
UC Irvine
ICS Technical Reports

Title
VHDL synthesis system (VSS), release 3.0 : user's manual

Permalink
https://escholarship.org/uc/item/1b02v77r

Authors
Lis, Joseph
Ramachandran, Loganath

Publication Date
1991-02-25

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1b02v77r
https://escholarship.org
http://www.cdlib.org/

VHDL Synthesis System (VSS)

Helease 3.0

U ser 's l\1anual

(February 1991 Prototype Helease)

Joseph ki~
Loganath Ramachandran

Technical Report #91-19
February 25. 1991

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Dcpt. of Information & Computer Science
l~niversity of California

Irvine: CA 92717
(714) 856-7063

ramachan©!ics. uci.edu

TABLE OF CONTENTS

l. Introduction 1

2. Release 3.0 Features 1

3. Installation .. :............................. 2

4. Running the VSS System .. 3

4.1. Behavioral Description Input File 4

4.2. Allocation Specification File 4

4.3. Command Syntax ... 4

4.4. Output Files 14

5. Flowgraph Graphical Display Utility 15

5.1. Input File.. 15

5.2. Running the Display Program ... 15

5.3. Scanning the Diagram 15

6. Manual Pages .. 15

Appendix A. VHDL Language Subset .. 17

1. Introduction 17

2. Signal Declarations and Types 17

3. Entity Block 18

4. Architectural Body 18

4.1. Block Statements 19

4.2. Concurrent Signal Assignments 20

4.2.1. Conditional Signal Assignment ... 20

4.2.2. Selected Signal Assignment 21

4.3. Process Statement 21

5. Structured Modeling 23

5.1. Design Models :.................................... 23

5.1.1. Combinational Logic 23

5.1.2. Functional Descriptions 23

5.1.3. Register Transfer Designs 24

5.1.4. Behavioral Descriptions 24

5.2. Modeling Guidelines 24

Appendix B. Allocation Specification File Format 26

March 1, 1990 Page i

Appendix C. DGM File Specification .. 28

March 1, 1990 Page ii

blank page.

l. Introduction

This distribution contains the software for a prototype version of the VHDL
Synthesis· Systern (VSS) under developrnent in the CADLAB at the University of
California, Irvine. The VSS system consists of the following modules:

(1) A Graph Compiler which generates a fl.owgraph representation frorn an input
VHDL description

(2) A C Graph Critic which uses a rule-based systern to optirnize the graph llSing local
pattern substitutions.

(3) A Component Synthesis Algorithm (CSA) which operates on concurrent
descriptions in order to identify rnutually exclusive operations that can be mapped
to the same component.

(4) CFG->DFG transformations which restructure the representations of a behavioral
(process) description into the equivalent concurrent description.

(5) A Design Compiler which transforms the internal fl.owgraph representation in to a
register-transfer design of generic cornponents.

(6) A Netlist Generator which produces a VHDL structural netlist for the synthesized
design.

Ali software supplied in this release is written in C and uses the UNIX yace and
lex compiler writing tools. The user interface supplied runs under the X Windows
windowing systern.

2. Relea.se 3.0 Features

Release 3.0 of the VSS System contains the following enhancements made to the
March 1990 release:

• A hierarchical VHDL block description is now accepted. A choice of retaining this
specified hierarchy in the synthesized structure is now o:ffered.

• Representation optimizations such as CSA and the CFG transformations have been
added.

•A Control Logic Compiler is included in the release which will generate Control units
frorn the state tables produced by VSS.

• Multiple processes are allowed in the same description. Each process is mapped to a
control unit/data path.

• The Suntools dp display program has been replaced by xdp, an equivalent X windows

March 1, 1990 Page 1

utility.

3. Installation

The software was developed on Sun3 and Sun4 computer systems running the
UNIX operating system version 4.1.

The following procedure should be used to install the software on a similar system:

(1) Select or create a subdirectory where the compiler software will reside and enter
this directory with the command:

3 cd < VHDL-directory>

(2) Insert the distribution tape in the 1/4-inch tape drive and execute the following
command to extract the files from the tape:

3 tar xvf / dev / rstO

(3) Any user of the VSS system must define environment variables which indicate the
location of data files required by VS S. These variables can be defined in the .cshrc
file in the user's home directory. Edit the .cshrc file and add the following
statements:

setenv VSS_DEF _COMP _TABLE < VHDL-directory> / data_tables/ comp_table
setenv VSS_DEF _OP _TABLE < VHDL-directory> / data_tables/ op_table
setenv GENUS_DEF_LIB_FILE <VHDL-directory> /data_tables/genus.comps
xrdb -merge < VHDL-directory> /bin/XVSS .ad

Substitute the complete pathname of the directory <VHDL-directory> selected
for the installation.

(4) An executable image for the VSS system is provided with the distribution in the
< VHDL-directory> /bin/$arch directory, where $arch is sun3 or sun4 depending
on the machine on which VSS is run.

If it is necessary to create an executable image for the compiler, execute the
following commands:

3 cd < VHDL-directory>
3 make

:March 1, 1990 Page 2

This will make the VSS executable and ali display program executables. The
executable images will be placed in the < VHDL-directory> /bin/$arch directory.
The VSS executable has the program name vss.

(5) An executable images for the VSS Flowgraph X Windows Graphical Display
Utility (xdp) and utility programs {xvss} and {xdisp_file} are also provided in the
directory < VHDL-directory> /bin/$arch.

(6) In order to access and execute these programs from any directory in the user's file
space, add the full pathname of the bin directory to the path variable definition
normally found in the .cshrc or .login file in the user's home directory. For
example, if the executables are in the directory /usr/joe/VHDL/bin, a set path
command in the .login or .cshrc file should be added or modified to look like the
following:

set path=(. /bin /usr/bin /usr/joe/VHDL/bin)

(7) Once the installation has been tested, the object files created during compilation
can be removed using the following commands:

% cd < VHDL-directory>
3 make clean_o

4. R.unning the VSS System

In order to process a design using VSS, the following modules are in voked:

(1) Graph Compiler

(2) Graph Critic

(3) Allocator

(4) Scheduler

(5) BIF ops based state table generator

(6) Resource Binder

(7). BIF unit based state table generator

(8) Data path netlist generator

(9) Control Logic Compiler

(10) VSS Functional synthesis of control unit

March 1, 1990 Page 3

(11) CU /DP netlist merger

4.1. Behavioral Description Input File

The input file should consist of a textual VHDL behavioral description. The format
of the VHDL language subset accepted by the compiler is described in Appendix A, and
examples can be found on-line in the <VHDL-directory> /examples subdirectory. The
input file should have the following naming convention:

< design-name> .vhdl

The design style to be used for synthesizing the description can be specified in a
comment/annotation of the following format:

--VSS: design_style < style>

where < style> can be either COMBINATIONAL, FUNCTIONAL, REG_TRANSFER
or BEHA VIORAL. This annotation should be placed between the entity and
architecture sections of the description. See Appendices D and E for examples.

4.2. Allocation Specification File

For descriptions written in the behavioral style (using process and sequential
statements), the user must specify the number of each type of functional units that can
be used during the Scheduling phase of Design Compilation. This is accomplished via a
text file with the following naming convention:

< design-name> .pd

The syntax of this Allocation Specification file is described m Appendix B, and an
example file can be found in the example of Appendix E.

4.3. Cormnand Syntax

In order to execute the program, the input file (and allocation
specification file) must be in the curren t directory. En ter the command:

% vss [-bcdgt] < design-name>

Current command line options include:
b - perform bitwidth consistency checks/padding of mismatched bws

March 1, 1990 Page 4

(the global variable 'bw_check' is set to TRUE)
e - turn off Graph Critic (by default, it's always invoked)

(the global variable 'invoke_gc' is set to FALSE)
d - use default settings (eliminates a lot of prompting during runs)

(the global variable 'default_settings' is set to TRUE)
g - run the Graph Compiler only (diagram is generated, then VSS quits)

(the global variable 'graph_only' is set to TRUE)
t - invoke CFG-> DFG transformations

(the global variable 'invoke_fg_trans' is set to TRUE)

NOTES:
l. In the discussions that follow, all pathnames mentioned assume the home

directory < VHDL-directory>.
2. See section 3 "Installation" far instructions as to how to set up a

VSS user.

1. Graph Compiler

If the default settings are not used, you will be prompted to set the level
of Graph Compiler debug information printing as follows:

Print Graph Compiler debug information (y /n)?:

If you respond 'y', the following prompt appears:

Graph Compiler debug level
O = print no debug information (default)
1 = print nade creation information
2 = prin t nade merging/ deletion information
3 = print nade list modification information
4 = prin t nade connection information

=>

Options 1-4 produce report increasing levels of detail with respect to the
creation of nades, modification of global node lists, the status of the node
stack, node and net connection information, etc. which may be helpful in
debugging.

The Graph Compiler reads in the input VHDL description. It will process
annotations of the form:

--VSS: < keyword> < value>

which direct the compiler as to what design style to use, what signal kind
is to be associated with a signal, what transformations are to be performed,

March 1, 1990 Page 5

etc. (see the n0te on 'annotations').

A Control/Data Flow Graph data structure is built as the input description is
parsed (see the "Flow Graph Data Structure Specification", CADLAB Internal
Document #4, for details of this data structure).

2. Graph Critic

After each block (in the case of COMBINATIONAL, FUNCTIONAL or REG_TRANSFER
designs) or section of straight line code (in the case of BEHAVIORAL designs) is
parsed and a :fl.ow graph is created, the Graph Critic is invoked on that section
of DFG.

3. Allocator

The 'Allocator' is really more of an 'allocation constrain t en try' for the
sched uling phase.

i. First, the GENUS generator level of the GENUS partial design hierarchy is
read in and built by the 'parsers/genus' parser (a call to the function
tead_in_GC_table). The file 'genus.comps' in the 'data_tables' directory
contains the specification of all GENUS components currently used by VSS.
This builds a list of GC_GENERATOR_DEF records which store information about
the name, parameters and a specification of the operation performed by each
GENUS component class. The list is actually maintained as an array
(GENUS_generators).

ii. Next, the GENUS partial design representation for the current design is
initialized. This involves creating a main entity ENTITY _REC which
represents the top level entity / architecture.

iii. Allocation data tables are then read in.

In sorne earlier versions of VSS, you may see the following message printed
during a run:

reading in component table from file:
/ ch/ub /jlis/vhdl/vss_code/new_ds/ data_tables/ comp_table

Befare the GENUS generator input parser was available, a function map table
was generated by reading the file 'data_tables/comp_table' using the
function read_comp_table(). This provided a mechanism for mapping DFG node
operations to GENUS components (which is now accomplished using the GENUS

March 1, 1990 Page 6

generator list).

The 'operator and unit upgrade cost table' is then generated by reading in
the file 'data_tables/op_table' using the function read_op_table(). This
table defines the grouping of operations into OP _CLASSES, and specifies
costs used in the Frequency Based Bínder for adding new functionality to an
ALU with a current operator líst. This parser builds the op_class,
operator, and upgrade_cost tables kept in integer arrays (see the op_table.h,
alloc_defs.h and alloc_vars.h files in the 'include' directory for the
definitions of these data structures).

iv. Next, a prompt for ALLOCATION CONSTRAINT ENTRY is given (this used to be
given after the scheduler was selected, but it has been recently moved
befare the scheduler selection (as of 12/3/90)).

ALLOCATION CONSTRAINT ENTRY

En ter allocation constrain ts via constraint file (y /n): y

Partial design input file [< design_name> .pd]:

If a 'y' response is given to the first prompt, a prompt is issued for
the name of a file which contains the unit allocation to be used during
sched uling. The default name of this file appears in brackets. If this
name is correct, type < RETURN>; otherwise, enter the name of the allocation
file.

This file will be parsed by the parsers/pd_input parser (with the function
read_pd_input(<file>)). The syntax of this file is defined in Appendix B
of the "VHDL Synthesis System (VSS) Release 2.0 User's Manual". There has
been one change to this syntax: the op_delay_spec has been changed from
an 'unsigned_integer' to a 'real_number'.

The file will be parsed to create the GENUS component class and instance
representation of the allocated components.

If a 'n' response is entered to the constraint file prompt, ALLOCATION
CONSTRAINT ENTRY is placed in the interactive mode in which the user is
prompted to enter the component allocation on an operation class or unit by
unit basis as follows:

a. operation class - the following is an interactive session in which

March 1, 1990 Page 7

the user specifies the number and execution delay of components on an
operation class basis:

ALLOCATION CONSTRAINT ENTRY

Enter allocation constraints via constraint file (y/n): n

En ter allocation by
o = operation class
u= unit

=>o

Enter number of adders: 2
operation execution delay (# cycles): 0.5

Enter number of subtractors: 1
operation execution delay (# cycles): 0.5

En ter number of multipliers: 1
operation execution delay (# cycles): 2.0

En ter number of dividers: O
operation execution delay (# cycles): 2.0

Enter number of logical units: 3
operation execution delay (# cycles): 0.75

En ter number of relational units: O
operation execution delay (# cycles): 0.6

b. unit by unit component allocation - the following is an interactive
session in which an 8-bit ADDER/SUBTRACTOR and 8-bit COMPARATOR with
a GEQ function is allocated:

ALLOCATION CONSTRAINT ENTRY

En ter allocation constrain ts via constrain t file (y /n): n

Enter allocation by
o = operation class

:March 1, 1990 Page 8

u= unit
=>u

Enter attributes for each component (enter 'q' as Operation Class to quit)

function unit 1:
Operation Class (REL,ADD,LOG,MULT,SHIFT,q)
=> ADD
bit width
=> 8

En ter component operation type(s) from the following list:
(ADD,SUB)
Enter one type ata time (enter 'q' to complete)
operation type => ADD
op_type(ADD) =-l. (+) = 6
operation type => SUB
op_type(SUB) = -1, (-) = 7
operation type => q
Execution delay (# cycles)
=> 1.0

function unit 2:
Operation Class (REL,ADD,LOG,MUL T,SHIFT,q)
=> REL
bit width
=> 8

En ter component operation type(s) from the following list:
(EQ,NEQ,LT,LE,GT,GE)
En ter one type at a time (en ter 'q' to complete)
operation type => GEQ
op_type(GEQ) = -1, (> =) = 3
operation type => q
Execution delay (# cycles)
=> 1.0

function unit 3:
Operation Class (REL,ADD,LOG,MULT,SHIFT,q)
=> q

4. Scheduler

March 1, 1990 Page 9

l. SLICER is the primary scheduler used in VSS. This is a variant of Barry
Pangrle's scheduler which calculates the as-soon-as-possible (ASAP) and
as-late-as-possible (ALAP) schedules in order to determine the range of
machine states to which an operation can be assigned. The scheduler
actually consists of two parts: a macro scheduler which traverses the
CFG and assigns states to control point nodes, and the SLICER scheduler
which is applied to ali STMT_BLKs encountered. The first state to be
assigned to the STMT_BLK is passed to the SLICER scheduler, along with
the DFG nodes in the STMT_BLK, and the scheduled STMT_BLK is returned.

ii. The next prompt you will be given is to set the level of scheduler debug
informa tion prin ted:

Turn on scheduler debugging (y/n)?

If you respond 'y', the following prompt is issued:

Scheduler debug level
O = print no debug information (default)
1 = print traversal information only
2 = minimal debug information
3 = maximal de bug information

=>

O: By default, a message is printed every time the SLICER scheduler is
invoked on a STMT_BLK. It also prints a warning message if no unit was
allocated to perform the operation currently being processed. In that
case, a unit is created and added to the GENUS partial design
represen tation.

1: In addition to the information printed for level O, the nodes visited by
the macro scheduler will be printed in the order in which they are
visited.

2: In addition to the information printed for level 1, the ASAP and ALAP
state assignments made to each node are printed.

3: In addition to the information printed for level 2, the examination of
each node in the final mobility scheduler phase is printed.

5. ·BIF ops based state table generator

Once scheduling is completed, the OPS BASED BIF state table is generated.

6. Resource Binder

March 1, 1990 Page 10

i. The Frequency Based Binder (FBB) creates input/output connection patterns
for each operation in the DFG. A usage frequency (a measure of the reuse
of common connection patterns) is used to establish the arder in which
patterns will be considered for binding to units. Binding costs consider
the tradeoffs of adding functionality to existing componen ts versus
instantiating new components.

ii. The next prompt you will be given is to set the level of binding debug
information printed:

Print allocation/binding debug info (y/n)?

If you respond 'y', a file < design-name> .alloc is created. Debug
information generated during the resource binding phase will be written to
this file.

If binding debug information is to be printed, and you have selected the
'frequency based binder', the following prompt is issued:

Print pattern creation info (y/n)?

A response of 'y' prints information about each DFG nade encountered and
the pattern entry created for that DFG node to the file < design-name> .alloc.

The following prompt will then be issued:

Allocation/Binding debug level
O = print no debug information (default)
1 = print register binding information
2 = print unit creation and binding information
3 = print pattern binding information
4 = print connection binding information

=>

These debug levels print increasingly detailed information about the
bind.ing process of the selected Binder.

iii. Frequency Based Binder options

a. Reset partial design (y/ n)?
=>

(default value: 'y')

In the Allocation phase, component classes and instances are created in the
GENUS partial design representation to be used by the Scheduler. If these
are not removed from the Partial Design representation, the FBB will

March 1, 1990 Page 11

consider this allocation constraint as the current Partial Design and modify
or add to it as needed.

By responding 'y' to this prompt, the GENUS partial design representation is
reset, and the FBB will begin from scratch. The allocation constraints will
be enforced via the generated schedule.

b. Treat storage elements as units (y/n)? : (default value: 'n')

This option determines whether registers are considered as sharable units
for which patterns will be generated. The variable 'reg_as_unit' is set
appropriately.

If you respond 'y' to this prompt, the following prompt is then issued:

U se best fit strategy for register sharing (y/ n)? :

This selects a best fit selection strategy when there is more than one
alternative for a register binding. By default, a first-fit strategy is
u sed.

c. Use OPERATION sources for operators (y/n)? : (default value: 'n')

When determining frequency of patterns, this option determines whether
to use the operation node which produces the input value for the current
operation node ora variable access. The variable 'op_srcs' is set
appropriately.

d. Restrict operator merging to same class (y/n)? (default value: 'n')
=>

If this option is set, operator merging is restricted to the same operator
class far function units. This prevents unrealistic merging of '+' and '*'
operators, for example.

7. BIF unit based state table generator

Once scheduling is completed, the UNIT BASED BIF state table is generated.

8. Data path netlist generator

The 'netlist' module contains a VHDL structural netlist generator.

9. Control Logic Compiler

March 1, 1990 Page 12

,, .

The Control Logic Compiler (written by Tedd Hadley) uses the BIF unit based
state table generated after Resource Binding and generates a VHDL functional
description.

The CLC is in voked within VSS using a system call. The script 'run_clc' is
executed (this script file is in the directory <VHDL-directory> /bin/$arch.

A subdirectory 'cu' is created, and the file < design-name> .ubst is copied in to
this subdirectory. Tedd Hadley's state_table_to_vhdl program is invoked, which
generates the VHDL functional description of the control logic. This program
will ask you if you want to delete intermediate files produced during execution
of the CLC - if no errors occur, these files can be deleted.

10. VSS Functional synthesis of control unit

In arder to generate a structural netlist far the control unit,
a second pass of VSS currently has to be run using the VHDL functional
description produced by the CLC. The 'run_clc' script invokes 'vss_c_gc' in
FUN CTION AL mode to genera te the structure of the con trol logic using VS S.

When asked to select the resource binder, use the 'fiattened flowgraph' option.

11. CU /DP netlist merger

The netlist generated far the control logic will be appended to the file
containing the data path VHDL structural netlist. A VHDL configuration
statement is then generated to associate ali components which have subcomponent
expansions to the lower level en tity / architectures.

If a syntax error is detected in the VHDL input file, an error message of the
fallowing farm is printed:

Error message: syn tax error
source line number: 18
yytext = singal
Lookahead token number: 276

Graph Compiler: syntax error in source program - compilation aborted

In this example, the keyword signa[was nússpelled. The source line of the error is

March 1, 1990 Page 13

indicated as well as the text buffer (yytext) far the current token.

NOTE: the results of previous compiler runs are overwritten by the current results. If
previous results are to be saved, either the current input file should be renamed or the
results to be saved should be moved to another directory.

A utility cleanup has also been provided to remove all files produced during the
execution of the compiler far a given design. To execute this utility, type

% cleanup < design-name>

All files associated with compilation of the design < design-name> except the input
source file (and allocation specification file) will be deleted.

4.4. Output Files

Upon successful completion, the VHDL Input Compiler will produce the fallowing
statistics and data files with the naming conventions shown:

< design-name> .st

< design-name> .nades

< design-name> .alloc

< design-name> .sched

< design-name> .obst

< design-name> .stats

GC_componen ts

GC__instances
design

GC_nets

< design-name> .nl

< filename> .dgm

where <filename> can be

March 1, 1990

- signal symbol table

- fiowgraph node/net infarmation

- Design Compiler allocation/binding infarmation

- Design Compiler sched uling information

- symbolic microcode (control) specification

- statistics for syn thesis run

- GENUS generic component classes used in the design

- GENUS generic component instances used in the

- GENUS net interconnections used in the design

- VHDL structural netlist for synthesized data path

- fiowgraph diagram output used far display

Page 14

< block-name> _beLgc

< block-name> _final

< design-name> < num>

< design-name> _final

- fiowgraph section far block befare Graph Critic
is invoked
fiowgraph section far block after Graph
Criticism

- fiowgraph which results from the application of
Graph Critic rule :firing < num>

- final interconnected and optimized fiowgraph

5. Flowgraph Graphical Display Utility

5.1. Input File

The < filename> .dgm files created by the VSS Graph Compiler can used as the
input files far the display utility. Each file contains a textual netlist description of the
fiowgraph generated by the Graph Compiler. The farmat of this netlist output far the
generated fiowgraph is described in Appendix C.

Similarly, the VHDL structural netlist description can be viewed graphically with
the xdp tool.

5.2. Running the Display Program

A utility has been included which allows far the graphic display of the fiowgraph
generated by the VHDL compiler. This program must be executed within a X window
environment. To enter such an environment, type the command:

3 xdp [options] < design-name>

See the manual page in the back of this User's Manual far a description of the
command line options.

5.3. Scanning the Diagram

Sections of the diagram can be examined by placing the mouse cursor within the
display window and typing a single letter command fallowed by < return>. The
manual page far the xdp command describes the available options.

6. Manual Pages

March 1, 1990 Page 15

Included in the release are manual pages for the vss and dp programs. The files
are located in the < VHDL-directory> /doc/man/manl directory. These manual pages
can be accessed by either:

(1) Placing them in a directory where other manual pages on your system are located,
or

(2) Adding the release directory to your MANP ATH directory by modifying/ adding
the following line to a user's .cshrc file:

setenv MANPATH "< current-path> :< VHDL-directory> /doc/man"

March 1, 1990 Page 16

l. Intrcxluction

APPENDIXA
VHDL Language Subset

The VHDL language syntax used to develop the VHDL Datafiow Compiler was
taken from the IEEE Standard VHDL Language Reference Manual, Standard 1076B.

Each VHDL behavioral description used as input to the VHDL Synthesis System
(VSS) must consist of a design entity composed of two major sections: the entity block
and the architecture body. The entity block contains the specification of external
input/output port connections to the hardware to be designed. The architecture body
consists of a description of the hardw<ue to be designed using either the data :flow or
behavioral description styles available in VHDL. The data fiow style uses concurrent
signal assignment statements to describe the flow of information between memory and
gating elemen ts.

A VHDL description using the behavioral description style consists of process
statements and concurrent procedure calls. Process statements consist of one or more
sequential statements (IF-THEN-ELSE, CASE, FOR loop, WHILE loop, variable
assignment) which specify programs to be implemented in a microarchitecture consisting
of a control unit and a data path.

2. Signa! Declarations and Types

The following VHDL .standard data types are supported:

BIT
BIT_ VECTOR
BOOLEAN
INTEGER

For synthesis purposes, the following special types are defi.ned:

subtype CLOCK i:; BIT
subtype SET is BIT
subtype RESET is BIT

March 1, 1990 Page 17

VHDL signal declarations can occur in two sections of the behavioral description:
within the entity block, where external port connections are declared, an'd within block
stateroents of the architectural body, where internal connections and storage eleroents
are declared. These declarations are of the forro:

{ signal} < signal-naroe> : < rnode> < type>

The < rnode> attribu te identifies the direction in which data fl.ows at a port (IN,
OUT, IN OUT). We will define a signal to be of roo de internal if it is not declared as a
port in the entity portian of the VHDL description but is declared as a local signal
within an architectural body. The < type> is one of the data types defined above.

As these declarations are processed by the Graph Coropiler, entries are roade into
the syrnbol table to record the signal attributes.

3. Entity Block

The entity block is used to define external port connections far the hardware
cornponent to be synthesized. It has the following forro:

entity entity_name is
port (

interface declaration section
)

end entity_name;

4. Architectural Body

The architectural body of the VHDL description has the following forrn:

architecture de.sign_name of entity_name is
declaration section

be gin
concurrent_statement.s

end design_name;

The architectural body may consist of one or more concurrent_statements.
Concurrent stateroents are used to define interconnected blocks that jointly describe the
overall behavior and/ ar structure of a design. The following VHDL concurrent
stateroents are supported:

March 1, 1990 Page 18

1) block statements
2) con curren t signal assignmen ts
3) process statements

4.1. Block Statements

The primary VHDL construct used for the datafl.ow description style is the block
statement. A block statement defines an internal block representing a portian of a
design. It has the following synta.x:

block_statement ::=

block [(guard_expression)]
block_header
block_declarative_part

begin
block_statemen t_part

end block;

block_header ::=
[generic_clause
[generic_map_aspect;]]
[port_clause
[port_map_aspect;]]

block_declarative_part ::=
{ block_declarative_item }

block_statement_part ::=
{ concurrent_statement }

The optional guard_expression defines an implicit signal G U ARD of time
BOOLEAN for simulation. If the guard_expression evaluates to TRUE, all signal
assignments with a guarded qualifier appearing in the block_statement_partwill have
their RHS evaluated, and a driver is placed on the event queue to update the signal
values at the appropriate time. Far synthesis, the guard_expression is used to specify a
synchronous or asynchronous event which results in a signal update.

The block_header explicitly identifies certain values or signals that are to be
imported from the enclosing environment into the block and associated with formal
generics or ports.

lVIarch 1, 1990 Page 19

The block_declarative_part defines all local signals, types and subtypes, constants,
components and attributes.

One or more concurrent statements constitute the block_statement_part. Blocks
may be hierarchically nested to support design decomposition. The block statemen t
groups together other concurrent statements such as signal assignments which assign
values to signals.

4.2. Concurrent Signal Assign:rrents

4.2.1. Conditional Signal .Assign:rrent

The conditional signal assignment can occur in one of the following forms:

a) signal < = < waveform> ;

This is the simplest form of assignment statement where

< waveform> ::= < expression> { after < delay> }

b) signal < = guarded < waveform> ;

The guarded assígnment in vol ves the conditional assignmen t of the evaluated
< waveform> to the signal based on the value of the guard expression which
appears at the beginning of the enclosing VHDL block statement. For the purposes
of CDFG generation and synthesis, a guarded signal assignment is used for signals
declared with the bus or register qualifier.

c) signal < = { guarded }
waveforml when conditionl else
waveform2 when condition2 else

waveformN when conditionN else
waveformN;

This statement corresponds to a nested if arrangement of assignments to the same
signal based on different boolean conditions. The statement can be useful in
representing an assignment to a signal based on prioritized conditions. For
example, the statement

March 1, 1990 Page 20

reg__A < =
'O' after 20 ns when CLEAR = 'O' else
'1' after 20 ns when PRESET = '1' else
DATA after 35 ns;

might be used to represent a register for which the CLEAR is of highest priority,
followed by PRESET and CLOCKed assignment.

4.2.2. Selected Signal Assign:rrent

The format of the selected signa[assignment is as follows:

with < expression> select
signal < = { guarded }

waveforml when choicel
waveform2 when choice2 ,

waveformN when choiceN;

The choices are exclusive conditions (either integer or boolean val u es) su ch that only
the waveform matching the value of the < expression> is eva1uated and scheduled for
assignment to the signal value.

4.3. Process State~nt

The primary VHDL construct used for the behavioral description style is the
process statement. A process statement defines an independent sequential process
representing the behavior of sorne portian of the design. It has the following syntax:

March 1, 1990 Page 21

process_statemen t : :=

process [(sensitivity_list)]
process_declara ti ve_p art

begin
process_statemen t_part

end process;

process_declarative_part : :=

{ process_declarative_item}

process_statement_part ::=
{ sequentiaLstatement}

The execution of a process statement consists of the repetitive execution of its sequence
of sequential statements. After the last statement in the sequence of statements of a
process statement is executed, execution will immediately continue with the nrst
statement in the sequence of statements.

A sensitivity list may be specified far each process. By specifying a sensitivity list
of one or more signals, the process statement is assumed to contain an implicit wait
statement as the last in the sequence of statements. This wait statement will suspend
execution of the process statement until an event (change) occurs in volving one of the
signals in the sensitivity list. The sensitivity list is ignored by the VSS synthesis tool.

The process_declarative_part defines all local signals, variables, types and
subtypes, constants and attributes.

One or more sequential statements comprise the process_statement_part. The
sequential statements which may appear in the description are listed below:

sequential_statement ::=
wait_statemen t

1 signaLassignmen t_statemen t
1 variable_assignmen t_statemen t
1 procedure_call_statement
1 if_statement
1 case_statemen t
l loop_statement
1 next_statement
1 exit_statement
1 return_statemen t
1 nu1Lstatement

lMarch 1, 1990 Page 22

5. Structured Modeling

Structured Modeling is a set of guidelines developed in conjunction with VSS
system implementation for VHDL modeling to support synthesis. The quality of a
design as well as the complexity of the synthesis process are directly related to the style
of description chosen to represent a particular design model. Certain VHDL constructs
or description styles are better suited to describe a particular design model than others.
Because VHDL allows the designer several ways of describing the same functionality, it
is important to set standard modeling practices for designers using VHDL. These
standards should guarantee high quality of synthesized design, while divergence from
the standard will result in simulatable but not optimal design.

5.1. Design Models

Our synthesis system supports four design models: combinational logic, functional
descriptions (involving clocked components such as counters), register transfer (data
path) descriptions, and behavioral (instruction set or processor) designs. These design
models must be described using the structural, dataflow, and behavioral. description
styles provided by VHDL.

5.1.1. Combinational Logic

The design model for combinational logic consists of a network of logic gates. The
most common method used to describe combinational logic designs is boolean equations.
In this model, concurrent evaluation of all signal values is assumed. The VHDL
dataflow model is used for the description of combinational logic. The VHDL after
clause is used only for assignments made to output signals. This delay represents the
maximum allowed delay from any input to the next particular output, and it will be
used as a constraint during synthesis.

5.1.2. Functional Descriptions

The functional design model consists of combinational logic as well as storage
elements (registers, counters). It may include a mixture of synchronous and
asynchronous events for loading storage elements. It cannot be guaranteed that these
ev~nts are mutually exclusive; an asynchronous event such as a register reset can occur
concurrently with a synchronous load of the same register. The functional design can
be described in VHDL using block and process statements. When modeling such a
design, one or more functional blocks can be described with one block or process.
Furthermore, several block statements could be used to describe exclusive functionality

March 1, 1990 Page 23

(synchronous and asynchronous behavior of the same functional block). The guard
expression should contain only typed signals such as the dock signal or an
asynchronous re set/ set.

5.1.3. Register Transfer Designs

Register transfer descriptions involve the specification of operations to be
performed within a processor for each machine state of a design. A common method for
describing this behavior uses a state table. For each state, one or more triplets specify
actions to be performed. Each triplet is composed of a condítíon, a next state
speci:fication, and a set of operatíons. The condition tests a boolean expression. Within
each state, one or more conditions may evaluate to true. The actions corresponding to
each true condition are performed in the state. If the result of the test is true, a
speci:fied set of operations or register transfers is performed. Finally, con trol is
transferred to the speci:fied next state upon completion of the current state operations.

In VHDL, block statements may be used to represent the state table using the
following con ventions:

(1) Every block represents a different state.

(2) The block guard specifies the dock, while the body of the block sets the state
variable to the appropriate next state and performs operations under the desired
conditions.

5.1.4. Behavioral Descriptions

An behavioral description allows the designer to describe the design as a black box
with well de:fined interfaces. Variables within a description can be allocated storage by
default, or the synthesis system can determine which variables require storage. As in
the combinational model, input to output timing is expressed. Algorithmic design is
modeled by VHDL process statements. Signal assignments are used only to represent
output port assignments.

5.2. Modeling Guidelines

The following modeling practices are recommended when using VHDL for synthesis
in the VSS system:

(1) U se the dataflow model for synthesis of combinational logic.

(2) Use an after clause only for assignments made to output sígnals. Thís delay
represents the maximum allowed delay from any input to the next particular

March 1, 1990 Page 24

output, and it will be used as a constraint during synthesis.

(3) One or more functional blocks should be described by one VHDL block statement.
Several block statements could be used to describe exclusive behavior (synchronous
and asynchronous behavior of the same functional block).

(4) The guard expression should contain only signals of type dock, set or reset.

(5) Ali signals should be typed. Signal types in elude dock, reset, set, test, data and
control.

(6) Each state of a register transfer design should be described with block statements
containing condition, next state assignment and ali register transfers with the dock
specified in the guard expression. Alternatively, a single process with a case
statement can be used.

(7) Behavioral designs are modeled by VHDL process statements. Signal assignments
are used to represent output port assignments. Signals may also be used to hold
temporary values (for example, the swapping of register contents) in arder to
model concurrent events within the sequential process.

March 1, 1990 Page 25

pd_input_file ::=

componen t_spec

APPENDIXB
Allocation Speci:fication File Format

1 componen t_spec
pd_input

component_spec ::=
op_class_spec
op_type_spec
bw_spec
op_delay _spec
n um_inst_spec

op_class_spec : :=

op_class: op_class

op_class : :=

REL 1 ADD 1 LOG 1 MULT 1 SHIFT

op_type_spec ::=
op_types : op_type_list

op_type_list ::= op_type
1 op_type, op_type_list

op_type ::=

EQ 1 NEQ 1 LT 1 LEQ 1 GT 1 GEQ
IADDjSUBjORINüTINANDINüRIXüRIMULT
1 DIV 1 sm:.o 1 SHLl 1 SHRO 1 SHRl 1 SHL 1 SHR

bw_spec
bit_ width : unsigned_in teger

op_delay_spec ::=
op_delay : real_n umber

num_inst_spec ::= empty
1 nUlILinst : unsigned_integer

March 1, 1990 Page 26

Example

op_class: ADD
op_types: ADD
bit_width: 8
op_delay: 1.0

op_class: ADD
op_types: ADD, SUB
bit_width: 8
op_delay: 1.0

op_class: MULT
op_types: MUL T
bit_width: 8
op_delay: 1.0

op_class: MULT
op_types: DIV
bit_width: 8
op_delay: 1.0

op_class: LOG
op_types: AND, OR
bit_width: 8
op_delay: 1.0
num_inst: 2

March 1, 1990 Page 27

File Format

dgm_file ::=
main_graph
sub_blocks

main_graph ::=
node_records

sub_blocks ::=
empty
1 sub_block

sub_blocks

sub_block ::=

APPENDIXC
Flowgraph Netlist Specification

sub_block identifier block_id_num
node_records

node_records ::=
node_record
1 node_record

node_records

Node Record Format

node_record ::=
node_info_line
node_in pu ts
node_outputs

node_info_line ::=
* node_num block_id_num num_top_inps num_l_inps num_bot_outps num_r _outps na me

where

block_id_num identifies the type of node as follows:

March 1, 1990 Page 28

1-400 canstants, DF _START, DF _END
401-800 READ.YORT
801-1200 READ_REGISTER
1201-1600 WRITE_PORT
1601-2000 WRITE_REGISTER
2001-2400 CHOOSE_VALUE
2401-2800 aperatar nades
2801-3200 DELA Y nades
3201-3600 READ_SIGNAL
901-1000 WRITE_SIGNAL

Input Record Format

nade_inputs ::=

empty
1 nade_input

nade_inputs

nade_input ::=

3601-4000 SWITCH_BOX
4001-4400 IF _TEST
4401-4800 IF_JOIN
4801-5200 input, output parts
5201-5600 memaries
5601-6000 in verter gate
6001-6400 and gate
6401-6800 ar gate
6801-7200 tri-state
7201-7600 nand gate

input_port_num block_id net_num bit_width net_name

Output Record Forrnat

nade_outputs ::=

empty
1 nade_output

nade_outputs

node_output ::=

net_num block_id num_outputs bit_width net_name dest_list

dest__list ::=

dest_rec
1 dest_rec

dest_list

dest_rec ::=

dest_block_id dest_port_number bit_width

l\1arch 1, 1990 Page 29

Example

* 7 7 1 o 1 O STMT_BLK
12 7 11 1 7-ctrlO
13 7 1 1 7-out13 8 14 1

* 8 8 1 o 1 O BLK_END
14 8 13 1 8-ctrlO
16 8 1 1 8-out16 2 15 1

* 9 9 1 o 1 O CNT_UP
18 9 17 1 9-ctrlO
19 9 1 1 9-out19 10 20 1

* 10 10 1 o 1 O STMT_BLK
20 10 19 1 10-ctrlü
21 10 1 1 10-out21 11 22 1

* 1 1 o o 4 O CF_START
1 1 1 1 1-outl 3 2 1
9 1 1 1 1-out9 6 10 1

17 1 1 1 1-outl 7 9 18 1
25 1 1 1 1-out25 12 26 1

sub_block STMT_BLK 7
* 42 15 O O 1 O DF_BLK_START

42 15 3 1 42-dep_out 403 169 1 3202 175 1 404 176 1
* 40 403 1 O 1 O DATA
169 403 42 1 40-depO
41 403 1 4 40-out 1602 163 4

* 41 1602 1 1 1 O LIM
163 1602 41 4 41-dataO
165 1602 40 1 41-clockl
43 1602 1 1 41-dep_out 16 173 1

sub_block STMT_BLK 10
* 65 3203 1
356 3203 86
65 3203 1

* 73 4005 1
291 4005 79
74 4005 1

* 79 3204 1
358 3204 86
79 3204 2

March 1, 1990

O 1 O EN
1 65-depO

1 65-out 2404 261 1
O 1 O SWITCH_BOX
4 73-dataO

1 73-out 1603 352 1
O 1 O CONSIG
1 79-depO

4 79-out 4006 321 4 4005 291 4

Page 30

blank page.

March 1, 1990 Page xxxi

llli
3 1970 00882 5306

