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Nuclear Safety Institute, 52 Bolshaya Tul’skaya St., 115191 Moscow, Russia; 
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In this study, new elements were developed to 
generalize the dual-porosity model for moisture 
infiltration on and solute transport in unsaturated 
rocks, taking into account fractal aspects of the 
percolation process. Random advection was 
considered as a basic mechanism of solute transport 
in self-similar fracture systems. In addition to spatial 
variations in the infiltration velocity field, temporal 
fluctuations were also taken into account. The rock 
matrix, a low-permeability component of the 
heterogeneous geologic medium, acts as a trap for 
solute particles and moisture. Scaling relations were 
derived for the moisture infiltration flux, the velocity 
correlation length, the average velocity of infiltration, 
and the velocity correlation function. The effect of 
temporal variations in precipitation intensity on the 
infiltration processes was analyzed. It showed that 
the mode of solute transport is determined by the 
power exponent in the advection velocity correlation 
function and the dimensionality of the trapping 
system, both of which may change with time. 
Therefore, depending on time, various transport 
regimes may be realized: superdiffusion, 
subdiffusion, or classical diffusion. The complex 
structure of breakthrough curves from changes in the 
transport regimes was also examined. A 
renormalization of the solute source strength due to 
characteristic fluctuations of highly disordered media 
was established. 
 
The “dual-porosity” concept (Barenblatt et al., 
1960; Gerke and van Genuchten, 1993; Pruess, 
1999; Ray et al., 1997) is the best-known 
theoretical model for describing moisture 
infiltration and solute transport processes in 
fractured media. It is based on approximating a 
geologic medium with a superposition of two 
overlapping homogeneous subsystems, both of 
which occupy the entire volume under 
consideration and have their own hydrologic and 
transport properties and porosity. One of these 
subsystems, f, represents the fracture system, 
and the other one the rock matrix, m. In this 
description, the geologic medium is 
characterized by two sets of parameters for the 
velocity, fluid pressure, moisture content, and 

solute concentration that are functions of spatial 
coordinates and time.  

The governing equations for moisture 
infiltration are written in the form of two mass-
balance conditions involving Darcy’s flux law 
for each subsystem. Constitutive relations 
between partial pressure heads and saturations 
are required to close the set of governing 
equations. Similarly, the equations describing 
solute transport dynamics are written as mass 
conservation laws, with the use of Fick’s law for 
the solute fluxes. Both sets of equations take into 
account the interaction between the fracture 
system and the matrix, which entails both 
moisture and solute exchange.  

The classical dual-porosity model can take 
into account strong heterogeneity in the geologic 
medium with sharp property contrasts between 
domains. At the same time, the model is based 
on an implicit assumption of statistical 
homogeneity. We present arguments (see a 
review in Bolshov et al., 2008), however, to 
show that for unsaturated fractured rocks in the 
vicinity of the percolation threshold, the 
structure of percolation channels has fractal 
properties. In such systems, Darcy’s law and the 
usual advection–diffusion model (when the 
solute flux is determined by Fick’s law with 
consideration of drift) are not suitable to 
describe the main characteristics of the 
percolation flux and solute transport. A first 
attempt at modeling dual-porosity systems as 
percolation networks was presented by Chang 
and Yortsos (1990), who described the averaged 
characteristics of single-phase, slightly 
compressed fluid flow in a fractal object by 
means of an appropriate modification of the 
diffusivity equation. Scaling behavior of the 
unsaturated hydraulic conductivity in porous 
media at the dry end of the moisture content was 
studied by Hunt (2004a,b,c) within the 
framework of continuum percolation theory.  

Our objective was to develop elements of a 
generalized dual-porosity model for moisture

 

1



www.vadosezonejournal.org · Vol. 7, No. 4, November 2008 1153

infi ltration and solute transport in unsaturated fractured rocks, 

taking into account fractal aspects of the percolation process. 

Th ese elements include random solute advection due to moisture 

infi ltration in percolation networks of channels, and interac-

tion between “fast” (fractures) and “slow” (matrix) subsystems 

that take into account their fractal properties. In pursuing this 

objective, we took advantage of recent progress in theories of 

percolation and critical phenomena (ben-Avraham and Havlin, 

2000; Isichenko, 1992; Ma, 1976).

Fractal ProperƟ es of Flow for Moisture 
Infi ltraƟ on in Unsaturated Fractured Rocks

It is well known from studies of seepage in porous media 

(Dullien, 1979) that some amount of moisture always remains in 

the medium during drainage (irreducible or residual saturation). 

At low saturation, the moisture accumulates in the narrowest 

sections of cracks and is retained there in droplets held by capil-

lary forces. Additional moisture supply causes the droplets to 

grow and, after reaching some critical size, the droplets become 

unstable and start moving. In Hunt (2004c) this motion of mois-

ture at the dry-end moisture content was considered as fi lm fl ow. 

During the motion, it may break into smaller droplets, which 

may become trapped into new positions, and then the process 

repeats. As a result, many droplets are involved in the motion and 

the process has a self-organized, collective nature. Such a dynamic 

system (the set of moving interacting droplets) belongs to the class 

of extended dissipative dynamic systems. Th e existence of many 

metastable states (various confi gurations of “hanging” droplet 

sets) makes the system pass from one metastable state to another. 

In the present work, we considered the dynamics of such a system 

using the concept of self-organized criticality (SOC) (Bak et al., 

1987). Although a comprehensive description of SOC processes 

is still unavailable, there are three robust features of the SOC 

state that are important for our model (Bak et al., 1987, 1988; 

Vespignani and Zapperi, 1998):

Metastable dynamic structures have spatial self-similarity. 1. 
This means that the set of droplet trajectories (fractures 
through which moisture fl ows) can be regarded as a fractal 
cluster strongly resembling a percolation cluster. Based on 
this property, we used the results of percolation theory for 
the description of stationary (time-averaged) infi ltration fl ow 
(Dykhne, 2004a).

Flicker noise (or 1/2. f noise), characterized by correlations 
extending across a wide range of time scales, has a frequency 
spectrum ∼1/f α with α ∼ 1. Th is means that along with 
spatial self-similarity, temporal self-similarity should also be 
taken into account when deriving scaling relations, and hence 
that the time variable should have its own scale dimension 
(see below).

Criticality arises from the fi ne tuning to zero of one or more 3. 
control parameters (driving rate and dissipation). In the case 
of infi ltration, the external fl ux is such a parameter. Th e system 
possessing the property of SOC naturally evolves to the fi nal 
state regardless of the initial conditions (i.e., the critical state 
is an attractor of the dynamics).

Moreover, the SOC state is robust with respect to variations in 

microscopic parameters. Th is means that the processes of droplet 

formation, retention in fracture tips, motion, breaking, and junc-

tion do not infl uence the principal characteristics of the processes 

described in Items 1 and 2.

It should be stressed that formation of self-similar metastable 

dynamic structures does not require the fracture or pore network 

to be fractal. If the network happens to be fractal, however, this 

will not change the situation because it is also random.

Below we suppose that conditions necessary for bringing the 

system into the SOC state are fulfi lled, and that fl ow properties and 

hence the solute transport are determined by Items 1 and 2 above.

Scaling RelaƟ ons for Moisture Infi ltraƟ on 
Taking into Account the PercolaƟ on Structure 

of the Media

In accordance with Item 1 above, fl ow properties in unsatu-

rated fractured rocks are determined by the percolation structure 

of the infi ltration cluster. According to modern concepts, percola-

tion systems are closely related to condensed media near a phase 

transition of the second kind (ben-Avraham and Havlin, 2000).

Th e most essential feature of macroscopic systems undergo-

ing second-kind phase transition is the presence of large-scale 

fl uctuation of the order parameter (e.g., magnetization in the 

vicinity of the transition temperature into the ferromagnetic 

state). As a consequence of such behavior, correlations are power-

like functions of spatial coordinates. Quite similar regularities 

arise in the functional dependence of mean physical quantities 

on proximity to the phase transition point. It is important to 

note that power exponents in all these dependencies are uni-

versal, being determined by general symmetry properties of the 

systems, independent of the details of interatomic interactions. 

Th e presence of large-scale clusters in percolation media makes 

them similar to condensed systems in the vicinity of the phase 

transition point.

Fluctuations of the order parameters, whose correlation 

lengths tend to infi nity at the critical point, are the analogs of 

clusters in percolation media. Specifi cally, fractal properties (in 

other words, scale-invariance properties) of clusters and of fl uctu-

ations of the order parameter provide an opportunity to describe 

phenomena near the percolation threshold as well as near the 

critical point by scaling relations. Th ese relations have the form of 

power dependencies on the threshold proximity parameter.

For near-critical systems, this parameter is a temperature 

deviation from the critical point, while for percolation systems 

it is the deviation of the average number of active (connected) 

structural elements from the threshold value, p − pcr. For unsatu-

rated media, a measure of threshold proximity may be expressed 

with the parameter ΔS = S − Scr (see Dykhne, 2004a), where S 

is moisture saturation and Scr is its residual value.

Th us, for infi ltration processes in unsaturated fracture sys-

tems above the percolation threshold, the scaling relations in the 

infi nite volume limit take the form

−νξ ∝ΔS  [1]

μ∝Δu S  [2]

where ξ is the spatial extent of conductive fracture clusters (see 

Dykhne, 2004a), u is the average volumetric fl ux of moisture (the 

same as infi ltration rate), and ν and μ are scaling exponents. Note 
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that for saturated media, relations of the type of Eq. [1] and [2] 

with Δp instead of ΔS have been suggested by Berkowitz and 

Braester (1991) and Sahimi and Imdakh (1998).

Our objective now is to consider correlation properties of the 

seepage velocity and to generalize the percolation theory relations 

to the case of fi nite systems. From this point of view, instead of 

ΔS, the correlation length ξ should be regarded as a more suitable 

and natural variable for representing the proximity of the system 

to the percolation threshold.

Using Eq. [1] to express ΔS in terms of the correlation 

length ξ and substituting into Eq. [2], we obtain

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ξ⎝ ⎠

h
a

u V  [3]

where a is the lower limit of the interval for which fractal proper-

ties hold. While the variable u by its nature is a large-scale one 

(i.e., characterizing the system at scales of order ξ or larger), the 

parameter V is determined by local medium properties at scales 

on the order of the lower limit of the fractality interval a, and 

describes the fl ux density or velocity amplitude at these scales. 

Th e new power exponent is related to the previous one by

= μ νh  [4]

Th e local value of the moisture infi ltration velocity can be repre-

sented in the form of a sum: v(r) = u + v′(r), where u describes 

the average fl ow rate and v′(r) is a random component fl uctuating 

in space. An important quantity describing aspects of random 

fl ow is the pair velocity correlation function. Th is function is 

determined by the product of velocities at two diff erent points, 

averaged across an ensemble of realizations. Within the frame-

work of the theory of critical phenomena (Ma, 1976; see also 

below), it can be shown that the quantities u and v′(r) should 

have the same scaling dimensions because they are components 

of the infi ltration velocity. Using the fact that r and ξ also have 

the same scale dimension, it follows from Eq. [3] that, at a << 

r << ξ,

( ) ( )
⎛ ⎞⎟′ ′ ⎜ ⎟⎜ ⎟⎜⎝ ⎠

2
20

h

i j

a
v v V

r
r ?  [5]

where 〈 〉 denotes ensemble averaging and r = |r|. When r > ξ, the 

correlation function decays exponentially.

Equations [3] and [5] are valid under the condition that 

the size of the medium, L, is much greater than the correlation 

length: L >> ξ; however, these relations remain at least qualita-

tively true under the condition L ∼ ξ (see Sahimi, 1993, for more 

rigorous derivation). Hence, above the percolation threshold, the 

correlation length can be related to the fl ux density by

⎛ ⎞⎟⎜ξ= ⎟⎜ ⎟⎜⎝ ⎠

1/
1

hu
L

u
 [6]

where the size-dependent variable u1 is determined by

( )
μ⎛ ⎞⎟⎜= ⎟⎜ ⎟⎝ ⎠1

a
u L V

L
 [7]

Since the average fl ux density u is in fact the control parameter 

determining the state of the system, Eq. [6] can be regarded as 

the relation determining the dependence of the correlation length 

ξ of the stationary infi ltration pattern on u. For u > u1, we have ξ 

< L. When u < u1, moisture fl ow becomes nonstationary.

Note that near the percolation threshold we have

<< ξ,a L  [8]

Th erefore, two important consequences arise from Eq. [3] and 

[5]. Th e fi rst one is the inequality

>>V u  [9]

Th e second consequence consists of the fact that the random com-

ponent of the velocity v′ becomes comparable with the average 

velocity u at scales min(ξ,L) but is greater than u at smaller scales.

Dynamic FluctuaƟ ons in Moisture Infi ltraƟ on
Now let us consider the consequences of the dynamic fl uc-

tuations inherent to the SOC state, in accordance with Item 2 

above. Due to these fl uctuations, the pair velocity correlation 

function should depend not only on spatial coordinates but also 

on time:

( ) ( ) ( )′ ′=

= − = −

(2)
1 1 2 2

1 2 1 2

, , , ;

,  

ij i jK t v t v t

t t t

r r r

r r r
 [10]

Due to the self-similarity property in the region of fractality r < 

ξ, the function Kij(r,t) obeys the relation

( ) ( )−Δλ λ = λ 2(2) , ,t h
ij ijK t K tr r  [11]

where Δt and h are the scaling dimensions of time and velocity, 

respectively. Index h was introduced above in Eq. [3]. Th e index 

Δt is a new one. It characterizes dynamic properties of the system 

(Ma, 1976).

Consider the space–time Fourier transform of the pair veloc-

ity correlation function

{ } ( ) ( )⎡ ⎤ω = − −ω⎢ ⎥⎣ ⎦∫(2) 3 (2), d , expij ijK d r t K t i tk r kr  [12]

Th e most general form of this function is

{ } { } ( ) ( )⎡ ⎤
ω = δ ω + ω⎢ ⎥⎢ ⎥ω⎣ ⎦

(2) (2) 1
, ,ij ijK K F kk k  [13]

with

{ } −∝ <<(2) 2 2 2 3 at 1h h
ijK V a k kak  [14]

and

( )
( ) −

+

⎡ ⎤ω ω +⎢ ⎥ω = = =⎢ ⎥
Δ⎢ ⎥

⎣ ⎦

1

1
11

1
, , ,

z

h h
t

t h a
F k f z t

VVa k
 [15]

Equation [13] expresses the fact that, due to the scaling relation 

Eq. [11] and defi nitions Eq. [12] and [14], the function Kij
(2)

{k,ω} should be the product of Kij
(2){k} and a quantity having 

the dimension of inverse frequency. Th e most general form of 

the latter corresponds to the expression in square brackets of 

Eq. [13], where the term proportional to δ(ω) is the result of a 
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Laplace transform of the stationary part of the correlation function 

of Eq. [10].

Th e fi rst term on the right-hand side of Eq. [13] corresponds 

to a fi nite (nonzero) limit of the function Kij
(2)(r,t) at t → ∞. 

Th e second term describes dynamic fl uctuations. Th e structure of 

the self-similar variable entering the function f in Eq. [15] solely 

follows from the invariance of the correlation function under the 

scaling transformation in the range of fractality (see Eq. [11]). For 

this condition, the above structure can describe the dynamics of 

systems with diff erent physical natures. Using this scaling rela-

tion below, we estimate the infl uence of time-dependent external 

conditions on the characteristics of the advection velocity fi eld.

As is well known from electrodynamics, when a high-fre-

quency electromagnetic fi eld is applied to a massive conductor, 

the fi eld only penetrates into a thin layer of the specimen, which 

is called the skin layer. With increasing frequency of the fi eld, 

the skin layer becomes thinner. A similar skin eff ect holds for 

any classical diff usion process, such as propagation of land sur-

face temperature variations (daily or seasonal) into the earth. An 

analogous situation arises in the distribution of the infi ltration-

velocity fi eld. Rapid variations in precipitation intensity can only 

persist in a thin layer near the infi ltration boundary. At larger 

distances from the boundary, the medium perceives only the aver-

age value of the precipitation intensity.

Now we proceed to estimate the thickness δ of the infi ltra-

tion boundary layer in dependence on the period T of variations 

in the precipitation intensity. Th e relation between the character-

istic values of the wave vector k corresponding to the skin-layer 

thickness and the frequency ω determining transient infi ltration 

follows from the condition that the argument of the function f in 

Eq. [15] be on the order of unity. From this we have

+ω⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

/(1 )1 z ha

a V
k?  [16]

Using k ∼ δ−1 and ω ∼ T−1, we arrive at an estimate for the 

thickness δ of the top boundary layer as a function of the time 

period for variations in the precipitation activity:

β⎛ ⎞⎟⎜δ β=⎟⎜ ⎟⎜⎝ ⎠ +
,

1

VT z
a

a h
?  [17]

Th e parameter V may be estimated as

κ
ν

V g?  [18]

where κ is the local eff ective permeability, v the kinematic viscos-

ity of water, and g the acceleration due to gravity. For conditions 

applicable to Yucca Mountain, Nevada, we take a ∼ (10−2 − 10−1) 

m, κ ∼ 10−12 m2 (Pruess, 1999), g ≅ 10 m s−2, v ≅ 10−6 m2 s−1, 

β ∼ 1/2, and T ∼ 1 yr ∼ 3 × 107 s. From Eq. [17] and [18] we 

then obtain the following estimate for the boundary layer thick-

ness corresponding to seasonal precipitation variations:

( )δ −s 2 5 m?  [19]

Th erefore, the seasonal variations lead only to a disturbance of 

the advection-velocity fi eld in a subsurface layer whose thickness 

may be small compared with the thickness of the vadose zone (of 

order L ∼ 500 m at Yucca Mountain).

Alternatively, for climate variations with a time period of 

T ∼ 105 yr (∼3 × 1012 s), we have from Eq. [17] and [18] an 

estimate of

( )δ − × 3
c 1 2 10 m?  [20]

which is considerably larger than L. Consequently, during time 

periods of signifi cant climatic variations, the infi ltration-velocity 

fi eld may be considered statistically homogeneous in space, with 

the parameters of the system (for example, saturation) changing 

adiabatically slowly in response to changes in climatic forcing.

Random AdvecƟ on in a Self-Similar Velocity Field
Now we proceed to describe solute transport due to random 

advection in a stationary self-similar velocity fi eld (Dykhne, 2003; 

Dykhne et al., 2005) with characteristics described above. For 

conservative solutes, we have the mass balance equation

( )
∂
+∇ =

∂
0

c
c

t
v  [21]

where c(r,t) is the solute concentration. Th e volumetric moisture 

fl ux v(r) is a random function of coordinates. Th e velocity fi eld 

satisfi es the incompressibility equation

=div 0v  [22]

which is valid due to the following reasoning. Here, we consider 

moisture fl ow before averaging across an ensemble of realiza-

tions. Since the fl ow is stationary due to mass conservation, the 

condition divρv = 0 is valid, where ρ = ρl in regions fi lled with 

moisture and ρ = 0 outside of these regions. Th e variable ρl is 

the density of the incompressible liquid and so can be taken 

out of the divergence operator. From here the incompressibility 

condition Eq. [22] follows. Th e problem has an initial condi-

tion c(r,0) = c0(r).
We solve the problem in two stages:

In the fi rst stage, we assume the correlation length 1. ξ deter-
mined by Eq. [1] to be infi nite.

Th en we take into account that 2. ξ is fi nite.

From Eq. [3] it follows that an increase in ξ should lead to 

a decrease in the mean advection velocity u = 〈v(r)〉. Th is is valid, 

however, only if the system size is greater than the correlation 

length, L > ξ. Real geologic media always have a fi nite thickness; 

therefore, as has been mentioned above, beyond a certain satura-

tion the system size L plays the role of ξ, with the mean velocity 

remaining fi nite. Nevertheless, due to V >> u (see Eq. [9]), a 

considerable time interval exists within which the eff ect of a mean 

velocity may be neglected (see Eq. [47], below). To describe the 

system behavior in this interval, we take 〈v(r)〉 = 0 at the present 

stage of the study.

Within the range |ri − rj| >> a (a is the lower limit of the 

interval of fractality) there are no length parameters on which the 

problem variables could depend. Th us we assert that the velocity 

fi eld of the infi ltration fl ux is self-similar and that the n-point 

velocity correlation function, defi ned by the equation

( ) ( ) ( ) ( )=
1 2 1 2

( )
... 1 2 1 2, , ..., ...

n n

n
i i i n i i i nK v v vr r r r r r  [23]
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is a uniform function of order −nh at |ri − rj| >> a (for all pairs 

of ri, rj):

( )
( )−

λ λ λ

= λ

1 2

1 2

( )
... 1 2

( )
... 1 2

, , ...,

, , ...,

n

n

n
i i i n

nh n
i i i n

K

K

r r r

r r r
 [24]

In particular, the pair correlation function has the property of Eq. 

[5] (or Eq. [14] in Fourier representation).

Th e quantity of interest is the solute concentration averaged 

across an ensemble of medium realizations, c (r,t) ≡ 〈c(r,t)〉. It 
satisfi es a standard macroscopic mass conservation equation:

∂
+ =

∂
div 0

c

t
q  [25]

where q(r,t) is the macroscopic fl ux density that meets an obvi-

ous requirement: to be zero in case of a uniform concentration 

distribution as we consider the case with zero mean velocity. Due 

to linearity of the problem, and taking into account that in 

general the fl ux at a given point in space may depend on the 

medium state at all other points at earlier time (causality prin-

ciple), we have

( ) ( ) ( )
−∞

′ ′∂ − −
′ ′ ′ ′=−

∂∫ ∫
,

, d d ,
t

i ij
j

c t t
q t t f t

r

r r
r r r  [26]

in which the response tensor function fij(r,t) is determined by the 

advection-velocity distribution.

Within the model under consideration (see Eq. [24]) there 

is no space scale to characterize system behavior at r >> a. Th is 

allows us to take advantage of the ideas of critical phenomena 

theory (Ma, 1976) by considering transport processes at distances 

r >> a to be scale invariant. In other words, we shall consider the 

macroscopic transport equation to be invariant with respect to 

the transformation

→ sr r  [27]

with all quantities of Eq. [25] and [26] transforming as

−Δ→ BB s B  [28]

where the exponent ΔB is termed the scaling dimension of the 

quantity B. Th e scaling dimensions of the velocity and concentra-

tion follow from Eq. [24] and the property of particle number 

conservation:

Δ = Δ =, 3v ch  [29]

Equations [25] and [26] make it possible to establish a relation 

between the time t and the fl ux density q scaling dimensions:

Δ = −Δ2t q  [30]

With Eq. [29] and [30] taken into account, the identity q = 〈(vc)〉
results in the expressions

Δ = +3q h  [31]

( )Δ =− +1t h   [32]

Using Eq. [26], [31], and [32], one can also obtain

Δ = +2 3f h  [33]

Note that scaling Eq. [31–33] is valid only for h < 1. For h > 1, 

classical scaling takes place (for example, Δt = −2) because in that 

case tracer transport is determined by the short-range velocity 

distribution for which the scale invariance does not hold. Note 

also that the value of Δt for h < 1 may be considered a conse-

quence of the relation t ∼ r/v and the equality Δv = h resulting 

from Eq. [24].

In general, the value of h is determined by characteristics 

of the ensemble of fracture systems, such as spatial distribution 

of fractures, fracture lengths, and fractal properties of fracture 

boundaries.

Th e exponents in Eq. [31–33] allow the main characteristics 

of solute transport to be determined for three diff erent ranges of 

the exponent h.

1. Velocity Scaling Dimension h > 1

Solute transport corresponds to classical diff usion with dif-

fusivity D ∼ Va.

2. Velocity Scaling Dimension h < 1

At times suffi  ciently large so that the solute plume consider-

ably exceeds its initial size, the average ensemble concentration 

from Eq. [25] and [26] can be written in the form (see Dykhne 

et al., 2005, for more details)

( )
( )

( )
( )[ ]

+∞

− ∞

+
=

π π +ϕ η

>

∫ ∫
3

3

expd d
, ,

2 2 1

Re 0

b i

b i

i ptp k
c t N

i p

b

kr
r

 [34]

where N is the total solute inventory and η is a self-similar 

variable:

− +⎛ ⎞⎟⎜η= ⎟⎜ ⎟⎜⎝ ⎠

2/(1 )
2

h

h

p
k

Va
 [35]

Th e function pϕ(η) is a Fourier–Laplace transform of the response 

tensor function fij(r,t), which is determined by the random veloc-

ity fi eld. Th e quantity ϕ(η) has the following properties (Dykhne 

et al., 2005):

( )

( )

∞

=
+

ϕ η = η η<<

ϕ η η η>>

∑
1

(1 )/2

at  1

  at  1

n
n

n

h

a

?

 [36]

Note that the self-similar variable η depends on the value of the 

time scaling index (see Eq. [32]).

It follows from Eq. [34] that the average concentration may 

be represented as

( )
( )
( )= Φ ζ3,

N
c t

R t
r  [37]

with Φ(0) ∼ 1, Φ(ζ) → 0 for ζ → ∞ and

( )
ζ=

r

R t
 [38]

Th e quantity R(t), defi ned by
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( ) ( )γ= γ=
+
1

,
1

hR t a Vt
h  [39]

determines the spatial extent of the solute plume at time t. Since 

γ > 1/2 for h < 1, the transport regime for this condition corre-

sponds to the super-diff usion mode.

Th e asymptotic behavior of concentration at large dis-

tances is

( )

( )
( )

( )

−
+ +

+

≅

ζ − ζ
⎡ ⎤π⎢ ⎥⎣ ⎦
>>

3(1 )
1/(1 ) (1 )/2

1/(1 )3/22

,

exp
4

at  

h
h h hh

h

c t

A
N B

R t

r R t

r

 [40]

where

( )

( )

γ−
−γ

γ

−γ

γ

= γ η
−γ′ϕ

−γ
= γ η

γ

4 1

2(1 )
0

0

1/(1 )

0

1 2

1

1

A

B

 [41]

and

( )

η=η

ϕ η′ϕ =
η

0

0

d

d
 [42]

Th e quantity η0 is the solution of the equation

( )+ϕ η =01 0  [43]

Note that the concentration tail in the random advection model at 

h < 1 is reduced in comparison to the classical Gaussian exponential. 

Th is result is in sharp contrast to fractional diff usion models (with 

fractional spatial derivatives), whose tails are of the power-law type 

(Metzler and Klafter, 2000). Below we consider media with traps, 

the presence of which also leads to a change in tailing behavior (i.e., 

the spatial decay of tails becomes less). A discussion of the fi nal 

form of solute concentration tails is given below.

3. Velocity Scaling Dimension h = 1

Solute transport in this case is a logarithmically modifi ed 

classical diff usion process. Th e ensemble-averaged concentration 

is described by the expression

( )
( )[ ] ( )

⎧ ⎫⎪ ⎪⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥≅ −⎨ ⎬⎢ ⎥⎪ ⎪π ⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭

2

3/2
, exp

4

N r
c t

R tR t
r  [44]

with

( )
⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

1/ 4ln ,
Dt

R t Dt D Va
a

?  [45]

Now we address the case where the advection-velocity fi eld 

has a fi nite correlation length ξ (Kondratenko and Matveev, 

2007) for h < 1. For this condition, the advection velocity may 

be represented in the form

( ) ( )′= +v r u v r  [46]

where the correlation function of the “random” term v′(r) pos-

sesses the properties of Eq. [24], which are now valid only at 

|ri − rj| < ξ. All correlations decay at |ri − rj| > ξ exponentially fast. 

Th e average velocity is determined by the estimate of Eq. [3].

At short times, t < t*, where

+ξ ξ
=

1

*

h

h
t

u a V
?  [47]

the results expressed by Eq. [37–40] remain valid. At long times, 

t > t*, the classical diff usive regime is realized:

( )
( )

( )2
3/2

effeff

eff

, exp
44

with  

tN
c r t

D tD t

D u

⎡ ⎤−⎢ ⎥= −⎢ ⎥
π ⎢ ⎥⎣ ⎦
ξ

r u

?

 [48]

Th is expression holds true for the condition |r − ut| << ut. At 

large distances with |r − ut| >> ut, the concentration behavior 

is described by the asymptotic expression Eq. [40], which also 

provides the concentration asymptotics at short times for h < 1. 

Th erefore, in the case of a fi nite correlation length, ξ < ∞, the 

concentration tail at t > t* has a two-stage structure. Th e near 

stage is the classical one, while the far stage corresponds to super-

diff usive asymptotics. Th e transition between the two stages of 

asymptotics occurs when

⎛ ⎞⎟⎜ ⎟∝ −⎜ ⎟⎜ ⎟⎜⎝ ⎠*

exp with  1
t

c A A
t

?  [49]

Solute Transport in Fractal Dual-Porosity Media
We next consider transport processes in terms of solute con-

centrations in a highly permeable medium (which is a network 

of channels constituting the backbone of the percolation cluster). 

Th ese concentrations are named active concentrations, or simply 

concentrations. A matrix and a set of wetted “dead-end” fractures 

(fractures in which water is motionless) play the role of traps or a 

low-permeability (passive) medium. Dynamic fl uctuations also 

provide a mechanism for loss of active particles in traps. Two 

points are important in our consideration: (i) the geometry of 

the conducting medium is fractal; and (ii) random advection is 

the main mechanism of particle transport.

Based on the results obtained by Dykhne (2004b) and 

Dykhne et al. (2008), the presence of traps formally can be 

described by the random advection model by adding a trap term 

to the microscopic mass conservation Eq. [25]:

∂ ∂ +Φ+ =div 0c t q  [50]

where Φ(r,t) is the density of traps defi ned by the expression

( ) ( ) ( )
−∞

′ ′ ′Φ = ϕ −∫, , d
t

t t t c t tr r  [51]

with an inverse-power kernel. In turn, it is equivalent to the fol-

lowing replacement in Eq. [34]:

( )→ πp p p  [52]

where pπ(p) is the Laplace transform of the kernel ϕ(t) from Eq. 

[51] and is determined by

( ) ( ) − − −
+π < <1 1 1

1at  nz
n n np pt t p t?  [53]
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describing the predominant type of trap within each time interval 

[tn,tn+1]. Note that usually tn << tn+1 and z1 > z2 > z3 … . After 

replacement of Eq. [52], Eq. [34] takes the form

( )

( )
( )
( ) ( )[ ]

+∞

− ∞

=

+
π π π +ϕ η

>

∫ ∫
3

0 3

,

exp1 d d

2 2 1

Re 0

b i

b i

c t

i ptp k
N

i p p

b

r

kr
 [54]

In the presence of traps, the total active solute inventory

( ) ( )= ∫ 3d ,N t r c tr  [55]

becomes time dependent. Substituting Eq. [54] into [55], we have

( )
( )

( )
+∞

− ∞
= >

π π∫0

1 d
exp , Re 0

2

b i

b i

p
N t N pt b

i p p
 [56]

where N0 = N(0). Th e integration in Eq. [56] results in an expres-

sion for the total active solute inventory:

( ) ( ) ( )
−

−

⎛ ⎞⎟⎜= = Γ⎟⎜ ⎟⎜⎝ ⎠
< <

1

0

1at  

nz
n

n n

n n

t
N t N t N z

t

t t t

 [57]

where Γ(z) is the gamma function.

Taking into account Eq. [56], we fi nd from Eq. [54] the 

structure of the active solute concentration [at r ≤ Rn(t)] in the 

time interval tn−1 < t < tn:

( )
( )
( )

( )≅ Ψ ζ3, n
n

n

N t
c t

R t
r  [58]

where Nn(t) is the total active solute inventory at time t,

( )
ζ =n

n

r

R t
 [59]

is a dimensionless self-similar variable, and

( ) ( ) +−=
1/(1 )1n n

hz zh
n nR t a Vt t  [60]

is the solute plume size at tn−1 < t < tn. Note that

( ) γ
−∝ γ = < <

+ 1with at  
1

n n
n n n n

z
R t t t t t

h
 [61]

Th e function Ψ(ζ) possesses the following properties:

( ) ( )Ψ Ψ ζ << ζ >>0 1, 1 at 1n n?  [62]

Th e asymptotic behavior of the concentration at large distances 

can be obtained from Eq. [54]:

( )
( )

( )
( )

( )

−
−γ

γ

γ − −
−γ −γ

γ

−

≅ γ η
⎡ ⎤π⎢ ⎥⎣ ⎦

⎡ ⎤Γ ζ − ζ⎢ ⎥⎣ ⎦
< <

1

1
03/22

6 2 1

2(1 ) 1/(1 )

1

,
4

exp

at  

m

m
m

m m

m m

m

z

m
m

m

z

m m m

n n

N t
c t A

R t

z B

t t t

r

 [63]

where the constants Aγ and Bγ are of the order of unity and are 

determined by Eq. [41]. Th e value of index m is determined by 

the solution of 

( )−γγ ζ η = 1
0

m

m m pt  [64]

in the interval tm
−1 < p < tm−1

−1. For moderately large ζ = r/R(t), 
we have m = n, while the asymptotics of the concentration are 

determined by the same regime as the main plume concentra-

tion. As the value of ζ increases (see Eq. [64] and [53]), however, 

earlier transport regimes determine the concentration asymptot-

ics. In other words, as the distance from the source increases (at 

a fi xed time), the regimes of solute transport are reproduced by 

the shape of concentration asymptotics in an inverse time order. 

For illustration, the solute plume size (Eq. [60]) and concentra-

tion asymptotics of the tail (Eq. [63]) are shown schematically 

in Fig. 1 and 2.

F®¦. 1. Dependence of solute plume size (R) on Ɵ me (t). The solid 
line includes the infl uence of sinks, while the dashed line ignores 
sinks. The following parameter values were used for the calculaƟ on: 
a = 10−1 m, V = 10−5 m s−1, h = 0.6, α = 1 for t < 102 d, α = 0.6 for 
102 < t < 104 d, α = 0.3 for t > 104 d.

F®¦. 2. SpaƟ al dependence of the concentraƟ on tail asymptoƟ cs; 
c/c0 is the raƟ o of the concentraƟ on at distance r from the source 
to that at the source site. The calculaƟ on was made for Ɵ me t = 
103 d. The dashed line shows the concentraƟ on behavior when the 
change of transport regime at earlier Ɵ mes is neglected. The fol-
lowing parameter values were used for the calculaƟ on: a = 10−1 m, 
V = 10−5 m s−1, h = 0.6, α = 0.6.
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RenormalizaƟ on of Solute Source Strength 
Due to FluctuaƟ on Eff ects

According to the previous analysis, the master equation for 

the active solute concentration may be represented in the form 

of Eq. [50], where q(r,t) is the macroscopic fl ux density deter-

mined by Eq. [26] and Φ(r,t) is the density of traps defi ned by 

Eq. [51].

Th e macroscopic Eq. [50] is valid within the fractality inter-

val a < r < ξ. For the problems discussed above, the size of the 

solute source (initial plume size) r0 was considered to also fall in 

the range a < r0 << ξ. To describe solute transport for the condi-

tion r0 < a, strong fl uctuations in the medium properties at the 

scales r0 < r < a should be taken into account. We now consider 

this problem.

Assume that time is suffi  ciently large so that R(t) >> a. Let 

us surround the solute source with a closed surface S1 having a 

characteristic radius R1 >> a. A total macroscopic solute fl ux Q 

through S1 may be represented as

= 0Q KQ  [65]

where Q0 corresponds to the source strength (i.e., the total solute 

fl ux) for a fi xed concentration at the source boundary in the 

absence of medium property fl uctuations, and K is the power 

renormalizing factor.

Th e factor K cannot be derived from macroscopic consider-

ations because it requires knowledge of the medium characteristics 

at r < a, where they strongly fl uctuate. Th is situation resembles 

the problem of tunneling barrier conductivity explored by Raikh 

and Ruzin (1991). Here we take advantage of their approach. 

Like the conductivity in Raikh and Ruzin (1991), the factor K 

in our problem is determined by rare combinations of favor-

able conditions—“leakage paths.” Following Raikh and Ruzin 

(1991), we will call them punctures. Th e contribution F to the 

transmission coeffi  cient from an individual puncture is statisti-

cally distributed across a wide range of values. Th is contribution 

can be expressed as F = F0exp(−u), where u is a stochastic variable 

uniformly distributed across the interval from 0 to ∞. Th e dis-

tribution of puncture concentrations per unit area of the source 

boundary can be expressed as

( ) ( ) ( )[ ]−ρ = −Ω1
0 expu S u  [66]

where S0 is the characteristic cross-sectional size of the punc-

ture, which is small compared with the average distance between 

punctures, and Ω(u) is a function having the properties Ω(u) >> 

1, ∂Ω/∂u < 0, and ∂2Ω/∂u2 > 0.

Th e analysis using an averaging procedure across the punc-

ture concentration distribution of Eq. [64] leads to the following 

results. For large source sizes, the renormalizing factor is close 

to unity:

≅ >> *1 at K S S  [67]

where S is the source surface area, S* is given by the expression

( )∗
⎡ ⎤= Ω⎢ ⎥⎣ ⎦0 optexpS S u  [68]

and the value uopt is determined by the equation

( )
=

⎡ ⎤∂Ω ∂ + =⎣ ⎦
opt

1 0
u u

u u  [69]

For small source sizes, the renormalizing factor decreases with S:

( )⎡ ⎤∝ − − <<⎢ ⎥⎣ ⎦opt *exp at fK u u S S  [70]

with uf determined by

( ) ( )
∗

⎡ ⎤Ω −Ω =⎢ ⎥⎣ ⎦optexp 1f

S
u u

S
 [71]

Note that we have K << 1 at S << S*.

One additional eff ect caused by the fl uctuations concerns 

the statistical scatter of the renormalization factor K. Th e relative 

scatter Δ(K) ≡ 〈(K − 〈K〉)2〉/〈K〉 is small for large source sizes 

and becomes large for small source sizes:

( ) ( )Δ << >> Δ > <<* *1 at  , 1 at  K S S K S S  [72]

Conclusions
We developed new elements to generalize the dual-porosity 

model for moisture infi ltration and solute transport in unsaturated 

rocks, taking into account fractal aspects of the percolation process.

Infi ltration processes in unsaturated fractured rocks show 

self-organized criticality that leads to a fractal spatial structure 

of the fl ow paths. Percolation theory relations were applied to 

the moisture seepage problem for this case. We established that for 

scales r << ξ, where ξ is the correlation length, the random compo-

nent of the seepage velocity is considerably greater than the average 

velocity. Th e two become comparable only at scales r ∼ ξ.

In addition to stationary (spatial) fl uctuations of the advec-

tion-velocity fi eld, dynamic (time-dependent) fl uctuations arise 

in the system. Th ey possess a self-similarity property and are akin 

to 1/f (fl icker) noise.

Th e eff ect of variations in the precipitation intensity on seep-

age processes in the geologic media considered here depends on 

their time scale. Seasonal variations in the moisture infl ow manifest 

themselves only in a relatively thin boundary layer. In contrast, slow 

climatic variations penetrate deeply into the medium, resulting in 

adiabatically slow variations in medium characteristics.

Within the framework of the fractal generalization of the 

double-porosity model, we showed that the advective solute 

transport regime in the considered media is determined by a 

competition between two mechanisms. A superdiff usive transport 

regime arises in the case of slow power-like decay of fl ow-velocity 

correlations. Th e presence of a sharp contrast in medium prop-

erties on the other hand gives rise to slower solute transport, 

including subdiff usion mode. Th e concentration tails in both 

anomalous transport regimes (super- and subdiff usion) are of 

the exponential type. Compared with classical Gaussian tails, 

they correspond to contracted and stretched exponential tails for 

super- and subdiff usion modes, respectively. Here it should be 

noted that, from our model, it follows that tails less severe than 

Gaussian tails occur only when the transport regime is superdif-

fusive. When traps are present in the medium (a rather common 

case in the problem of transport in geologic media), the regime 

of transport may become subdiff usive (Eq. [60]), in which case 
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the tails become more pronounced than the Gaussian exponen-

tial tails (Eq. [63]) but are still exponential. No power-law tails 

occur, in stark contrast to those typical of fractional derivative 

and continuous-time random walk models.

Th e change in transport regimes with time results in a multi-

stage structure of the concentration tails. With increasing distance 

from the source at a fi xed time, concentration asymptotics repro-

duce the transport regimes in inverse time order.

Spatial fl uctuations in medium properties lead to a renor-

malization of the solute source strength for small source sizes. 

In addition, the renormalizing factor is subject to a signifi cant 

statistical scatter.
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