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ABSTRACT 

LBL-13147 

The asymptotic distribution of points in phase space visited by or­

bits of a dynamical system determines how one is to evaluate averages of 

physical quantities over the phase space. In any numerical or labora­

tory experiment the detai 1 s of this distribution are restricted by reso­

lution. We present a method for calculating the as,ymptotic distribution 

commensurate with any given experimental resolution. Also we show how 

to evaluate the evolution from any initial distribution to the asympto­

tic distribution. Detailed calculations are given for the mapping 

xn+1 = Bsin(.n·xn). 0 < B < 1, which takes the interval 0 < x < 1 into 

itself. 

* This work was supported by the Director, Office of Energy Research, 
Office of High Energy and Nuclear Physics, Nuclear Physics Division of 
the U. S. Department of Energy under contract No. W-7405-ENG-48, and 
by DARPA Grant# 4805-02. 



In the analysis of nonlinear dynamical systems an object of some in­

terest is the asymptotic distribution function, .DA(_~), on theN dimen­

sional state space _c = (x1 , ••• ,xN} of the system. 1 This di stribu­

tion describes the disposition of almost all orbits after the system has 

evolved long enough in time from an initial state x0• Averages of 

phase space functions G(_c} are given by 

when the asymptotic distribution is reached. For nonintegrable Hamil­

tonian systems DA(_c} is the microcanonical distribution--namely, uni­

form population of the constant energy surface. We consider here more 

general systems than Hamiltonian. 

This note describes a method for approximating DA(_c}. It is moti­

vated by the observation that in any laboratory or numerical experiment 

on a dynamical system, the observed distribution. will be a 11 COarse 

grained .. representation of DA(~} reflecting the experimental resolu­

tion. DACe.> consists of a· series of delta functions arising from the 

deterministic aspect of the dynamics. Experimental .resolution smooths 

out the true DA(_c} by presenting the answer in bins of an approximate 

size. If present, external noise will also smooth out DA 2., such 

noise can be easily incorporated in our method when its characteristic 

function is known. Henceforth we assume external noise to be absent. 
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We choose to evaluate not DA(x) but its Fourier transform 

dx 

DA ( m_ ) J - e i ~ • ~ DA ( x_ ) ( 2 ) = " ( 2v )N 

which is smooth although DA (.~) is singular. Truncating the nuni>er of 

modes in the equation determining DA(!!!), we are able, by operations of 

a finite order, to calculate DA(.!) with a specified, improvable reso­

lution. 

Our focus in this note is on discrete dynamical systems whose evolu­

tion is given by 

x· = F(x ) -n+l - -n 
(3) 

This yields the state of the system at 11 time 11 n+l, given the state at 

n. For dynamical flows governed by a differential equation we can dis­

cretize it in time to reach (3) or study the Poincare' or return map for 

the flow. With small ·changes, the analysis here applies to flows as 

well. 

We take the dynamical system to be ergodic3, which means 

<G> =Jdx DA (x) G(x) = lim l 
- - - L-+oo L (4) 

where we have normalized DA(.~) to one and £k(.!Q) is the kth 

,~, iterate of the map beginning at ~0• Denoting 

L-1 
(5) 

k=O 
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it follows that 

. The interpretation of (5) is quite natural: the asymptotic distribution 

is the set of points which the orbit beginning at .!a visits as the or­

bit length becomes infinite. 

Equation (6) contains the implication that the asymptotic distribu- <.:1 

tion is independent of ~0• For almost all points in a given basin of 

attraction that is what we should expect. If there are many basins of 

attraction for the dynamical systems, each may have a different asympto­

tic distribution. Even within a given basin of attraction, there may be 
--

a set of points leading to a different DA(.~J which is singular with 

respect to the distribution we expect t~ be calculating here. A heuris­

tic way to specify what DA(~) we are evaluating is to appeal to a re­

sult of Kifer4 which says, for our purposes, that adding a small ex.;. 

ternal noise source leads to an asymptotic distribution as close to our 

DA(l<) as we wish. Since the noise eliminates singular distributions 

by providing a "spread" in phase space, we can say that the distribution 

we are eval ua ti ng is the same as would result from introducing an i nfi­

nitesimal noise source, calculating DA, and then removing the noise. 

To derive an equation for DA ,we note the distribution DL(,!,~0 ) 

is connected with the conditional probability P(x,k!x0,o)5 that the 

system is at.! after k steps, given it originated at ~0 • Since 

(7) 
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one sees 

L-i 
- .!. L P(x,k J ~0 ,0). 

L k=O 

The conditional probability satisfies 

Introducing the Fourier amplitudes 

(9) yields the recrusion relation 

Ak(~,~o) =LTm,n Ak-1(~,~0) 
n 

in which 

(8) 

(9) 

(10) 

( 11) 

(12) 

1 , Fourier transforming DL(_!,~) and using ·the recursion relation, we 

find, in a matrix notation, 

- 1 L 
(1-T)DL ~ - (1-T )A

0 L 
( 13) 
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From this we see that DA(m) is the eigenvector of T with eigenvalue 

1. With regard to the remarks above; we see that it is independent of 

.!o· 

This last relation for oL Cm.,.!o) allows us to determine the 

approach to DA as well as DA itself. Introduce the eigenvalues 

Ao = 1' A.2' • • • and eigenvectors V a(!!!) a = 0,1 ,2 ••• of T. The A. a 

have magnitude less than or equal to one if the transformation matrix T 

does not take orbits off to infinity. Equation (13) only makes sense in 

the 1 imi t of 1 arge L when this is the case, ·so we assume it in our 

discussion. (Our statements above about the uniqueness of the 

asymptotic distribution are here iterated by the requirement that the 

eigenvalue unity be nondegenerate.) From {13) we see , 

- - 1 L DL{~,~o) = DA(~) +L L [(1 {A.a) )/{1- >.a)]x { 14) 

a=1 

This shows how the distribution DA{~) is reached. 

Our ob·servati on is now that a . truncation of the modes m in T m n _, 

provides a controllable and improvable resolution in the DA{~) 

predicted by that truncation. Restricting ourselves to mj = 0,~1, 

+2, ••• +Nb for each component of m, results in a resolution Nb 1 in 

each component of x. Precisely this resolution comes from placing one's 

experimental data in .! space into Nb bins for each component of x. At 

any finite truncation we have a finite dimensional T matrix whose 

eigenvector with eigenvalue unity determines DA(~). 
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To illustrate our discussion we have studied the one dimensional 

x +1. = B sin(~x ), 0 < B < 1, 
n n - -

(15) 

which maps the interval 0~ x ~ l into itself. In Fig. 1 we display the 

asymptotic attractor for 0.82 < B < 0.997. For B ~ 11~ the attractor is 

the stable fixed point x = 0. For 1/~ < B .5. 0.72 there is another 

stable fixed point. At B - 0.72 this fixed point bifurcates into the 

stable two cycle still visible at B = 0.82 in Fig. 1. 

Our "data" are collected by dividing the x axis into Nx bins, and, 

at a fixed B, counting the number of points of the attractor in each 

bin. Properly normalized, this is precisely the coarse grained version 

of DA(x) described above. 

For the map above Tmn is 

~ 

Tmn = ! [de ei(2ne- 2~mB sine) = J2n(2~mB) + iE2n(2~mB), (16) 
0 

where J and E are the ordinary. Bessel and Lommel functions. Choosing 

1m I, In I ~ Nb we have determined the eigenvector of (16) with 

eigenvalue unity. Returning to x space we display DA(x) and the 

result of binning data from the direct numerical evaluation of the 

attractor. In Fig. 2 we·have taken Nb = 25, B = 0.847, and put the 

numerical data into SO bins. In this region the attractor is a period 

I 1 four orbit and our method does a credible job in reproducing the 
~._) 

distribution. In Fig. 3 we have taken B = 0.955 with the binning the 

same as before. For this value of B we are in a regime of chaotic 
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motion just past the bifurcations of a stable 3 cycle. In each display 

the orbit was iterated 10,050 times and the last 104 points were put 

into the bins. This leads to a statistical error of about 7 in the 

numerical data. All distributions are normalized to one. 

The information in the other eigenvalues and eigenfunctions of T 

allows us to follow the evolution of any initial density of points 

f(x 0). · We choose f(x 0) to be normalized to one. From· (14) the 

Fourier component of the average of this density with DL(m,x0) 

behaves as 

fL (~) = DA(~) + f L [(1 - (Aa)L/{1 - Aa>Jx 

a 
(17) 

since A0(n, lS.o> = exp(inx0). This shows that any initial distri­

bution approaches DA(x). The same information permits us to find the 

behavior of correlation functions on phase space. 

(18) 

For large k, CAB(k) falls as exp(-rk) with r determined by the eigen­

value of T whose magnitude is closest to 1. These matters and the ap-

plication of the present method to both flows and models for physical 

systems will appear in our forthcoming paper J 
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Figure l. 

Figure 2. 

Figure Captions 

The asymptotic attractor for the mapping Xn+1=Bsin(~xn)· 
The map has been iterated 550 times for 450 values of B in 
the range o.a < B < 0.997. For each B the first 50 values of 
Xn were discaraed and the subsequent values displayed •. 

For 8=0.847 we show the result of placing 104 values of x 
on the asymptotic attractor of Fig. 1 into 50 bins. Also 
displayed is the asymptotic distribution DA(x) calculated 
by our method for Nb=25. . · 

Figure 3. Same as Fig. 2 except now 8=0.955. The attractor here is 
quite complex. 
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