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Abstract

Objective: To assess whether postnatal plasma cholesterol levels are associated with 

microstructural and macrostrucural regional brain development in preterm newborns.

Methods: Sixty preterm newborns (born 24-32 weeks gestational age) were assessed using MRI 

studies soon after birth and again at term-equivalent age. Blood samples were obtained within 7 

days of each MRI scan to analyze for plasma cholesterol and lathosterol (a marker of endogenous 

cholesterol synthesis) levels. Outcomes were assessed at 3 years using the Bayley Scales of Infant 

Development, 3rd edition.

Results: Early plasma lathosterol levels were associated with increased axial and radial 

diffusivity, and increased volume of the subcortical white matter. Early plasma cholesterol levels 

were associated with increased volume of the cerebellum. Early plasma lathosterol levels were 

associated with a 2-point decrease in motor scores at 3 years.
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Conclusions: Higher early endogenous cholesterol synthesis is associated with worse 

microstructural measures and larger volumes in the subcortical white matter which may signify 

regional edema, and worse motor outcomes. Higher early cholesterol is associated with improved 

cerebellar volumes. Further work is needed to better understand how the balance of cholesterol 

supply and endogenous synthesis impacts preterm brain development, especially if these may be 

modifiable factors to improve outcomes.

INTRODUCTION

Children born preterm are at risk for brain injury, impaired brain development, and adverse 

neurological and developmental outcomes. As we improve our skills at improving survival 

of preterm newborns, significant strides have also been made to better understand the 

mechanisms for injury and impaired development, and such mechanisms have been targeted 

in the neonatal intensive care unit with dramatic successes. For example, optimization of 

ventilation settings have decreased the incidence of cystic periventricular leukomalacia.(1) 

With increasing understanding of the range of factors that may impact preterm brain 

development, the role of perinatal nutrition is becoming more important. While some studies 

have focused on energy intake or proportions of macronutrients(2, 3), others have focused on 

specific nutritional factors such as polyunsaturated fatty acids.(4)

Cholesterol, a necessary component of the plasma cell membrane, plays an important role 

not only in cell membrane integrity but also in cell signaling, especially in cerebellar 

development.(5) In the mature human body, 25% of total body cholesterol content exists in 

the brain, particularly within myelin. While studies in adults have looked at the relationship 

between cholesterol levels and brain hemorrhage outcomes(6, 7) and preterm newborns have 

been shown to be at risk for marked elevations in cholesterol levels due to stimulation of 

endogenous biosynthesis,(8) there have been no studies addressing the relationship between 

cholesterol and neurodevelopmental outcomes after preterm birth. This prospective cohort 

study of preterm newborns uses serial blood samples and brain MRI studies to address the 

macrostructural (regional brain volumes) and microstructural (diffusion tensor imaging 

metrics) associations between postnatal cholesterol levels and brain injury and development 

after preterm birth. Lathosterol, a precursor in the pathway of cholesterol synthesis and a 

biochemical marker of endogenous cholesterol synthesis, is also assessed to better 

understand the relationships found. The hypothesis of this exploratory study is that higher 

cholesterol levels in the early postnatal period are associated with decreased risk of brain 

injury and improved development of the white matter and cerebellum in preterm newborns.

METHODS

Study subjects

Preterm infants born 32 weeks gestational age and younger and admitted to the neonatal 

intensive care units at the University of California San Francisco Benioff Children’s 

Hospital and the British Columbia Children’s and Women’s Hospital between March 2010 

and November 2011 were approached for this prospective cohort study, with 60 subjects 

enrolled. Consent was obtained following a protocol approved by the research ethics boards 

at both institutions. Infants were excluded if there was a congenital malformation or 
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syndrome, congenital infection, or they were too clinically unstable to transport to the MRI 

scanner within the study timeframe. Clinical history was collected prospectively from 

patient charts. Feeding protocols in these infants are as previously described, including 

parenteral nutrition and intravenous fat emulsion as needed, followed by enteral feeds of 

expressed breast milk or formula, sometimes supplemented for protein.(4)

MRI studies

MRI studies were performed soon after birth as soon as clinically stable and at term-

equivalent age on 1.5-T MRI scanners (General Electric Sigma, GE Medical Systems, 

Milwaukee, WI, or Siemens Avanto, Siemens Medical Solutions, Malvern, PA). Sequences 

obtained include volumetric three-dimensional T1-weighted, T2-weighted, and diffusion 

tensor imaging (DTI) sequences as previously described.(4) All imaging analysis was 

performed blinded to patient clinical history. Scans were visually graded for brain injury, 

including intraventricular hemorrhage (IVH) (9), white matter injury (WMI) (10), and 

cerebellar hemorrhage(11), by a single neuroradiologist at each study site (AJB, KJP). The 

highest injury score from both scans was selected as the injury severity score for each infant.

Pre-specified regions of interest were measured on DTI sequences for apparent diffusion 

coefficient (ADC), fractional anisotropy (FA), axial diffusivity (AD, 1st eigenvector), and 

radial diffusivity (RD, average of 2nd and 3rd eigenvector). Regions of interest included 

subcortical white matter, posterior limb of the internal capsule, optic radiations, and deep 

grey matter (including basal ganglia and thalamus) (Figure 1). Data was inadequate for 

assessment of cerebellar and brainstem regions of interest. Measurements of left and right 

hemispheres were averaged for each scan.

Brain tissue volumes were automatically segmented into tissue classes (cortical grey matter, 

white matter, deep grey matter, cerebellum, and brainstem) as previously described, with 

Dice Similar Coefficients of 0.883 across tissue classes.(12, 13)

Blood samples

Two blood samples were drawn from each subject, obtained as close in time as possible 

within a week of each MRI scan, timed with clinically-indicated bloodwork. Samples were 

separated into plasma and red blood cell fractions and stored at −70°C until analysis. 

Cholesterol and lathosterol (a marker of de novo cholesterol synthesis(14)) levels in plasma 

were analyzed by gas chromatography-mass spectrometry.

Neurodevelopmental outcomes

Infants were reassessed between 30–36 months corrected age by a developmental 

psychologist or physiotherapist blinded to the child’s perinatal course. Standardized 

assessment was performed using the Bayley Scales of Infant Development, 3rd Edition, and 

composite cognitive, language, and motor scores were assigned based on the child’s 

corrected age.
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Statistical analysis

Statistical analysis was performed using R version 3.3.(15) All analyses were adjusted for 

study site to account for variations between sites. Ordinal logistic regression analysis was 

used to study the association between cholesterol or lathosterol levels and measures of brain 

injury (including IVH, WMI, and cerebellar hemorrhage). These analyses adjusted for 

known confounders for brain injury including gestational age at birth, chorioamnionitis 

(suspected or confirmed), antenatal glucocorticoid exposure, 5-minute Apgar score, patent 

ductus arteriosus (diagnosed by echocardiogram), hypotension requiring medical 

intervention, intubation, and neonatal sepsis (presumed or confirmed, including necrotizing 

enterocolitis).

Early plasma levels were compared to neuroimaging measures on both scans. Linear mixed 

effects analysis was used to study the association between early cholesterol or lathosterol 

levels and DTI regions of interest, to account for repeated scans in each subject. Linear 

mixed effects analysis was used to study the association between early cholesterol or 

lathosterol levels and brain volumes, which were cube-root transformed for normality. Term-

equivalent age plasma levels were compared to neuroimaging measures on the term-

equivalent age scan only, as it would not be relevant to study the relationship between MRI 

scans done earlier than the plasma levels. For these analyses, simple linear regression 

models for DTI and non-linear regression models for brain volumes were used. All analyses 

were adjusted for postmenstrual age (PMA) at MRI, sex, IVH, WMI, days intubated (log-

transformed), sepsis, and patent ductus arteriosus.

Plasma cholesterol and lathosterol levels were also compared to Bayley cognitive, language, 

and motor scores at 30-36 months using linear regression analyses.

Associations were considered significant at P ≤ 0.050.

RESULTS

A total of 60 preterm newborns were enrolled from the two study centres (37 males), 

demographics described in Supplemental Table S1, as previously reported.(4) Plasma 

cholesterol and lathosterol levels, as well as brain MRIs were successfully completed early 

in 59/60 (98%) subjects (mean 31.44±2.15 weeks PMA), while near-term MRI and blood 

sampling were completed in 43/60 (72%) of subjects (mean 37.68±3.01 weeks PMA). Mean 

early plasma cholesterol levels were 2.50±0.76mmol/L (range 1.3-6.1mmol/L) and 

lathosterol levels 5.85±2.96μmol/L (range 1.5-15.5μmol/L). Mean near-term plasma 

cholesterol levels were 2.34±0.78mmol/L (range 1.2-5.1mmol/L) and lathosterol levels 

3.71±1.53μmol/L (range 1.2-8.5μmol/L).

Brain injury

Ordinal logistic regression analysis adjusting for confounding factors found no associations 

between early or near-term cholesterol and lathosterol levels and IVH, WMI, or cerebellar 

hemorrhage (Table 1).
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Diffusion tensor imaging

Mixed effects models adjusting for confounders, including study site, demonstrated that 

early plasma lathosterol levels were associated with increased axial (0.02, 95%CI 

0.002-0.047, P=0.035) and radial (0.012, 95%CI 0.00004-0.02, P=0.049) diffusivity in the 

subcortical white matter on both MRI scans, but in no other brain regions measured. Early 

plasma cholesterol and lathosterol associations with DTI measures are summarized in Table 

2. Linear regression analyses showed no associations between near-term cholesterol or 

lathosterol levels and DTI measures in the regions assessed (P>0.1, data not shown).

Brain volumes

Mixed effects models adjusting for confounders demonstrated that, per 1mmol/L increase in 

early plasma cholesterol levels, there is an associated 1.11cm3 increase in cerebellar 

volumes on both MRI scans (95%CI 0.37-1.86cm3, P=0.009). Meanwhile, per 1mmol/L 

increase in early plasma lathosterol levels, there is an associated 1.98cm3 increase in 

subcortical white matter volume on both MRI scans (95%CI 0.53-3.46cm3, P=0.018). As 

well, per 1mmol/L increase in near-term plasma cholesterol levels, there is an associated 

8.00cm3 decrease in near-term cortical grey matter volumes (95%CI 0.52-15.48cm3, 

P=0.048). Associations between plasma levels and brain volumes are summarized in Table 

3.

Neurodevelopmental outcome

Mean scores on neurodevelopmental testing were 104±14 on cognitive testing (range 

80-145), 101.±18 on language testing (range 65-138), and 98±14 on motor testing (range 

64-124). Using linear regression analysis, each 1μmol/L increase in early plasma lathosterol 

levels was associated with a 2.0-point decrease in Bayley motor scores (95%CI 0.3-3.6, 

P=0.018), but other plasma levels were not associated with outcomes (Table 4).

DISCUSSION

Although cholesterol plays an important role in cell signaling through neurodevelopment 

and is a key component of myelin, there has been little research into its impact on preterm 

brain injury, growth, and neurodevelopment. This current study demonstrates associations 

between cholesterol and lathosterol levels and brain development in the subcortical white 

matter, cortical grey matter, and cerebellum, as well as associations with motor outcomes at 

3 years corrected age.

Considering that 25% of the total body cholesterol is found in the brain, concentrated in the 

myelin, it would be expected that variations in cholesterol supply would have consequences 

on the developing subcortical white matter. Indeed, preterm newborns have been found to be 

at risk for marked elevations in plasma cholesterol levels due to upregulation of endogenous 

cholesterol synthesis.(8) Here, we show that higher early plasma lathosterol levels are 

associated with higher axial and radial diffusivity, without significant change in ADC or FA, 

and higher regional volumes in the subcortical white matter. Interestingly, other regions of 

interest in the white matter, including the posterior limb of the internal capsule and the optic 

radiations, do not seem to be involved. It has been demonstrated that, with increasing 

Kamino et al. Page 5

Pediatr Res. Author manuscript; available in PMC 2019 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gestational age, FA increases while ADC, axial diffusivity, and radial diffusivity decrease.

(16) The constellation of increasing axial and radial diffusivity and increasing volume could 

suggest regional tissue swelling and impaired or delayed development of the cortical white 

matter. This theory is further supported by the corresponding worsened Bayley motor scores 

at 3 years with higher early lathosterol. Since lathosterol is a marker of endogenous 

cholesterol synthesis, this may suggest that this may represent an increased endogenous 

production either in response to inadequate cholesterol supplies, or an endogenous drive for 

higher cholesterol levels. Since higher early plasma cholesterol levels were not found to be 

associated with worse DTI metrics, this suggests inadequate cholesterol supply may be more 

likely. This fits with what has previously been described in preterm newborns.(8) With 

standardized feeding protocols postnatally, cholesterol supply becomes more standard, 

which may explain the lack of associations found with later lathosterol levels.

The most statistically significant finding in this study was an association between early 

plasma cholesterol levels and increased cerebellar volumes. Unfortunately, the DTI measures 

could not be accurately assessed in the posterior fossa using the sequences obtained for this 

study,(17) thus only volumetric data is available for the cerebellum and brainstem. 

Cholesterol is known to play a critical role in upregulating Sonic hedgehog signaling(5, 18–

21), which in turn is a key pathway supporting the development of the cerebellum.(22) 

Cholesterol covalently modifies hedgehog proteins, and is a necessary post-translational 

modification to initiate the function of Sonic hedgehog protein.(5) Inhibition of cholesterol 

synthesis has been shown to result in abnormalities in cerebellar development.(23–25) Thus, 

there is mechanistic evidence linking cholesterol and cerebellar development to support our 

observed association.

We have previously reported from this cohort that larger cortical and deep grey matter, 

cerebellar, and brainstem volumes were associated with improved language scores at 30–36 

months corrected age. As well larger cerebellar and brainstem volumes were associated with 

improved motor scores.(12) Although we did not find that cholesterol levels were associated 

with improved language or motor scores, an association between cholesterol levels and 

cerebellar volumes suggests that these larger volumes may also be contributing to improved 

outcomes.

The association of higher endogenous synthesis with worse subcortical white matter 

development and that of higher overall cholesterol levels with better cerebellar development 

seems superficially contradictory. However, one could postulate that higher endogenous 

synthesis can be a response to lower supply, creating a need to synthesize more 

endogenously to meet demand. This endogenous synthesis may be adequate to normalize 

plasma levels, while remaining inadequate to maintain subcortical white matter 

development. In such a way, higher cholesterol levels and lower need to synthesize 

endogenously are both associated with improved subcortical white matter and cerebellar 

development.

Another aspect of the relationship between cholesterol and preterm brain development is the 

issue of the blood-brain barrier. The fetus has been shown to receive cholesterol supply via 

the placenta.(26) However, there is evidence in sheep that cholesterol carried in low-density 

Kamino et al. Page 6

Pediatr Res. Author manuscript; available in PMC 2019 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lipoproteins are not incorporated into the brain.(27) In the adult brain, it is known that the 

blood-brain barrier prevents transport of cholesterol,(28) but the exact timing of the closure 

of the blood-brain barrier to cholesterol is not known in humans. The associations found in 

this study suggest there may be either some level of transfer of cholesterol into the brain, or 

at least signaling effects that alter brain development. Indeed, it is unknown what factors 

result in variability in cholesterol and lathosterol levels in preterm newborns, and these 

factors may also be important in driving these observed associations.

Finally, we also found in this study that higher term cholesterol levels were associated with 

decreased cortical grey matter volumes at term age. The biochemical basis of this 

association is unclear, as there is no mechanistic link previously demonstrated between 

cholesterol and this brain region. It is reassuring, however, that term cholesterol levels were 

not associated with neurodevelopmental outcomes. However, cognitive impacts may be more 

evident on longer developmental follow-up.

This study is limited by its exploratory nature and small sample size. However, consistent 

findings associating early lathosterol levels and macrostructural and microstructural 

measures of brain development, and cholesterol’s key role in myelin formation, suggest that 

a true relationship exists between early lathosterol levels and subcortical white matter 

development. As well, strong mechanistic ties between cholesterol and cerebellar 

development support the plausibility of these reported associations.

It has been well established that cholesterol is a key component of myelin, and that 

cholesterol is necessary for the Sonic hedgehog pathway which is key to cerebellar 

development. However, there has been very little research into the implications of 

cholesterol exposure antenatally and postnatally on brain injury and development in the 

preterm newborn. This study brings forth new questions regarding the relationship between 

endogenous cholesterol synthesis and impaired development of the subcortical white matter, 

as well as cholesterol levels and cerebellar growth. Indeed more work is needed to 

understand the relationship between plasma and brain cholesterol levels. This study sheds 

light on an important and poorly understood topic, suggesting more research is needed to 

better understand the complex role of cholesterol supply and endogenous synthesis on 

preterm neurodevelopment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Diffusion tensor imaging and regions of interest.
The anisotropy color maps of an infant born at 26-6/7 weeks gestational age and scanned at 

29-3/7 weeks postmenstrual age are presented in two axial planes to demonstrate the regions 

of interest. Regions of interest in the (1) anterior, (2) central, and (3) posterior cortical white 

matter were averaged for analysis of cortical white matter. Regions of interest in the (4) 

basal ganglia and (6) thalamus were averaged for analysis of deep grey matter. Other regions 

of interest included the (5) posterior limb of the internal capsul and the (7) optic radiations. 

Colors display the predominant diffusion directions, with red representing right-left, green 

representing anterior-posterior, and blue presenting superior-inferior directions.
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Table 1.

Association between plasma cholesterol and lathosterol levels and brain injury, including IVH, WMI, and 

cerebellar hemorrhage.

IVH WMI Cerebellar hemorrhage

OR
b

P-value
a

OR
b

P-value
a

OR
b

P-value
a

Early cholesterol (mmol/L) 1.12 0.78 1.77 0.14 1.95 0.49

Early lathosterol (μmol/L) 1.10 0.31 0.89 0.32 1.02 0.94

Near-term cholesterol (mmol/L) 0.25 0.068 1.21 0.67 0.15 0.31

Near-term lathosterol (μmol/L) 0.73 0.42 0.95 0.84 4.09 0.29

Abbreviations: IVH = intraventricular hemorrhage; OR = odds ratio; WMI = white matter injury

a
Ordinal logistic regression analyses adjusted for gestational age at birth, chorioamnionitis, antenatal glucocorticoid exposure, 5-min Apgar score, 

patent ductus arteriosus, hypotension, intubation, and sepsis.

b
OR are per 1-point increase in injury score.

*
P ≤ 0.050
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Table 2.

Association between early plasma cholesterol and lathosterol levels and diffusion tensor metrics.

Cholesterol (mmol/L) Lathosterol (μmol/L)

Coefficient 95%CI P-value Coefficient 95%CI P-value

Cortical white matter ADC 0.027 −0.050-0.103 0.49 0.014 −0.0008-0.005 0.06

FA 0.011 −0.011-0.033 0.35 0.0004 −0.004-0.006 0.88

AD 0.090 −0.019-0.198 0.11 0.024 0.002-0.047 0.035*

RD 0.018 −0.045-0.082 0.57 0.012 0.00004-0.024 0.049*

PLIC ADC −0.027 −0.081-0.028 0.33 0.003 −0.009-0.015 0.66

FA 0.008 −0.026-0.043 0.64 −0.005 −0.012-0.003 0.20

AD −0.022 −0.094-0.049 0.54 −0.0003 −0.016-0.016 0.97

RD −0.030 −0.088-0.029 0.32 0.004 −0.009-0.018 0.50

OR ADC 0.006 −0.078-0.090 0.88 0.005 −0.014-0.024 0.60

FA −0.014 −0.069-0.042 0.63 −0.004 −0.016-0.008 0.48

AD −0.003 −0.136-0.131 0.97 0.002 −0.028-0.031 0.92

RD 0.020 −0.077-0.116 0.69 0.007 −0.014-0.028 0.51

Deep grey matter ADC −0.007 −0.060-0.046 0.80 0.007 −0.004-0.019 0.23

FA 0.010 −0.015-0.034 0.43 −0.003 −0.008-0.003 0.33

AD 0.001 −0.081-0.061 0.78 0.001 −0.014-0.016 0.87

RD NA NA NA NA NA NA

Abbreviations: AD = axial diffusivity; ADC = apparent diffusion coefficient; FA = fractional anisotropy; IVH = intraventricular hemorrhage; OR = 
optic radiations; PLIC = posterior limb of internal capsule; RD = radial diffusivity; WMI = white matter injury

Analyses adjusted for postmenstrual age at MRI, sex, IVH, WMI, days intubated, sepsis, and patent ductus arteriosus.

*
P ≤ 0.050
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Table 3.

Association between early and near-term plasma cholesterol and lathosterol levels and regional brain volumes.

Brain region (cm3) Mean 
volume at 40 
weeks (cm3)

Plasma sample Cholesterol (mmol/L) Lathosterol (μmol/L)

Coefficient
c 95%CI P-value Coefficient

d 95%CI P-value

Cortical grey matter 145.42 ± 5.71 Early
a 2.01 −2.80-6.84 0.46 0.34 −0.71-1.41 0.57

Term
b −8.00 −15.48-−0.52 0.048* −0.39 −5.99-5.20 0.89

Cortical white matter 161.62 ± 7.25 Early
a 6.54 −0.15-13.41 0.09 1.98 0.53-3.46 0.018*

Term
b 2.08 −8.12-12.28 0.69 0.68 −6.66-8.03 0.86

Deep grey matter 21.41±0.73 Early
a 0.76 −0.07-1.59 0.10 0.10 −0.08-0.29 0.32

Term
b −0.50 −1.62-0.61 0.39 0.12 −0.65-0.89 0.77

Cerebellum 21.45±0.89 Early
a 1.11 0.37-1.86 0.009* 0.13 −0.05-0.30 0.19

Term
b −0.45 −1.70-0.80 0.49 −0.52 −1.36-0.31 0.23

Brainstem 6.10±0.21 Early
a 0.23 −0.03-0.49 0.12 0.05 −0.01-0.11 0.12

Term
b −0.17 −0.51-0.16 0.32 −0.13 −0.36-0.10 0.27

Abbreviations: IVH = intraventricular hemorrhage; WMI = white matter injury

a
Early plasma levels are compared with both MRI scans using mixed effects models.

b
Near-term plasma levels are compared with near-term MRI only using linear regression models.

c
Units of coefficients are cm3 per mmol/L cholesterol.

d
Units of coefficients are cm3 per μmol/L lathosterol.

All analyses adjusted for postmenstrual age at MRI, sex, IVH, WMI, days intubated, sepsis, and patent ductus arteriosus. Mean volumes at 40 
weeks are calculated for the absence of IVH, WMI, intubation, sepsis, or patent ductus arteriosus.

*
P ≤ 0.050

Pediatr Res. Author manuscript; available in PMC 2019 June 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kamino et al. Page 14

Table 4.

Association between plasma cholesterol and lathosterol levels and Bayley Scales of Infant Development, 3rd 

edition scores at 30-36 months corrected age.

Motor score Cognitive score Language score

Coefficient
a P-value Coefficient

a P-value Coefficient
a P-value

Early cholesterol (mmol/L) 2.06 0.52 −1.71 0.65 0.63 0.89

Early lathosterol (μmol/L) −1.98 0.02* −0.40 0.63 −1.29 0.20

Near-term cholesterol (mmol/L) 5.70 0.06 2.36 0.86 5.40 0.14

Near-term lathosterol (μmol/L) −1.41 0.35 1.34 0.33 −2.86 0.11

a
Units of coefficients are points per mmol/L cholesterol or μmol/L lathosterol.

*
P ≤ 0.050
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