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Making the Most of SMT in HPC: System- and Application-Level
Perspectives
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This work presents an end-to-end methodology for quantifying the performance and power benefits of simul-
taneous multithreading (SMT) for HPC centers and applies this methodology to a production system and
workload. Ultimately, SMT’s value system-wide depends on whether users effectively employ SMT at the
application level. However, predicting SMT’s benefit for HPC applications is challenging; by doubling the
number of threads, the application’s characteristics may change. This work proposes statistical modeling
techniques to predict the speedup SMT confers to HPC applications. This approach, accurate to within 8%,
uses only lightweight, transparent performance monitors collected during a single run of the application.
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1. INTRODUCTION

Simultaneous multithreading (SMT) [Tullsen et al. 1995] is a processor feature that
allows a single physical core to simultaneously fetch and execute instructions from mul-
tiple threads. By interweaving instructions from those threads into the same pipeline,
otherwise idle execution resources are employed to improve overall throughput.
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59:2 L. Porter et al.

However, SMT is not guaranteed to benefit any particular application, as threads
competing for resources shared between SMT contexts may interfere with one another
[Snavely and Tullsen 2000].

SMT is available on many high-performance computing (HPC) systems today, with at
least 58 of the fastest 100 systems in the world (at the time of this writing) containing
hardware that support it [Meuer et al. 2014]. The performance sensitivity of an appli-
cation to SMT is highly variable and depends on many factors, an issue that has been
well documented in the literature [Celebioglu et al. 2004; Curtis-Maury et al. 2005;
Gepner et al. 2011; Grant and Afsahi 2005; Gray et al. 2006; Milfeld et al. 2003; Saini
et al. 2011; Vega et al. 2013]. Whether employing SMT improves performance or not,
using SMT contexts often increases processor activity and, therefore, increases power
consumption. In some cases, the improved performance compensates for the increased
power consumption for a net energy efficiency benefit. But in cases where SMT does
not benefit performance, the increased time to solution combined with increased power
consumption results in significantly diminished energy efficiency.

Because SMT can result in diminished performance and energy efficiency if used
incorrectly at the application level, system designers and operators are put in the
difficult position of deciding whether SMT should even be an option given to users
(SMT can be disabled or enabled system-wide). Choosing whether to allow users the
option to use SMT is more complicated than it may first appear. Proponents point to
potential performance benefits, while opponents observe that these benefits are rarely
obtained in practice. As a result, SMT is enabled in some HPC systems and disabled in
others, often based on ad-hoc estimates of its efficacy or biases of the system operators.

At the same time, HPC users generally wish to improve their applications’ perfor-
mance, but they may ignore SMT because (1) they do not fully understand it, (2) its
benefits are difficult to predict without that understanding, (3) experimenting with
SMT for their application can be expensive in computing hours, and (4) those benefits
may change with different application input sets, core counts, and system configura-
tions. What HPC users need to better employ SMT is a robust, deployable methodology
for estimating if, and to what extent, their application would benefit from using SMT.

This work examines the impact of SMT in HPC at both the system and applica-
tion levels. First, we provide system operators with a system-level methodology for
quantifying the performance and power benefits of SMT using workload-specific char-
acteristics. One of the key insights of this methodology is that an important factor
in understanding the impact of SMT is the degree to which application-level deci-
sions about using SMT are made correctly. To address this, we provide users with a
methodology for predicting the speedup of running an application on SMT, showing
that simple performance monitor-driven models can be used to accurately assess the
benefits of SMT for a wide spectrum of applications within both single- and multi-
node execution scenarios. These models are designed so that they yield insights about
the particular processor bottlenecks that are instrumental in predicting the perfor-
mance benefit of SMT, and require only a single lightweight performance monitoring
run of the application to obtain a prediction. Our specific contributions are as follows:

(1) System-level Impact of SMT—We introduce a methodology for quantifying the
benefits of enabling or disabling SMT in an HPC system (Section 3). The methodol-
ogy only requires the performance measurements of a representative set of applica-
tions and job sizes, much of which are already collected during system procurement
or system testing, and summary statistics from standard job logging facilities.

(2) Energy Implications of Enabling SMT—We perform an investigation of the
effects of simply enabling and disabling SMT (Section 4.3). We show that, without
utilizing SMT, keeping it enabled has a small power overhead that persists across
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multiple microarchitectures and process technologies in Intel hardware. This work
is the first to document this overhead and its implications.

(3) SMT Bottleneck Analysis—We present a model-based analysis and quantifica-
tion of the architectural features instrumental in determining whether SMT is ben-
eficial for an HPC application (Section 5). We find commonality between Nehalem
and Sandy Bridge, as SMT’s effectiveness on both depends on some combination of
memory bandwidth and instruction throughput. However, we find memory band-
width is the more significant factor on Nehalem, while instruction throughput is
the key factor on Sandy Bridge.

(4) Predicting SMT’s Performance Benefit—We demonstrate that a model based
on performance monitors can accurately predict the benefit of SMT (Section 5).
We describe simple multiple regression models and more sophisticated rule-based
machine learning models. The rule-based machine learning models achieve an
average error of 7% and 8%, respectively, for Nehalem and Sandy Bridge systems.

(5) Production Workload Study—We employ our methodology on the 2011 pro-
duction workload from the Department of Defense HPC Modernization Program
(HPCMP) on an Intel Sandy Bridge-based system (Sections 4.4 and 5.6). Using our
prediction model to guide application-level SMT deployment, we find that system-
level performance and energy efficiency are within 97% of the performance and
energy efficiency of an oracle predictor.

2. BACKGROUND AND RELATED WORK

2.1. Simultaneous Multithreading (SMT)

SMT [Tullsen et al. 1995] enables the execution of multiple threads on a single processor
core by modifying and augmenting a small amount of hardware in the core to allow
multiple threads to compete for otherwise idle resources. This approach is attractive to
designers because it is relatively unintrusive and low in cost while potentially providing
large increases in overall throughput. An additional benefit of SMT in the multicore
era is that it enables simpler, homogeneous core designs to provide similar performance
as more complex, heterogeneous core designs [Eyerman and Eeckhout 2014].

However, the competition for shared resources can be destructive to the performance
of all threads and to overall throughput when threads contend for resources, such
as out-of-order execution logic, functional units, caches, branch predictors, memory,
and TLB. A variety of approaches have been proposed to mitigate this destructive
behavior. Early work [Tullsen et al. 1996] proposed using instruction fetch logic to
prioritize threads not receiving their share of shared resources. Subsequently, a number
of architectural modificiations have been proposed that partition the shared resources
to reduce conflicts [Cazorla et al. 2004; Choi and Yeung 2006; Raasch and Reinhardt
2003; Wang et al. 2008].

The first implementation of SMT in a general-purpose processor was Intel’s Hyper-
threading (HT), which appeared in 2002 within Xeon server processors [Koufaty and
Marr 2003] and within the Pentium 4 line of desktop processors [Tuck and Tullsen
2003]. Subsequent implementations of SMT have appeared in other Intel processor
lines: Itanium [Tian et al. 2003], Nehalem [Singhal and Engineer 2008], Sandy Bridge
[Schöne et al. 2011] and Haswell. IBM has also included SMT in its Power processors,
beginning with 2-way SMT in the Power5 [Mathis et al. 2005], up to 4-way SMT in the
Power7 [Kalla et al. 2010] and 8-way SMT in the Power8.

2.2. Predicting Parallel and SMT Performance

There are a number of works that model the performance of parallel applications
[Carrington et al. 2005; Kerbyson and Jones 2005; Marin and Mellor-Crummey 2004;
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Snavely et al. 2002a], parallel application scalability [Barnes et al. 2008; Carrington
et al. 2013; Kerbyson et al. 2001], and the impact of changing the input set of a parallel
application [Lee et al. 2007]. However, surprisingly little work has focused on predicting
whether a single parallel application stands to benefit from employing SMT. Much of
the work in predicting SMT performance derives from efforts to create cooperative
co-schedules among multiple applications.

Avoiding destructive interference by predicting symbiotic schedules has been studied
by using a combination of sampling co-schedules and heuristics to select the best co-
schedule [Snavely and Tullsen 2000; Snavely et al. 2002b]. To avoid sampling phases,
Eyerman and Eeckhout [2012] create snapshots of performance (using per-thread cycle
stacks from the architecture in Eyerman and Eeckhout [2009]) for use in probabilisti-
cally modeling co-schedules to select the top performer.

Examining CMPs of SMTs, DeVuyst et al. [2006] used runtime measurements to
predict better co-schedules for multiprogram workloads; moving applications between
cores to improve energy and/or performance. Rakvic et al. [2010] aim to improve per-
formance and energy consumption of parallel workloads by identifying critical threads
in a parallel region to use SMT to give higher priority to the critical thread for thread
balancing. These techniques are complementary to ours.

Moseley et al. [2005] predict performance when co-scheduling two single-threaded
applications in a multiprogram environment by using linear regression modeling and
recursive partitioning of performance counters. We adopt a similar approach in this
work, however, we apply statistical modeling to predict, for a fixed number of nodes,
whether a parallel application would run better using n physical cores or 2n virtual
cores. We are the first, to our knowledge, to address this question.

Curtis-Maury et al. [2006] modify multithreading libraries to dynamically profile
applications using performance monitors on a small number of cores, predicting and
enacting an effective OpenMP configuration. This work is complementary to ours in
that our work aims to inform users to make better SMT choices rather than modifying
multithreading libraries to improve runtime OpenMP decisions. Our work also applies
to MPI and OpenMP alike and addresses internode communication present in large
full-size HPC applications.

2.3. SMT in HPC

SMT is an important feature in HPC systems. At the time of writing, the majority of
the most recent Top500 list [Meuer et al. 2014] contains hardware featuring an SMT
implementation. There is a wealth of related work that documents the effects of SMT
on the performance of various HPC applications [Celebioglu et al. 2004; Curtis-Maury
et al. 2005; Gepner et al. 2011; Grant and Afsahi 2005; Gray et al. 2006; Milfeld et al.
2003; Saini et al. 2011; Vega et al. 2013]. We draw two conclusions from this literature.
First, the variability in the impact of employing SMT is large. Second, the benefit of
employing SMT is difficult to predict, varying significantly across computational areas
and applications, and even within datasets and core counts for the same application.
Supported by the literature, we draw similar conclusions when examining the benefit
of SMT across a spectrum of HPC application and benchmark programs using
shared memory (OpenMP) and message passing (MPI) parallelization approaches (see
Section 4.2).

These results may lead to two conflicting conclusions. One might interpret the sig-
nificant variation in runtime improvements as support for the idea that there is a
substantial opportunity for users to selectively employ SMT to their advantage. Alter-
natively, the difficulty in determining whether a specific job will benefit from SMT may
lead operators to conclude that employing SMT in just the right way is too difficult a
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task for users to undertake, causing more harm than good. Aiding user decisions by
predicting SMT’s value is hence addressed in Section 5.

Although prior work has addressed energy and performance implications of SMT for
certain groups of applications, this is the first work to report the increase in power
consumption from merely enabling (not necessarily employing) SMT for the system.
Additionally, this work is the first to address the fundamental question of whether to
allow users the option of using SMT by enabling SMT throughout the HPC center.

3. MODELS FOR SMT: SYSTEM AND APPLICATION-LEVEL APPROACHES

This section provides a methodology for evaluating the trade-offs involved in deciding
whether system operators should enable SMT for users. The methodology determines
the impact SMT has on system-wide performance and energy by accounting for three
primary factors:

(1) Energy Impact of SMT: Recent work has shown that using SMT increases power
consumption by roughly 5% on Sandy Bridge systems [Schöne et al. 2011]. In
Section 4, we revisit this claim for Sandy Bridge and Haswell systems and find
that it is consistent with our measurements. As we document in Section 4.3.2, a
further confounding factor is that merely enabling SMT on the system increases
power consumption for both Sandy Bridge and Haswell systems. That is, even
when running jobs that leave all SMT contexts idle, there is an increase in power
draw over an identical job running on identical hardware that has SMT disabled.
Therefore, enabling SMT in an HPC system causes the power consumed during
all jobs to increase, including a slight increase in system power while the system
is vacant. Please see Section 4.3.2 for our analysis of this effect. As such, each of
these overheads (the cost of enabling and the cost of using SMT) are accounted for
in our methodology.

(2) Workload and System Sensitivity to SMT: SMT’s benefit, for both energy and
performance, may be sensitive to a number of factors including the application,
input set, number of cores chosen for a particular run, and the underlying hard-
ware features that change from generation to generation. These factors are hence
dependent on system workload and system hardware. We provide a method for
summarizing the workload based on a representative subset of jobs and for mea-
suring SMT’s benefit for that workload.

(3) User Accuracy: A key factor in determining the value of SMT is how well users
employ SMT. The accuracy of their decisions to employ SMT impacts not only
the performance of their application, but system-wide energy consumption. As
previously mentioned, SMT’s benefit for an application can be hard to predict for
users because it depends on a number of factors. To aid user decisions, we provide
a system- and workload-aware modeling technique, which can provide users with
a predicted benefit of using SMT with their application (at the size of a recent
run).

To aid our analysis, Table I defines the three SMT states possible in an HPC system.
For hardware that supports SMT, the operator may choose to disable the SMT thread
contexts in BIOS (SMToff), making SMT unavailable to users. The operator may also
make the decision to enable SMT in BIOS, in which case users have the choice of
leaving those SMT contexts idle (SMTidle) or employing them (SMTused).

Our methodology consists of operators supplying a set of representative applications
and, for these applications, performance measurements when running with and with-
out SMT (SMTused and SMTidle) on a range of core counts (this provides the speedup
from SMT at these core counts). These representative applications are carefully
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Table I. Summary of SMT-related System/Application States

State Summary Detailed Description

SMT off SMT disabled SMT is supported by the processor, but is disabled by the operator
in BIOS and is, hence, unavailable to users

SMT idle SMT enabled but idle SMT is enabled by the operator, but thread/process management
is employed to ensure that only one thread/process per physical
core is used

SMT used SMT enabled and used SMT is enabled by the operator, and jobs use all SMT contexts
(virtual cores)

constructed into a workload, in order to match the characteristics of the actual system
workload observed within the system’s job logs. The speedup measurements for
the applications are combined with power characteristics of the system running in
the possible SMT states (SMT off, SMT idle and SMT used) to produce an estimate of the
energy impact of enabling SMT on the system as a function of how aptly users choose
correctly between SMT idle and SMT used. Finally, as applications are run for speedup
measurement, a prediction model is created so that users can submit jobs and receive
feedback on the predicted performance had the job been run using SMT (for the same
number of nodes).

The results of this methodology are twofold: (1) it provides the operator an under-
standing of whether SMT is worth the energy cost for the system workload, which is
dependent on users accurately employing SMT, and (2) it provides a prediction model
to aid user decisions. If the model’s ability to predict SMT’s value (or existing user accu-
racy) is less than the threshold where the system would benefit from SMT, an operator
may elect to disable SMT system-wide. Conversely, if the model’s prediction accuracy
(or existing user accuracy) is higher than the threshold for the system to benefit from
SMT, the operator should elect to enable SMT system-wide.

3.1. Quantifying the Impact of SMT at the System Level

To understand the impact to the overall system of enabling or using SMT, it is necessary
to understand how SMT impacts particular applications as well as how SMT affects
power draw. These factors are then combined to quantify the benefits of enabling SMT
on an HPC system.

3.1.1. Power Costs. We begin by defining the power draw for a job j on the same
number of physical cores when using (SMT used) and when not using SMT (SMT idle),
each divided by the power draw of the same system with SMT disabled (SMT off). We
define these as Cused

j and Cidle
j , respectively. Similarly, we define Cidle

vacant as the power
draw of idling all cores (including SMT contexts) on a vacant/jobless system divided
by the power draw of the same vacant system with SMT disabled (SMT off). We note
that these values are normalized to SMT off and reflect a notion of the power “cost” of
SMT in each case. For example, a value for any of the costs (C) of 1.0 would indicate
no increased power for SMT, and 1.20 would indicate a 20% cost increase. The inputs
to these calculations are power measurements, which can be gathered directly by
measuring power while applying different SMT states to the system/jobs.

3.1.2. Job-level Metrics. We use the standard definition of speedup to formulate the
speedup of a job j for SMT idle and SMT used relative to SMT off as Sused

j and Sidle
j ,

respectively. These definitions appear in Equation (1), where Tj is execution time of j.
We note that for many of the applications we study in this work, the performance differ-
ence between SMT idle and SMT off is negligible (i.e., Sidle

j is very close to 1), as shown
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in Section 4.3.2. We use Sidle
j rather than 1 throughout to generalize our methodology

should the performance difference increase with future processor generations.

Sused
j = T off

j

T used
j

Sidle
j = T off

j

T idle
j

(1)

Using the power and speedup, we define the normalized energy for a job j for SMT used

and SMT idle in Equation (2), where a value for normalized energy below 1 reflects an
energy savings.

Eused
j = Cused

j

Sused
j

Eidle
j = Cidle

j

Sidle
j

(2)

We then define in Equation (3), of the possible choices a user can make with respect
to SMT (SMT used or SMT idle), the ideal- and worse-case speedups for a job j.

Sideal
j = max

(
Sused

j , Sidle
j

)
Sworse

j = min
(
Sused

j , Sidle
j

)
(3)

Similarly, we define the ideal- and worse-case energy improvements for a job j in
Equation (4). Note that idealized energy is formulated as a function of which choice
produces the best performance outcome for the user.1

Eideal
j =

{
Eidle

j if Sidle
j ≥ Sused

j

Eused
j otherwise

Eworse
j =

{
Eused

j if Sidle
j ≥ Sused

j

Eidle
j otherwise

(4)

We incorporate next the probability Pideal that users make the ideal choice (i.e.,
the choice that offers the best performance) between using SMT contexts (SMTused)
and not using SMT contexts (SMTidle) when running jobs. Since Pideal is a probability,
Pideal ∈ [0, 1]. Using Pideal, we define the expected speedup and energy for a job j as a
function of how likely the user is to select the better performing SMT state for the job
j in Equations (5) and (6), respectively.

Sexpect
j = Pideal ∗ Sideal

j + (1 − Pideal) ∗ Sworse
j (5)

Eexpect
j = Pideal ∗ Eideal

j + (1 − Pideal) ∗ Eworse
j (6)

Next, we apply these definitions for all of the workload’s jobs to ascertain the perfor-
mance and energy consequences of enabling and disabling SMT for that workload.

3.1.3. Workload Formulation. We define a workload W as a set of jobs. Within a workload,
each job is weighted to reflect its importance to the workload. We assign the weight Rj
to job j based on the fraction of the CPU-hours consumed by jobs within the production
system that resemble j. Ensuring that W is representative of the jobs run in production
and describing the mechanics of how those weights are assigned is the subject of
Section 3.1.4.

As HPC systems are not always running jobs and can often be underutilized, we
incorporate the utilization level U of the system, where U ∈ [0, 1]. Bringing these
components together, we can now define the expected overall performance benefit and

1As only one configuration (SMTused
j or SMTidle

j ) can be selected for a given application, the decision to select
the “ideal” based on performance inherently prioritizes performance over energy. One could prioritize energy
over performance, modifying the “ideal” to be the better result based on energy instead.
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the energy benefit of enabling SMT for the workload W in Equations (7) and (8), re-
spectively, as a function of the probability that users make the ideal choice about using
or idling the available SMT contexts on the system (factored into Sexpect

w and Eexpect
w ).

Sexpect
W =

∑
w∈W

Rw ∗ Sexpect
w (7)

Eexpect
W = U

(∑
w∈W

Rw ∗ Eexpect
w

)
+ (1 − U )Cidle

vacant (8)

These equations, along with the workload model described in the following, are
used to evaluate the implications of enabling SMT for particular HPC systems and
workloads.

3.1.4. Workload Modeling. The particular weighting scheme used for the jobs in a work-
load depends on the purpose for which the workload is being constructed. For this work,
weights are assigned to jobs based on the CPU-hours the job consumes out of the total
CPU-hours consumed by all jobs in the workload.

The workload for a production HPC system Wactual consists of all jobs run on that
system over some period of time. Were we to construct a workload from the actual set
of all jobs on the system, we would weight each job according to its CPU-hour usage.
As production workloads may contain tens or hundreds of thousands of jobs over the
course of a year and because our methodology requires running each job under both the
SMT idle and SMT used scenarios, deploying it on a raw production workload in total
is impractical. Therefore, we construct a workload Wmodel that possesses the same
characteristics as Wactual, allowing us to study the behavior of the Wactual without
resorting to rerunning every job in the workload.

The construction of Wmodel is guided by summary statistics of Wactual extracted from
the job logs on the system to obtain information about the job size and runtime, as
well as user surveys to determine computational domains for each job. Our goal in con-
structing Wmodel is to achieve similarity in the distribution of the physical core counts
and the computational domains of the jobs. Our strategy for achieving this similarity
focuses on selecting a set of jobs that are diverse in both of these dimensions. However,
because applications generally cannot be run at arbitrary core counts, the selection
of a reasonably small number of applications that mirrors the diversity of Wactual is
difficult to perform by hand and thus is treated as an optimization problem. We then
employ a hill-climbing approach [Aarts and Lenstra 1997] to solve the optimization
problem, the result of which is an assignment of weights to jobs. In Section 4.4, we use
this approach to develop a workload model for the 2011 production workload from the
Department of Defense’s HPC Modernization Program (HPCMP).

3.2. Application-level Performance Models to Inform User Decisions

On HPC systems, running applications with both SMT used and SMT idle can be
expensive for users because it requires them to repeat jobs, possibly in the thousands of
compute hours, to see if SMT is beneficial. As such, this section describes performance
monitor-driven models for predicting the performance benefit of employing SMT at
the application level. The input to these models are collected on a single non-SMT
execution of the application. One such run allows the model to produce a prediction
of the performance outcome of running that same application on the same number of
physical cores using SMT (hence using 2× the number of threads).

An overview of our technique for building the performance model is presented in
Figure 1. Models are built by leveraging the performance monitoring data from a
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Fig. 1. Overview of model building methodology.

pool of application runs, described in Section 3.2.1. The resulting performance mon-
itoring data from those runs is reduced in size by a principal component analysis
and clustering methodology described in Section 3.2.2. Finally, the resulting principal
components from the performance data are used to build statistical models described
in Section 3.2.3.

3.2.1. Performance Monitors. All of the prediction models described in this work leverage
hardware performance monitors, simple counts of microarchitectural events that are
exposed to the ISA via model-specific registers. Our baseline models use a rich set of at
least 40 hardware performance monitors (the exact number varies by system). These
monitors provide information on the behavior of a number of architectural features
as an application executes, including behavior within the memory hierarchy, floating
point unit, branch predictor, instruction pipeline, and so forth. Later we present a
streamlined approach that uses principal component analysis to narrow the number of
hardware performance monitors to just nine.

In addition to hardware performance monitors, the multinode prediction models
presented in this work also use simple summary statistics of the network communi-
cation events generated by the application. These summary statistics are collected in
software using a monitoring library that wraps calls to the message passing interface
(MPI) library [Tikir et al. 2009]. Collection of these communications statistics generates
negligible extra overhead (<1%).

3.2.2. Principal Component Analysis. We extend each of the models by adopting an opti-
mization known as principal component analysis (PCA) [Jolliffe 2005]. PCA is a sta-
tistical technique that converts a set of explanatory variables that may be correlated
into a smaller number of noncorrelated explanatory variables, the principal compo-
nents. When used effectively, PCA can be used to dramatically reduce the number of
explanatory variables without losing (much of) the predictive quality of the model.

Our approach to extracting principal components combines PCA and K-means clus-
tering [Duda and Hart 1973; Ding and He 2004]. First, we extract N principal com-
ponents from the explanatory variables. The result of this first step is an N-element
vector for each of the original explanatory variables, with each such vector describing
the linear combination of principal components that makes up the explanatory vari-
able. Second, we use K-means clustering on those N-element vectors, yielding clusters
of explanatory variables that have similar principal components.

From each cluster found by K-means, we choose a single explanatory variable as the
representative of that group. We then discard all other nonrepresentative explanatory
variables and build models using only the remaining representatives. As we later show,
downselecting the explanatory variables in this fashion has little negative impact on
the quality of the models, yet makes it far easier to perform analysis such as the variable
importance calculation described in Section 3.2.5 and implemented in Section 5.3.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 59, Publication date: December 2014.



59:10 L. Porter et al.

3.2.3. Multiple Regression Models. Multiple linear regression is a statistical technique
for modeling the relationship between a response variable and multiple explanatory
variables [Draper and Smith 1981]. In this work, the explanatory variables are perfor-
mance monitor measurements of the application running without SMT, as described
earlier. The response variable is the predicted speedup of doubling the number of
threads and executing the application using SMT context (i.e., using twice the num-
ber of threads/processes while still running on the same number of physical cores).
Multiple linear regression models assume the form:

R = c1 E1 + c2 E2 + · · · + cnEn (9)

Building a linear regression model involves selecting values for the coefficients
c1, c2, . . . , cn, typically choosing them in such a way that some measure of error is
minimized. In this work, we select the coefficients that minimize root mean square
error (RMSE).

3.2.4. Rule-based Machine Learning Models. Cubist [RuleQuest Research 2012] models
are rule-based machine learning models, built using a tree of linear regression models.
The intuition behind a cubist model is as follows: predictions are made using the linear
model found at the leaf node of the tree, while the choice of leaf is determined by
rules at the nonleaf nodes that are also based on linear models. Cubist models have
the capability of explaining complex and nonlinear relationships, which are pervasive
in processor architecture. For example, memory access time is a complex nonlinear
relationship of working set size (among other factors) and has several “cliffs” at cache
size boundaries.

In this work, we use cubist models in a manner similar to the regression models
described earlier, where the model takes explanatory variables E1, E2, . . . , En and yields
a response R, which is the speedup of running an application using SMT. Like the
regression models, when building cubist models, they are built to minimize RMSE.

3.2.5. Variable Importance. One of the important insights we obtain from the models
developed in this work is to assess how important each of the explanatory variables is
to predicting the response variable. Variable importance analysis results in a score for
how “influential” each explanatory variable is in calculating the result of the model.
For our models, the variable importance tells us which hardware/software interactions
are most important for determining how beneficial doubling the number of-threads and
running an application using SMT is to performance.

Our approach to assigning variable importance in the cubist model is to use a linear
combination of each explanatory variable based on its use in the rule conditions among
nonleaf nodes and in the final model/leaf node. For the linear models, we assign variable
importance by examining the relationship between each explanatory variable and the
response by fitting a linear model to that relationship and finding the R2 statistic of
that model to an intercept-only model (an intercept-only model is akin to a regression
built using only a single constant).

3.2.6. Preventing Model Overfitting. To avoid overfitting, we employ two techniques. First,
we use “out-of-sample” model validation, wherein we divide the empirical samples into
nonoverlapping training and test sets. The model is trained on the training subset
and validated on the test set. Second, we use 10-fold cross-validation to produce the
models. In k-fold cross-validation (in our case, k = 10), the training dataset is randomly
partitioned into k subsets of approximately equal size. k different models are then
constructed, each using (k − 1) of the k partitions as training input so that one of the
k sets can be set aside for model validation. Each of the k models are then validated
against the validation set and the model that yields the minimum error is selected.
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4. EVALUATION

We begin our evaluation by describing the experimental setup used throughout our
evaluation, including the details of all test platforms, software and hardware appara-
tus, and application codes.

4.1. Experimental Setup

4.1.1. Platforms. We employ an array of test platforms in our experiments. The full-
scale production HPC systems are:

—HPC-NH is an ERDC/HPCMP system composed of 1,920 Intel Nehalem-based com-
pute nodes. Compute nodes are dual-socket systems with 24GB of memory, and are
connected with a 4X DDR Infiniband interconnect. Each socket houses a quad-core
Intel Xeon X5560 running at 2.8GHz that supports two-way Hyperthreading2 (HT)
per core for a total of 8 virtual cores per processor, or 16 virtual cores per node.

—HPC-NH2 is an ARL/HPCMP system with 1,344 Intel Nehalem-based compute
nodes. This system is nearly identical to HPC-NH with the same processors and
interconnect; however, each node has 48GB of memory.

—HPC-SB is an AFRL/HPCMP system composed of 4,590 Intel Sandy Bridge-based
compute nodes. Each of the compute nodes are dual-socket systems with 32GB of
memory and are connected with a 14X FDR Infiniband interconnect. Each socket
has an 8-core Xeon E5-2670 running at 2.6GHz that supports two-way HT per core
for a total of 16 virtual cores per processor, or 32 virtual cores per node.

We also employ a series of single-node systems:

—RCK-SB is a single-node rack-mounted server that is configured as a dual-socket
system with 32GB of memory. Each socket supports an 8-core Intel Xeon E5-2450
(Sandy Bridge) processor running at 2.1GHz with two-way HT on each core for a
total of 32 virtual cores.

—SRV-SB is a single-node desktop server with two 8-core Intel Xeon E5-2670 (Sandy
Bridge) processors running at 2.6GHz, with two-way HT on each core. The whole
system has 32GB of memory and 32 virtual cores.

—SRV-HW is a single-node desktop server that has a single 4-core Intel i7-4770
(Haswell) processor. The i7-4770 runs at 3.4GHz, has 16GB of memory, and two-
way HT on each core for a total of 8 virtual cores.

4.1.2. Application Codes. We use a number of benchmarks and applications in our ex-
periments, including the NAS Parallel Benchmarks (NPBs) [Bailey et al. 1991], NERSC
benchmarks [Antypas et al. 2008; Cordery et al. 2013], PARSEC [Bienia et al. 2008],
OpenCV [Bradski 2000], and full-scale production HPC applications from the DoD
TI-13 benchmark suite. Production applications include HYCOM [Chassignet et al.
2007], AVUS [Hoke et al. 2004], LAMMPS [Plimpton et al. 2007], ICEPIC [Mardahl
et al. 2003], and CTH [Davis et al. 2007]. The microbenchmarks include a number of
kernels from pcubed [Laurenzano et al. 2011] and polybench [Pouchet 2012]. Table II
summarizes these applications, along with the parallelization model each application
uses and the core count ranges used in this work.

4.1.3. Additional Experimental Setup Details. All applications on the large-scale systems
HPC-NH, HPC-NH2 and HPC-SB were compiled with the Intel compiler, while all ap-
plications on the single-node systems RCK-SB, SRV-SB and SRV-HW were compiled
with the GNU compiler collection. For all experiments, Turbo mode is disabled. On all
systems and for all experiments, the results presented are the average of multiple runs:

2Hyperthreading is Intel’s proprietary implementation of SMT [Koufaty and Marr 2003].
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Table II. Applications and Benchmarks

Parallel Phys. Core
Group Applications Included Model Min/Max
HPCMP Production HYCOM, AVUS, LAMMPS, ICEPIC, CTH MPI 256/1k
NPB BT, CG, DC, EP, FT, IS, LU, MG, SP MPI/OMP 8/1k
NERSC amg, CoMD, gtc, miniFE, miniGhost MPI 8/64
PARSEC blacksholes, bodytrack, freqmine OMP 8/32
OpenCV 2d_convolution, dwt53, histogram_equalization OMP 8/32
microbenchmarks pcubed, polybench MPI/OMP 8/32

Fig. 2. Speedup from SMT for OpenMP and MPI NPBs on single dual-socket Nehalem (HPC-NH) and Sandy
Bridge (HPC-SB) systems.

Fig. 3. Speedup using SMT for MPI applications at varying physical core counts on Nehalem (HPC-NH)
and Sandy Bridge (HPC-SB) systems.

at least 3 for performance, at least 5 for power, and at least 6 performance counters (for
performance counters, the closest three results were averaged to eliminate outliers).
Power measurements are AC power measured at the supply for the entire system using
a WattsUp meter [ThinkTank Energy Products Inc. 2014].

4.2. SMT Performance Characterization

We begin by examining the performance impact of using SMT for the selected bench-
marks and applications. We first examine the NPBs on a single-node and then on larger
runs of the NPBs and applications.

4.2.1. Single-node Performance Characterization. Figure 2 shows results for the NPBs run
on a single-node within HPC-SB and HPC-NH. Within a single-node, a benchmark’s
benefit from SMT may change depending on which processors are in the system and
whether the parallelization is done using OpenMP or MPI. A number of benchmarks
consistently either benefit or do not benefit from SMT, though the degree by which they
benefit changes depending on the particular configuration being run.

4.2.2. Multinode Performance Characterization. Figure 3 provides the speedup from SMT
on large applications on our two HPC systems. In these scaling runs, strong scaling
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Fig. 4. Speedup from SMT for the MPI NPBs at varying physical core counts on Sandy Bridge (HPC-SB)
and Nehalem (HPC-NH) systems.

Table III. Physical Core versus Virtual Core Scaling for Application MG (CLASS D)

Change in Number of Threads
Scaling Mode 32 → 64 64 → 128 128 → 256 256 → 512 512 → 1024
Physical Cores (NoSMT) 2.60 1.74 1.91 2.06 0.99
Virtual Cores (SMT) 1.06 0.74 0.76 1.23 0.89

was used, which results in the per core memory footprint decreasing as the core count
increases. For the large production applications in Figure 3, we find a consistent trend:
SMT is most valuable with smaller core counts and performance degrades with larger
core counts. In addition, whether SMT is beneficial for each application remains gen-
erally consistent on the two systems.

Figure 4 presents the performance analysis of the MPI NPBs at large core counts.
Unlike the large applications where consistent trends were generally recognizable, the
MPI NPBs often exhibit inconsistent behavior. Although some benchmarks, such as EP
and LU, are largely consistent in benefiting from SMT, the remaining benchmarks—
CG, FT, IS, and MG—are inconsistent in this respect. Since only certain core counts
benefit and others do not, the choice between SMTidle and SMTused cannot be thought
of simply in terms of the application as whole. CG, in particular, changes significantly
depending on core count, almost certainly because grid-layouts are more favorable at
certain core counts than others. In addition, CG benefits from using SMT for 40% of
the core counts used on Sandy Bridge systems, yet never benefits on Nehalem systems.
These inconsistencies between different core counts and different systems for a single
application highlight how difficult it may be for users to effectively utilize SMT.

Moreover, the performance benefit from SMT is not closely tied to application scala-
bility in general. Among the NPBs, EP is the only application where EP’s scaling (using
only physical cores, no SMT) and the benefit from using SMT (doubling threads, same
number of cores) are closely connected. For the other applications, the connection is
much weaker. For example, Table III shows the weak connection between scaling using
physical cores (no SMT) and scaling using virtual cores (SMT) for MG. As such, even if
users are well versed in the scalability of their application, it may have little relevance
for the speedup from using SMT to increase their thread count.

4.2.3. Summary. The performance benefit of using SMT varies by application, core
count, and system configuration. To illustrate the difficulty of deciding whether to use
SMT, Figure 5 presents a breakdown of the speedup when using SMT by application
group. These results include 100 different tests of whether SMT is valuable for a given
application, system, and size. Exactly 50 of those benchmarks benefited, whereas 50
did not. Thus, a blanket strategy such as “always use SMT” or “never use SMT” would
result in a performance degradation exactly half the time.
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Fig. 5. For each application group, the number of applications that experienced various levels of SMT
speedup (>25% improvement, 10%–25% improvement, etc.).

Fig. 6. Average power increase associated with SMT when running NPBs (OpenMP and MPI) on Sandy
Bridge (RCK-SB and SRV-SB) and Haswell (SRV-HW) systems. (a) provides the power increase when em-
ploying SMT contexts (32 threads vs. 16 threads). (b) Provides the power increase of enabling SMT contexts
in the BIOS without using the additional SMT contexts (16 threads vs. 16 threads).

4.3. The Power Cost of SMT

This section evaluates the cost of using SMT and then the cost of merely enabling SMT.

4.3.1. Impact of Using SMT. Figure 6(a) provides the power increase when using SMT
(SMTused in Table I) for the NPBs. This increase in power is experienced regardless of
whether the application realized a performance benefit, and it occurs on both Sandy
Bridge and Haswell systems when using SMT. On average, we observe a 5.8% power
increase on the Sandy Bridge systems and a 3.2% increase on the Haswell system.

4.3.2. Impact of Enabling SMT. Figure 6(b) provides the power consumption increase
from running the NPBs with SMTidle versus SMToff for both Sandy Bridge and Haswell-
based systems. On average, the Sandy Bridge system SRV-SB consumes 2.3% more
power with SMTidle. The Haswell system SRV-HW consumes slightly less additional
power, 1.7% on average, but this may be a byproduct of the fact that SRV-SB has 4×
more cores than SRV-HW.

Although there is a notable power difference when running the same job with SMTidle

and SMToff, we notice much smaller performance impacts. In the tests presented in
Figure 6(b), most benchmarks showed runtime differences of less than 0.2%. Those
benchmarks with larger differences were the OpenMP version of MG where the runtime
increased by 2.4% on SRV-SB and the OpenMP version of SP where the runtime
improved by 0.9% on SRV-SB.

Last, we observe that on a vacant system (i.e., with nothing but a minimal set of
OS services running), SMTidle may slightly increase the power consumption above that
of SMToff. For SRV-SB, the average increase is 0.5% (0.6W), and for RCK-SB, the
increase is 0.6% (0.5W). For SRV-HW, we found no measurable change.
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Table IV. Average Increase in Hardware Monitor
Events on RCK-SB When Enabling SMT in the BIOS
and Running OpenMP NPBs with the Same Number

of Threads and Same Core Pinning

Performance SMT idle

Monitor Increase

L1 I-Cache Misses 11.8%
L2 I-Cache Hits 14.6%
Cycles w/o Insn. Issue 24.2%
Cycles w/o Insn. Issue (excl. IS) 5.2%
Data TLB Misses 6.6%
Insn. TLB Misses 14.2%

Fig. 7. The relationship between power consump-
tion and additional L2 I-Cache Hits while SMT is
enabled but unused. Correlation is 0.82.

Power Increase Examination: Discovering that merely enabling SMT impacts
power, and to a lesser extent performance, caused us to examine the phenomenon more
closely. On RCK-SB, we collected statistics from 43 hardware performance counters
during the runs of each of the NPBs run with both SMTidle and SMToff. As we antic-
ipated, most performance counters (38/43) saw little change between the two states.
However, five of them showed significant amounts of variation. The counters that were
found to differ by more than 5% are shown in Table IV. In this table, it is worth noting
that the high increase in the number of Cycles without Instruction Issue is dominated
by IS. With SMToff, IS had a small number of these cycles in absolute terms, and a
small absolute increase resulted in a relative increase of 157%. Excluding IS from this
average (also shown in Table IV) lowers this average to 5%.

Examining another counter, L2 instruction cache (I-Cache) hits, in more depth in-
dicates that the relationship between L2 I-Cache hits and power increase are highly
correlated, exhibiting a Spearman correlation of 0.82 (see Figure 7). This strong corre-
lation may suggest that some form of resource partitioning is being performed by the
processor when SMT is enabled, perhaps I-Cache and TLB partitioning between SMT
contexts (virtual cores) is occurring in some cases regardless of whether both SMT
contexts are in use by the application. This could be a performance optimization, as
partitioning of out-of-order resources between SMT contexts can be effective at ensur-
ing one thread does not starve another [Raasch and Reinhardt 2003]; indeed, avoiding
such starvation can have a major impact on performance [Tullsen and Brown 2001].

Another possible explanation for this effect is the ability for OS threads to run on
idle SMT contexts. To examine this issue, we first used the OS (not BIOS) to disable
idle thread contexts for SMTidle and found a small decrease in power relative to
SMTidle when the OS could use idle cores. The OS occupying the idle cores may explain
this fraction of power increase, as might any interference between the application and
OS threads. However, we also found that using the OS to disable idle thread contexts
from SMTidle still consumed more power than SMToff (approximately half of the power
overhead of SMT remained for single-node NPBs). As these two configurations are effec-
tively identical from an OS perspective, this suggests that part of the increased power
consumption may stem from system differences rather than OS thread scheduling.

These results only provide limited insight into the underlying cause of the power
increase. As such, more investigation is required to provide precise explanations for
the behavior. Finally, it is important to underscore that these results do not represent a
fundamental limitation of SMT, nor is this necessarily a criticism of the Hyperthreading
implementation. Although SMT has become nearly ubiquitous, it may be the case that
the operating system, BIOS, and motherboard interfaces require a static number of
cores to be deployed at startup. As a result, changes to the hardware and software
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Fig. 8. Comparison of computational domain and physical CPU counts in actual versus modeled workload.

stack that allow dynamic enabling of SMT may ultimately be necessary to improve
deployed SMT implementations.

4.4. Workload Evaluation

In this section, we deploy our methodology on the Department of Defense HPCMP
2011 workload in order to quantify the benefit of enabling SMT on a large-scale HPC
system. First, we devise a representative workload model (Section 3.1.4).

4.4.1. HPCMP 2011 Workload. We use statistics collected from a number of Department
of Defense HPCMP systems to obtain summary statistics on scientific computational
area profiles and physical core counts of that workload. These profiles are shown in
Figures 8(a) and 8(b), respectively (dark blue bars).

Using the hill-climbing approach described in Section 3.1.4 along with the set of job
types for our applications in Table II, we assign weights to each of the jobs to create
a workload model. The workload model covers five different computational domains3

that account for over 90% of the CPU-hours in HPCMP’s 2011 production workload.
Our modeled workload (light yellow bars in Figures 8(a) and 8(b)) shows a great deal
of similarity to the actual workload. For computational area, the modeled workload
differs by an average of 5.1% of the CPU-hours across the six areas (including OTHER)
in Figure 8(a), and differing by an average of 5.2% across the seven CPU bins in
Figure 8(b).

4.4.2. Putting it Together: Full-System SMT Impact. We can now augment the workload
model for the HPCMP 2011 production workload developed in Section 4.4 with mea-
surements of the performance factors related to SMT for the jobs in our workload model
(Section 4.2) and the power overheads for enabling and using SMT on the system (Sec-
tion 4.3). We bring all these factors together to quantify the benefits of enabling SMT
for this workload running on a Sandy Bridge system.

As a simplification, we use exactly three power costs within our methodology. Because
the power increase on Sandy Bridge when using SMT was relatively stable around 5%
(Figure 6(a)), we use a fixed power cost Cused

j = 105% for all jobs j. Similarly, enabling
SMT but not using SMT contexts was found to increase power consumption by at
least 1.5% and enabling SMT increases idle power consumption by very close to 0.5%.
Therefore, we use Cidle

j = 101.5% and Cidle
vacant = 100.5% for all jobs j.

Taking these factors together and computing Equations (7) and (8) results in Figure 9.
In Figure 9, we present the overall performance and energy impacts of enabling SMT
for this workload as a function of how likely users are to make the ideal decision

3For confidentiality, computational areas are anonymized and application weighting cannot be provided.
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Fig. 9. Impact of enabling SMT system-wide on runtime performance (higher is better) and energy (lower
is better) for the HPCMP based on user accuracy. This assumes the workload is at 100% utilization, a 5%
overhead from using SMT, a 1.5% overhead for enabling SMT but not using SMT contexts, and a 0.5%
overhead when idle.

Table V. Average Absolute Error of SMT Speedup
Predictions SRV-SB by Model

Linear Cubist Linear w/PCA Cubist w/PCA
13.1% 6.1% 12.0% 6.8%

in terms of using or leaving idle the SMT contexts available to them when SMT is
enabled. The figure demonstrates that as user accuracy increases, SMT’s benefit to
energy and performance also increases. In this figure, user accuracy for static policies
of “always use SMT” or “never use SMT” would produce a user accuracy of 49% and
51%, respectively. To improve performance, on average, when employing SMT, users
must correctly decide to enable or disable it at least 43% of the time. However, because
of the power costs involved with SMT, users must make the correct decision at least
61% of the time to break even for energy consumption. As user correctness is clearly at
the heart of determining SMT’s system-wide impact, the following section addresses
means to improve users’ ability to predict SMT’s value.

5. PREDICTING APPLICATION-LEVEL BENEFIT

In this section, we evaluate statistical models for predicting the speedup of employing
SMT for an application. In each case, the prediction model aims to provide the user,
when running a job without using SMT, with a predicted speedup for running that job
with SMT on the same number of physical cores.

5.1. Single-Node Sandy Bridge Predictions

Both multiple linear regression and cubist models were built using the methodology
described in Section 3.2. For all models, 40% of applications are randomly selected
as the training set for building the model, and the remaining 60% are reserved for
the test set. For Sandy Bridge, a total of 585 applications and microkernels using
MPI and OpenMP were included. The average actual speedup from SMT for these 586
applications was 0.88 with a standard deviation of 0.16. Of the applications, 115 (20%)
benefited from using SMT on the single-node.

Four models were created for SRV-SB. The first two (“Linear” and “Cubist”) used all
performance monitors available on the system to aid in the predictions, and the latter
two (“Linear w/PCA” and “Cubist w/PCA”) only used nine monitors based on performing
explanatory variable reduction (PCA and Clustering) described in Section 3.2.2. For
these models, Table V provides the average absolute error and Figure 10 provides a
histogram of the errors, where the error is the predicted speedup subtracted from the
actual speedup. Note that for Figure 10, one datapoint was excluded for each of the
linear models as the prediction’s error was abnormally large. The prediction would
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Fig. 10. Error histograms comparing predicted versus actual SMT speedup for various modeling techniques
on SRV-SB.

clearly be mistaken due to its magnitude of speedup and the system could omit such
predictions from reaching the user. The Cubist model had no such artifacts.

Examining the four models for SRV-SB, there are two conclusions. The first is that
performing variable reduction using PCA did not have a large negative impact on the
models and actually improved the prediction accuracy for the Linear model. This is a
positive result as only a small number of monitors are required to make a prediction,
eliminating the need to run an application multiple times to gain the metrics needed
for a prediction. The second is that the Cubist model predicts better than the Linear
model for this system. For the Cubist PCA model, 72% of the test set has an error in
predicted speedup of less than 5%.

5.2. Single-Node Nehalem Predictions

Performing the same analysis on Nehalem as in the previous section, we find results
that are broadly compatible. On the Nehalem system (HPC-NH2), 100 of the 588 total
applications benefited from SMT. The average SMT speedup for the group is 0.86 with
a standard deviation of 0.16.

Building four models using the same technique as in the previous section, we find
that variable reduction (PCA) performed as well as models built using all performance
monitors, and hence we limit the remaining discussion to the PCA-based models. Cubist
PCA is again more effective with a smaller absolute error than Linear PCA (7.8% and
9.8%, respectively). Figure 11 provides histograms grouping predictions by their error
(again, predicted speedup subtracted from actual speedup). The Cubist PCA model is
capable of predicting the majority of the speedups (69%) within 5% of actual.

5.3. Model-based Insights: Which Architectural Features Matter Most?

We next explore the variable importance of various monitors in the Linear and Cubist
w/PCA models produced in the previous sections. The variable importance for these
models can be found in Figure 12. Intuitively, the importance of an explanatory variable

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 59, Publication date: December 2014.



Making the Most of SMT in HPC: System- and Application-Level Perspectives 59:19

Fig. 11. Error histograms comparing predicted versus actual SMT speedup for our modeling techniques on
HPC-NH.

Fig. 12. Most influential predictors of Linear and Cubist PCA models for HPC-NH and SRV-SB. All
monitors are normalized by total execution time, thus Total Instructions reflects total instructions per
second.

is its impact in terms of whether it makes a large difference to the response variable.
Values in this figure represent what fraction of the model’s accuracy, out of 100, can be
explained by that particular monitor.

We begin by inspecting the Cubist models, as they provided the better prediction
accuracy, and then look to the Linear model to see if similar trends are present.
The monitors that appear in the variable importance analysis for the Cubist model
(Figures 12(a) and 12(b)) correspond well with intuition about when SMT would be ben-
eficial. We would expect SMT to be beneficial when there are idle resources available
on each core. These exploitable idle resources appear in the monitors in the following
ways:

(1) Instruction Throughput: Both systems value total instructions committed (per
second). As instruction commit bandwidth is limited and if instruction throughput
is high, there would be no room in the core for an additional thread. Conversely,
if few instructions are being committed per second, this might imply that commit
bandwidth (and other resources) are available. The Sandy Bridge system relies
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heavily on this variable while it is valued less in Nehalem. Similarly, floating point
units are limited and, particularly in high-performance computing applications,
these units can be heavily stressed. Few floating point instructions being commit-
ted per second implies availability of floating point units for additional threads.
Branches not taken (per second) and data cache accesses per second may simply
reflect another form of instruction throughput but may also reflect utilization of
other microarchitectural resources (branch predictor, caches). Branches predicted
correctly (per second) could not only also just reflect overall instruction throughput,
but may also reflect that the branch predictor is performing well and hence may be
able to support increased utilization.

(2) Memory Bandwidth: Both systems prioritize a number of metrics related to
memory operations per second. L1 data cache accesses may indicate pressure on
the L1 cache, and it is a critical variable for Nehalem. L1 instruction cache misses,
L1 data cache misses, and L1 store misses all reflect pressure on the L2 cache, as
well as how heavily the bandwidth is used between L1 and L2. L2 pressure is also
reflected by L2 reads and L2 misses. L3 pressure is represented by L2 misses, L3
data reads, and L3 load misses. L3 load misses are a top variable for Nehalem and
also reflect utilization of bandwidth to memory. In all of these cases, the hardware
monitors selected by PCA correspond to likely predictors of memory pressure. In
the absence of that pressure, SMT may be effective.

Although both Nehalem and Sandy Bridge have many of the same input variables
among their top variables for prediction, it appears that predicting the success of
SMT on Sandy Bridge is more heavily based on instruction throughput first and cache
pressure second (although both are certainly interconnected). These are reversed for
Nehalem, which places L1 cache pressure and off-chip bandwidth as factors more
critical than instruction throughput. These trends are present in the Linear model as
well (Figures 12(c) and 12(d)), providing support that these trends are likely indicative
of behavior of the architectures themselves, rather than being artifacts of the Cubist
models.

These results correspond to intuition based on the improvements made to Sandy
Bridge over Nehalem. Sandy Bridge adds additional cache support for instructions (a
μops cache), nearly doubles read bandwidth, improves memory bandwidth by 20%,
and switches to a ring-bus interconnect between L2 and L3 rather than the direct L3
connections in Nehalem [Saini et al. 2013]. These improvements result in better intra-
node communications, internode communications, and most critically, better memory
performance. Hence, we find memory performance to be a more significant predictor of
SMT’s value in Nehalem than Sandy Bridge due to Sandy Bridge’s improvements to
memory likely moving memory performance off of the critical path.

Another potentially key component, not reflected in these monitors, to the possible
success of using SMT (splitting into twice as many threads/processes) is available cache
space based on working-set size. For example, hardware monitors can show when the
L2 cache is struggling by having high L2 data misses. However, if there are few L2
data misses, this could be because the working-set is small or because it just barely
fits in L2. If another thread, which needs a large piece of L2, were to be co-scheduled,
then these threads may or may not conflict depending on the working-set size of the
co-scheduled thread. What further confounds predicting the value of SMT with regard
to cache space is that the working-set might change when the problem is split into
more threads or processes. Given the inability to account directly for working-set size
using hardware monitors combined with an inability to detect the change in memory
behavior when dividing the task into more processes or threads, the success of these
prediction models is all the more interesting.
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Fig. 13. Error histograms comparing predicted versus actual SMT speedup for our modeling techniques of
multinode runs of large applications on HPC-SB.

5.4. Multinode Predictions of Large Applications

Examining the effectiveness of the prediction models for large MPI applications on
multiple nodes posed a few challenges. The first is that our previously examined hard-
ware monitors do not capture communication patterns. To address this, we also collect
communications summary statistics using a software wrapper library [Tikir et al. 2009]
for the message passing interface (MPI). We note that this library collects counts and
timings of the message passing activity while introducing negligible overhead.

The second challenge is that our microkernels did not scale beyond one node, leav-
ing our model training and evaluation set to be a mix of different sizes of the class
D NPBs and different sizes of large applications from the NERSC and HPCMP Pro-
duction workload. With a relatively smaller total of applications (36), the models could
not be built using the 40%/60% train/test set as done in prior sections. Moreover, with
almost 90 input variables (45 hardware monitors and 44 MPI-related inputs), over-
fitting is a significant concern. To address these issues, the MPI-related inputs were
reduced into 6 classes—peer-to-peer, collective, init/fini, communicator manipulation,
barrier, and wait—allowing us to reduce the 44 input parameters into 6. Those 6 inputs
were used to build a model for communication time only (producing a communication
speedup). We also performed our standard variable reduction using PCA to use only 9
of the 45 hardware monitors. These 9 inputs were used to model for computation time
only (producing a computation speedup). Finally, we combine the communication and
computation predictions by simply adding up the predicted time of each.

For our 36 applications, the range of actual speedups for SMT was much wider than
for our single-node applications. The average SMT speedup was 1.05, the standard
deviation was 0.26, and 22 of the 36 applications benefited from SMT. We find that
our models, both linear and cubist, are quite accurate for these applications. Our
average absolute error for the linear and cubist models are 10.5% and 7.5%. The error
histograms for these models appear in Figure 13, again showing the Cubist model to
be better than Linear, although both provide reasonable accuracy.

5.5. SMT Speedup as a Classification Problem

In the prior sections, we focused on absolute prediction accuracy for our models. Another
useful view of the models is to determine whether they correctly predict the simple
classification problem of whether or not SMT speeds up an application. Consider two
scenarios:

(1) The prediction is for a speedup of 1.10 and the actual speedup is 1.25. The error is
relatively innocuous, and the user may even be pleasantly surprised.

(2) The prediction is for a speedup of 1.10, but the actual speedup is 0.95. The error in
the model leads the user to the wrong decision.
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Table VI. Accuracy of PCA Model Predictions to Use, or Not to Use,
SMT for an Application

One-Node One-Node Multinode
Sandy Bridge Nehalem Sandy Bridge

Linear Cubist Linear Cubist Linear Cubist
77.2% 82.6% 81.6% 86.4% 75% 83%

Table VII. Average Cubist PCA Model Predictions and Average Actual Speedups
for Multinode Sandy Bridge, Grouped by Prediction and Outcome

Correct Prediction Incorrect Prediction
Prediction Avoid SMT Use SMT Avoid SMT Use SMT
Actual Result Avoid SMT Use SMT Use SMT Avoid SMT
Apps in Group 12 18 4 2
Avg. Pred. Speedup 0.87 1.29 0.90 1.01
Avg. Actual Speedup 0.86 1.25 1.04 0.89

Despite having the same absolute prediction error, these two scenarios have quite
different outcomes. Moreover, as our system-wide decision to enable SMT is based on
users correctly making this very decision to use SMT, we are most concerned with how
often the models correctly predict to use, or not to use, SMT.

Table VI provides the accuracy of each model in predicting whether to employ SMT.
All models predict whether to use SMT or not with at least 75% accuracy, and Cubist
models are at least 82% accurate. However, we point out that these raw numbers may
be misleading. For example, if the model predicts a speedup of 0.98 and the actual
speedup is 1.01, this is treated as an error even though the performance loss is minor.
To explore this facet more closely, we examined the multinode Sandy Bridge results
and grouped the average predicted speedup and average actual speedup for the four
possible combined outcomes (predict use/avoid SMT versus the actual correct choice to
use/avoid SMT). These results appear in Table VII.

Table VII shows that the model is more accurately predicting applications with a
large SMT performance benefit (1.25) and large SMT performance loss (0.86) than
those with less benefit (1.04) and (slightly) less loss (0.89). Although we do not factor
in this difference (which applications are predicted better/worse) into the next step of
our analysis, it implies our estimates of the impact these models may have on produc-
tion workloads may be pessimistic. Finally, this also implies that adding a confidence
measure to the predictions could be a useful direction for future work.

Overall, this section has shown two critical pieces for our proposed framework. The
first is that models of SMT performance for HPC applications, on different systems and
for different sizes of applications, can be used to accurately predict the performance
impact from using SMT for a specific application. The second is that only a small set of
performance monitors are required to make this prediction; facilitating the collection of
these monitors in the background while running users’ jobs and then informing them
of the prediction after the run completes.

5.6. Combining Workload Analysis with Predictions

At the end of Section 4.4, the result from the workload analysis on DoD production
workload running on DoD HPC system was that users need to accurately employ
SMT more than 61% of the time to break even for the power costs/benefits associated
with enabling SMT. To aid user decisions, we built a number of performance models to
predict the benefit of SMT on multiple systems and multiple groups of applications and
all models exceed this 61% threshold. We again note that results may vary by system
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and by workload, so this analysis would need to be performed for each particular
system and workload. Although the result for our DoD system and workload favored
enabling SMT system-wide, other workloads and systems may encounter different
results.

The multinode Sandy Bridge Cubist model (built on our production HPC system)
was 83% accurate on predicting the value of SMT. Referring back to Figure 9, we can
infer the impact of this level of user accuracy on our production system. Assuming this
prediction model were employed on the production system and used by HPC users,
average performance could improve by 7% and energy consumption could lower by 4%.
The raw energy consumption at this level of user accuracy is 97% that of ideal (were
users 100% correct).

6. FUTURE WORK

Modeling Phases: This work has shown that a model for predicting SMT’s benefit can
be built based on a given HPC workload. Should the workload change, at what point
should a new prediction engine be created? We anticipate that future work on this topic
will use either changes in the types of applications (should application computational
domain be known), the sizes of applications, and/or occasionally sampling predictions
to see if the model remains applicable.

Architectural SMT Features: In this work, we have modeled and reasoned about
existing SMT hardware implementations. One question unaddressed in this work is
what changes could be made to SMTs implementation to assist users and system
designers in reasoning about its value. We suspect answering this problem requires
addressing tradeoffs between SMT’s versatility and consistency. For example, statically
partitioning resources might make it easier to reason about SMTs behavior, but in turn,
might limit its ability to adapt to particular workloads.

Hybrid Systems: An alternative to making a single SMT decision for an entire
computing center would be to partition some nodes as SMT enabled and others as
SMT disabled. By having some nodes with SMT disabled, power costs associated with
running without using SMT could be avoided by scheduling those jobs on those sys-
tems. Unfortunately, such a hybrid system would prevent jobs wishing to use SMT
on more than the available SMT-enabled nodes from being able to do so. Workload
characterization would be necessary to determine what percentage of jobs would ben-
efit by having such a system. A more flexible solution may be to support dynamically
enabling/disabling of SMT through architectural and/or OS modifications.

7. CONCLUSION

The potential of SMT to improve processor utilization by allowing threads to compete
for idle resources has made SMT a popular feature in high-end processors, resulting
in its presence in the majority of the world’s fastest supercomputers. However, SMT
results in an increase in power draw whether it confers extra performance to running
jobs. As this work has shown, SMT may also result in increased power consumption
when it is merely enabled but not used. The variability in the benefit of SMT and the
additional power costs makes it difficult to assess the tradeoffs for enabling SMT on
an HPC system. This work has presented a full system-wide methodology for quanti-
fying the performance and power benefits of SMT and applied the methodology to a
production workload on a production system. Ultimately, the value, system-wide, for
SMT depends on how well users employ SMT for their applications.

However, predicting the benefit of SMT to an HPC application that has exclu-
sive access to the processor is challenging, as the act of doubling the number of
threads changes the characteristics of the application. Unlike the well-studied prob-
lem of predicting how two distinct threads will interact on an SMT context, for HPC
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applications, this problem involves predicting the impact of doubling the number of
threads for the application that changes both the characteristics of the application and
their interaction on SMT contexts. This article has presented an approach to predict-
ing the benefit SMT confers to HPC applications, using statistical modeling techniques
based on lightweight performance monitors. These statistical models are able to predict
the speedup from SMT to within 8% accuracy while relying only on monitors available,
transparently, from a single run of the application. Our system-level workload analy-
sis suggests that these models offer overall performance and energy within 97% of an
oracle predictor.
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Robert Schöne, Daniel Hackenberg, and Daniel Molka. 2011. Simultaneous multithreading on x86_64 sys-
tems: An energy efficiency evaluation. In Proceedings of the 4th Workshop on Power-Aware Computing
and Systems.

Ronak Singhal and Senior Principal Engineer. 2008. Inside Intel core microarchitecture (Nehalem). In A
Symposium on High Performance Chips, Vol. 20.

Allan Snavely, Laura Carrington, Nicole Wolter, Jesus Labarta, Rosa Badia, and Avi Purkayastha. 2002a. A
framework for performance modeling and prediction. In Proceedings of the 16th International Conference
on Supercomputing.

Allan Snavely and Dean M. Tullsen. 2000. Symbiotic jobscheduling for a simultaneous multithreaded pro-
cessor. In Proceedings of the 9th International Conference on Architectural Support for Programming
Languages and Operating Systems.

Allan Snavely, Dean M. Tullsen, and Geoff Voelker. 2002b. Symbiotic jobscheduling with priorities for a
simultaneous multithreading processor. In Proceedings of the 2002 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems.

ThinkTank Energy Products Inc. 2014. Watts up? Product. Retrieved from http://www.wattsupmeters.com.
Xinmin Tian, Milind Girkar, Sanjiv Shah, Douglas Armstrong, Ernesto Su, and Paul Petersen. 2003. Com-

piler and runtime support for running OpenMP programs on Pentium-and Itanium-architectures. In
Proceedings of the International Symposium on Parallel and Distributed Processing.

Mustafa M. Tikir, Michael A. Laurenzano, Laura Carrington, and Allan Snavely. 2009. PSINS: An open
source event tracer and execution simulator for MPI applications. In Euro-Par 2009 Parallel Processing.

Nathan Tuck and Dean M. Tullsen. 2003. Initial observations of the simultaneous multithreading Pentium 4
processor. In Proceedings of the 12th International Conference on Parallel Architectures and Compilation
Techniques.

Dean M. Tullsen and Jeffery A. Brown. 2001. Handling long-latency loads in a simultaneous multithreading
processor. In Proceedings of the 34th International Symposium on Microarchitecture.

Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and Rebecca L. Stamm.
1996. Exploiting choice: Instruction fetch and issue on an implementable simultaneous multithreading
processor. In Proceedings of the 23rd International Symposium on Computer Architecture.

Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. 1995. Simultaneous multithreading: Maximizing
on-chip parallelism. In ACM SIGARCH Computer Architecture News, Vol. 23.

Augusto Vega, Alper Buyuktosunoglu, and Pradip Bose. 2013. SMT-centric power-aware thread placement
in chip multiprocessors. In Proceedings of the 22nd International Conference on Parallel Architectures
and Compilation Techniques.

Huaping Wang, Israel Koren, and C. Mani Krishna. 2008. An adaptive resource partitioning algorithm
for SMT processors. In Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques.

Received June 2014; revised October 2014; accepted October 2014

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 59, Publication date: December 2014.

http://www.cs.ucla.edu/sim;pouchet/software/polybench/
http://www.cs.ucla.edu/sim;pouchet/software/polybench/
http://rulequest.com/cubist-info.html
http://www.wattsupmeters.com



