
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Concept-Monitor: Using Concept Embeddings to Understand Neural Net Training

Permalink
https://escholarship.org/uc/item/19z2x000

Author
Khan, Mohammad Ali

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19z2x000
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Concept-Monitor: Using Concept Embeddings to Understand Neural Net Training

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Computer Science

by

Mohammad Ali Khan

Committee in charge:

Professor Lily Weng, Chair
Professor Albert Chern, Co-Chair
Professor Tzu-Mao Li

2023



Copyright

Mohammad Ali Khan, 2023

All rights reserved.



The thesis of Mohammad Ali Khan is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2023

iii



TABLE OF CONTENTS

Thesis Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1 Background and Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Neuron-level interpretability methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Understanding DNN training dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Interpretable training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Our method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 (I) Concept Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 (II) Unified embedding space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 (III) Concept diversity metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Using Concept-Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Case study (I): Monitoring standard training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Discussion of standard training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Poor training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 3 Concept Diversity Regularizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 4 Case studies of other training paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.0.1 Case study (II): Lottery ticket hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.0.2 Case study (III): Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.0.3 Case study (IV): Finetuning on a medical dataset . . . . . . . . . . . . . . . . . . . . 22

Appendix A Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.1 Case study (I): Standard training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



A.1.2 Probing methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.2 Case study (II): Lottery ticket hypothesis experiments . . . . . . . . . . . . . . . . . . . . . . 24

A.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
A.2.2 Probing methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.3 Case study (III): Adversarial Learning experiments . . . . . . . . . . . . . . . . . . . . . . . . 25
A.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.3.2 Probing methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.4 Case study (IV): Fine-tuning on medical dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendix B Ablation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
B.1 Temperature (T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
B.2 Threshold (τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Appendix C Concept-Monitor with different components . . . . . . . . . . . . . . . . . . . . . . . . . . 32
C.1 Concept-Monitor with different Concept set S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
C.2 Concept-Monitor with different detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



LIST OF FIGURES

Figure 1. Concept-Monitor schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 2.1. Case study (I) Monitoring standard training . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2. Monitoring Poor training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 4.1. Interpretable neurons due to masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 4.2. Concept evolution due to masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 4.3. Comparison of concepts in standard and robust training . . . . . . . . . . . . . . . . 20

Figure 4.4. Visualizing concepts in standard and Adversarial models . . . . . . . . . . . . . . . 21

Figure 4.5. Concept-Monitor for fine-tuning on a medical dataset . . . . . . . . . . . . . . . . . 23

Figure A.1. Accuracy plot for Adversarial learning experiments . . . . . . . . . . . . . . . . . . . 25

Figure A.2. Diabetic Retinopathy images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure B.1. Effect of temperature parameter on anchor distance . . . . . . . . . . . . . . . . . . . 29

Figure B.2. Effect of temperature parameter on embedding plot . . . . . . . . . . . . . . . . . . . 30

Figure B.3. Effect of τ on bar plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure C.1. Concept-Monitor with a different concept set . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure C.2. Concept Monitor with Network Dissection . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure C.3. Concept Monitor with MILAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



LIST OF TABLES

Table 3.1. Comparison of concept diversity regularizer with standard training . . . . . . . 15

vii



PREFACE

viii



ACKNOWLEDGEMENTS

I would like to acknowledge Professor Lily Weng for her continued support as the chair

of my committee and my advisor. Through multiple drafts and many long nights, her guidance

has proved to be invaluable to the development of this work.

I would also like to acknowledge Tuomas Oikarinen and Prof Lily Weng who are co-

authors on my paper ”Using Concept Embeddings to Understand Neural Network Training”,

which serves as the basis for this thesis.

ix



VITA

2015–2019 Bachelor of Technology, Indian Institute of Technology, Delhi

2021–2023 Master of Science, University of California San Diego

FIELDS OF STUDY

Major Field: Computer Science

x



ABSTRACT OF THE THESIS

Concept-Monitor: Using Concept Embeddings to Understand Neural Net Training

by

Mohammad Ali Khan

Master of Science in Computer Science

University of California San Diego, 2023

Professor Lily Weng, Chair
Professor Albert Chern, Co-Chair

In this work, we propose a general framework called Concept-Monitor to help demystify

the black-box DNN training processes automatically using a novel unified embedding space

and concept diversity metric. Concept-Monitor enables human-interpretable visualization and

indicators of the DNN training processes and facilitates transparency as well as deeper under-

standing on how DNNs develop along the during training. Inspired by these findings, we also

propose a new training regularizer that incentivizes hidden neurons to learn diverse concepts,

which we show to improve training performance. Finally, we apply Concept-Monitor to conduct

several case studies on different training paradigms including adversarial training, fine-tuning
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Introduction

Unprecedented success of deep learning has led to its rapid application to a wide range

of tasks; however, deep neural networks (DNNs) are also known to be complex and non-

interpretable. It is not very well understood as to how a DNN model makes a decision, what

kind of concepts in the inputs it used to make that decision and to what extent its decisions are

based on correct parts of the inputs. Therefore, inorder to deploy these DNN models in the

real-world, especially for safety-critical applications such as healthcare and autonomous driving,

it is imperative for us to understand what is going behind the black box.

Lots of research effort has focused on developing methods to interpret black-box DNNs,

such as attributing DNN’s predictions to individual input features and identify which pixels or

features are the most important [33, 26, 28, 27] or investigating the functionalities (also known

as concept) of each individual-neuron (or channel of a CNN) [31, 21, 4, 18, 13, 20].

However, most of these methods only focus on examining a DNN model after it has

been trained, and therefore missing out useful information that could be available in the training

process. For example, it would be very useful for deep learning researchers and engineers to

understand what the concepts learned by the DNN model are and how the concepts evolve along

the training process.

At the current stage, training DNNs is still considered a black-box and trial-and-error

process. Making the training process more human-interpretable and transparent, can significantly

benefit the research in deep learning because (i) it can shed light on why and how DNNs learn,

which could be helpful to inspire new and improved DNN training algorithms; (ii) it can also

help to debug DNNs and prevent catastrophic failure if anything goes wrong.
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Motivated by the above need, in this paper we propose Concept-Monitor, which is an au-

tomatic and efficient pipeline to make the black-box neural network training more transparent and

interpretable. Our pipeline tracks and visualizes the training progress with human-interpretable

concepts of individual neurons, which provides useful insights of the DNN model as a whole.

Fig 1 gives a schematic overview of the Concept-Monitor. Our technical contributions can be

summarized as below:

• We develop a natural language based embedding space which allows us to efficiently track

how the neurons’ concepts evolve and visualize their semantic evolution throughout the

training process.

• We provide four case studies (standard training, adversarial training, lottery ticket hypoth-

esis and fine-tuning) to analyze various deep learning training paradigms and discover

insights into how and why these alternative training processes succeed. In these studies we

uncover insights like how lottery ticket pruning encodes concepts in the pruning mask and

how adversarialy trained models rely more on color as compared to standard model

• We propose a quantitative metric of concept diversity to measure how diverse of a set of

concepts the network is learning. Building upon this metric, we further propose a novel

training modification to encourage concept diversity and show it increases accuracy and

interpretability.

2



Figure 1. Our proposed Concept-Monitor is automated, scalable, training-free and makes DNN
training process more transparent and human understandable. It consists of 4 key steps to
understand each training iteration.

3



Chapter 1

Background and Related works

1.1 Neuron-level interpretability methods

A number of methods have been proposed to understand and interpret the roles of

individual neurons in neural networks, which we call neuron-level interpretability methods.

These include visualization based methods such as [9, 31, 22] and methods based on manual

inspection [32, 21, 12].

More recently, methods have been proposed to automatically describe the role of neurons

without need for human input, such as [5, 18, 20, 13]. Network dissection and its variation [5, 18]

require a curated probing data labelled with pre-defined concepts. The key idea of Network

Dissection is to identify concepts of neurons by calculating an Intersection over Unit (IoU) score

of intermediate activation maps and pre-defined concept masks.

However, this approach is limited by the need of a curated probing dataset annotated

with concept labels, which may be expensive and time-consuming to collect. A new version

of Network Dissection [6] tries to alleviate this limitation by using segmentation models to

label the concepts, although the segmentation models still require dense concept labels to train.

Alternatively, a recent work CLIP-Dissect [20] tries to address this challenge differently by

leveraging the paradigm of multi-modal models [24] to allow automatic identification of neuron

concepts without the need of collecting concept labelled data or densely annotated data. We note

that these techniques [5, 18, 20] are all compatible to our proposed Concept-Monitor to facilitate

4



automatic concept monitoring on the DNN training process. We demonstrate the versatility of

our Concept-Monitor by showing the experimental results with different concept detectors in the

Appendix for monitoring standard DNN training process.

1.2 Understanding DNN training dynamics

Most of the existing works are primarily focused on analyzing models after training

instead of investigating how the concepts change during the DNN training process, which is the

main focus of our work. A recent work [23] also proposes inspecting concepts of neurons during

training, which is similar to our goals, but their proposed approach is substantially different

from our approach and may come with some limitations as discussed below. First, their method

requires learning a universal semantic space for each neuron from a base model, while our

approach does not need to perform any training. Their approach could be expensive as re-training

is required when the base model or the probing dataset is changed. Second, their approach may

be hard to automate, because human intervention is required to describe the behavior of each

neuron, which may not be scalable to large models. In contrast, our method is fully automated

and does not require human input.

1.3 Interpretable training

Our concept diversity regularizer proposed in Section 3 is perhaps most closely related

to interpretable training methods such as Concept Whitening [8] or the learning of Concept

Bottleneck Layer in [19]. However, these methods are technically different from our approach

and focused on increasing interpretability of a NN model, while our concept diversity regularizer

is aimed to increase network performance such as accuracy.

5



Chapter 2

Our method

In section 2.1 we detail the key components in Concept-Monitor including the concept

detector, the unified embedding space, and the concept diversity metric. A full pipeline of how

to use Concept-Monitor is described in section 2.2. Next in section 2.3, we use Concept-Monitor

to demystify the standard training process of a deep vision model (shown in Fig 2.1) and discuss

the results and insights.

2.1 Components

2.1.1 (I) Concept Detector

The first part of our method is to use a concept detector φ to automatically identify the

concept of a neuron at any stage in the training. Given a set of concept words S and a probing

image dataset Dprobe, a concept detector φ would return a concept word wn
1′ for a neuron n that

maximally activates it. To monitor DNN training process with automatic concept monitoring,

we define a similarity metric simn
i which characterize how well a neuron n is described to a

concept wi. Note that we use the notation wn
1′ to denote the best concept for neuron n and wi

to be the ith concept word in the concept set S: i.e. 1′ = argmaxisim
n
i . This allows us to unify

existing neuron-interpretability methods in this framework – for example, the similarity simn
i

will be the IoU (Intersection over Union) score between nth neurons activation map and the ith

concept mask in Network-Dissection [4], and the similarity simn
i will be the similarity metric

6



(e.g. cosine similarity, soft-WPMI) between nth neuron activations and the ith concept activations

in CLIP-Dissect [20]. In addition, we say a neuron n is an interpretable neuron if simn
1′ > τ ,

where τ is a threshold dependent on the concept detector φ , and wn
1′ is the concept of this neuron.

2.1.2 (II) Unified embedding space

The second part of our method is to define a unified embedding space in order to visually

track neurons’ evolution. Here we detail the steps to project a neuron n into our embedding

space. Let f be the text encoder of a pretrained large language model (e.g. the text encoder from

CLIP [24]). First, we compute the text embedding vi of each concept word wi in the concept set

S: vi = f (wi). Next, we use these text embeddings {v1,v2, . . . ,v|S|} as the basis of our semantic

space and project neurons into this space using a weighted linear combination of vi. We use

the concept detector φ to compute simn
i for all concept words wi and neurons n, which are

subsequently used to calculate weighting using softmax with temperature T . The embedding un

of neuron n is then calculated as:

un =
|S|

∑
i=1

λ
n
i f (wi), λ

n
i =

esim
n
i /T

|S|
∑
j=1

esim
n
j/T

(2.1)

where λ n
i is the weight describing the similarity of concept wi to neuron n. Finally, we visualize

the concept embedding un in two dimensional space using UMAP [17] in plot such as Fig 2.1

(column 1). We can use the concept embedding plot in the unified embedding space to track the

concept evolution of each neuron easily.

Another benefit of our unified embedding space is that we can project any general concept

word α into the same embedding space by calculating its text embedding f (α). This lets us mark

the embedding space with concept ”anchors” (see the green stars in Fig 2.1, column 1), which

could be concepts that a researcher thinks should exist in a well trained model, or undesirable

concepts such as ones representing bias. With the concept-anchors, researchers can then track

7



whether and which neurons are converging or diverging away from anchors.

2.1.3 (III) Concept diversity metric

Another benefit of our neuron concept visualization via unified embedding space (e.g.

Fig 2.1) is that it allows us to easily sense the diversity of concepts represented by the neurons.

As we will see in Sections 2.3, neurons of well trained models typically cover a large set of

concepts, while poor training typically leads to a lack of concept diversity. Inspired by this,

we propose a quantitative metric anchor distance to measure concept diversity based on our

unified embedding space. The idea behind this metric is that we have a set of text anchors

A = {a1,a2, ...,a|A|} that ideally describes concepts that are important for this task, and we want

to make sure at least one neuron in the network has a concept similar to each anchor. Thus, we

define the anchor distance danchor as follows:

danchor =
1
|A|

|A|

∑
i=1

min
j
||u j − f (ai)||2 (2.2)

where u j are the neuron embeddings as defined in Eq.(2.1). This metric measures the average

Euclidian distance of the closest neuron to each concept in the anchor set. As such, networks

with highly diverse neurons will reach low anchor distance while highly clustered neurons will

results in a large danchor. For most of our experiments we set A = S, where both of them are the

set of labels in Broden dataset [4], but they can be easily changed based on task and user needs.

2.2 Using Concept-Monitor

With all the components in place, we now describe how they come together to form

Concept-Monitor for DNN training. Concept-Monitor offers a combination of metrics and

visualizations to analyze a snapshot of a model, and by analyzing at consecutive snapshots we

can understand how the model evolves in terms of concepts learned by individual neurons. The

schematic of Concept-Monitor is illustrated in Figure 1. At each snapshot, concept monitor

8



Figure 2.1. Case study (I): Monitoring standard training. We use Concept-Monitor to analyze
a standard trained Resnet-18 model on Places365 dataset. We visualize the training at three
different epochs, specifically tracking the trajectories of neurons #114 (orange circle),#168 (pink
circle) and #373 (blue circle) of layer 4. The 1st column plots our unified embedding space,
where each gray dot represents a neuron in layer 4 and green stars represent anchor words. The
tracked neurons are coloured differently for visualization. The 2nd column shows the highly
activating images of the tracked neurons along with their similarity to the closest concept. Finally
the 3rd column shows the percentage of interpretable neurons in layer 2-4 and which category
they belong to.

produces the following:

1. Two dimensional plot of neuron embeddings, and select text anchors (marked as the stars

in the plot).

9



2. Visualization of detected concepts and most highly activating images for each neuron.

3. Bar plot visualization of the number of interpretable neurons and which category they

belong to.

4. A numeric measure of concept diversity danchor as defined in Eq. (2.2).

A visualization of all these information for different epochs of standard models is shown

in Figure 2.1. We think this information should be combined with standard metrics such as

accuracy and losses to monitor training progress in an interface similar to TensorBoard [1]. This

information can be helpful in several ways, for example, if we see that concept diversity starts

to decrease, it indicates issues in the training. In Sections 2.3 and 4 we apply concept monitor

on different training runs, and in section 3 we propose a training modification inspired by our

insights from Concept-Monitor.

2.3 Case study (I): Monitoring standard training

Now we use Concept-Monitor to investigate standard training of ResNet-18 model on

Places365 dataset with CLIP-Dissect as the concept detector. We study how the concepts evolve

across training and whether there is a correlation between accuracy and concept generalization

with Concept-Monitor. We investigate the concept evolution of neurons at different epochs in the

training process using the full pipeline described in Section 2.2. The main results are plotted in

Fig 2.1, where row 1 represents a very early snapshot (trained for 1 epoch, at the end of Epoch

0), row 2 an intermediate snapshot (Epoch 10) and row 3 the final snapshot (Epoch 39, training

ends). The 1st column visualizes our proposed unified embedding: we use green star symbols to

show the anchors embeddings f (ai) for anchors [texture, plane, garden, stairs], and we use the

circle symbols to show 3 neuron embeddings un – neuron #114 (colored orange), #168 (colored

pink) and #373 (colored blue). The 2nd column visualizes the highly activating images for these

3 neurons, which should match the detected concept (word) displayed on top of it (e.g. neuron

10



#168 in Epoch 0 has detected concept ”zigzagged” on the graph). The 3rd column visualizes the

percentage of interpretable neurons from the 6 pre-defined categories. Now we summarize three

observations from the standard training below:

1. Model learns to look at more complex features as training progresses. - As shown in

Figure 2.1 second column, initially all neurons start by detecting low level features like

lines, patterns and textures. This can also be seen as all neurons being clustered around the

textures anchor in the embedding space (column 1) and absence of ’object’ and ’scene’

categories (column 3). We see that as training progresses, the model starts to learn more

complex features which can be clearly seen from the highly activating images in column 2

and bar plots in column 3.

2. Shallower layers learn more low-level features like material and texture while deeper layers

learn more nuanced object detectors. - We consider the broad categories of [Material,

Object, Scene, Texture, Color, Part] to group neurons similar to the labels used in Broden

dataset. We note that the categories Scene, Object and Part are concerned with higher level

concepts like planes and stairs while Texture and Color are concerned with lower-level

concepts like lined, zigzagged etc. From column 3 in Figure 2.1, it’s evident that Layer 2

and Layer 3 are learning a lot more low level information than Layer 4 as the texture and

color neurons are represented more.

3. Concept diversity happens relatively early in the training. - Using the unified embedding

space, we can see that the neurons are clumped together initially in the embedding plot

and as training progresses they spread out eventually converging to their finalt concept.

However, we note that this divergence occurs during the earlier stages of the training

and after that the neurons mostly stay close to their concepts. For example in Figure 2.1

column 1, we see that neuron #114 (orange circle) and neuron #168 (pink circle) reach

and retain their position for the last 30 epochs of training and keep their concepts as seen

in highly activating images.
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2.3.1 Discussion of standard training.

Using our method in standard training, we have seen a correlation between training

stage and interpretability of a model (represented as the number of interpretable neurons in the

Column 3 of Fig 2.1). We notice that for a well trained model, there is a progression from a low

level concepts understanding to higher level conceptual understanding, and the concept diversity

increases as training progresses. We also run Concept-Monitor using Network Dissection [4]

and MILAN [14] as the concept detectors in Appendix (see Fig C.2 and Fig C.3) and show our

observations are consistent across different concept detectors.

2.3.2 Poor training.

Next, we use Concept-Monitor to investigate standard training with poor hyper-parameter

selection, specifically the standard training in Section 3.3 but with a fixed high learning rate.

As expected, the large learning rate made it impossible for the model to train properly with the

final accuracy being 3%. We visualize the unified embedding plot of the poorly trained model

snapshots (in the 2nd row) and contrast it with the standard trained model snapshots (in the 1st

row) in Figure 2.2. It can be seen that unlike standard training, the concept diversity doesn’t

increase in the poor training but instead plateaus, which means the poorly trained model has a

higher danchor This is also confirmed with the calculated danchor value: danchor for poor training is

0.47 compared to 0.38 in the well-trained standard model, showing the inability of the model to

learn diverse concepts.
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Figure 2.2. Investigating poor training using unified embedding space. We see that in poor
training the neurons don’t diverge much along training. The high danchor also indicates inability
to represent useful concepts.
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Chapter 3

Concept Diversity Regularizer

In Section 2.3, we find that the neurons of well trained models usually cover a large

variety of concepts while poor training often leads to neurons clustering together. Inspired by

this, we propose a regularizer to increase concept diversity based on the anchor distance danchor

from Section 2.1. We find that it can improve model accuracy, interpretability and concept

diversity as shown in Section 3.1.

In order to include the anchor distance in training, danchor needs to be differentiable. By

plugging the neuron embeddings u j in Eq. (2.1) into Eq. (2.2), we can rewrite danchor as below:

1
|A|

|A|

∑
i=1

min
j
||

|S|

∑
i=1

(
esim

j
i /T

∑
|S|
k=1 esim

j
k/T

) · f (wi)− f (ai)||2. (3.1)

Recall that f is a text encoder of a pretrained large language model, and sim
j
i is a similarity

metric that characterize how close a neuron j is related to a concept wi based on the selected

concept detector φ . In our setting, f is frozen and fixed while sim
j
i contains the trainable

parameters of the DNN classifier model (through φ ). Thus, if sim j
i can be made differentiable,

then danchor becomes a differentiable function of the DNN parameters, and as such can be used be

used as a regularizer. In Network Dissection, sim j
i is an IoU score that is not differentiable, but

in CLIP-Dissect, sim j
i can be made differentiable if using the differentiable cos cubed similarity

function defined in [19]. Thus, we use the cos cubed similarity function and introduce the
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Table 3.1. Comparison between standard models and models trained with our Concept Diversity
Regularizer on Places365.

Model Accuracy(%)
Number of

interpretable
neurons

danchor

Res18 std 47.48±0.13 106.33±4.04 0.39±0.007
Res18 ours 48.33±0.08 147.7±7.02 0.36±0.004
Res50 std 49.12±0.44 544.4±41.02 0.31±0.003

Res50 ours 49.32±0.02 361±15.7 0.27±0.006

concept diversity regularizer directly in the training to reduce the danchor

L = Lstd +βdanchor (3.2)

where Lstd is the standard loss such as cross-entropy, danchor is defined in Eqn. (3.1) and β is a

hyper parameter to decide the relative importance of the two losses. Our goal is to minimize

Eq. (3.2) and learn a model that has a reduced anchor distance.

3.1 Results

To test the performance of our regularizer, we train a model on a subset of Places365 like

we did in section 2.3. We trained it exactly like before, using a mini-batch stochastic gradient

descent as the optimizer but with the new joint loss function of Eq. (3.2). The regularizer danchor

was calculated over the neurons in the second to last layer (layer4) of the network. Typically we

calculate danchor using the Broden dataset, but this would be too expensive to compute during

training. Instead we simply use a minibatch of Places training data as Dprobe which greatly

reduces computational overhead at the cost of introducing more noise to the neuron embeddings.

We used β = 1 for our experiments.

Table 3.1 shows that training with our regularizer improved average test accuracy by

1% point over the standard well-trained Resnet18 model with no further optimization beyond

adding the regularizer. In addition, it increased the concept diversity and number of interpretable
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neurons on the second to last layer. Note that the increase in interpretability is not caused by

overfitting as we used Broden as Dprobe in Table 3.1, which was not used during training. We

also see a small improvement in average accuracy for Resnet50 in addition to increased concept

diversity. The results of this initial experiment show the promise of encouraging concept diversity

in training.
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Chapter 4

Case studies of other training paradigms

In this section, we show that Concept-Monitor is versatile and can be used to study

various training paradigms to gain insights into how and why they work. We also provide useful

observations and insights that could help future researchers better understand these training

procedures.

4.0.1 Case study (II): Lottery ticket hypothesis

Lottery Ticket Hypothesis (LTH) [11] proposes that there exists a sub network inside

a model which is already very close to the desired model, the pruning technique introduced

by LTH is a popular method to prune DNNs without sacrificing their performance. In this

case study, we use Concept-Monitor to better understand the success behind LTH. The main

idea of LTH is to use iterative magnitude pruning (IMP) to prune the model by repeating the

steps of training, pruning and rewinding to an initial epoch. LTH hypothesizes the existence

of ”winning tickets” at initialization which are sub-networks within the network that can be

trained to performance equivalent to the original model. It has been noted in literature that the

process of pruning encodes some information in the pruning mask [34]. To understand this, we

use Concept-Monitor to investigate LTH through the lens of interpretability. We train a Resnet18

on CIFAR 10 dataset using IMP in 8 stages. For full details on our experimental setup, please

refer to Appendix A. A related study was done by [10] which found that pruning doesn’t affect

the interpretability of the model until there is a significant drop in accuracy. For our experiment
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Figure 4.1. A barplot of the percentage of neurons that are interpretable after successive stages
of pruning weights and rewinding remaining weights back to their initializations in our LTH
experiment. We can see the number of interpretable neurons increases after simply setting some
weights to 0.

we focus on the original Lottery Ticket Hypothesis, where after each stage of pruning we rewind

the weights all the way back to their initialization.

Observations and Discussion.

In our analysis, we make the following observation: Pruning the network learns to encode

some concepts without any fine tuning. Fig 4.1 shows the fraction of interpretable neurons in

layer 4 of the model after each stage of pruning and rewinding. We notice that even though we

are rewinding to the initial weights, the number of interpretable neurons increases. Since the

weights are randomly initialized, the only way there can be a gain in interpretable neurons is

through the changes that happen during pruning, i.e. the zeroing out of certain weights in the

network. We believe that the model may be learning to remove connections that are harming

the network, which leads to neurons ”learning” simple interpretable concepts such as colors

already at initialization. Interestingly, we also notice the number of texture neurons decreases

as pruning progresses. We note that a related phenomenon was observed by [34] who find that
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Figure 4.2. Select neurons from layer4 of our LTH rewind to zero model that were uninterpretable
at after one stage of pruning (and rewind to initialization) but became interpretable by the end of
4th pruning stage. Note no weights were changed between the two, interpreatbility was caused
purely by zeroing some weights.

IMP zeros out weights that would ultimately go towards zero anyway after training. Hence, they

hypothesize that a pruned initial network encodes a portion of the training process itself, which

they refer to as ”masking is learning”. This could explain why we see interpretable neurons with

just pruned initial weights. Further proof of this can be illustrated in the experiment result in

Figure 4.2, which shows some initially uninterpretable neurons (left panel) that ’learn’ to encode

simple concepts such as colors through pruning only and become interpretable (right panel).

4.0.2 Case study (III): Adversarial Training

DNNs are known to be vulnerable against small perturbations in their inputs [29]. This is

problematic as networks can fail unexpectedly after small random or adversarial perturbations

which raises concerns over their safety. Fortunately, methods have been developed to defend

against adversarial attacks, most popular of these being Adversarial Training [16]. This suc-

cessfully makes networks more robust against such attacks, but comes at a cost of degraded

performance on clean test data. In this study, we apply Concept-Monitor to adversarial training

to better understand how adversarial training changes a network and why standard accuracy

suffers. We analyse a Resnet18 model trained on CIFAR10 with and without adversarial training.

For full details on our experimental setup, please refer to Appendix section A.
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Figure 4.3. Comparison of the types of concepts learned by standard training compared to
adversarial training in the second to last layer (layer4), and differences in types of concepts
learned by the models. Note these figures are the network at the end of each epoch, so epoch 0 is
after one epoch of training.

Observations and Results

Using Concept-Monitor we have the following two observations from Figure 4.3 and 4.4.

These observations are consistent across multiple trained models but for simplicity we focus our

discussion on one model and its visualization.

1. Adversarially robust network relies more on colors, standard model moves on to higher

level concepts. In Figure 4.3 we observe that robust model has a lot more interpretable

neurons dedicated to detecting ”color” (the purple bar) than the standard model (30 vs 2)

at the end of training. On the other hand, the trained robust model has less interpretable

neurons in the object ”scene” and ”part” categories. This finding is sensible these categories

more often rely on high frequency patterns that are easily affected by l∞ noise, therefore the

adversarial training forces the model to rely less on them and rely more on more resilient

features like color. Interestingly, early in their training the concepts of the two models look

more similar but they start diverging after epoch 5.

2. Standard training develops many neurons detecting target classes in the second to last

20



Figure 4.4. Examples of the most common concepts detected by layer4 of Resnet-18 for both
standard and adversarial training. We can see a large difference between the types of concepts
encoded, where standard training learns many neurons already detecting CIFAR-10 classes such
as car, while adversarial model detects simple patterns and colors.

layer, robust training does not. As seen in Fig 4.4, the standard network has many neurons

detecting the target classes of CIFAR-10 present in the second to last layer. For example,

the fully trained standard network has 15 interpretable neurons detecting dogs, 11 neurons

for car and 10 neurons detecting cats in layer4. In comparison the robust network has 1,3,3

respectively which indicates a limited capacity to represent these classes. The standard

model learns to rely on target class neurons early on in training, with many of them present

by epoch 10.

Discussion

We find that adversarial training harms the ability of the network to detect higher level

concepts. Since these concepts are necessary for many tasks, losing them may be a significant

cause for the degradation in standard performance. This may also be related to the robust

networks inability to detect target class objects in second to last layer.

On the other hand, the features learned by the robust network are more general and less

task specific, as seen by larger diversity in concept types in Fig. 4.3 and lack of target classes in

Fig. 4.4. This could explain why [25] found adversarially robust models to have better features

for transfer learning. In effect standard model features could be overfitting to the training task.
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4.0.3 Case study (IV): Finetuning on a medical dataset

In this section, we use Concept-Monitor to observe the fine-tuning of a pretrained DNN

on a diabetric retinopathy dataset [2]. The purpose of this experiment is to show that Concept-

Monitor can be applied to a different domain such as medical data and gather insights into the

process of finetuning a pretrained model. The setup details are in Appendix A.

Observations and results

We observe that for the initial weights, as the neurons are pretrained on Imagenet, they

show a lot of diverse and high level concepts (as shown in highly activating image of epoch 0 in

the Fig 4.5 ). However as the training progresses, we notice that more neurons get activated by

textural concepts like dots and patterns rather than objects. This is what we expect because as

the model gets better at classifying retinopathy images shown in Fig A.2 (in the Appendix), we

expect it to rely more on textures and presence of ”dots” which is consistent to what we observe

here as shown by the highly activating images of the top interpretable neurons in epochs 5 and 29

in Fig 4.5. From Fig 4.5 we can also see that the number of interpretable neurons in the higher

level categories like ”object” and ”scene” category decrease and the interpretable neurons in the

”texture” and ”material” category remain the same or increase. This further confirms our theory

that the model learns to focus on the textural aspect of images more. This is also confirmed by

the semantic embedding space where we see the neurons becoming less separated. We further

confirmed this by calculating the average pairwise distance between neurons which decreased

from 0.735 to 0.726.

22



Figure 4.5. We use Concept-Monitor to analyze the finetuning a Resnet-34 network on a diabetic
retinopathy dataset. On the left we plot our semantic embedding space, where it can be seen
that as the training progresses the neuron mass becomes less spread apart, as is also evident
from the increasing anchor metric. In the middle we visualize the activating images of the
most interpretable neurons and we observe that the network starts to focus more on textural
aspects. This is also evident from visualizing the category bar plots on the right, where we
plot the percentage of interpretable neurons in layer 4 of the network. Each bar represents a
different category. We see that the neurons representing complex categories like ”object”, ”scene”
decrease while neurons representing ”material” and ”texture” either remain the same or increase
as the training progresses. We also see that texture makes up the majority of interpretable neurons
in Epoch 29
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Appendix A

Experimental setup

A.1 Case study (I): Standard training

A.1.1 Setup

We train a Resnet-18 model on Places-365 dataset, which contains a lot of diverse classes

allowing the DNN model to learn diverse concepts. To reduce the training time, we randomly

selected 1000 images for each of the 365 classes and trained for 40 epochs reaching top-1

accuracy of 47.5%. We use batch size of 256 and an initial learning rate of 0.1 with cosine

annealing scheduler.

A.1.2 Probing methodology

We use Broden [4] dataset as Dprobe and use associated concept labels as a decoupled

concept set S. Our embedding space, as described in section 3.1, is computed using CLIP’s text

embeddings of Broden labels as a basis. We used CLIP-Dissect with cosine-cubed similarity

function and neuron embedding temperature T = 0.01.

A.2 Case study (II): Lottery ticket hypothesis experiments

A.2.1 Setup

We train ResNet 18 on CIFAR 10 dataset using IMP as in the LTH paper [11], rewinding

to different initial weights. For each stage of IMP we train the model for 160 epochs, prune
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40% of the weights and rewind to initialization. After 8 stages we got an accuracy of 91.18% on

the validation set as compared to 94.32% after stage 0. Please refer to [7] implementation for

reference.

A.2.2 Probing methodology

For our Dprobe, we use Broden as the probing dataset and for concept set S we use broden

labels. We use CLIP-Dissect with SoftWPMI similarity function and embedding temperature

T = 0.1.

A.3 Case study (III): Adversarial Learning experiments

Figure A.1. Accuracy vs Epoch for standard and robust model
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Figure A.2. Sample images in the diabetic retinopathy detection training dataset. The key
features (e.g. dots and texture) are being detected by the interpretable neurons in Fig 4.5.

A.3.1 Setup

We perform adversarial training with PGD attacks on a ResNet-18 architecture. We

follow reop [30] and train the network with ε = 8/255 and l∞ perturbations for 40 epochs. We

compare it against a CIFAR-10 network trained using the same exact training setup but no

adversarial training. The standard model reaches a final accuracy 94.29%, while the robust

model reaches 83.42% accuracy on clean data and 50.00% robust accuracy against a PGD

adversarial attack as shown in Fig A.1. The standard model expectedly has accuracy close to 0%

on adversarial images.
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A.3.2 Probing methodology

We use the same probing methodology as in Case study (II), Broden images as Dprobe

and for concept set S we use the broden labels as the concepts can be easily categorized. We use

CLIP-Dissect with SoftWPMI similarity function and T = 0.1.

A.4 Case study (IV): Fine-tuning on medical dataset

A.4.1 Setup

We used ResNet-34 backbone pretrained on ImageNet dataset as our feature extractor

and used a simple linear layer as the classification head. We trained this network on the diabetic

retinopathy classification dataset [2] (Fig A.2) and it achieved an accuracy of 72.77%. We

followed the work from [3] for our experiments. We use Broden as Dprobe and broden labels as S.
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Appendix B

Ablation studies

In this section we study the effects of varying the temperature and threshold parameters.

B.1 Temperature (T )

Intuitively from Equation (2.1), the temperature parameter decides which concepts to

consider for calculating a neuron’s embeddings. Lower temperature implies that the Concept

Detector is more confident in its prediction of concepts and just uses the top concepts to calculate

the embeddings while a very high temperature implies lower confidence and weighs all words in

the concept set equally. To study this we plot the variation of anchor distance for different values

of temperatures across training epochs in Fig B.1. We consider the same Resnet18 model trained

on Places365 as Section 3 for consistency of results.

From the figure we see that the anchor metric shows small or no variation for very low

or very high temperature values respectively. We think this behavior is expected as for very

low temperatures the embedding calculation only considers a single concept while for very

high temperatures all concept words in the dataset are weighted equally. Therefore, we choose

T = 0.01 for our experiments as its between the two extremes and captures the variation in

semantics across training properly.

We additionally plot the embedding space of the final epoch of the Resnet18 model

analyzed in section 3 for different values of temperatures in Fig B.2.
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Figure B.1. Variation of anchor distance across training epochs for different values of tem-
perature in a Resnet18 model trained on Places365. It can be seen that for higher values of
temperature such as T = 0.5 the anchor distance is almost constant which shows that the calcu-
lated embeddings have lost semantic understanding by weighing all concepts equally. We can
see that variation in anchor loss is maximized for our chosen value T = 0.01, values lower that
0.01 show less variation likely caused by the embedding being too focused on the top concept.
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Figure B.2. Embedding plots of layer 4 of the final epoch of Resnet18 model plotted for different
values of temperature. We see that for very high temperature T = 0.1, the embedding plot clusters
in the same region which confirms our hypothesis that for very high temperatures, the space loses
its semantic meaning. This is also represented by danchor. For very low temperature, we see that
even though the embedding plot retains its semantic structure, the danchor is higher, which may
be the result of focusing on just the top concept which can provide incomplete understanding of
the behavior of a neuron especially in the case of polysemantic neurons.

B.2 Threshold (τ)

The parameter τ defines the similarity threshold above which a neuron is considered

interpretable. It is used to calculate the number of interpretable neurons in the bar plots in Fig

2.1. Varying τ changes the interpretability threshold, therefore the model considers more or

less neurons to be interpretable if we decrease or increase τ respectively. To study this, we

plot the bar plots as in Fig 2.1 for varying values of τ in Fig B.3. Even though the number of

interpretable neurons changes, we noticed that the conclusions we made in section 3.3 still hold.

For example, the later layers are more interpretable and represent more complex concepts in all

cases. However, if we make τ too high, the model doesn’t show any neurons to be interpretable.

Finally, we would like to point out that τ is a concept detector dependent parameter and should

be changed/tuned accordingly for different concept detectors. The values here are specifically

for CLIP-Dissect [20].
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Figure B.3. Percentage of interpretable neurons per category for Epoch 39 of a Resnet18 model
for different values of τ . We see that the number of interpretable neurons decreases as we
increase the threshold, which is to be expected as we now have a much stricter definition of what
counts as ”interpretable”. We see that even though the number of interpretable neurons decrease
as we increase the threshold, we are able to make the same conclusions for most values of τ . For
example, for both τ = 0.10.3, we see that later layers represent more complex concepts relating
to ”object” and ”scene” categories as compared to earlier layers which learn ”texture” and other
simpler features. We also see that if we increase τ too much we lose all interpretable neurons in
some layers.
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Appendix C

Concept-Monitor with different compo-
nents

C.1 Concept-Monitor with different Concept set S

As stated in Chapter 3 our method with CLIP-Dissect as concept detector is able to

work with any probing and concept dataset. Even though most of our analysis is based on using

Broden dataset as Dprobe, we provide an example of using Concept-Monitor with CIFAR100

training images in Section 4 to investigate Lottery Ticket Hypothesis. In this section we provide

an example of using a different concept set. For a different concept set than Broden labels, we

considered the list of top 20000 most common English words [15] as a concept set and provide

our analysis in Figure C.1 From this figure, we can see that the neurons 373, 168, and 114

converge to the same corresponding anchors as in Fig 2 of section 3. This once again highlights

the flexibility of our method to track concept evolution using a user preferred set of concepts.
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Figure C.1. Analysis of Resnet-18 model trained on Places365 dataset using top 20,000 English
words [15] as the concept set. The top image shows our unified embedding space, in which we
track Neurons 168, 373, and 114 of layer 4 with the help of semantic anchors ”plane”, ”stairs”
and ”texture”. We see that the trajectory of neurons is exactly the same as what we found with
using Broden labels as concept set in section 3. This shows that our method is flexible to using
a different concept set and opens the opportunity for users to use their own domain specific
concept set to track specific models.
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C.2 Concept-Monitor with different detectors

Figure C.2. Analysis of Resnet-18 model trained on Places365 using Network Dissection. Here
we track neurons 114, 168 and 373 in the layer 4 of the model using our semantic embedding
space. We also add concept anchors ”plane”, ”texture” and ”stairs” to track the neurons. We see
that the neurons start together in a cluster and move towards their learnt concept as the training
progresses. We also see that the evolution of neurons is the same as with Clip-Dissect in Section
3 Fig 2.1 except in the case of neuron 373, which moves away from the ”texture” anchor. We
attribute this distance to the difference in semantic labelling by Network Dissection, which labels
Neuron 373 as ”ampitheatre” instead of a textural concept.
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Figure C.3. Analysis of Resnet-18 model trained on Places365 using MILAN. Here we track
neurons 114, 168 and 373 in the layer 4 of the model using our semantic embedding space.
We also add concept anchors ”plane”, ”texture” and ”stairs” to track the neurons. We see that
the neurons start together in the center and move towards their learnt concept as the training
progresses. We also see that the evolution of neurons is exactly the same as with CLIP-Dissect
in Section 3 Fig 2.1 which once again highlights the flexibility of Concept-Monitor to be used
with different concept detectors.
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