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Auditory Processing and Perception in Songbirds
by
Katherine Nagel

Abstract

Songbirds, like humans, learn to produce and to recognize complex, species-specific sounds, providing
a biologically tractable model to study the neural mechanisms of speech production and perception. I
used chronic recording from single neurons, and operant behavioral techniques to ask how complex
sounds are represented in the songbird forebrain, and how this representation may be related to the
birds’ perception of song. I found that neurons in field L, the avian analog of the human primary
auditory cortex, represent three different types of modulations found in natural sounds: spectral
modulations, temporal modulations, and spectro-temporal modulations. Neurons specialized for
different modulations have different physiological properties and are localized to different parts of
field L. The response properties of these neurons depend nonlinearly on the average intensity of the
stimulus. At high intensities, they respond only to differences in sound energy between nearby
frequency or times, while at low intensities they integrate information from nearby frequencies and
times. This nonlinearity is shared with the visual system and may represent a computational principle
of sensory encoding. Finally, I used operant techniques to ask whether songbirds could generalize a
learned song discrimination task to songs altered in pitch, duration, or volume. I found that birds
generalized correctly to songs altered in duration but not to those altered in pitch or volume. These
data suggest that birds use the spatial pattern of neurons activated by a song rather than the temporal

pattern of neural activation to determine what song they heard.
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General Introduction

Our ability to speak depends on our ability to perceive and categorize complex sounds. A
normal adult speaker of English can recognize tens of thousands of words (Kirkpatrick, 189r;
Hartman, 1946), despite variation in their volume, pitch, prosody, and intonation. Many
conversations take place in a background of other speakers or poor telephone connections. How the
human brain executes robust acoustic pattern recognition in these circumstances is poorly
understood.

Like humans, songbirds learn to produce and recognize complex, species-specific sounds
(Konishi 1985, Doupe and Kuhl, 1999). Songbirds have been used as a biologically tractable model of
vocal learning for many years, while their ability to recognize and perceive song has received less
attention. While vocal learning in many species is restricted to young male birds (Konishi, 1985,
Doupe and Kuhl, 1999), both males and females learn to recognize new songs throughout life (Miller
1979, Stripling et al, 2003). Song has a rich statistical structure that can share many features with
human speech (Singh and Theunissen, 2003). The major auditory areas of the avian brain have been
identified and mapped anatomically (Fortune and Margoliash, 1992, Fortune and Margoliash, 1995,
Vates et al, 1996). Songbirds thus provide an excellent model for asking questions about the neural
basis of complex sound recognition.

The avian auditory system is composed of many levels. Auditory information enters the brain
through the brainstem cochlear nuclei, angularis (NA) and magnocellularis (NM, Sullivan and Konishi,
1984). These two areas project to other brainstem nuclei, including nucleus laminaris (NL), and
nucleus ventralis laterale pars posterior (VLVp), which in turn project to inferior colliculus in the
midbrain (Takahashi et al, 2003), often called MLd in songbirds (Woolley et al, 2005). MLd projects
to nucleus ovoidalis (Ov), the auditory region of the avian thalamus, and ovoidalis projects to the
forebrain area field L (Woolley et al, 2005). Field L is composed of 3 regions, the thalamo-recipient
input area L2, and two flanking areas, L1 and L3. Lz is further subdivided into L2a anteriorly, and the
more diffuse L2b posteriorly. Lt and L3 are reciprocally connected, and form reciprocal connections
with several higher order forebrain auditory areas, including the mediocaudal neostriatum (NCM), the
caudomedial mesopallium (CMM), and nucleus interfacialis (NIf, Fortune and Margoliash, 1992,
Fortune and Margoliash, 1995, Vates et al, 1996). HVc, an area involved in song production in males,
receives most of its auditory input from NIf (Coleman and Mooney, 2004). Studies of the avian

auditory brainstem and midbrain have generally focussed on how spatial cues are extracted and



processed (Takahashi and Konishi, 1984, Sullivan and Konishi, 1984, Sullivan 1985), while studies of
the thalamus and forebrain have focussed on how complex song stimuli may are identified and learned
(Margoliash 1983, Lewicki and Arthur, 1996, Stripling etal, 2001, Theunissen et al, 1998, 2000; Sen et
al, 2001, Woolley et al, 2005, 20006).

Most studies of the auditory processing of song have taken one of two approaches. One
approach has concentrated on a search for "selective" neurons, that respond (with a broad increase in
firing rate) only to a single complex stimulus. Neurons selective for a male bird's own song have been
found in the song production nucleus HVC (Margoliash, 1983, Margoliash and Fortune, 1992,
Theunissen and Doupe, 1998), but lesion studies trying to implicate this area in general auditory
perception have produced inconsistent results (Brenowitz, 1991; MacDougall-Schackleton et al., 1998;
Gentner et al., 1999). Neurons that showed weaker selectivity for familiar conspecific songs have
been found in the high-level auditory areas NCM and CMM (Stripling et al, 2001; Gentner and
Margoliash, 2003). On the basis of such studies, the auditory forebrain has been described as a
selectivity hierarchy (Margoliash 1986, Lewicki and Arthur, 1996, Sen et al, 2001), with low-level areas
such as field L responding well to nearly all natural and synthetic auditory stimuli, while higher areas
such as NCM, cHV, and Nif show a larger proportion of neurons selective for aspects of song.

Selectivity has also been examined using genomic responses to song stimuli. Much of the
auditory forebrain expresses the immediate early gene ZENK in response to playback of novel
conspecific songs, but not heterospecific songs or simple tone sequences (Mello et al. 1992, Bailey et
al, 2002). This selective activation is strongest in areas NCM and CMM, and has been taken as
evidence that these areas store memories of learned songs (Jarvis et al, 1995; Bolhuis et al, 2001;
Stripling et al, 2001; Terpstra et al, 2004, 2006; Gobes et al, 2007). The thalamic input area L2 shows
little zenk expression in response to song or other sounds (Mello and Clayton, 1994), although electro-
physiological studies demonstrate that it responds robustly to many kinds of sounds (Theunissen et al,
2000, Sen et al, 2001, Woolley et al, 2005, 2006). The biological meaning of this gene activation thus
remains unclear.

A second tradition of auditory research has aimed to characterize the auditory response
properties of neurons systematically. Many such studies use simple stimuli, such as tones and noise,
to map responses as a function of some auditory parameter (Scheich et al. 1979, Muller and
Leppelsack, 1985, Heil and Scheich, 1985, Hose et al, 1987, Gehr et al. 1999). More recently, a
technique known as reverse correlation (Eggermont 1983) has been used to characterize the responses

of auditory neurons to spectrally rich stimuli such as ripples and songs (Kowalski et al, 1996, 1997;



Theunissen et al, 2000; Sen et al, 2001; Miller et al, 2002, Depireux et al, 2001; Linden, 2003). These
techniques capture the linear aspects of a neuron's response to a set of complex sounds, and provide a
compact model of how the neuron will respond to novel stimuli. Although this technique has great
promise, the general organization of the avian forebrain's primary auditory area, field L, remains
unknown. Few studies have tried to characterize nonlinearities in neural responses systematically.
Finally, very few studies have compared neural response properties to perceptual behavior. While the
acoustic parameters that govern how we perceive speech have been quantified (Avedafio et al, 2004;
Handel, 1989), those governing birds' responses to song have not. This omission makes it difficult to
relate the response properties of neurons to the the bird's perception.

In this dissertation I have tried to approach several of these questions: How are complex
sounds represented by neurons in field L? How are auditory responses related to the anatomical and
physiological structure of field L? What nonlinearities are present in these neuron's responses and
how can we model them mathematically? What acoustic parameters are most critical for identifying
an individual by his song? At the end of the dissertation, I discuss how the neural representation in
field L may be related to the birds' perceptual behavior, and propose experiments to test these
hypotheses.

In chapters 1 and 2, I use reverse correlation to ask what aspects of a complex sound drive
different neurons in field L to fire. In chapter 1, I use this technique to quantify temporal response
properties--responses to changes in the overall level of a sound with fixed frequency content-- and
demonstrate that these temporal response properties depend in systematic ways on the mean and
variance of the stimulus. At low mean intensities, cells act more "integrators," responding whenever
the stimulus is on. At high mean intensities, cells acts more like "differentiators," responding only
when the stimulus intensity changes abruptly. When the stimulus variance increases, neural gain
decreases, allowing cells to adjust their range of outputs to their range of inputs. These nonlinearities
are closely related to those observed in the retina (Enroth-Cugell and Lennnie, 1975; Chander and
Chichilnisky, 2001; Kim and Rieke, 2001; Baccus and Meister, 2002) and suggest that similar
computational principles may underlie sensory encoding in the auditory and visual domains.

In chapter 2, I extend the methods of chapter 1 to characterize responses as a function of
both frequency (spectrum) and time. I identify three classes of cells in field L: cells tuned to temporal
modulations, cells tuned to spectral modulations, and cells tightly tuned in both spectrum and time. I
demonstrate that spectrally-tuned cells differ in their physiology and anatomical distribution from the

other two types. Finally, I examine how spectro-temporal responses depend on stimulus intensity and



find that similar changes across cells allow each cell type to become more specialized for its preferred
modulations when the stimulus is louder. These findings both extend the results of chapter 1 to two
dimensions, and suggest organizing principles for the structure of field L.

Several innovations distinguish these two studies from previous ones that used similar
techniques to characterize neural responses in both birds (Theunissen et al, 2000, Sen et al, 2001,
Woolley et al, 2005, 2006) and mammals (Kowalski et al, 1996, 1997; Miller et al, 2002, Depireux et al,
2001; Linden, 2003). First, I developed novel synthetic stimuli that share many statistical properties
with song but have a more uniform and controlled structure. These stimuli drove neurons
exceptionally well, and permitted clean and robust estimates of neural response properties. Second, I
systematically varied the parameters of this stimulus to characterize nonlinearities in neural responses.
Finally, I recorded from chronically-implanted unanesthetized animals, revealing structures in
response patterns that may have been absent from previous, anesthetized, recordings.

In the last chapter of my thesis I use an operant behavioral paradigm (Beecher et al, 1994;
Gentner and Hulse, 1998) to ask what acoustic parameters zebra finches use to identify songs of
different individuals. After training females to categorize a large set of songs from two different
males, I test them on songs altered in their pitch, duration, and volume. I find that females correctly
classify songs whose duration was significantly altered, but do not generalize well to songs shifted in
pitch or played at much louder or softer volumes. These findings place constraints on which aspects
of neural firing (such as temporal patterning and spectral selectivity) are used to identify and
discriminate between songs.

Together, these three chapters provide a coherent picture of auditory processing in field L

and suggest hypotheses for the role of this area in auditory processing and song recognition.
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Chapter 1: Temporal processing and adaptation in the songbird auditory forebrain

Abstract:

Auditory neurons must encode the dynamics of natural sounds over many intensity ranges.
We investigated how songbird auditory forebrain neurons encode amplitude modulations when the
distribution of intensities changes. Using reverse-correlation, we modeled neural responses as the
output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities
depend on the mean and variance of amplitude modulations. Filter shape depended strongly on mean
amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at
high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast)
of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells.
Both filter and gain changes occurred rapidly after a change in amplitude statistics, suggesting that
they represent nonlinearities in processing. These changes may permit neurons to signal effectively

over a wider dynamic range and are reminiscent of findings in other sensory systems.

Introduction:

A central problem for all sensory systems is how to represent complex dynamic stimuli over a
wide range of intensities.

Songbirds, like humans, recognize their vocalizations whether they are soft or loud (Lohr et
al, 2003). How the brain achieves this level-invariant recognition is unclear. At its highest levels, the
songbird auditory system contains ‘feature detectors’ that respond selectively to individual learned
songs (Margoliash 1983, Margoliash and Fortune, 1992; Gentner and Margoliash, 2003). These areas
receive input from an area called field L, the avian analog of primary auditory cortex (Wild et al, 1993).
Field L responds broadly to many classes of auditory stimuli, and shows organized tuning for basic
auditory properties such as spectral frequency and temporal modulations (Scheich et al. 1979, Muller
and Leppelsack, 1985, Heil and Scheich, 1985, Hose et al, 1987, Lewicki and Arthur 1996, Gehr et al.
1999, Hausberger et al., 2000, Theunissen and Sen 2000, Sen et al. 2001, Grace et al. 2002). Several
groups have tried to model how song-selective responses might arise from combinations of field L
outputs (Lewicki and Konishi, 1995, Drew and Abbott, 2005). However, few studies have looked at

how neural responses in these areas depend on song or stimulus intensity.



In the mammalian auditory brainstem and midbrain, responses to simple tones and noises can
depend on intensity in highly non-linear ways (Young and Voigt, 1982; Sachs and Young, 1980; Nelken
and Young, 1994; Nelken and Young, 1997). In the cortex, the picture is less clear. Many studies
have shown non-monotonic and non-linear responses to tones, intensity modulations, and ripple
stimuli (Phillips and Hall, 1987; Phillips et al, 1994; Calhoun and Schreiner, 1998), while other studies
have stressed the linearity of cortical responses (Kowalski et al, 1996; Escabi et al, 2003; Barbour and
Wang, 2003). How post-thalamic auditory neurons encode stimulus features across intensities
remains controversial.

The goal of the present study was to understand how the responses of field L neurons to
complex dynamic stimuli depend on the intensity of the stimulus. We focused on coding of
amplitude modulations in time, because these are a prominent feature of both song and speech, and
can carry a great deal of the information present in these signals (Shannon et al, 1995, Theunissen and
Doupe, 1998).

To describe the processing of naturalistic amplitude modulations over different intensity
ranges, we developed a set of synthetic stimuli that capture many aspects of song's amplitude
modulations, but sample the space of possible modulations more thoroughly. We then used reverse
correlation techniques (Eggermont 1983, 1993; Epping and Eggermont, 1986; Kim and Young, 1994;
Brenner et al., 2000; Chander and Chichilnisky, 2001; Fairhall et al., 2001; Depireux et al., 2001; Kim
and Rieke, 2001, Miller et al., 2002; Escabi and Schreiner 2002; Baccus and Meister, 2002) to extract a
linear receptive field (filter) and a nonlinear gain function from the responses to these stimuli.
Together, the filter and nonlinearity allowed us to characterize the feature selectivity, threshold, and
gain of each cell, and to predict responses to novel sounds.

We found that our stimuli permitted robust estimates of filters and nonlinear gain functions
for field L neurons. These models made good predictions of responses to novel synthetic stimuli, and
revealed neural sensitivity to a broad range of stimulus time scales and features. We then
demonstrated that filters and gain functions depend in systematic and specific ways on the mean and
variance of the stimulus amplitude. These changes are very reminiscent of those observed in the early
visual system (Enroth-Cugell and Lennie, 1975; Chander and Chichilnisky, 2001; Baccus and Meister,
2002), and shown mathematically to improve coding efficiency (Attick, 1992). Finally, we examined
the time course of these changes and found that they occurred on two time scales: a fast change in
filter shape and gain, followed by a slower change in threshold.

Our findings suggest that common computational strategies underlie sensory processing in

10



multiple domains, but challenge current models of song recognition.

Results:

Using Amplitude-Modulated Noise Stimuli to Drive Field L Neurons

To study processing of amplitude modulations in field L, we developed a stimulus composed
of two parts: a slowly varying modulation envelope and a rapidly varying noise carrier.

The envelope was designed to capture the temporal frequency and amplitude distributions of
natural sounds (Attias and Schreiner, 1998 , Singh and Theunissen, 2003). Because they are dominated
by slow changes in amplitude, natural sounds have power spectra that decrease as a function of
temporal frequency (Singh and Theunissen, 2003). Natural communication sounds also contain many
silent periods, giving rise to an exponential distribution of amplitudes, but a more Gaussian
distribution of log (dB) amplitudes (Singh and Theunissen, 2003).

To create a stimulus with these temporal frequency and amplitude properties, we first
created a Gaussian noise signal with a decreasing exponential distribution of temporal frequencies
(figure 1A, lower panel). This modulation signal specifies the loudness of the stimulus in decibels at
each point in time (figure 1A, upper panel). We then exponentiated the modulation signal to produce
a pressure envelope with an exponential distribution of linear amplitudes (figure 1B). Finally, we
multiplied this envelope with a narrow or broadband noise carrier (figure 1C) to generate the full
stimulus (figure 1D, see Methods for full details).

Although this stimulus consisted of both fast (carrier) and slow (envelope) fluctuations, we
analyzed responses only with respect to the slowly varying modulation signal (figure 1A). Recent
studies have suggested that this log envelope is the property most linearly encoded by neurons in field
L (Gill et al, 2006). To isolate responses to the slowly varying signal, we repeated the same
modulation signal but used different noise segments to form the carrier each time. Figure 1E shows
the response raster of a cell to 100 such repeats: the columns of spikes represent reliable spike
patterns driven by the slow modulation signal.

Half of the five-second long segments in our stimulus were randomly assigned to be repeats
of the same modulation signal; the remaining signals were unique. Unique signals were used to
broadly sample the space of possible amplitude modulations, and to estimate model parameters.
Repeated trials were used to test the model. Because we used different data to fit and test the model,

we ensured that the quality of our predictions was not due to over-fitting.
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Responses of Field L Neurons are Well-Modeled Using a Linear-Nonlinear Model

To characterize the temporal response properties of each cell, we modeled its responses using
a linear-nonlinear model (Brenner et al., 2000; Chander and Chichilnisky, 2001; Fairhall et al., 2001;
Baccus and Meister, 2002).

Figure 2 illustrates this process for two cells. The linear filter (figures 2A and D) tells us what
feature of the stimulus best drives the neuron. It is extracted from the data by computing the average
modulation signal surrounding a spike, then removing the influence of stimulus correlations from the
resulting waveform (Methods). The spike occurs at zero on the x-axis; the filter has structure only to
the left of (before) the spike, as the cell responds causally to features of the stimulus. Small error bars
(dotted lines, Methods) indicate that our estimates of filter shape were robust.

The shape of the filter indicates its preferred temporal feature. Filters with a single
dominant peak behave as low-pass “integrators,” and produce responses that look like a smoothed,
delayed version of the log stimulus envelope. A response of this type (from the cell in figure 2A) is
shown in figure 1E, where a column of spikes follows each peak in the stimulus above (figure 1D). The
sign of the filter peak determines whether the cell’s firing rate is elevated or depressed by peaks in the
stimulus. Filters with a biphasic shape behave as band-pass “differentiators,” and respond to either
onsets or offsets in the stimulus, depending on the order of the positive and negative components in
the filter. Most of our cells behave as combinations of integrators and differentiators, making a strict
classification of cell types difficult. The filter shown in figure 2A has a small negative peak followed
by a large positive peak; it behaves mostly as a positive integrator, but is sensitive to onsets as well.
The filter shown in figure 2B behaves mostly as a negative integrator, but also responds weakly to
offsets.

The width of the filter sets an upper limit on the temporal frequencies to which the cell can
respond. Because the exact frequency response depends both on the width of the filter and its shape,
preferred temporal frequency is best characterized in the frequency domain (figure 4A-C, 2" column).
Figure 2G shows the 50% width of the absolute value of each filter (50% width), versus the peak of
each filter's power spectrum (its "best modulation frequency" or BMF). Each parameter has an
approximately uniform distribution along its log axis, suggesting a greater than ro-fold spread in

temporal frequency sensitivities among cells.
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The nonlinearity (figures 2B and E) describes the relationship between filter output and firing
rate. It is calculated by passing the mean-subtracted modulation signal through the filter—measuring
the similarity of the stimulus to the filter at each point in time-- then comparing the filter output to
the neuron’s actual firing rate (Methods). Most of the cells we recorded had nonlinearities with a flat,
sub-threshold region at negative values, and a linear coding region at positive values, when the
stimulus most closely resembled the filter. Some, like that in figure 2B, showed saturation at high

positive values.

To assess the quality of our models, we used the filter and nonlinearity pair to generate a
prediction of each neuron's response to the repeated modulation signal (figures 2C and 2F). We then
compared this prediction (thick gray lines) to the actual PSTH (thin black line). The correlation
coefficient between prediction and data for the neuron in figures 2A-2C was 0.89, making this one of
our best models. The neuron in figures 2D-2F had a correlation coefficient of 0.67, the median for
our population. The distribution of correlation coefficients is shown in figure 2H (n = 33 significant
filters from 36 recorded cells). The strength of these correlations suggests that our model captures a

significant portion of the behavior of neurons in our population.

Responses of Field L Neurons to Changes in Stimulus Statistics

To examine how coding depends on stimulus statistics, we altered the mean and the variance
of amplitude modulations in our stimulus (figure 3A). In our baseline condition (gray), the modulation
signal had a mean of 30dB, and a standard deviation of 6dB. In the high mean condition (red), the
mean was raised to 63dB, while in high variance (green) the standard deviation was raised to 18dB.

The high mean and high variance conditions were designed to have approximately the same overall
power (67 dB). Stimulus conditions were presented continuously, and the baseline condition was
repeated twice in the series allowed us to characterize the transitions to and from this condition to

the other two.

Changes in Stimulus Mean Produce Systematic Changes in Firing Rate and Filter Shape

Most of the cells we recorded responded strongly to a change in stimulus mean, with a rapid
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change in firing rate followed by a slow decay (figure 3B). The rates of decay varied across cells from
approximately 4 msec to 4 seconds and were generally much slower than would be predicted by the
width of the filters. Decay times were poorly correlated with filter width (figure 3D, cc = -0.20 for low
to high mean, and 0.04 for high to low mean), suggesting that filter width and decay time represent
two separate forms of temporal sensitivity—one on the time scale of syllables, and one on the time

scale of motifs or bouts. High and low mean decay times were weakly correlated (supplementary

figure 3).

An increase in stimulus mean produced systematic changes in filter shape. Figure 4 shows
three examples of filters derived from low mean (gray) and high mean (red) conditions for the same
cells. All three show related changes when the mean increases: the filters become narrower, and the
sizes of the positive and negative components become more closely matched. These changes in filter
shape are also reflected in the power spectrum representation of each filter. The narrowing of the
filter in time is reflected in a shift of the power spectrum peak towards higher frequencies, while the
increased balance between positive and negative components reduces the response to low frequencies.

The cell shown in figure 4A was typical, with a narrower filter and a larger negative
component at high mean, but a similar shape—a negative peak followed by a positive one-- in both
conditions. Figure 4D illustrates the consequences of this filter change by comparing a segment of
the cell’s response under low mean (gray) and high mean (red). Under low mean, the response
resembles a smoothed version of the stimulus: larger peaks occur only when the stimulus is above its
mean. Under high mean the response contains many more rapid peaks, reflecting the faster frequency
tuning and narrower shape of the filter under this condition. The peaks in this condition are of
similar size throughout the segment, showing that the neuron has largely filtered out the slow
modulations, and responds more to local changes in stimulus intensity.

The cell in figure 4B shows a more dramatic change in filter shape: under low mean
conditions, it has a positive integrator shape, while under high mean conditions, it adopts an offset
differentiator shape. The neuron shown in figure 4C was the least common. Its filter is almost

entirely negative at low mean but gains a small positive component at high mean.

Together, these examples suggest that when the mean sound amplitude is low, neurons
integrate over a longer time, while when the mean is high, the same cells respond more to local

changes. These different response properties can improve the cells' ability to signal effectively in
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different stimulus regimes (Atick, 1992), and can help prevent saturation when sounds are loud. To
determine whether these findings were true across the population, we measured two parameters of
the filters: the ratio of positive to negative parts of the filter (Pos/Neg), and the best modulation
frequency (BMF).

Figure 5A shows the ratio of positive to negative parts of the filter (Pos/Neg) under high
mean (y-axis) versus low mean (x-axis; n = 28 cells with significant filters under both conditions). Most
points lie below the diagonal, indicating that most filters have larger negative components at high
mean. The small number of cells that show an increase in Pos/Neg represent filters like the one
shown in figure 4C that are predominantly negative under low mean conditions, and gain a positive
component under high mean. Most points lie close to the line y=1, which represents balanced positive
and negative components under high mean.

To examine whether neurons as a population became sensitive to faster modulations at high
mean, we plotted the best modulation frequency (BMF) for all cells under high mean versus low mean
(figure §B). In this graph, most points lie above the diagonal, indicating that most cells are more
sensitive to faster modulations at the high mean. The circled points represent cells that showed a
significant increase in best modulation frequency (n=16/28, one-tailed t-test, p<0.05); they span the full
range of modulation sensitivity seen in our neurons. Together these data suggest that an increase in
stimulus mean leads to filters that behave more like differentiators and to a shift in the sensitivity of
cells towards high temporal frequencies.

Are the differences we observe in filter shape due to true differences in responses, or do they
represent different approximations to the neuron’s response? To answer this question, we compared
predictions made by filters with the same mean to predictions made by filters with different means.
In all cases data used to test the model were distinct from data used to generate the model.

Filters generated under both conditions performed similarly when predicting responses to
novel stimuli of the same condition: the mean correlation coefficient between data and prediction was
0.59 +/- 0.18 (sd) under high mean and 0.66 +/- 0.18 under low mean. However, both sets of filters
were much worse at predicting responses to the other condition. Figure 5§C shows the correlation
coefficients between predicted and actual PSTHs using filters with the same mean (self-prediction
CQO) versus filters with a different mean (cross-prediction CC). Self-predictions are significantly
better than cross-predictions for both high and low mean data. This confirms that the changing filter

shapes capture a real change in the features to which the neurons respond.
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Filters Change Gradually as a Function of Mean

To better understand how changes in filter shape occur--particularly the most dramatic
switches from onset to offset selectivity— we varied the stimulus mean randomly among four levels
(30, 40, 50, or 60dB), while holding the variance at §dB. Figures 5§D and sE show filters calculated
under these four conditions for two cells — one that retains an onset shape across levels, and one that
switches gradually from onset sensitivity at low mean (gray trace), to offset or acceleration sensitivity
(indicated by a tri-phasic filter) at high mean (red trace). In both cells, a negative peak that is small at
30dB grows larger and decreases in latency as the mean increases. This suggests that even very
striking changes in filter shape might arise through simple mechanisms, such as a change in the
relative strength and latency of inhibitory inputs to the cell. Population data from 13 cells
(supplementary figure 3) support the finding that filters change gradually and systematically as a

function of mean stimulus amplitude.

Changes in Stimulus Variance Do Not Produce Systematic Changes in Filter Shape

In contrast to the effect of mean amplitude, changing the stimulus variance had little effect
on mean firing rate or filter shape. Figure 6A shows the effects of an increase in standard deviation
from 6 to 18dB on the cell shown in figure 4A. Although the change in variance produces the same
increase in stimulus power as did the change in mean, the cell shows little significant change in filter
shape.

Across our population, correlation coefficients between high variance and low variance filters
(mean = 0.84 +/- 0.03, se) were significantly higher than the correlation coefficients between high
mean and low mean filters (0.12 +/- 0.10, p = 5.0e-8), confirming that variance had much less effect on
filter shape than did mean amplitude. Changing stimulus variance also had fewer effects on the ratio
of positive to negative filter components (figure 6B), and on best modulation frequency (figure 6C).

Similar to the filters generated under high mean, filters generated under high variance did
well at predicting responses to stimuli with the same statistics. The mean correlation coefficient
between data and prediction was 0.54 +/- 0.17 (sd) under high variance and 0.66 +/- 0.18 under low
variance. However, predictions made by swapping filters--using high variance filters to predict low
variance data and vice versa-- were only slightly worse than predictions made with matched filters

(figure 6D). Although an increase in variance caused changes in the shapes of some filters, these
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changes were smaller, less common, and less systematic than those observed with an increase in mean.

Effects of Mean and Variance on Nonlinearities

Although variance had only small effects on filter shape, it had a significant effect on neural
gain. To examine the effects of stimulus mean and variance on the gain of the neural response, we
calculated the nonlinear relationship between the filtered stimulus and the instantaneous firing rate
under each condition (Methods). Filters were normalized such that the variance of their output was
equal to the variance of their input (Baccus and Meister, 2002) to ensure that changes in gain were not
due to changes in filter shape.

Figures 7A and B show the effects of increased mean and variance on the nonlinearities of
two cells. An increase in mean (high mean red versus low mean gray) led to a decrease in the gain of
the cell in figure 7A, and an increase in the gain of the cell in figure 7B. An increase in variance (high
variance green versus low variance gray) led to a decrease in the gain of both cells. These decreases in
gain with variance may be considered adaptive, as they allow the cells to maintain a similar range of
firing rate fluctuations when the range stimulus fluctuations increases, and so to take better advantage
of their signaling capacity.

The trends we observed in these examples continued across our population. An increase in
stimulus mean led to both increases and decreases in gain, with no net change in gain across the
population. An increase in stimulus variance led to systematic decreases in gain. To quantify changes
in gain, we calculated the average slope of each nonlinearity, excluding sub-threshold and saturation
regions where the slope fell below 5% of its maximum (Methods). Figure 7C shows slopes under high
mean versus low mean: points are distributed on both sides of the diagonal, indicating no systematic
change in gain. Figure 7D shows slopes under high variance versus low variance. Here, most points
(27/32) lie below the diagonal, indicating a decrease in gain.

The fly H1 neuron has been shown to reduce its gain in proportion to the increase in the
standard deviation of the stimulus (Brenner et al., 2000; Fairhall et al., 2001). If our cells adapted
proportionally, the increase in mean should produce no change in gain, but the increase in variance
should decrease gain by a factor of 1/3 (blue dashed line in figure 7D), to compensate for a 3-fold
increase in the standard deviation.

To quantify the amount of variance adaptation in each cell, we calculated an adaptation index

(see Methods). The adaptation index is zero if there is not change in gain with variance, and one if
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the gain under high variance is exactly 1/3 of the gain under low variance. The distribution of
adaptation scores is shown in figure 7E, and is highly skewed (median = 0.74): many of the cells show
close to proportional adaptation, while some show less than proportional adaptation. A few cells
showed no adaptation, or adaptation in the opposite direction.

Time Course of Changes in Filter Shape and Gain

Our analysis of field L response properties in different statistical conditions indicates that
their encoding changes with both mean and variance. Are these changes due to time-dependent
mechanisms, or do they represent fixed nonlinearities, for example differences in the relative strength
of excitatory and inhibitory inputs at different intensities? To examine this question, we looked at

the time course of changes in filter shape and gain.

To ask how fast filter shapes changed, we calculated filters from different epochs of the
response before and after the step change in mean. Figure 8A shows filters derived from three epochs
surrounding the switch from low to high mean: the last 500 msec of the low mean response (black),
the first 100 msec after the switch to high mean (purple), and the last 500 msec of the high mean
response (gray). Although the mean firing rate is still changing during the first toomsec after the
switch, the filter derived from these data (purple) has the narrower shape and larger negative
component characteristic of the fully adapted high mean filter (gray); it is quite different from the
wide integrator shape of the filter under low mean (black).

To ask whether filters changed this fast across our population, we calculated correlation
coefficients between filters from these three epochs (figure 8B). Correlation coefficients between
early (first toomsec) and late (last soomsec) filters from the same condition were significantly greater
than correlation coefficients between early filters and filters from the end of the previous condition.
Correlation coefficients between early and late filters were not significantly different from correlation
coefficients between two fully adapted filters taken 4500msec and 490omsec after the switch.
Together these data suggest that filters change shape within 100 msec after a change in mean stimulus

level.

To look at the time course of changes in gain, we calculated nonlinearities from different
epochs before and after a change in variance. Figure 8C shows nonlinearities calculated during three

epochs around the switch from low to high variance. The nonlinearity calculated from the last 500
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msec of the low variance condition has a high gain (black), while nonlinearities taken from both the
first toomsec (purple) and last 5oomsec (gray) of the high variance response both show a lower gain.

This rapid change in gain can also be seen in the PSTHss of this cell's response to repeated
trials. If the decrease in gain occurred slowly, we would expect firing rate fluctuations under high
variance to be initially much larger than firing rate fluctuations under low variance. As shown in
figure 8D, firing rate fluctuations under high and low variance are nearly identical by the time of the
first large peak, about 50 msec after the switch, indicating that the gain of the cell has decreased by
this time.

To quantify the speed of gain change across the population, we compared the gain of
nonlinearities taken from the three epochs of the response. The gain of nonlinearities derived from
the first 100 msec of data were significantly different from the gain of nonlinearities under the
previous condition (p = 3.7e-5 for increased variance, p = 2.5e-§ for decreased variance) but were not
significantly different from the gain measured later under the same condition (p = 0.75 for increased
variance, p = 0.43 for decreased variance). Together, these data indicate that nonlinear gain changes
within 100 msec of a change in stimulus variance.

Our analyses indicate that changes in filter shape and nonlinear gain occur quickly, well
before the mean firing rate has finished adapting. This suggests that gradual firing rate adaptation
corresponds to a change in the threshold or set-point of firing, rather than to a change in gain or in
temporal feature selectivity. To ask whether firing rate adaptation is correlated with a change in
threshold, we plotted nonlinearities from several epochs around the switch from low to high mean.
Figure 8E shows these nonlinearities for a single cell. Following the increase in mean, the nonlinearity
undergoes a rapid shift upward and to the left (purple versus thin black), as well as a small change in
slope. The shift occurs immediately, and is probably due to the change in filter shape rather than to a
change in neural sensitivity. Over the next 5oomsec, the nonlinearity moves gradually back towards
the center (violet and light blue), but does not change slope. The slow decay in firing rate thus seems
to determine the shifting position of the nonlinearity.

To confirm that this trend was consistent across our population, we calculated the
correlation between the mean firing rate during each 100 msec-long epoch, and the y-intercept of the
nonlinearity measured during that epoch. The average correlation coefficient across cells was high--
0.82 +/- 0.02 (se)-- suggesting that firing rate adaptation is best considered as a change in the position

or set-point of the nonlinearity.
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Discussion

The goal of our study was to investigate how coding of complex amplitude modulations in a
primary auditory area depends on the distribution of stimulus intensities. To characterize coding, we
developed a stimulus that mimics several features of natural song stimuli, while still permitting a
randomized and systematic search of possible stimuli. From responses to these stimuli, we were able
to generate linear-nonlinear models that successfully predict many features of the neurons' responses

to novel stimuli.

The filters we extracted from our neurons revealed sensitivity to a range of temporal features
and time scales. Peak temporal frequency sensitivities varied from 10-150Hz. Neurons showed
sensitivity to many combinations of onsets, offsets, and continuous stimulation. This range of
sensitivities may be important for tracking the complex contours of zebra finch syllables. Previous
studies in this area found a lower range of temporal frequency sensitivities, and a preponderance of
onset units (Sen et al., 2001; Woolley et al. 2005). Our results support findings in other species
showing a broader range of temporal frequency sensitivities and response types in un-anesthetized

animals (Liang and Wang, 2002; Wang 2005).

To examine how coding changes with the distribution of stimulus amplitudes, we altered the
mean and the variance of amplitude modulations in our stimulus. Generating linear-nonlinear models
under three different statistical conditions revealed that changes in mean and variance led to distinct
types of adaptive changes in coding.

The first adaptive change that we described was a remodeling of filter shape that depends on
the mean amplitude of the stimulus. Under low mean conditions neurons act more like low-pass
integrators. As the stimulus mean increases, negative components of the neural filter grow stronger
and decrease in latency, causing neurons to behave more like band-pass differentiators. This
transition could help prevent firing rate saturation at high sound levels. It could also allow cells to
signal effectively over a wider range of stimulus levels. The amplitudes of natural sounds tend to be
similar at nearby points in time (Attias and Schreiner, 1998 , Singh and Theunissen, 2003), so
responding only to changes in amplitude—which are more rare—may be efficient at high signal-to-
noise levels. At low signal-to-noise levels, however, integrating over a longer time can improve the

chance of detecting a quiet sound.
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Several groups (Woolley et al. 2005, Narayan and Sen, 2005) have shown that analyzing songs
with band-pass or differentiating filters allows for better theoretical discrimination of different
individuals’ songs. However, these studies only analyzed songs under high signal-to-noise conditions.
It would be interesting to ask whether low-pass filters permit better song discrimination when songs
are soft or noise is prevalent.

Changes in filter properties similar to those we describe have also been observed in retinal
ganglion cells. At low light intensities, ganglion cells lose their receptive field surrounds and increase
their integration times (Enroth-Cugell and Lennie, 1975). Atick (1992) used information theory to
show how these changes in receptive field structure can maximize information transmission in bright
versus dim conditions. Similar principles should apply to the changes we observe in auditory receptive

field structure when the volume of an auditory signal changes.

The second adaptive change we described was a reduction in gain when the stimulus variance
increased. This reduction in sensitivity allows the cell to match its range of outputs more closely to
its range of inputs. Similar properties have been described in the auditory midbrain (Dean et al, 2005)
and in several areas of the visual system, including the retina (Chander and Chichilnisky, 2001; Baccus
and Meister, 2002), the LGN (Mante et al., 2005), and the fly H1 neuron (Brenner et al. 2000; Fairhall
et al. 2001). In the fly, gain adaptation is proportional to the increase in the standard deviation of a
velocity stimulus. In our system, neurons showed a distribution of variance adaptation. Many cells
showed close to proportional gain adaptation, while some showed weaker adaptation, and a few
showed no adaptation, or adaptation in the opposite direction. The difference between the fly
motion detection system and the songbird auditory system may be related to the number of neurons
involved. In the fly, a single neuron must encode visual motion under all behavioral conditions, while
in the songbird, a population of neurons may allow some specialization for different statistical

regimes.

If changes in filter shape and gain arose through some time-dependent process, we would
expect them to occur slowly after a step change in stimulus statistics. Instead we found that both
these changes occur within 1oomsec of the switch in stimulus statistics. In a few cells (not shown), we
attempted to estimate filters from even shorter time intervals, and found that they changed essentially
within the time scale of the filter--as fast as we could measure them. Fast changes in sensitivity have

also been described in retinal filters (Baccus and Meister, 2002) and in the fly Hr neuron (Brenner et
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al. 2000; Fairhall et al. 2001). This does not rule out the possibility that these changes are due to
adaptive processes operating within a few tens of milliseconds--such as fast adaptation measured in
cortical cells Nowak et al., 2003, McCormick et al., 1985), or fast adaptive processes acting in the
cochlea (LeMasurier and Gillespie, 2005). However, it suggests that the changes we observed may
best be described and modeled as "adaptive nonlinearities" in processing rather than as traditional

time-dependent adaptations (Borst et al, 2005).

The fact that these changes occur so quickly can constrain models of how these properties
might arise. One hypothesis is that the positive and negative peaks in our filters reflect excitatory and
inhibitory inputs, whose latency and relative strength depend differently on the volume of the
stimulus. Dramatic changes in filter shape with mean stimulus amplitude will arise if inhibitory inputs
have a higher threshold than excitatory inputs, and if their gain rises more steeply as a function of
stimulus amplitude. This arrangement of inhibition has been described in several parts of the
ascending auditory system, particularly in type I'V units of the dorsal cochlear nucleus (Nelken and
Young, 1994; Yu and Young, 2000).

Properties related to those we describe have also been seen in the ventral cochlear nucleus.
The temporal modulation transfer functions of VCN chopper units show a transition from low-pass
to band-pass temporal frequency sensitivity with increased stimulus volume (Frisina et al. 1990). In
the inferior colliculus (IC), a similar transition from low-pass to band-pass sensitivity has been
observed (Rees and Moller, 1987, Krishna and Semple, 2000). This transition could arise in the
cochlear nucleus and be filtered to lower frequencies as it is propagated through the ascending
auditory system. Alternatively, it could arise anew at each stage of processing due to inhibitory
interactions like those we hypothesize.

Two other studies in the mammalian IC described properties related to those seen here.
Dean et al. (2005) showed that IC neurons change their rate-level functions depending on the local
distribution of stimulus amplitudes. However, because that study calculated rate-level functions by
directly comparing stimulus amplitude and firing rate, it could not discriminate changes in neural
sensitivity (gain) from changes in feature selectivity (filter shape). Kvale and Schreiner (2003) also saw
small changes in neural gain and filter shape of IC units when the stimulus variance changed, but
contrast to our results, these changes occurred gradually during adaptation. We think it is likely that
the adaptive properties we describe first arise early in the ascending auditory system, but may be

augmented by processing at many stages.
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In addition to the filter and gain changes, we observed a range of slow decays in firing rate
following a change in the mean amplitude of the stimulus, similar to the wide range of decay times
described in auditory cortex by Ulanovsky et al (2004) and by Bartlett and Wang (2005). The rate of
decay was not related to the width of each cell's filter, nor did this decay arise from a change in filter
shape or gain—- because both those changes occurred very quickly. Instead, slow decays appear to be
related to a shift in the setpoint or threshold of firing: as time progresses, a fixed amount is subtracted

from the neuron's response to the same feature.

A striking feature of our results is their similarity to findings in the visual system (e.g. Enroth-
Cugell and Lennie, 1975, Baccus and Meister, 2002)--particularly in the retina, where techniques
similar to ours have been most employed. In both systems, neural filters become more differentiating
as stimulus intensity increases. In both systems, neural gain decreases with increased stimulus
contrast. And in both systems these changes occur rapidly, perhaps within the time scale of filtering,
and independent of slower decays in firing rate. Although the neurons we studied lie at a very
different stage in the sensory hierarchy from these retinal cells, they seem to share common
computational strategies. These may represent solutions to common problems faced by all sensory

systems that must represent a wide dynamic range of signals.

The changes in coding that we describe may help neurons to accurately encode stimulus
characteristics in very different regimes, but they raise problems for current models of encoding and
decoding natural stimuli. For instance, several existing models of primary auditory cortex assume that
spectro-temporal features are encoded by a bank of linear filters (Chi and Shamma, 2005). Models of
complex song-selective neurons in higher areas of the avian brain also assume that the inputs to these
cells are static and largely linear (Margoliash 1983, Lewicki and Konishi, 1995, Drew and Abbott,
2003). In contrast, our study suggests that the inputs to higher-order auditory areas are highly
nonlinear, but change in systematic ways that could be effectively modeled. A model that
incorporates the nonlinearities we describe should not only make better predictions about how
primary neurons respond to complex stimuli like song or faces, but will also be crucial to
understanding how the brain constructs high-level feature detectors such as song- or face-selective

neurons.
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Methods:

Chronic Recording and Electrophysiology

We used chronically implanted microdrives (Hessler and Doupe, 1999) to record single units
from 5 adult male zebra finches. A detailed description of microdrive construction and implantation
are given in that paper. Electrodes (2-3 tungsten electrodes, 4-5 MOhms, MicroProbe Inc,
Gaithersburg, MD) were implanted 1.5 pm lateral (left), and 1.5 pm rostral to the posterior border of
the branch point of the central sinus, at an initial depth of 400 pm.

During recording, the bird was attached to a commutator by a flexible lead and op-amp.
Electrical traces were digitized, amplified (1000x), filtered (300-5000Hz), and recorded using TDT
System 3 hardware (Tucker-Davis Technologies, Alachua, FL) interfaced with custom-written Matlab
software. The electrode bundle was advanced manually in small steps (40-160 microns). Putative
single units were identified on the oscilloscope by their stable spike waveform and clear refractory
period. All spikes were re-sorted offline using a custom-written software window discriminator
(Matlab) based on the similarity of overlaid spike waveforms and on clustering of waveform
projections in a two-dimensional principal component space. Neural recordings were considered
single units if they contained fewer than one violation of 1 msec refractoriness per thousand spikes
after sorting (Supplementary figure 1). Units that responded to auditory stimuli were found at depths
of 1000-2500 pm. Between each recording session, the electrodes were retracted to a position above
where the first auditory units were found.

After the final recordings, histological sections were prepared to confirm that electrode
tracks, and in some cases, marker lesions, were located in field L. Birds were lethally anesthetized and
perfused with saline followed by 4% paraformaldehyde. Alternate 40 micron sections of fixed brain
tissue were Nissl-stained, and labeled for enkephalin (mouse anti-leucine enkephalin monoclonal
antibody, Accurate Chemical & Scientific Corporation), a marker for the nucleus interface (NIf)
which abuts the anterior end of field L2a. All sites were identified to be in field L layers L1, L2, and
very occasionally L3. Although the preferred frequency and linearity of cells varied across these areas
as described in Sen et al (2001), we saw no systematic differences in the sensitivity to stimulus

statistics across layers.
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Stimulus presentation

During recording, the bird was placed inside a small cage (20cm x 20cm floor area) within a
sound-attenuating chamber (Acoustic Systems). The chamber lights were kept off to minimize
movement and birds were monitored using an infra-red camera. Birds generally sat in one corner of
the cage for the duration of the experiment although the commutator permitted free movement
within the cage. Auditory stimuli were presented free-field from a small speaker (Bose) located 50 cm
from the center of the bird's cage. Using a calibrated microphone (B&K) we verified that 250Hz to
10kHz tones designed to play at 8odB appeared at 79.6+/-2.3dB, and that the highest harmonic
distortion peak observed was less than 23.3dB (65.9 +/- 8.7dB SNR).

Stimulus Construction

Although it is likely that field L neurons respond to other parameters of acoustic stimuli
(Elhilali et al. 2004), we designed our stimulus to isolate responses to modulations of the log
amplitude envelope. Recent studies in field L (Gill et al, 2006) and in mammalian inferior colliculus
(Escabi et al, 2003) suggest that modulations of the log envelope drive cells better and are more
linearly encoded than modulations of the linear envelope. Our stimulus consisted of two parts: a
slowly varying envelope with fixed statistics that was repeated exactly in every experiment, and a
rapidly varying carrier that could be adjusted for the frequency preference of each cell.

The log envelope, or “modulation signal” (71(?)), consisted of Gaussian noise filtered to have
an exponential power spectrum, then normalized to have unit standard deviation and zero mean:
@ P(f) = o~/ 1508

To generate a linear voltage envelope ( E()) from the logarithmic modulation signal (71(%)),
we exponentiated it according to:
@  E(t)=1le” x1QMrox oV
where m is the mean amplitude of the stimulus in dB, and s is the standard deviation. When
multiplied by a noise carrier with unit standard deviation, this produces a sound whose local
amplitude in dB is given by
(€)) A(t)=u+0xn(t)

and whose overall RMS amplitude in dB is given by
25



log(10)
4) RMS =u+ ———=0
4 u 20

We presented stimuli with three different statistics: low mean/low variance (30 +/- 6dB S.D.,
RMS = 34dB), low mean/high variance (30 +/- 18dB, RMS = 67dB), and high mean/low variance (63 +/-
6dB, RMS = 67dB). The low mean/high variance and high mean/low variance stimuli were designed to
have the same RMS power. Stimulus statistics changed abruptly every 5 seconds, with the low
mean/low variance condition appearing in between each presentation of low mean/high variance, or
high mean/low variance. A single trial consisted of 400 continuous § second segments, half repeats of
the same segment, and half unique. Repeated and unique segments were randomly distributed
throughout the sequence.

The carrier was a Gaussian noise stimulus, digitally created and filtered online. Upon
encountering a cell, we first determined its frequency preference using broad- (500-8000Hz), and
narrowband (500Hz-wide, 750-7750Hz center frequencies) noise bursts, presented at 6odB SPL. If
broadband noise drove the cell robustly, a broadband carrier was used (n=21/36), otherwise we chose
the narrowband carrier that best drove the cell. At several sites (n = 8) we repeated the experiment
using both a narrowband and a broadband carrier. Changing the carrier altered the precise shape of
the filter, but did not affect our basic findings about changes with mean and variance or the
distribution of filter widths. Because the carrier was varied throughout the experiment, responses to

repeated trials represent the response to the modulation signal, averaged over many carriers.

We used a variation of this stimulus to characterize filters at 30, 40, 50, and 60dB. This
stimulus consisted of unique segments only. All segments had a standard deviation of 5dB, and the

order of statistical conditions was completely randomized.
Extraction of Filters and Nonlinearities

Filters were calculated in the Fourier domain according to:

_<s*(w)r(w) >
O O S o)

where F'(w) is the Fourier transform of the filter, S(w) is the Fourier transform of the normalized

log stimulus envelope 1(?), and r(®) is the Fourier transform of the spike train. The * indicates the

complex conjugate. The numerator in this equation is equal to the spike triggered average, while the
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denominator is equal to the power spectrum of the log stimulus envelope, which by design is
exponential (eq 1). We verified that deviations of the full stimulus power spectrum from this
predicted power spectrum did not significantly impact our calculations (Supplementary figure 2).

In practice, division or decorrelation by the power spectrum results in a noisy estimate of the
filter, because it boosts power in high frequencies that are poorly sampled in n(t). To recover

meaningful filters, we placed an exponential cutoff on F(w), given by

) c(w)=1 for lw | < cutoff

~lo-cutoff /10 for lw | >= cutoff

c(w)=e
The cutoff frequency for each cell was placed where the power spectrum of the raw spike-triggered
average fell below 2 standard deviations of the power spectrum of an average of random spike times.
The highest cutoff across conditions was used for all calculations involving a single cell. Cutoffs
ranged from 23-167Hz.

Filters were considered significant if at least tomsec of the filter lay outside 3 standard
deviations of the random-triggered average. Non-significant filters arose exclusively when the firing
rate during a particular condition was extremely low. All but one cell recorded produced significant
filters under at least two conditions. To estimate the error in our filter calculations, we divided our
spikes into 5 random pools, and calculated separate filters from each. The standard deviation of these

5 estimates are shown as error bars in the figures.

The nonlinearity describes the probability of spiking given a value of filter output:

P(spike | F ® stinm), and was calculated using a Bayesian formula described in Brenner et al, (2000).

P(F & stim | spike) P(spike)
P(F ® stim)

@) P(spike | F ® stim) =

where P(spike) is the mean firing rate over the stimulus condition. P (F ® stim) is the

distribution of the mean-subtracted filtered stimulus, and P(F & stim | spike) is the distribution of
spike-triggered mean-subtracted filtered stimulus segments.

The slope of the nonlinearity depends on the scale of the filter F: if the amplitude of F is

increased, the width of the distribution P (F ® Stim) will also increase, decreasing the slope of the

nonlinearity. We normalized each filter so that the variance of its output was equal to the variance of
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its input (Baccus and Meister, 2001). This ensured that changes we measured in slope were not due to
changes in filter shape. The mean was subtracted from each stimulus prior to calculating the
nonlinearity to minimize a leftward shift due to the decrease in the integral of the filter with increased
mean. To ensure that the nonlinearity was well-sampled, we restricted our analysis to a region from
two standard deviations below the mean of the filtered stimulus distribution, to two standard
deviations above. To measure the reliability of the nonlinearity we performed a jackknife operation,
where 1/5 of the spikes were excluded in each of 5§ estimates of the nonlinearity. Error bars on
nonlinearities shown in figures represent the standard deviation of the jackknife estimate (Sen et al,

2001):

n

® std = n_lz(xj—<xj>)2
j

where n is the number of jackknife estimates, and X ;s the jth estimate of the nonlinearity. To

calculate nonlinearities as a function of time for a single condition, we used the filter obtained by
pooling all data from that condition, as our analysis showed that filters do not change over this time
period.

To predict responses to the repeated modulation signal, we convolved it with the neural
filter, quantized the result, then transformed the quantized signal according to the nonlinearity.
PSTHs were obtained by smoothing the mean spike count per 1 msec bin with an 8msec wide hanning
window. When comparing actual and predicted PSTHs, we omitted the first j5oomsec when mean
firing rates were strongly adapting, as our filters were not designed to capture this response feature.

The quality of the prediction depended strongly on the amount of data recorded.
Analysis of Filters and Nonlinearities

Parameters of filters were defined as follows: The 50% width was the duration in msec over
which the absolute value of the filter was greater than or equal to half its maximum absolute value.
The best modulation frequency (BMF) of a filter was the frequency at which its power spectrum was
maximum. To minimize noise, power spectra were calculated from a segment of each filter, from 25

msec before the absolute value of the filter reached 25% of its maximum, to the time of the spike.
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The ratio of positive to negative filter components (Pos/Neg) was obtained by dividing the sum of all
positive parts of the filter by the absolute value of the sum of all negative parts of the filter. Each
parameter was measured on five estimates of the filter to obtain error bars.

To eliminate sub-threshold and saturation regions from our estimates of nonlinear gain,
values of the nonlinearity slope less than 5% of the maximum gain under any condition were excluded
prior to averaging. To compare gain across conditions, we compared the log ratio of gain under the

two conditions to zero.

Analysis of Decay Times

To estimate the decay time following a change in mean, we fit a single exponential of the

form

9  r(t)=A+ARxe™""

to the unsmoothed PSTH. In this formula, 1(t) is the PSTH, AR is the magnitude of the decay, T is
the decay time constant, and A is the steady state firing rate. Although several decays exhibited
complex transients, we focused our analysis on the final slow decay. To avoid mistakes in fitting

introduced by transients, we fit only a portion of the response:

ob)  r(t, end)=A+ARxe""""

where tj,. was a latency parameter from 1-soomsec. Fits for latency values that did not converge were
excluded. Of the remaining fits, we chose the one that resulted in the smallest mean squared error
between the actual PSTH and the exponential model. A few PSTHs were fit with only a subset of
latency values (n = 4). Decay time constants were considered significant only if they plateaued within
our five second trial (all cells but one), and if they decayed over a range of greater than §Hz (32/35 cells

under high mean, 31/35 cells under low mean).
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Figure Legends

Figure 1

Construction of a stimulus with a power spectrum and amplitude distribution similar to natural

sounds.

The modulation signal (A, top panel) specifies the local amplitude of the stimulus in decibels, and
consists of filtered Gaussian noise with a power spectrum P(f) = exp(-f/50Hz) (A, bottom panel).
Exponentiating the modulation signal creates a linear voltage envelope (B) with an exponential
distribution of amplitudes. The envelope modulates a carrier (C) consisting of narrow or broadband

noise. The stimulus (D) is generated by multiplying together the envelope (B) and the carrier (C).

(E) shows responses of a single unit to 100 repeats of the modulation signal shown in A, each paired
with a different carrier. Each row represents the spike times during one segment repeat. Because the
carrier varied across trials, columns of spikes represent responses to the modulation signal alone.

Response peaks follow peaks in the aligned stimulus example above.

Figure 2

A linear-nonlinear model successfully predicts a large fraction of the response to our stimulus

A and D) Two examples of linear filters derived from the responses of single units to the non-
repeated modulation signals (30dB mean, 6dB variance). The amplitude of each filter is normalized so
that the dot product of the filter with itself is one. Filters thus describe the features that drive each
cell, but not the magnitude of the cell's response. Dashed lines represent the standard deviation of §

independent estimates of each filter's shape.

B and E) Nonlinear gain functions show the relationship between the firing rate of the neuron and

the output of the filters in (A) and (D). The x-axes show the projection of the mean-subtracted
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modulation signal onto each filter and indicate the similarity of the stimulus to the filter. Dotted lines
indicate the standard deviation of five jackknife estimates of the gain function. The flat dashed line in
each nonlinearity plot represents the average spontaneous firing rate of each neuron recorded prior to

stimulus playback.

C and F) Predicted (wide gray) and actual (narrow black) PSTHs of the response to repeated
modulation signal segments. The correlation coefficients between data and prediction were 0.89 for

the cell in (A-C) and 0.67 for the cell in (D-F).

G) Left panel: filters from four different units show a broad range of temporal frequency preferences.
Right panel: distribution of the best modulation frequency (BMF) versus the 50% width of the
absolute value of the filter (50% width) for all significant filters (33 from 36 cells). The four cells

shown in the left-hand plot are indicated by colored boxes.

H) A histogram of correlation coefficients between predicted and actual repeated segments for all the
significant filters (33 out of 36 cells recorded with a 30dB mean and 6dB standard deviation stimulus)
indicates that the linear-nonlinear model performed well. The mean correlation coefficient was 0.64

+/- 0.18 (standard deviation).

Figure 3

Changes in stimulus statistics lead to slow changes in firing rate

A) To explore how coding depends on the statistics of the stimulus, we altered the mean and
standard deviation of the modulation signal every five seconds. Statistical conditions were presented
in a fixed order: low mean/low variance (gray: 30dB +/- 6dB), low mean/high variance (green: 30dB +/-
18dB), low mean/low variance, and high mean/low variance (red: 63dB +/- 6dB). These colors will be

used throughout the paper to indicate responses to each condition.

B) Cells adapt at different rates to a change in mean stimulus amplitude. Top: PSTH of a cell
showing rapid decays after the switch from low to high mean (red: tau = 28 msec) and after the switch

from high to low mean (gray: 56 msec). Bottom: PSTH of a cell showing slow decays. Tau = 574 msec
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for the switch from low to high mean, 730 msec for the switch from high to low mean. PSTHs are

binned in §msec windows. Only the first 2.5 seconds of the response after each switch are shown.

O) Filter width under high mean/low variance versus decay time for both low to high (red) and high to
low (gray) transitions. Filter time scales and decay time scales are poorly correlated (correlation
coefficients = -0.2 for low to high mean and 0.04 for high to low mean.), suggesting that filter width
and decay time represent independent forms of temporal sensitivity. The two example cells are
shown by a blue circle and red square; open symbols represent low to high mean transitions, and filler

symbols represent high to low mean transitions.

Figure 4

Filter shape depends strongly on mean stimulus amplitude.

A-C) Linear filters (left) and their power spectra (right) for three different cells under the low
mean/low variance (gray) and high mean/low variance (red) conditions. For all three cells, the filter
obtained under high mean is narrower and has positive and negative components of more similar size.
Colored dashed lines surrounding each filter represent the standard deviation of 5 different estimates
of the filter (Methods). Black dotted lines at zero represent the time of the spike. Filters are

normalized so that the dot product of each with itself is one.

D) Responses of the unit shown in A to 120msec of the repeated modulation signal (black, bottom
panel) under low mean (gray) and high mean (red) conditions. The stimulus has been shifted forward

by 11 msec, the latency of the peak of the low mean filter, to facilitate comparison.

Figure 5

Population analysis of mean effects on filters

A) Ratio of positive to negative areas of filters (Pos/Neg) from high mean (y-axis) versus low mean (x-

axis) conditions. Most points lie below the dotted line, indicating that negative components of the

filter are larger under the high mean condition. Black circles indicate filters that showed a significant
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change in Pos/Neg between the two conditions (n = 21/28). The mean Pos/Neg ratio across the
population was significantly lower under high mean (0.97 +/- 0.04, se) than under low mean (1.41 +/-
0.11, p = §5.9¢e-4), and was not significantly different from one (black line) at high mean, indicating
balanced positive and negative components. The three example cells shown in figure 4 are indicated

by the pink square (A), blue diamond (B), and yellow triangle (C).

B) BMF under high mean/low variance (y-axis) versus low mean/low variance (x-axis) conditions. Most
points lie above the dotted diagonal line, indicating higher BMF under the high mean/low variance
condition. Black circles indicate significant changes (n = 16/28). Example cells are indicated by the

filled symbols.

O) Filters derived from data with the same mean make much better predictions (y-axis) than filters
from data with a different mean (x-axis). Red dots indicate correlation coefficients between data and
predictions based on high mean filters (mean correlation coefficient = 0.59 +/- 0.03 (se) for same
statistics, 0.03 +/- 0.07 for different statistics, p = 4.0e-9). Gray dots indicate correlation coefficients
between data and predictions based on low mean filters (mean correlation coefficient = 0.66 +/- 0.03
for same statistics, 0.08 +/- 0.07 for different statistics, p = 2.3e-10). Data for the example cells are

indicated by open (high mean filter predictions) and filled (low mean filter predictions) symbols.

D-E) Linear filters for two cells at four different mean levels: 30dB (gray), 40dB (brown), 50dB
(yellow), and 60dB (red), with a standard deviation 5dB. As the stimulus mean increases, the negative
component of each filter grows larger and decreases in latency, leading to substantial changes in filter

shape.

Figure 6

Unlike a change in mean, a change in variance does not lead to significant changes in filter shape.

A) Linear filters for the cell shown in figure 4A under low mean/low variance (gray) and low

mean/high variance (green) conditions. The increase in variance has no significant effect on filter

shape.
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B) The balance of positive and negative components across the population shows no systematic
change with variance. Ratio of positive to negative areas in filters derived under low mean/high
variance (y-axis) versus low mean/low variance (x-axis) conditions. Black circles indicate filters that
showed a significant change in Pos/Neg between the two conditions (n = 15/32). The mean population
ratio of positive to negative areas was not significantly different between high variance (1.53 +/~ 0.15 se)
and low variance (1.43 +/- 0.10) conditions (p = 0.20). The example cell shown in (A) is indicated by a

red square.

C) Best modulation frequencies across the population do not change significantly with variance.
BMF under low mean/high variance (y-axis) versus low mean/low variance (x-axis) conditions. Black

circles indicate significant changes (n = 4/32). The example cell is indicated by a red square.

D) Filters derived from low variance and high variance conditions make similar predictions. Green
dots indicate correlation coefficients between data and predictions based on high variance filters
(mean correlation coefficient = 0.54 +/- 0.03 (se) for same statistics, 0.56 +/- 0.03 for different
statistics, p = 0.41). Black dots indicate correlation coefficients between data and predictions based
on low variance filters (mean correlation coefficient = 0.66 +/- 0.03 for same statistics, 0.52 +/- 0.03 for
different statistics, p = 6.5e-8). Data for the example cell are indicated by open (high variance filter

prediction) and filled (low variance filter prediction) squares.

Figure 7

Effects of Mean and Variance on Nonlinearities

A-B) Nonlinearities for two cells, calculated under three conditions: low mean/low variance (gray),
high mean/low variance (red), and low mean/high variance (green). An increase in mean increases gain
in one cell (B) and decreases it in the other (A). An increase in variance decreases gain in both cells.
Colored dotted lines represent the standard deviation of 5 jackknife estimates of the nonlinearity (see

Methods). The black dashed lines represent the spontaneous firing rates of each cell.

C) An increase in mean produced no net change in gain across the population. Nonlinear gain (Hz/

normalized stimulus projection) under high mean/low variance (y-axis) versus low mean/low variance
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(x-axis) conditions. The dotted diagonal line indicates no change. The red line represents the average

population ratio of 1.17. It is not significantly different from one (p = 0.32).

D) An increase in variance produced a systematic decrease in gain across the population. Nonlinear
gain under low mean/high variance (y-axis) versus low mean/low variance (x-axis) conditions. The
green line represents the average population ratio of 0.58. It is significantly less than one (p = 3.7e-5).
The dashed blue line represents a decrease in gain proportional to the increase in the standard

deviation.

E) Distribution of adaptation scores (see Methods) for all cells comparing low mean/low variance
(gray) to low mean/high variance (green, n = 32). An adaptation score of 1 indicates that gain under
high variance was exactly 1/3 of gain under low variance. o indicates no change in gain between

conditions.

Figure 8

Changes in filter shape and gain both occur within roomsec of a change in stimulus statistics.

A) An example of rapid filter change. Top: PSTHs showing the mean firing rate of a single cell

around the switch from low to high mean. Black: last 500 msec of low mean. Purple: first 100 msec
of high mean. Gray: last 500 msec of the high mean. Bottom: Filters derived from each of the three
epochs shown above. The filter derived from the first 100 msec of high mean (purple) resembles the
filter from the last 500 msec of high mean (gray) much more than it does the filter from the last 500

msec of low mean(black).

B) Comparisons of filter similarity across the population. First column: average correlation
coefficient between filters derived from the first toomsec and last soomsec of the same condition
(red: high mean, 0.20 +/- 0.03; gray: low mean, 0.14 +/- 0.04). Second column: average correlation
coefficient between filters derived from the first toomsec of one condition, and from the last
soomsec of the previous condition (red: low mean to high mean transitions, -0.03 +/- 0.03; gray: high
mean to low mean transitions, -0.04 +/- 0.03). Correlation coefficients between early and previous

filters were significantly smaller than those between early and late filters (p = 3.0e-5 for high mean, p =
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1.3¢-3 for low mean). Third column: average correlation coefficient between filters derived from two
1oomsec epochs at the end of the same condition (red: high mean, 0.22 +/- 0.03; gray: low mean, 0.19
+/- 0.04). Correlation coefficients between early and late filters were not significantly different from
those between two late filters (p = 0.33 for high mean, p = 0.15 for low mean). These data indicate that
filters from the first toomsec after the switch were significantly different from filters under the
previous condition, but were no more different from the fully adapted filters than two fully adapted

filters were from each other.

C) An example of rapid change in nonlinear gain. Top: PSTH showing the mean firing rate of a
single cell around the switch from low variance to high variance. Black: last soomsec of low variance.
Purple: first toomsec of high variance. Gray: last 50omsec of high variance. Bottom: Nonlinearities
derived from each epoch after the switch from low variance to high variance. The nonlinearity
derived from the first toomsec and last 5oomsec of high variance (gray) both have a lower gain than

the low variance nonlinearity (black).

D) Rapid gain adaptation is evident in responses to repeated trials. PSTH of the response of the
neuron in (C) to the first 280 msec after the switch from low to high variance (green), and after the
switch from high to low variance (gray). The peaks are approximately the same within 50 msec after
the switch, indicating that the cell is already compensating for the difference in the magnitude of

stimulus fluctuations.

E) Slow decays in firing rate represent shifts in the nonlinearity. Nonlinearities from different epochs
after the switch from low to high mean. Black: 500 msec preceding the switch. Purple: o-100 msec
after the switch. Violet: 200-300 msec after the switch. Light blue: 400-500 msec after the switch.
Gray: last 500 msec of the high mean response. Immediately after the switch from low mean to high

mean, the nonlinearity shifts up and to the left, then moves slowly back down and to the right.
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Chapter 2: Spectro-Temporal Encoding in the Songbird Auditory Forebrain

Abstract:

How are complex sounds decomposed by the auditory system and what cellular properties
underlie this decomposition? Using a synthetic broadband stimulus that shares many properties of
natural sounds, we measured spectro-temporal receptive fields (STRFs) of auditory neurons in the
avian primary auditory area field L. We found three classes of STRFs: those narrowly tuned for
spectral modulations, those narrowly tuned for temporal modulations, and those narrowly tuned in
both domains. Cells tuned for fast and slow temporal modulations differed in their firing rate, spike
shape, and anatomical distribution, suggesting that cells with distinct electrical or morphological
properties may give rise to different response types. Finally, we studied how the shape of each STRF
depended on the intensity of the stimulus. At low intensities, STRFs were dominated by single
positive peaks, while at high intensities, stronger negative regions gave each STRF type greater
sensitivity to specific spectral, temporal, or spectro-temporal modulations respectively. These data
link the response properties of auditory neurons to the distribution of energy in natural sounds, and
to biophysical differences between cell types. They suggest that response properties depend in

systematic ways on the amplitude of the stimulus.

Introduction:

Understanding how complex stimuli are decomposed and represented by populations of
neurons is a central goal of sensory neuroscience. In visual cortex, cells are tuned to orientation, and
have response properties that depend on their spatial position within a column (Hubel and Wiesel,
1962, 1963, 1974). In the auditory brainstem, parallel pathways encode the timing, intensity, and
frequency of incoming sounds in ways that depend on the electrical, synaptic, and morphological
properties of different cell populations (Rhode and Smith, 1983, 1987; Spirou et al, 1990; Smith et al,
1991; Oertel 1991, Takahashi and Konishi, 1984, Sullivan and Konishi, 1984, Sullivan 1985).

At higher levels of the auditory system, the organizing principles are less clear. Until
recently, responses to different sound frequencies and responses to slow amplitude modulations in
time were generally studied separately (Phillips and Irvine, 1981; Phillips and Hall, 1987; Schreiner et
al, 1992; Achreiner et al, 1997; Lu et al, 2001; Liang et al, 2002; Barbour and Wang, 2003). More
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recently, reverse correlation approaches have made it possible to measure spectral and temporal
response properties together (Miller et al, 2002; Depireux et al, 2001; Kowalski et al, 1996, 1997,
Theunissen et al, 2000; Sen et al, 2001; Woolley et al, 2005, 2006). While such studies have begun to
identify differences in auditory selectivity between areas (Sen et al, 2001; Miller et al, 2002; Linden et
al, 2003), they have chiefly revealed a diversity of response types, and few clear links between response
properties, cellular properties, and anatomy have emerged.

The songbird provides an excellent model system to study the neural representation of
complex sounds. Songbirds produce and perceive complex learned sounds that share many acoustic
features with human speech (Singh and Theunissen, 2002). The songbird forebrain contains a primary
auditory area known as field L that is analogous to the primary auditory cortex of mammals, and forms
the gateway for auditory information to reach forebrain areas involved in song production and
recognition (Wild et al, 1993; Fortune and Margoliash, 1995). Studies using simple tone stimuli have
identified multiple tonotopic maps in the field L complex (Scheich et al, 1979; Heil et al, 1985; Gehr et
al, 1999, Terleph et al, 1996), while anatomical studies have identified 3 layers (L1,2, and 3) that differ
in their connectivity and cyto-architecture (Fortune and Margoliash, 1992). Recent studies have
compared the aggregate response properties across field L layers (Sen et al, 2001), and between field L
and surrounding auditory regions (Woolley et al, 2005, 2006), but have not described the distribution
of single cell responses in detail, nor linked these response properties to different cell types.

In this study, we used a rich synthetic stimulus to measure spectro-temporal receptive fields
(STRFs) in field L of unanesthetized animals. We found three classes of STRFs--spectral, temporal,
and spectro-temporal-- that tile a space of modulations similar to those found in natural sounds. Cells
giving rise to fast temporal and spectro-temporal STRFs had distinct physiology from those giving rise
to spectral STRFs, and were localized to a different region of field L. Finally, we measured STRF's
from the same cells at different stimulus intensities, and found that common nonlinearities—increases
in the magnitude and decreases in the latency of negative or inhibitory regions-- allowed STRFs of
different types to become more specialized for their preferred type of modulation at higher stimulus
intensities. These data suggest the the response properties of field L neurons are organized around
the types of modulations prevalent in natural stimuli, and provide a unifying account of how those

response properties depend on stimulus intensity.
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Results:

Stimulus Design

We designed our stimulus to sample a range of natural time and frequency combinations
without imposing the higher order structure of song. The stimulus consisted of 32 logarithmically
spaced frequency bands (figure 1A, column 1), each modulated by a different time-varying amplitude
envelope (column 2), then summed to produce the final signal (column 3). The envelopes were
designed such that the log amplitude of each band was a random Gaussian noise signal with an
exponential distribution of frequencies. Envelopes were statistically identical to those used in a
previous experiment (Nagel and Doupe, 2006). Frequency bands were gaussian in log-frequency and
overlapped by one standard deviation. Full details of the stimulus construction are given in the
Methods.

As aresult of its construction, the frequency content of our stimulus varied randomly and
smoothly in time. Nearby frequencies were generally elevated or depressed together, and remained
high or low over a period of a few milliseconds. This can be seen in the spectrogram of the stimulus
(3rd column, 2nd panel) which shows the intensity of sound at each frequency as a function of time.
Frequency peaks in the stimulus are broader and last longer than those in the white noise spectrogram
below it. Local correlations like those in our stimulus are found in most natural sounds, including
song, speech, and environmental noise (Singh and Theunissen, 2003). They enabled our stimulus to
drive our neurons more effectively and reliably than white noise (data not shown).

The correlations in the stimulus can be quantified by plotting its modulation spectrum
(figure2B, left). This heat map shows the energy in the stimulus as a function of temporal and spectral
frequency. Energy along the x-axis represents temporal modulations, such as sharp onsets or offsets in
the overall sound level. Energy along the y-axis represents spectral modulations such as harmonic
frequency combinations. Energy off the axes represents joint spectro-temporal modulations, such as
upward and downward frequency sweeps. Asymmetry between the two halves would indicate that
upward or downward sweeps predominated in the stimulus, while the symmetric distribution seen
here indicates that they were equally likely. Although our stimulus is dominated by low spectral and
temporal modulation frequencies, it contains small amounts of energy at higher frequencies. These
high frequency tails can be seen most clearly in marginal distributions (figure 1C) that show energy in

the stimulus as a function of temporal or spectral frequency alone.
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The distribution of energy in our synthetic stimulus shared many features with the statistics
of natural sounds. Like our stimulus, most natural sounds have the most energy at low spectral and
temporal modulation frequencies, with a long tail of higher frequencies. Temporal and spectral
modulation spectra for these sounds can be approximated by a power law (Singh and Theunissen,
2003). In contrast to our stimulus, the energy in zebra finch song and speech is more tightly
concentrated along the x and y axes of the 2-dimensional modulation spectrum plot (Singh and
Theunissen, 2003), indicating that they consist largely of pure spectral modulations (such as the
harmonic combinations found in vowels) and pure temporal modulations (such as the broadband
amplitude modulations found in consonants).

In contrast to song or speech, our stimulus contained no higher order structure or
correlations. This ensured that the influence of stimulus correlations on STRFs could be removed by
"decorrelating" them (see Methods), and that our STRF estimates were not biased by higher order
stimulus correlations (Sen et al, 2001; Machens et al, 2004; Ringach et al, 2002; Sharpee et al 2004,
2000).

We played our stimulus at two average intensities: 63dB and 30dB, which alternated
continuously every five seconds for 33 minutes. We discuss results obtained with the higher intensity

stimulus first, and compare results from the two different intensity conditions at the end of the paper.

Types of STRFs

Using our 63dB stimulus, we were able to obtain robust estimates of spectro-temporal
receptive fields for neurons in field L. Although the shapes of these STRFs were diverse, several
patterns emerged repeatedly. Examples of the three most common patterns are shown in figure 2.

Figure 2A shows a cell that is primarily selective for temporal modulations. Its positive and
negative subfields are arranged sequentially in time, and the highest positive peak extends over 0.6
octaves in frequency (50% width). Due to this arrangement of subfields, the power in this filter is
concentrated at high temporal frequencies and low spectral frequencies. This is reflected in its
modulation spectrum (2nd column) where energy is concentrated along the x-axis. The slightly
asymmetric distribution of energy between the two halves of the modulation spectrum indicates that
the STREF is slightly oriented in time-frequency space, and responds more vigorously to downward

than to upward sweeps.
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In keeping with its sensitivity to fast temporal modulations, the PSTH of this cell's response
to repeated trials (third row, black line) shows rapid fluctuations over a 100 millisecond interval.
Many of these peaks are captured by the STRF model (red line). The correlation coefficient between
PSTH and prediction for this cell was 0.48, just below the population mean of 0.51 +/- 0.14 (sd). Data
used to fit the STRF were kept separate from the data used to generate the PSTH, ensuring that
these correlations were not due to overfitting. As shown in supplementary figure 2A, the quality of
the prediction was highly dependent on the amount of data collected.

Figure 2B shows an example of a cell that is primarily sensitive to spectral modulations. It
has a single long positive peak flanked by negative sidebands, and extends over 13.4 msec in time, but
is constrained to less than 0.3 octaves in frequency. Its modulation spectrum shows energy
concentrated along the y-axis, at high spectral frequencies and low temporal frequencies. It
responded much more sparsely to the stimulus than the first cell, with a single broad burst of spikes
after a long silent interval.

Figure 2C shows a cell that is sensitive to both spectral and temporal modulations. It has a
single central positive peak, 3.3 msec wide in time, and 0.3 octaves wide in frequency. This central
peak is flanked by prominent negative sidebands in frequency, giving the cell strong sensitivity to
spectral modulations. However, the STRF also contains small but significant positive regions flanking
the negative sidebands in time, which give the cell some sensitivity to temporal modulations.

This sensitivity to both spectral and temporal modulations is reflected in the cell's
modulation spectrum, which shows energy along diagonals away from the axes. The energy peaks
along the x-axis arise because of the very profound negative sidebands in frequency, which give rise to
a DC component in spectral frequency. (See supplementary figure 2B for a schematic of the
relationship between a filter waveform and its power spectrum.) A second cell of the same type
(figure 2D) is more spectrally oriented, and has energy concentrated closer to the y-axis. Both cells
have relatively symmetric modulation spectra reflecting relatively un-oriented STRFs. Like the first
cell, these two also responded to repeated stimulus segments with fast fluctuations in firing rate.
Most such cells had similar short latencies and asymmetric negative sidebands that were stronger and
narrower on the high frequency side and broader and shallower on the low frequency side

(supplementary figure 2C).
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Distribution of STRF shapes

To examine whether these three patterns --temporal, spectro-temporal, and spectral--reflect
the distribution of cell types in our population, we looked at the distribution of cells' preferred
spectral and temporal modulation frequencies. To calculate preferred modulation frequencies, we
first folded and averaged together the two sides of the modulation spectrum, as shown in the top
panel of figure 3A for an example cell. We then averaged across spectral frequencies, or across
temporal frequencies, to compute the marginal distribution of STRF power as a function of temporal
(2nd panel) or spectral (3rd panel) frequency alone. The peaks of these two marginal distributions
were taken as the best temporal modulation frequency (temporal BMF) or best spectral modulation
frequency (spectral BMF). Plotting the best spectral modulation frequency against the best
temporal modulation frequency for each cell in our population (figure 3B, n=72) revealed three classes,
corresponding to three classes of example cells in figure 2. "Temporal" cells along the x axis are
sensitive to high temporal frequencies and low spectral frequencies. These include the example from
figure 2A, indicated by a green square. "Spectral" cells, including the example from figure 2B (blue
square) are distributed along the y-axis and are sensitive to high spectral frequencies but low temporal
frequencies. A third group of points fall along a diagonal between the two axes, and correspond to
cells sensitive to both high spectral and high temporal modulation frequencies. These include the
example from figure 2D indicated by a red square. Cells are relatively uniformly distributed along
each axis, suggesting that the population evenly samples or 'tiles' the space of pure spectral and pure
temporal modulation frequencies. This can also be seen in the marginal distributions at the sides of
the plot which both show a peak of cells with the lowest modulation frequencies, and a flat

distribution of higher modulation frequencies over the range we sampled.

A limitation of this analysis of modulation spectrum peaks is that it does not capture the
behavior of cells like example 2C, which are highly sensitive to spectral modulations, but whose
spectral power spectra peak at o cycles per octave (red circle in figure 3B). A principal components
analysis of the folded modulation spectra allows us to characterize the population distribution of
STRFs based on the overall shape of the spectrum, not just its peak. The first two principal
components are shown in figure 4A. The first principal component (top panel) has a large positive
region along the x-axis and a large negative region along the y-axis. It resembles the difference

between the spectra of a strongly temporal STRF and a strongly spectral STRF, and indicates how
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sensitive the STRF is to temporal versus spectral modulations. The second principal component
resembles the spectrum a spectro-temporal STRF, with a negative region near the origin and a
positive region along the diagonal between the axes. A large projection onto this component
indicates that the STRF is sensitive to both spectral and temporal modulations.

Plotting the projection of each cell's modulation spectrum onto principal component 2 versus
principal component 1 illustrates the distribution of STRF shapes found in our population (figure 4B).
Spectral cells (blue) are concentrated at the left side, with large negative projections onto PCr, and
small projections onto PCz2. Spectro-temporal cells (red) are spread across the top of the triangular
distribution. They have large positive projections onto PC2, and a range of projections onto PCr.
This range of projections corresponds to our observation that spectro-temporal cells range from more
spectral (like the example in figure 2D, red square) to more temporal (like the example in figure 2C,
red circle). Temporal cells (green) are distributed along the right face of the triangle and have a range
of positive projections onto PC1. The PCA plot suggests that cells in field L form a continuum
ranging from purely spectral, through spectro-temporal, to spectral. We divided the PCA plot into
colored regions to help describe and analyze regions that behaved differently on average. Placement
of linear divisions was based on a consideration of both the PCA plot and the location of example
cells (Methods) and is not intended as a strict classification of cell types.

Cells whose modulation spectra fell in different regions of the PCA plot differed in their
latency and distribution of orientations. As shown in figure 4C, spectro-temporal cells had the
shortest latencies to peak, followed by temporal cells, and spectral cells. Temporal cells often had two
significant positive peaks, and their longer latencies arose because the dominant peak was usually the
second. Spectral cells had a wider distribution of latencies.

To examine whether cells showed selectivity for oriented spectro-temporal sweeps, we
calculated the symmetry index (Methods) of the two sides of the modulation spectrum. As shown in
figure 4D, most cells of all types had symmetry indices near zero, indicating that they were largely un-
oriented and justifying our use of folded modulation spectra in the above analyses. However, the
STREF types differed in their range of symmetries. Temporal cells showed the highest spread in
symmetry values (std 0.21), spectro-temporal cells showed intermediate values (std 0.15), while spectral
cells showed the least spread (std 0.07). These data indicate that some cells in field L show sensitivity
to sweeps oriented just off vertical, but that cells sensitive to spectral modulations were generally

unoriented.
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These analyses indicate that 3 patterns we observed are characteristic of 3 ranges of STRF
shapes seen in our population. The population can be loosely divided into cells sensitive to spectral,
spectro-temporal, and spectral modulations, although these may form a continuous distribution, as
suggested by the principal components analysis. Cells sample a range of pure spectral modulation
frequencies, pure temporal modulation frequencies, and symmetric spectro-temporal modulations.
This highly structured distribution of STRF types may be related to the distribution of energy in
natural sounds--including song-- which have most of their energy in pure temporal and pure spectral
modulations. Our finding contrasts with previous studies in both field L (Woolley et al, 2005) and
auditory cortex (Miller et al, 2002), which have suggested that these areas are selective for temporal

modulations but low-pass in the spectral domain.

Physiological Correlates of STRF characteristics

Cells whose STRFs had different temporal response properties showed differences in their
firing rate and spike waveform shape. Figure 5A shows spike waveforms and the distribution of inter-
spike intervals (ISI) for a typical cell with a fast STRF (temporal best modulation frequency = 9o.5Hz).
It has a narrow spike and a short (1 msec) refractory period, and fired at high average rates both
spontaneously (35 Hz) and when driven by our stimulus (104Hz). Figure 5B shows the same data for a
cell with a slow STRF (temporal BMF = 5Hz). Its spike has a much wider second peak, and the ISI
histogram peaks at a longer latency. This cell fired at 6 Hz spontaneously, and at 1oHz on average

when driven by the stimulus.

To examine whether these differences in firing rate and spike shape held at the population
level, we plotted each cell's spontaneous rate and spike width against a measure of its temporal
response speed, the half-width of its STRF in time. Temporal half widths were measured by finding
the peak of the STRF, and measuring the half-width of the temporal cross-section that intersected
the peak (Figure 5C, top panel).

The spontaneous firing rate of a cell was negatively correlated with the temporal half-width
of its STRF (figure 5D, correlation coefficient = -0.64, p = 1.3e-9), indicating that cells with high
spontaneous firing rates gave rise to STRFs with fast time courses, while cells with low spontaneous

firing rates gave rise to STRFs with slow time courses. The correlation between spontaneous firing
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rate and best temporal modulation frequency was also strongly significant (cc = 0.58, p = 1.07¢-7) but
less linear.

To examine this relationship in more detail, we plotted the spontaneous firing rate of each
cell as a function of its position in the PCA space of figure 4B (figure sE). Spectral cells, at the left
hand corner, had uniformly low spontaneous firing rates (< 20Hz). The remaining temporal and
spectro-temporal cells had a range of higher spontaneous firing rates (20-60Hz). The highest
spontaneous firing rates (>50Hz) were seen in cells with large positive projections onto both of the
first two principal components (top right corner) which were sensitive to both high temporal and high

spectral modulation frequencies.

The width of a cell's spike was positively correlated with the temporal half-width of its STRF
(correlation coefficient = 0.66, p = 1.0e-10), indicating that cells with narrow spikes gave rise to fast
STRFs and cells with wide spikes gave rise to slow STRFs. Spike width was measured on the mean
spike over the recording session (5900-374241 waveforms), from the first negative peak to the
subsequent positive peak (figure 5C, bottom panel). The correlation between spike width and
temporal best modulation frequency was -0.54, p = 5.02e-6).

Because the shape of an extracellular spike depends on the distance between the recording
electrode and the cell (, we worried that this relationship could be due to differences in recording
conditions. There was a weak correlation between spike width and spike amplitude in our data (cc =
0.26, p = 0.03), arising from a few units with large narrow or small wide spikes. To verify that the
relationship between spike width and STRF width was not due to recording distance, we plotted only
cells with mean spike amplitudes between 200 and 6oopV (n=62/72). Spike and STRF width were still
strongly correlated In this sub-population (figure 5F, cc = 0.71, p = 4.8e-11), but spike width and spike
amplitude were not (cc = 0.09, p =0.49). There was no significant relationship between spike
amplitude and STRF width (correlation coefficient = -0.14, p = 0.27) within this sub-population.

Finally, we noticed that there was a gap in our distribution of spike widths around 350
microseconds, suggesting two clusters of spike widths. In figure 5§G, we plotted the location in PCA
space of all cells with spikes wider than 350 microseconds. These are mostly concentrated at the left

side, and correspond to spectral STRFs.

Together, these data indicate that cells sensitive to fast temporal modulations (including both

temporal and spectro-temporal cells) have high firing rates and narrow spikes, while cells sensitive to
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slower modulations (spectral cells) have lower firing rates and wider spikes. These data suggest that

fast and slow responses arise from distinct classes of cells.

Anatomical distribution of STRF types

Field L is composed of several sub-regions (Fortune and Margoliash) defined by their
anatomical location and different distributions of cell morphologies. From dorsal to ventral they are
numbered L1, L2, and L3. L2 receives thalamic input and is reciprocally connected to areas L1 and L3.
L2 can be further subdivided into Lza, a thin sheet that bisects field L from ventro-rostral to dorso-
caudal, and L2b, a more diffuse area located dorsal and posterior to L2a.

To examine whether different STRF types were localized to different regions of field L we
performed multi-unit mapping studies in 3 head fixed birds sedated with diazepam. In each
experiment, we advanced a four-electrode linear array in steps of 100 microns through the field L
complex, and recorded single or multi-unit responses to our stimulus on all channels at each depth.
At the end of the recording session, we made marker lesions and sacrificed the bird. We prepared
sagital sections of each brain, and stained alternate sections with nissl and with an antibody against
the cannabinoid receptor CBr that selectively labels the input area L2 (Soderstrom et al, 2004).

Figure 6A shows CB1 and nissl-stained sections through one bird. Area L2 can be seen as a
dark-staining area in the CBr section, and as a region of densely-packed cells surrounding the lighter-
staining input fibers in the nissl section (white arrows). The tracks of the four electrodes can be seen
intersecting L2 obliquely as they descend from the dorsal surface of the brain. Marker lesions on
electrode 3 were made at 1000, 1300, and 2200 microns from the surface.

Figure 6B shows the best modulation frequency of raw spike-triggered averages calculated
from sorted single- or multi-unit activity at each depth. Cells with high best modulation frequencies
(temporal and spectro-temporal cells) were constrained to a narrow region of each penetration, that--
like area L2-- traverses the penetration field from ventro-rostral to dorso-caudal, and is more diffuse
on the posterior side. Pink arrow show the depths of the marker lesions on electrode 3, and support
the localization of faster cells to area L2. Cells with low best modulation frequencies (spectral cells)
were found throughout the penetration but were more common above and below the region of fast
cells.

Localization of cells with fast response properties to L2 was seen in three additional mapping

sessions from two birds. Figure 6C shows BMF as a function of distance from the CBi-defined center
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of L2 in each of the three experiments. Data from 3-4 electrodes are plotted on each axis, and aligned
so that zero represents the center of L2. Cells with higher best modulation frequencies are
concentrated near L2, while those sensitive to slower features are located above and below it. Raw
spike-triggered averages at the far right are taken from the last mapping experiment. They illustrate
that robust tuning and changes with depth could be observed using multi-unit recording without
decorrelation. Data from the chronically recorded birds show a similar localization pattern, with
narrow-spiking cells sensitive to fast modulations generally concentrated in one region of the
penetration (supplementary figure 3).

In these experiments we used two different stimulus configurations to try to estimate STRFs
well in a short amount of time. One stimulus--also used in the chronic experiments-- had modulation
envelopes filtered so power was proportional to 1/50Hz. A second stimulus was identical except that
modulation envelopes were filtered so power was proportional to 1/20Hz. We found this slower
stimulus to be useful in obtaining robust estimates of slower STRFs from a smaller number of spikes.
Examples of STRFs from the same site estimated with both stimuli are shown in supplementary figure
4. STRFs estimated with the slower stimulus were generally smoother and less noisy but otherwise
did not differ significantly from those estimated with the faster stimulus. In figures 6B-6E, blue dots
represent STRFs estimated with the 50Hz stimulus, and gray dots represent STRF's estimated with
the 20Hz stimulus. In three of these experiments (figures 6B, 6D and 6E), a single stimulus condition
was used; each experiment shows that fast (high best modulation frequency) STRFs are localized to
Lz2. In a single experiment (figure 6C), we used different stimulus conditions at different depths.
However, STRFs recorded with the 50Hz stimulus alone (blue dots) are sufficient to show that fast

STRFs are localized to field La.

Together, these data indicate that cells with long integration times are concentrated in the L1

and L3 regions of field L. Cells with short integration times are mostly localized to field Lza.

STRF changes with stimulus intensity

In a previous study of temporal receptive fields (Nagel and Doupe, 2006), we found that cells
in field L showed systematic changes in the shapes of their receptive fields in response to a change in
the mean stimulus amplitude. Specifically, at higher mean intensities, the negative parts of the

receptive fields grew larger and decreased in latency, causing the cells to become more sensitive to
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changes in stimulus amplitude. These changes occurred rapidly after a change in stimulus statistics,
suggesting that they represent nonlinearities in the neural response rather than time-dependent
adaptations. To ask whether spectro-temporal receptive fields would show related nonlinearities, we
compared STRFs obtained from responses to the same stimulus played in an interleaved fashion at

63dB and at 30dB.

Figure 7A and B shows STRFs obtained from the same spectro-temporal cell with two
different stimulus intensities. At 30dB (figure 7A), the STRF has a single large positive peak flanked
by shallow negative regions on all sides. The negative regions that flank the positive peak in spectrum
lag the peak in time. At 63dB (figure 7B), the negative spectral sidebands have grown deeper and
shifted forward in time relative to the positive peak. In addition, small positive peaks have appeared
flanking these negative sidebands in time.

These changes can be seen more clearly in temporal and spectral cross-sections through the
peak of the low intensity STRF (figures 7C and 7D). The temporal cross-section (figure 7C) illustrates
that the 63dB STRF (red) is narrower and shifted forward in time relative to the 30dB STRF (blue).
The spectral cross-section (figure 7D) reveals that the negative sidebands are much more prominent in
the 63dB STRF (red), than in the 30dB STRF (blue). Dashed lines in these two plots represent the
standard deviation of five jackknife estimates of the STRF (see Methods).

The consequences of these changes in STRF shape can be seen in rasters of the neuron's
response to repeated trials of the same stimulus at the two intensities (figure 6E and 6F). The cell
responds robustly in both conditions, with peaks of equal magnitude, indicating that the difference in
the two STRFs is not simply due to reduced spiking at 30B. In addition, although some peaks--such
as the first two-- occur in both responses, they occur at a shorter latency in response to the 63dB
stimulus, while other peaks are entirely different between the two conditions. These data indicate
that subtle changes in the strength and relative latency of STRF peaks are associated with dramatic
changes in the neural response to the same stimulus at different intensities. Similar changes were

observed for most spectro-temporal cells, as quantified in the next section.

Figure 7F shows changes typical of a temporal cell. At 30dB (top left panel), this cell's STRF
has a single positive peak that is narrow in time but elongated in frequency. A large weak negative
region follows this ridge in time. At 63dB (bottom left panel), it has two significant positive peaks

divided by a strong negative region. This dramatic temporal phase change can also be seen in the
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temporal cross-sections (top right panel) through the peak of the 30dB STRF (top right panel). Ina
previous experiment, we observed very similar phase changes in purely temporal receptive fields
(Nagel and Doupe, 2006). There we used several different stimulus intensities (30 40 50 and 60dB) to
show that the negative part of the filter gradually increased in magnitude and decreased in latency
with increasing stimulus intensity. Similar mechanisms are likely to underlie the nonlinearity
observed here.

‘While most temporally organized STRFs showed temporal phase changes with intensity,
changes in the spectral domain were inconsistent across these cells. Some, like this example, became
somewhat more narrowly tuned at high mean. Others became more broadly tuned, or showed a shift

in their preferred frequency.

Figure 7G shows changes in a cell tuned for spectral modulations. At 30dB (top left panel),
the STRF consists mostly of a positive peak that is narrow in frequency but extended in time. It is
flanked by a weak negative region that is more prominent on the high frequency side. At 63dB
(bottom left panel), the main positive peak grows narrower in time (top right panel), the negative
sidebands increase in depth, and an additional positive peak appears above the preferred frequency
(bottom panels).

The error bars on the estimates of spectral STRFs were generally much larger than those for
other STRF types, due to their significantly lower firing rates (figure 5D). Despite recording them for
longer (2-4 runs through the entire stimulus), we were able to obtain fewer spikes from these cells
(mean 2500 spikes per condition for spectral cells, 11000 for temporal cells, and 17000 for spectro-
temporal cells). Changes in these STRF's therefore appear to be less significant (figure G, right hand
panels), although they are broadly similar to changes observed in other STRF types (stronger negative
regions, narrower temporal responses, more significant positive peaks). To quantify the amount of
nonlinearity in a way that does not depend on estimating the STRF, we compared the PSTH of the
cell's response to the same stimulus segment played at the two intensities. If the cell behaves linearly,
this correlation coefficient should be high, since the responses should differ only by a scaling factor.
If the cell behaves nonlinearly, the patterns of response to the same stimulus will differ and the
correlation coefficients will be low. The mean correlation between PSTHs for spectral cells (0.34 +/-
0.19) was not significantly greater than the mean for spectro-temporal cells (0.35 +/- 0.11), which
showed highly significant changes in STRF shape. These data suggest that all cell types showed

significant nonlinearities with stimulus intensity.
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Population Analysis of Intensity Nonlinearities

To quantify changes in STRF shape across our population, we fit the STRFs in each
condition to a bi-variate mexican hat model (Methods). This model generates a synthetic STRF
composed of a Gaussian function multiplied by a quadratic function in time and spectrum. The
model has seven parameters: an overall scale, a latency, a best frequency, a temporal and a spectral
width term, and two parameters that we call alpha and beta, which control the depth of the sidebands
in time and in frequency respectively. We chose this model because it is flexible enough to fit STRFs
sensitive to purely temporal and purely spectral modulations, as well as STRFs sensitive to both
(figure 8A). In addition, sensitivity to spectral and temporal modulations are each governed by a
single parameter, the alpha and beta coefficients on the quadratic terms. By comparing the fits of
these two parameters to the low and high intensity STRFs, we can ask whether cells show changes in

sensitivity to spectral and/or temporal modulations.

Figure 8B shows examples of fits of the model to the example STRFs. Qualitatively, the
model is able to capture several aspects of each STRF, including its preferred frequency and latency,
its widths in spectrum and time, and its selectivity for spectral,temporal, or both spectral and
temporal modulations. Supplementary figure 5 shows the distribution of these parameters obtained
from model fits, along with estimates of these parameters obtain by directly measuring the STRFs.
The two distributions show good agreement. These examples also illustrate some limits of the model:
because the model can produce only three peaks in each dimension, it cannot capture the additional
peaks in the spectral STRF. The temporal STRF with two positive peaks can only be fit by changing
the sign of the scaling term. The version of the model we used contains no orientation or asymmetry
terms, making it unable to capture the subtle orientation of the temporal STRF, or the asymmetries
of the spectro-temporal STRF. These terms can be added to the model to produce more accurate
fits. However, because these parameters did not show consistent changes between conditions, we
chose to omit them to simplify our fitting procedure.

Figure 8C shows the distribution of the parameter beta controlling the depth of spectral
sidebands at 30 versus 63dB. Many cells have values of alpha close to zero under one or more

conditions, indicating that they do not show much sensitivity to spectral modulations. Of the
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remaining cells, 25 cells show a significant increase in beta with an increase in stimulus intensity, while
4 show a significant decrease. Overall, values of beta were higher at 63dB than at 30dB (p = 6.6e-7).
Figure 8D shows the PCA location of cells that showed a significant increase in beta. They include
most of the spectro-temporal cells and a fraction of the spectral cells.

Figure 8E shows the distribution of the parameter alpha controlling the depth of temporal
sidebands, at 30 versus 63dB. 20 showed a significant increase in alpha at 63dB versus 30dB, while
only 5 showed a significant decrease. Across the population, values of alpha were significantly higher
at 63dB than at 30dB (p = 3.5e-8). These data suggest that as a population, cells tend to become more
sensitive to temporal modulations at higher intensities Figure 8F shows the location of cells that
showed a significant increase in alpha in PCA space (dark green squares). These cells include most of
the spectro-temporal cells, and a substantial fraction of the temporal cells.

As described above, many temporal cells showed a dramatic change in temporal phase with
stimulus intensity, with one significant positive peak at 30dB, and two significant positive peaks at
63dB. In the context of our model, such phase changes appear as a change in the sign of the scaling
term from positive (producing one positive peak and two negative peaks) to negative (producing one
negative peak and two positives). Cells that show such a change in sign are indicated by light green
circles in figure 8F. These data indicate that nearly all temporal cells show either an increase in the

depth of temporal sidebands, or a phase change, when the stimulus intensity increases.

Together these data indicate that STRFs, like purely temporal receptive fields, show
significant nonlinearities with stimulus intensity. Spectro-temporal cells show significant deepening
of both spectral and temporal sidebands at 63dB versus 30dB. Temporal cells show either deeper
temporal sidebands, or a phase change, or both at 63dB. Many spectral cells show deeper spectral
sidebands at 63dB. At low intensities, STRFs are dominated by a single peak and sideband peaks are
reduced in magnitude. At higher mean intensities, sidebands become more prominent, making cells
more selective for particular spectral and temporal modulations. These data suggest that at the low
stimulus intensities, cells act more like detectors, responding to the presence of their preferred
frequencies, regardless of what other sounds are nearby. At higher intensities cells become more

specialized for their particular kind of modulations.
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Discussion:

Using a stimulus that shares many properties of natural sounds, we mapped the spectro-
temporal receptive fields (STRFs) of neurons in the primary auditory area field L of awake zebra
finches. We found a highly structured distribution of STRFs, with most cells specializing in either
temporal or spectral processing; a third population was highly tuned in both these domains. We
related these different response properties to differences in the spike shape, spontaneous firing rate,
and anatomical distribution of the cells that produced them, suggesting that cells are morphologically
and biophysically specialized for spectral versus temporal processing, and that these two types of
processing are anatomically segregated in the zebra finch forebrain. Finally, we explored how STRF
shapes depended on the intensity of the stimulus. We found that each STRF type became more
sensitive to its preferred type of modulation when the stimulus intensity was high, and behaved more
like a low-pass detector when the stimulus was soft. We discuss each of these three findings in detail

below.

Distribution of STRF Types

We found that STRFs of neurons in field L can be roughly divided into three classes: STRFs
that are primarily sensitive to temporal modulations (temporal cells), STRFs that are primarily tuned
for spectral modulations (spectral cells), and STRFs tightly tuned in both spectrum and time (spectro-
temporal cells). Within each class neurons showed a distribution of properties. Temporal cells were
insensitive to spectral modulations but evenly spanned the range of temporal modulations (o-150Hz).
Spectral cells were insensitive to temporal modulations but evenly spanned the space of possible
spectral modulations (o-2 cycles per octave). Spectro-temporal cells were centered at many best
frequencies, but shared a similar latency and receptive field structure, with a compact central positive
peak flanked by asymmetric negative regions. Spectro-temporal cells varied from mostly temporal--
with energy concentrated near the temporal axis of the modulation spectrum plot-- to mostly spectral,
but were generally symmetric in time-frequency space, indicating that they did not differentially
respond to upward versus downward frequency sweeps. Strongly oriented sweep-selective cells, and
broadly tuned cells that would act as overall sound level detectors, were largely absent from our
population. This distribution of response properties may be related to the structure of many natural

sounds—including both zebra finch song and speech-- which are dominated by purely temporal and
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purely spectral modulations, and contain comparatively few strongly oriented spectro-temporal
modulations (Singh and Theunissen, 2002, Woolley et al, 2005).

While our data agree broadly with previous studies of the distribution of STRF types in field
L or mammalian auditory cortex, they differ in several important respects. Woolley et al (2005)
calculated the average modulation spectra across field L neurons, and compared this ensemble
modulation spectrum to the distribution of energy found in song. They concluded that field L was
band-pass in the temporal domain but low-pass in the spectral domain. By looking at the distribution
of individual cell types, rather than aggregate measures, we found that separate populations of
temporal and spectral cells were tuned to modulations in each of these domains, while a third
population was tuned to high frequency modulations in both domains. As in our study, Miller et al
(2002) found that most neurons in anesthetized cat Ar have fairly symmetric modulation spectra,
indicating that they were not selective for oriented frequency sweeps. However, that study found no
systematic relationship between the spectral and temporal tuning properties of A1 neurons, while we
found a strong trade-off between temporal and spectral selectivity. These differences may arise from
the structure of the avian forebrain, which contains many fast-firing cells able to follow rapid
modulations in the stimulus, while the mammalian auditory cortex has generally slower responses
(Miller et al, 2002, Depireux et al, 2001, Lu et al, 2001). They may also arise from differences in
recording conditions. Most previous studies have measured STRFs under pentobarbital anesthesia,
while we recorded from unanesthetized animals. Anesthesia can profoundly influence the temporal
dynamics of cortical auditory responses (Wang et al, 2005). Chi and Shamma (2005) have proposed
that At neurons evenly span a range of time-frequency orientations, similar to the tiling of 2D spatial
orientations in visual cortex. However, the same group reported that A1 neurons show mostly
symmetric tuning properties (Depireux et al, 2000). Together with data from many other studies, our
findings suggest that tiling of pure spectral and temporal modulations, not orientation in time-

frequency space, may be the organizing principle of forebrain auditory sensitivity.

Correlations with Physiology and Anatomy

The second main finding of our study was that cells with different response properties also
differ in their physiology and anatomical distribution. Cells sensitive to fast stimulus modulations,

including both temporal and spectro-temporal cells, had high spontaneous and driven rates, narrow
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spike waveforms, and were located in a restricted region of each penetration. Our multi-unit mapping
study indicated that this restricted region corresponds to the input layers, L2a and L2b. Spectral cells
sensitive to slower stimulus modulations were found throughout the penetration, but were more
prevalent in the flanking regions L1 and L3. These cells had much lower spontaneous and driven rates,
and wider spike waveforms. These data suggest that fast and slow response types may arise from cells
with different morphological or electrical properties, concentrated in different anatomical regions.

Biophysically, narrow spikes and high firing rates can arise from small or electrotonically
compact cells that can repolarize quickly and track rapid fluctuations in their synaptic input. Such
cells may have specialized potassium channels that give them faster kinetics (Martina 1997, 1998;
Chow et al, 1999). Conversely, a large or electrotonically extended cell will have a wider spike and
longer refractory period, leading to lower firing rates, and more low-pass filtering of its input. The
subregions of field L have been shown to differ in their distribution of cell sizes and morphologies
(Fortune and Margoliash, 1992): L2a contains more small and medium bodied cells with compact
dendritic fields. L1 and L3 have more large cell bodies and more medium-bodied cells with extensive
dendritic fields. We therefore hypothesize that temporal and spectro-temporal responses may arise
from smaller cells with more compact dendrites, while spectral responses may arise from larger cells
with dendritic conductances that allow them to integrate inputs over time.

In the auditory brainstem of both mammals and birds, distinct temporal response patterns
have been linked to the distinct morphologies and electrical properties of bushy and stellate cells
(Rhode and Smith, 1983, 1986, Sullivan and Konishi, 1984, Oertel, 1991). These different response
properties are in turn related to different functional roles in encoding phase and intensity information
(Sullivan, 1985; Takahashi et al, 1984, Yin and Chan). Although intracellular recordings and labeling
experiments will be required to definitively link cellular properties to auditory responses in field L,
our data suggest that similar relationships between structure and function exist for auditory neurons
in the avian forebrain.

In the mammalian hippocampus and cortex, narrow extracellular spike waveforms have been
linked to inhibitory interneurons (Henze et al, 2000, Buzsaki and Eidelberg 1982), which have
narrower spike waveforms in intracellular recordings (Buhl et al. 1996; Scharfman 1995; Hasenstaub,
2005) . About 30-40% of neurons in the auditory forebrain are estimated to be GABAergic (Pinaud
et al, 2004, 2007), but physiological differences between inhibitory and excitatory cells in these areas

have not been explored. Due to the density of units with fast responses and narrow spikes in regions
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of our penetration, we think it is unlikely that fast responses arise exclusively from inhibitory neurons,
although this remains an open possibility.

Our data fit with previous studies showing that auditory neurons become tuned for
progressively slower temporal modulations at successive levels of the auditory hierarchy (Creutzfeldt,
0. 1980; Sen et al, 2001; Miller et al, 2002; Linden et al, 2003). In contrast to mammalian systems,
where a large difference in temporal following is seen between IC and cortex (Langer and Schreiner,
1988, Miller et al, 2002), but not between successive cortical stages, we see a sharp distinction
between the input and output layers of the avian primary auditory area. This may indicate that L2a
shares more properties with the mammalian thalamus, as suggested by Las et al (2005).

Several further questions are raised by our finding about the localization of distinct cell types.
First, how can slow spectral cells be built from fast spectro-temporal or temporal cells? If tightly
tuned spectro-temporal cells were found at many latencies, then spectral cells could be built by simply
summing the responses of many fast spectro-temporal cells. Fast cells, however, show uniformly short
latencies (figure 3C), indicating that spectral cells cannot arise from summation alone. An interesting
alternative is that the morphology and electrical properties of spectral cells allows them to low-pass
filter their inputs, and so integrate information over much longer time scales.

A second question raised by this finding is what happens to the fast temporal information
represented by temporal and spectro-temporal cells? Anatomical evidence suggests that higher-order
areas involved in song recognition and production receive input from L1 and L3, but not directly from
L2. Estimating the auditory response properties of these higher-order areas using linear reverse
correlation techniques has proved difficult (Sen et al, 2001; Gentner et al, 2003). It would be
interesting to ask whether sensitivity to fast temporal modulations is preserved in nonlinear responses
of L1/L3 or higher order neurons. This could be done using more complex techniques such as spike-
triggered covariance (STCM, Rust et al, 2005; Touryan et al, 2002, 2005) and the method of most-

informative dimensions (MID, Sharpee et al, 2004,2000).

Nonlinearities in spectro-temporal processing

Our third main finding was that cells with different response properties showed different

nonlinearities with stimulus intensity. At high intensities, spectro-temporal cells showed increases in
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the magnitude of both spectrally-oriented and temporally-oriented negative STRF regions, leading to
increased sensitivity to both spectral and temporal modulations. Temporal cells showed dramatic
changes in temporal phase, with stronger temporally-oriented inhibition, and often two significant
excitatory peaks. Spectral cells showed less dramatic changes between low and high intensity
conditions, but did become more spectrally bandpass at the higher intensity.

In a previous study of temporal response properties, we found that most cells in field L
integrate over longer times at low intensities and become more temporally differentiating at high
intensities (Nagel and Doupe, 2006). We argued that such changes could be adaptive, allowing cells
to become selective for particular temporal modulations when signal-to-noise levels were high, and to
behave more like detectors when signal quality was low. Similar nonlinearities have been described in
retinal ganglion cells, which respond to differences in local light intensity at high contrast, but
integrate over larger spatial regions at low contrast (Enroth-Cugell and Lennie, 1975). The results of
the current study extend these findings, suggesting that cells in field L become more specialized for
particular kinds of temporal and spectral modulations at high intensities, while at low intensities all
behave more like low-pass detectors.

While different cell types show distinct nonlinearities with intensity, many of these changes
could arise through similar mechanisms. Most nonlinearities we observed seem to arise from an
increase in the relative strength, and decrease in the relative latency, of negative regions of the STRF.
This leads to subtle changes in the shape of spectral and spectro-temporal STRFs, whose negative
regions are generally more spectrally oriented, and dramatic phase changes in temporal STRFs. These
data suggest a model, in which each cell receives at least two inputs, one excitatory and one inhibitory.
As the stimulus intensity increases, both inputs increase in magnitude and decrease in latency. The
excitatory input has a lower threshold and saturation point, while the inhibitory input has a higher
threshold and decreases its latency more in proportion to the input level. If the underlying excitatory
and inhibitory inputs had different spectro-temporal receptive fields, this simple model could account
for the nonlinear response properties of many different auditory neuron types. Such circuitry could
be present in the forebrain or cortex (Wehr and Zador, 2003; Tan and Schreiner, 2004), or could
shape responses of more peripheral neurons that pass their response properties on to higher areas
(Nelken and Young, 1994; Yu and Young, 2000).

Previous studies in auditory cortex have measured response strength as a function of the
intensity of tones or amplitude modulated noise (Phillips and Irvine, 1981; Phillips et al, 1994, Calhoun

and Schreiner, 1998; Polley et al, 2004). These studies have often seen an array of response types--
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from those that monotonically increase with intensity, to those that are strongly non-monotonic. By
considering responses as a function of both frequency and time, our data suggest that simple and
unified processes may underlie this diversity of responses: at higher stimulus intensities, negative
inputs increase in magnitude and decrease in latency relative to positive inputs, causing cells to
respond more selectively to particular kinds of modulations. Thus, studies of joint spectro-temporal

response properties can reveal unifying principles underlying the apparent diversity of response types.

Methods:

Chronic Electrophysiology

‘We used chronically implanted microdrives (Hessler and Doupe, 1999) to record single units
(n = 72) from 5 adult male zebra finches. A detailed description of microdrive construction and
implantation are given in that paper. Electrodes (2-3 tungsten electrodes, 4-5§ MOhms, MicroProbe
Inc, Gaithersburg, MD) were implanted 1.5 pm lateral (left), and 1.§ pm rostral to the posterior border
of the branch point of the central sinus, at an initial depth of 400 pm.

During recording, the bird was attached to a commutator by a flexible lead and op-amp.
Electrical traces were digitized, amplified (1000x), filtered (300-5000Hz), and recorded using TDT
System 3 hardware (Tucker-Davis Technologies, Alachua, FL) interfaced with custom-written Matlab
software. The electrode bundle was advanced manually in small steps (40-160 microns). Putative
single units were identified on the oscilloscope by their stable spike waveform and clear refractory
period. All spikes were re-sorted offline using either a custom-written software window discriminator
(Matlab) or a commercial spike sorter (Plexon). In both cases spikes were sorted based on the
similarity of overlaid spike waveforms and on clustering of waveform projections in a two-dimensional
principal component space. Neural recordings were considered single units if they contained fewer
than one violation of 1 msec refractoriness per thousand spikes after sorting. Units that responded to
auditory stimuli were found at depths of 1000-2500 pm. Between each recording session, the
electrodes were retracted to a position above where the first auditory units were found.

During recording, the bird was placed inside a small cage (20cm x 20cm floor area) within a
sound-attenuating chamber (Acoustic Systems). The chamber lights were kept off to minimize

movement and birds were monitored using an infra-red camera. Birds generally sat in one corner of
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the cage for the duration of the experiment although the commutator permitted free movement
within the cage. Auditory stimuli were presented free-field from a small speaker (Bose) located 50 cm
from the center of the bird's cage. Using a calibrated microphone (B&K) we verified that 250Hz to
10kHz tones designed to play at 8odB appeared at 79.6+/-2.3dB, and that the highest harmonic
distortion peak observed was less than 23.3dB (65.9 +/- 8.7dB SNR).

Acute Electrophysiology

We performed acute mapping experiments in three additional adult male birds. A few days
prior to the experiment, we prepared the bird for acute physiology under equithesin (3.5pl/g, Hessler
and Doupe, 1999) anesthesia by removing the scalp, making an opening through the skull over the
location of field L, and affixing a stereotaxic metal pin to the skull with dental cement. The skull
opening was then covered with a silicone elastomer (World Precision Instruments) and the bird was
allowed to recover fully.

On the day of the experiment, the bird was lightly sedated with diazapam (3opl), wrapped in a
cloth jacket and placed in a stereotaxic device. The bird's head was held in place using the previously
implanted pin. The silicone covering was then removed from the skull, a hooked ground electrode
was placed under the skull, at the corner of the opening, and a linear array of four extracellular
electrodes was lowered into the brain.

For mapping experiments, we lowered the electrode array in 100 microns steps and recorded
activity on all channels if auditory activity was present on any channel. Single and multi-unit activity
was sorted using the Plexon offline sorter. Multi-unit clusters were separated into multiple clusters if
this separation increased the signal quality of the STRFs produced from each cluster.

After the final recordings, we made electrolytic lesions at several depths along the electrode
penetrations and prepared histological sections to identify the location of recording sites. Birds were
lethally anesthetized and perfused with saline followed by 4% paraformaldehyde. Alternate 40
micron sections of fixed brain tissue were Nissl-stained, and labeled for CB1, a marker for the input

region L2 (Soderston et al, 2004).
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Stimulus

To estimate spectro-temporal receptive fields (STRFs) for our cells, we created a stimulus
that shared some properties with natural song but which sampled the space of possible frequency
combinations more evenly, and contained only local 2nd order correlations. Like song, our stimulus
was broadband, and had
more energy concentrated at low temporal and spectral frequencies than at higher ones (Singh and
Theunissen, 2003)

The stimulus was composed of 30-32 logarithmically spaced narrowband noise signals, each
created by passing a white noise signal through a filter that was gaussian in log frequency (Figure 1A).

The center frequencies of the filters cf, were given by

¢f» = exp(log(400) + 0.1(n-1))

where cf, is the center frequency of the nth band. Filters overlapped by one standard deviation so that
the summed narrowband noises had close to a flat envelope (Theunissen et al, 1998). Each
narrowband signal was modulated by a different envelope (Figure 2B), designed such that the
amplitude of each band in dB fluctuated randomly and smoothly in time. Specifically, the log

envelope was given by a gaussian noise signal smoothed with an exponential filter:

P{) =exp(-flsoHz)

where P is the power in the log envelope and f'is frequency. These envelopes were statistically
identical to those used in a previous experiment (Nagel and Doupe, 2006). The independently
modulated noise bands were then summed to create the final stimulus.

By adjusting the mean and the variance of the log envelope, we could manipulate the intensity
of our stimulus. We used two stimulus conditions, 63dB mean, 6dB standard deviation, and 30dB
mean 6 dB standard deviation, that alternated smoothly every five seconds. A third condition, with a
mean of 30dB and a standard deviation of 18dB, was also presented in interleaved segments but is not
discussed in this paper.

Due to the overlapping frequency bands, and to smoothing of the envelopes, our stimulus had

local 2nd-order correlations in both frequency and time. Figure 1B illustrates these correlations by
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plotting the two dimensional modulation power spectrum of the stimulus spectrogram. Closely
related to a normal power spectrum, which shows energy as a function of frequency, this modulation
spectrum shows how energy is distributed as a function of temporal and spectral modulation
frequency. Energy along the x-axis represents temporal modulations, and energy along the y-axis
represents spectral modulations. Energy off the axes represents joint spectro-temporal modulations,
such as frequency sweeps. Like many natural stimuli, including song and human speech, our stimulus
had energy concentrated at low spectral and temporal modulation frequencies. This can be seen in
the two dimensional heat map, where energy is concentrated near the origin, and in the two marginal
plots showing energy as a function of spectral or temporal frequency alone. Our stimulus contained
no higher order correlations, ensuring that the influence of stimulus correlations on STRFs could be
removed by "decorrelating” them as described in the following section.

Half of our stimulus was composed of repeats of the same stimulus segment while the
remainder were unique segments. Unique segments were us