data'*Data)/64;
FigH = figure;
set(FigH, 'visible', 'off')
set(FigH, 'Pointer', 'watch')
%Get the file name
Channel = ddeinit('excel', 'book1.xls:Sheet2');
GelFile = ddereq(Channel, 'r1c4:r1c4', [1,1]);
ddeterm(Channel);
%Get the Old Number
Channel = ddeinit('excel', 'book1.xls:Sheet2');
OldNumber = ddereq(Channel, 'r1c1:r1c1');
ddeterm(Channel);
%Get the New Number
Channel = ddeinit('excel', 'book1.xls:Sheet2');
NewNumber = ddereq(Channel, 'r1c2:r1c2');
ddeterm(Channel);
% Try to load previous lines if needed
[LineFile,rem] = strtok(GelFile, '.');
LineFile = strcat(LineFile, '.fig');
Child = hgload(LineFile);
% Check that you are not overwriting a set of data
for i = 1 : size(Child)
   if strcmp(get(Child(i), 'Type'), 'text')
      Num = str2num(get(Child(i), 'String'));
      if Num == NewNumber
         close(hh);
         ButtonName=questdlg(['Do you really want to overwrite the ',
num2str(NewNumber), ' box ?'], ...
            'Yo!!', ...
'Yes', 'No', 'No');
         switch ButtonName,
         case 'Yes',
            hh = WaitScreen
            % Keep on going
            break
         case 'No',
            % Clean worksheet
```

```
Channel = ddeinit('excel', 'book1.xls:Sheet2');
            ddepoke(Channel, 'r1c1:r1c1', '');
            ddeterm(Channel);
            Channel = ddeinit('excel', 'book1.xls:Sheet2');
            ddepoke(Channel, 'r1c2:r1c2', '');
            ddeterm(Channel);
            % End program
            exit
            return
         end
         break
      end
   end
end
Changed = 0;
for i = 1 : size(Child)
   if strcmp(get(Child(i), 'Type'), 'text')
      Num = str2num(get(Child(i), 'String'));
      if Num == OldNumber
         set(Child(i), 'String', num2str(NewNumber))
         Changed = 1;
         break
      end
   end
end
if Changed == 1
   hgsave(Child, LineFile);
   % Play sound
   try
      [a,b,c] = wavread('Utopia Critical Stop.wav');
      playsnd(a,b,c);
   catch
   end
   h = msgbox(['Changed : ', num2str(OldNumber), ' to ',
num2str(NewNumber), '.'],'Yo!!', 'custom', Data, hot(64));
   close(hh);
else
   % Play sound
   try
      [a,b,c] = wavread('Robotz Error.wav');
      playsnd(a,b,c);
   catch
   end
   h = msgbox(['Did not find ', num2str(OldNumber), ' in file ',
LineFile, '.'], 'Yo!!', 'custom', Data, hot(64));
   close(hh);
end
% Clean worksheet
Channel = ddeinit('excel', 'book1.xls:Sheet2');
ddepoke(Channel, 'r1c1:r1c1', '');
ddeterm(Channel);
Channel = ddeinit('excel', 'book1.xls:Sheet2');
ddepoke(Channel, 'r1c2:r1c2', '');
```

ddeterm(Channel);

uiwait(h);

exit

FILE FOOTHELP.M

%
% Start Netscape with help file
%
global Dir
web(Dir.HelpPage)
exit

FILE NORMALIZE.M

```
global V
global File
cd('D:\Data\excel sheets\source')
[File, Path] = uigetfile('*.*', 'Select any file in the Directory');
D = dir(Path);
n = size(D, 1);
for i = 3 : n
   File = strcat(Path, D(i).name);
   disp(['Working on ', File])
   drawnow
   V = load(File);
   V = V';
   h = msgbox('Keep Ctrl-C down for 10 sec. to stop.');
   drawnow
   %pause(10)
   try
      delete(h)
   catch
   end
   drawnow
   NormCode
end
warning off
[im, map] = imread('face.tif');
warning on
msgbox('All done','Clara dit:','custom',im, map)
```

FILE NORMFUNC.M

```
function y = NormalizeFunc(v)
ጽ
8
  Just if you try to read this code ...
€
      a(p) is the average at position p
€
      V(c,p) is the value of curve c, position p
      sV is a binary representation of V (NaN or Value => 0 or 1)
€
      v is the coef to move curves up or down (changed to minimize this
₽.
function)
*
global V
global sV
global a
global Curves
global Points
Means = zeros(Points,1);
Sigma = zeros(Points,1);
n = sum(sV);
%vv = zeros(Points, Points);
for p = 1 : Points
   ¥ Mean
   Means(p) = (sum(v'.*V(:,p)) + n(p)*a(p)) / (2*n(p));
end
for p = 1 : Points
   % Sigma
   Sigma(p) = sum((v'.*V(:,p)-ones(1)*Means(p)).*(v'.*V(:,p)-
ones(1) *Means(p))) ...
      + n(p)*(a(p)-Means(p))*(a(p)-Means(p));
   Sigma(p) = sqrt(Sigma(p)/(2*n(p)-1)) / Means(p);
end
y = sum(n'.*Sigma);
```

FILE NORMCODE.M

global V global sV global File global Curves global Points precision iteration maxgrey tic
```
%Change NaN to zero, just in case
for p = 1 : size(V(1,:),2)
   for c = 1 : size(V(:, 1), 1)
      if isnan(V(c,p));
         V(c,p) = 0;
      end
   end
end
% remove anything bigger than maxgrey
for p = 1 : size(V(1,:),2)
   for c = 1 : size(V(:,1),1)
      if V(c,p) >= maxgrey;
         sprintf('V(%d, %d) = %d = 0', c, p, V(c, p));
         V(c,p) = 0;
      end
   end
end
% remove any DNA points that has only one point
for p = 1 : size(V(1, :), 2)
   n = 0;
   for c = 1 : size(V(:,1),1)
      if V(c,p) > 0;
         n = n + 1;
      end
   end
   if n == 1
      V(:,p) = 0;
   end
end
% remove any curve that has only one point
for c = 1 : size(V(:,1),1)
   n = 0;
   for p = 1 : size(V(1,:),2)
      if V(c,p) > 0;
         n = n + 1;
      end
   end
   if n == 1
      V(c, :) = 0;
   end
end
% Clean V of 0 Column
V(:,all((V'==0)')) = [];
% Clean V of 0 Row
V(all((V==0)'),:) = [];
% Create sV = NaN or not (binary matrix)
sV = V > 0;
% Average at each point
clear global a;
clear a1;
```

```
clear a2;
global a
for p = 1 : size(V(1, :), 2)
  a(p) = 0;
  n(p) = 0;
  for c = 1 : size(V(:,1),1)
     if V(c,p) > 0
        n(p) = n(p) + 1;
        a(p) = a(p) + V(c,p);
     end
  end
  a(p) = a(p)/n(p);
end
% Coef to get each curve to average
clear global v;
clear v1;
clear v2;
global v
for c = 1 : size(V(:,1),1)
  v(c) = 0;
  n(c) = 0;
  for p = 1 : size(V(1,:),2)
     if V(c,p) > 0
        n(c) = n(c) + 1;
        v(c) = v(c) + a(p)/V(c,p);
     end
  end
  v(c) = v(c)/n(c);
end
a1 = a;
v1 = v;
v
clear vv
Curves = size(V(:,1),1);
Points = size(V(1,:),2);
iteration];
[Res1, Opt] = fmins('NormFunc', v, options, a);
Res1
Opt(10)
V1 = V;
for i = 1 : size(V(:,1),1)
  V1(i,:) = Res1(i).*V(i,:);
end
% Average at each point
for p = 1 : size(V1(1,:),2)
  a(p) = 0;
  n(p) = 0;
  for c = 1 : size(V1(:,1),1)
     if V1(c,p)>0
        n(p) = n(p) + 1;
        a(p) = a(p) + V1(c,p);
```

```
end
   end
   a(p) = a(p)/n(p);
end
a^2 = a;
۶v
options = [0, precision, precision, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
iteration];
[Res2, Opt] = fmins('NormFunc', Res1, options, a);
Res2
Opt(10)
toc
for p = 1 : size(V(1,:),2)
   for c = 1 : size(V(:,1),1)
      if V(c,p) == 0;
         V(c,p) = NaN;
      end
   end
end
for p = 1 : size(V1(1,:),2)
   for c = 1 : size(V1(:,1),1)
      if V1(c,p) == 0;
         V1(c,p) = NaN;
      end
   end
end
% Plot
figure
subplot(3,1,1)
plot(V', '*-')
warning off;
title(File);
warning on;
hold on;
plot(a1, 'o-','LineWidth',1.5)
hold off;
subplot(3,1,2)
plot(a1, 'o-','LineWidth',1.5)
hold on;
plot(V1', '*-')
hold off;
subplot(3,1,3)
V2 = V;
for i = 1 : size(V(:, 1), 1)
   V2(i,:) = Res2(i).*V(i,:);
end
plot(a2, 'o-', 'LineWidth', 1.5)
hold on;
plot(V2', '*-')
hold off;
```

```
% set printing
set(gcf, 'Color',[1 1 1], ...
'PaperOrientation', 'Landscape')
set(gcf, 'PaperUnits', 'inches');
PaperSize = get(gcf, 'PaperSize');
PaperPos=[0.3 0.3 (PaperSize(1)-.3) (PaperSize(2)-0.3)];
set(gcf, 'PaperPosition', PaperPos);
h1 = uimenu('Parent',gcf, ...
   'Callback', 'printdlg', ...
   'Label','&Print', ...
   'Tag', 'MnPrint');
% Save to file
NewFile = strcat(File, '.res');
fid = fopen(NewFile, 'wt');
fprintf(fid, '%s\n', File);
for i = 1 : size(V(:,1),1)
   fprintf(fid, '%s\n', num2str(Res2(i)));
end
fclose(fid);
```

. .

....

.

į.

f (N

[

1

, · ·

ł . . Congraduation . 1.1. LIPRARN (117 Card (* 19 National III) . ŗ

.

