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Auditory Processing and Perception in Songbirds

by

Katherine Nagel

Abstract

Songbirds, like humans, learn to produce and to recognize complex, species-specific sounds, providing

a biologically tractable model to study the neural mechanisms of speech production and perception.  I

used chronic recording from single neurons, and operant behavioral techniques to ask how complex

sounds are represented in the songbird forebrain, and how this representation may be related to the

birds’ perception of song.  I found that neurons in field L, the avian analog of the human primary

auditory cortex, represent three different types of modulations found in natural sounds: spectral

modulations, temporal modulations, and spectro-temporal modulations.  Neurons specialized for

different modulations have different physiological properties and are localized to different parts of

field L.  The response properties of these neurons depend nonlinearly on the average intensity of the

stimulus. At high intensities, they respond only to differences in sound energy between nearby

frequency or times, while at low intensities they integrate information from nearby frequencies and

times.   This nonlinearity is shared with the visual system and may represent a computational principle

of sensory encoding.  Finally, I used operant techniques to ask whether songbirds could generalize a

learned song discrimination task to songs altered in pitch, duration, or volume.  I found that birds

generalized correctly to songs altered in duration but not to those altered in pitch or volume.  These

data suggest that birds use the spatial pattern of neurons activated by a song rather than the temporal

pattern of neural activation to determine what song they heard.
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General Introduction

Our ability to speak depends on our ability to perceive and categorize complex sounds.  A

normal adult speaker of English can recognize tens of thousands of words !Kirkpatrick, 1891;

Hartman, 1946", despite variation in their volume, pitch, prosody, and intonation.  Many

conversations take place in a background of other speakers or poor telephone connections.  How the

human brain executes robust acoustic pattern recognition in these circumstances is poorly

understood.

Like humans, songbirds learn to produce and recognize complex, species-specific sounds

!Konishi 1985, Doupe and Kuhl, 1999".  Songbirds have been used as a biologically tractable model of

vocal learning for many years, while their ability to recognize and perceive song has received less

attention.  While vocal learning in many species is restricted to young male birds !Konishi, 1985,

Doupe and Kuhl, 1999", both males and females learn to recognize new songs throughout life !Miller

1979, Stripling et al, 2003".  Song has a rich statistical structure that can share many features with

human speech !Singh and Theunissen, 2003".  The major auditory areas of the avian brain have been

identified and mapped anatomically !Fortune and Margoliash, 1992, Fortune and Margoliash, 1995,

Vates et al, 1996".  Songbirds thus provide an excellent model for asking questions about the neural

basis of complex sound recognition.

The avian auditory system is composed of many levels.  Auditory information enters the brain

through the brainstem cochlear nuclei, angularis !NA" and magnocellularis !NM, Sullivan and Konishi,

1984".  These two areas project to other brainstem nuclei, including nucleus laminaris !NL", and

nucleus ventralis laterale pars posterior !VLVp", which in turn project to inferior colliculus in the

midbrain !Takahashi et al, 2003", often called MLd in songbirds !Woolley et al, 2005".  MLd projects

to nucleus ovoidalis !Ov", the auditory region of the avian thalamus, and ovoidalis projects to the

forebrain area field L !Woolley et al, 2005".  Field L is composed of 3 regions, the thalamo-recipient

input area L2, and two flanking areas, L1 and L3.  L2 is further subdivided into L2a anteriorly, and the

more diffuse L2b posteriorly.  L1 and L3 are reciprocally connected, and form reciprocal connections

with several higher order forebrain auditory areas, including the mediocaudal neostriatum !NCM", the

caudomedial mesopallium !CMM", and nucleus interfacialis !NIf, Fortune and Margoliash, 1992,

Fortune and Margoliash, 1995, Vates et al, 1996".  HVc, an area involved in song production in males,

receives most of its auditory input from NIf !Coleman and Mooney, 2004".  Studies of the avian

auditory brainstem and midbrain have generally focussed on how spatial cues are extracted and
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processed !Takahashi and Konishi, 1984, Sullivan and Konishi, 1984, Sullivan 1985", while studies of

the thalamus and forebrain have focussed on how complex song stimuli may are identified and learned

!Margoliash 1983, Lewicki and Arthur, 1996, Stripling etal, 2001, Theunissen et al, 1998, 2000; Sen et

al, 2001, Woolley et al, 2005, 2006".

Most studies of the auditory processing of song have taken one of two approaches.  One

approach has concentrated on a search for "selective" neurons, that respond !with a broad increase in

firing rate" only to a single complex stimulus.  Neurons selective for a male bird's own song have been

found in the song production nucleus HVC !Margoliash, 1983, Margoliash and Fortune, 1992,

Theunissen and Doupe, 1998", but lesion studies trying to implicate this area in general auditory

perception have produced inconsistent results !Brenowitz, 1991; MacDougall-Schackleton et al., 1998;

Gentner et al., 1999".  Neurons that showed weaker selectivity for familiar conspecific songs have

been found in the high-level auditory areas NCM and CMM !Stripling et al, 2001; Gentner and

Margoliash, 2003".  On the basis of such studies, the auditory forebrain has been described as a

selectivity hierarchy !Margoliash 1986, Lewicki and Arthur, 1996, Sen et al, 2001", with low-level areas

such as field L responding well to nearly all natural and synthetic auditory stimuli, while higher areas

such as NCM, cHV, and Nif show a larger proportion of neurons selective for aspects of song.

Selectivity has also been examined using genomic responses to song stimuli.  Much of the

auditory forebrain expresses the immediate early gene ZENK in response to playback of novel

conspecific songs, but not heterospecific songs or simple tone sequences !Mello et al. 1992, Bailey et

al, 2002".  This selective activation is strongest in areas NCM and CMM, and has been taken as

evidence that these areas store memories of learned songs !Jarvis et al, 1995; Bolhuis et al, 2001;

Stripling et al, 2001; Terpstra et al, 2004, 2006; Gobes et al, 2007".  The thalamic input area L2 shows

little zenk expression in response to song or other sounds !Mello and Clayton, 1994", although electro-

physiological studies demonstrate that it responds robustly to many kinds of sounds !Theunissen et al,

2000, Sen et al, 2001, Woolley et al, 2005, 2006".  The biological meaning of this gene activation thus

remains unclear.

A second tradition of auditory research has aimed to characterize the auditory response

properties of neurons systematically.  Many such studies use simple stimuli, such as tones and noise,

to map responses as a function of some auditory parameter !Scheich et al. 1979, Muller and

Leppelsack, 1985, Heil and Scheich, 1985, Hose et al, 1987, Gehr et al. 1999".  More recently, a

technique known as reverse correlation !Eggermont 1983" has been used to characterize the responses

of auditory neurons to spectrally rich stimuli such as ripples and songs !Kowalski et al, 1996, 1997;
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Theunissen et al, 2000; Sen et al, 2001; Miller et al, 2002, Depireux et al, 2001; Linden, 2003".  These

techniques capture the linear aspects of a neuron's response to a set of complex sounds, and provide a

compact model of how the neuron will respond to novel stimuli.  Although this technique has great

promise, the general organization of the avian forebrain's primary auditory area, field L, remains

unknown.  Few studies have tried to characterize nonlinearities in neural responses systematically.

Finally, very few studies have compared neural response properties to perceptual behavior.  While the

acoustic parameters that govern how we perceive speech have been quantified !Avedaño et al, 2004;

Handel, 1989", those governing birds' responses to song have not.  This omission makes it difficult to

relate the response properties of neurons to the the bird's perception.

In this dissertation I have tried to approach several of these questions:  How are complex

sounds represented by neurons in field L?  How are auditory responses related to the anatomical and

physiological structure of field L?  What nonlinearities are present in these neuron's responses and

how can we model them mathematically?  What acoustic parameters are most critical for identifying

an individual by his song?  At the end of the dissertation, I discuss how the neural representation in

field L may be related to the birds' perceptual behavior, and propose experiments to test these

hypotheses.

In chapters 1 and 2, I use reverse correlation to ask what aspects of a complex sound drive

different neurons in field L to fire.  In chapter 1, I use this technique to quantify temporal response

properties--responses to changes in the overall level of a sound with fixed frequency content-- and

demonstrate that these temporal response properties depend in systematic ways on the mean and

variance of the stimulus.  At low mean intensities, cells act more "integrators," responding whenever

the stimulus is on.  At high mean intensities, cells acts more like "differentiators," responding only

when the stimulus intensity changes abruptly.  When the stimulus variance increases, neural gain

decreases, allowing cells to adjust their range of outputs to their range of inputs.  These nonlinearities

are closely related to those observed in the retina !Enroth-Cugell and Lennnie, 1975; Chander and

Chichilnisky, 2001; Kim and Rieke, 2001; Baccus and Meister, 2002" and suggest that similar

computational principles may underlie sensory encoding in the auditory and visual domains.

In chapter 2, I extend the methods of chapter 1 to characterize responses as a function of

both frequency !spectrum" and time.  I identify three classes of cells in field L: cells tuned to temporal

modulations, cells tuned to spectral modulations, and cells tightly tuned in both spectrum and time.  I

demonstrate that spectrally-tuned cells differ in their physiology and anatomical distribution from the

other two types.  Finally, I examine how spectro-temporal responses depend on stimulus intensity and



4

find that similar changes across cells allow each cell type to become more specialized for its preferred

modulations when the stimulus is louder.  These findings both extend the results of chapter 1 to two

dimensions, and suggest organizing principles for the structure of field L.

Several innovations distinguish these two studies from previous ones that used similar

techniques to characterize neural responses in both birds !Theunissen et al, 2000, Sen et al, 2001,

Woolley et al, 2005, 2006" and mammals !Kowalski et al, 1996, 1997; Miller et al, 2002, Depireux et al,

2001; Linden, 2003".  First, I developed novel synthetic stimuli that share many statistical properties

with song but have a more uniform and controlled structure.  These stimuli drove neurons

exceptionally well, and permitted clean and robust estimates of neural response properties.  Second, I

systematically varied the parameters of this stimulus to characterize nonlinearities in neural responses.

Finally, I recorded from chronically-implanted unanesthetized animals, revealing structures in

response patterns that may have been absent from previous, anesthetized, recordings.

In the last chapter of my thesis I use an operant behavioral paradigm !Beecher et al, 1994;

Gentner and Hulse, 1998" to ask what acoustic parameters zebra finches use to identify songs of

different individuals.  After training females to categorize a large set of songs from two different

males, I test them on songs altered in their pitch, duration, and volume.  I find that females correctly

classify songs whose duration was significantly altered, but do not generalize well to songs shifted in

pitch or played at much louder or softer volumes.  These findings place constraints on which aspects

of neural firing !such as temporal patterning and spectral selectivity" are used to identify and

discriminate between songs.

Together, these three chapters provide a coherent picture of auditory processing in field L

and suggest hypotheses for the role of this area in auditory processing and song recognition.
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Chapter 1:  Temporal processing and adaptation in the songbird auditory forebrain

Abstract:

Auditory neurons must encode the dynamics of natural sounds over many intensity ranges.

We investigated how songbird auditory forebrain neurons encode amplitude modulations when the

distribution of intensities changes. Using reverse-correlation, we modeled neural responses as the

output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities

depend on the mean and variance of amplitude modulations.  Filter shape depended strongly on mean

amplitude !volume": at low mean, most neurons integrated sound over many milliseconds, while at

high mean, neurons responded more to local changes in amplitude.  Increasing the variance !contrast"

of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells.

Both filter and gain changes occurred rapidly after a change in amplitude statistics, suggesting that

they represent nonlinearities in processing.  These changes may permit neurons to signal effectively

over a wider dynamic range and are reminiscent of findings in other sensory systems.

Introduction:

A central problem for all sensory systems is how to represent complex dynamic stimuli over a

wide range of intensities.

Songbirds, like humans, recognize their vocalizations whether they are soft or loud !Lohr et

al, 2003".  How the brain achieves this level-invariant recognition is unclear.  At its highest levels, the

songbird auditory system contains ‘feature detectors’ that respond selectively to individual learned

songs !Margoliash 1983, Margoliash and Fortune, 1992; Gentner and Margoliash, 2003".  These areas

receive input from an area called field L, the avian analog of primary auditory cortex !Wild et al, 1993".

Field L responds broadly to many classes of auditory stimuli, and shows organized tuning for basic

auditory properties such as spectral frequency and temporal modulations !Scheich et al. 1979, Muller

and Leppelsack, 1985, Heil and Scheich, 1985, Hose et al, 1987, Lewicki and Arthur 1996, Gehr et al.

1999, Hausberger et al., 2000, Theunissen and Sen 2000, Sen et al. 2001, Grace et al. 2002".  Several

groups have tried to model how song-selective responses might arise from combinations of field L

outputs !Lewicki and Konishi, 1995, Drew and Abbott, 2005".  However, few studies have looked at

how neural responses in these areas depend on song or stimulus intensity.
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In the mammalian auditory brainstem and midbrain, responses to simple tones and noises can

depend on intensity in highly non-linear ways !Young and Voigt, 1982; Sachs and Young, 1980; Nelken

and Young, 1994; Nelken and Young, 1997".  In the cortex, the picture is less clear.  Many studies

have shown non-monotonic and non-linear responses to tones, intensity modulations, and ripple

stimuli !Phillips and Hall, 1987; Phillips et al, 1994; Calhoun and Schreiner, 1998", while other studies

have stressed the linearity of cortical responses !Kowalski et al, 1996; Escabi et al, 2003; Barbour and

Wang, 2003".  How post-thalamic auditory neurons encode stimulus features across intensities

remains controversial.

The goal of the present study was to understand how the responses of field L neurons to

complex dynamic stimuli depend on the intensity of the stimulus.  We focused on coding of

amplitude modulations in time, because these are a prominent feature of both song and speech, and

can carry a great deal of the information present in these signals !Shannon et al, 1995, Theunissen and

Doupe, 1998".

To describe the processing of naturalistic amplitude modulations over different intensity

ranges, we developed a set of synthetic stimuli that capture many aspects of song's amplitude

modulations, but sample the space of possible modulations more thoroughly. We then used reverse

correlation techniques !Eggermont 1983, 1993; Epping and Eggermont, 1986; Kim and Young, 1994;

Brenner et al., 2000; Chander and Chichilnisky, 2001; Fairhall et al., 2001; Depireux et al., 2001; Kim

and Rieke, 2001, Miller et al., 2002; Escabi and Schreiner 2002; Baccus and Meister, 2002" to extract a

linear receptive field !filter" and a nonlinear gain function from the responses to these stimuli.

Together, the filter and nonlinearity allowed us to characterize the feature selectivity, threshold, and

gain of each cell, and to predict responses to novel sounds.

We found that our stimuli permitted robust estimates of filters and nonlinear gain functions

for field L neurons. These models made good predictions of responses to novel synthetic stimuli, and

revealed neural sensitivity to a broad range of stimulus time scales and features.  We then

demonstrated that filters and gain functions depend in systematic and specific ways on the mean and

variance of the stimulus amplitude.  These changes are very reminiscent of those observed in the early

visual system !Enroth-Cugell and Lennie, 1975; Chander and Chichilnisky, 2001; Baccus and Meister,

2002", and shown mathematically to improve coding efficiency !Attick, 1992".  Finally, we examined

the time course of these changes and found that they occurred on two time scales: a fast change in

filter shape and gain, followed by a slower change in threshold.

Our findings suggest that common computational strategies underlie sensory processing in
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multiple domains, but challenge current models of song recognition.

Results:

Using Amplitude-Modulated Noise Stimuli to Drive Field L Neurons

To study processing of amplitude modulations in field L, we developed a stimulus composed

of two parts: a slowly varying modulation envelope and a rapidly varying noise carrier.

 The envelope was designed to capture the temporal frequency and amplitude distributions of

natural sounds !Attias and Schreiner, 1998 , Singh and Theunissen, 2003".  Because they are dominated

by slow changes in amplitude, natural sounds have power spectra that decrease as a function of

temporal frequency !Singh and Theunissen, 2003".  Natural communication sounds also contain many

silent periods, giving rise to an exponential distribution of amplitudes, but a more Gaussian

distribution of log !dB" amplitudes !Singh and Theunissen, 2003".

To create a stimulus with these temporal frequency and amplitude properties, we first

created a Gaussian noise signal with a decreasing exponential distribution of temporal frequencies

!figure 1A, lower panel".  This modulation signal specifies the loudness of the stimulus in decibels at

each point in time !figure 1A, upper panel".  We then exponentiated the modulation signal to produce

a pressure envelope with an exponential distribution of linear amplitudes !figure 1B".  Finally, we

multiplied this envelope with a narrow or broadband noise carrier !figure 1C" to generate the full

stimulus !figure 1D, see Methods for full details".

Although this stimulus consisted of both fast !carrier" and slow !envelope" fluctuations, we

analyzed responses only with respect to the slowly varying modulation signal !figure 1A". Recent

studies have suggested that this log envelope is the property most linearly encoded by neurons in field

L !Gill et al, 2006".  To isolate responses to the slowly varying signal, we repeated the same

modulation signal but used different noise segments to form the carrier each time.  Figure 1E shows

the response raster of a cell to 100 such repeats: the columns of spikes represent reliable spike

patterns driven by the slow modulation signal.

Half of the five-second long segments in our stimulus were randomly assigned to be repeats

of the same modulation signal; the remaining signals were unique.  Unique signals were used to

broadly sample the space of possible amplitude modulations, and to estimate model parameters.

Repeated trials were used to test the model.  Because we used different data to fit and test the model,

we ensured that the quality of our predictions was not due to over-fitting.
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Responses of Field L Neurons  are Well-Modeled Using a Linear-Nonlinear Model

To characterize the temporal response properties of each cell, we modeled its responses using

a linear-nonlinear model !Brenner et al., 2000; Chander and Chichilnisky, 2001; Fairhall et al., 2001;

Baccus and Meister, 2002".

Figure 2 illustrates this process for two cells.  The linear filter !figures 2A and D" tells us what

feature of the stimulus best drives the neuron.  It is extracted from the data by computing the average

modulation signal surrounding a spike, then removing the influence of stimulus correlations from the

resulting waveform !Methods".  The spike occurs at zero on the x-axis; the filter has structure only to

the left of !before" the spike, as the cell responds causally to features of the stimulus. Small error bars

!dotted lines, Methods" indicate that our estimates of filter shape were robust.

The shape of the filter indicates its preferred temporal feature.  Filters with a single

dominant peak behave as low-pass “integrators,” and produce responses that look like a smoothed,

delayed version of the log stimulus envelope.  A response of this type !from the cell in figure 2A" is

shown in figure 1E, where a column of spikes follows each peak in the stimulus above !figure 1D".  The

sign of the filter peak determines whether the cell’s firing rate is elevated or depressed by peaks in the

stimulus.  Filters with a biphasic shape behave as band-pass “differentiators,” and respond to either

onsets or offsets in the stimulus, depending on the order of the positive and negative components in

the filter.  Most of our cells behave as combinations of integrators and differentiators, making a strict

classification of cell types difficult.  The filter shown in figure 2A has a small negative peak followed

by a large positive peak; it behaves mostly as a positive integrator, but is sensitive to onsets as well.

The filter shown in figure 2B behaves mostly as a negative integrator, but also responds weakly to

offsets.

The width of the filter sets an upper limit on the temporal frequencies to which the cell can

respond.  Because the exact frequency response depends both on the width of the filter and its shape,

preferred temporal frequency is best characterized in the frequency domain !figure 4A-C, 2nd column".

Figure 2G shows the 50% width of the absolute value of each filter !50% width", versus the peak of

each filter's power spectrum !its "best modulation frequency" or BMF". Each parameter has an

approximately uniform distribution along its log axis, suggesting a greater than 10-fold spread in

temporal frequency sensitivities among cells.
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The nonlinearity !figures 2B and E" describes the relationship between filter output and firing

rate.  It is calculated by passing the mean-subtracted modulation signal through the filter)measuring

the similarity of the stimulus to the filter at each point in time-- then comparing the filter output to

the neuron’s actual firing rate !Methods".  Most of the cells we recorded had nonlinearities with a flat,

sub-threshold region at negative values, and a linear coding region at positive values, when the

stimulus most closely resembled the filter.  Some, like that in figure 2B, showed saturation at high

positive values.

To assess the quality of our models, we used the filter and nonlinearity pair to generate a

prediction of each neuron's response to the repeated modulation signal !figures 2C and 2F".  We then

compared this prediction !thick gray lines" to the actual PSTH !thin black line".  The correlation

coefficient between prediction and data for the neuron in figures 2A-2C was 0.89, making this one of

our best models.  The neuron in figures 2D-2F had a correlation coefficient of 0.67, the median for

our population.  The distribution of correlation coefficients is shown in figure 2H !n = 33 significant

filters from 36 recorded cells".  The strength of these correlations suggests that our model captures a

significant portion of the behavior of neurons in our population.

Responses of Field L Neurons to Changes in Stimulus Statistics

To examine how coding depends on stimulus statistics, we altered the mean and the variance

of amplitude modulations in our stimulus !figure 3A".  In our baseline condition !gray", the modulation

signal had a mean of 30dB, and a standard deviation of 6dB.  In the high mean condition !red", the

mean was raised to 63dB, while in high variance !green" the standard deviation was raised to 18dB.

The high mean and high variance conditions were designed to have approximately the same overall

power !67 dB".  Stimulus conditions were presented continuously, and the baseline condition was

repeated twice in the series allowed us to characterize the transitions to and from this condition to

the other two.

Changes in Stimulus Mean Produce Systematic Changes in Firing Rate and Filter Shape

Most of the cells we recorded responded strongly to a change in stimulus mean, with a rapid
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change in firing rate followed by a slow decay !figure 3B".  The rates of decay varied across cells from

approximately 4 msec to 4 seconds and were generally much slower than would be predicted by the

width of the filters.  Decay times were poorly correlated with filter width !figure 3D, cc = -0.20 for low

to high mean, and 0.04 for high to low mean", suggesting that filter width and decay time represent

two separate forms of temporal sensitivity)one on the time scale of syllables, and one on the time

scale of motifs or bouts. High and low mean decay times were weakly correlated !supplementary

figure 3".

An increase in stimulus mean produced systematic changes in filter shape.  Figure 4 shows

three examples of filters derived from low mean !gray" and high mean !red" conditions for the same

cells.  All three show related changes when the mean increases: the filters become narrower, and the

sizes of the positive and negative components become more closely matched.  These changes in filter

shape are also reflected in the power spectrum representation of each filter.  The narrowing of the

filter in time is reflected in a shift of the power spectrum peak towards higher frequencies, while the

increased balance between positive and negative components reduces the response to low frequencies.

The cell shown in figure 4A was typical, with a narrower filter and a larger negative

component at high mean, but a similar shape)a negative peak followed by a positive one-- in both

conditions.  Figure 4D illustrates the consequences of this filter change by comparing a segment of

the cell’s response under low mean !gray" and high mean !red".  Under low mean, the response

resembles a smoothed version of the stimulus: larger peaks occur only when the stimulus is above its

mean.  Under high mean the response contains many more rapid peaks, reflecting the faster frequency

tuning and narrower shape of the filter under this condition.  The peaks in this condition are of

similar size throughout the segment, showing that the neuron has largely filtered out the slow

modulations, and responds more to local changes in stimulus intensity.

The cell in figure 4B shows a more dramatic change in filter shape: under low mean

conditions, it has a positive integrator shape, while under high mean conditions, it adopts an offset

differentiator shape. The neuron shown in figure 4C was the least common.  Its filter is almost

entirely negative at low mean but gains a small positive component at high mean.

Together, these examples suggest that when the mean sound amplitude is low, neurons

integrate over a longer time, while when the mean is high, the same cells respond more to local

changes.  These different response properties can improve the cells' ability to signal effectively in
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different stimulus regimes !Atick, 1992", and can help prevent saturation when sounds are loud.  To

determine whether these findings were true across the population, we measured two parameters of

the filters: the ratio of positive to negative parts of the filter !Pos/Neg", and the best modulation

frequency !BMF".

Figure 5A shows the ratio of positive to negative parts of the filter !Pos/Neg" under high

mean !y-axis" versus low mean !x-axis; n = 28 cells with significant filters under both conditions".  Most

points lie below the diagonal, indicating that most filters have larger negative components at high

mean.  The small number of cells that show an increase in Pos/Neg represent filters like the one

shown in figure 4C that are predominantly negative under low mean conditions, and gain a positive

component under high mean.  Most points lie close to the line y=1, which represents balanced positive

and negative components under high mean.

To examine whether neurons as a population became sensitive to faster modulations at high

mean, we plotted the best modulation frequency !BMF" for all cells under high mean versus low mean

!figure 5B".  In this graph, most points lie above the diagonal, indicating that most cells are more

sensitive to faster modulations at the high mean.  The circled points represent cells that showed a

significant increase in best modulation frequency !n=16/28, one-tailed t-test, p<0.05"; they span the full

range of modulation sensitivity seen in our neurons.  Together these data suggest that an increase in

stimulus mean leads to filters that behave more like differentiators and to a shift in the sensitivity of

cells towards high temporal frequencies.

Are the differences we observe in filter shape due to true differences in responses, or do they

represent different approximations to the neuron’s response?  To answer this question, we compared

predictions made by filters with the same mean to predictions made by filters with different means.

In all cases data used to test the model were distinct from data used to generate the model.

Filters generated under both conditions performed similarly when predicting responses to

novel stimuli of the same condition: the mean correlation coefficient between data and prediction was

0.59 +/- 0.18 !sd" under high mean and 0.66 +/- 0.18 under low mean.  However, both sets of filters

were much worse at predicting responses to the other condition.  Figure 5C shows the correlation

coefficients between predicted and actual PSTHs using filters with the same mean !self-prediction

CC" versus filters with a different mean !cross-prediction CC".  Self-predictions are significantly

better than cross-predictions for both high and low mean data.  This confirms that the changing filter

shapes capture a real change in the features to which the neurons respond.
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Filters Change Gradually as a Function of Mean

To better understand how changes in filter shape occur--particularly the most dramatic

switches from onset to offset selectivity) we varied the stimulus mean randomly among four levels

!30, 40, 50, or 60dB", while holding the variance at 5dB.  Figures 5D and 5E show filters calculated

under these four conditions for two cells * one that retains an onset shape across levels, and one that

switches gradually from onset sensitivity at low mean !gray trace", to offset or acceleration sensitivity

!indicated by a tri-phasic filter" at high mean !red trace".  In both cells, a negative peak that is small at

30dB grows larger and decreases in latency as the mean increases.  This suggests that even very

striking changes in filter shape might arise through simple mechanisms, such as a change in the

relative strength and latency of inhibitory inputs to the cell.  Population data from 13 cells

!supplementary figure 3" support the finding that filters change gradually and systematically as a

function of mean stimulus amplitude.

Changes in Stimulus Variance Do Not Produce Systematic Changes in Filter Shape

In contrast to the effect of mean amplitude, changing the stimulus variance had little effect

on mean firing rate or filter shape.  Figure 6A shows the effects of an increase in standard deviation

from 6 to 18dB on the cell shown in figure 4A.  Although the change in variance produces the same

increase in stimulus power as did the change in mean, the cell shows little significant change in filter

shape.

Across our population, correlation coefficients between high variance and low variance filters

!mean = 0.84 +/- 0.03, se" were significantly higher than the correlation coefficients between high

mean and low mean filters !0.12 +/- 0.10, p = 5.0e-8", confirming that variance had much less effect on

filter shape than did mean amplitude.  Changing stimulus variance also had fewer effects on the ratio

of positive to negative filter components !figure 6B", and on best modulation frequency !figure 6C".

Similar to the filters generated under high mean, filters generated under high variance did

well at predicting responses to stimuli with the same statistics.  The mean correlation coefficient

between data and prediction was 0.54 +/- 0.17 !sd" under high variance and 0.66 +/- 0.18 under low

variance.  However, predictions made by swapping filters--using high variance filters to predict low

variance data and vice versa-- were only slightly worse than predictions made with matched filters

!figure 6D".  Although an increase in variance caused changes in the shapes of some filters, these
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changes were smaller, less common, and less systematic than those observed with an increase in mean.

Effects of Mean and Variance on Nonlinearities

Although variance had only small effects on filter shape, it had a significant effect on neural

gain.  To examine the effects of stimulus mean and variance on the gain of the neural response, we

calculated the nonlinear relationship between the filtered stimulus and the instantaneous firing rate

under each condition !Methods".  Filters were normalized such that the variance of their output was

equal to the variance of their input !Baccus and Meister, 2002" to ensure that changes in gain were not

due to changes in filter shape.

Figures 7A and B show the effects of increased mean and variance on the nonlinearities of

two cells.  An increase in mean !high mean red versus low mean gray" led to a decrease in the gain of

the cell in figure 7A, and an increase in the gain of the cell in figure 7B.  An increase in variance !high

variance green versus low variance gray" led to a decrease in the gain of both cells.  These decreases in

gain with variance may be considered adaptive, as they allow the cells to maintain a similar range of

firing rate fluctuations when the range stimulus fluctuations increases, and so to take better advantage

of their signaling capacity.

The trends we observed in these examples continued across our population.  An increase in

stimulus mean led to both increases and decreases in gain, with no net change in gain across the

population.  An increase in stimulus variance led to systematic decreases in gain.  To quantify changes

in gain, we calculated the average slope of each nonlinearity, excluding sub-threshold and saturation

regions where the slope fell below 5% of its maximum !Methods".  Figure 7C shows slopes under high

mean versus low mean: points are distributed on both sides of the diagonal, indicating no systematic

change in gain.  Figure 7D shows slopes under high variance versus low variance.  Here, most points

!27/32" lie below the diagonal, indicating a decrease in gain.

The fly H1 neuron has been shown to reduce its gain in proportion to the increase in the

standard deviation of the stimulus !Brenner et al., 2000; Fairhall et al., 2001".  If our cells adapted

proportionally, the increase in mean should produce no change in gain, but the increase in variance

should decrease gain by a factor of 1/3 !blue dashed line in figure 7D", to compensate for a 3-fold

increase in the standard deviation.

To quantify the amount of variance adaptation in each cell, we calculated an adaptation index

!see Methods".  The adaptation index is zero if there is not change in gain with variance, and one if
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the gain under high variance is exactly 1/3 of the gain under low variance.  The distribution of

adaptation scores is shown in figure 7E, and is highly skewed !median = 0.74": many of the cells show

close to proportional adaptation, while some show less than proportional adaptation.  A few cells

showed no adaptation, or adaptation in the opposite direction.

Time Course of Changes in Filter Shape and Gain

Our analysis of field L response properties in different statistical conditions indicates that

their encoding changes with both mean and variance.  Are these changes due to time-dependent

mechanisms, or do they represent fixed nonlinearities, for example differences in the relative strength

of excitatory and inhibitory inputs at different intensities?  To examine this question, we looked at

the time course of changes in filter shape and gain.  

To ask how fast filter shapes changed, we calculated filters from different epochs of the

response before and after the step change in mean.  Figure 8A shows filters derived from three epochs

surrounding the switch from low to high mean: the last 500 msec of the low mean response !black",

the first 100 msec after the switch to high mean !purple", and the last 500 msec of the high mean

response !gray".  Although the mean firing rate is still changing during the first 100msec after the

switch, the filter derived from these data !purple" has the narrower shape and larger negative

component characteristic of the fully adapted high mean filter !gray"; it is quite different from the

wide integrator shape of the filter under low mean !black".

To ask whether filters changed this fast across our population, we calculated correlation

coefficients between filters from these three epochs !figure 8B".  Correlation coefficients between

early !first 100msec" and late !last 500msec" filters from the same condition were significantly greater

than correlation coefficients between early filters and filters from the end of the previous condition.

Correlation coefficients between early and late filters were not significantly different from correlation

coefficients between two fully adapted filters taken 4500msec and 4900msec after the switch.

Together these data suggest that filters change shape within 100 msec after a change in mean stimulus

level.

To look at the time course of changes in gain, we calculated nonlinearities from different

epochs before and after a change in variance.  Figure 8C shows nonlinearities calculated during three

epochs around the switch from low to high variance.  The nonlinearity calculated from the last 500
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msec of the low variance condition has a high gain !black", while nonlinearities taken from both the

first 100msec !purple" and last 500msec !gray" of the high variance response both show a lower gain.

This rapid change in gain can also be seen in the PSTHs of this cell's response to repeated

trials.  If the decrease in gain occurred slowly, we would expect firing rate fluctuations under high

variance to be initially much larger than firing rate fluctuations under low variance.  As shown in

figure 8D, firing rate fluctuations under high and low variance are nearly identical by the time of the

first large peak, about 50 msec after the switch, indicating that the gain of the cell has decreased by

this time.

To quantify the speed of gain change across the population, we compared the gain of

nonlinearities taken from the three epochs of the response.  The gain of nonlinearities derived from

the first 100 msec of data were significantly different from the gain of nonlinearities under the

previous condition !p = 3.7e-5 for increased variance, p = 2.5e-5 for decreased variance" but were not

significantly different from the gain measured later under the same condition !p = 0.75 for increased

variance, p = 0.43 for decreased variance".  Together, these data indicate that nonlinear gain changes

within 100 msec of a change in stimulus variance.

Our analyses indicate that changes in filter shape and nonlinear gain occur quickly, well

before the mean firing rate has finished adapting.  This suggests that gradual firing rate adaptation

corresponds to a change in the threshold or set-point of firing, rather than to a change in gain or in

temporal feature selectivity.  To ask whether firing rate adaptation is correlated with a change in

threshold, we plotted nonlinearities from several epochs around the switch from low to high mean.

Figure 8E shows these nonlinearities for a single cell.  Following the increase in mean, the nonlinearity

undergoes a rapid shift upward and to the left !purple versus thin black", as well as a small change in

slope.  The shift occurs immediately, and is probably due to the change in filter shape rather than to a

change in neural sensitivity.  Over the next 500msec, the nonlinearity moves gradually back towards

the center !violet and light blue", but does not change slope.  The slow decay in firing rate thus seems

to determine the shifting position of the nonlinearity.

To confirm that this trend was consistent across our population, we calculated the

correlation between the mean firing rate during each 100 msec-long epoch, and the y-intercept of the

nonlinearity measured during that epoch.  The average correlation coefficient across cells was high--

0.82 +/- 0.02 !se"-- suggesting that firing rate adaptation is best considered as a change in the position

or set-point of the nonlinearity.
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Discussion

The goal of our study was to investigate how coding of complex amplitude modulations in a

primary auditory area depends on the distribution of stimulus intensities.  To characterize coding, we

developed a stimulus that mimics several features of natural song stimuli, while still permitting a

randomized and systematic search of possible stimuli. From responses to these stimuli, we were able

to generate linear-nonlinear models that successfully predict many features of the neurons' responses

to novel stimuli.

The filters we extracted from our neurons revealed sensitivity to a range of temporal features

and time scales. Peak temporal frequency sensitivities varied from 10-150Hz.  Neurons showed

sensitivity to many combinations of onsets, offsets, and continuous stimulation.  This range of

sensitivities may be important for tracking the complex contours of zebra finch syllables.  Previous

studies in this area found a lower range of temporal frequency sensitivities, and a preponderance of

onset units !Sen et al., 2001; Woolley et al. 2005".  Our results support findings in other species

showing a broader range of temporal frequency sensitivities and response types in un-anesthetized

animals !Liang and Wang, 2002; Wang 2005".

To examine how coding changes with the distribution of stimulus amplitudes, we altered the

mean and the variance of amplitude modulations in our stimulus.  Generating linear-nonlinear models

under three different statistical conditions revealed that changes in mean and variance led to distinct

types of adaptive changes in coding.

The first adaptive change that we described was a remodeling of filter shape that depends on

the mean amplitude of the stimulus.  Under low mean conditions neurons act more like low-pass

integrators.  As the stimulus mean increases, negative components of the neural filter grow stronger

and decrease in latency, causing neurons to behave more like band-pass differentiators.  This

transition could help prevent firing rate saturation at high sound levels.  It could also allow cells to

signal effectively over a wider range of stimulus levels.  The amplitudes of natural sounds tend to be

similar at nearby points in time !Attias and Schreiner, 1998 , Singh and Theunissen, 2003", so

responding only to changes in amplitude)which are more rare)may be efficient at high signal-to-

noise levels.  At low signal-to-noise levels, however, integrating over a longer time can improve the

chance of detecting a quiet sound.
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Several groups !Woolley et al. 2005, Narayan and Sen, 2005" have shown that analyzing songs

with band-pass or differentiating filters allows for better theoretical discrimination of different

individuals’ songs.  However, these studies only analyzed songs under high signal-to-noise conditions.

It would be interesting to ask whether low-pass filters permit better song discrimination when songs

are soft or noise is prevalent.

Changes in filter properties similar to those we describe have also been observed in retinal

ganglion cells.  At low light intensities, ganglion cells lose their receptive field surrounds and increase

their integration times !Enroth-Cugell and Lennie, 1975".  Atick !1992" used information theory to

show how these changes in receptive field structure can maximize information transmission in bright

versus dim conditions.  Similar principles should apply to the changes we observe in auditory receptive

field structure when the volume of an auditory signal changes.

The second adaptive change we described was a reduction in gain when the stimulus variance

increased.  This reduction in sensitivity allows the cell to match its range of outputs more closely to

its range of inputs.  Similar properties have been described in the auditory midbrain !Dean et al, 2005"

and in several areas of the visual system, including the retina !Chander and Chichilnisky, 2001; Baccus

and Meister, 2002", the LGN !Mante et al., 2005", and the fly H1 neuron !Brenner et al. 2000; Fairhall

et al. 2001".  In the fly, gain adaptation is proportional to the increase in the standard deviation of a

velocity stimulus.  In our system, neurons showed a distribution of variance adaptation.  Many cells

showed close to proportional gain adaptation, while some showed weaker adaptation, and a few

showed no adaptation, or adaptation in the opposite direction.  The difference between the fly

motion detection system and the songbird auditory system may be related to the number of neurons

involved.  In the fly, a single neuron must encode visual motion under all behavioral conditions, while

in the songbird, a population of neurons may allow some specialization for different statistical

regimes.

If changes in filter shape and gain arose through some time-dependent process, we would

expect them to occur slowly after a step change in stimulus statistics.  Instead we found that both

these changes occur within 100msec of the switch in stimulus statistics.  In a few cells !not shown", we

attempted to estimate filters from even shorter time intervals, and found that they changed essentially

within the time scale of the filter--as fast as we could measure them.  Fast changes in sensitivity have

also been described in retinal filters !Baccus and Meister, 2002" and in the fly H1 neuron !Brenner et
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al. 2000; Fairhall et al. 2001".  This does not rule out the possibility that these changes are due to

adaptive processes operating within a few tens of milliseconds--such as fast adaptation measured in

cortical cells !Nowak et al., 2003, McCormick et al., 1985", or fast adaptive processes acting in the

cochlea !LeMasurier and Gillespie, 2005".  However, it suggests that the changes we observed may

best be described and modeled as "adaptive nonlinearities" in processing rather than as traditional

time-dependent adaptations !Borst et al, 2005".

The fact that these changes occur so quickly can constrain models of how these properties

might arise.  One hypothesis is that the positive and negative peaks in our filters reflect excitatory and

inhibitory inputs, whose latency and relative strength depend differently on the volume of the

stimulus.  Dramatic changes in filter shape with mean stimulus amplitude will arise if inhibitory inputs

have a higher threshold than excitatory inputs, and if their gain rises more steeply as a function of

stimulus amplitude. This arrangement of inhibition has been described in several parts of the

ascending auditory system, particularly in type IV units of the dorsal cochlear nucleus !Nelken and

Young, 1994; Yu and Young, 2000".

Properties related to those we describe have also been seen in the ventral cochlear nucleus.

The temporal modulation transfer functions of VCN chopper units show a transition from low-pass

to band-pass temporal frequency sensitivity with increased stimulus volume !Frisina et al. 1990".  In

the inferior colliculus !IC", a similar transition from low-pass to band-pass sensitivity has been

observed !Rees and Moller, 1987, Krishna and Semple, 2000".  This transition could arise in the

cochlear nucleus and be filtered to lower frequencies as it is propagated through the ascending

auditory system.  Alternatively, it could arise anew at each stage of processing due to inhibitory

interactions like those we hypothesize.

Two other studies in the mammalian IC described properties related to those seen here.

Dean et al. !2005" showed that IC neurons change their rate-level functions depending on the local

distribution of stimulus amplitudes.  However, because that study calculated rate-level functions by

directly comparing stimulus amplitude and firing rate, it could not discriminate changes in neural

sensitivity !gain" from changes in feature selectivity !filter shape".  Kvale and Schreiner !2003" also saw

small changes in neural gain and filter shape of IC units when the stimulus variance changed, but

contrast to our results, these changes occurred gradually during adaptation.  We think it is likely that

the adaptive properties we describe first arise early in the ascending auditory system, but may be

augmented by processing at many stages.
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In addition to the filter and gain changes, we observed a range of slow decays in firing rate

following a change in the mean amplitude of the stimulus, similar to the wide range of decay times

described in auditory cortex by Ulanovsky et al !2004" and by Bartlett and Wang !2005".  The rate of

decay was not related to the width of each cell's filter, nor did this decay arise from a change in filter

shape or gain-- because both those changes occurred very quickly.  Instead, slow decays appear to be

related to a shift in the setpoint or threshold of firing: as time progresses, a fixed amount is subtracted

from the neuron's response to the same feature.

A striking feature of our results is their similarity to findings in the visual system !e.g. Enroth-

Cugell and Lennie, 1975, Baccus and Meister, 2002"--particularly in the retina, where techniques

similar to ours have been most employed.  In both systems, neural filters become more differentiating

as stimulus intensity increases.  In both systems, neural gain decreases with increased stimulus

contrast.  And in both systems these changes occur rapidly, perhaps within the time scale of filtering,

and independent of slower decays in firing rate.  Although the neurons we studied lie at a very

different stage in the sensory hierarchy from these retinal cells, they seem to share common

computational strategies.  These may represent solutions to common problems faced by all sensory

systems that must represent a wide dynamic range of signals.

The changes in coding that we describe may help neurons to accurately encode stimulus

characteristics in very different regimes, but they raise problems for current models of encoding and

decoding natural stimuli.  For instance, several existing models of primary auditory cortex assume that

spectro-temporal features are encoded by a bank of linear filters !Chi and Shamma, 2005".  Models of

complex song-selective neurons in higher areas of the avian brain also assume that the inputs to these

cells are static and largely linear !Margoliash 1983, Lewicki  and Konishi, 1995, Drew and Abbott,

2003".  In contrast, our study suggests that the inputs to higher-order auditory areas are highly

nonlinear, but change in systematic ways that could be effectively modeled.  A model that

incorporates the nonlinearities we describe should not only make better predictions about how

primary neurons respond to complex stimuli like song or faces, but will also be crucial to

understanding how the brain constructs high-level feature detectors such as song- or face-selective

neurons.
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Methods:

Chronic Recording and Electrophysiology

We used chronically implanted microdrives !Hessler and Doupe, 1999" to record single units

from 5 adult male zebra finches.  A detailed description of microdrive construction and implantation

are given in that paper.  Electrodes !2-3 tungsten electrodes, 4-5 MOhms, MicroProbe Inc,

Gaithersburg, MD" were implanted 1.5 µm lateral !left", and 1.5 µm rostral to the posterior border of

the branch point of the central sinus, at an initial depth of 400 µm.

During recording, the bird was attached to a commutator by a flexible lead and op-amp.

Electrical traces were digitized, amplified !1000x", filtered !300-5000Hz", and recorded using TDT

System 3 hardware !Tucker-Davis Technologies, Alachua, FL" interfaced with custom-written Matlab

software.  The electrode bundle was advanced manually in small steps !40-160 microns".  Putative

single units were identified on the oscilloscope by their stable spike waveform and clear refractory

period.  All spikes were re-sorted offline using a custom-written software window discriminator

!Matlab" based on the similarity of overlaid spike waveforms and on clustering of waveform

projections in a two-dimensional principal component space.  Neural recordings were considered

single units if they contained fewer than one violation of 1 msec refractoriness per thousand spikes

after sorting !Supplementary figure 1". Units that responded to auditory stimuli were found at depths

of 1000-2500 µm.  Between each recording session, the electrodes were retracted to a position above

where the first auditory units were found.

After the final recordings, histological sections were prepared to confirm that electrode

tracks, and in some cases, marker lesions, were located in field L.  Birds were lethally anesthetized and

perfused with saline followed by 4% paraformaldehyde.  Alternate 40 micron sections of fixed brain

tissue were Nissl-stained, and labeled for enkephalin !mouse anti-leucine enkephalin monoclonal

antibody, Accurate Chemical & Scientific Corporation", a marker for the nucleus interface !NIf"

which abuts the anterior end of field L2a.  All sites were identified to be in field L layers L1, L2, and

very occasionally L3.  Although the preferred frequency and linearity of cells varied across these areas

as described in Sen et al !2001", we saw no systematic differences in the sensitivity to stimulus

statistics across layers.
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Stimulus presentation

During recording, the bird was placed inside a small cage !20cm x 20cm floor area" within a

sound-attenuating chamber !Acoustic Systems".  The chamber lights were kept off to minimize

movement and birds were monitored using an infra-red camera. Birds generally sat in one corner of

the cage for the duration of the experiment although the commutator permitted free movement

within the cage. Auditory stimuli were presented free-field from a small speaker !Bose" located 50 cm

from the center of the bird's cage.  Using a calibrated microphone !B&K" we verified that 250Hz to

10kHz tones designed to play at 80dB appeared at 79.6+/-2.3dB, and that the highest harmonic

distortion peak observed was less than 23.3dB !65.9 +/- 8.7dB SNR".

Stimulus Construction

Although it is likely that field L neurons respond to other parameters of acoustic stimuli

!Elhilali et al. 2004", we designed our stimulus to isolate responses to modulations of the log

amplitude envelope.  Recent studies in field L !Gill et al, 2006" and in mammalian inferior colliculus

!Escabi et al, 2003" suggest that modulations of the log envelope drive cells better and are more

linearly encoded than modulations of the linear envelope.  Our stimulus consisted of two parts: a

slowly varying envelope with fixed statistics that was repeated exactly in every experiment, and a

rapidly varying carrier that could be adjusted for the frequency preference of each cell.

The log envelope, or “modulation signal” !

€ 

n(t) ", consisted of Gaussian noise filtered to have

an exponential power spectrum, then normalized to have unit standard deviation and zero mean:

!1"

€ 

P( f ) = e− f / 50Hz

To generate a linear voltage envelope !

€ 

E(t)" from the logarithmic modulation signal !

€ 

n(t) ",
we exponentiated it according to:

!2"

€ 

E(t) =1e−5 ×10[µ+σ ×n( t )] 20

where m is the mean amplitude of the stimulus in dB, and s is the standard deviation.  When

multiplied by a noise carrier with unit standard deviation, this produces a sound whose local

amplitude in dB is given by

!3"

€ 

A(t) = µ +σ × n(t)

and whose overall RMS amplitude in dB is given by
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!4"

€ 

RMS = µ +
log(10)
20

σ 2

We presented stimuli with three different statistics: low mean/low variance !30 +/- 6dB S.D.,

RMS = 34dB", low mean/high variance !30 +/- 18dB, RMS = 67dB", and high mean/low variance !63 +/-

6dB, RMS = 67dB".  The low mean/high variance and high mean/low variance stimuli were designed to

have the same RMS power.  Stimulus statistics changed abruptly every 5 seconds, with the low

mean/low variance condition appearing in between each presentation of low mean/high variance, or

high mean/low variance.  A single trial consisted of 400 continuous 5 second segments, half repeats of

the same segment, and half unique.  Repeated and unique segments were randomly distributed

throughout the sequence.

The carrier was a Gaussian noise stimulus, digitally created and filtered online. Upon

encountering a cell, we first determined its frequency preference using broad- !500-8000Hz", and

narrowband !500Hz-wide, 750-7750Hz center frequencies" noise bursts, presented at 60dB SPL. If

broadband noise drove the cell robustly, a broadband carrier was used !n=21/36", otherwise we chose

the narrowband carrier that best drove the cell. At several sites !n = 8" we repeated the experiment

using both a narrowband and a broadband carrier.  Changing the carrier altered the precise shape of

the filter, but did not affect our basic findings about changes with mean and variance or the

distribution of filter widths.  Because the carrier was varied throughout the experiment, responses to

repeated trials represent the response to the modulation signal, averaged over many carriers.

We used a variation of this stimulus to characterize filters at 30, 40, 50, and 60dB.  This

stimulus consisted of unique segments only.  All segments had a standard deviation of 5dB, and the

order of statistical conditions was completely randomized.

Extraction of Filters and Nonlinearities

Filters were calculated in the Fourier domain according to:

!5"

€ 

F(ω) =
< s* (ω)r(ω) >
< s* (ω)s(ω) >

where 

€ 

F(ω)  is the Fourier transform of the filter, 

€ 

s(ω)  is the Fourier transform of the normalized

log stimulus envelope 

€ 

n(t) , and 

€ 

r(ω)  is the Fourier transform of the spike train.  The * indicates the

complex conjugate.  The numerator in this equation is equal to the spike triggered average, while the
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denominator is equal to the power spectrum of the log stimulus envelope, which by design is

exponential !eq 1".  We verified that deviations of the full stimulus power spectrum from this

predicted power spectrum did not significantly impact our calculations !Supplementary figure 2".

In practice, division or decorrelation by the power spectrum results in a noisy estimate of the

filter, because it boosts power in high frequencies that are poorly sampled in n!t".  To recover

meaningful filters, we placed an exponential cutoff on F!w", given by

!6"

€ 

c(ω) =1   for 

€ 

|ω | < cutoff

€ 

c(ω) = e−|ω−cutoff | 10 for 

€ 

|ω | >= cutoff

The cutoff frequency for each cell was placed where the power spectrum of the raw spike-triggered

average fell below 2 standard deviations of the power spectrum of an average of random spike times.

The highest cutoff across conditions was used for all calculations involving a single cell.  Cutoffs

ranged from 23-167Hz.

Filters were considered significant if at least 10msec of the filter lay outside 3 standard

deviations of the random-triggered average.  Non-significant filters arose exclusively when the firing

rate during a particular condition was extremely low.  All but one cell recorded produced significant

filters under at least two conditions.  To estimate the error in our filter calculations, we divided our

spikes into 5 random pools, and calculated separate filters from each.  The standard deviation of these

5 estimates are shown as error bars in the figures.

The nonlinearity describes the probability of spiking given a value of filter output:

€ 

P(spike |F ⊗ stim) , and was calculated using a Bayesian formula described in Brenner et al, !2000".

!7"

€ 

P(spike |F ⊗ stim) =
P(F ⊗ stim | spike)P(spike)

P(F ⊗ stim)

where 

€ 

P(spike)  is the mean firing rate over the stimulus condition.  

€ 

P(F ⊗ stim)  is the

distribution of the mean-subtracted filtered stimulus, and 

€ 

P(F ⊗ stim | spike)  is the distribution of

spike-triggered mean-subtracted filtered stimulus segments.

The slope of the nonlinearity depends on the scale of the filter F: if the amplitude of F is

increased, the width of the distribution 

€ 

P(F ⊗ stim)  will also increase, decreasing the slope of the

nonlinearity.  We normalized each filter so that the variance of its output was equal to the variance of
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its input !Baccus and Meister, 2001".  This ensured that changes we measured in slope were not due to

changes in filter shape.  The mean was subtracted from each stimulus prior to calculating the

nonlinearity to minimize a leftward shift due to the decrease in the integral of the filter with increased

mean.  To ensure that the nonlinearity was well-sampled, we restricted our analysis to a region from

two standard deviations below the mean of the filtered stimulus distribution, to two standard

deviations above.  To measure the reliability of the nonlinearity we performed a jackknife operation,

where 1/5 of the spikes were excluded in each of 5 estimates of the nonlinearity.  Error bars on

nonlinearities shown in figures represent the standard deviation of the jackknife estimate !Sen et al,

2001":

!8"

€ 

std =
n −1
n

(x j− < x j >)2
j
∑

where n is the number of jackknife estimates, and 

€ 

x j  is the jth estimate of the nonlinearity.  To

calculate nonlinearities as a function of time for a single condition, we used the filter obtained by

pooling all data from that condition, as our analysis showed that filters do not change over this time

period.

To predict responses to the repeated modulation signal, we convolved it with the neural

filter, quantized the result, then transformed the quantized signal according to the nonlinearity.

PSTHs were obtained by smoothing the mean spike count per 1 msec bin with an 8msec wide hanning

window.  When comparing actual and predicted PSTHs, we omitted the first 500msec when mean

firing rates were strongly adapting, as our filters were not designed to capture this response feature.

The quality of the prediction depended strongly on the amount of data recorded.

Analysis of Filters and Nonlinearities

Parameters of filters were defined as follows:  The 50% width was the duration in msec over

which the absolute value of the filter was greater than or equal to half its maximum absolute value.

The best modulation frequency !BMF" of a filter was the frequency at which its power spectrum was

maximum.  To minimize noise, power spectra were calculated from a segment of each filter, from 25

msec before the absolute value of the filter reached 25% of its maximum, to the time of the spike.
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The ratio of positive to negative filter components !Pos/Neg" was obtained by dividing the sum of all

positive parts of the filter by the absolute value of the sum of all negative parts of the filter.  Each

parameter was measured on five estimates of the filter to obtain error bars.

To eliminate sub-threshold and saturation regions from our estimates of nonlinear gain,

values of the nonlinearity slope less than 5% of the maximum gain under any condition were excluded

prior to averaging.  To compare gain across conditions, we compared the log ratio of gain under the

two conditions to zero.

Analysis of Decay Times

To estimate the decay time following a change in mean, we fit a single exponential of the

form

!9a"

€ 

r(t) = A + ΔR × e(− t /τ )

to the unsmoothed PSTH.  In this formula, r!t" is the PSTH, 

€ 

ΔR  is the magnitude of the decay, 

€ 

τ  is

the decay time constant, and A is the steady state firing rate.  Although several decays exhibited

complex transients, we focused our analysis on the final slow decay.  To avoid mistakes in fitting

introduced by transients, we fit only a portion of the response:

!9b"

€ 

r(tlat : end) = A + ΔR × e(− t /τ )

where tlat was a latency parameter from 1-500msec.  Fits for latency values that did not converge were

excluded.  Of the remaining fits, we chose the one that resulted in the smallest mean squared error

between the actual PSTH and the exponential model.  A few PSTHs were fit with only a subset of

latency values !n = 4".  Decay time constants were considered significant only if they plateaued within

our five second trial !all cells but one", and if they decayed over a range of greater than 5Hz !32/35 cells

under high mean, 31/35 cells under low mean".
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Figure Legends

Figure 1

Construction of a stimulus with a power spectrum and amplitude distribution similar to natural

sounds.

The modulation signal !A, top panel" specifies the local amplitude of the stimulus in decibels, and

consists of filtered Gaussian noise with a power spectrum P!f" = exp!-f/50Hz" !A, bottom panel".

Exponentiating the modulation signal creates a linear voltage envelope !B" with an exponential

distribution of amplitudes.  The envelope modulates a carrier !C" consisting of narrow or broadband

noise.  The stimulus !D" is generated by multiplying together the envelope !B" and the carrier !C".

!E" shows responses of a single unit to 100 repeats of the modulation signal shown in A, each paired

with a different carrier.  Each row represents the spike times during one segment repeat.  Because the

carrier varied across trials, columns of spikes represent responses to the modulation signal alone.

Response peaks follow peaks in the aligned stimulus example above.

Figure 2

A linear-nonlinear model successfully predicts a large fraction of the response to our stimulus

A and D"  Two examples of linear filters derived from the responses of single units to the non-

repeated modulation signals !30dB mean, 6dB variance".  The amplitude of each filter is normalized so

that the dot product of the filter with itself is one.  Filters thus describe the features that drive each

cell, but not the magnitude of the cell's response.  Dashed lines represent the standard deviation of 5

independent estimates of each filter's shape.

B and E"  Nonlinear gain functions show the relationship between the firing rate of the neuron and

the output of the filters in !A" and !D".  The x-axes show the projection of the mean-subtracted
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modulation signal onto each filter and indicate the similarity of the stimulus to the filter. Dotted lines

indicate the standard deviation of five jackknife estimates of the gain function.  The flat dashed line in

each nonlinearity plot represents the average spontaneous firing rate of each neuron recorded prior to

stimulus playback.

C and F"  Predicted !wide gray" and actual !narrow black" PSTHs of the response to repeated

modulation signal segments.  The correlation coefficients between data and prediction were 0.89 for

the cell in !A-C" and 0.67 for the cell in !D-F".

G"  Left panel: filters from four different units show a broad range of temporal frequency preferences.

Right panel: distribution of the best modulation frequency !BMF" versus the 50% width of the

absolute value of the filter !50% width" for all significant filters !33 from 36 cells".  The four cells

shown in the left-hand plot are indicated by colored boxes.

H" A histogram of correlation coefficients between predicted and actual repeated segments for all the

significant filters !33 out of 36 cells recorded with a 30dB mean and 6dB standard deviation stimulus"

indicates that the linear-nonlinear model performed well.  The mean correlation coefficient was 0.64

+/- 0.18 !standard deviation".

Figure 3

Changes in stimulus statistics lead to slow changes in firing rate

A"  To explore how coding depends on the statistics of the stimulus, we altered the mean and

standard deviation of the modulation signal every five seconds.  Statistical conditions were presented

in a fixed order: low mean/low variance !gray: 30dB +/- 6dB", low mean/high variance !green: 30dB +/-

18dB", low mean/low variance, and high mean/low variance !red: 63dB +/- 6dB".  These colors will be

used throughout the paper to indicate responses to each condition.

B"  Cells adapt at different rates to a change in mean stimulus amplitude.  Top: PSTH of a cell

showing rapid decays after the switch from low to high mean !red: tau = 28 msec" and after the switch

from high to low mean !gray: 56 msec".  Bottom: PSTH of a cell showing slow decays.  Tau = 574 msec
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for the switch from low to high mean, 730 msec for the switch from high to low mean.  PSTHs are

binned in 5msec windows.  Only the first 2.5 seconds of the response after each switch are shown.

C" Filter width under high mean/low variance versus decay time for both low to high !red" and high to

low !gray" transitions. Filter time scales and decay time scales are poorly correlated !correlation

coefficients = -0.2 for low to high mean and 0.04 for high to low mean.", suggesting that filter width

and decay time represent independent forms of temporal sensitivity.  The two example cells are

shown by a blue circle and red square; open symbols represent low to high mean transitions, and filler

symbols represent high to low mean transitions.

Figure 4

Filter shape depends strongly on mean stimulus amplitude.

A-C"  Linear filters !left" and their power spectra !right" for three different cells under the low

mean/low variance !gray" and high mean/low variance !red" conditions. For all three cells, the filter

obtained under high mean is narrower and has positive and negative components of more similar size.

Colored dashed lines surrounding each filter represent the standard deviation of 5 different estimates

of the filter !Methods".  Black dotted lines at zero represent the time of the spike.  Filters are

normalized so that the dot product of each with itself is one.

D" Responses of the unit shown in A to 120msec of the repeated modulation signal !black, bottom

panel" under low mean !gray" and high mean !red" conditions.  The stimulus has been shifted forward

by 11 msec, the latency of the peak of the low mean filter, to facilitate comparison.

Figure 5

Population analysis of mean effects on filters

A" Ratio of positive to negative areas of filters !Pos/Neg" from high mean !y-axis" versus low mean !x-

axis" conditions.  Most points lie below the dotted line, indicating that negative components of the

filter are larger under the high mean condition.  Black circles indicate filters that showed a significant
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change in Pos/Neg between the two conditions !n = 21/28". The mean Pos/Neg ratio across the

population was significantly lower under high mean !0.97 +/- 0.04, se" than under low mean !1.41 +/-

0.11, p = 5.9e-4", and was not significantly different from one !black line" at high mean, indicating

balanced positive and negative components.  The three example cells shown in figure 4 are indicated

by the pink square !A", blue diamond !B", and yellow triangle !C".

B" BMF under high mean/low variance !y-axis" versus low mean/low variance !x-axis" conditions.  Most

points lie above the dotted diagonal line, indicating higher BMF under the high mean/low variance

condition. Black circles indicate significant changes !n = 16/28".  Example cells are indicated by the

filled symbols.

C" Filters derived from data with the same mean make much better predictions !y-axis" than filters

from data with a different mean !x-axis". Red dots indicate correlation coefficients between data and

predictions based on high mean filters !mean correlation coefficient = 0.59 +/- 0.03 !se" for same

statistics, 0.03 +/- 0.07 for different statistics, p = 4.0e-9".  Gray dots indicate correlation coefficients

between data and predictions based on low mean filters !mean correlation coefficient = 0.66 +/- 0.03

for same statistics, 0.08 +/- 0.07 for different statistics, p = 2.3e-10".  Data for the example cells are

indicated by open !high mean filter predictions" and filled !low mean filter predictions" symbols.

D-E" Linear filters for two cells at four different mean levels: 30dB !gray", 40dB !brown", 50dB

!yellow", and 60dB !red", with a standard deviation 5dB.  As the stimulus mean increases, the negative

component of each filter grows larger and decreases in latency, leading to substantial changes in filter

shape.

Figure 6

Unlike a change in mean, a change in variance does not lead to significant changes in filter shape.

A"   Linear filters for the cell shown in figure 4A under low mean/low variance !gray" and low

mean/high variance !green" conditions.  The increase in variance has no significant effect on filter

shape.
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B"  The balance of positive and negative components across the population shows no systematic

change with variance.  Ratio of positive to negative areas in filters derived under low mean/high

variance !y-axis" versus low mean/low variance !x-axis" conditions.  Black circles indicate filters that

showed a significant change in Pos/Neg between the two conditions !n = 15/32".  The mean population

ratio of positive to negative areas was not significantly different between high variance !1.53 +/- 0.15 se"

and low variance !1.43 +/- 0.10" conditions !p = 0.20".  The example cell shown in !A" is indicated by a

red square.

C"  Best modulation frequencies across the population do not change significantly with variance.

BMF under low mean/high variance !y-axis" versus low mean/low variance !x-axis" conditions.  Black

circles indicate significant changes !n = 4/32".  The example cell is indicated by a red square.

D"  Filters derived from low variance and high variance conditions make similar predictions.  Green

dots indicate correlation coefficients between data and predictions based on high variance filters

!mean correlation coefficient = 0.54 +/- 0.03 !se" for same statistics, 0.56 +/- 0.03 for different

statistics, p = 0.41".  Black dots indicate correlation coefficients between data and predictions based

on low variance filters !mean correlation coefficient = 0.66 +/- 0.03 for same statistics, 0.52 +/- 0.03 for

different statistics, p = 6.5e-8".  Data for the example cell are indicated by open !high variance filter

prediction" and filled !low variance filter prediction" squares.

Figure 7

Effects of Mean and Variance on Nonlinearities

A-B"  Nonlinearities for two cells, calculated under three conditions: low mean/low variance !gray",

high mean/low variance !red", and low mean/high variance !green".  An increase in mean increases gain

in one cell !B" and decreases it in the other !A".  An increase in variance decreases gain in both cells.

Colored dotted lines represent the standard deviation of 5 jackknife estimates of the nonlinearity !see

Methods".  The black dashed lines represent the spontaneous firing rates of each cell.

C"  An increase in mean produced no net change in gain across the population.  Nonlinear gain !Hz/

normalized stimulus projection" under high mean/low variance !y-axis" versus low mean/low variance
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!x-axis" conditions.  The dotted diagonal line indicates no change.  The red line represents the average

population ratio of 1.17.  It is not significantly different from one !p = 0.32".

D"  An increase in variance produced a systematic decrease in gain across the population.  Nonlinear

gain under low mean/high variance !y-axis" versus low mean/low variance !x-axis" conditions.  The

green line represents the average population ratio of 0.58.  It is significantly less than one !p = 3.7e-5".

The dashed blue line represents a decrease in gain proportional to the increase in the standard

deviation.

E"  Distribution of adaptation scores !see Methods" for all cells comparing low mean/low variance

!gray" to low mean/high variance !green, n = 32".  An adaptation score of 1 indicates that gain under

high variance was exactly 1/3 of gain under low variance.  0 indicates no change in gain between

conditions.

Figure 8

Changes in filter shape and gain both occur within 100msec of a change in stimulus statistics.

A"  An example of rapid filter change.  Top: PSTHs showing the mean firing rate of a single cell

around the switch from low to high mean.  Black: last 500 msec of low mean.  Purple: first 100 msec

of high mean.  Gray: last 500 msec of the high mean. Bottom:  Filters derived from each of the three

epochs shown above.  The filter derived from the first 100 msec of high mean !purple" resembles the

filter from the last 500 msec of high mean !gray" much more than it does the filter from the last 500

msec of low mean!black".

B"  Comparisons of filter similarity across the population. First column: average correlation

coefficient between filters derived from the first 100msec and last 500msec of the same condition

!red: high mean, 0.20 +/- 0.03; gray: low mean, 0.14 +/- 0.04".  Second column: average correlation

coefficient between filters derived from the first 100msec of one condition, and from the last

500msec of the previous condition !red: low mean to high mean transitions, -0.03 +/- 0.03; gray: high

mean to low mean transitions, -0.04 +/- 0.03".  Correlation coefficients between early and previous

filters were significantly smaller than those between early and late filters !p = 3.0e-5 for high mean, p =
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1.3e-3 for low mean".  Third column: average correlation coefficient between filters derived from two

100msec epochs at the end of the same condition !red: high mean, 0.22 +/- 0.03; gray: low mean, 0.19

+/- 0.04".  Correlation coefficients between early and late filters were not significantly different from

those between two late filters !p = 0.33 for high mean, p = 0.15 for low mean".  These data indicate that

filters from the first 100msec after the switch were significantly different from filters under the

previous condition, but were no more different from the fully adapted filters than two fully adapted

filters were from each other.

C"  An example of rapid change in nonlinear gain.  Top: PSTH showing the mean firing rate of a

single cell around the switch from low variance to high variance.  Black: last 500msec of low variance.

Purple: first 100msec of high variance.  Gray: last 500msec of high variance.  Bottom: Nonlinearities

derived from each epoch after the switch from low variance to high variance.  The nonlinearity

derived from the first 100msec and last 500msec of high variance !gray" both have a lower gain than

the low variance nonlinearity !black".

D"  Rapid gain adaptation is evident in responses to repeated trials.  PSTH of the response of the

neuron in !C" to the first 280 msec after the switch from low to high variance !green", and after the

switch from high to low variance !gray".  The peaks are approximately the same within 50 msec after

the switch, indicating that the cell is already compensating for the difference in the magnitude of

stimulus fluctuations.

E"  Slow decays in firing rate represent shifts in the nonlinearity.  Nonlinearities from different epochs

after the switch from low to high mean.  Black: 500 msec preceding the switch.  Purple: 0-100 msec

after the switch.  Violet: 200-300 msec after the switch.  Light blue: 400-500 msec after the switch.

Gray: last 500 msec of the high mean response.  Immediately after the switch from low mean to high

mean, the nonlinearity shifts up and to the left, then moves slowly back down and to the right.
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Chapter 2: Spectro-Temporal Encoding in the Songbird Auditory Forebrain

Abstract:

How are complex sounds decomposed by the auditory system and what cellular properties

underlie this decomposition?  Using a synthetic broadband stimulus that shares many properties of

natural sounds, we measured spectro-temporal receptive fields !STRFs" of auditory neurons in the

avian primary auditory area field L.  We found three classes of STRFs: those narrowly tuned for

spectral modulations, those narrowly tuned for temporal modulations, and those narrowly tuned in

both domains.  Cells tuned for fast and slow temporal modulations differed in their firing rate, spike

shape, and anatomical distribution, suggesting that cells with distinct electrical or morphological

properties may give rise to different response types.  Finally, we studied how the shape of each STRF

depended on the intensity of the stimulus.  At low intensities, STRFs were dominated by single

positive peaks, while at high intensities, stronger negative regions gave each STRF type greater

sensitivity to specific spectral, temporal, or spectro-temporal modulations respectively.  These data

link the response properties of auditory neurons to the distribution of energy in natural sounds, and

to biophysical differences between cell types.  They suggest that response properties depend in

systematic ways on the amplitude of the stimulus.

Introduction:

Understanding how complex stimuli are decomposed and represented by populations of

neurons is a central goal of sensory neuroscience.  In visual cortex, cells are tuned to orientation, and

have response properties that depend on their spatial position within a column !Hubel and Wiesel,

1962, 1963, 1974".  In the auditory brainstem, parallel pathways encode the timing, intensity, and

frequency of incoming sounds in ways that depend on the electrical, synaptic, and morphological

properties of different cell populations !Rhode and Smith, 1983, 1987; Spirou et al, 1990; Smith et al,

1991; Oertel 1991, Takahashi and Konishi, 1984, Sullivan and Konishi, 1984, Sullivan 1985".

At higher levels of the auditory system, the organizing principles are less clear.  Until

recently, responses to different sound frequencies and responses to slow amplitude modulations in

time were generally studied separately !Phillips and Irvine, 1981; Phillips and Hall, 1987; Schreiner et

al, 1992; Achreiner et al, 1997; Lu et al, 2001; Liang et al, 2002; Barbour and Wang, 2003".   More
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recently, reverse correlation approaches have made it possible to measure spectral and temporal

response properties together !Miller et al, 2002; Depireux et al, 2001; Kowalski et al, 1996, 1997,

Theunissen et al, 2000; Sen et al, 2001; Woolley et al, 2005, 2006".  While such studies have begun to

identify differences in auditory selectivity between areas !Sen et al, 2001; Miller et al, 2002; Linden et

al, 2003", they have chiefly revealed a diversity of response types, and few clear links between response

properties, cellular properties, and anatomy have emerged.

The songbird provides an excellent model system to study the neural representation of

complex sounds.  Songbirds produce and perceive complex learned sounds that share many acoustic

features with human speech !Singh and Theunissen, 2002".  The songbird forebrain contains a primary

auditory area known as field L that is analogous to the primary auditory cortex of mammals, and forms

the gateway for auditory information to reach forebrain areas involved in song production and

recognition !Wild et al, 1993; Fortune and Margoliash, 1995".  Studies using simple tone stimuli have

identified multiple tonotopic maps in the field L complex !Scheich et al, 1979; Heil et al, 1985; Gehr et

al, 1999, Terleph et al, 1996", while anatomical studies have identified 3 layers !L1,2, and 3" that differ

in their connectivity and cyto-architecture !Fortune and Margoliash, 1992".  Recent studies have

compared the aggregate response properties across field L layers !Sen et al, 2001", and between field L

and surrounding auditory regions !Woolley et al, 2005, 2006", but have not described the distribution

of single cell responses in detail, nor linked these response properties to different cell types.

In this study, we used a rich synthetic stimulus to measure spectro-temporal receptive fields

!STRFs" in field L of unanesthetized animals.  We found three classes of STRFs--spectral, temporal,

and spectro-temporal-- that tile a space of modulations similar to those found in natural sounds.  Cells

giving rise to fast temporal and spectro-temporal STRFs had distinct physiology from those giving rise

to spectral STRFs, and were localized to a different region of field L.  Finally, we measured STRFs

from the same cells at different stimulus intensities, and found that common nonlinearities--increases

in the magnitude and decreases in the latency of negative or inhibitory regions-- allowed STRFs of

different types to become more specialized for their preferred type of modulation at higher stimulus

intensities.  These data suggest the the response properties of field L neurons are organized around

the types of modulations prevalent in natural stimuli, and provide a unifying account of how those

response properties depend on stimulus intensity.
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Results:

Stimulus Design

We designed our stimulus to sample a range of natural time and frequency combinations

without imposing the higher order structure of song.  The stimulus consisted of 32 logarithmically

spaced frequency bands !figure 1A, column 1", each modulated by a different time-varying amplitude

envelope !column 2", then summed to produce the final signal !column 3".  The envelopes were

designed such that the log amplitude of each band was a random Gaussian noise signal with an

exponential distribution of frequencies.  Envelopes were statistically identical to those used in a

previous experiment !Nagel and Doupe, 2006".  Frequency bands were gaussian in log-frequency and

overlapped by one standard deviation.  Full details of the stimulus construction are given in the

Methods.

As a result of its construction, the frequency content of our stimulus varied randomly and

smoothly in time.  Nearby frequencies were generally elevated or depressed together, and remained

high or low over a period of a few milliseconds.  This can be seen in the spectrogram of the stimulus

!3rd column, 2nd panel" which shows the intensity of sound at each frequency as a function of time.

Frequency peaks in the stimulus are broader and last longer than those in the white noise spectrogram

below it.  Local correlations like those in our stimulus are found in most natural sounds, including

song, speech, and environmental noise !Singh and Theunissen, 2003".  They enabled our stimulus to

drive our neurons more effectively and reliably than white noise !data not shown".  

The correlations in the stimulus can be quantified by plotting its modulation spectrum

!figure2B, left".  This heat map shows the energy in the stimulus as a function of temporal and spectral

frequency.  Energy along the x-axis represents temporal modulations, such as sharp onsets or offsets in

the overall sound level.  Energy along the y-axis represents spectral modulations such as harmonic

frequency combinations.  Energy off the axes represents joint spectro-temporal modulations, such as

upward and downward frequency sweeps.  Asymmetry between the two halves would indicate that

upward or downward sweeps predominated in the stimulus, while the symmetric distribution seen

here indicates that they were equally likely.  Although our stimulus is dominated by low spectral and

temporal modulation frequencies, it contains small amounts of energy at higher frequencies.  These

high frequency tails can be seen most clearly in marginal distributions !figure 1C" that show energy in

the stimulus as a function of temporal or spectral frequency alone.
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The distribution of energy in our synthetic stimulus shared many features with the statistics

of natural sounds.  Like our stimulus, most natural sounds have the most energy at low spectral and

temporal modulation frequencies, with a long tail of higher frequencies.  Temporal and spectral

modulation spectra for these sounds can be approximated by a power law !Singh and Theunissen,

2003".  In contrast to our stimulus, the energy in zebra finch song and speech is more tightly

concentrated along the x and y axes of the 2-dimensional modulation spectrum plot !Singh and

Theunissen, 2003", indicating that they consist largely of pure spectral modulations !such as the

harmonic combinations found in vowels" and pure temporal modulations !such as the broadband

amplitude modulations found in consonants".

 In contrast to song or speech, our stimulus contained no higher order structure or

correlations.  This ensured that the influence of stimulus correlations on STRFs could be removed by

"decorrelating" them !see Methods", and that our STRF estimates were not biased by higher order

stimulus correlations !Sen et al, 2001; Machens et al, 2004; Ringach et al, 2002; Sharpee et al 2004,

2006".

We played our stimulus at two average intensities: 63dB and 30dB, which alternated

continuously every five seconds for 33 minutes.  We discuss results obtained with the higher intensity

stimulus first, and compare results from the two different intensity conditions at the end of the paper.

Types of STRFs

Using our 63dB stimulus, we were able to obtain robust estimates of spectro-temporal

receptive fields for neurons in field L.  Although the shapes of these STRFs were diverse, several

patterns emerged repeatedly.  Examples of the three most common patterns are shown in figure 2.

Figure 2A shows a cell that is primarily selective for temporal modulations.  Its positive and

negative subfields are arranged sequentially in time, and the highest positive peak extends over 0.6

octaves in frequency !50% width".  Due to this arrangement of subfields, the power in this filter is

concentrated at high temporal frequencies and low spectral frequencies.  This is reflected in its

modulation spectrum !2nd column" where energy is concentrated along the x-axis.  The slightly

asymmetric distribution of energy between the two halves of the modulation spectrum indicates that

the STRF is slightly oriented in time-frequency space, and responds more vigorously to downward

than to upward sweeps.
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In keeping with its sensitivity to fast temporal modulations, the PSTH of this cell's response

to repeated trials !third row, black line" shows rapid fluctuations over a 100 millisecond interval.

Many of these peaks are captured by the STRF model !red line".  The correlation coefficient between

PSTH and prediction for this cell was 0.48, just below the population mean of 0.51 +/- 0.14 !sd".  Data

used to fit the STRF were kept separate from the data used to generate the PSTH, ensuring that

these correlations were not due to overfitting.  As shown in supplementary figure 2A, the quality of

the prediction was highly dependent on the amount of data collected.

Figure 2B shows an example of a cell that is primarily sensitive to spectral modulations.  It

has a single long positive peak flanked by negative sidebands, and extends over 13.4 msec in time, but

is constrained to less than 0.3 octaves in frequency.  Its modulation spectrum shows energy

concentrated along the y-axis, at high spectral frequencies and low temporal frequencies.  It

responded much more sparsely to the stimulus than the first cell, with a single broad burst of spikes

after a long silent interval.

Figure 2C shows a cell that is sensitive to both spectral and temporal modulations.  It has a

single central positive peak, 3.3 msec wide in time, and 0.3 octaves wide in frequency.  This central

peak is flanked by prominent negative sidebands in frequency, giving the cell strong sensitivity to

spectral modulations.  However, the STRF also contains small but significant positive regions flanking

the negative sidebands in time, which give the cell some sensitivity to temporal modulations.

This sensitivity to both spectral and temporal modulations is reflected in the cell's

modulation spectrum, which shows energy along diagonals away from the axes.  The energy peaks

along the x-axis arise because of the very profound negative sidebands in frequency, which give rise to

a DC component in spectral frequency.  !See supplementary figure 2B for a schematic of the

relationship between a filter waveform and its power spectrum."  A second cell of the same type

!figure 2D" is more spectrally oriented, and has energy concentrated closer to the y-axis.  Both cells

have relatively symmetric modulation spectra reflecting relatively un-oriented STRFs.  Like the first

cell, these two also responded to repeated stimulus segments with fast fluctuations in firing rate.

Most such cells had similar short latencies and asymmetric negative sidebands that were stronger and

narrower on the high frequency side and broader and shallower on the low frequency side

!supplementary figure 2C".
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Distribution of STRF shapes

To examine whether these three patterns --temporal, spectro-temporal, and spectral--reflect

the distribution of cell types in our population, we looked at the distribution of cells' preferred

spectral and temporal modulation frequencies.  To calculate preferred modulation frequencies, we

first folded and averaged together the two sides of the modulation spectrum, as shown in the top

panel of figure 3A for an example cell.  We then averaged across spectral frequencies, or across

temporal frequencies, to compute the marginal distribution of STRF power as a function of temporal

!2nd panel" or spectral !3rd panel" frequency alone.  The peaks of these two marginal distributions

were taken as the best temporal modulation frequency !temporal BMF" or best spectral modulation

frequency !spectral BMF". Plotting the best spectral modulation frequency against the best

temporal modulation frequency for each cell in our population !figure 3B, n=72" revealed three classes,

corresponding to three classes of example cells in figure 2.  "Temporal" cells along the x axis are

sensitive to high temporal frequencies and low spectral frequencies.  These include the example from

figure 2A, indicated by a green square.  "Spectral" cells, including the example from figure 2B !blue

square" are distributed along the y-axis and are sensitive to high spectral frequencies but low temporal

frequencies.  A third group of points fall along a diagonal between the two axes, and correspond to

cells sensitive to both high spectral and high temporal modulation frequencies.  These include the

example from figure 2D indicated by a red square.  Cells are relatively uniformly distributed along

each axis, suggesting  that the population evenly samples or 'tiles' the space of pure spectral and pure

temporal modulation frequencies.  This can also be seen in the marginal distributions at the sides of

the plot which both show a peak of cells with the lowest modulation frequencies, and a flat

distribution of higher modulation frequencies over the range we sampled.

A limitation of this analysis of modulation spectrum peaks is that it does not capture the

behavior of cells like example 2C, which are highly sensitive to spectral modulations, but whose

spectral power spectra peak at 0 cycles per octave !red circle in figure 3B".  A principal components

analysis of the folded modulation spectra allows us to characterize the population distribution of

STRFs based on the overall shape of the spectrum, not just its peak.  The first two principal

components are shown in figure 4A.  The first principal component !top panel" has a large positive

region along the x-axis and a large negative region along the y-axis.  It resembles the difference

between the spectra of a strongly temporal STRF and a strongly spectral STRF, and indicates how
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sensitive the STRF is to temporal versus spectral modulations.  The second principal component

resembles the spectrum a spectro-temporal STRF, with a negative region near the origin and a

positive region along the diagonal between the axes.  A large projection onto this component

indicates that the STRF is sensitive to both spectral and temporal modulations.

Plotting the projection of each cell's modulation spectrum onto principal component 2 versus

principal component 1 illustrates the distribution of STRF shapes found in our population !figure 4B".

Spectral cells !blue" are concentrated at the left side, with large negative projections onto PC1, and

small projections onto PC2.  Spectro-temporal cells !red" are spread across the top of the triangular

distribution.  They have large positive projections onto PC2, and a range of projections onto PC1.

This range of projections corresponds to our observation that spectro-temporal cells range from more

spectral !like the example in figure 2D, red square" to more temporal !like the example in figure 2C,

red circle".  Temporal cells !green" are distributed along the right face of the triangle and have a range

of positive projections onto PC1.  The PCA plot suggests that cells in field L form a continuum

ranging from purely spectral, through spectro-temporal, to spectral.  We divided the PCA plot into

colored regions to help describe and analyze regions that behaved differently on average.  Placement

of linear divisions was based on a consideration of both the PCA plot and the location of example

cells !Methods" and is not intended as a strict classification of cell types.

Cells whose modulation spectra fell in different regions of the PCA plot differed in their

latency and distribution of orientations.  As shown in figure 4C, spectro-temporal cells had the

shortest latencies to peak, followed by temporal cells, and spectral cells.  Temporal cells often had two

significant positive peaks, and their longer latencies arose because the dominant peak was usually the

second.  Spectral cells had a wider distribution of latencies.

To examine whether cells showed selectivity for oriented spectro-temporal sweeps, we

calculated the symmetry index !Methods" of the two sides of the modulation spectrum.  As shown in

figure 4D, most cells of all types had symmetry indices near zero, indicating that they were largely un-

oriented and justifying our use of folded modulation spectra in the above analyses.  However, the

STRF types differed in their range of symmetries.  Temporal cells showed the highest spread in

symmetry values !std 0.21", spectro-temporal cells showed intermediate values !std 0.15", while spectral

cells showed the least spread !std 0.07".  These data indicate that some cells in field L show sensitivity

to sweeps oriented just off vertical, but that cells sensitive to spectral modulations were generally

unoriented.
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These analyses indicate that 3 patterns we observed are characteristic of 3 ranges of STRF

shapes seen in our population.  The population can be loosely divided into cells sensitive to spectral,

spectro-temporal, and spectral modulations, although these may form a continuous distribution, as

suggested by the principal components analysis.  Cells sample a range of pure spectral modulation

frequencies, pure temporal modulation frequencies, and symmetric spectro-temporal modulations.

This highly structured distribution of STRF types may be related to the distribution of energy in

natural sounds--including song-- which have most of their energy in pure temporal and pure spectral

modulations.  Our finding contrasts with previous studies in both field L !Woolley et al, 2005" and

auditory cortex !Miller et al, 2002", which have suggested that these areas are selective for temporal

modulations but low-pass in the spectral domain.

Physiological Correlates of STRF characteristics 

Cells whose STRFs had different temporal response properties showed differences in their

firing rate and spike waveform shape.  Figure 5A shows spike waveforms and the distribution of inter-

spike intervals !ISI" for a typical cell with a fast STRF !temporal best modulation frequency = 90.5Hz".

It has a narrow spike and a short !1 msec" refractory period, and fired at high average rates both

spontaneously !35 Hz" and when driven by our stimulus !104Hz".  Figure 5B shows the same data for a

cell with a slow STRF !temporal BMF = 5Hz".  Its spike has a much wider second peak, and the ISI

histogram peaks at a longer latency.  This cell fired at 6 Hz spontaneously, and at 10Hz on average

when driven by the stimulus.

To examine whether these differences in firing rate and spike shape held at the population

level, we plotted each cell's spontaneous rate and spike width against a measure of its temporal

response speed, the half-width of its STRF in time.  Temporal half widths were measured by finding

the peak of the STRF, and measuring the half-width of the temporal cross-section that intersected

the peak !Figure 5C, top panel".

The spontaneous firing rate of a cell was negatively correlated with the temporal half-width

of its STRF !figure 5D, correlation coefficient = -0.64, p = 1.3e-9", indicating that cells with high

spontaneous firing rates gave rise to STRFs with fast time courses, while cells with low spontaneous

firing rates gave rise to STRFs with slow time courses.  The correlation between spontaneous firing
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rate and best temporal modulation frequency was also strongly significant !cc = 0.58, p = 1.07e-7" but

less linear.

To examine this relationship in more detail, we plotted the spontaneous firing rate of each

cell as a function of its position in the PCA space of figure 4B !figure 5E".  Spectral cells, at the left

hand corner, had uniformly low spontaneous firing rates !< 20Hz".  The remaining temporal and

spectro-temporal cells had a range of higher spontaneous firing rates !20-60Hz".  The highest

spontaneous firing rates !>50Hz" were seen in cells with large positive projections onto both of the

first two principal components !top right corner" which were sensitive to both high temporal and high

spectral modulation frequencies.

The width of a cell's spike was positively correlated with the temporal half-width of its STRF

!correlation coefficient = 0.66, p = 1.0e-10", indicating that cells with narrow spikes gave rise to fast

STRFs and cells with wide spikes gave rise to slow STRFs.  Spike width was measured on the mean

spike over the recording session !5900-374241 waveforms", from the first negative peak to the

subsequent positive peak !figure 5C, bottom panel".   The correlation between spike width and

temporal best modulation frequency was -0.54, p = 5.02e-6".

Because the shape of an extracellular spike depends on the distance between the recording

electrode and the cell !", we worried that this relationship could be due to differences in recording

conditions.  There was a weak correlation between spike width and spike amplitude in our data !cc =

0.26, p = 0.03", arising from a few units with large narrow or small wide spikes.  To verify that the

relationship between spike width and STRF width was not due to recording distance, we plotted only

cells with mean spike amplitudes between 200 and 600µV !n=62/72".  Spike and STRF width were still

strongly correlated In this sub-population !figure 5F, cc = 0.71, p = 4.8e-11", but spike width and spike

amplitude were not !cc = 0.09, p =0.49".  There was no significant relationship between spike

amplitude and STRF width !correlation coefficient = -0.14, p = 0.27" within this sub-population.

Finally, we noticed that there was a gap in our distribution of spike widths around 350

microseconds, suggesting two clusters of spike widths.  In figure 5G, we plotted the location in PCA

space of all cells with spikes wider than 350 microseconds.  These are mostly concentrated at the left

side, and correspond to spectral STRFs.

Together, these data indicate that cells sensitive to fast temporal modulations !including both

temporal and spectro-temporal cells" have high firing rates and narrow spikes, while cells sensitive to
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slower modulations !spectral cells" have lower firing rates and wider spikes.  These data suggest that

fast and slow responses arise from distinct classes of cells.

Anatomical distribution of STRF types

Field L is composed of several sub-regions !Fortune and Margoliash" defined by their

anatomical location and different distributions of cell morphologies.  From dorsal to ventral they are

numbered L1, L2, and L3.  L2 receives thalamic input and is reciprocally connected to areas L1 and L3.

L2 can be further subdivided into L2a, a thin sheet that bisects field L from ventro-rostral to dorso-

caudal, and L2b, a more diffuse area located dorsal and posterior to L2a.

To examine whether different STRF types were localized to different regions of field L we

performed multi-unit mapping studies in 3 head fixed birds sedated with diazepam. In each

experiment, we advanced a four-electrode linear array in steps of 100 microns through the field L

complex, and recorded single or multi-unit responses to our stimulus on all channels at each depth.

At the end of the recording session, we made marker lesions and sacrificed the bird.  We prepared

sagital sections of each brain, and stained alternate sections with nissl and with an antibody against

the cannabinoid receptor CB1 that selectively labels the input area L2 !Soderstrom et al, 2004".

Figure 6A shows CB1 and nissl-stained sections through one bird.  Area L2 can be seen as a

dark-staining area in the CB1 section, and as a region of densely-packed cells surrounding the lighter-

staining input fibers in the nissl section !white arrows".  The tracks of the four electrodes can be seen

intersecting L2 obliquely as they descend from the dorsal surface of the brain.  Marker lesions on

electrode 3 were made at 1000, 1300, and 2200 microns from the surface.

Figure 6B shows the best modulation frequency of raw spike-triggered averages calculated

from sorted single- or multi-unit activity at each depth.  Cells with high best modulation frequencies

!temporal and spectro-temporal cells" were constrained to a narrow region of each penetration, that--

like area L2-- traverses the penetration field from ventro-rostral to dorso-caudal, and is more diffuse

on the posterior side.  Pink arrow show the depths of the marker lesions on electrode 3, and support

the localization of faster cells to area L2.  Cells with low best modulation frequencies !spectral cells"

were found throughout the penetration but were more common above and below the region of fast

cells.

Localization of cells with fast response properties to L2 was seen in three additional mapping

sessions from two birds.  Figure 6C shows BMF as a function of distance from the CB1-defined center
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of L2 in each of the three experiments.  Data from 3-4 electrodes are plotted on each axis, and aligned

so that zero represents the center of L2.  Cells with higher best modulation frequencies are

concentrated near L2, while those sensitive to slower features are located above and below it.  Raw

spike-triggered averages at the far right are taken from the last mapping experiment.  They illustrate

that robust tuning and changes with depth could be observed using multi-unit recording without

decorrelation.  Data from the chronically recorded birds show a similar localization pattern, with

narrow-spiking cells sensitive to fast modulations generally concentrated in one region of the

penetration !supplementary figure 3".

In these experiments we used two different stimulus configurations to try to estimate STRFs

well in a short amount of time.  One stimulus--also used in the chronic experiments-- had modulation

envelopes filtered so power was proportional to 1/50Hz.  A second stimulus was identical except that

modulation envelopes were filtered so power was proportional to 1/20Hz.  We found this slower

stimulus to be useful in obtaining robust estimates of slower STRFs from a smaller number of spikes.

Examples of STRFs from the same site estimated with both stimuli are shown in supplementary figure

4.  STRFs estimated with the slower stimulus were generally smoother and less noisy but otherwise

did not differ significantly from those estimated with the faster stimulus.  In figures 6B-6E, blue dots

represent STRFs estimated with the 50Hz stimulus, and gray dots represent STRFs estimated with

the 20Hz stimulus.  In three of these experiments !figures 6B, 6D and 6E", a single stimulus condition

was used; each experiment shows that fast  !high best modulation frequency" STRFs are localized to

L2.  In a single experiment !figure 6C", we used different stimulus conditions at different depths.

However, STRFs recorded with the 50Hz stimulus alone !blue dots" are sufficient to show that fast

STRFs are localized to field L2.

Together, these data indicate that cells with long integration times are concentrated in the L1

and L3 regions of field L.  Cells with short integration times are mostly localized to field L2a.

STRF changes with stimulus intensity

In a previous study of temporal receptive fields !Nagel and Doupe, 2006", we found that cells

in field L showed systematic changes in the shapes of their receptive fields in response to a change in

the mean stimulus amplitude.  Specifically, at higher mean intensities, the negative parts of the

receptive fields grew larger and decreased in latency, causing the cells to become more sensitive to
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changes in stimulus amplitude.  These changes occurred rapidly after a change in stimulus statistics,

suggesting that they represent nonlinearities in the neural response rather than time-dependent

adaptations.  To ask whether spectro-temporal receptive fields would show related nonlinearities, we

compared STRFs obtained from responses to the same stimulus played in an interleaved fashion at

63dB and at 30dB.

Figure 7A and B shows STRFs obtained from the same spectro-temporal cell with two

different stimulus intensities.  At 30dB !figure 7A", the STRF has a single large positive peak flanked

by shallow negative regions on all sides.  The negative regions that flank the positive peak in spectrum

lag the peak in time.  At 63dB !figure 7B", the negative spectral sidebands have grown deeper and

shifted forward in time relative to the positive peak.  In addition, small positive peaks have appeared

flanking these negative sidebands in time.

These changes can be seen more clearly in temporal and spectral cross-sections through the

peak of the low intensity STRF !figures 7C and 7D".  The temporal cross-section !figure 7C" illustrates

that the 63dB STRF !red" is narrower and shifted forward in time relative to the 30dB STRF !blue".

The spectral cross-section !figure 7D" reveals that the negative sidebands are much more prominent in

the 63dB STRF !red", than in the 30dB STRF !blue".  Dashed lines in these two plots represent the

standard deviation of five jackknife estimates of the STRF !see Methods".

The consequences of these changes in STRF shape can be seen in rasters of the neuron's

response to repeated trials of the same stimulus at the two intensities !figure 6E and 6F".  The cell

responds robustly in both conditions, with peaks of equal magnitude, indicating that the difference in

the two STRFs is not simply due to reduced spiking at 30B.  In addition, although some peaks--such

as the first two-- occur in both responses, they occur at a shorter latency in response to the 63dB

stimulus, while other peaks are entirely different between the two conditions.  These data indicate

that subtle changes in the strength and relative latency of STRF peaks are associated with dramatic

changes in the neural response to the same stimulus at different intensities.  Similar changes were

observed for most spectro-temporal cells, as quantified in the next section.

Figure 7F shows changes typical of a temporal cell.  At 30dB !top left panel", this cell's STRF

has a single positive peak that is narrow in time but elongated in frequency.  A large weak negative

region follows this ridge in time.  At 63dB !bottom left panel", it has two significant positive peaks

divided by a strong negative region.  This dramatic temporal phase change can also be seen in the
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temporal cross-sections !top right panel" through the peak of the 30dB STRF !top right panel".  In a

previous experiment, we observed very similar phase changes in purely temporal receptive fields

!Nagel and Doupe, 2006".  There we used several different stimulus intensities !30 40 50 and 60dB" to

show that the negative part of the filter gradually increased in magnitude and decreased in latency

with increasing stimulus intensity.  Similar mechanisms are likely to underlie the nonlinearity

observed here.

While most temporally organized STRFs showed temporal phase changes with intensity,

changes in the spectral domain were inconsistent across these cells.  Some, like this example, became

somewhat more narrowly tuned at high mean.  Others became more broadly tuned, or showed a shift

in their preferred frequency.

Figure 7G shows changes in a cell tuned for spectral modulations.  At 30dB !top left panel",

the STRF consists mostly of a positive peak that is narrow in frequency but extended in time.  It is

flanked by a weak negative region that is more prominent on the high frequency side.  At 63dB

!bottom left panel", the main positive peak grows narrower in time !top right panel", the negative

sidebands increase in depth, and an additional positive peak appears above the preferred frequency

!bottom panels".

The error bars on the estimates of spectral STRFs were generally much larger than those for

other STRF types, due to their significantly lower firing rates !figure 5D".  Despite recording them for

longer !2-4 runs through the entire stimulus", we were able to obtain fewer spikes from these cells

!mean 2500 spikes per condition for spectral cells, 11000 for temporal cells, and 17000 for spectro-

temporal cells".  Changes in these STRFs therefore appear to be less significant !figure G, right hand

panels", although they are broadly similar to changes observed in other STRF types !stronger negative

regions, narrower temporal responses, more significant positive peaks".  To quantify the amount of

nonlinearity in a way that does not depend on estimating the STRF, we compared  the PSTH of the

cell's response to the same stimulus segment played at the two intensities.  If the cell behaves linearly,

this correlation coefficient should be high, since the responses should differ only by a scaling factor.

If the cell behaves nonlinearly, the patterns of response to the same stimulus will differ and the

correlation coefficients will be low.  The mean correlation between PSTHs for spectral cells !0.34 +/-

0.19" was not significantly greater than the mean for spectro-temporal cells !0.35 +/- 0.11", which

showed highly significant changes in STRF shape.  These data suggest that all cell types showed

significant nonlinearities with stimulus intensity.
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Population Analysis of Intensity Nonlinearities

To quantify changes in STRF shape across our population, we fit the STRFs in each

condition to a bi-variate mexican hat model !Methods".  This model generates a synthetic STRF

composed of a Gaussian function multiplied by a quadratic function in time and spectrum.  The

model has seven parameters: an overall scale, a latency, a best frequency, a temporal and a spectral

width term, and two parameters that we call alpha and beta, which control the depth of the sidebands

in time and in frequency respectively.  We chose this model because it is flexible enough to fit STRFs

sensitive to purely temporal and purely spectral modulations, as well as STRFs sensitive to both

!figure 8A".  In addition, sensitivity to spectral and temporal modulations are each governed by a

single parameter, the alpha and beta coefficients on the quadratic terms.  By comparing the fits of

these two parameters to the low and high intensity STRFs, we can ask whether cells show changes in

sensitivity to spectral and/or temporal modulations.

Figure 8B shows examples of fits of the model to the example STRFs.  Qualitatively, the

model is able to capture several aspects of each STRF, including its preferred frequency and latency,

its widths in spectrum and time, and its selectivity for spectral,temporal, or both spectral and

temporal modulations.  Supplementary figure 5 shows the distribution of these parameters obtained

from model fits, along with estimates of these parameters obtain by directly measuring the STRFs.

The two distributions show good agreement.  These examples also illustrate some limits of the model:

because the model can produce only three peaks in each dimension, it cannot capture the additional

peaks in the spectral STRF.  The temporal STRF with two positive peaks can only be fit by changing

the sign of the scaling term.  The version of the model we used contains no orientation or asymmetry

terms, making it unable to capture the subtle orientation of the temporal STRF, or the asymmetries

of the spectro-temporal STRF.  These terms can be added to the model to produce more accurate

fits.  However, because these parameters did not show consistent changes between conditions, we

chose to omit them to simplify our fitting procedure. 

Figure 8C shows the distribution of the parameter beta controlling the depth of spectral

sidebands at 30 versus 63dB.  Many cells have values of alpha close to zero under one or more

conditions, indicating that they do not show much sensitivity to spectral modulations.  Of the
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remaining cells, 25 cells show a significant increase in beta with an increase in stimulus intensity, while

4 show a significant decrease.  Overall, values of beta were higher at 63dB than at 30dB !p = 6.6e-7".

Figure 8D shows the PCA location of cells that showed a significant increase in beta.  They include

most of the spectro-temporal cells and a fraction of the spectral cells.

Figure 8E shows the distribution of the parameter alpha controlling the depth of temporal

sidebands, at 30 versus 63dB.  20 showed a significant increase in alpha at 63dB versus 30dB, while

only 5 showed a significant decrease.  Across the population, values of alpha were significantly higher

at 63dB than at 30dB !p = 3.5e-8".  These data suggest that as a population, cells tend to become more

sensitive to temporal modulations at higher intensities  Figure 8F shows the location of cells that

showed a significant increase in alpha in PCA space !dark green squares".  These cells include most of

the spectro-temporal cells, and a substantial fraction of the temporal cells.

As described above, many temporal cells showed a dramatic change in temporal phase with

stimulus intensity, with one significant positive peak at 30dB, and two significant positive peaks at

63dB.  In the context of our model, such phase changes appear as a change in the sign of the scaling

term from positive !producing one positive peak and two negative peaks" to negative !producing one

negative peak and two positives".  Cells that show such a change in sign are indicated by light green

circles in figure 8F.  These data indicate that nearly all temporal cells show either an increase in the

depth of temporal sidebands, or a phase change, when the stimulus intensity increases.

Together these data indicate that STRFs, like purely temporal receptive fields, show

significant nonlinearities with stimulus intensity.  Spectro-temporal cells show significant deepening

of both spectral and temporal sidebands at 63dB versus 30dB.  Temporal cells show either deeper

temporal sidebands, or a phase change, or both at 63dB.  Many spectral cells show deeper spectral

sidebands at 63dB.  At low intensities, STRFs are dominated by a single peak and sideband peaks are

reduced in magnitude.  At higher mean intensities, sidebands become more prominent, making cells

more selective for particular spectral and temporal modulations.  These data suggest that at the low

stimulus intensities, cells act more like detectors, responding to the presence of their preferred

frequencies, regardless of what other sounds are nearby.  At higher intensities cells become more

specialized for their particular kind of modulations.
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Discussion:

Using a stimulus that shares many properties of natural sounds, we mapped the spectro-

temporal receptive fields !STRFs" of neurons in the primary auditory area field L of awake zebra

finches.  We found a highly structured distribution of STRFs, with most cells specializing in either

temporal or spectral processing; a third population was highly tuned in both these domains.  We

related these different response properties to differences in the spike shape, spontaneous firing rate,

and anatomical distribution of the cells that produced them, suggesting that cells are morphologically

and biophysically specialized for spectral versus temporal processing, and that these two types of

processing are anatomically segregated in the zebra finch forebrain.  Finally, we explored how STRF

shapes depended on the intensity of the stimulus.  We found that each STRF type became more

sensitive to its preferred type of modulation when the stimulus intensity was high, and behaved more

like a low-pass detector when the stimulus was soft.  We discuss each of these three findings in detail

below.

Distribution of STRF Types

We found that STRFs of neurons in field L can be roughly divided into three classes: STRFs

that are primarily sensitive to temporal modulations !temporal cells", STRFs that are primarily tuned

for spectral modulations !spectral cells", and STRFs tightly tuned in both spectrum and time !spectro-

temporal cells".  Within each class neurons showed a distribution of properties.  Temporal cells were

insensitive to spectral modulations but evenly spanned the range of temporal modulations !0-150Hz".

Spectral cells were insensitive to temporal modulations but evenly spanned the space of possible

spectral modulations !0-2 cycles per octave".  Spectro-temporal cells were centered at many best

frequencies, but shared a similar latency and receptive field structure, with a compact central positive

peak flanked by asymmetric negative regions.  Spectro-temporal cells varied from mostly temporal--

with energy concentrated near the temporal axis of the modulation spectrum plot-- to mostly spectral,

but were generally symmetric in time-frequency space, indicating that they did not differentially

respond to upward versus downward frequency sweeps.  Strongly oriented sweep-selective cells, and

broadly tuned cells that would act as overall sound level detectors, were largely absent from our

population.  This distribution of response properties may be related to the structure of many natural

sounds--including both zebra finch song and speech-- which are dominated by purely temporal and
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purely spectral modulations, and contain comparatively few strongly oriented spectro-temporal

modulations !Singh and Theunissen, 2002, Woolley et al, 2005".

While our data agree broadly with previous studies of the distribution of STRF types in field

L or mammalian auditory cortex, they differ in several important respects.  Woolley et al !2005"

calculated the average modulation spectra across field L neurons, and compared this ensemble

modulation spectrum to the distribution of energy found in song.  They concluded that field L was

band-pass in the temporal domain but low-pass in the spectral domain.  By looking at the distribution

of individual cell types, rather than aggregate measures, we found that separate populations of

temporal and spectral cells were tuned to modulations in each of these domains, while a third

population was tuned to high frequency modulations in both domains.  As in our study, Miller et al

!2002" found that most neurons in anesthetized cat A1 have fairly symmetric modulation spectra,

indicating that they were not selective for oriented frequency sweeps.  However, that study found no

systematic relationship between the spectral and temporal tuning properties of A1 neurons, while we

found a strong trade-off between temporal and spectral selectivity.  These differences may arise from

the structure of the avian forebrain, which contains many fast-firing cells able to follow rapid

modulations in the stimulus, while the mammalian auditory cortex has generally slower responses

!Miller et al, 2002, Depireux et al, 2001, Lu et al, 2001".  They may also arise from differences in

recording conditions.  Most previous studies have measured STRFs under pentobarbital anesthesia,

while we recorded from unanesthetized animals.  Anesthesia can profoundly influence the temporal

dynamics of cortical auditory responses !Wang et al, 2005".  Chi and Shamma !2005" have proposed

that A1 neurons evenly span a range of time-frequency orientations, similar to the tiling of 2D spatial

orientations in visual cortex.  However, the same group reported that A1 neurons show mostly

symmetric tuning properties !Depireux et al, 2000".  Together with data from many other studies, our

findings suggest that tiling of pure spectral and temporal modulations, not orientation in time-

frequency space, may be the organizing principle of forebrain auditory sensitivity.

Correlations with Physiology and Anatomy

The second main finding of our study was that cells with different response properties also

differ in their physiology and anatomical distribution.  Cells sensitive to fast stimulus modulations,

including both temporal and spectro-temporal cells, had high spontaneous and driven rates, narrow
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spike waveforms, and were located in a restricted region of each penetration.  Our multi-unit mapping

study indicated that this restricted region corresponds to the input layers, L2a and L2b.  Spectral cells

sensitive to slower stimulus modulations were found throughout the penetration, but were more

prevalent in the flanking regions L1 and L3.  These cells had much lower spontaneous and driven rates,

and wider spike waveforms.  These data suggest that fast and slow response types may arise from cells

with different morphological or electrical properties, concentrated in different anatomical regions.

Biophysically, narrow spikes and high firing rates can arise from small or electrotonically

compact cells that can repolarize quickly and track rapid fluctuations in their synaptic input.  Such

cells may have specialized potassium channels that give them faster kinetics !Martina 1997, 1998;

Chow et al, 1999".  Conversely, a large or electrotonically extended cell will have a wider spike and

longer refractory period, leading to lower firing rates, and more low-pass filtering of its input.  The

subregions of field L have been shown to differ in their distribution of cell sizes and morphologies

!Fortune and Margoliash, 1992": L2a contains more small and medium bodied cells with compact

dendritic fields.  L1 and L3 have more large cell bodies and more medium-bodied cells with extensive

dendritic fields. We therefore hypothesize that temporal and spectro-temporal responses may arise

from smaller cells with more compact dendrites, while spectral responses may arise from larger cells

with dendritic conductances that allow them to integrate inputs over time.

In the auditory brainstem of both mammals and birds, distinct temporal response patterns

have been linked to the distinct morphologies and electrical properties of bushy and stellate cells

!Rhode and Smith, 1983, 1986, Sullivan and Konishi, 1984, Oertel, 1991".  These different response

properties are in turn related to different functional roles in encoding phase and intensity information

!Sullivan, 1985; Takahashi et al, 1984, Yin and Chan".  Although intracellular recordings and labeling

experiments will be required to definitively link cellular properties to auditory responses in field L,

our data suggest that similar relationships between structure and function exist for auditory neurons

in the avian forebrain.

In the mammalian hippocampus and cortex, narrow extracellular spike waveforms have been

linked to inhibitory interneurons !Henze et al, 2000, Buzsaki and Eidelberg 1982", which have

narrower spike waveforms in intracellular recordings !Buhl et al. 1996; Scharfman 1995; Hasenstaub,

2005" .  About 30-40% of neurons in the auditory forebrain are estimated to be GABAergic !Pinaud

et al, 2004, 2007", but physiological differences between inhibitory and excitatory cells in these areas

have not been explored.  Due to the density of units with fast responses and narrow spikes in regions
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of our penetration, we think it is unlikely that fast responses arise exclusively from inhibitory neurons,

although this remains an open possibility.

Our data fit with previous studies showing that auditory neurons become tuned for

progressively slower temporal modulations at successive levels of the auditory hierarchy !Creutzfeldt,

O. 1980; Sen et al, 2001; Miller et al, 2002; Linden et al, 2003".  In contrast to mammalian systems,

where a large difference in temporal following is seen between IC and cortex !Langer and Schreiner,

1988, Miller et al, 2002", but not between successive cortical stages, we see a sharp distinction

between the input and output layers of the avian primary auditory area.  This may indicate that L2a

shares more properties with the mammalian thalamus, as suggested by Las et al !2005".

Several further questions are raised by our finding about the localization of distinct cell types.

First, how can slow spectral cells be built from fast spectro-temporal or temporal cells?  If tightly

tuned spectro-temporal cells were found at many latencies, then spectral cells could be built by simply

summing the responses of many fast spectro-temporal cells.  Fast cells, however, show uniformly short

latencies !figure 3C", indicating that spectral cells cannot arise from summation alone.  An interesting

alternative is that the morphology and electrical properties of spectral cells allows them to low-pass

filter their inputs, and so integrate information over much longer time scales.

A second question raised by this finding is what happens to the fast temporal information

represented by temporal and spectro-temporal cells?  Anatomical evidence suggests that higher-order

areas involved in song recognition and production receive input from L1 and L3, but not directly from

L2.  Estimating the auditory response properties of these higher-order areas using linear reverse

correlation techniques has proved difficult !Sen et al, 2001; Gentner et al, 2003".  It would be

interesting to ask whether sensitivity to fast temporal modulations is preserved in nonlinear responses

of L1/L3 or higher order neurons.  This could be done using more complex techniques such as spike-

triggered covariance !STCM, Rust et al, 2005; Touryan et al, 2002, 2005" and the method of most-

informative dimensions !MID, Sharpee et al, 2004,2006".

Nonlinearities in spectro-temporal processing

Our third main finding was that cells with different response properties showed different

nonlinearities with stimulus intensity.  At high intensities, spectro-temporal cells showed increases in
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the magnitude of both spectrally-oriented and temporally-oriented negative STRF regions, leading to

increased sensitivity to both spectral and temporal modulations.  Temporal cells showed dramatic

changes in temporal phase, with stronger temporally-oriented inhibition, and often two significant

excitatory peaks.  Spectral cells showed less dramatic changes between low and high intensity

conditions, but did become more spectrally bandpass at the higher intensity.

In a previous study of temporal response properties, we found that most cells in field L

integrate over longer times at low intensities and become more temporally differentiating at high

intensities !Nagel and Doupe, 2006".  We argued that such changes could be adaptive, allowing cells

to become selective for particular temporal modulations when signal-to-noise levels were high, and to

behave more like detectors when signal quality was low.  Similar nonlinearities have been described in

retinal ganglion cells, which respond to differences in local light intensity at high contrast, but

integrate over larger spatial regions at low contrast !Enroth-Cugell and Lennie, 1975".  The results of

the current study extend these findings, suggesting that cells in field L become more specialized for

particular kinds of temporal and spectral modulations at high intensities, while at low intensities all

behave more like low-pass detectors.

While different cell types show distinct nonlinearities with intensity, many of these changes

could arise through similar mechanisms.  Most nonlinearities we observed seem to arise from an

increase in the relative strength, and decrease in the relative latency, of negative regions of the STRF.

This leads to subtle changes in the shape of spectral and spectro-temporal STRFs, whose negative

regions are generally more spectrally oriented, and dramatic phase changes in temporal STRFs.  These

data suggest a model, in which each cell receives at least two inputs, one excitatory and one inhibitory.

As the stimulus intensity increases, both inputs increase in magnitude and decrease in latency.  The

excitatory input has a lower threshold and saturation point, while the inhibitory input has a higher

threshold and decreases its latency more in proportion to the input level.  If the underlying excitatory

and inhibitory inputs had different spectro-temporal receptive fields, this simple model could account

for the nonlinear response properties of many different auditory neuron types.  Such circuitry could

be present in the forebrain or cortex !Wehr and Zador, 2003; Tan and Schreiner, 2004", or could

shape responses of more peripheral neurons that pass their response properties on to higher areas

!Nelken and Young, 1994; Yu and Young, 2000".

Previous studies in auditory cortex have measured response strength as a function of the

intensity of tones or amplitude modulated noise !Phillips and Irvine, 1981; Phillips et al, 1994, Calhoun

and Schreiner, 1998; Polley et al, 2004".  These studies have often seen an array of response types--
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from those that monotonically increase with intensity, to those that are strongly non-monotonic.  By

considering responses as a function of both frequency and time, our data suggest that simple and

unified processes may underlie this diversity of responses:  at higher stimulus intensities, negative

inputs increase in magnitude and decrease in latency relative to positive inputs, causing cells to

respond more selectively to particular kinds of modulations.  Thus, studies of joint spectro-temporal

response properties can reveal unifying principles underlying the apparent diversity of response types.

Methods:

Chronic Electrophysiology

We used chronically implanted microdrives !Hessler and Doupe, 1999" to record single units

!n = 72" from 5 adult male zebra finches.  A detailed description of microdrive construction and

implantation are given in that paper.  Electrodes !2-3 tungsten electrodes, 4-5 MOhms, MicroProbe

Inc, Gaithersburg, MD" were implanted 1.5 µm lateral !left", and 1.5 µm rostral to the posterior border

of the branch point of the central sinus, at an initial depth of 400 µm.

During recording, the bird was attached to a commutator by a flexible lead and op-amp.

Electrical traces were digitized, amplified !1000x", filtered !300-5000Hz", and recorded using TDT

System 3 hardware !Tucker-Davis Technologies, Alachua, FL" interfaced with custom-written Matlab

software.  The electrode bundle was advanced manually in small steps !40-160 microns".  Putative

single units were identified on the oscilloscope by their stable spike waveform and clear refractory

period.  All spikes were re-sorted offline using either a custom-written software window discriminator

!Matlab" or a commercial spike sorter !Plexon".  In both cases spikes were sorted based on the

similarity of overlaid spike waveforms and on clustering of waveform projections in a two-dimensional

principal component space.  Neural recordings were considered single units if they contained fewer

than one violation of 1 msec refractoriness per thousand spikes after sorting. Units that responded to

auditory stimuli were found at depths of 1000-2500 µm.  Between each recording session, the

electrodes were retracted to a position above where the first auditory units were found.

During recording, the bird was placed inside a small cage !20cm x 20cm floor area" within a

sound-attenuating chamber !Acoustic Systems".  The chamber lights were kept off to minimize

movement and birds were monitored using an infra-red camera. Birds generally sat in one corner of
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the cage for the duration of the experiment although the commutator permitted free movement

within the cage. Auditory stimuli were presented free-field from a small speaker !Bose" located 50 cm

from the center of the bird's cage.  Using a calibrated microphone !B&K" we verified that 250Hz to

10kHz tones designed to play at 80dB appeared at 79.6+/-2.3dB, and that the highest harmonic

distortion peak observed was less than 23.3dB !65.9 +/- 8.7dB SNR".

Acute Electrophysiology

We performed acute mapping experiments in three additional adult male birds.  A few days

prior to the experiment, we prepared the bird for acute physiology under equithesin !3.5µl/g, Hessler

and Doupe, 1999" anesthesia by removing the scalp, making an opening through the skull over the

location of field L, and affixing a stereotaxic metal pin to the skull with dental cement.  The skull

opening was then covered with a silicone elastomer !World Precision Instruments" and the bird was

allowed to recover fully.

On the day of the experiment, the bird was lightly sedated with diazapam !30µl", wrapped in a

cloth jacket and placed in a stereotaxic device.  The bird's head was held in place using the previously

implanted pin.  The silicone covering was then removed from the skull, a hooked ground electrode

was placed under the skull, at the corner of the opening, and a linear array of four extracellular

electrodes was lowered into the brain.

For mapping experiments, we lowered the electrode array in 100 microns steps and recorded

activity on all channels if auditory activity was present on any channel.  Single and multi-unit activity

was sorted using the Plexon offline sorter.  Multi-unit clusters were separated into multiple clusters if

this separation increased the signal quality of the STRFs produced from each cluster.

After the final recordings, we made electrolytic lesions at several depths along the electrode

penetrations and prepared histological sections to identify the location of recording sites.  Birds were

lethally anesthetized and perfused with saline followed by 4% paraformaldehyde.  Alternate 40

micron sections of fixed brain tissue were Nissl-stained, and labeled for CB1, a marker for the input

region L2 !Soderston et al, 2004".
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Stimulus

To estimate spectro-temporal receptive fields !STRFs" for our cells, we created a stimulus

that shared some properties with natural song but which sampled the space of possible frequency

combinations more evenly, and contained only local 2nd order correlations.  Like song, our stimulus

was broadband, and had

more energy concentrated at low temporal and spectral frequencies than at higher ones !Singh and

Theunissen, 2003"

The stimulus was composed of 30-32 logarithmically spaced narrowband noise signals, each

created by passing a white noise signal through a filter that was gaussian in log frequency !Figure 1A".

The center frequencies of the filters cfn were given by

cfn = exp!log!400" + 0.1!n-1""

where cfn is the center frequency of the nth band.  Filters overlapped by one standard deviation so that

the summed narrowband noises had close to a flat envelope !Theunissen et al, 1998".  Each

narrowband signal was modulated by a different envelope !Figure 2B", designed such that the

amplitude of each band in dB fluctuated randomly and smoothly in time.  Specifically, the log

envelope was given by a gaussian noise signal smoothed with an exponential filter:

P!f" =exp!-f/50Hz"

where P is the power in the log envelope and f is frequency.  These envelopes were statistically

identical to those used in a previous experiment !Nagel and Doupe, 2006".  The independently

modulated noise bands were then summed to create the final stimulus.

By adjusting the mean and the variance of the log envelope, we could manipulate the intensity

of our stimulus.  We used two stimulus conditions, 63dB mean, 6dB standard deviation, and 30dB

mean 6 dB standard deviation, that alternated smoothly every five seconds.  A third condition, with a

mean of 30dB and a standard deviation of 18dB, was also presented in interleaved segments but is not

discussed in this paper.

Due to the overlapping frequency bands, and to smoothing of the envelopes, our stimulus had

local 2nd-order correlations in both frequency and time.  Figure 1B illustrates these correlations by
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plotting the two dimensional modulation power spectrum of the stimulus spectrogram.  Closely

related to a normal power spectrum, which shows energy as a function of frequency, this modulation

spectrum shows how energy is distributed as a function of temporal and spectral modulation

frequency.  Energy along the x-axis represents temporal modulations, and energy along the y-axis

represents spectral modulations.  Energy off the axes represents joint spectro-temporal modulations,

such as frequency sweeps.  Like many natural stimuli, including song and human speech, our stimulus

had energy concentrated at low spectral and temporal modulation frequencies.  This can be seen in

the two dimensional heat map, where energy is concentrated near the origin, and in the two marginal

plots showing energy as a function of spectral or temporal frequency alone.  Our stimulus contained

no higher order correlations, ensuring that the influence of stimulus correlations on STRFs could be

removed by "decorrelating" them  as described in the following section.

Half of our stimulus was composed of repeats of the same stimulus segment while the

remainder were unique segments.  Unique segments were used to generate the STRF models, while

their predictions were tested on the repeated segments.  This segregation of model generation data

from test data ensured that the quality of predictions was not due to over-fitting.

STRF estimation

Our analysis attempted to relate the firing of field L neurons to a linear filter of the stimulus

spectrogram.  If this spectrogram were uncorrelated in both frequency and time, we could calculate

this filter, or spectro-temporal receptive field !STRF", by simply cross-correlating the spike train with

each row of the spectrogram, yielding the spike-triggered average, or STA.  Because the spectrogram

of our stimulus contains local correlations, this STA will be equal to the true neural filter, convolved

with the autocorrelation of the spectrogram.  The influence of these stimulus correlations can be

removed from the STA by inverting the autocorrelation matrix.  Preparing our stimulus for analysis

thus required two steps: first calculating its spectrogram, and then calculating the autocorrelation

matrix of the spectrogram envelopes.

To calculate the spectrogram S!cf,t", we first filtered the stimulus through the same bank of 32

log-gaussian filters used to create the narrowband noise signals.  We then extracted the envelope of

each narrowband signal by passing its absolute value through the exponential filter used to generate

the stimulus envelopes.  We down-sampled the resulting low-pass signal to 1kHz to speed analysis,

took its logarithm, and normalized it to have zero mean and unit variance.  Because of the overlap in
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our frequency bands, the log envelopes of several of the original noise bands contributed to each of

these extracted log envelopes and the extracted envelopes S!cf,t" were not exactly equal to the

envelopes used to create the stimulus.

The autocorrelation matrix of the spectrogram consisted of 128 complex matrices Aω!cf, cf",

representing the correlations between the log envelopes S!cf,t" at each of 128 temporal frequencies ω.

The diagonals of each matrix Aω!cf, cf" represent the power in each log envelope at the temporal

frequency ω, while the off-diagonal terms represent the correlation between log envelopes at that

temporal frequency.  To calculate these complex matrices, we broke S!cf,t" into 256 sample-long

chunks S!cf,t:t+255", applied a hanning window to each chunk, then took its Fourier transform, yielding

a complex matrix 

€ 

˜ S (cf ,ω) .  The complex matrix Aω!cf, cf" was then equal to the average cross-product

across chunks:

€ 

˜ S (cf ,ω)'× ˜ S (cf ,ω)

To estimate each STRF, we first calculated the raw spike-triggered average Cn!cf,τ" by cross-

correlating the spike train ρ!t" with each log envelope S!cf,t" in the spectrogram:

€ 

C(cf ,τ ) =
1
n

ρ(t)S(cf ,t − τ )
t
∑

where n is the total number of spikes.  We obtained spike-triggered averages over an interval from

100msec before the spike to 100msec after.  The portion of this average that followed the spike was

used as an estimate of the noise in our averaging process.

To decorrelate the spike-triggered average, we first took its Fourier transform, yielding a

complex matrix 

€ 

˜ C (cf ,ω) .  Each column of this matrix 

€ 

˜ C (cf ,ω)  corresponding to a particular

temporal frequency ω, was then decorrelated by applying the pseudo-inverse of the autocorrelation

matrix for that temporal frequency Aω!cf, cf".  To apply the pseudo-inverse, we first took the singular

value decomposition of the matrix Aω!cf, cf":

€ 

UΣV '= Aω(cf ,cf )
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where U and V are square matrices and Σ is a matrix of singular values that has non-zero values only

along the diagonal.  We then calculated a matrix Σinv, by taking the inverse of the values of Σ along the

diagonal:

€ 

Σinv(s,s) =
1

Σ(s,s)

We used Σinv,with U and V to decorrelate the spike-triggered average:

€ 

˜ D (cf ,ω) = VΣinvU' ˜ C (cf ,ω)

The inverse Fourier transform of this "decorrelated" matrix 

€ 

˜ D (cf ,ω)  is equal to the decorrelated

spike-triggered average D!cf,τ".  This method is very similar to the one used by Theunissen et al

!2000".

A limit of this decorrelation technique is that it tends to boost the power in high temporal

frequencies that are poorly sampled by the stimulus, leading to very noisy estimates of the STRF.

This is because the inversion increases the magnitude of the smallest singular values.  To limit this

noise we systematically reduced the amplitudes of the largest inverse singular values.  We first

obtained the singular values of all the autocorrelation matrices and sorted them in descending order

!largest to smallest".  We then found the largest singular value of the autocorrelation matrix at a cutoff

frequency Aωcut, whose choice is described below.  We call this cutoff singular value scut.  Singular

values greater than this cutoff value were inverted as described above.  Singular values below this

cutoff were reduced in amplitude according to their distance from the cutoff value

€ 

Σinv(s,s) =
1

Σ(s,s)
× exp(−k /250)

where k is the number of singular values between the current value and the cutoff.  By smoothly

reducing the amplitude of large inverse singular values, this method reduces "ringing" in the STRF

that can arise from using a hard cutoff on the decorrelation.
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We tried several methods for choosing an appropriate cutoff frequency.  The first was to find

the frequency at which the power in the spike-triggered average fell below 3 times the mean power in

the acausal part of the the spike-triggered average.  This "noise cutoff" yielded reasonable results for

some cells, but unreasonably high cutoffs !150-250 Hz" for others.  STRFs decorrelated using a cutoff

frequency greater than 150Hz were uniformly noisy and impossible to interpret.  We therefore tried

an alternate method, finding a cutoff frequency that contained 99% of the power in the raw spike-

triggered average.  This "99% cutoff" yielded much better results for STAs with excessively high noise

cutoffs, but was too high for those with low noise cutoffs.  We therefore chose one of these two

cutoffs for each STRF depending on whether they yielded a significant STRF.  If the 99% cutoff

produced an STRF with at least 20 points above the maximum absolute value of the acausal STRF, we

used that cutoff !n=49/97".  Otherwise we used the lower noise cutoff !n=23".  We observed no

significant differences between the groups of cells decorrelated with one cutoff or the other and

results for the two groups are pooled.  Un-decorrelated spike triggered averages for the example cells

in figure 2A-C are shown in supplementary figure 1.  Both differences in tuning between cells, and

differences in the same cell's STRF with intensity, are evident in these raw averages.

Both the causal and acausal parts of the STA were decorrelated together.  STRFs were

considered significant if the causal part of the STRF contained at least 20 points that were greater

than the maximum absolute value in the acausal part of the STRF.  To obtain error bars on our STRF

estimates we divided our spikes randomly into 5 groups.  Separate STAs and decorrelated STRFs were

calculated from each group of spikes although a uniform cutoff was used for all decorrelations.  Error

bars shown in the figure represent the standard deviation of these five STRF estimates.

Measurements of STRFs

We measured several parameters of the STRFs to characterize their properties.  The latency

and best frequency of each STRF were defined as the time and frequency of the maximum of the

STRF.  To calculate the 50% width in time we looked at the temporal cross-section of the STRF that

passed through this best frequency.  The 50% width was defined as the interval over which this cross-

section had an amplitude greater than or equal to half the maximum amplitude.  Cross-sections were

linearly interpolated to a resolution of 100kHz before measuring their half-width.  The 50%

bandwidth was similarly defined as the interval over which the spectral cross-section through the peak

was greater than half its maximum.  Spectral cross-sections were linearly interpolated to 100 times
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their resolution before measuring their half width.  Bandwidth measurement were converted to

octaves according to:

bw50 !octaves" = samplerate/ln!2" * nsamples

Modulation Spectra

Modulation spectra of STRFs were obtained by taking the two dimensional Fourier

transform of the two dimensional autocorrelation function of the STRF !Singh and Theunissen,

2003".  The x axis of this plot represents the temporal frequencies in the STRF !modulations along its

time axis" while the y-axis represents the spectral frequencies !modulations along its spectral axis".

The left side of the spectrum represents downward frequencies sweeps while the right side represents

upward sweeps.  More of our STRFs had modulation spectra that were fairly symmetric around the y

axis.  We calculated a symmetry index !Miller et al, 2002" by dividing the modulation spectrum into

left and right halves !Mleft and Mright, respectively", then computing:

€ 

ΣMright − ΣMleft

ΣMright + ΣMleft

This index ranges from -1 to 1, and is zero for perfectly symmetric STRFs.  Our STRFs had a mean

symmetry index of 0.02, and a standard deviation of 0.15.  Because of this symmetry, we folded the

spectra about the y-axis and averaged them before performing other analyses !see Principal

Components Analysis, below".  The spectral or temporal best modulation frequency !BMF" of a STRF

was obtained by averaging this folded spectrum across columns or rows then finding the location of its

maximum.

Principal Components Analysis

To describe the distribution of STRF types in our population we performed a principal

components analysis on the folded STRF modulation spectra.  Very similar results were obtained

using the two-sided modulation spectra rather than the folded spectra.  To obtain the principal

components of the spectra, we normalized all spectra to have a unit norm, vectorized each spectrum,
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subtracted the mean vector, and assembled the vectors into a large matrix Mpop.  We then performed

a singular value decomposition on this matrix:

€ 

UΣV '= Mpop

The columns of V represent the principal components of the spectra, and could be reshaped into

matrices for direct comparison with the modulation spectra.  We examined the projections of

normalized modulation spectra onto the first two principal components !figure 3C", which together

accounted for 14 percent of the variance in the spectra.

The distribution of projections in this two-dimensional space appeared to be a fairly

continuous triangle, with STRFs in different regions of this distribution showing very different

response properties, physiology, anatomy, and nonlinearities with intensity.  Consideration of

additional components did not break this continuity.  To facilitate our discussion of these differences

we loosely classified STRFs by linearly dividing the two-dimensional PCA space !figure 3D".  STRFs

whose projections satisfied the inequality PC2 < 0.91*PC1-0.25 were classified as "temporal."  STRFs

whose projections satisfied the inequality PC2 > 28*PC1+9 were classified as spectral, and STRFs that

satisfied the two inequalities PC2 > -0.29 + 0.17 and PC2 > 0.91*PC1-0.25 were classified as spectro-

temporal.  The choice of these inequalities was motivated by examination of STRFs whose

projections fell in different regions of the distribution, and by the locations of example STRFs.  These

classifications are intended only to denote different regions of the distribution, and are not intended

to indicate that STRFs cluster into discrete groups.

Bi-Variate Mexican Hat Model

To quantify changes in STRF shape with intensity, we fit each STRF under each stimulus

condition to a bi-variate mexican hat model:

€ 

x'= x −µ

y'= y −ν
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€ 

G(x, y) = Ae−σ
2x' 2−γ 2y ' 2 (1−ασ 2x'2 )(1−βγ 2y '2 )

This model has seven parameters: A, the magnitude and sign of the filter; µ, the latency; ν, the center

frequency; σ, the temporal width; γ, the spectral width; α, the depth of temporal sidebands, and β, the

depth of spectral sidebands.  To fit the model, we used a constrained least-squares fitting algorithm

based on the Newton method !lsqcurvefit.m, Matlab".  To choose starting values for each of the

parameters, we first created a matrix of initial parameter values.  For A, µ, and ν, there were two

initial values, equal to the magnitude, and x- and y-coordinates, of the maximum and minimum point

on each STRF.  Initial values of α and β were %0 0.25 0.5 1 2 4&.    The parameters σ and γ were fit by

fitting their inverses 1/σ and 1/γ, to avoid the possibility of having a zero in the denominator of the

function.  Initial values for these two inverse parameters were %0.1:0.1:0.8&.

We calculated the mean squared error between the actual STRF and the model produced by

each of the 18432 combinations of initial parameter values.  The combination of parameters that

produced the lowest error was chosen as the starting point for the algorithm.  The algorithm was

constrained to find values of µ and ν that fell within the temporal and spectral dimensions of our

STRF.  The two width parameters σ and γ were constrained to be positive, and the two depth

parameters α and β were constrained to be greater than or equal to zero. Confidence intervals for

parameters estimates were made using the function nlparci.m in Matlab.

Nonlinearities and Predictions

The nonlinear relationship between each STRF's output and the cell's actual response was

calculate following the method of Brenner et al !2001".  Predicted responses to repeated stimulus

segments were made by first applying the STRF to the spectrogram of this repeated segment,

summing across bands, then transforming the output according to the nonlinearity.  The first 500

milliseconds of both the predicted and actual PSTH were omitted from the comparison because this

often contained a slowly adapting component not predicted by the STRF model.  Correlation

coefficients between the remaining 4.5 seconds are shown in supplementary figure 1A.

Figure Legends
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Figure 1

Construction of a stimulus with a naturalistic distribution of spectral and temporal modulation

frequencies.

A"  Our stimulus was composed of 32 frequency bands that were gaussian in log-frequency, and

overlapped by one standard deviation.  Filters for each band are shown in the right-hand column.

Each frequency band was modulated by an independent amplitude modulation signal !2nd column"

whose log amplitude was gaussian and had a power spectrum that decreased exponentially as a

function of temporal frequency.  The complete stimulus was formed by summing all the bands.  A

short segment of the complete 33 minute stimulus is shown as both an oscillogram !top panel" and as a

spectrogram !2nd panel" in the left hand column.  The spectrogram shows the frequency content of

the stimulus as a function of time.  Because of the overlapping frequency bands, and the exponential

smoothing of the modulating waveforms, nearby frequencies rise and fall together, and remain

elevated or depressed for a longer time than in a pure white noise stimulus !bottom panel".  These

correlated modulations are more similar to those found in natural sounds and drove our neurons more

effectively than white noise.

B"  Quantitative analysis of correlations in the stimulus.  The two-dimensional modulation spectrum

of the stimulus !left-hand panel" shows the distribution of energy in the stimulus as a function of slow

temporal modulation frequencies !1-250Hz, x-axis" and fast spectral modulation frequencies !0-3 cycles

per octave, y-axis".  Energy away from the axes represents joint spectro-temporal modulations such as

frequency sweeps.

C"  Marginal distributions show energy as a function of temporal frequency !top panel" or as a

function of spectral frequency !bottom panel".  These indicate that energy in the stimulus is

concentrated at low temporal and spectral modulation frequencies, but has tails that reach to higher

frequencies.

Figure 2
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Examples of three common types of spectro-temporal receptive fields !STRFs": temporal, spectro-

temporal, and spectral.

A"  A cell sensitive to temporal modulations has an STRF !column 1" with positive and negative

subfields arranged sequentially in time.  This makes it sensitive to high temporal frequencies but low

spectral frequencies, reflected in the energy concentrated along the x-axis of its modulation spectrum

!column 2".  The firing rate of the cell was modulated rapidly by our stimulus, as shown in a PSTH of

its responses to 50 repeated stimulus segments !column 3, black".  The response predicted by the

STRF model !red" captures most but not all of these peaks.  The mean driven firing rate of this cell

was 116 Hz, and the correlation coefficient between actual and predicted PSTHs was 0.48.

B"  A cell sensitive to spectral modulations.  Its STRF has a temporally elongated positive region

flanked by negative spectral sidebands.  The energy in the STRF is concentrated at high spectral

frequencies and low temporal frequencies.  This cell fired at an average of 10Hz in the presence of the

stimulus, but did respond robustly to distinct stimulus features.  These sparse bursts were well

captured by the STRF model, with a correlation coefficient between actual and predicted PSTHs of

0.56.

C"  A cell sensitive to both spectral and temporal modulations has an STRF with a central positive

peak flanked by negative regions in both spectrum and time.  Its modulation spectrum has energy in

two places: away from the axes and along the x-axis.  Energy off the axes arises because the cell is

sensitive to both high temporal and high spectral modulation frequencies.  The energy along the x-

axis arises because the very profound spectral sidebands give the cell additional sensitivity to low

spectral frequencies !see supplementary figure 1".  This cell was also driven very robustly by the

stimulus, with a mean driven rate of 104Hz.  The correlation between actual and predicted PSTHs

was 0.70.

D" A second cell sensitive to both spectral and temporal modulations, but centered at a different best

frequency, and with energy concentrated closer to the spectral axis.  Mean driven rate was 60Hz and

the correlation between actual and predicted PSTHs was 0.71.

Figure 3
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The population distribution of preferred modulation frequencies reveals three classes of cells

A"  Schematic of the calculation of best temporal and spectral modulation frequencies.  Top panel: a

modulation spectrum that has been folded along its y-axis and averaged.  2nd panel: marginal

distribution of temporal frequencies calculated by averaging the folded spectrum across rows.  The

best temporal modulation frequency !temporal BMF" is indicated by a red arrow.  3rd panel: marginal

distribution of spectral frequencies calculated by averaging the folded spectrum across columns, with

the best spectral modulation frequency !spectral BMF" indicated by a red arrow.

B"  Distribution of preferred spectral versus preferred temporal modulation frequencies.  Most points

are distributed along the two axes, corresponding to cells sensitive to pure temporal !x-axis" or pure

spectral !y axis" modulations.  A third group of cells are sensitive to both types of modulations.

Marginal distributions for each axis indicate that cells sensitive spectral !or temporal" modulations

sample the range of spectral !or temporal" modulations fairly uniformly.  Example cells from figure 2A-

D are indicated by green !2A", blue !2B", and red !2D squares", and by a red circle !2C".

Figure 4

A principal components analysis !PCA" of STRF modulation spectra supports the division of our

population into three classes.

A"  Principal components describing the main axes of variation in the folded modulation spectra.  Top

panel:  first principal component, accounting for 7 percent of the total variance.  It resembles the

difference between a strongly temporal STRF, with energy along the x axis, and a strongly spectral

STRF, with energy along the y axis.  Bottom panel: second principal component, accounting for 6

percent of the variance.  It resembles a spectro-temporal STRF with energy concentrated away from

the origin.

B"  Distribution of population projections onto principal components 1 and 2.  Colored dots indicate

our division of this fairly continuous distribution into spectral !blue", spectro-temporal !red", and
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temporal !green" STRFs, based on the magnitude of their projections onto the two principal

components, and the locations of example STRFs.   White dots indicate STRFs that had low

projection values onto both axes and showed low or contradictory tuning.  Example cells from figure

2A-D are indicated by green !2A", blue !2B", and red !2D squares", and by a red circle !2C".

C"  Cells found in different regions of the PCA plot showed different average latencies.  Spectro-

temporal cells !red" has the shortest latencies, followed by temporal cells !green".  Spectral cells !blue"

had both the longest latencies and the widest range of latencies.

D"  The asymmetry of the modulation spectrum reflects the degree to which an STRF is selective for

oriented time-frequency sweeps.  Although most cells of all types showed very little orientation

!symmetry values near zero", temporal cells !green" showed the widest distribution of orientations,

while spectral cells !blue" showed very little.

Figure 5

STRFs with different temporal response properties arise from cells with distinct physiology

A"  Panel 1: An STRF with fast temporal response properties.  Panels 2 and 3: raw voltage trace and

narrow mean spike waveform of the cell that produced this STRF.  Dashed lines in panel 3 indicate

the standard deviation of the waveform.  Panel 4: inter-spike interval !ISI" distribution for this cell,

showing its short 1 msec refractory period.  The mean spontaneous firing rate of this cell was 34Hz,

while its mean stimulus-driven rate was 104Hz.

B"  Equivalent data for an STRF with slow temporal response properties.  This cell had a much wider

spike, with a rounded and elongated second positive peak !panels 2 and 3".  It also had a much longer

relative refractory period, with the peak of its ISI distribution occurring at 5 milliseconds.  Both the

spontaneous and mean driven firing rates were lower for this cell !6 Hz spontaneous, 10Hz average

during the stimulus".

C"  Top: schematic of temporal half-width measurement.   The temporal half-width of an STRF was

equal to the duration over which the temporal cross-section through its peak was greater than half of



84

the peak value.  Bottom: schematic of spike width measurement.  The width of the mean spike for

each cell was measured from its trough to the subsequent peak.

D"  Temporal half-width of STRFs versus spontaneous firing rate for all single units that produced

significant STRFs.  Half-width and spontaneous firing rate were significantly correlated !correlation

coefficient = -0.64, p = 1.3e-9".

E"  Spontaneous firing rate as a function of projections onto the first two principal components.

Spectral cells, at the left hand corner, have lower spontaneous firing rates !< 20Hz" than temporal and

spectro-temporal cells.

F"  Temporal half-width of STRFs versus spike width from trough to peak for all cells with spike

amplitudes between 200 and 600 µV.  STRF and spike width were positively correlated !cc = 0.71, p =

4.8e-11", while STRF width and spike amplitude were not !cc = 0.09, p =0.49".

G"  Cells with the widest spike waveforms !>350 microseconds" were almost all sensitive to spectral

modulations, as indicated by their position on the left of the PCA plot.

Figure 6

STRFs with different temporal response properties are localized to different regions of field L

A"  Histological slides showing the regions of field L and the locations of electrode penetrations in a

head-fixed mapping experiment.  Top panel: slide stained with an antibody to CB1, the cannabinoid

receptor, which selectively labels the input area L2 !white arrow".  Above the stained area is area L1,

below it is area L3.  Tracks of four electrodes can be seen crossing the three layers of field L.

Electrode 1 is lesioned at 2100 microns; electrode 2 at 2200 microns; and electrode 3 and 1000, 1300,

and 2200 microns !pink arrows".  Bottom panel:  nissl-stained slide adjacent to above showing the

lamina that define the borders of the field L complex !white arrow".  The input fibers to area L2

appear in the nissl preparation as a lighter-staining diagonal stripe.  Terminal lesions on all four

electrodes are visible.
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B"  Temporal best modulation frequency of raw multi-unit spike-triggered averages as a function of

recording depth on each of four electrodes.  Pink arrows mark the depths of the lesions shown in the

top panel of !A".  Sites with higher best modulation frequencies are found within a restricted range of

depths that is deeper and narrower for the anterior electrodes and shallower and wider for the

posterior electrodes.  The location of these faster sites corresponds well to the location of the dark-

staining area in the CB1 slide, suggesting that these faster sites are localized to area L2.

C-E"  Temporal best modulation frequency of multi-unit sites as a function of recording depth for

three additional experiments.  Each axis represents one penetration with four electrodes; data from

different electrodes are plotted on the same graph.  Data from different electrodes have been aligned

so that zero marks the center of the field L2, as defined anatomically.  In each experiment, cells with

higher best modulation frequencies are found only at the center, surrounding L2.  Examples of STRFs

recorded at different depths in the last experiment are shown at the right, and indicate that STRFs in

all regions could show strong spectral tuning.  Blue dots represent STRFs recorded with a stimulus

whose modulation envelopes had power proportional to 1/50Hz.  Gray dots represent STRFs from a

stimulus with power proportional to 1/20Hz.  As we discuss in the text, localization of faster STRFs to

L2 can be seen witheither stimulus configuration alone.

F"  Examples of raw spike-triggered averages recorded at different depths in the experiment

summarized in figure 6E.  Spike-triggered averages at all depths show good frequency tuning; those

located near the center of field L2 show much narrower temporal tuning than those located above and

below them.

Figure 7

The three types of STRFs show distinct changes with stimulus intensity

A-D"  STRFs measured from the same cell with two different stimulus intensities.  !A"  STRF at 30dB.

!B" STRF at 63dB.  The 63dB STRF has shorter latency, more prominent negative regions, and

additional positive regions.  !C" Temporal cross sections at 2.7 kHz through the 30dB !blue" and 63dB

!red" STRFs.  Dashed lines indicate the standard deviation from five jackknife estimates of the STRF.
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The 63dB STRF has a significantly shorter latency than the 30dB STRF.  !D"  Spectral cross sections

at -12 msec through both STRFs, colored as above.  Negative spectral sidebands are much more

prominent in the 63dB STRF.  !E" rasters !top two panels" and PSTHs !bottom panel" of the cell

responding to same stimulus segment played at 30dB and at 63dB.  Although the mean firing rate of

the cell was slightly higher at 63dB !104Hz at 63dB versus 76Hz at 30dB", the firing rate is modulated

over the same range in both conditions !0-300Hz, bottom panel".  Some peaks in the response, like

the first two, occur earlier in the response to 63dB, while other peaks differ completely between the

two responses.

F"  STRFs measured from a temporal cell at 30dB and and 63dB.  Top left panel: 30dB STRF.  Bottom

left panel: 63dB STRF.  Top right panel: temporal cross-sections through both STRFs at 3.0 kHz.

Bottom right panel: spectral cross sections through both STRFs at -14 msec.  This cell shows a

dramatic temporal phase change between stimulus intensities.

G"  STRFs measured from a spectral cell at 30dB and 63dB.  Top left panel: 30dB STRF.  Bottom left

panel: 63dB STRF.  Top right panel: temporal cross-sections through both STRFs at 1.8 kHz.  Bottom

right panel: spectral cross sections through both STRFs at -32 msec.  At 63dB the negative regions of

the STRF are a bit deeper, and a second positive peak has appeared at a higher frequency.  The 63dB

STRF !red" is slightly narrower in time than the 30dB STRF !blue".  The error bars on the estimates of

spectral STRFs were generally much larger due to their low firing rates.  The significance of changes

in spectral STRFs is discussed in the text.

Figure 8

A bi-variate mexican hat model can quantify changes in STRF shape with stimulus intensity

A"  Schematic of different STRF shapes that can be created from the bivariate mexican hat model by

manipulating the parameters alpha and beta on the quadratic terms.  Top left: when the alpha and

beta are zero, the model reduces to a two-dimensional gaussian.  Top right: when the parameter alpha

is positive, and beta is zero, the model generates a STRF sensitive to temporal modulations.  Bottom

left: when beta is positive, and alpha is zero, the model generates a STRF sensitive to spectral

modulations.  Bottom right: when alpha and beta are both positive, the model generates a STRF
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sensitive to both spectral and temporal modulations.  The model is thus capable of capturing each of

the main STRF shapes seen in our population.

B"  Examples of model fits to real data.  Top panels: STRFs shown as examples in previous figures.

Bottom panels: STRFs generated by model fits to those examples.

C"  Values of the parameter beta when fit to 63dB STRFs !y-axis" versus 30dB STRFs !x-axis".  Blue

squares represent cells that show a significant increase in beta when the stimulus intensity increases

from 30dB to 63dB !n=25".  Gray circles represent cells that show a significant decrease !n=4".  Across

the population, values of beta were significantly higher at 63dB than at 30dB !p = 6.6e-7", indicating

that cells became more sensitive to spectral modulations at the higher intensity.

D"  Location of cells showing a significant increase in beta on the PCA plot.  These include most of

the spectro-temporal cells along the top face of the triangle, and a large fraction of the spectral cells at

its left-hand corner.  These data indicate that cells sensitive to spectral modulations tend to become

more sensitive to spectral modulations at the higher intensity.

E"  Values of the parameter alpha fit to 63dB STRFs !y-axis" versus 30dB STRFs !x-axis".  Green

squares represent cells that showed a significant increase in alpha when the stimulus intensity

increases from 30dB to 63dB !n=25", while gray squares represent cells that show a significant decrease

in alpha !n=5".  Across the population, values of alpha were significantly higher at 63dB than at 30dB !p

= 3.5e-8", indicating greater sensitivity to temporal modulations at the higher intensity.

F"  Location of cells showing a significant increase in alpha !green squares" or a sign inversion !change

of phase, pale green circles" in PCA space.  Most spectro-temporal cells !top of the triangle", and some

temporal cells !right hand face", showed an increase in alpha.  Nearly all temporal cells showed either a

significant increase in alpha or a sign change.  These data indicate that both spectro-temporal and

temporal cells show changes in the temporal domain with stimulus intensity.
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94chapter 2, figure 1: stimulus construction
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95chapter 2, figure 2: examples of STRFs
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97chapter 2, figure 4: principal components analysis of STRF modulation spectra
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98chapter 2, figure 5: correlations between STRF width and cellular physiology
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99chapter 2, figure 6: correlations between STRF width and anatomy
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101chapter 2, figure 8: population analysis of intensity nonlinearities
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Chapter 3:  Acoustic Parameters Underlying Generalization of a Learned Song
Discrimination Task

Abstract:

Songbirds are often used to study the neural mechanisms underlying learning and perception

of complex sounds, yet the behavioral relevance of different song parameters is unknown.  In this

study we used an operant discrimination task to examine the role of various acoustic parameters in

song discrimination.  Female zebra finches were first trained to discriminate songs from two different

individuals.  We then asked whether they could generalize what they had learned to songs that were

altered in some way.  We found that pitch cues played a much more important role than duration

cues in our behavioral task:  females generalized poorly to songs whose pitch fell outside the range of

natural variation, but generalized correctly to songs with very extended or compressed durations.

Females could learn to correctly discriminate between songs over a wide range of volumes !13-73dB

rms".  However, when trained at a single intensity, they could only generalize to intensities within 10-

20dB of the training volume.  These results place important constraints on how perceptual behavior

may be related to neural responses in the primary auditory area field L, suggesting that songs are

identified by the spatial pattern of neurons they activate, rather than the temporal pattern of firing

they elicit.

Introduction:

Songbirds, like humans, communicate using complex learned acoustic signals, and provide a

rich biological model for the neural mechanisms underlying the perception and recognition of

complex sounds !Doupe and Kuhl, 1999".  In the zebra finch, males learn to produce a single sequence

of complex syllables termed a motif !Zahn, 1996".  Females do not sing, but are able to recognize

individuals--such as their mates-- from their songs alone !Miller, 1979; Stripling et al, 2003; Woolley

and Doupe, submitted".

Bird songs, like human words, are high-dimensional stimuli, with structure that can be

parameterized in many ways.  Yet each song rendition is unique:  its volume will depend on the

distance between singer and listener; background noises--often other songs-- will corrupt the signal

!Zahn, 1996"; and the pitch and duration of individual notes vary slightly across renditions !Kao and

Brainard, 2006; Glaze and Troyer, 2006".  To recognize a bird by his song, then, females must be able
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both to discriminate between the songs of different individuals, and to generalize across variations in

a single bird's song.

Electrophysiological studies have begun to clarify what features of complex song stimuli are

encoded in different regions of the songbird auditory system !Theunissen, et al, 2000; Sen et al, 2001,

Woolley et al, 2005; Nagel and Doupe, 2006, in preparation", and to identify areas that respond

selectively to learned songs !Gentner and Margoliash, 2003".  Song-induced expression of the

immediate early gene zenk has revealed brain areas that are selectively activated by novel conspecific

songs !Mello et al, 1992, Mello and Clayton, 1994; Stripling et al, 2001; Bailey et al, 2002; Gentner et

al, 2004".  Lesion studies have implicated many areas that may be necessary for recognition learning

!Brenowitz, 1991; MacDougall-Schackleton et al, 1998; Scharff and Nottebohm, 1998; Gentner et al,

2000".  Yet the behavioral limits of song recognition have received comparatively little attention.

How much variation in pitch or duration can birds tolerate before a song becomes unrecognizable?

What range of song volumes are birds able to discriminate correctly?  These questions are critical to

understanding how the representation of song features or parameters by neurons in the zebra finch

brain are related to their perception of song.

We used generalization of a learned discrimination, or "discrimination transfer" !Beecher et

al, 1994; Gentner and Hulse, 1998" as a model paradigm for studying song recognition.  In this operant

task, a bird is taught to categorize a large number of stimuli, then tested on novel probe stimuli.

Probe stimuli are rewarded without respect to the bird's choice, ensuring that the bird cannot not

learn the "correct" answer for these stimuli from the reward pattern.  Performance significantly above

chance on a probe stimulus is considered evidence for generalization to that probe.  This method has

several specific advantages: it allows one to present many test stimuli in a short period of time, and it

makes it possible to distinguish incorrect responses !which signify a failure to generalize" from lack of

response !which could signify tiredness, indifference, or lack of attention".

To investigate the acoustic parameters underlying learned song recognition, we trained

female zebra finches to discriminate a set of one male's songs from those of a second male, then

tested their performance on systematically altered songs.  We found that female zebra finches showed

little tolerance for variations in song pitch, generalizing only to stimuli that were close to the natural

range of pitch variation found in zebra finch song.  In contrast, females showed great tolerance for

changes in song and syllable duration, responding well above chance to a 2-fold range of syllable

lengths.  Finally we investigated the females' ability both to discriminate songs at different volumes,

and to generalize a discrimination learned at one volume to another.  Females were able to
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discriminate songs over a wide range of volumes, from 23-73dB.  However, when trained at a single

volume, they generalized only to volumes within 10dB of the training set.  These results place

important constraints on what aspects of neural responses to song may be important for behavioral

recognition.

Methods:

Behavioral task and training:

We trained adult female zebra finches !n=8" to discriminate the songs of two unfamiliar

conspecific males using a two-alternative forced choice paradigm.  Training took place in custom-built

operant cages !Lazlo Bocskai, Ken McGary" and was controlled using a custom-written Matlab

program that interfaced with a TDT board.

A discrimination trial began when the female hopped on a central "song perch" that faced a

speaker !figure 1A".  Following this hop, the computer selected a stimulus from a database of songs

from two individuals, described in detail below.  The female had to decide which male the song

belonged to, and to report her choice by hopping on one of two response perches, located to the right

!for male A" and to the left !for male B" of the song perch.  If her response was correct, a feeder

located under the song perch was raised for 2-5 seconds, allowing her access to food.  If it was

incorrect no new trials could be initiated for a time-out period of 20-30 seconds.  Females had up to 6

seconds after song playback ended to make a response and were allowed to respond at any point

during song playback; playback was halted as soon as a response was made.  If no response was made

within 6 seconds of the song ending, the trial was scored as having no response, and a new trial could

be initiated by hopping again on the song perch.

 Birds required one to two weeks of training to acquire this task.  Training consisted of 4

stages.  In "song mode," the female was habituated to the operant cage.  Food was freely available.

Hopping on the song perch produced a song drawn at random from a separate training database, that

contained no songs from the two individuals used for discrimination trials.  In "food mode," food was

restricted, and the female had to hop on one of the two response perches to raise the feeder.  The

song perch continued to perform the same function.  Food and song could be procured

independently.  In "sequence mode," the female had to hop first on the song perch, then on either of

the two side perches within 6 seconds to receive a reward.   Finally, the female began discrimination
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trials, the training song set was replaced with the discrimination database, and trials were rewarded

!with food" or punished !with a time-out" depending on which response perch the female chose.

Birds spent one or two days on each of the first three training stages !song, food, and

sequence".  Birds were moved to the next stage of training when they performed more than 200 hops

per day !for song mode", or earned more than 200 rewards per day !for food and sequence mode".

Females generally learned the discrimination task !greater than 75% correct" within 4-5 days of

beginning discrimination trials !Figure 2A and 2C".  One female did not perform significantly above

chance after three weeks of training and was removed from the study.

Females occasionally developed a bias, in which they classified most of one individual's songs

correctly !>90% correct", but performed more poorly !70-90% correct" on songs from the other

individual.  When this happened, we altered the percent of correct trials that received a reward so

that the preferred perch was rewarded at a lower rate.  This procedure was usually successful at

correcting large biases in performance, and reward rates were equalized over 1-3 subsequent days.

Data from days on which the two perches were rewarded at different rates were not used for analysis.

In addition, the computer automatically adjusted the rate of song presentation to present songs

associated with the non-preferred perch.  At the beginning of a session, the computer formed a list of

all songs in the database.  When a song was played and got a response, it was removed from this list.

Songs that did not receive a response remained on the list.  Songs were drawn from this list until all

songs in the database had elicited a response.  At the end of such a "block" the computer calculated

the percent correct for "A" songs and "B songs.  If these percentages were unequal, it removed A or B

songs from the next block so that the percent of A !or B" songs presented was inversely proportional

to the fraction of correct responses to A !or B" songs:

P!present A" = P!correct on B"/!P!correct on A"+P!correct on B""

According to this formula, if the bird made the same number of correct responses to A and B songs,

both songs would be presented equally.  However, if she got only one song correct !for example, if she

chose the A perch on all trials and so got all A's correct and all B's incorrect", the computer would

adjust song presentation rates so that mostly songs associated with the non-preferred perch were

presented.  Together with manual adjustment of reward rates, this adaptive song presentation scheme

helped ensure that females correctly classified both sets of songs and did not display too strong a bias

towards one perch or the other.
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Females were allowed to work continuously for the duration of their 14 hour day.  In general,

females received all of their food by performing this task.  However, bird weight was monitored

closely, and birds received supplemental food when their weight decreased.  Birds had free access to

water throughout the experiment.  After birds reached criterion in their discrimination behavior, the

overall reward rate for correct trials was lowered to 75-95%.  This generally increased the number of

trials the birds performed each day.  All experimental procedures were approved by UCSF's

Institutional Animal Care and Use Committee.

Probe Trials:

To test the trained females ability to generalize the learned discrimination to new and altered

stimuli, we used a probe trial configuration.  Probe trials were randomly interspersed between training

trials at a low rate !10-15% of trials", and were rewarded at a fixed rate equal to the overall reward rate

!75-95%" regardless of which response perch the female chose.  This ensured that no information

about the probe stimulus identity was contained in its reward rate, and that females could not easily

discriminate probe trials from normal trials on the basis of reward.  Probe trials that did not receive a

response were not rewarded and remained on the probe stimulus list until they elicited a response.

Song stimuli:

The training database consisted of 100 songs, 50 recordings of one male's song !"male A"",

and 50 recordings of another !"male B", figure 1B".  We used this large database to ensure that females

learned to associate each perch with an individual, and not with a single rendition of his song.  The

song renditions were chosen to have similar distributions of overall duration, RMS volume, and overall

power spectrum across the two individuals !figure 1B, lower panels", but had quite distinct syllable

structure and timing !figure 1B, upper panels".  Human listeners could easily discriminate songs from

one individual from those of the other.  Songs contained 1 to 6 motifs and were drawn from both

directed !sung to a female" and undirected !sung alone" recording sessions.  When necessary, low levels

of white noise were added to the recordings to ensure that the background noise level prior to song

playback was the same for all stimuli.
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To test that females had learned to discriminate individuals, rather than memorizing the

classification of all 100 songs in the database, we tested their responses to 10 additional song

renditions that were not included in the original training set.

Song Manipulations:

The pitch and duration of individual zebra finch notes are known to vary between song

renditions.  Analyses in other papers indicate that pitch can vary by 1-3% !Kao", while duration can

vary by 1-4% !Troyer".  We used a phase vocoder algorithm !" to independently manipulate the overall

pitch and duration of training songs.  To alter the duration of a song without changing its pitch, the

vocoder broke it into short overlapping segments, and took the Fourier transform of each segment,

yielding a magnitude and phase for each frequency.  We used segments of 256 samples, or 10.5 msec at

25kHz, overlapping by 128 samples.  This produced a function of time and frequency similar to the

spectrogram !such as those shown in the upper panels of figure 1B" often used to visualize an auditory

stimulus but with a phase value as well as a magnitude for each point

S!t,f" = !A,phi"

We then chose a new time scale for the song, and interpolated the magnitude and phase of the signal

at the new time points based on the magnitude and phase at nearby times.

S'!t',f" = !A',phi'"

Finally, the vocoder reassembled the stretched or compressed song from the interpolated

spectrogram.  This process yielded a song that was slower or faster than the original but whose

frequency information was largely unchanged.

To alter the pitch of a song without changing its duration, we first used the above algorithm

to stretch or compress the song in time.  We then resampled it back to its original length yielding a

song with a higher !for stretched songs" or lower !for compressed songs" pitch but the same duration

as the original.  We made songs with durations and pitches increased and decreased by 0, 1, 2, 4, 8, 16,

32, and 64%.  Pitch-shifted and time-dilated songs were generated from 20 different base stimuli: 10

from the A training set and 10 from the B training stimuli.  We computed the averaged responses to
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each manipulation of the 20 base stimuli to calculate performance as a function of pitch shift or

duration change.  Songs with 0% change were presented as probe stimuli to ensure that nothing about

our probe stimulus presentation caused the birds to respond differently.

The loudness or volume of song stimuli was adjusted by scaling the digital representation of

the song before outputting it to the speaker.  White noise was added to song by creating a random

noise vector in Matlab, scaling it to have a specified RMS volume, then adding it to the original song

stimulus.  Training songs had a distribution of volumes centered around 73dB SPL, as illustrated in

figure 1B.  In pitch and duration experiments, all songs, including training and probe stimuli, were set

to have an RMS volume of 63dB.

Three experiments looked at discrimination and generalization as an explicit function of song

volume or noise level.  To look at discrimination performance as a function of song volume !figure 6",

we created a stimulus set in which 10 A training songs and 10 B training songs were set to 8 volumes !3

to 73dB in steps of 10".  To look at discrimination performance as a function of noise level, we set all

100 training stimuli to two volumes !33dB and 63dB" with varying levels of background noise !0-50dB

for 33dB songs, 0-80dB for 63dB songs".  Noise was generated de novo on each trial insuring that birds

never heard the same noise signal twice.  In both of these two experiments, all stimuli were presented

as "discrimination" trials, meaning that birds were rewarded for getting the answer right, and

punished with a time-out for getting the answer wrong.  They could thus learn the correct association

for each stimulus from the reward patterns.

In a third experiment !figure 8", birds were trained on 100 stimuli with an average intensity of

73 or 30dB.  We then used probe trials to test whether they could generalize to songs at other volumes

!3-73dB".  Probe stimuli were drawn from the same stimulus set used for discrimination training in

figure 6, and added an additional silent probe stimulus to verify that birds could not perform the

discrimination when there was no signal.

Data Analysis:

Each trial initiated by hopping on the song perch could be scored as correct, incorrect, or no

response.  The percent of correct responses !"percent correct"" was calculated by dividing the total

number of correct responses, by the total number of trials to which the bird responded.  The percent

of responses !"percent response"" was calculated by dividing the total number of responses by the
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total number of trials.  Reaction time was calculated from the song perch hop to the subsequent

response hop.  95% confidence intervals on percent correct were calculated by fitting the total

number of correct responses, and the total number of responses, to a binomial model !binofit.m,

Matlab".  The same algorithm was used to estimate confidence intervals on percent response.  Error

bars on reaction time measurements represent the mean standard deviation across several days.  For

estimates of behavior on control trials, we show the mean and standard deviation of percent correct

and percent response across days.  We use this estimate rather than the binomial estimate because

there are so many more control trials !9 control trials for every probe" that the binomial estimate of

error on control trials is exceedingly small.

Results:

Training and Generalization:

8 out of 9 females trained on the discrimination acquired the task within 4-5 days of

beginning discrimination trials !figures 2A and 2C".  Performance was very good, with 79 to 95 percent

of songs classified correctly.  Mean response times ranged from 1.66 to 2.38 seconds !figures 2B and

2D", long enough to hear 1-2 motifs of each song but generally before the song bout ended.

To test that females had learned to discriminate individuals, rather than memorizing the

classification of all 100 songs in the database, we tested the responses of four females to 10 additional

song renditions that were not included in the original training set.  These additional song renditions

were presented as probe stimuli: they occurred randomly on 10% of trials, and were rewarded if the

bird responded, regardless of which perch she chose.  Responses to probe songs were statistically

indistinguishable from responses to training songs, in percent of correct responses !figure 2E, 1st

panel", percent of songs responded to !figure2E, 2nd panel", and reaction time !figure 2E, 3rd panel".

These data indicate that discrimination was robust to trial-to-trial variations in song structure, and

suggest that these females had learned to classify songs from an individual, rather than the exact song

variants used in the training.

Pitch and Duration:
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The pitch and duration of individual notes vary across song renditions: pitch by 1-3% of the

note's fundamental frequency !Kao and Doupe", duration by 1-4% !Troyer, Kao".  Females identifying

a male by his song must therefore be robust to small variations in the pitch and duration of his song.

To examine the importance of pitch for identifying a song, we tested trained females on

probe songs that were shifted in pitch !see Methods".  As illustrated in figure 3A, the frequency

content of these stimuli was altered but their temporal pattern--including the sequence of harmonic

and noisy notes-- was not.  As a result, human listeners could readily distinguish strongly pitch-shifted

songs of one individual from those of the other.  If females responded correctly to strongly pitch-

shifted songs, it would indicate that pitch is not an important parameter in determining song identity.

Incorrect responses would indicate that pitch plays an important role.  Probe stimuli were

constructed from 10 song variants used in training.  Each song variant was presented at 14 different

shifts !+/- 0,  0.01, 0.03, 0.06, 0.11, 0.21, 0.40, and  0.71 octaves, equal to changes of 0, 1, 2, 4, 8, 16, 32,

and 64%", designed to sample a range of shifts inside and outside the range of natural variability.

Responses to different variants were pooled to obtain responses as a function of shift.

Figure 3B !top panel" shows one female's response to pitch-shifted probe songs.  The blue bar

represents the mean +/- one standard deviation across days of her performance on control

discrimination trials.  For small pitch shifts less than 0.5 octaves, her performance on probes

overlapped with her control performance.  However, her performance fell off rapidly for shifts larger

than those naturally observed !+/-3%, indicated by dashed lines", and she performed at chance for

pitch shifts of 0.2 octaves or greater.  The lower panels of figure 3B show this bird's percent response

!lower left panel" and reaction time for probes !black lines" and control training trials !blue bar".

Percent response and reaction times for probes were statistically indistinguishable from those for

control trials.

Similar results were seen in all birds tested on these probes !n=5".  As shown in figure 5A !top

panel", all birds performed close to their control levels for probe stimuli within the range of natural

variation, but performed poorly for shifts outside this range.  All birds performed at chance for the

largest pitch shifts !+/-0.71 octaves".  Percent response and reaction time did not change significantly

with pitch !figure 5A, lower two panels".  Together these data suggest that pitch within a narrow range

is critical for discriminating the songs of individuals.

To examine the importance of syllable duration for song recognition, we used probe songs

that were stretched or compressed in time !figure 4A, Methods".  The frequency content of these
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songs was unchanged, as were the relative durations of different syllables and intervals.  Probe stimuli

with altered duration were constructed from the same 5 song variants as the pitch-shifted probes.

Duration was altered by the same amounts !+/- 0 1, 2, 4, 8, 16, 32, and 64%".

In contrast to their responses to pitch-shifted songs, females showed great tolerance for

changes in song duration.  Figure 4B !top panel" shows responses as a function of song duration for

the example bird shown in figure 3B.  100% duration indicates no change.  The blue bar represents the

bird's performance on normally rewarded control trials, and the dashed vertical lines represent the

range of natural variation !+/- 4%".  In contrast to her behavior on pitch-shifted probes, this female

responded well above chance to all duration probes, including those compressed or expanded well

beyond the range of natural variability.  For duration changes up to 32%, her performance overlapped

with her control performance.  For a 64% change in duration, her performance dropped but remained

above chance.  Percent response !lower left panel" was similar to control for all probes except the

most compressed !61% duration".  Reaction times !lower right panel" were indistinguishable from

control for all probes.

Data from 5 birds !figure 5B" confirmed this result.  Birds behaved well above chance on all

duration probes, generalizing over a 2.6-fold range of syllable durations.  Performance dropped slightly

for large duration changes !61 and 164%", but remained significantly over chance !p<0.05" for all birds.

Most birds showed a small drop in response rates for the most compressed songs !61% duration" but

responded equally well to all other probe stimuli.  Reaction times for one bird increased with song

duration, but remained similar for the other birds.  Together these data suggest that the

discrimination learned in this task does not depend heavily on syllable or interval duration.

Volume and Noise:

Females recognizing a male in a natural setting must contend with variations in the intensity

of the song and of background noise.  We therefore asked whether females were able to discriminate

songs played at different volumes, or in the presence of background noise.  Finally, we asked whether

birds trained to discriminate songs at one volume could generalize to other volumes.

To test birds' ability to discriminate soft songs, we trained females !n=7" to discriminate songs

played at 7 different intensities.  RMS song volumes ranged from 3-73dB in steps of 10dB.  These
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stimuli were presented as discrimination trials, meaning that females were rewarded !with access to

food" for correctly classifying a song, and punished !with a time-out" for an incorrect classification.

All song intensities occurred with equal probability.

Figure 6A !top panel" shows the performance of one female as a function of song intensity.

Her performance falls off gradually as the song intensity decreases, but remains high !>80% correct"

down to 23dB RMS.  At intensities below 23dB, she responded to fewer songs and had longer average

reaction times !figure 6A, lower panels".

Data from all birds showed the same pattern.  As shown in figure 6B, performance for all

birds remained high down to at least 23dB.  Below this intensity, performance fell off.  6 out of 7 birds

performed significantly better than chance at the lowest volume tested !3dB RMS".  Most birds

showed a decrease in percent response, and an increase in mean reaction time for songs 23dB or

softer.

To test birds' ability to discriminate songs in the presence of noise, we trained them to

discriminate songs at two volumes !33 and 63dB" in the presence of varying levels of background noise

!0-50dB for 33dB songs and 0-80dB for 63dB songs".  Noise was generated electronically on each trial

and was unique in each presentation.  As in the previous experiment, birds were differentially

rewarded or punished depending on whether their answer was correct, and all volume and noise

combinations occurred with equal probability.

Figure 7A shows the performance of one female as a function of noise level for two different

song volumes.  Vertical lines represent the RMS amplitude of the songs.  As expected, performance

depends on the ratio of song volume to noise volume.  Her performance began to fall off as the noise

level approached the RMS level of the song and reached chance when the noise level was 17dB greater

than the RMS level of the song.  Because song is composed of distinct syllables, its amplitude varies

strongly in time.  Peak amplitudes could reach 7-14dB louder than the RMS song volume.  On average,

the bird had a slightly longer reaction time for 33dB songs, even when noise levels were low and her

discrimination performance on these songs was very good !figure 7A, lower right panel".  In this

experiment, she responded equally well to all stimuli !figure 7A, lower left panel".

Data for all birds showed the same pattern !figure 7B".  All birds' performance began to fall

off when the noise level was 3-8dB below the rms volume of the song, and reached chance when the

noise level was 7-17dB louder than the rms volume of the song, close to where the noise level was equal
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to the peak amplitude of the song.  Most birds showed slightly longer average reaction times for 33dB

versus 63dB songs, and responded equally well to all songs.

The experiments shown in figures 6 and 7 test birds' ability to discriminate songs at many

volumes but do not address whether they can generalize a task learned at one volume to another

intensity.  Because birds were rewarded or punished for their responses in these experiments, they

could learn to associate loud and soft versions of a song with the same perch based on reward cues,

rather than on the acoustic similarity between these stimuli.  To examine whether females trained at

one volume would generalize automatically to other volumes, we trained birds at a single mean volume

level !73dB or 30dB", then tested them with probe stimuli at many volumes.

Surprisingly, we found that birds performed significantly above chance only for intensities

within 10-30dB of the intensity at which they were trained.  Figure 8A shows responses of two birds

trained at 73dB to probe stimuli at different volumes.  In contrast to the discrimination performance

illustrated in figure 6A, these birds responded above chance only to songs presented at 43dB !pink" or

53dB !red" and above.  To check that this steep decline in performance was not due to differences

between these birds and others, we later trained these birds at all volumes, using the stimulus set from

figure 6 !figure 8B".  Within 1 day of training, performance on volume probes improved markedly,

with both birds responding above chance to stimuli down to 13dB.

Birds trained only with loud songs !73dB" might not attend to softer songs, and the decrease

in their performance at soft volumes could be due to a lack of attention rather than an inability to

generalize.  To differentiate these two options, we trained two birds on 30dB songs, then tested them

with the same set of volume probes !figure 8C".  Both birds responded above chance only to probe

stimuli between 13-43dB !red", or 13-53dB !blue".  In response to the loudest probe stimuli !73dB", both

birds performed at chance.  When trained on all volumes, both birds quickly learned to correctly

discriminate songs from 13-73dB.  These data indicate that the birds only generalize to intensities

within 10-30dB of the training song.

Discussion:

Songbirds, like humans, learn to recognize complex species-specific vocalizations.  Because

these vocalizations vary from presentation to presentation, this recognition must involve both
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discrimination of sounds corresponding to different individuals or words, and generalization across

non-meaningful variations in these sounds.  Because of their small size, rapid learning, and amenability

to electro-physiological recordings, songbirds provide an excellent model for understanding how the

human brain may solve these two problems.  A crucial step for linking neural activity to recognition is

mapping the space of stimuli that a bird considers to be one song.

To map this space quantitatively, we trained female zebra finches to discriminate a large set

of songs produced by one individual from an equally large set produced by another.  We then used

probe stimuli--infrequent stimuli rewarded without respect to the female's response-- to test whether

the birds could generalize the learned discrimination to novel or altered stimuli.  The percent of

correct responses to systematically altered probe stimuli fell off gradually as a function of the acoustic

parameter altered !pitch, duration, or volume", indicating that generalization is a graded phenomenon.

As a convention, in this paper we state that a female generalized to a probe stimulus when she

classified it correctly at a level significantly greater than chance.

In our first experiment, we tested whether birds relied more on pitch or duration cues to

distinguish the songs of two individuals.  While pitch and duration are not the only cues present in

zebra finch song, they are easy to measure, and their level of variability has been quantified in several

previous studies.  Thus, manipulating pitch and duration allows us to compare the tolerance of

females' perceptual behavior to the variation in male vocalizations.

Although pitch and duration vary by similar amounts !1-3% for pitch, 1-4% for duration",

females showed much narrower tuning for pitch than for duration.  Females generalized over a wider

range than the 0.5% just noticeable difference for pitch measured in most avian species !Dooling et al,

2000".  However, performance on pitch-shifted stimuli fell to chance rapidly outside the range of

natural variation.  In contrast, females performed significantly above chance over a more than 2-fold

range of syllable durations.  The acoustic parameters used by these songbirds to identify individuals

may be closer to those used by human being to identify speakers rather than words.  Humans depend

heavily on pitch cues to identify speakers !O'Shaughnessy, 1986", but not to identify phonemes

!Avendaño et al, 2004".  Word duration can be an important cue for speaker identity !Walden, 1978",

but is a less reliable cue than spectral features of speech !O'Shaughnessy. 1986".

This finding has important consequences for understanding how neural responses to song

may be related to perceptual behavior.  Neurons in field L, the avian analog of primary auditory
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cortex, respond to song with precisely time-locked spikes !Woolley et al, 2006", whose temporal

pattern provides significant information about what song was heard !Narayan et al, 2006, Wang et al,

2007".  Several papers have therefore suggested that these temporal patterns of spiking are critical for

birds discrimination and recognition of songs.

Temporal patterns in field L, however, arise largely because spikes lock to the onsets or

offsets of syllables !Nagel and Doupe, 2006, Woolley et al, 2006".  They would thus be expected to

change if the song is expanded or contracted in time.  The ability of birds to generalize across large

changes in duration calls into question the importance of field L's temporal spiking patterns for song

recognition.

In contrast, the female's tolerance for pitch-shifted songs agrees approximately with the

measured bandwidths of field L neurons.  The half-width of the pitch tuning curves was 0.11-0.22

octaves !8-16%", while the half-widths of field L neurons have a minimum of 0.13 octaves, and a

median of 0.33 octaves !chapter 2".

In a previous study !chapter 2", we found that temporally tuned cells predominated in the

input layer of field L, while cells in the output layer were tightly tuned in frequency !median

bandwidth 0.22 octaves" but integrate broadly in time.  We therefore expect that--like the females'

generalization behavior-- the responses of these output cells to song would change markedly with

pitch but be relatively invariant to changes in duration.  Recordings from auditory neurons with these

altered song stimuli will be necessary to test whether the responses of output cells predict females'

generalization behavior.

In our second series of experiments we explored females' ability to discriminate songs at

different volumes or with noisy backgrounds.  We found that females were able to discriminate songs

above chance at volumes from 13-73dB and in the presence of noise up to 7dB louder than the mean

amplitude of the song.  These data indicate that the bird's auditory system can extract sufficient

information from these stimuli to perform the discrimination, and form a benchmark to compare the

discrimination performance of birds to the discrimination performance of their neurons.

In our last experiment, we asked birds whether they could generalize a task learned at one

stimulus intensity to another.  The ability to generalize across intensities is considered fundamental to

pattern recognition tasks, in both the auditory and visual domains.  Yet most auditory neurons show

strong nonlinearities in their response as a function of sound level: at the periphery, neurons lose their
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frequency selectivity at high volumes !Geissler, 1998", while in the forebrain, neurons become more

sensitive to local differences at high volume !Nagel and Doupe, 2006".  An outstanding question has

therefore been where in the auditory system invariance to volume emerges !Drew and Abbott, 2003;

Wang et al, 2007".

Surprisingly, we found that females did not generalize to songs more than 20dB louder or

softer than the training stimuli.  This held true even when the probe songs were much louder than the

training stimuli.  These data suggest that the females do not automatically generate a volume-invariant

representation of the song, and instead learn to generalize across a wide volume range only when both

loud and soft songs are associated with a reward.  They open the possibility that intrinsically volume-

invariant areas may not be found in the bird's brain.  Instead, behavior and neural invariance for

particular songs may be learned by associating songs at many intensities with other cues from the

same individual.  Invariance in other sensory systems, such as to position and scale in the visual system

!Cox et al, 2005; Kortzi and DiCarlo, 2006", or to odor concentration in the olfactory system !Gross-

Isserhof and Lancet, 1988", might be similarly learned.

We used an operant paradigm-- generalization of a learned discrimination-- to investigate the

range of acoustic signals that a bird responds to as one individual's song.  This paradigm allows us to

test many song modifications in a controlled manner, and allows us to distinguish an inability to

generalize from a disinclination to respond.  Simpler assays, such as measuring approach behavior

!Miller, 1979", calls, !Vicario et al, 2002; Vicario, 2004", singing !Stripling et al, 2003", or displays in

response to song presentation have also been used to gauge mate recognition and song familiarity, but

have no such positive control.

A disadvantage of our operant task is that the birds' behavior may reflect the task constraints

more than their innate inclinations.  For example, in our task, birds could receive their reward sooner

by responding during the on-going song.  This may bias them towards making decisions based on

small amounts of information, and trusting pitch information over temporal structure.  We think this

is unlikely, as most natural female responses to song such as approach, calls and displays can similarly

occur before a song bout has ended.  However, we could test the effect of the temporal structure of

the task on performance by training females to wait until a song bout had ended before responding.

In addition, we could test whether their decision was based on only the first few syllables by using

probe stimuli with the first syllables systematically removed.
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Our paradigm could also be used to examine the conditions under which birds can learn to

generalize across volumes.  If birds were hardwired to generalize across song volumes, or learned this

early in development, we would have expected this to show up in the experiments we performed in

figure 8.  However, we can also test whether prior exposure to an individual's song improves

generalization by testing females on familiar songs, such as those of their mates or brothers.  Finally,

we could train females on one set of songs at many volumes, and see if this improves their

generalization on songs of unfamiliar individuals.

The ability of humans and animals to recognize complex patterns is justly celebrated.

Understanding how the brain achieves such recognition is a fundamental goal of neuroscience.  Often,

however, physiological studies assume that we know what tasks the brain solves-- such as building

invariance to position and scale and luminance in the visual system, concentration in the olfactory

system, and volume in the auditory system.  Our data suggest that animals may group stimuli in

unexpected ways.  Relating neural activity to perceptual behavior will require detailed and

quantitative assessments of behavior as well as of neural activity.

Figure Legends

Figure 1

An operant discrimination task to study song recognition

A"  Diagram of the operant cage seen from above.  Three perches are located on three sides of the

cage.  After a hop on the central perch, the computer plays a song from the speaker located directly in

front of it.  The bird can respond by hopping on either of the two response perches.  After a correct

answer, a feeder beneath the cage is raised for 2-5 seconds, allowing the bird access to seed.  After an

incorrect answer, all perches cease to function for a 20-30 second time-out.

B"  Songs used for training.  The goal of our study was to train birds to associate each response perch

with the songs of one individual.  Example song from the two individuals chosen are shown here both

as oscillograms !top panels" and spectrograms !2nd row".  Each song is composed of several repeated

motifs, indicated by the blue bars over the spectrograms.  The two individuals differ in the temporal
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pattern and frequency content of their syllables.  50 songs from each individual were used in training,

to avoid over-training on a single song rendition.  The distribution of overall song durations, mean

!rms" amplitudes, and power spectra are similar for the two individuals, as shown in the lower panels.

Figure 2

Learning and generalization of the song discrimination task

A"  Learning curve for one individual showing percent of correct responses on A !black" and B !white"

songs as a function of the number of days of discrimination training.  By the second day of training,

this bird performed well above chance on both stimulus types.  This bird had 9 days of pre-training

!song, food, and sequence modes, as described in Methods" before beginning discrimination trials.

B" Distribution of reaction times !after training" for the bird in figure 2A.  The mean reaction times

were 1.92 seconds for A songs, and 2 seconds for B songs.  This indicates that the bird generally heard

at least one full motif of the song but usually responded before the stimulus had played to completion.

As shown in figure 1B, overall stimulus durations ranged from 2-6 seconds for both A and B songs.

C"  Learning curves for 7 other birds.  The dotted line at 0.5 represents chance behavior.  All show

greater than chance performance by the second day of training.  Black curves represent birds trained

with songs played at an average intensity of 73dB SPL.  Green curves represent birds trained with

songs with an average intensity of 30dB.

D"  Mean and standard deviation of reaction time for all A !black" and B !white" songs for all birds.

E"  Responses to novel renditions of the same two birds' songs were used to test whether birds had

learned to associate the perch with an individual rather than a particular set of acoustic signals.  Novel

renditions were presented as probes, meaning that they occurred with low probability, and were

rewarded at a fixed rate regardless of the birds' response !see Methods".  The first panel shows the

mean and 95% confidence intervals on the percent of correct responses for novel probe songs !y-axis"

versus training songs !x-axis".  The second panel shows the mean and 95% confidence intervals for the

percent of responses to these two types of stimuli.  The third panel show the mean and standard
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deviation of reaction time.  In all cases, responses to novel probes were statistically indistinguishable

from responses to training songs.

Figure 3

Responses to pitch-shifted songs

A"  Examples of pitch-shifted songs.  Center panel: unshifted song.  Top panel: same song shifted up

by 0.71 octaves !64%".  Bottom panel: same song shifted down by 0.71 octaves !61%".  In this

manipulation the frequency content of the song is changed but the temporal pattern remains the

same.  A shift in pitch leads to expansion or compression of notes with harmonic structure.  Pitch-

shifted probe stimuli were presented at low probability between unaltered training trials, and were

rewarded without regard to the female's response.

B"  Performance of one bird on pitch-shifted probe stimuli.  Top panel: percent correct as a function

of pitch shift !black line".  Error bars represent 95% confidence intervals on percent correct obtained

by fitting data to a binomial distribution.  The blue bar at the top represents the mean +/- one

standard deviation of her performance on control training trials, averaged across days !n=16".  Dashed

lines at 97% and 103% represent +/- one standard deviation of the range of natural pitch variation.

Her performance overlaps with control performance within this range and falls off rapidly outside it.

Bottom left panel: percent response as a function of pitch shift !black line", with 95% confidence

intervals.  The blue bar represents the mean +/- one standard deviation of percent response for control

trials.  Response rates do not change with pitch and overlap with response rates for control trials.

Bottom right panel:  Reaction time as a function of pitch shift !black line" with standard deviation.

The blue bar represents the mean +/- one standard deviation of reaction time for control trials.

Reaction times for probes trials fall within the range of reaction times for control trials.

Figure 4

Responses to songs with altered duration
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A"  Examples of songs with altered duration.  Center panel: unaltered song.  Top panel: same song

expanded by 64%.  Bottom panel: same song compressed by 64% !duration = 1/1.64 or 61%".

Expansion or compression alters the duration of both syllables and intervals, but does not change

their relative durations, nor the frequency content of the song.   Duration probes were presented at

low probability between unaltered training trials, and were rewarded without regard to the female's

response.

B"  Performance of one bird on duration probe stimuli.  Top panel: percent correct as a function of

song duration !black line".  Error bars and blue bar as described in the legend for figure 3B.  Dashed

lines representing the range of natural variability are at 96% and 104%.  From 76 to 132% duration her

performance on probes overlaps with her performance on control trials, and she performs significantly

above chance on all probes.  Bottom left panel: percent response as a function of song duration.

Response rates for probes were comparable to response rates for control trials except for the most

compressed songs.  Bottom right panel:  Reaction time as a function of duration.  Reaction time

generally did not increase with song duration.

Figure 5

Population data for pitch and duration experiments

A"  Responses of 5 birds !including the example in figure 3B" to pitch-shifted probe stimuli.  Top

panel: colored dots represent the overall percent correct for each bird at each condition.  The black

line represents the mean across birds.  Error bars at the top left represent the mean +/- one standard

deviation of each birds' performance on control trials.  Data from the same bird are in the same color.

The dashed lines represent the range of natural variability !+/-3%", and the dotted line represents

chance behavior.  All birds show a decrease in performance for songs outside the range of natural

variability and chance behavior for the largest pitch shifts.  Bottom left panel: Percent response for all

birds as a function of pitch shift, with the mean across birds shown in black.  Bottom right panel:

Mean reaction time for all birds with the mean across birds shown in black.

B"  Responses of the same 5 birds to duration probe stimuli.  All colors and symbols as in !A".  Top

panel:  Percent correct as a function of probe song duration.  All birds performed significantly above
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chance for all duration probe stimuli, although their performance decreased below control levels for

the largest changes 61% and 164% duration".  Bottom left panel:  Percent response as a function of

song duration.  Many birds showed a small decrease in response rate to the most compressed !61%

duration" stimuli.  Bottom right panel:  Reaction time as a function of song duration.  Most birds

showed no change in reaction time with changes in song duration.

Figure 6

Discrimination of songs across intensities

A"  Performance of one bird on discrimination trials with songs of different intensities.  In this

experiment responses to songs at all levels were differentially rewarded or punished depending on the

bird's response.  Top panel:  Percent correct as a function of RMS song volume.  Error bars represent

95% confidence intervals obtained from a binomial fit to the data.  The performance of this bird

decreased gradually with decreasing song intensity, but remained significantly above chance for all

volumes tested.    Bottom left panel:  Percent response as a function of song volume.  This bird

responded at a much-reduced rate to songs below 23dB.  Bottom right panel:  Mean and standard

error of reaction time as a function of song volume.  Mean reaction time increased significantly for

song played at 23dB or softer.

B"  Performance of 7 birds, including the example in !A", on discrimination trials with song of

different intensities.  Colored dots represent mean values for each bird.  Black lines represent the

mean across birds.  Top panel:  Performance rates fell off gradually, remaining high for songs played at

intensities down to 23dB.  All but one bird performed above chance at the lowest intensity tested

!3dB".  Bottom left panel:  Percent response as a function of song intensity.  Many birds responded at

decreased rates to songs played below 23dB.  Bottom right panel:  Mean and standard deviation of

reaction time as a function of song intensity.  Many birds showed a gradual increase in reaction time

as songs became softer.  This increase is most noticeable for songs played at 23dB and below.

Figure 7

Discrimination of songs in the presence of noise
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A"  Performance of one bird on discrimination trials with different levels of background noise.   Top

panel:  Performance as a function of noise level for 63dB songs !light blue" and 33dB songs !dark blue".

The intensities of the songs are indicated by the vertical lines.  Error bars represent 95% confidence

intervals obtained from a binomial fit to the data.  Performance was significantly better than chance

for noise levels up to 12dB greater than the RMS amplitude of the song, close to the songs' peak

amplitude.  Bottom left panel:  Percent response as a function of noise level for the two song

intensities.  This birds responded at high rates to all stimuli.  Bottom right panel:  Mean and standard

error of reaction time as a function of noise level for the two song intensities.  Mean response times

to the softer song !33dB, dark blue" were significantly longer than those to the louder song !63dB, light

blue" at all noise levels tested, but did not change significantly with added noise.

B"  Performance of 4 birds on discrimination trials with different noise levels.  Solid lines represent

the mean across birds.  Patterns of behavior for all four birds were similar to the example in A:

behavior fell to chance when the noise level was 7-17dB louder than the rms song volume.  Response

rates did not change with stimulus condition !bottom left panel", and reaction times for the soft song

were longer than for the loud song !bottom right panel".  Reaction time did not change with noise

intensity.

Figure 8

Testing generalization from one volume to another

A"  Performance !mean and 95% confidence intervals on percent correct" of two birds initially trained

with 73dB RMS songs on probe songs at many volumes.  Performance by both birds fell off rapidly for

songs softer than 73dB.  One bird performed significantly above chance for only songs played at RMS

intensities between 53-73dB !red", while the other performed above chance for songs played at 43-73dB

!pink".  The blue vertical line indicates the RMS volume of the training songs.

B"  Performance of the same two birds on identical probe trials after 1-2 days training with songs at

many volumes.  After training, both birds performed above chance for songs down to 13dB rms.
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C"  Performance of two different birds trained with 30dB rms songs on the same volume probes.

Both birds performed significantly above chance for songs from 13-43dB, and performed at chance

level for songs played at 63 and 73dB.  The blue vertical line indicates the RMS volume of the training

songs.

D"  Performance of the same two birds on identical probes after 1-2 days of training with songs at

many volumes.  After training, both birds performed above chance for songs between 13-73dB.
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127chapter 3, figure 1: operant cage and training stimuli 
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128chapter 3, figure 2: learning and performance of the song discrimination task
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129chapter 3, figure 3: responses to pitch�shifted probe songs
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130chapter 3, figure 4: responses to probe songs with altered duration
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131chapter 3, figure 5: population data for pitch and duration experiments
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132chapter 3, figure 6: discrimination of songs across intensities
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133chapter 3, figure 7: discrimination of songs in the presence of noise

Discrimination across noise intensities
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134chapter 3, figure 8: generalization to novel song intensities
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General Discussion

I set out to characterize the auditory response properties of field L, and to test the role of

various acoustic parameters in song recognition.  I presented three main sets of findings.

First, I found that the layers of field L differ in both their physiology and their response

properties.  The input layer, L2, contains mostly narrow-spiking, fast-firing cells, tuned to fast

temporal or spectro-temporal modulations.  The output layers, L1 and L3, contain broad-spiking,

slow-firing cells, that integrate over long time periods and are tuned for spectral modulations.

Narrow-spiking cells evenly sample temporal modulations up to 150Hz, while broad-spiking cells

evenly sample spectral modulations up to 2 cycles per octave.  Narrow spiking spectro-temporal cells

span a range of high frequency modulations from mostly temporal to mostly spectral.  This

distribution of tuning preferences may reflect the statistical structure of zebra finch song, which has

most of its energy in pure spectral and temporal modulations, or it may reflect a very general strategy

for processing natural sounds, which share similar statistics !Singh and Theunissen, 2003; Attias and

Schreiner, 1998".  The difference in spike shape and firing rate between fast temporal and spectro-

temporal, and slow spectral cells may reflect biophysical differences in their ion channels and

morphology that allow them to track fast stimulus changes, or to integrate over longer time periods,

respectively.

Second, I found that the linear response properties of most field L cells depended strongly on

the mean intensity of the stimulus.  At low mean intensities, most spectro-temporal receptive fields

!STRFs" were dominated by a single positive peak, indicating that under these conditions, cells

behaved largely as integrators or detectors of sound in a certain frequency range.  At high mean

intensities, negative components of STRFs grew in magnitude and decreased in latency, while positive

components showed smaller decreases in latency.  Depending on the frequency range and timing of

these negative and positive regions, these nonlinearities allowed different cells to become more

specialized for spectral, temporal, or spectro-temporal modulations at high stimulus intensities.

These data suggest a more unified way of looking at the dependence of response properties

on stimulus amplitude than the traditional categorization of auditory cells as monotonic or non-

monotonic.    Instead, different cells are specialized for extracting different kinds of spectro-temporal

features, and all cells undergo a transition from detection at low intensities to discrimination at higher

intensities.  The shift from detection at low intensities to discrimination at high intensities has also

been seen in the retina !Enroth-Cugell and Lennie, 1975", where it has been shown computationally to
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improve coding efficiency in high and low signal-to-low regimes !Attick, 1992".  It may represent a

common computational principle shared by many sensory systems.

Finally, I looked at what acoustic features females used to perform a discrimination task

between two individuals.  I found that the duration of syllables and intervals did not have much

impact on discrimination performance, but that pitch and volume did.  These data suggest that the

spatial pattern of cells activated by a song is more important for identifying the song than the

temporal pattern of firing in individual cells.

These findings suggest several lines of future questions.  What ion conductances or

morphological properties underlie the differences between classes of field L cells?  What role do these

different cell types and their nonlinearities play in forming a population-level representation of song?

How does this representation shape behavioral responses to song?  In this discussion, I will outline

experiments and models that might be used to address each of these questions in turn.

Relating auditory responses to cellular biophysics:

What biophysical properties underlie the difference between narrow-spiking temporal and

spectro-temporal cells, and broad-spiking spectral cells?  How do those biophysical properties

constrain response properties?

In many mammalian systems, narrow spikes and high firing rates are associated with the

expression of potassium channels from the Kv3 family, whose unique kinetics allow cells to rapidly

repolarize.  In the cortex and hippocampus, most such Kv3-expressing cells are inhibitory

interneurons, although Kv3 channels are also expressed in fast-firing GABA-ergic Purkinje cells,

glutamatergic cells of the subthalamic nucleus, and glutamatergic terminals in the calyx of Held !Bean,

2007".  Kv3-expressing inhibitory interneurons can be identified by their expression of parvalbumin

!Kawaguchi and Kondo, 2002".

To ask what cell types might give rise to the different response types we saw, a first approach

might be to stain slices of zebra finch forebrain tissue for Kv3 and parvalbumin.  Because narrow-

spiking cells are found only in the input layer, L2, we can ask whether this region also shows

expression of Kv3 and/or parvalbumin.  Additionally, we could see if Kv3 co-localized with GAD-65, a

marker for GABAergic cells, or with CB1, a marker for field L2.  A GAD-65 antibody for birds has
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been developed and used successfully by Pinaud et al. !2004".  Parvalbumin-positive interneurons have

been found in the song control nuclei HVc and RA !Wild et al, 2001, 2005" but have not been

examined closely in field L.  These experiments would allow us to ask if putative fast-firing neurons of

L2 express Kv3, and whether such neurons are inhibitory.

To link such cell types to auditory response properties more directly, it would be useful to

record intracellularly from in vitro slice preparations of field L.  Several studies have demonstrated

that spike shapes recorded extracellularly in vivo are related closely to the time derivative of spike

waveforms recorded intracellularly in slice !Buzsaki and Eidelberg 1982; Henze et al, 2000".  Although

we could not measure auditory response properties of neurons in a slice preparation, we could record

their responses to dynamic injections of current.  Using this paradigm, we should be able to identify

cells with fast and slow integration times.  By filling such cells and staining slices as described above,

we can ask if cells with fast and slow integration times express different potassium channels, or

different neuro-transmitters.

If we are able to identify channels specific to narrow-spiking cells, such as Kv3, we could

block these channels phamacologically !using TEA, Goldberg et al, 2005" or manipulate their

expression using lentivirus !Wada et al, 2006; Scharf, unpublished data" to probe these cells' behavior

in vivo.  For example, we could ask whether cells with fast but not slow auditory response properties

are affected by a pharmacological blockade of Kv3 channels.  We could also ask how these cells'

auditory responses change in the absence of functional Kv3 channels.

Modeling population coding in field L:

Is the distribution of response properties that we described particularly suited for encoding

zebra finch song or other natural sounds?  Do the non-linearities we described with intensity allow for

more efficient coding in different regimes?  These questions can only be answered through modeling.

Our data suggest that field L could be modeled as a bank of spectro-temporal filters, or

synthetic STRFs, with built-in nonlinearities.  Such filter banks have been used to model responses of

both the auditory !Lewicki 2002; Qiu et al, 2003; Chi et al, 2005", and the visual !Jones and Palmer,

1987; Olshausen and Field, 1996" systems.  We could generate synthetic STRFs using the bivariate-

mexican hat models from chapter 2.  Parameters of the STRFs would be drawn from fits to the

distributions of parameters we measured !chapter 2, supplementary figure 5".  We could also fit our
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data and generate synthetic STRFs using Gabor functions, which would replace the quadratic terms in

the mexican hat model with cosine functions.

Nonlinear receptive fields could be added to this model by making each neuron's response

the sum of two linear-nonlinear filters: one purely excitatory and one purely inhibitory.  The

inhibitory filter would have a higher threshold and gain.  This causes the linear receptive field of the

neuron to depend on the mean of the stimulus, but does not require an explicit representation of the

stimulus mean !Figure 1".  To make a more realistic model, we could make the temporal width and

latency of both inputs depend on the mean intensity of the stimulus.  We could also add gain

normalization to the model using the function model of Mante and Carandini !2005", and add a range

of exponential decays to different cells that approximate the range of adaptation times described in

chapter 1.  This nonlinear filter bank could be used to synthesize population responses to zebra

finch songs.  We could then use spike count !Shadlen and Newsome, 2001", and spike timing

measures !Van Rossum, 2001; Narayan et al, 2006" to ask whether we can discriminate between the

representations of two individuals' songs.  By looking at synthesized responses to songs altered in

pitch, duration, and volume, we can ask which of these measures, and which classes of cells, most

closely approximate the birds' behavior in chapter 3.  We can also use information measures !Strong et

al, 1998; Hsu et al, 2001" to ask how much information the filter bank captures about different classes

of natural and synthetic stimuli.

The strength of this model is that it will allow us to test how particular distributions of cell

types, and particular nonlinearities, contribute to song discrimination.  By drawing the parameters of

our STRFs from different distributions, we can test whether the distributions we observed provide a

particularly "informative" representation of zebra finch song.  By adding nonlinearities one at a time,

we can test what impact each nonlinearity has on the representation of songs at different volumes,

and on the representation of songs with noisy backgrounds.  For example we could ask whether

nonlinear receptive fields allow better discrimination of different songs at low volume, but make

generalization from one volume to another more difficult.

Linking neural responses to behavior:

What neural responses determine how birds respond to and categorize altered songs?  To link

the behavioral results of chapter 3 to patterns of neural firing, we could start by recording from field L
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during performance on pitch, duration, and volume probe trials.  One hypothesis I proposed in that

chapter was that responses of L1/L3 spectral cells would more closely track the birds' behavior than

responses of L2 cells with their tightly time-locked responses.  By comparing spike counts or PSTHs

of responses to altered song with responses to training songs, we can construct neural "tuning curves"

for song that we can compare directly with the behavior tuning curves measured in chapter 3 !figures

3, 4, 5, and 8".  We can then ask which cell types !spectral, temporal, or spectro-temporal" and what

aspects of their firing !spike count over some time interval, PSTH at some time-resolution" most

closely matches the birds' behavior.  This analysis will allow us to ask how the representation in field L

may be "read-out" by neurons downstream.

If we find differences between cells in different layers, we could use pharmacology to test the

role of various cell classes more directly.  Using reverse dialysis of lidocaine, a post-doc in our lab has

successfully and reversibly inactivated neurons in area X of awake, chronically-implanted zebra

finches.  By recording during the reverse dialysis, she was able to confirm that she was in the right area

and precisely measure the time-course of inactivation.  We could use this technique to reversibly

inactivate neurons in different layers of field L and look at whether this inactivation impacts birds

behavior on control or probe trials of the behavior task.  If we find specific channels expressed by fast

versus slow cells, as described above, we could phamacologically target these channels to alter the

response properties of L2 cells and look at their effects on behavior.

Together, the proposed experiments and models will allow us to link biophysical differences

between cells to neural representations of sounds, and neural representations to behavior.  By taking

advantage of the many levels of analysis possible in the songbird, such experiments should help

elucidate the neural basis of acoustic pattern recognition.
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Chapter 1 Supplementary Data

Supplementary Figure 1

Spike waveforms from example cells

The left-hand column shows filter pairs obtained under low and high mean from the three example

cells in figure 4A-C of the paper.  In the center two columns are thresholded waveforms from each of

these three recording sites.  The waveforms are taken from adjacent 1 second segments just before

!column 2, blue" and after !column 3, orange" the switch from low to high mean.  Waveforms shown in

black were excluded during sorting due to their smaller size and different shape.  Waveforms shown in

blue and orange were kept for analysis.  These selected waveforms have a very similar shape under

both statistical conditions, suggesting that they represent the same unit.  The small insets in the lower

right hand corner of column 3 show an overlay of the mean +/- one standard deviation of the selected

waveforms from these two segments, and reinforce our observation that the waveforms have the same
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shape in the two conditions.  The column on the far right shows inter-spike interval !ISI"

distributions of selected waveforms for the two one-second segments shown for each cell !thick black

lines, n= 99, 272, and 63 spikes respectively" and for the full recording !blue bars, n=97555, 211252, and

96943 spikes".  The distributions from the short segments are similar to the overall distributions, and

all distributions show clear refractory periods, suggesting that the selected waveforms represent the

spikes of a single unit.  In general, the shape of a presumptive unit's waveform stayed consistent over

the course of a recording !30 minutes to 2 hours", although the amplitude of the waveform could

change slowly over time.  Based on these observations and similar observations at all other sites , we

believe that it is unlikely that our results could be due to the presence of different units during

different statistical conditions.
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Supplementary Figure 2

Decorrelation using the theoretical power spectrum of the modulation signal, versus the actual power
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spectrum

In this figure we compare the power spectrum of the full log stimulus envelope to the

theoretical power spectrum we used in our analysis, and examine the effects of using these two power

spectra to decorrelate the filters.

Supplementary figure 2A shows the effect of the carrier on the frequency spectrum of the log

envelope.  The black line represents the theoretical distribution of frequencies: P!f" = exp!-f/50Hz".

The blue dashed line shows the distribution of frequencies in the modulation signal that we designed

and used for our analysis.  This distribution is very close to the theoretical distribution.

The frequency distribution of the actual log envelope of our stimulus will depend on the

method we use to estimate the envelope.  Here, we estimate the envelope by low-pass filtering the

rectified stimulus below 500Hz.  We also tried estimates using a lower cutoff frequency and found

that the frequency spectra of these estimates was dominated by the shape of the low-pass filter.

The frequency spectrum of the log envelope also depends on the frequency content of the

carrier.  The purple line represents the frequency spectrum of a stimulus with a wideband !500Hz-

8000Hz" carrier.  It deviates strongly from the theoretical frequency spectrum only at frequencies

above about 250Hz.  The orange line represents the frequency spectrum of a stimulus with a

narrowband !2500-3000Hz" carrier.  It deviates from the theoretical prediction more strongly and at

lower frequencies than does the stimulus with the wideband carrier.  During decorrelation, we divide

the Fourier representation of the spike-triggered average by the power spectrum, then low-pass filter

the result.  As discussed in our Methods, the low-pass filtering is necessary because decorrelation

tends to amplify high frequencies, which are poorly sampled in the spike-triggered average.  The filter

cutoff was determined for each cell individually by looking for the frequency at which the power in

the spike-triggered average dropped below the power in an estimate of the noise--the random-

triggered average.  Therefore, we expect that including the contribution of the carrier in decorrelation

will have the most impact on cells with high cutoff frequencies.  We examine these cases below.

Supplementary figure 2B examines the reliability of the power spectrum estimate.  The solid

and dashed curves represent two estimates of the log stimulus envelope power spectrum, using

different wideband carriers.  As can be seen, the two estimates are essentially identical due to the long

sampling time !2.4e7 samples per trial".  We therefore concluded that the power spectrum depends

only on the statistics of the carrier, and not on the precise carrier used.
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Supplementary figures 2C and 2D show the effect of using the actual power spectrum to

decorrelate filters recorded with a wideband stimulus.  A wideband carrier was used to estimate most

of our filters !21/36".  Here we study the worst case scenario: the effects of the carrier on the estimate

of the filter with the highest cutoff frequency !167 Hz". Supplementary figure 2C shows the

theoretical frequency spectrum in black, and the spectra of log envelopes for each of our three

statistical conditions in blue, green, and red.  The frequency cutoff for this cell is indicated by the

dotted black line.  Because the actual power spectra are very similar to the theoretical power spectrum

below this line, we do not expect that using the actual power spectrum will have much impact on the

filters.

Supplementary figure 2D confirms this expectation directly: it shows filters obtained by

decorrelating with the theoretical power spectrum !thin solid lines" and with the actual power

spectrum !thick dashed lines".  As we expected, the two estimates are very similar, and the

correlations between the two estimates are greater than 0.99 for all conditions.

Supplementary figures 2E and 2F show the effect of using the actual power spectrum to

decorrelate filters recorded with a narrowband stimulus, in this case 2500-3000 Hz.  Again, we looked

at the cell with the highest cutoff frequency, reasoning that it should show the largest possible effect

of the difference between actual and theoretical power spectra. Supplementary figure 2E shows the

theoretical and actual power spectra with the cutoff frequency for this cell !140 Hz" indicated by the

black dotted line. Supplementary figure 2F shows filters obtained by decorrelating with the

theoretical power spectrum !thin solid lines" and with the actual power spectrum !thick dashed lines".

Although there are small discrepancies between the two filters !for example the second positive peak

in the red filter is smaller when using the actual power spectrum", the overall shapes of the filters are

very similar.  The correlation coefficients between the two filter estimates are high, and the

qualitative differences between the filters obtained under different statistical conditions remain.

Based on this analysis of worst case scenarios, we concluded that that using the theoretical power

spectrum to decorrelate our filters did not significantly impact our results, and is a reasonable

approximation.
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Supplementary Figure 3
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A  Low to high mean decay times were correlated with high to low mean decay times !all cells with

significant decays , cc= 0.47". The two example cells from figure 3B are indicated by a blue circle and

red square.  There is a great deal of scatter in this relationship, suggesting that different mechanisms

may be involved in adaptation to high and to low mean !Abbott et al, 1997, Fairhall et al, 2001, Kvale

and Schreiner, 2004".

Reference: Abbott, L.F., J.A. Varela, K. Sen, and S.B. Nelson !1997".  “Synaptic depression and

cortical gain control.”  Science 275!5297":220-4.

B"  Changes in filter shape occur gradually as a function of mean stimulus amplitude.  Pos/Neg ratios

in filters from 13 cells recorded under the four different mean conditions.  Dotted lines connect ratios

from the same cell.  Both the mean !black circles" and the variance !black lines" of the Pos/Neg ratio

decrease across the population as the stimulus mean increases.  At 60dB, the highest mean condition

we examined, the ratios are all closer to one.  Together these results suggest that filters change

gradually and systematically as a function of mean stimulus amplitude, and that these changes may be

related to changes in inhibition.  Blue and purple symbols indicate Pos/Neg for the example cells from

figure 5D and E.

Chapter 2 Supplementary Data
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Supplementary Figure 1
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Raw !un-decorrelated" spike-triggered averages !STAs" for the example cells shown in figure 2A-C.  At

63dB, the differences in tuning between a temporal !A", spectral !B", and spectro-temporal !C" cell are

evident without decorrelation.  At 30dB all three cells have much simpler STAs dominated by a single

large positive peak.
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Supplementary Figure 2
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A"  The distribution of correlation coefficients between predicted and actual PSTHs for stimuli

played at 30dB !left" and 63dB !right".  PSTHs were obtained from 13 to 200 repeats of an identical 5

second stimulus segment by smoothing the average spike count per millisecond with a 8 msec-wide

hanning window.  Predictions were made using STRFs and nonlinearities derived from a non-

overlapping set of data as described in the Methods.  The first 500 msec of both the predicted and

actual PSTH were omitted to reduce the effects of slow adaptation on the comparison.  The quality

of the prediction depended strongly on the number of spikes used to estimate the STRF, but

plateaued at lower values for the 63dB stimulus condition.  The mean correlation coefficient was

0.57+/- 0.19 !standard deviation" for the 30dB stimulus condition, and 0.52 +/- 0.14 for the 63dB

stimulus condition.

B"  Different filter shapes give rise to different modulation spectra.  The filter shapes shown represent

either temporal or spectral-cross sections through the STRF, and the power spectra represent

corresponding cross-sections through the two-dimensions modulation spectrum.  If a filter has a

single peak !top row", its power spectrum will be low-pass, meaning that the cell will respond to all

modulations in that domain up to some cutoff determined by the width of the STRF peak.  A filter

with a single negative peak will give rise to a similar power spectrum.  If the filter has balanced

positive and negative regions !second row", its power spectrum will be band-pass, meaning that it will

only respond to modulation frequencies over a narrow range.  Finally, a filter with very profound

negative sidebands !3rd row", whose negative regions are larger than its positive regions, will have a

power spectrum with two peaks.  The alternating positive and negative regions will give rise to a high

frequency band-pass peak, while the overall negative sum will give the power spectrum a peak at low

frequencies.  This property of power spectra complicates our analysis of some strongly spectrally-

tuned cells, such as the example in figure 2B, whose STRFs show clear sensitivity to spectral

modulations, but whose spectral power spectra peak at 0 cycles per octave.

C"  Spectral cross-sections through several spectro-temporal STRFs illustrating their similar structure.

Most such cells had a single positive peak at 30dB, while at 63dB they showed strong negative

sidebands.  These sidebands were generally stronger and narrower on the high frequency side, and

shallower and broader on the low-frequency side.  The STRFs shown here were collect at the depths

indicated in a single bird and suggest a systematic progression of preferred frequencies.
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Supplementary Figure 3
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The anatomical distribution of STRF and spike properties from chronic birds supports our findings in

restrained sedated birds !figure 6".  This figure shows temporal half-widths of STRFs and widths of

spikes as a function of recording depth for four chronic electrode penetrations.  Fast STRFs with

short temporal half-widths and narrow spikes are mostly found in a restricted region of each

penetration.  The strong correlation between STRF width and spike width is also clear.



155

Supplementary Figure 4
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Spike-triggered averages recorded from the same site under two stimulus conditions, one with faster

amplitude modulations !50Hz, left" and one with slower amplitude modulations !20 Hz, right".  In

general the STRFs obtained under the two conditions were very similar, although the STRFs obtained

with the slower, 20Hz stimulus are smoother and slightly broader in both frequency and time.

Compared to the striking effects of stimulus intensity on STRF shape !supplementary figure 1", the

effects of stimulus frequency are very mild.  Occasionally, as at the last site shown, sensitivity to very

slow stimulus features was evident with the 20Hz stimulus but not with the 50 Hz stimulus.

Supplementary Figure 5

Distribution of STRF parameters obtained by measuring STRFs directly !A" and by fitting a bivariate

mexican-hat model to each STRF !B".  The measured latency and center frequency of the STRF were

defined to be its maximum in time and frequency.  The measured temporal half-width, and bandwidth

were obtained from cross-sections through the peak.  Model parameters were obtained by fitting as

described in detail in the Methods.  In general, the shape of the two distributions showed a good
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agreement.  Latencies showed a skewed distribution with more cells having shorter latencies.  Center

frequencies showed an approximately normal distribution centered around 2.5 kHz.  Temporal and

spectral widths had more exponential distributions, with more cells having short widths.  Latency and

temporal width were negatively correlated, while center frequency and spectral width !in octaves"

were not.  Correlation coefficient between measured and fitted parameters were 0.97 for latency, 0.86

for center freuqency, 0.89 for temporal widths, and 0.57 for spectral widths".

.






