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Abstract

A field experiment in Yokohama (Japan) reveals that a macroscopic fundamental diagram (MFD) linking space-mean
flow, density and speed exists on a large urban area. The experiment used a combination of fixed detectors and floating
vehicle probes as sensors. It was observed that when the somewhat chaotic scatter-plots of speed vs. density from individ-
ual fixed detectors were aggregated the scatter nearly disappeared and points grouped neatly along a smoothly declining
curve. This evidence suggests, but does not prove, that an MFD exists for the complete network because the fixed detectors
only measure conditions in their proximity, which may not represent the whole network. Therefore, the analysis was
enriched with data from GPS-equipped taxis, which covered the entire network. The new data were filtered to ensure that
only full-taxi trips (i.e., representative of automobile trips) were retained in the sample. The space-mean speeds and den-
sities at different times-of-day were then estimated for the whole study area using relevant parts of the detector and taxi
data sets. These estimates were still found to lie close to a smoothly declining curve with deviations smaller than those of
individual links – and entirely explained by experimental error. The analysis also revealed a fixed relation between the
space-mean flows on the whole network, which are easy to estimate given the existence of an MFD, and the trip completion
rates, which dynamically measure accessibility.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Various theories have been proposed for the past 40 years to describe vehicular traffic movement in cities on
an aggregate level. These works have attempted to predict both the average and the distribution of speed in an
urban area as a function of explanatory variables that characterize the demand and the network infra-
structure.
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Smeed (1966) theorized based on dimensional analysis that the maximum flow that can enter the central
area of a city should be a function of the area of the city, the fraction devoted to roads and the capacity
of the roads, expressed in vehicles per unit time per unit width of road. Although seminal, this work does
not say what happens to speeds and trip completion rates when demand exceeds capacity during a rush hour.

Thomson (1967) found from data collected from streets in central London for many years that there seemed
to be a linear-decreasing relationship between average speed and flow.1 Shortly thereafter, Wardrop (1968) pro-
posed a generic relation between average speed and flow, which depended on average street width and average
intersection spacing, but it still decreased monotonically. Zahavi (1972) analyzed relations for various cities in
United Kingdom and United States by combining data across different regions of a city for the same time period
(one day or peak period), and proposed that speed was inversely related to flow; i.e., still monotonically. Mono-
tonicity only makes sense if traffic is light, since it cannot capture crowded states with very low speeds and flows;
e.g., approaching gridlock. Thus, these models cannot be used to describe the rush hour in a congested city.

A related theory is the two-fluid model in Herman and Prigogine (1979). It asserts that the average speed in
an urban area is a function of the fraction of vehicles that are stopped at any given time. Herman and Ard-
ekani (1984) tested the theory and further proposed that the fraction of stopped vehicles was a power function
of the density. This proposal allowed for a more realistic representation of crowded conditions in the steady
state, but the idea was not sufficiently developed to create a macroscopic model with variable inputs and out-
puts that could describe a rush hour dynamically.

This step was taken in Daganzo (2005, 2007) with a framework that related the rate at which vehicles leave
a network (the trip completion rate) to the number of vehicles in the network (the accumulation). These ref-
erences argued that the relationship should hold in the time-dependent case for homogeneously congested
regions of cities that were called ‘‘neighborhoods”, if external conditions (e.g., the demand) change slowly with
time. With accumulation as a state variable, these paper described the dynamics of the rush hour, the gridlock
phenomenon, and how to improve accessibility by managing accumulation. Geroliminis and Daganzo (2007)
later recast this theory in terms of two postulates: (i) that homogeneously congested ‘‘neighborhoods” exhibit
an MFD relating ‘‘production” (the product of average flow and network length) and ‘‘accumulation” (the
product of density and network length) and (ii) that the trip completion rate is proportional to the production.
This reference demonstrated with numerous micro-simulations of the rush hour in downtown San Francisco
(with very different demand distributions both in time and space) that the MFD indeed exists independently of
the demand, that accumulation can be dynamically predicted, and that perimeter control schemes for improv-
ing accessibility work as expected.

These results were encouraging. They suggest that, conditional on accumulation large networks behave pre-
dictably and independently of their origin–destination tables. If the results hold up to further scrutiny, prac-
titioners will have reliable tools to both, anticipate the results of ‘‘smart” traffic management policies, and plan
accordingly without the uncertainty inherent in today’s forecast-based approaches. This further scrutiny
should include field experiments because simulations invariably include untested assumptions.

As an attempt in this direction, this paper analyzes data from a natural experiment that took place in Yoko-
hama (Japan). Section 2 describes the site and the raw data, which came both from fixed detectors and taxis.
Section 3 shows from the fixed detector data that an MFD exists for the part of the Yokohama network that is
covered by detectors. Section 4 then demonstrates, by fusing taxi and detector data, that a city-wide MFD
likely exists; this section also shows that the important trip completion rate can be predicted from observable
data. Finally, Section 5 discusses the results and suggests directions for further work.
2. Site and data description

Yokohama is a major commercial hub of the Greater Tokyo Area. It developed rapidly as Japan’s prom-
inent port city with a population of 3.6 million. Its road network includes streets of various types, with closely
spaced signalized intersections at its center (100–300 m), and a few elevated freeways. Streets have 2–4 lanes in
each direction. The speed limit is 50 km/h on arterials. Major intersections are centrally controlled by multi-
1 This suggests to us that the streets in the data set were not very congested.
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phase traffic signals with a cycle time that responds to traffic conditions: 110–120 s long at night and 130–140 s
during the day. The part of downtown Yokohama examined in this paper is approximately a 10 km2 triangle
with corners at Yokohama Station, Motomachi-Chukagai Station and the Shin-Hodogaya Interchange. The
center of this region is congested during the weekday’s peaks, with average speeds dipping below 10 km/h.
Data from two different sources, and spanning one month (December 2001), were available:

� Fixed sensors: 500 ultrasonic and loop detectors positioned on arterial lanes about 100 m upstream of most
major intersections in our area provided 5-min vehicle counts and occupancy measurements.
� Mobile sensors: 140 taxis equipped with GPS and a data logger reported their position and other data with

suitable time stamps. Relevant data included activations and deactivations of the parking brake, left blinker
and hazard lights, as well as the beginning and end of all stops lasting more than a few seconds. More
details are given in Sarvi et al. (2003).

Unfortunately, the taxi data were not linked to a digital map of Yokohama, so it was not possible to tell
without a great deal of effort whether or not a taxi had passed over a particular detector at a particular time.
Our analysis was constrained by this limitation.

3. Results from detector data

We now show that the part of our network covered by detectors has an MFD with less scatter than for
individual links, and that the MFD is reproduced under different demand conditions.

3.1. Existence of the MFD

Denote by i and li a road lane segment between intersections and its length; and by qi and oi the flow and
occupancy measured by the corresponding detector in a particular time slice. We use A for the set of lane seg-
ments in our study area, and A’ � A for the subset with detectors. As is well known, the density at a detector
location is ki = oi/s, where s is the space-mean effective vehicle length, which is about s ffi 5.5 m (Kuwahara,
2007). We are interested in patterns in these variables produced by both individual detectors and the complete
collection.

To this end, let us define the following weighted and unweighted averages: qw = Riqili/Rili and qu = Riqi/Ri1
for flow; and ow = kws = Rioili/Rili and ou = kus = Rioi/Ri1 for occupancy and density. Note that the numera-
tor of qw is the production. The unweighted averages are space-means in the sense of Edie (1963) for that dis-
joint part of the network, A’’ � A’, composed of those parts of our lane segments covered by detectors; i.e., the
unweighted averages are representative of A’’. The weighted averages would be space-means for A’ if the
detectors happen to be at representative locations within each link. This should happen automatically for
flows (i.e., for production) on time slices large compared with a traffic cycle because on this time scale link
flows are roughly the same regardless of where they are measured within a link. But obviously, the same is
not necessarily true for density or speed.

Let us look at disaggregated lane data first. Fig. 1a is a scatter-plot of qi vs. oi, for a whole weekday with
time slices Dt = 5 min, greater than the signal cycles, for two different detectors. Note the scatter, especially
when flows are maximal (oi ffi 0.3). This disorder corresponds to a single traffic lane. It persists at the link level,
after aggregating data for the lanes of a single link. The disorder persists because among other reasons queue
lengths and signal phases vary across time slices. But, would it persist if one aggregated data from all the
detectors?

To answer this question data were aggregated for two different days: a weekday (12/14/2001) and a week-
end day (12/16/2001). Fig. 1b and c shows the time-series of average flows and occupancies, qu and ou, that
were observed. Note how at the time of maximum occupancy (around 17:00 h on both weekdays and week
ends) the average flow is sub-maximal on the weekday – but not on the weekend. This indicates severe con-
gestion in the weekday’s afternoon rush hour, but not on the weekend. Note as well that flow and occupancy
varied considerably by time-of-day, on both days. These substantial variations within and across days suggest
that the demand rates and origin–destination (O–D) tables varied considerably during our observations.
Please cite this article in press as: Geroliminis, N., Daganzo, C.F., Existence of urban-scale macroscopic fundamental
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Fig. 1. Loop detector data: (a) flow vs. occupancy pairs for two single detectors across a day; (b) time-series of average flow; (c) time-series
of average occupancy; (d) average flow vs. average occupancy from all the detectors across two different days; (e) average speed vs. average
occupancy; and (f) average flow vs. average speed.
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Fig. 1d,e, and f is scatter plots of pairs of: qu, ku = ou/s and mu = qu/ku. These are the averages representative
of the detector locations A’’ � A’. From the high degree of ordering (compare with Fig. 1a) we conclude that
an MFD exists on the disjoint portion of the network covered by detectors. Plots involving weighted averages
exhibit similar low scatter. Of practical interest are plots involving qw, because qw is the production per unit
length on all of A’. Fig. 2 shows how well qw can be predicted from the detector data alone.

The different symbols in Figs. 1d,f and 2 correspond to the 8 time periods of our study shown in Fig. 1b and
c. Note how each set of symbols describes an MFD that cannot be distinguished from the others despite the
substantial variations in O–D demands across time periods.
Please cite this article in press as: Geroliminis, N., Daganzo, C.F., Existence of urban-scale macroscopic fundamental
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Note as well (see Fig. 1f) that the flow-speed relation is not monotonic as mentioned in the introduction;
that the maximum flow is reached for an average occupancy of 0.3 (Fig. 1d) and an average speed of 13 km/h
(Fig. 1f); and that these markers are consistent across time periods (morning and evening peaks). Further-
more, the hysteresis phenomenon first reported for individual lanes in Treiterer and Myers (1974) is notable
for its absence.2 The consistency of these results indicates that if the trip completion rate in A’ is linearly
related to qw then the perimeter control rule in Daganzo (2007) would increase the accessibility delivered
by A’, just as predicted in that reference. Given Yokohama’s heavy congestion, its residents would benefit sub-
stantially from its application. Therefore, we now examine the relationship between the trip completion rate
and qw.

3.2. Existence of a linear relation between exit flows and network flow

From an accessibility standpoint, including the dynamics of the rush hour, we are interested in the connec-
tion between the unit production qw and the rate at which cars reach their destinations – defined for now as
leaving A’. Cars can leave A’ along the perimeter of the region and also internally, but they are most readily
observed along the perimeter where there are detectors. Accordingly, we shall focus for now on this observed
outbound perimeter flow (veh/h), which we denote D’. This perimeter flow includes a considerable part of the
trip-ends, as we shall see later. So, a connection between D’ and qw would shed some light on the general acces-
sibility question, although it cannot be the final answer.

Fig. 3a shows the time series of D’ and qw for our weekday when the flows are sampled in 5-min intervals.
D’ has been calculated from the detectors located on the periphery of A. They appear to be correlated. Other
weekdays are similar. Fig. 3b confirms this fact; it reveals that the ratio qw/D’ is close to 0.033 in every 5-min
time slice of the day.3

Section 4 below analyzes taxi data to expand the results of this section to A; it will also demonstrate that a
trip completion relation similar to Fig. 3b, but including all trips and not just those exiting in the perimeter,
also holds for A. The findings are important for two reasons: (i) because they establish that the MFD is not a
property of the detectors or their locations – only of the network itself and (ii) because perimeter control can
be more easily applied to A than A’.
2 Daganzo (2002) attributed the hysteresis phenomenon to lane changing and the non-conservative nature of flow in a single lane. The
fact that the hysteresis loop disappears when we aggregate lanes supports this interpretation.

3 Note there is no trend. In fact, the best-fit 5-degree polynomial deviates from the straight line by less than 0.2% (RMS); and the
difference between the two curves is statistically insignificant. The residuals are completely explained by statistical variations in trip lengths
across individual cars.
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4. Results from taxi data

We assume that taxi passengers follow routes through Yokohama’s center similar to those of cars. Then, we
can infer the flow of all cars in A by scaling up the observed flow of all cars in A’ with a factor determined from
the observed flows of passenger-carrying (full) taxis in A and A’. With this scaling method we can also infer
other features of A, such as the trip completion rate, the vehicular accumulation and the space-mean speed.
The key ingredient in these estimation recipes is a set of valid (full) taxi trips. [These trips should be roughly
representative of car trips with respect to average speed since taxi stops that are not due to congestion are fil-
tered, and also with respect to average distance traveled per trip completion since the distance traveled by a car
and a taxi passenger should be similar.4] Section 4.1, describes how this set was identified and Section 4.2 the
estimation results.

It should be reassuring that the full taxi vs. car similarity hypothesis is confirmed by the data set of Section
4.1: Fig. 4 shows the ratios of the outbound vs. inbound flows for full taxis and cars, which vary with time but
remain remarkably close to each other throughout the day.5

4.1. Filtering method for passenger-carrying taxis

Although the events in our data set did not include ‘‘boarding” or ‘‘alighting” moves, the data set included
other information that revealed whether a particular stop (even if it occurred outside A) was a passenger move
in or out of the taxi. From this we identified the valid trips.
4 Car distances could be significantly larger than taxi distances if finding parking requires much extra travel, but this effect is minor in
Yokohama.

5 Significant fluctuations arise but only when the number of full taxis is low (<10), as expected.
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To tag a stop as a passenger move, the taxi had to do one or more of the following: (i) turn on the hazard
lights; (ii) use the parking brake; (iii) turn on the left turn light and stop for at least 45 s;6 or (iv) continuously
exhibit a speed of less than 3 km/h for more than 60 s. Condition (iv) was used to capture stops where the taxi
driver does not activate any safety devices when serving a passenger, while filtering out stops due to traffic
congestion. The 3 km/h limit is commensurate with the granularity of our data.

The path traveled by a taxi between two consecutive passenger moves is a trip. A taxi route is an alternation
of full and empty trips, and the following two-part criterion was used to identify valid (full) trips: (a) the trip
lasts more than 5 min and is longer than 1.5 km; and (b) the trip distance is less than twice the Euclidean dis-
tance between its end points. Condition (a) rules out short trips, which are unlikely to be filled with a passen-
ger, and in any case would not be representative of car trips. Condition (b) disallows circuitous routes, which
for the most part taxis employ only while cruising for passengers.

Only on very rare occasions, as happens in reality, our method identified consecutive full trips. This indi-
cates that the method was effective in censoring out spurious stops. We plotted many taxi routes and the pat-
terns looked realistic. Fig. 5 shows by means of white lines the complete set of taxi routes for one week, which
accurately reproduce the area’s map. The perimeter of A is shown by a dashed line. The figure also shows the
trajectory of taxi-1807 for 3 h. The large symbols A1 to A7 depict passenger moves: black for boarding and
grey for alighting. These points define an alternating sequence of full and empty trips. Smaller symbols have
been used to time-stamp the position of the taxi every 30 s. Note how the distance between consecutive sym-
bols is greater when the taxi is full than when it is not.
4.2. Existence of an MFD in A: estimation results

The filtered taxi data were aggregated into 5-min intervals matching those used in Section 3 with the loop
detectors, and from this information we calculated for each time slice and for all the full taxis: (i) the total
distance d traveled in A; (ii) the total time s spent in A; (iii) their space-mean speed in A, mT = d/s; (iv) their
number in A, nT = s/Dt; (v) the number NT that exited A along its perimeter; and (vi) the number MT that
finished a valid trip inside A. These data were then used to estimate the space-mean speed v and accumulation
n of all cars in A to see if, despite the statistical errors due to the low number of taxis, an MFD as in Fig 1e
appears.
6 People in Yokohama drive on the left side of the streets.
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We use mT as our estimate m̂ for m, since valid taxi trips are assumed to be typical trips; i.e.:
Plea
..., T
m̂ � mT ffi m ð1aÞ
However, if d and s are low (e.g., as occurs at night) the estimate could have a significant error due to insuf-
ficient coverage. To alleviate this problem we aggregated our data and used Dt = 30 min. This ensures that the
coverage of A is reasonable when the number of full taxis in A is on the order of 10 – a value that is consis-
tently exceeded during the day time hours.

The estimation of density is more complicated. First, since the number of lane-km in A is unknown but
fixed we used the accumulation n = kL as a proxy. Thus, an estimate n̂ was constructed as follows: Let
N’ = D’Dt and N’T be the numbers of vehicles and taxis exiting A’ along streets with detectors. The former
is measured by our detectors, and the latter is approximated as a fixed proportion of NT, which is also
observed. We used N’T ffi 0.7NT. Measurements of N’T could not be automatically extracted from the database
because the taxi data were not linked to a digital map of Yokohama; i.e. we had no easy way of knowing on
which particular street the taxis were exiting. The factor ‘‘0.7” was estimated manually, after tracing for a
whole day the routes of 10 taxis on the map of Fig. 5, and determining from this map whether each exit point
belonged either to A’ or A�A’. Fig. 6 displays the result of this effort. Note how the fraction of exits that use
A’ varies little from 0.7. Since full taxis are representative of ordinary vehicles, we expect the ratio n/N’ to
equal on average nT/N’T.Therefore, we can estimate n with n̂, as follows:
n ffi nTN ’=N ’T ffi nTN ’=½0:7N T� � pnT � n̂; ð1bÞ

where p � N’/[0.7NT] is an estimated but observable expansion factor, which approximates the ratio of vehi-
cles vs. full taxis exiting A’ along streets with detectors.
se cite this article in press as: Geroliminis, N., Daganzo, C.F., Existence of urban-scale macroscopic fundamental
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Fig. 7a is a scatter plot of m̂ vs. n̂. Time slices are displayed every 5 min, so there are 12 data points per hour
even though Dt = 30 min. Triangles are used for the morning and circles for the afternoon and evening. Tri-
angles of consecutive time slices are linked by a dark line. The figure clearly shows that the pattern is the same
at all times of the day, without hysteresis, and that the points cluster along an invisible curve; i.e., an MFD
exists in A.

What about the scatter, though? We find that it can be completely explained by the experimental errors
resulting from the low number of taxis. These errors are of three sorts, each corresponding to one of the
approximate equalities in (1a) and (1b). The most severe of these is the first approximate equality of (1b).
Because taxis leave A randomly (approximately as a Poisson process) we estimate that this error is on average
about N ’

�1=2
T when N ’T > 25. Fig. 7b shows the 1- and 2-standard deviation bands arising from this formula on

each side of a fitted curve.7 The bands only apply to those points (shaded circles) with N ’T > 25. The white
squares arise mostly during the night and their higher scatter should be expected both because our approxi-
mation does not hold when N ’T is low, and also because (1a) then introduces significant errors in the vertical
direction.

4.3. Existence of a linear relation between the trip completion rate in A and total production in A

We estimate the trip completion rate D (i.e. the rate at which vehicles depart our network including trips
that end within the study area) by D̂ ¼ pðNT þMTÞ=Dt; i.e., by expanding the rate at which full taxis exit A or
finish a trip within A. The space-mean network flow q cannot be estimated in the same way because we do not
know the total network length L required to express the space-mean flow of full taxis in A, which is d/DtL.
Therefore, instead of q we estimate its proxy, the travel production, P = qL, and focus on the relation between
production and the trip completion rate. Since the full-taxi production in A is d/Dt, we estimate total produc-
tion in A by P̂ ¼ Pd=Dt.

Fig. 8 is a time-series of P̂=D̂ which supports the hypothesis that P̂=D̂ is relatively constant and equal to
about 2.3 km.8 This constant is the average vehicular trip length in A.
7 We took the curve that best fits Fig. 1d, and scaled it horizontally by the factor that resulted in the best agreement, L= 131 lane-km.
This factor, however, is not necessarily the true length of A.

8 Again a 5-degree polynomial does not improve the fit in a statistically significant way, and the best fitted polynomial has an
RMS < 0.1%.
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5. Discussion

The results in this paper show that neighborhoods on the order of 10 km2 in cities like Yokohama, Japan,
should have a well-defined MFD. This MFD can be used to improve accessibility as measured by the city’s trip
completion rate. This can be done with pricing, rationing and/or perimeter control strategies based on neigh-
borhood accumulation and speeds, such as those proposed in Daganzo (2007) and Geroliminis and Daganzo
(2007). Simple versions of these strategies are already being used: e.g., in London, Stockholm and Singapore
(pricing); in Beijing – a test in anticipation of the 2008-Olympiad – and Mexico City (rationing); and in Zurich
(perimeter traffic control). But by knowing the MFD and monitoring the state of traffic continuously, trans-
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portation managers can now see whether their system is in a state that is producing the desired accessibility
levels for all modes and at all times. Therefore, existing strategies can be refined.

The main caveat in the claims of this paper is that, unlike taxi trips, some automobile trips with internal
destinations include a ‘‘looking-for-parking” portion that extends their length, and this extension increases
accumulation. This effect should be minor in our study because 70% of the trips were found to have external
destinations and, surely, a significant portion of internal trips have pre-assigned parking. The looking-for-
parking phenomenon is important from a policy standpoint, however, and is currently being studied.

Also important from a practical standpoint are the methods used to estimate the state of a neighborhood’s
network (its space-mean speed and/or accumulation) which trigger the control policies along its perimeter.
Although many crowded cities that could benefit from these controls do not have a supporting infrastructure
of fixed detectors to monitor their state, these cities often have vehicles equipped with GPS that, like the Yoko-
hama taxis, can serve as city-wide probes. More experimental research is needed to better understand the
quantity and character of the probes necessary for a sufficiently accurate estimation of a neighborhood’s traffic
state. A development effort is also needed to produce middleware that will support these types of control strat-
egies on traffic signals of different types. An effort is underway (Sengupta et al., 2007).

In summary, the results of this paper show that an MFD exists on neighborhood-sized sections of cities
independently of the demand; and that it can be used to control demand to improve accessibility. But acces-
sibility can also be improved by modifying the infrastructure, since the amount of street space allocated to cars
and buses, street closures, flyover construction or new signal timings surely affect a neighborhood’s MFD.
Therefore, we are currently studying how a city’s MFD depends on its infrastructure.
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