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Abstract 

LBL-5968 

The nonlinear Schrodinger equation, with complex coefficients, 

that describe growth and damping, is considered. An exact sta-

tionary soliton solution is found for arbitrary growth and 

damping strength. 
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The nonlinear Schrodinger equation, in normalized form 

(1) 

approximates the nonlinear evolution of large-amplitude dispersive and. 

1-3 weakly nonlinear systems. Examples of current interest in plasma 

physics are Langmuir turbulence4 and nonlinear propagation of-lower 

5 hybrid waves in tokamaks. In these examples, ~ stands for the complex 

envelope of the high-frequency electric field E(x,t) = Re~(x,t) exp (-iwt), 

with w being the reference frequency. Then, the integral W:: J I~ 12 dx represents 

the field energy, which is conserved by Eq. (1). 

In this paper we want to study Eq. (1) with the addition of simple 

terms that take growth and damping into account. The growth could be 

responsible for the presence of waves that are large enough to necessitate 

the nonlinear term, whereas the damping might make an ultimate stationary 

state possible. 

Accordingly, we modify Eq. (1) by adding a linear growth rate 

yk = y
0

- y 
2

k2 for the Fourier mode of ~ with wavenumber k. (We choose the 

constants to be positive.) This model of growth rate typically6 gives 

rise to unstable solutions in the mode coupling equations, 7 which 

are superficially similar to Eq. (1). By Fourier transforming Eq. (1) 
I 

and neglecting the nonlinear term, it is clear that this modification 

adds a term+ iy ~ + iy a 2~;ax2 to the right side of Eq. (1). 
0 2 

In addition, we allow for the possibility of a nonlinear (amplitude-

dependent) damping, by including a term -iy 1~1 2~. This damping might 
n 

• 



8 be caused by collisions in the absence of lower order effects, or by 

trapped particles. 9 With the various growth and damping terms our 

model becomes Eq. (1) with complex coefficients 

(2) 

The first integral W is not conserved by Eq. (2). Instead we have 

= Y w - Y I I ~1/11 2 dx - Y I 11/11 4 dx . o 2 ox n (3) 

For the other integralinvariants3 of Eq. (1), ~imilar relations can 

be f d 
10,11 oun . 

We treat two aspects of Eq. (2), viz. i) the approach to equili

brium7 of an assumed solution, and ii) an exact solution in equilibrium. 

We start with the time-dependent problem. A good 10 approximation to a 

particular solution for small y , y ,andy is the solitary standing wave 
o 2 n 

t 
1/J(x,t) = 12 K(t)exp [if K2 (t')dt'] sech [K(t)x] 

0 

/ 

(4) 

where the single parameter K(t) represents both amplitude and width, 

and determines the nonlinear frequency shift. Substitution of (4) in 

(3) leads to 

It is clear that an equilibrium (dK/dt = 0) between growth and damping 

. is reached when 

K2 = K 2 -
e y + 4y 

2 n 

For small K « K , the growth of K with time is exponential, but K e 

(6) 
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decreases as t -!:2 for K >> K . e The full time dependence of K is readily 

found as 

(7) ' 

(cf. Ref. 7, Fig. 8, for a plot of a similar function). 

We note that K(t) can grow explosively, K2 "' (t- t
0

) -1, if 

y2 + 4yn < 0, i.e., with dispersive or nonlinear growth rather than 

damping. The explosion occurs when the denominator in (7) vanishes 

at t = (4y )-1.R,n [1- K 2/K2 (0)]. Ultimately higher order effects, o e 

such as terms like llji l4lji or a4lj!jax4 which are neglected in our model, 

will saturate such an instability. 

We now present an exact solution of Eq. (2) in equilibrium. As 

can be verified by direct substitution, 

lj!(x,t) = 12 L [sech (Kx)] 1 + ia e-is-2t (8) 

satisfies Eq. (2) exactly, for arbitrary y , y2, andy , by an 
o n 

appropriate choice of the equilibrium amplitude L, width K- 1, and 

nonlinear frequency shift s-2. The imaginary part of the comple~ expo

nent is found as 
~ 

a = - S + (2 + 13 2 ) 
2 

, 

3 1 - Y2Yn s = 
2 y2tyn 

To first order in the damping and growth constants y we find 

The inverse width is given by 

K2 = Yo 
2a- y 2 + a2y 2 

= K 2 (1 + ~ • 2ctYn- ay2 - 6Y2Yn ) 
e 3 2a- Y + a2y 

2 2 

(9a) 

(9b) 

(lOa) 

(lOb) 

,_ 
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where K 2 is the equilibrium value of Eq. (6). 
e 

The amplitude L is 

while the nonlinear frequency shift turns out to be 

n = - K2 (1 + 2a y 
2 

- a2 ) • 

(11) 

(12) 

How do growth and damping affect this equilibrium soliton as com-

pared to the stationary solution without growth and damping? Equations (8)-

(12) reduce to the well-known soliton 1j1
0
(x,t):: 12 Ksech(Kx) exp (iK2 t) 

when the growth constant y
0 

as well as the damping constants y
2 

andy n 

vanish. The complex exponent a appears to first order in y. Thus, 

1jJ is modified by the appearance of an x-dependent phase of 
0 

ia _ i<P (x) . _ 
[sech Kx] = e , 1.e., <j>(x) - a R..n sech(Kx). 

The physical meaning of this phase follows from the equation for 

the energy density j1)Jj 2 obtained from Eq. (2) 

The first term on the :tight hand side of Eq. (13) is positive, and represents an 

energy source. The last terms,are negative, and describe energy sinks. 

In equilibrium, there is no net energy production, i.e., a J j1)J j 2dx/at = 0. 

However, as the energy source strength differs from the sink strengths, 

as functions of x, energy must flow toward the region of stronger 

absorption of energy. This flow is given by the term in braces on 

the left hand side of (13). For small damping,the expression in 

brackets~ the flo~ velocity v , reduces to 
g . 



2 
vg = 3 C'Y2 
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2y ) K tgh Kx . 
n 

(14) 

For nonlinear damping only, y n > 0, y 
2 

= 0, the flow is toward the origin, 

while for dispersive damping,y2 > 0, 'Yn = 0, the flow is in the opposite 

direction. 

To second order in y, the growth and damping change the nonlinear 

frequency shift D, and affect the usual relation between amplitude L 

and width K- 1 . Without damping, L = K, but to second order in y we 

have from (11) 

L 2 = K2 [ 1 + ( 'Y + 'Y ) ( 7y - 2y ) I 9] 2 n 2 n · (15) 

For nonlinear damping only the amplitude L is lower than for the undamped 

soliton with the same width. The damping goes like 1~1 4 , is large where 

1~1 is large, and tends to decrease the amplitude. For dispersive 

damping only, the soliton is more peaked than an undamped one, because 

now the damping occurs mainly in the soliton sides where la~;axl 2 is 

substantial. 

Our previous estimate (6) for the equilibrium amplitude K is e 

correct to first order, as is clear from Eq. (lOb), but can be larger 

or smaller than the actual value K to second order. 

Finally, we note that our standing equilibrium soliton (8) - (12) 

could easily be generalized to a moving one by a Galilean transformation 

x' = x-vt, to an inhomogeneous medium by the transformation mentioned 

in Ref. 12, and that also an exact periodic solution can be found. 

In conclusion, we have introduced the nonlinear Schrodinger 

equation with complex coefficients by considering model growth and 

damping processes. We have first, by approximate methods, treated 



~ 1 u (1 I u <J 

0 
f'T') 

~~,) 0 (.;., 
u 

... 7 ,.. 

the approach to equilibrium of a localized solution (soliton). Sub-

sequently, we have found an exact equilibrium soliton. This soliton 

differs from the usual undamped soliton in a phase proportional to 
., 

growth and damping parameters y. To higher order in y the amplitude 

and width are also affected, but the characteristic sech shape is not 

changed. 

After completion of this work we noted that Eq. (2), with nonlinear 

growth only (y
2 

= 0, y 5-0) and with different initial conditions, had , n 

13 already been solved exactly. This solution is rather complicated, but 

can be simplified by introducing a complex exponent as done here (and 

in Ref. 14). 
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