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ABSTRACT OF THE DISSERTATION

Improving the Ecological Effect of Datacenter Networking

by

James Robert McGuinness III

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor George Porter, Chair

Datacenter networks are a critical component of computing infrastructure. With recent

calls for reducing the carbon emissions of the globe in order to prevent global warming, it

is necessary to examine datacenters and how they contribute to the amount of carbon in the

atmosphere. I propose how datacenter networks can reduce both the total operational and

embodied energy information and communications technology outputs in order to lower impact

on the environment.

Future datacenter networks based on optical circuit switches use less operational energy

than traditional counterparts. In order to make these a reality, servers must interact with the

network in fundamentally different ways. I examine the systemic needs of servers in three

xv



different optical circuit switched networks and develop several methods of enforcing precision

transmission flow control in software. Using an in-depth study of the accuracy of networking

software for microsecond precision flow control, I observe that networking software alone is only

effective at rates up to 40 Gbps. This implies that hardware support is required to accurately

transmit at the 400 Gbps rates needed in modern datacenter networking.

Datacenters are poised to aid lowering the embodied energy of smartphones as well. The

embodied energy of smartphones are a highly significant contributor to total carbon emissions.

Smartphones are increasingly discarded after shorter periods of time, which raises their impact on

the environment further. To extend the lifetimes of smartphones and reduce their embodied energy,

datacenters can run parts of a phone’s browser application. To see how effective this would be in

practice, I study how university students use smartphones on academic platforms. In particular, I

analyze data from a university’s learning management system and find that smartphones roughly

four years past their manufacturing date become obsolete in academic settings. I discuss how using

datacenter networks for a split-browser solution can reduce the embodied energy of smartphones

in academic settings by providing increased device longevity.

xvi



Chapter 1

Introduction

Digital computing has become an essential component of everyday life in most areas

around the globe. The market for computing servers has continued to grow by approximately

20% year over year [Cor20]. It is inarguable how critical computing infrastructure is to almost

every part of society, from regulating power delivery substations to tracking medical record

information in hospitals. Significant scientific research is conducted worldwide to further the

field of computing and how it can impact and aid humanity.

The trend of increased research, development, and manufacturing of computing devices

has caused an upward trend in their total global energy usage and general environmental impact.

In 2013, Information and Communications Technology (ICT) accounted for 10% of total global

electricity usage, and was projected to grow further [Mil13]. The contribution of smartphone

devices to total greenhouse gas emissions (a critical metric for global warming) was 1.4% in

2007, but is projected to be over 14% of total emissions in 2040 [CAS21].

Until recent decades, this growth of energy usage and environmental impact did not

garner significant attention. A negative environmental trend of rising global average temperatures,

referred to as “global warming”, has resulted in a significant interest in curbing these trends.
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Energy production is cited as one of the major factors for global warming, contributing to two-

thirds of total greenhouse gas emissions [Kha19]. The overall environmental impact of computing

devices also goes beyond electricity, with negative ecological effects resulting from the material

processing, manufacturing, and disposal of computing devices such as smartphones.

A large component of modern computing is the construction of aggregated networks

containing some number of computer servers, known as “datacenter networks”. Datacenters

may contain anywhere from tens to tens of thousands of servers, and are commonly used for a

wide range of tasks, such as running physics simulations [GZKS19] or providing internet search

results [SOA+15]. The number of datacenters and the amount of data they process continues to

grow, with the amount of internet traffic they process roughly doubling every year [SOA+15].

With the massive growth of datacenter networking, the amount of electricity they use has grown

as well; datacenters are projected to consume 13% of total global electricity by 2030 [Sch20].

With datacenter networks being a critical infrastructural component of many modern

technologies, it is imperative to both reduce the carbon footprint of datacenter deployments

while also leveraging datacenters to lower the environmental impact of computing as a whole.

Datacenter technologies are already commonly used to run flexible, offloaded tasks via cloud

computing [MAV17]. Datacenters are poised to holistically reduce the carbon footprint of ICT as

a whole.

In this dissertation, I answer the question: How can new, high performance datacenter

networks can reduce the environmental impact of computing technologies? To do this, I

focus on the two topics mentioned above: looking at how datacenters can be used to reduce the

operational energy and embodied energy of computing. Operational and embodied represent

the two forms of environmental impact computing devices have on the environment, and different

chapters of this dissertation will approach each topic in turn.

2



1.1 A Brief History of Datacenter Networks

Datacenter networking has gone through many iterations over the past century. Original

warehouse-scale computers from the 1940s may be thought of as a kind of “datacenter”, but I will

focus on the history of more modern datacenter designs in this dissertation. Traditional datacenter

networking design focuses on the core problem of connecting large numbers of computer servers

together in order to provide a greater amount of computation power in comparison to what a single

server could provide. These networks provide high speed communications pathways between

servers so that they may exchange and further process inputted data and ultimately provide some

desired complex output. Modern datacenters achieve this typically via single computers connected

together via some network architecture.

In this section, I review the terminology of datacenters as well as describe how datacenter

topologies are constructed using various hardware and software components. I also describe how

modern datacenter architectures relate to the scaling of operational energy.

1.1.1 The Terminology of Datacenter Networks

In this subsection, I will briefly define terminology relevant to datacenter networks that I

use throughout this dissertation. I describe what each term refers to and how it is relevant to a

datacenter network.

Server: A server is an industrial-grade computer that is the base of a datacenter network. The

goal of a datacenter is to connect some number of servers together in order to create a system

that can process and execute software more complex than a single server could alone. Servers

may be composed of a traditional set of hardware components, including a CPU, disk, and

memory, but recent designs may have more non-traditional servers containing different hardware

configurations. A server is also called a node, host/endhost, or endpoint.

3



Gigabits per second (Gbps): This term represents a scale of the rate of information passed

through a network connection. Datacenter networks operate by moving information from one

server to another; the faster this operation takes place, the faster the overall computation becomes.

This is also referred to as the network bitrate or network speed.

Network switches: A “switch” is a hardware component that connects some number of com-

puters together. Switches are not exclusive to datacenters, but switches designed for datacenter

environments typically require higher power and operate at a faster rate. Datacenter networks

are created by connecting switches to a combination of servers and switches. A network switch

contains a number of hardware ports, which are how inputs and output are connected to the

switch.

Network links: A “link” is a connection between two points in the network, typically either

between a switch and some other entity. Links usually are physical cables running some physical

layer protocol to transfer data between the two connected points. Links may run at a variety of

speeds depending on the cable and connected hardware configuration.

Packets: A “packet” is the unit of data that is transferred over network links. Each packet

contains data and some amount of header information to direct information about the packet’s

source, destination, information type, and more. Packets are limited in their maximum size

depending on the network configuration. A sequence of packets between a fixed source and

destination is referred to as a flow, and the collection of packets sent over the network is referred

to as traffic.

1.1.2 Modern Datacenter Topologies

Modern datacenter networks have gone through several design iterations [SOA+15,

AWE19]. While many forms of datacenter architectures exist, most of them are not widely

4



deployed as they have specific benefits and drawbacks that make them less desirable for gen-

eral use [ZZZ+12, CXW+16, CWM+15]. Many of these aim to solve problems that are for

targeted datacenter workloads, such as supercomputer architectures targeted for physics simula-

tions [GZKS19].

One of the vastly popular designs is the FatTree [AFLV08], which implements a type of

datacenter consisting of multiple switching tiers in a pattern fitting to its namesake. Many large

datacenter providers use a tree like architecture similar to a FatTree, often comparing to them

for performance metrics [SOA+15, GMP+16, MDG+20]. These are also sometimes referred to

as “Clos topologies”. A multi-tiered tree datacenter topology is of importance when examining

energy savings- because the tree must scale to support larger numbers of hosts in the datacenter,

these architectures have a superlinear growth of energy required to operate. I will show this effect

in Chapter 2.

1.2 Operational Energy: Better Datacenter Networks

“Operational energy” is energy that is consumed during operation, that is, electricity used

to power and run a device. Operational energy is the more commonly known component of ICT’s

impact on global warming, as it composes the significant energy usage that ICT devices use every

day. Reducing the operational energy of computing devices is critical to eliminate greenhouse

gas emissions that result from high amounts of energy production around the world.

In Chapters 2 and 3, I discuss how to reduce datacenter operational energy via the design

of new, more energy efficient datacenters in the form of optically circuit switched datacenter

networks. I present my findings on the challenges of realizing such designs in practice, particularly

the difficulties of software enforcement of the precise transmission control requirements for these

networks. I conclude with a discussion of the limitations software encounters, and how hardware

is needed to bridge the gap between the shortcomings that software currently encounters.

5



1.2.1 Reducing the Operational Energy of Datacenters

Reduction of the operational energy used by a datacenter can come via creating better

hardware or software. For example, hardware that runs at a higher bitrate for the same energy

cost will reduce the operational energy of a datacenter. Additionally, software that only requires

half the network bitrate to execute the same amount of work will also reduce operational energy.

Both of these point to how operational energy is a function of the amount of energy required to

perform some amount of work. “Reducing” operational energy then, is achieved by doing the

same amount of work for less energy.

Reducing the operational energy of a datacenter becomes more difficult when considering

that new datacenter network designs must not only serve future demands, but simultaneously

reduce the amount of total energy used. Datacenters have become increasingly complex, and

many research efforts have focused on primarily increasing the scale at which datacenters can

functionally operate [FGH+21, ASA+21] in order to serve the increasing demands that are

placed on datacenter networks. With the work required by datacenters roughly doubling every

year [SOA+15], this comes at no surprise, but it makes the task of reducing operational energy

seem difficult.

One way to support new, more energy efficient datacenter designs is to increase the overall

efficiency of the network. Running workloads on datacenters more efficiently means that the same

work is being completed in a shorter period of time, which reduces the overall energy consumed

by a datacenter over time. This is a primary goal on road maps aimed at reducing datacenter

operational energy [All20], and it fits well with other goals to ensure that a new datacenter

network can “meet in the middle” with the scaling requirements for the next-generation. My work

in this dissertation will describe how a new form of datacenter networking can improve network

efficiency.

Other methods of reducing datacenter operational energy come via more efficient indi-
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vidual components, better cooling mechanisms, and power grid profiling. These are beyond the

scope of my dissertation.

1.3 Embodied Energy: Longer Lasting Smartphones

Smartphones are now an everyday device that, while having an operational energy cost

via charging the battery, come with a significant “embodied energy” cost as well. Embodied

energy consists of all of the energy that goes into the construction and disposal of an object, from

the mining and processing of raw materials, to recycling its parts for future use. Embodied energy

is of critical significance because in many cases the full impact of technology on the environment

is not seen by the operational energy alone. In fact, the embodied energy of a computing device

frequently outweighs operational energy [RM11].

Reducing embodied energy means reducing the total amount of impact on the afore-

mentioned construction, manufacturing, and disposal of a device. While efforts to create more

environmentally friendly methods of manufacturing would be beneficial to reducing embodied

energy, an equally direct and impactful method is to simply reduce the amount of work that has

to be done.

This method comes in the form of product lifetime extension. Put simply, using a piece

of equipment for longer means that less new equipment has to be made, reducing the total amount

of global embodied energy used for that class of equipment. This does not directly change the

embodied energy that went into creating that equipment to begin with, but rather reduces the

overall energy and environmental demand by reducing the number of times that the embodied

energy cost is paid.

Recent surveys put the life cycles of smartphones at roughly 20 months [Pan], far below

what would be required to offset the energy cost of manufacturing and assembly of these de-

vices [RM11]. Reducing the embodied energy of smartphones has proven to be a difficult task,
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given their rapid growth as a market [CAS21]. Extending the lifetimes of smartphones to a period

much beyond the current trend would reduce their environmental impact greatly.

Extending the lifetime of a product, particularly computing technology, is a complex task.

Because purchasing habits of consumers are not beholden to a single factor, understanding how to

approach the issue of smartphones in a particular focused environment can be especially helpful

in order to create a more targeted and effective solution.

In Chapter 4, I perform a case study on the short lifespans of smartphone devices in

academic settings, the negative environmental impact this creates, and discuss how datacenter

networks can extend the lifetimes of smartphones to reduce the embodied energy created by the

rapid lifecycles I observe among mobile devices.

1.3.1 “Outdated” Smartphones

Smartphones become outdated for a variety of reasons. Physical hardware failures may

occur, such as batteries no longer holding charge. However, many phones become outdated due to

lack of software support, as new features and software requirements make older devices unable to

run the programs required of them. This is a critical component of why many smartphones become

“obsolete”, as if they cannot fulfill the user’s software requirements, the user is incentivized to

purchase a new smartphone that can.

However, software support is something that can be extended if the proper tools and

platforms are provided. The conclusion of Chapter 4 describes how there are a variety of methods

to support and extend older phones. Unfortunately, it often becomes a function of the phone

manufacturer to provide support in some fashion [Ama21, App21].

1.3.2 Datacenter Networks and Longer-Lived Smartphones for Students

Datacenter networks can aid smartphones by providing a platform to run the software that

the smartphone cannot. There has been research on how to use datacenter networks to support
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mobile devices [MAV17], but these solutions rarely offer a holistic method of providing every

user’s needs. Because it is difficult to target every user simultaneously, focusing on a specific

group becomes necessary.

Smartphones are common in academic settings, where there is an increasingly large

portion of students who use them for everyday academic tasks [Bla18, Ins21]. Providing students

with a method to leverage their smartphones for longer periods of time is not only beneficial for

the environment by reducing embodied energy, but also helps many students who may not have

the budget for a new phone [MSWH16].

1.4 Dissertation Overview

In this dissertation, I study how datacenter networks can reduce their future operational

energy costs at scale while also analyzing their benefit for reducing the embodied energy of

smartphones via product lifetime extension. Each of these topics I discuss in turn in two parts,

with my work around operational energy first and the work on embodied energy second.

To tackle the problem of datacenter operational energy, in Chapter 2 I present a an

alternative, more energy efficient datacenter. The goal of this datacenter is to reduce its total

operational energy usage by making use of optical circuit switches. This design comes with a

number of limitations compared to more typical methods of datacenter networking. The bulk of

my work focuses on how to provide endhost servers with the software traffic control systems

necessary to efficiently interact with this new type of network. I find that despite different methods

of implementing traffic control in software, there are fundamental limitations that prevent endhosts

from being performant at high network speeds.

This motivates my work in Chapter 3, where I analyze the limits of what software may

achieve when sending over an optical circuit switch. I perform an extensive investigation of how

and why traffic control software cannot run over an optical circuit switch at the bitrates modern
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datacenter networks require, and present the limited cases in which software may still be effective.

In Chapter 4 I move towards discussing the embodied energy of smartphones. To provide

datacenters an effective target for extending device lifetimes, my work seeks to understand the

lifecycles of phones in a university setting where they are increasingly required to complete

coursework. By studying a market of users that have little purchasing power but have a great

necessity to purchase a phone, I seek to provide an answer for the maximum software lifetime of

a phone. Because software is required for students to access coursework, the inability to run said

software forces new phone purchases. I find that there is a typical maximum of 4-5 years that

smartphones are operable in academia. This motivates a solution via offloading portions of online

academic applications onto datacenters in order to extend the lifetime of smartphones.
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Chapter 2

Optical Datacenter Networks: More data,

less power

The operational energy of datacenters consumes roughly 1% of the world’s global energy

every day. This has remained constant despite rapid growth in internet traffic over recent

years, which doubled between 2017 and 2019. Despite this growth, the usage of energy within

datacenters has remained at a constant 1% [Kam20].

Modern datacenter designs focus on energy efficiency as a critical requirement, ensuring

that the power draw of datacenters remains low despite datacenter traffic roughly doubling every

year [SOA+15]. In order to continue this trend, future designs of datacenters must continue

to evolve and leverage new technologies that can provide higher networking data rates for less

power.

In this chapter, I discuss my work on optical datacenter networks, which are an evolving

field of active research examining how to leverage an alternative method of constructing switches,

the critical component of datacenter networks. I first discuss a background on optical datacenter

networks and present the design of the two optical circuit switches (OCSes) I use in my research.
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I follow with a comparison between the energy usage of possible datacenter architectures that use

these OCSes, and the energy usage of equivalently performant traditional datacenter networks. I

then discuss the systems challenges that come with using OCSes in practice, and the results of a

variety of programming methods to solve these challenges.

In particular, I focus on time division multiple access (TDMA) networking, a method

of implementing transmission control on endhosts for circuit switched networks. Running an

accurate TDMA schedule accurately is essential to using the aforementioned optical circuit

switched networks effectively and maximize their operational energy savings. Because endhosts

do not have a readily available mechanisms for implementing TDMA, my work focuses on three

different methods of doing so: kernel-based, kernel-bypass, and remote direct memory access

(RDMA). Overall, I find that while there are circumstances where each mechanism functions

adequately, there are notable drawbacks that prevent them from categorically functioning in a

general manner.

2.1 An Introduction to Optical Datacenters

Optically-switched networks consist of one or more OCSes as the primary backbone

method of transport. These networks are traditionally referred to as “circuit-switched” due to

the nature of how information is exchanged and routed between links in the network itself. This

is in contrast to with packet-switched networks, which is the vastly more common method of

computer networking.

Circuit-switched networks are an increasingly popular topic of research. While both

wide-area and local communications have traditionally used or leveraged parts of circuit-switched

networks, modern datacenter networks are generally solely based on silicon-based electronic

packet switches. Large datacenter operators such as Google and Facebook follow this pat-

tern [SOA+15, RZB+15a], and have generally focused on improving their packet-switched
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Figure 2.1: A standard crossbar-based packet switch uses an internal scheduling algorithm to
dynamically reconfigure the crossbar to service demand.

architecture due to cost-efficiency [AWE19].

2.1.1 What is circuit switching?

The primary difference between a circuit-switched network and a packet-switched network

is the nature of the switch itself. The latter is far more common and follows the traditional and

common concept of a switch, where every packet entering the switch from any port can be routed

out of any of the other ports at any point in time; the switch operates per-packet. The former

instead operates per-circuit; the available connections between two ports change over time, and

all possible pairwise connections (a full crossbar) may not be available on a per-packet basis.

Further, circuit-switches often do not have a method of storing or buffering data that is transmitted

to them, meaning they cannot “hold on” to information to be sent at a later time when the correct

connection pattern is available. A common example of a circuit switch is a MEMS-based optical

switch [FPR+10], which rotates an array of micromirrors to create a bipartite graph over the

connected ports.

Datacenter networks frequently critically rely on the full-crossbar connectivity of silicon

packet switches. Additionally, silicon packet switches can “buffer” packets, holding on to
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Figure 2.2: A strawman circuit switch design. When the scheduler detects a change in demand,
its scheduling algorithm changes the mapping of input ports to output ports by replacing the M2
matching with M4.
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them to transmit at a later time if the switch is overloaded with traffic at the time the packet

arrives. Datacenters depend on switches to make smart buffering and routing decisions to use

the complex set of available paths efficiently [KHK+16, AFRR+10, AKE+12]. Datacenters may

also rely on several other key features of these switches, such as multicast and quality of service

enforcement [GSG+15].

None of these features are present in a circuit switch. Alternative methods must be

used to realize the objectives that the above features achieve for datacenter traffic control. This is

the primary problem in developing circuit switched networks, and research frequently attempts to

solve this problem in a variety of ways [GMP+16, LLF+14]

An example of how a standard full-crossbar packet-switch connects to its input and

output ports can be seen in Figure 2.1. Circuit switches typically employ a matching scheme.

A matching over N ports consists of a single, fixed pattern of N input connections to output

connections that is active over some continuous time. A packet switch with N input/output ports

can be thought of as having all possible N! matchings available at any given time. A simple

strawman circuit switch with four available matching patterns can be seen in Figure 2.2.

Including every possible one of the N! matchings in a circuit switch is possible, but results

in a large reconfiguration delay [FPR+10]. A reconfiguration delay represents a period during

which no data may be sent through the switch, as it is changing from one matching to another.

Higher reconfiguration delays decrease net datacenter energy efficiency. Thus circuit switches

incur a tradeoff: more connection patterns can enable a better connected network, but this comes

at a cost of higher delays when changing that network.

Previous proposals for circuit-switched datacenter networks make several sacrifices

in order to achieve their goal of a high-throughput, cost-effective, and long-term solution

for high-bandwidth datacenters. Some of the common drawbacks include complex control

planes [CSS+12], limited routing flexibility [WAK+10], and increased packet latency [MMR+17].

Several proposals suggest a hybrid approach, where a traditional packet-switched network sits
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alongside a circuit-switched network, and network traffic traverses the network that best suits its

needs [LLF+14, FPR+10, KPB09]. It is partly for this reason that I examine the need for a more

efficient circuit switched network.

Circuit switching has significant benefits in the form of bandwidth efficiency for lower

energy costs. Because circuit switches do not use silicon based hardware to route inputs to

outputs, the amount of data they can process relative to their energy usage is much greater than in

packet switches.

2.1.2 The Benefits and Limitations of Packet Switching

Despite research interest in circuit switching, packet switching has continued to dominate

the market. Large datacenter operators have all relied upon scaling out packet-switched net-

work fabrics to meet their ever-increasing bandwidth requirements [AFLV08, Fac14, GHJ+09a,

SOA+15]. Google’s 2015 data-center network design delivers 1.3 Pbps of cross-network band-

width to hundreds of thousands of servers [SOA+15]. Since their deployment in the mid-2000s,

packet-switched networks have leveraged the steadily increasing performance and decreasing

cost of merchant switching silicon to keep pace with demand.

However, future high-speed electrical switches are projected to become prohibitively

costly [LLF+14, FPR+10]. Merchant silicon chips used in packet switches face the same scaling

limitations that currently hamper CPU manufacturers [Tay12]. Recent studies suggest [VSG+10]

that switch chips have at most two more Moore’s Law generations, culminating in the present

decade in devices that can support link rates approaching 100 Gbps.

To continue supporting higher link speeds, future packet switch designs will require

ganging multiple ports together. Switches like the Broadcom Tomahawk already implement

100 Gbps Ethernet by ganging together four 25 Gbps ports [Bro]: a 128-port 25 Gbps per

port switch becomes a 32-port 100 Gbps switch. Such an approach dramatically impacts the

feasibility of large network fabrics whose energy cost scales according to the square of the switch
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radix [FWJ+13].

The future of packet switches thus will inevitably become inefficient in both energy usage

and overall cost, which strongly motivates the need to find another solution. Newer architectures

have made clever decisions to allow for these limitations in the short term [AWE19], but ultimately

circuit switched datacenter networks are an extremely attractive solution to solve these challenges

for reasons I will show in this chapter.

2.1.3 The Energy Savings of Circuit Switching

To show that circuit switched networks use energy more efficiently than packet switched

networks, I compare the raw operational energy used by the networking hardware for both types

of networking. In order to make this comparison, I first must establish the target packet switched

datacenter network for comparison. A Fat Tree network [AFLV08] is a reasonable target, and is

commonly used at large datacenter operators such as Google [SOA+15]. I compare against both

a 1:1 oversubscription ratio (the optimal, but expensive) and a 3:1 oversubscription ratio (less

efficient, but is used in practice [SOA+15]).

Second, I need circuit switched networks to compare against. Here, I use the types of

optical networks I discuss in this chapter. These three networks represent the evolution of my

work on optical datacenter networking, and how I and others in my research group approach

different challenges that occur when creating networks that used OCSes. Each of these will be

discussed in more detail in the following sections of this chapter.

For each network, I vary the number of nodes (servers) as the only independent variable.

I assume that every node is connected with a 100 Gbps link. This allows me to compute the

required number of top-of-rack (ToR) switches, and then the number of intermediate and core

switches required to connect the ToR switches together, and thus the total power draw of the

network. I do not include the energy cost of the nodes/servers in my calculation. The reason for

this is that all network types will use the same amount of power on each node, so it is moot to
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Table 2.1: Energy usage of two OCSes and two packet switches.

Switch Model Watts Used
Optical Selector Switch v1 2.7 W
Optical Selector Switch v2 27.6 W
Barefoot Wedge 100BF-65X 276.9 W
Mellanox SN2700 90.5 W

include this in my result.

To aid in this, I conduct an independent measurement of the power draw of each switch

used in this comparison. I use a Chroma 66204 Multi-Channel Digital Power Meter and directly

connected the power supplies of each switch to examine how many Watts it uses in operation. No

difference in power draw is observed between an idle switch and a switch under traffic load.

The two 64-port optical switches are used in the three optical networks mentioned, and

will be described more in future sections. The power draw of the first version of the optical switch

used in SelectorNet (Section 2.4) and RotorNet (Section 2.5) is roughly 2.7 Watts. The power

draw of the second version of the optical switch used in Opera (Section 2.6) is approximately

27.6 Watts. An optimal version of the second optical switch would use approximately 10 Watts,

and I include a projection of this case as well.

For the packet switched Fat Tree networks, I use measurements from two different 100

Gbps packet switches: a 64-port Barefoot Wedge 100BF-65X packet switch, and a 32-port

Mellanox SN2700 packet switch. These are fairly modern packet switches, with the former

containing features becoming increasingly used in datacenter networks [BDG+14]. I find that the

64-port Barefoot switch draws about 276.9 Watts, and the 32-port Mellanox switch draws about

90.5 Watts. These values are outlined in Table 2.1.

The projected energy usage of the aforementioned datacenter architectures is shown in in

Figure 2.3. I only plot a 3:1 FatTree up to 24576 nodes, as scaling the network past this results in

hundreds of thousands of nodes, which is not a viable comparison for the other networks given

the switches I measure against.
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Figure 2.3: Datacenter energy usage based on observed power usage of electrical and optical
switches. Energy for servers/nodes is not included.

The immediate observation is that FatTrees are roughly as efficient as optical networks

when using thousands of nodes. This is due to the significant operational energy of the ToR

switches, which dominate the network’s power utilization along most of the graph. However,

once tens of thousands of nodes are required, FatTrees draw a vastly greater amount of power

due to the higher number of intermediate and core layer switches used to support them. Optical

networks only scale up with the number of ToRs, with the very minimal energy impact of the

optical switches not causing any additional significant power requirements.

While using a 3:1 FatTree may look like a good solution, this limits the bandwidth of the

network to only one-third of the bandwidth found in a 1:1 FatTree, delaying computation on many
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jobs and reducing overall efficiency (and thus increasing energy usage, as described below in

Section 2.1.3). Indeed, Google’s 2015 datacenter architecture is a Clos datacenter design, similar

to a FatTree, that uses a 1:1 oversubscription ratio [SOA+15]. Additionally, said network uses

more energy than a standard 1:1 FatTree, with the 65536 node version presented in their work

using about 1559.67 kW if it used the 64-port Barefoot switch mentioned above.

Operational energy and workload efficiency

In the previous section, I only compare the operational energy of the networking hardware

at a single point in time. Despite this, network efficiency is still an important metric. If a circuit

switched network is not as efficient at delivering data as its packet switched counterpart, the

energy savings may go to waste as more time is needed to complete software jobs, consuming

more energy.

This is the core reason that the optical networks above have evolved over time. As I

describe each network in this chapter, I note that the design decisions made are done so to

increase the operational efficiency of the optical datacenter network, rather than the raw energy

consumption; the latest iteration, Opera, uses slightly more energy to gain significant benefits in

workload efficiency.

2.2 The Challenges of Circuit Switched Networking

Circuit switched networking comes with significant challenges due to its fundamental

characteristics. The core reality of not having all paths available between two endpoints and

not being able to buffer packets creates design challenges not traditionally seen in standard,

packet switched datacenter networks. Endhosts typically rely on buffering and path availability in

switches so that they may send packets at any time. The critical question is how to balance the

drawbacks of circuit-switching while leveraging its benefits to achieve maximum network
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performance.

There are two primary challenges in solving this question that drive the work I will present

in this chapter: when to send the data, and where to send the data. These two questions have

immediate, obvious answers, but implementing them in practice creates issues that I will discuss

at length.

2.2.1 When to send the data

Data cannot be sent at all times inside of a circuit switched network; inputs cannot go to

every output, and circuit switches cannot store and buffer traffic like packet switches can. Circuit

switches typically have an uptime and a downtime, with the former representing when data may

be sent through the switch to a destination, and the latter being the period when a switch cannot

accept data while it changes the connection pattern.

Sending traffic to a circuit switch during its downtime results in the data being lost.

Senders must know the difference between downtimes and uptimes and send data at precise

intervals through the switch to use the network properly. Enforcing this is a significant challenge

for traditional datacenter switches and servers. Electrical, packet switched networking assumes

an always available framework, so hardware is not designed with precise transmission control in

mind.

This means that when traffic is sent by an endhost, the actual packet often leaves the

endhost far later than was originally intended. There are two components to this delay. The first

is a fixed, minimum value that cannot be avoided as data moves through the system and onto

the wire when finally sent. This value can be measured and compensated for; simply sending all

traffic early to compensate for this will solve the issue. I refer to this as a preallocation delay.

The second part of the delay is far more impactful and difficult to solve. Software and

hardware has not been designed with real time, fast optical transmission in mind, which creates a

random amount of additional delay that occurs when sending data over a network. This means

21



Packets in 
network

Downtime (Network down)Uptime (Network up) Uptime (Network up)

Data enqueued at host Data enqueued at host

- Preallocation Delay
- Guard 

Time

Figure 2.4: How transmission delays affect the time between sending from a host and when they
appear on the wire in a TDMA setting. Transmission delay and guard time must be accounted
for to avoid downtime transmissions.

that when data is sent close to the beginning of a switch’s downtime, it can randomly instead

be sent during the downtime instead, resulting in data loss and inefficiency. To protect against

this, hosts have to stop sending traffic early so that there is zero probability data is sent during a

downtime. I refer to this as the guard time of an optical network.

Figure 2.4 shows how an optical switch moves between periods of uptime and downtime,

and how preallocation delay and guard time are accounted for in the endhost when transmit-

ting data over the network. In my work, I always observe guard time to be smaller than the

reconfiguration delay.

Guard times are the most impactful aspect of an optical network as they “remove” time

during which data can be sent. Reducing the guard time required at an endhost means the endhost

can send more data during the uptime of the switch, increasing network efficiency. Note that the

guard time and preallocation delay values are independent of any aspect of the optical switch

itself; they are purely a function of the hardware components in the endhost.

2.2.2 Where to send the data

When active, circuit switches only have one fixed connection pattern available. Unfortu-

nately, even when endhost traffic patterns have some predictability, there is still plenty of data that
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needs to be sent across the network at unpredictable times [RZB+15a]. Any datacenter network

must ensure there are opportunities available for endhosts to send arbitrary traffic to its final

destination.

One option to solve this in a circuit-switched network with limited connectivity is cut-

through indirection. This has an endhost send data to a connected intermediate endhost, and

the intermediate then forwards it to its final destination. Indirection allows for achieving full

connectivity when direct paths are not available, making it a strong solution. However, it is

not foolproof- redirecting traffic through an intermediate host uses extra bandwidth, called a

bandwidth tax. By using multiple connections for a single packet, it is “taxing” the network by

transmitting the packet multiple times.

Thus, it is even more effective to ensure that a direct path between a source and destination

in the network is available within a reasonable period of time. To do this, the switch can be

reconfigured more often: if the switch moves between states more frequently, the maximum

amount of time an endhost will have to wait until a direct path is available will be lower.

However, the uptime of a circuit switch cannot be arbitrarily low; otherwise the switch

spends most of its time reconfiguring. The ratio of the time the switch is up versus down is called

the duty cycle of the optical network. In Figure 2.4, I have shown a duty cycle of 50%: the

network is up half of the time, and down the other half of the time. The duty cycle of the network

is directly tied to bandwidth- a 50% duty cycle means that the network can only send at 50% of

its link rate over time, as half of the time the network cannot send traffic at all. Increasing the

duty cycle means that there is more time that the network can send traffic, but direct paths will

change less frequently.

2.2.3 When and Where: The Benefit of Low Cycle Times

Combining the two problems of when and where create the challenge my work investi-

gates: How can the network have a low duty cycle while also achieving maximum network
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effectiveness? The biggest impact I quickly observed was that when reducing the duty cycle of

the network to increase path availability (and reducing the bandwidth tax), the guard time would

significantly reduce the efficiency of the network further.

The ratio of the guard time over the configured uptime of the switch represents the overall

maximum amount of time the network can operate. I will refer to this as uptime efficiency

in the future; the higher the uptime efficiency, the more effectively the network is being used.

For example, if the guard time of an endhost is 100µs and the uptime is configured to be 1ms,

then there is a (1000µs−100µs)/1000µs = 90% uptime efficiency in the network. Getting this

value as close to 100% as possible will ensure that a circuit switched network can be used to its

maximum effectiveness.

The core issue that I will describe in this chapter is how to reduce the guard time at an

endhost. This is an incredibly complex issue that is a function of how datacenter software and

hardware has been designed for decades. There are a variety of technologies that can enable

endhost software to interact more closely with network hardware, and these technologies are the

focus of my work in this chapter.

2.3 Selector Switches: An Optical, Circuit-Switched

Network

As discussed above, fundamental technological limits on merchant silicon will constrain

future designs of silicon-based, packet-switched datacenters. Servers are already utilizing link

rates of up to 400 Gbps [AWE19], and I show in Section 2.1.3 that scaling packet-switched

datacenters with even 100 Gbps switch chips is energy inefficient. This scaling barrier will derail

the decade-long cost-effectiveness trend of existing packet-switched topologies, forcing operators

to consider alternative designs. While hybrid optical/electrical topologies have been proposed to

bypass the limitations of packet based switching, existing approaches cannot scale to large host
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counts and next-generation link rates due to the complexity of circuit scheduling and the need for

costly optical amplification.

In this section I present a new form of optical switching in the form of selector switches.

Selector switches use a limited number of matchings in order to achieve more rapid switching

speeds and reduce downtime, thus increasing uptime efficiency in the network. They also scale

with a large number of endhosts without additional energy costs, unlike packet switches. However,

they come with drawbacks, such as not being able to store or buffer packet information, a critical

feature in packet switched networks.

These selector switches are leveraged to create new alternative circuit switched topologies

throughout this chapter. Each topology is an iteration on the last, though each uses a selector

switch with the same properties. The first two topologies, SelectorNet and RotorNet, employ a

real physical prototype switch created by Max Mellette. Opera, the final topology, uses a virtual

selector switch created by Rajdeep Das as multiple real prototypes were not available for use. I

begin by describing SelectorNet here, and describe changes in the topology construction in future

sections as necessary.

2.3.1 SelectorNet’s Design

SelectorNet is designed from the ground up to limit scheduling complexity and simplify

the optical components. SelectorNet fully connects datacenters with a new type of optical device

that abandons the crossbar abstraction: instead, it relies on indirection to deliver packets between

hosts that are not directly connected by novel selector switches. The result is a network fabric

that is not only cost-competitive with packet-switched designs, but continues to scale as link rates

surpass 400 Gbps.

The SelectorNet architecture scales to hundreds of thousands of nodes. The optical

switching devices can be scheduled independently and implemented entirely passively, making

them both link-rate agnostic and compatible with commodity optical interconnects. The key
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Figure 2.5: A selector switch forwards traffic from each of its input ports to one of k internal
matchings, mapping traffic to destination ports at different powers-of-two distances away.

insight in this first iteration is that production datacenter networks are commonly over-subscribed:

they do not deliver full bisection bandwidth. Unlike previous architectures, SelectorNet leverages

this fact to construct a different type of network that may require packets to traverse the fabric

multiple times via cut-through indirection, yet still fully connects all the servers in the datacenter.

2.3.2 Selector Switches and the Bandwidth Tax

The design of the selector switch is inspired by the Chord [SMK+01] overlay network.

It employs the same idea by having log2 N matchings in every selector switch. In Chord, paths

are constructed by indirecting traffic over multi-hop routes in the Chord ring. Every node has a

one-hop path to its successor node, which is its neighbor in the ring. To avoid long O(N) paths,

each node further maintains a logarithmic number of paths to nodes spaced at factors of two away

from it in the ring. In this way, data can be forwarded to any node in at most log2 N hops.

The physical design of the selector switch used in this work is based on a microelectrome-

chanical systems (MEMS) tilt mirror switching to select between four matchings. The selector

mirror is controlled by a Xilinx Spartan 6 FPGA on a Digilent Atlys board. The FPGA drives

the mirror with precomputed drive waveforms through a DAC and high-voltage amplifier board.

The only power draw of the design is from the motor used to move the MEMS mirror and the

FPGA, which is why this first version of an optical switch uses so little power as presented in
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Section 2.1.3. The selector switch I use was designed and constructed by Mellette and Ford, et.

al [MSP+17].

Figure 2.5 shows the design of the 16-port selector switch I use in this work, containing

log2 16= 4 internal matchings. Output port i of each of the matchings is connected to a multiplexer

which is in turn connected to the i-th output port on the front panel of the selector switch. The

four matchings each realize a mapping of input ports to output ports spaced at logarithmic offsets,

similar to the Chord ring. I denote these matchings as the +1, +2, +4, and +8 matchings. As the

prototype device is optical, the i-th input port on the front panel connects to the MEMS mirror,

which forwards the signal to only one of the internal matchings.

Restoring full connectivity

Unless a given input/output port mapping has an exact match within one of the log2 N

matchings, that mapping requires multiple passes through the selector switch. At each pass, data

is buffered in the (external) device connected to the output port, which then reinjects it into the

switch after a new matching is installed so it can continue to its next hop. Consider two example

port mappings:

0→ 4: The host wishes to send data from input port 0 to output port 4. Since the output port is

an even power-of-two distance away (22 = 4), the selector switch is configured to connect input

port 0 to the +4 matching, resulting in the one-hop path {0→ 4}.

0→ 6: None of the four matchings implement a one-hop path from input port 0 to output port

6, and so the host must rely on indirection. There are several equivalent options that can all

affect the same end-to-end mapping. One is to first configure the selector switch to connect input

port 0 to the +4 matching, mapping it to output port 4. Subsequently, the selector switch would

connect port 4 to the +2 matching, mapping data to output port 6. The result is the two-hop path

{0→ 4→ 6}.
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The bandwidth tax

Depending on a packet’s destination, it may need to transit the selector switch multi-

ple times. The number of hops through the selector switch depends on the particular source-

destination pair, and is no greater than log2 N. A multi-hop flow that transits the selector switch l

times requires l× more bandwidth than a one-hop flow. Thus, the bandwidth tax of the packet on

the network is l. The overall average path length across all flows as the selector switch’s total

bandwidth tax, which depends on the particular workload being served. With a workload evenly

distributed among all node pairs, the average path length (and thus bandwidth tax) is 1
2 log2 N.

A SelectorNet datacenter network

Figure 2.6 shows an example of how a SelectorNet datacenter architecture could be

constructed. The design shown supports a total of 32,768 servers, and can scale to work with 100

Gbps or 400 Gbps links depending on the ToR switches used (in Section 2.3, the 64 port ToRs are

able to split the 100 Gbps links eight ways).

The network consists of “super racks” of 128 servers each, which allows each rack to

have eight total ToR switches that, in turn, each connect to eight separate selector switches. This

increases path availability as there are now a large number of possible selector switches for each

server to choose from, which better supports both large and small flows of traffic simultaneously

to increase network efficiency. Each ToR uses half of its ports to connect to servers, and the other

half to connect to optical switches.

The total number of racks supported is limited by the maximum port count of a selector

switch. While selector switches can scale to extremely large port counts [MSP+17], SelectorNet

uses 256 port switches in order to allow for a reasonable number of matchings in each switch

while achieving full network connectivity and supporting a high level of fault tolerance.
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Figure 2.6: A SelectorNet datacenter architecture, using 128-server super racks. Each server’s
Ethernet links are divided into eight 50 Gbps lanes, divided between 8 ToRs within the super
rack. Each ToR has eight fibers that connect to 8 distinct selector switches. These fibers are
repeated for each of the 8 ToRs for a total of 64 fiber pairs leaving each super rack. Each selector
switch has 256 ports (one per super rack).

2.4 Kernel-Based Programming: SelectorNet

Now that I have covered the construction of a SelectorNet topology, I will describe my

work in how to promote high efficiency and maximize the benefits of employing the SelectorNet

architecture. My work focuses on the endhosts in the network, and how they must interact with a

circuit switched topology like SelectorNet

Endhosts in packet switched architectures are able to “fire and forget” packet data into the
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network, as packet switches are able to buffer and store packets if they cannot be immediately sent

to a destination. However, since selector switches cannot store packet information, endhosts now

have to be discretely aware of when and where to send data through the network. Programming

endhosts in a scalable, accurate fashion becomes paramount to use the SelectorNet architecture.

This is done by providing scheduling information to endhosts, which I describe in this section.

After creating a schedule, the endhosts still need to enforce it and reduce the guard

time incurred in the network. The second step I present in this section is the implementation

of a microsecond scale precision transmission protocol via a module in the server’s operating

system kernel, which gives me more direct access to the networking hardware without incurring

additional variable delays.

Finally, I create a testbed setup using a real selector switch and see how effective a

kernel-based networking approach is for providing accurate and fast transmissions speeds over a

circuit switched network. I find that there is a modicum of guard delay required at a moderately

low networking speed of 10 Gbps.

2.4.1 Circuit switching through TDMA

To support SelectorNet, endhosts need to answer the questions outlined in Section 2.2:

when will the switch be active, and where will data sent through the switch go? To store this

information, it is useful to create an abstraction that can accurately convey this information to the

endhost’s networking stack so it can use the network appropriately.

I have found that using a style of network programming called “time division multiple

access” (TDMA) networking [VPVS12] is suitable for this. TDMA networking is traditionally

used in other types of physical computer networks, particularly for wireless and radio connections,

to divide up when and where the network may be used, and also by whom; however, it has been

used in packet-switched datacenter networks as well [POB+14]. In this case, the extra question

of “whom” provides an additional benefit to abstract how I view indirected traffic. TDMA slots
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can say which traffic source will be using a specific network link in the case of multi-hop paths.

TDMA networks encode this information by using a series of time slots that contain the

start and stop times for the slot and the source and destination for the traffic. The method of how

time slots are communicated to an endhost may vary. For SelectorNet, I develop using fixed,

predefined cycles of time slots and a control host that gathers traffic information to dynamically

send time slot information.

2.4.2 Implementing TDMA in the Endhost Kernel

Now that TDMA networking can be implemented by encoding timeslot information at the

endhost via a predefined configuration, it is now necessary to enforce the correct transmissions to

occur during each timeslot. The most critical component is ensuring that packets are transmitted

with maximum accuracy relative to the timeslot and that only the designated packets are sent.

Because endhosts must implement cut-through indirection, they cannot simply send any data they

want during the slot.

For SelectorNet, I first implement TDMA scheduling at the hosts through a custom Linux

queuing discipline (qdisc) that runs in the operating system kernel. The TDMA qdisc enqueues

all traffic to a network interface into queues according to the destination of the packet. It then

sends packets in a given queue to the NIC according to a provided schedule of timeslots. Each

timeslot consists of the starting and ending times when the switch will employ a given matching.

The qdisc emits only as many packets as can be sent during a timeslot without extending into

the switch downtime period (where they would be lost). During a single timeslot, the qdisc may

emit packets destined for multiple destinations, expecting that the connected destination will in

turn indirect any packets that need to traverse multi-hop paths. To simplify scheduling, the qdisc

always gives priority to traffic that did not originate at that host over locally generated traffic to

the same destination.

The qdisc sends traffic using the lowest level kernel interface possible, directly calling a
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function just above the network interface card (NIC) driver. I additionally modify the NIC driver

to not reset the networking stack when it detects that the link is no longer available (a frequent

occurrence, as the selector switch moves between up and down states constantly). Packets are

enqueued individually in order to ensure that any delays can be detected and accounted for.

2.4.3 Kernel-level Guard Time and Preallocation Delay

The first step to configuring the kernel-level qdisc is to input the correct amount of guard

and preallocation delay, so that the basic transmission schedule becomes accurate relative to the

physical network link. Determining the appropriate guard time and preallocation delay for an

endhost can be done in a variety of ways.

I present two separate methods used to determine the appropriate values for these parame-

ters in SelectorNet. Both methods ultimately allow for characterizing how endhosts interact with

the optical network, but one is more accurate than the other and provides additional insight into

the random nature of endhost delays.

These methods are tested against the kernel-level qdisc described above. This method of

transmission is the only method used in the SelectorNet project. Other methods of transmission

will be presented in future subsections in this chapter for different circuit switched networks.

Guess and Check: Binary Search: It is possible to simply determine the correct value of

preallocation delay and guard time by using a binary search. The preallocation delay can be

initially determined by inspecting whether or not an endhost receives packets that were scheduled

at the beginning of a timeslot; if not, then the preallocation delay is too small. If the preallocation

delay is sufficient, then all packets at the beginning of the slot will arrive. Using this method, I

am able to determine the correct preallocation delay within ±25µs.
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Figure 2.7: A diagram showing how an FPGA timestamping method is used to determine
the time packets are actually transmitted on the wire from a server. The FPGA has a separate
internal clock from the servers, which is why PTP packets are required to compute the delta
between the FPGA clock and the servers’ clocks.
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Timestamped Packet Capture: The more accurate method of measuring packets is to use an

intermediate capture board on the wire with timestamping capabilities. For this, I use a Xilinx

Virtex-6 FPGA board that timestamps a copy of every packet sent through it by encapsulating

them with a generic routing encapsulation (GRE) header. These copies are then sent to a separate

server that records them for later analysis. This FPGA code was developed by Alex Forencich.

Figure 2.7 shows a simplified overview of how endhosts connect to the FPGA in this system.

However, the FPGA clock is not in sync with the endhost clocks. To solve this, I send

PTP packets through the FPGA and receive copies of those as well. All packets are copied in the

order the FPGA sees them, regardless of the original input port. From this, I can determine the

time that the endhost sent a packet relative to its own internal clock. Thus, I am able to determine

the time between a packet being enqueued at the host and when it was actually sent, which allows

me to easily compute preallocation delay and guard time.

To determine the time a single data packet p began transmitting on the wire, I also need

PTP packets sa and sb. Let sa to be the last PTP packet seen before p in the packet capture,

and sb to be the first packet seen after p in the packet capture. All times and timestamps are in

nanoseconds. I define the following variables:

• pb: The data size of p, in bytes.

• ps: The time the packet p began transmitting, based on the sender’s clock.

• p f : The timestamp that the FPGA puts on the packet.

• sbh: The host’s timestamp of the PTP packet last seen before p.

• sah: The host’s timestamp of the PTP packet first seen after p.

• sb f : The FPGA’s timestamp of the PTP packet last seen before p.

• sa f : The FPGA’s timestamp of the PTP packet first seen after p.
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From this, ps can be determined using the following formula:

ps = sbh +(sah− sbh)∗
p f − sb f

sa f − sb f
− k ∗ (pb +24)

The constant of 24 is to account for additional physical Ethernet headers added on by the

NIC when transmitting the packet over the wire. The constant k is the nanoseconds per byte rate

of the link. For example, for a 10 Gbps link k is computed as:

k =
109ns

s
∗ 1Gb

230b
∗ 1s

10Gb
∗ 8b

1B
= 0.7451 ns/b

Where B represents bytes, b represents bits, ns represents nanoseconds, and s represents

seconds. From these methods, I determined the appropriate guard time for the SelectorNet testbed

is 400ns, and the preallocation delay is 5.6µs. These values are rather low relative to the downtime

reconfiguration delay of 150µs the prototype switch uses.

2.4.4 Live Test of Kernel-Based TDMA

Next, I wish to ensure the accuracy that endhosts transmit at the correct time and with the

correct route inside of an actual selector switch network when using my implementation. With a

real selector switch provided by Max Mellette, I am able to test against a live, minified version of

the SelectorNet architecture on real Linux endhosts.

I first describe the testbed that I use for conducing these experiments. Then, using the

kernel-based TDMA-enforcement qdisc I develop, I run multiple different bulk traffic workloads

through a real selector switch, and record how efficient the network operates relative to a projected

maximum.
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A SelectorNet testbed

The minified SelectorNet testbed emulates only the portion of a SelectorNet that a single

Selector switch connects: a 16-port selector switch can support 16 super racks. Because I am

evaluating a single selector switch, I need only consider one ToR per super rack and one fiber

connection out of that ToR. Because the selector switch itself is link-speed agnostic, for purposes

of evaluation I only use one lane per fiber pair (as opposed to the 16 lanes depicted in Figure 2.6),

and drive it at 10 Gbps (rather than 50).

While the theoretical reconfiguration delay of a full version of the SelectorNet switch can

be under 50µs, the delay used in the SelectorNet testbed is 150µs. Therefore, in order to achieve

at least a 50% duty cycle, the network must have uptimes of at least 150µs as well. This creates a

baseline for the uptime values described below in Section 2.4.3.

I emulate 16 super racks using only 8 machines. Each pair of super racks is emulated

by an HP ProLiant DL360p Gen8 server with two hex-core Intel Xeon E5-2630 CPUs running

at 2.30 GHz and 8×2 GB of 1600-MHz DDR3 RAM. Each server runs Ubuntu 14.04 and is

equipped with a dual-port Myricom Myri-10G Dual-Protocol NIC. I modify the iproute2 tables

in Linux to prevent packets from being delivered locally to isolate the two super rack interfaces

from each other.

I use two user-level processes to send and receive UDP traffic at each (virtual) super

rack (meaning each host runs four processes during an experiment). The sender processes open

15 different sockets (one for each other super rack) and the receivers listen on their respective

interface and records traffic received from each of the senders. Because each host has two physical

CPUs, I am able to pin each virtual super rack to a distinct CPU. A virtual super rack’s kernel

threads, UDP sender, UDP receiver, and NIC interrupts are further pinned to separate cores on

the physical CPU.
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(a) An all-to-all workload.
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(b) A “rolling stride” workload.
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(c) A random bijection workload.

Figure 2.8: A comparison of the scheduler-predicted vs. experimentally observed throughput
for three workloads.

SelectorNet macrobenchmarks

I next consider three canonical traffic workloads: an all-to-all demand, a rolling stride

pattern, and a time-varying random bijection workload. The goal in running these experiments is

to see how closely the prototype’s throughput compares to the expected throughput computed

by a scheduling algorithm created by Max Mellette, accounting for the indirection penalty and

selector switch reconfiguration overhead.

In each experiment I start a UDP sender application to fill the TDMA qdiscs with packets

destined for each destination. I then send each virtual super rack schedules from a control server
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that match the traffic pattern that I wish to test. A UDP receiver process on each virtual super

rack records and logs the number of bytes it receives from each source, and these records are

aggregated together at the end of the test.

Figure 2.8 shows the results. The selector switch has a downtime reconfiguration period of

150µs, and I vary the uptime allowed to serve each demand matrix. This determines the length of

the timeslots for a single schedule. The y-axis shows the scheduler’s predicted average throughput

for that uptime. Circles signify experimental observations.

All-to-all: In this experiment I generate a uniform demand matrix representing every super

rack sending to every other super rack, shown in Figure 2.8a. I run the experiment for a duration

needed to serve 1000 demand matrices, and since they are uniform, I randomize the routing for

each one. As expected, the observed throughput closely matches the expected indirection penalty.

The overall throughput is lower for smaller uptimes, since the network must always pay a constant

reconfiguration cost to switch between different matchings to serve traffic.

Stride: In a stride-x workload, each super rack sends data to a single destination shifted x

mod N positions away. In a rolling stride workload, the value of x increases for all super racks

in lock-step every T units of time. The results are shown in Figure 2.8b. I run rolling stride

schedules for six different uptimes and found they corresponded to the projected effective data

rate. Since four of the stride-x patterns match perfectly with the four matchings (specifically

stride-1, stride-2, stride-4, and stride-8), the average indirection penalty is lower than 1
2 log2 N,

and so the expected (and observed) throughput is higher.

Random bijection: The random bijection workload measures how well SelectorNet can serve a

large number of randomly generated demand matrices, with the only restriction being that sources

in the resulting demand matrices only send to one destination, and destinations only receive data

from one source. The scheduler generates 1000 random demand matrices, with a switch uptime
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ranging from 1ms up to 100ms, as indicated in Figure 2.8c. Compared to the Stride pattern, the

overall throughput is lower since the amount of indirection, and thus the bandwidth tax, is greater

on average.

In all cases, the results of the experiment show that a kernel-based TDMA approach is

able to meet the projected maximum throughput that can be achieved for that uptime. The actual

values on the graph are not 100% of what the projection predicts. There is some amount of

loss that occurs invariably on every experiment due to how the Linux kernel performs thread

maintenance. The Linux kernel occasionally stops threads from running in order to verify that the

CPU core is not deadlocked, which causes packets to be sent at the incorrect times and creates

some small amount (¡0.1%) of network inefficiency.

2.4.5 Kernel-Based TDMA Conclusions

SelectorNet is a very strong first entry into using a new, lower energy optical implementa-

tion of a circuit switched datacenter network. The kernel-based TDMA qdisc module achieves

high throughput for large traffic workloads, and in a 10 Gbps setting does not encounter significant

issues with guard times or traffic routing.

With that said, this implementation of kernel-based TDMA networking is very limited in

what it may achieve. There are several parts of this method, and SelectorNet overall, that require

investigation for future work in order to fully realize what is required in a datacenter:

Unpredictable Traffic: SelectorNet’s architecture requires use of a scheduler that has a prede-

fined knowledge of traffic matrices, i.e. it has to know everything about what, when, and where

data is sent. This is obviously not realistic in practice, as datacenters are designed to handle all

forms of traffic patterns, most of which are not known ahead of time. Many circuit switched

networks use a central scheduler to act as an oracle [POB+14]. However, this comes with a huge

sacrifice in scalability, the primary case where circuit switches networks create energy savings.
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Bijective Flow Control: I only implemented networking tests using UDP traffic. This was

far from an arbitrary decision; TCP and other bijective flow control protocols that require

rapid communication between source and destination do not work effectively. This is due to a

combination of the two issues listed below.

Small Packet Sizes: Tests on my qdisc were only performed with maximum (or close to

maximum) size packets. This is far from the typical case in datacenters; small packets from

functions such as remote procedure calls (RPCs) or TCP acknowledgments will often require

small packets to be sent through the network. SelectorNet cannot handle small packets well

due to how the TDMA module functions: several upkeep functions are run after every packet

transmission to ensure accuracy. The less time the module has before the next packet should be

enqueued (i.e. before the NIC has finished transmitting it), the less time the module has for these

functions. Relaxing these functions, however, leads to transmission errors, I will discuss further

in Chapter 3.

Latency: SelectorNet has a drawback in how selector switching affects packet latency. The

scheduler I use has optimized for throughput by generating timeslots that are long relative to

the selector switch’s reconfiguration delay δ. If the scheduler uses short timeslots, it could trade

lower latency for reduced network throughput. To understand the potential savings, I have been

provided the times at which the first packet from a timeslot in each workload will be delivered to

its final destination, as a function of δ. I have been given a weighted average latency seen by each

workload: all-to-all has 2.27δ, rolling stride has 1.13δ, and random bijection has 2.26δ of latency.

This idea of trading latency for throughput is of great significance, as many datacenter workload

care greatly about low latency traffic [DB13].

Combined, kernel-based networking and SelectorNet are not yet fully-realized enough to

fulfill the needs of future low-energy datacenters. I only test kernel-based networking at 10 Gbps,

a very low speed that is already obsolete [AWE19], and I discuss in the next chapter how higher
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link rates make kernel-based TDMA networking inaccurate. SelectorNet has central design issues

that stop it from being as scalable as future datacenter network demands would require. These

issues will become a driving force for the next two designs that I will present in this chapter. Next,

I move into an upgraded version of the SelectorNet architecture, known as RotorNet.

2.5 Kernel-Bypass Programming: RotorNet

I now move to discussing a new method of implementing TDMA, kernel-bypass pro-

gramming. This differs from the kernel-based approach in SelectorNet by skipping the kernel

completely, allowing a program to access the networking drivers directly rather than still using

standard kernel interfaces to send and receive traffic. This comes with the drawback that the

program must now implement necessary networking software components that were previously

provided by the operating system kernel, which may be rather complex in practice [AGM+10].

The need for a kernel-bypass approach is based on the new requirements for a revision of the

SelectorNet architecture, called RotorNet. RotorNet focuses on solving a major problem with the

SelectorNet architecture: the control plane.

In this section I again focus on how my work achieves maximum transmission efficiency

through scheduling and transmitting packets over the wire within the RotorNet circuit switched

topology. I describe the limitations of a centralized control plane in RotorNet, and a new method

of flow scheduling, RotorLB, that circumvents this issue. I then move into describing how

kernel-bypass networking is necessary to accurately implement RotorLB, and finalize by testing

its accuracy on the same live testbed as in SelectorNet. RotorNet is primarily an iterative work on

SelectorNet, so I will not be describing the RotorNet architecture as it is effectively the same as

from SelectorNet (with some minor differences described below in Section 2.5.2).
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2.5.1 RotorLB: Decentralized Indirection

RotorNet makes use of a new, decentralized flow control protocol called RotorLB. The

need for this comes from one of the core problems of SelectorNet- the centralized control server.

The SelectorNet control server issues the fixed timeslot information to all of the servers in the

testbed. The tests in SelectorNet used a fixed, predefined set of timeslots, but a full deployment

would want to examine a more dynamic solution to work with a variety of datacenter workloads.

Unfortunately, timeslots in the network must be decided consistently and dynamically based on

the entire network state, meaning a control server cannot be distributed, but centralized.

A large body of previous work on circuit switched networks also use a centralized con-

trol server to collect network-wide traffic demand [LLF+14, PSF+13, WAK+10, POB+14],

and other bodies of work have focused on using this demand to create an optimal schedule

of timeslots [BVAV16, LML+15]. Enforcing this also requires rate-limiting endhost trans-

missions [BVAV16, LLF+14, LML+15, PSF+13], and synchronizing every component of the

network together [LLF+14].

While this is certainly a common practice, it is an untenable one. Scaling a control server to

tens of thousands of nodes means the scheduling algorithm for timeslots will take longer than the

total switching uptime RotorNet wishes to use, making the timeslots useless [BVAV16, LML+15].

Recall that tens of thousands of nodes are where circuit switched networks begin to have power

savings over packet-switched networks, so it is a must to create a network that does not have this

scaling restriction.

RotorLB Overview

RotorLB is the replacement for the control server in RotorNet. RotorLB, or RotorNet

Load Balancing, is a lossless, fully distributed protocol based on the principle of Valiant load

balancing [Val82]. The primary principle is that instead of having a host communicate to a central
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control server, it instead directly asks a destination host how much traffic it may indirect through

it. To do this, every host has full knowledge of the connection patterns of the network, and if a

connected destination may be able to forward traffic promptly.

When indirecting traffic, RotorLB injects traffic into the network fabric exactly two times:

traffic is first sent to an intermediate rack, where it is temporarily stored, and then forwarded to

its final destination. RotorLB stitches together two-hop paths over time as required by the traffic

demand of the network.

Unlike traditional VLB, which always sends traffic over random two-hop paths, RotorLB

prioritizes sending traffic to the destination directly (over one-hop paths) when possible, and only

injects new indirect traffic when that traffic will not subsequently interfere with the intermediate

rack’s ability to send traffic directly. These two policies improve network throughput by up to 2×

(for uniform traffic) compared to traditional VLB.

In RotorNet, each ToR switch is responsible for keeping an up-to-date picture of the

demand of each end host within the rack and for exchanging in-band control information with

other ToRs. There are two types of traffic the ToR must track: local traffic generated by hosts

within the rack, and non-local traffic that is being indirected through the rack. Because I use

virtualized ToRs in the test network, each server has readily available demand information.

RotorLB Algorithm and Example

RotorLB runs between a source and destination when two hosts become newly connected

after a selector switch is done reconfiguring. RotorLB’s purpose is to determine how much

direct and indirect traffic to send during the switch’s uptime. First, RotorLB prioritizes any

previously indirected (i.e. non-local) traffic as it has previously made a guarantee to deliver that

traffic. Second, RotorLB allocates any direct local traffic (i.e. does not need indirection), as this

maximizes network efficiency and reduces the overall bandwidth tax on the network.

Lastly, RotorLB calculates any remaining link budget that will be available during that
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Figure 2.9: RotorLB example. Matrix rows represent sources and columns represent destina-
tions; L and N represent local and non-local traffic queues, respectively; matrix elements show
normalized traffic demand. In the current matching between racks 1 and 2, traffic which can be
sent directly is bounded by black rectangles, stored indirect traffic is marked by a red triangle,
one-hop direct traffic is marked by a green circle, and new indirect traffic is indicated by a blue
oval. Adapted from [MMR+17].
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Algorithm 1 RotorLB Algorithm. Adapted from [MMR+17].
function PHASE 1(Enqueued data, slot length)

alloc← maximum possible direct data
capacity← slot length minus alloc
offer← remaining local data
send offer, capacity to connected nodes . offer
send allocated direct data
remain← size of unallocated direct data
return remain

function PHASE 2(remain, LB length)
recv offer and capacity from connected nodes
indir← no allocated data
avail← LB length minus remain
offeri← offeri if availi 6= 0
offerscl← fairshare of capacity over offer
while offerscl has nonzero columns do

for all nonzero columns i in offerscl do
tmpfs← fairshare of availi over offerscli
availi← availi− sum(tmpfs)
indir← tmpfs

offerscl← offer− indir
tmplc← capacity− sum(indir)
offerscl← fairshare of tmplc over offerscl

send indir to connected nodes . accept
function PHASE 3(Enqueued local data)

recv indir from connected nodes
locali← enqueued local data for host i
indiri← min(indiri, locali)
send indiri indirect local data for host i

switch uptime and “offers” to indirect traffic through the destination host. RotorLB only indirects

traffic that can be ultimately delivered before the active source/destination pair will be matched

together again. The destination then decides if it can deliver the indirected traffic in the future,

by examining how much local traffic it has to send in the future as well. Algorithm 1 shows the

pseudocode of the RotorLB algorithm.

To effectively balance load, I allow traffic from the same flow to be sent over RotorNet’s

single one-hop path and also to be indirected over multiple two-hop paths. This multipathing can
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lead to out-of-order delivery at the receiver. Ordered delivery is ensured using a reorder buffer at

the receiver.

Figure 2.9, shows an example of RotorLB in practice. Consider the ToRs of two racks, R1

and R2, which have current demand information for the hosts within each rack stored in non-local

(N) and local (L) queues, as shown in Figure 2.9. In this example, demands are normalized so that

one unit of demand can be sent over the ToR uplink in one matching slot. Note that, as described

above, there is no central collection of demand; each host simply shares its demand with its ToR

switch, and ToR switches share aggregated demand information in a pairwise fashion.

Phase 1: Send stored non-local and local traffic directly: RotorNet follows a fixed connec-

tion pattern, and each ToR switch anticipates the start of the upcoming matching slot as well as to

which rack it will be connected. After taking a snapshot of the N and L queues, the ToR computes

the amount of traffic destined for the upcoming rack. Delivery of stored non-local traffic on its

second (and final) hop is prioritized to ensure data is not queued at the intermediate rack for long

periods of time. Delivery of local traffic has the next priority level. In Figure 2.9, R1 has 0.25

units of stored non-local traffic (red triangle) and 0.75 units of local traffic (green circle) destined

for R2, so it allocates the entire ToR uplink capacity for the matching slot duration to send this

traffic. R2 has no stored non-local or local traffic for R1, so no allocation is made.

The ToR then forms a RotorLB protocol offer packet which contains the amount of local

traffic and the ToR uplink capacity which will remain after the allocated data is sent directly. The

smaller of the two quantities constitutes the amount of indirect traffic the ToR can offer to other

racks. Once the matching slot starts, the ToR sends the offer packet to the connected rack. As an

optimization, rather than waiting for the entire offer/accept process to complete, the ToR can also

begin sending the stored non-local and local traffic which was been allocated for direct delivery

to the destination.

Phase 2: Allocate buffer space for new non-local traffic: Shortly after the start of the slot,
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the ToR switch receives the protocol packet containing the remote rack’s offer of indirect traffic.

At this point, it computes how much non-local traffic it can accept from the remote rack. To do

this, the ToR examines how much local and non-local traffic remain from Phase 1. The amount of

non-local traffic it can accept per destination is equal to the difference between amount of traffic

that can be sent during one matching slot and the total queued local and non-local traffic. Because

the amount of accepted indirect traffic is limited to the amount that can be delivered in the next

matching slot (accounting for any previously-enqueued traffic), the maximum delivery time of

indirect traffic is bounded to Nm +1 matching slots, or approximately one matching cycle. The

algorithm handles multiple simultaneous connections by fair-sharing capacity across them.

In Figure 2.9, R1 sees via the offer packet that R2 would like to forward 1 unit of traffic

destined for each R3 and R4 (blue oval), and that R2 has a full-capacity link to forward that data.

R1 already has 0.25 units of local traffic for R3 and 0.5 units of stored non-local traffic for R3.

Therefore, it allocates space to receive 1−0.75 = 0.25 units destined for R3 and 0.75 units for

R4 from R2, which fully utilizes the remaining link capacity from R2 and ensures that all queued

traffic at R1 will be admissible.

Once the allocation is made to receive non-local traffic, the ToR switch responds with

a protocol accept packet informing the remote rack how much traffic it can forward on a per-

destination basis.

Phase 3: Forward local traffic indirectly: Finally, the ToR switch receives the protocol accept

packet from the remote rack. After it finishes sending direct traffic determined in Phase 1, it

forwards new non-local traffic to the remote rack per the allocation specified by the accept packet.

In Figure 2.9, R2 receives an accept packet informing it that 0.25 units of traffic destined

for R3 and 0.75 units destined for R4 may be sent. It forwards this traffic, which is stored as

non-local traffic at R1. Finally, the Rotor switch reconfigures and establishes a new connection,

and the RotorLB algorithm runs again.
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2.5.2 RotorLB and Switch Matchings

RotorLB requires that it can communicate in a bidirectional fashion with the destination

host. This is not how SelectorNet’s switch matchings are architected; only one of the original

matchings had hosts connected bidirectionally. RotorNet uses new switch matchings that create

bidirectional matchings between endhosts, which changes how the network is connected. Addi-

tionally, RotorNet also uses NR−1 for NR racks, distributed among the entire set of rotor switches.

This also means that in order to create a datacenter architecture, ToRs must be connected to a

number of selector switches equal to a power of two.

For the RotorNet experimental testbed, I run experiments with eight endpoints instead of

the original sixteen, and the selector switch is then configured with the necessary seven matchings.

Having seven matchings in a single switch is more than acceptable, as a large-scale RotorNet

network would have greater than seven matchings in each selector switch.

2.5.3 Kernel-Bypass: Implementing RotorLB

RotorLB is a departure from the TDMA-style implementation in SelectorNet. For Ro-

torLB, hosts need to send an exchange with the connected destination, which is composed of

multiple smaller packet sizes. Recall from Section 2.4.5 that a primary issue with the TDMA

module I use in SelectorNet is that it does not function well with smaller packet sizes.

Investigation of this restriction revealed that this is a function of how network interface

hardware and firmware on servers is constructed. In order to ensure high link rates, network cards

grab packets in batches in order to ensure that CPU processing of packet queues remains low. I

measure the full effect of this in Chapter 3. To solve this restriction for RotorNet, I fill the link

with “null-space” packets containing no data to ensure that the NIC is always transmitting data.

Unfortunately, the Linux kernel does not accommodate sending malformed packets

without any data. To solve this restriction, RotorNet uses a “kernel-bypass” framework to transmit
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data. Kernel-bypass networking is now a common practice to achieve high-speed networking

inside of datacenter networks [ZLA+19]. It allows elimination of the operating system kernel

from the traditional networking stack by allowing a regular application to interact directly with

networking hardware. By doing so, applications achieve higher throughput and lower latency on

the network.

The Cost of Kernel-Bypass

The benefits of kernel-bypass networking are not free. Traditional server networking uses

an interrupt based method, in which the NIC alerts the operating system when data has been

received. This allows the host’s CPU to do other work while waiting for data, and in the past, this

was the preferred method of interacting with the network interface in an operating system.

Kernel-bypass networks typically are not interrupt based; rather, they use a “polling”

based method, where the host CPU constantly examines the NIC queues to determine if new

data has been received. This uses a lot more CPU power on the endhost, but provides higher

bandwidth and lower latency than an interrupt based method. With the advent of 100 Gbps

networks and beyond, using a polling based method with a kernel-bypass interface has become

common [ZLA+19].

For RotorNet, this means that I dedicate additional one additional CPU core per endhost

to receiving incoming data, ensuring that RotorLB’s initial negotiation completes as quickly as

possible. For a 10 Gbps network, this additional CPU cost is high, but the servers I use in the

RotorNet and SelectorNet work are fairly old and do not have nearly as much CPU power as

modern servers (later in Section 2.6, I move to using hosts with 24 physical CPU cores).

Additionally, there is a simultaneous drawback and benefit with kernel-bypass networking,

in that there is no longer support from the operating system kernel for forming and transmitting

packets using common networking protocols. This means that this must be implemented manually

for RotorNet. For my purposes this is suitable to ensure RotorLB is implemented correctly, but
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would be problematic if RotorNet was required to run an arbitrary networking protocol in a full

deployment.

Other reasons for moving to kernel-bypass

In addition to requiring a kernel-bypass API to implement the null-space packets required

to make RotorLB work efficiently, SelectorNet also encounters an issue where after sending

roughly 1 in every 2000 packets (0.2%), the Linux kernel context switches away from the sending

thread to a NMI Watchdog process to verifies that the CPU core is still functional.

This process tends to take a long time, often hundreds of microseconds. In rare cases

this causes packets to be sent out during a nighttime, causing loss. However, more commonly

this means that some amount of throughput during the daytime is totally lost. For RotorNet, the

design of RotorLB means that I must reduce rate of failure as much as possible.

Kernel-bypass APIs provide a solution as calling a “send” function inside of software

is as close to the NIC as possible, so there are less instructions between the TDMA software

assuming a packet was sent and it actually being sent to the NIC. This runs far less risk of the

“send” call being interrupted by a context switch in the CPU core.

Kernel-Bypass APIs

For RotorNet, I experiment with two different kernel-bypass APIs to implement RotorLB.

The first API is one unique to the Myricom Myri-10G Dual-Protocol NICs that are installed on

the servers used for the experiments. This API allows direct interaction with NIC queues in a

fairly generic fashion, not providing much in the way of additional features or support.

The second API is DPDK [Fou], a widely supported software framework that implements

kernel-bypass support for a large number of server NICs. DPDK also provides a large number

of memory management and packet processing tools, that permit construction of fairly complex

custom software networking frameworks.
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Both of these APIs are suitable for testing RotorLB, but I use the simpler Myricom API

in order to ensure that I am able to use the same NICs as in SelectorNet when testing in order to

draw an accurate comparison. I describe the results of a DPDK-based TDMA implementation in

Chapter 3.

2.5.4 Kernel-Bypass Accuracy: RotorNet Results

I now move to using the testbed described in Section 2.4.4 to see how accurate and

performant a kernel-bypass solution is for implementing RotorLB and RotorNet. I use the same

endhosts as before running at 10 Gbps and the same real circuit switch, which still rotates between

a fixed pattern of matchings that is preprogrammed in the endhosts. The goal is to determine how

effective this implementation is in comparison to a projected maximum, as in Section 2.4.3, and

understand what the limitations of kernel-bypass networking are.

I implement RotorLB on the endhosts as a user-level process, using the Myricom Sniffer

API to directly inject and retrieve packets from the NIC. The only requirement to run RotorLB in

practice is that endpoints be made aware of the Rotor switches’ states. In a real implementation

using ToR switches, each ToR could monitor the status of its optical links to determine when

one matching ends (i.e., the link goes down), and the next matching begins (i.e., the link comes

back up again). The Myricom NICs I use do not have a built-in low-latency method to detect link

up/down events, so I use an out-of-band channel to notify end hosts of the switch reconfiguration

events.

I emulate a RotorLB ToR switch on each server using distinct user-level threads to

generate, send, and receive UDP traffic, with an additional thread to process state changes of

the Rotor switches. To analyze performance under a variety of traffic conditions, I am provided

traffic patterns with different numbers of “heavy” connections. Each heavy connection attempts

to send data at line rate. I define the traffic density as the fraction of heavy connections out of

all possible connections (56 in the 8-endpoint prototype). For each traffic density, I repeat the
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experiments with 32 randomly-generated traffic matrices representing the inter-rack demand.
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Figure 2.10: Measured and modeled throughput under RotorLB relative to that using one-hop
forwarding. Circles represent the average throughput over 32 random traffic patterns; error bars
show the maximum and minimum.

As a baseline, I first send data through the network using only one-hop forwarding. Next,

I repeat the experiments with RotorLB running on the endpoints. Figure 2.10 shows the relative

network throughput under RotorLB normalized to that of one-hop forwarding. I see that RotorLB

significantly improves throughput for sparse traffic patterns. For a single active heavy connection,

RotorLB improves throughput by the expected factor of NR−1 (7 in this case, with NR = 8 virtual

racks), as traffic can now take advantage of all paths through the network. Further, I observe that

RotorLB adaptively converges to the throughput of one-hop forwarding for uniform traffic, as

intended.
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Figure 2.10 also overlays the modeled relative throughput of RotorLB to one-hop forward-

ing for the same set of traffic conditions I use in the measurements. The close agreement between

model and measurement demonstrates that RotorLB operates as designed, and also validates the

model’s ability to accurately predict RotorLB performance in practice.

RotorNet TDMA Parameters

For RotorNet, I use a more aggressive set of TDMA parameters to achieve the above

results. I find that a minimum guard time of roughly 400µs is necessary to achieve a packet loss

rate of about 0.05%. To achieve loss rates more typically found in datacenter networks (a 10−7)

loss ratio), it is necessary to extend the switch uptime to roughly 10ms and use a 1ms guard time.

This amount is large enough that the aforementioned context switching issue is now outweighed

by the guard time, meaning a host almost never will send during a switch’s downtime.

However, having such a long switch uptime and guard time creates a number of inefficien-

cies in the network, as I described earlier in Section 2.3.2. While this did allow me to achieve

ideal results in Figure 2.10, it is not ideal for a real datacenter network. The unfortunate reality is

that software can encounter a number of delays when trying to emit packets at precise intervals,

causing unexpected and unacceptable loss in the network.

2.5.5 Kernel-Bypass and RotorNet Conclusions

RotorNet’s design is primarily focused on removing the control plane as a necessity to

create a circuit-switched datacenter network. It succeeds in this respect, but this design still

does not solve all of the issues outlined in Section 2.4.5. This necessitates using a kernel-bypass

framework to more tightly control when small packets are emitted from the NIC, with the trade-off

of requiring more CPU power on the endhost.

Through proper configuration of my kernel-bypass implementation, I am able to send

sufficient traffic over the network at 10 Gbps with 99.9% accuracy. However, the large guard time
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of 1ms required to achieve this means that a long switching period of 10ms is used, reducing the

efficiency the network would have when routing low latency traffic (one of the primary issues I

note in Section 2.4.5). Kernel-bypass is useful for implementing a reasonable TDMA schedule

combined with a rapid exchange protocol in very specific conditions.

Kernel-bypass networking and RotorNet’s design begin to reveal that there is a persistent

problem with precision networking in software. Ensuring that packets are not lost at an unac-

ceptable rate is a critical issue, and one that is more prevalent in the next project in this chapter,

Opera.

2.6 RDMA Networking: Opera

The final method of networking I will present in this chapter is remote direct memory

access (RDMA) based networking. This is developed alongside the Opera project, which is the

final project in the trio of optical circuit switched datacenter networking designs I contribute

to developing. RDMA networks are traditionally used in high performance computing (HPC)

datacenter architectures where the entire workload is controlled and predefined, but grew into

working over more traditional datacenter network as well [SLLP09].

I use RDMA networking in Opera to achieve even tighter packet emission control than

in the kernel-module and kernel-bypass frameworks. These previous frameworks do well with

predicable, long periods of large packets, which fit very well into the SelectorNet and RotorNet

project goals. However, Opera introduces some critical new factors that unfortunately render

the previous methods unsuitable. Additionally, the testbed in Opera is extended to a 100 Gbps

network, exacerbating these problems.
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2.6.1 Opera: Anytime Low-Latency Traffic

Opera extends upon RotorNet by creating a new architecture based on a new optical

switch [MFK+20]. This switch uses slightly more power but provides several advantages over

the previous MEMS-based switch, including having a lower reconfiguration delay and supporting

a higher port count. The Opera datacenter architecture is a variant of the RotorNet architecture in

construction [MDG+20].

Opera’s key contribution is how it handles low latency traffic. No tests in SelectorNet or

RotorNet use low latency traffic, as it performs poorly on these networks due to the longer uptime

periods required to support large, bulk traffic flows efficiently. Opera solves this problem by

providing persistent, always available multi-hop paths for traffic. To do this, optical switches in

Opera change at at non-uniform, staggered periods, ensuring that there is no “absolute” downtime

of the network as in SelectorNet and RotorNet. Opera then allows designated low-latency traffic

to be sent anytime through the network, using a path that is currently available. In the case

that a path becomes unavailable during transmission, ToR switches will dynamically reroute the

low-latency traffic through a different (possibly new) available path.

The combination of available paths at any time forms an expander graph. The end result

is a single fabric that supports bulk and low-latency traffic as opposed to two separate networks

used in hybrid approaches. Opera does not require any runtime selection of circuits or collection

of traffic demands as in RotorNet, vastly simplifying its control plane relative to approaches that

require active circuit scheduling, such as ProjecToR [GMP+16] and Mordia [PSF+13].

This changes how packets sent to unavailable paths are handled in Opera. Instead of

simply dropping the packet, they are now routed on an updated available path at the time of the

packet’s arrival. However, if during the packet’s journey, the circuit topology changes multiple

times, it is possible the packet could be caught in a loop or redirected along a sub-optimal path.

Dropping the packet immediately (and expecting the sender to resend it) as in RotorNet would
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significantly lower network performance. To account for this, Opera changes how guard delay

functions.

Figure 2.11 shows how the offset, staggered slot scheduling is performed in Opera. Opera

requires that subsequent circuit reconfigurations be spaced by at least the sum of the end-to-end

delay under worst-case queuing, ε, and the reconfiguration delay, r. I refer to this time period

ε+r as a “topology slice”. Any packets sent during a slice are not routed through the circuit with

an impending reconfiguration during that slice. This way, packets always have at least ε time to

make it through the network before a switch reconfigures.

The parameter ε depends on the worst-case path length (in hops), the switching queue

depth, the link rate, and propagation delay. Path length is a function of the expander, while the

data rate and propagation delay are fixed; the key driver of ε is the queue depth. Opera chooses a

shallow queue depth of 24 KB (8 1500-byte full packets + 187 64-byte headers), and sets ε to 90

µs.

Because Opera does not use circuits that have an impending change at all during a topology

slice, it does not need to necessarily guard against a delay for those paths. That is, if a packet is
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sent late during a timeslot for a slice containing a path that is still available in the next slice, it is

okay to be more aggressive in sending data during that timeslot. This is particularly important

when considering Opera’s switch uptime. Opera’s example network contains 108 racks with 6

circuit switches, leading to a switch uptime of 10.8 ms [MDG+20]. Having a long uptime period

means that hosts can send very large bursts of traffic over “safe” paths, provided low-latency

traffic is accounted for.

Scheduling Around Low-Latency Traffic

Opera still wishes to support bulk traffic as in SelectorNet and RotorNet using RotorLB.

Endhost scheduling, however, becomes more complex due to the competition of the link for low

latency traffic. Low latency traffic must be the priority in order to satisfy its namesake, so bulk

traffic must now dynamically react to unpredictable low latency traffic. To do this, endhosts

must be aware at all times not only how much data to send, but how much data has been sent

already. Unfortunately, the previous solutions of kernel-based and kernel-bypass networking do

not provide a straightforward technical solution to this problem. While traffic control protocols

such as TCP do provide round trip feedback on whether or not data has been received, it is

expected that additional data be sent while an acknowledgment to the sender is in flight to ensure

that the network link is saturated.

100 Gbps Networking and Mixed Packet Sizes

Recall in Section 2.4.5 that I describe how smaller packet sizes do not function well with

kernel-based networking. For kernel-bypass networking, hosts are able to send a single small

packet for RotorLB reliably, but rapid amounts of small packets still tend to struggle compared

to larger packet sizes (I describe this in detail in Chapter 3). Low-latency flows will frequently

contain packets of small sizes, meaning that these methods will further be hindered and more

inaccurate due to the demands of Opera. Opera commands each endhost to send bulk traffic in
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tandem with low-latency flows, and still be synchronized to the state of the network.

This problem is exacerbated by higher network rates (again, described further in Chapter 3).

As I will describe below in Section 2.6.3, the Opera testbed is run on a 100 Gbps network. This

means that the time required to send each packet over the network is now 10% of what it would

be on RotorNet’s 10 Gbps network, and thus any endhost delay that is guarded against (which

is unchanged by using a faster network) now has 10 times the impact. As kernel-bypass is not

suitable for Opera’s needs, I must find a new solution to meet these demands.

2.6.2 The Solution of RDMA

RDMA networking provides a solution to these problems. RDMA provides “transaction-

based” network primitives that give an explicit feedback signal to the sender when a transfer

has completed. However, unlike TCP, these transfers can be of arbitrary size (up to a limit far

beyond Opera’s needs), allowing hosts to select an optimal “chunk” of bulk traffic to be safely

sent during a timeslot in the network, assuming a maximum bound on the amount of low-latency

traffic sent in the interim. Providing such a bound is simple when examining traffic patterns

in datacenters; data published by Microsoft [AGM+10, GHJ+09b] and Facebook [RZB+15b]

provide essential insights into the predictability of low-latency workloads, allowing Opera to

define a fixed threshold of what constitutes low-latency traffic. In Opera, low-latency traffic

is defined as any flow that is under 15 MB in size. With RDMA over Converged Ethernet

(RoCE) [SLLP09], endhosts in Opera are able to use RDMA despite having a more traditional

datacenter architecture.

RDMA is not flawless; it is a non-traditional choice for networking that requires data be

given to the networking stack in bulk, as endhosts now need to make larger requests in order to

solve the listed problems above. Traditional Ethernet networking is packet based, with packets

being a maximum of 9000 bytes, which is .72 µs on a 100 Gbps network. To fill a timeslot with

even a modicum of data, endhosts in Opera must operate on bulk traffic that is given in much
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larger chunks as well. This assumption is suitable for Opera’s needs, but may cause issues with

“bulk” workloads that provide data incrementally [RZB+15b].

There are two methods of RDMA networking that I use in the Opera testbed: Message

Passing Interface (MPI) and RDMA WAIT.

MPI: Open MPI is a messaging protocol that can be used over RDMA networks, and is

commonly used in high performance computing [GFB+04]. It functions by providing a way

to pass messages between a source and destination in a tightly synchronized fashion, which is

very suitable for a circuit-switched network. MPI automatically handles all RDMA transaction

handling. Using MPI allows Opera to designate large block data transfers asynchronously to

many different hosts, and then poll over each block to enqueue another block of an appropriate

size after completion. This permits a more dynamic method of transmission that does not require

additional complexity at the endhost.

RDMA WAIT: RDMA provides several different primitives that can interact with the network.

A newer form of primitive is RDMA WAIT, which signifies that a queue of traffic should be

paused until it receives a signal. As Opera uses signals to specify when switch states are available

(described further below), this is suitable for sending traffic appropriately between endhosts in a

more controlled fashion. This requires additional complexity as it operates purely at the RDMA

level, unlike MPI, but provides a roughly 2.5x latency improvement and additional consistently

over MPI.

Each of these solutions perform well in a limited capacity, but when scaling up to larger

numbers of hosts, begin to encounter an issue where the response latency to a switch uptime

event grows larger. To understand how this affects network performance, I move to describing the

Opera testbed.
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2.6.3 The Opera Testbed

The Opera prototype uses a virtualized datacenter network implemented via a single

physical 6.5 Tbps Barefoot Tofino switch. The virtualized network consists of eight ToR switches,

each with four uplinks connected to one of four emulated circuit switches. The switch is

programmed with a P4 program written by Rajdeep Das to emulate the circuit switches, which

forward bulk packets arriving at an ingress port based on a state register, regardless of the

destination address of the packet. The virtual ToR switches are connected to the four virtual

circuit switches using eight physical 100 Gbps cables in loopback mode (logically partitioned

into 32 10 Gbps links). Each virtual ToR switch is connected via a cable to one attached end host,

which hosts a Mellanox ConnectX-5 NIC. There are eight such end hosts (one per ToR switch),

and each end host runs four sets of parallel workloads that are rate limited to 10 Gbps each. The

endhost connections are configured to run at 40 Gbps rather than 100 Gbps, for reasons I will

explain below.

The parallel workloads mentioned above consist of two separate processes (for a total

of eight per endhost): one is a shuffle-based bulk workload executed via MPI, and the other is

a simple low latency “ping-pong” application that sends rapid RDMA messages to a random

destination. Using synchronization functions in MPI (particularly the barrier primitive), I create a

control server that is attached to the Tofino switch that sends signals through the switch to the

virtualized network and connected endhosts. This updates a state register in the Tofino that triggers

the appropriate network matching state according to the virtualized circuit switch configuration I

wish the switch to emulate at that time. The control server then signals the endhosts to run the

next step of their shuffle-based workload via MPI. The low latency application runs persistently

through all network states, as would occur in a real Opera deployment.
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(a) MPI response latency with 8 endhosts. (b) MPI response latency with 32 endhosts.

Figure 2.12: CDF of latencies observed when signaling endhosts to begin transmitting data
using MPI.

Scaling guard delay with host count

As mentioned above, guard delay scales as a function of the number of virtual servers

contained in the Opera testbed. The reasoning for this is due to how the control server functions; a

synchronized MPI primitive is very useful for providing a barrier for distributed systems that need

logical consistency, but unfortunately the needs of a circuit-switched network do not require a

logical consistency, but consistent timing instead. Opera uses a new method of providing timeslot

information; rather than provide the host the knowledge of what states will be incoming, they

instead only know to send what data the control server tells them to. This allows for a more

simplified method of endhost programming, but the unfortunate side effect is that the control

server adds additional delay scaling with the number of endhosts. The solution in SelectorNet

and RotorNet is to include full future timeslot timing information, removing this delay.

This scaling artifact is exhibited via a simple experiment where I use Opera’s control

server to signal the endhosts to send data. To reduce delay, each endhost sends a single 1500 byte

packet back to the control server. I use both MPI and RDMA WAIT with both 8 virtual endpoints

(1 process per server) and 32 virtual endpoints (4 processes per server). Processes are pinned to
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(a) RDMA WAIT response latency when signaling
8 endhosts.

(b) RDMA WAIT response latency when signaling
32 endhosts.

Figure 2.13: CDF of latencies observed when signaling endhosts to begin transmitting data
using RDMA WAIT.

distinct CPUs to isolate them, and run over the distinct virtual 10 Gbps links described above.

The results for MPI are shown in Figure 2.12, and the results for RDMA WAIT are shown

in Figure 2.13. While RDMA WAIT encounters roughly one-third the latency that MPI does in

the 32-host case, the control server encounters a higher tail latency in both cases; roughly 20 µs

for RDMA WAIT, and 60 µs for MPI. This is expected for how a control server would operate in

practice: running on a greater number of hosts means the control server must spend more time

operating on processing and sending signals to endhosts. It should be noted that in Opera, these

control signals are only given from the ToR to nodes connected to the ToR in the same rack. This

scaling problem will not encounter the same critical issues as in SelectorNet.

However, the core issue is that the long tail of latency is still on the order of tens of

microseconds for a low number of endhosts. A full datacenter rack will contain even more servers,

and having a guard time of 100 µs or greater to account for these signaling delays reduces network

efficiency for bulk traffic. Opera does not aim to optimize bulk traffic, but low-latency flows, so

the efficiency of bulk traffic is not measured. This design is intentional due to how inefficient

the endhosts are at operating on a TDMA schedule at 100 Gbps, which I describe further in
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Chapter 3.

2.6.4 RDMA and Opera Conclusions

Opera is an architecture that aims to optimize a path for low latency traffic while still

providing paths for bulk traffic to transit the network. It achieves the low latency traffic goals well,

but there is still a problem of scaling bulk traffic to high data rates without encountering significant

amounts of guard delay and network inefficiency. RDMA based transmission methods serve

well at fulfilling the needs of signaling traffic from a ToR to the endhosts in a more controlled

fashion due to the problems kernel-bypass frameworks face with controlling packet transmissions

dynamically around unpredictable low latency traffic.

MPI and RDMA WAIT are both valid ways of using RDMA to transmit traffic, with

different tradeoffs. MPI provides a method of synchronizing endhosts using signaling in a more

robust and supported fashion, while RDMA WAIT provides a performance benefit in the signaling

of endhosts. However, in both cases they are not able to remove the high amounts of guard delay

that occurs in the long tail of cases when working with TDMA scheduling. While in the common

case they function well, unfortunately guard delay must be scheduled around the 100th percentile

of signal delay, which goes into the tens of microseconds for even a low number of endhosts.

2.7 Optical Networking Conclusions

Optical networking provides a future for highly energy efficient datacenter networks

that can scale to high data rates. However, there is a significant challenge in having endhosts

support the needs of TDMA networking protocols to interact with a circuit-switched architecture.

Endhosts do not traditionally care exactly when a packet transits the wire, which leads to loss in a

TDMA network when packets transit at the wrong time. A solution to create precise transmission

is necessary to ensure packets are not lost and the network operates as efficiently as a traditional
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packet-switched network.

Using kernel-based, kernel-bypass, and RDMA frameworks to send packets at precise

times proves to be difficult. Scaling issues with increasing the number of endhosts and the data

rate of the network causes packets to begin to become less precise over the network. Additionally,

adding in a mixed workload of both large and small packet sizes creates additional unpredictability.

Endhost software has to ultimately give packets to networking hardware, which may operate on

packets at a different rate than the software expects or wishes.

While there are many issues with endhost networking in a circuit switched environment,

there are cases where it does work effectively. It is necessary to understand the scaling limitations

of endhost networking hardware in its current state in order to look towards what future work must

be done in order to accurately and efficiently support the needs of future optical circuit-switched

datacenters.

Chapter 2 contains material from three different sources co-authored by the dissertation

author. Each source is used in a different part of the chapter.

Sections 2.3 and 2.4 have material from a paper that was rejected from publication.
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material.

Section 2.5 contains material from a publication that appeared in the Proceedings of
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William M. Mellette; Rob McGuinness; Arjun Roy; Alex Forencich; George Papen; Alex C.

Snoeren; George Porter, Association for Computing Machinery, 2017. The dissertation author

was an investigator and co-author for this material.

Section 2.6 incorporates material from a publication that appeared in the 17th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 20). William M. Mellette;

Rajdeep Das; Yibo Guo; Rob McGuinness; Alex C. Snoeren; George Porter, USENIX Association,
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Chapter 3

Evaluating the Performance of

Kernel-Bypass Software NICs for 100

Gbps Datacenter Traffic Control

In the previous chapter, I discuss how reducing the operational energy of datacenter

networks can be achieved through creating new, high speed, optically circuit switched datacenters.

However, the goal of ensuring that endhosts are able to function within the restrictions of the

circuit switched networks was not completely achieved. My results show that endhosts are limited

in how accurate they can be when transmitting data over restrictive synchronous periods. The

question remains, just how inaccurate are endhosts in these scenarios, to show just how much

hardware assistance is required?

In this chapter, I investigate the functional limitations of endhost networking software

when using high speed networking hardware running on circuit switched networks. I find that

there are a large number of limitations that are critical to understanding a future path forward for

creating and deploying circuit switched networks that have lower energy and environmental costs.
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3.1 An Introduction to Software NICs

The network interface card (NIC) is the interface between a host and the network. Tradi-

tionally the role and responsibilities of the NIC was clear, well-defined, and simple. The NIC

transmitted packets generated by the operating system (OS) to the wire, and demultiplexed in-

coming packets from the wire to deliver them to the relevant input buffer. TCP’s flow control and

congestion control algorithms placed no particular requirements on when the NIC and OS actually

transmitted packets on the wire, so long as no more than a certain number of packets were in flight

at a time, as dictated by the receive and congestion windows. Recently, the adoption of datacenter

networks, large-scale clusters, and rack-scale computers has fundamentally changed the interface

between the server and the network. As a result, the NIC has become the “ground zero” of

this reinvention, with commensurate changes in the requirements placed on it by application

developers and network operators.

Several trends have driven the substantial change seen in endhost network stacks and

network interfaces. End systems increasingly rely on virtualization to improve efficiency, either

through virtual machines or via lightweight containers. The orchestration of traffic to and

from these virtualized endpoints and the network requires network address translation, the

implementation of access control lists (ACLs), and often custom forwarding rules, which are

typically implemented in a virtual switch (vSwitch) abstraction. For performance reasons, the

NIC has increasingly implemented this vSwitch functionality. A second trend is scaling across

multi-core systems, which requires “steering” packets from the network directly to the core or

hyperthread responsible for processing that flow.

Another prevalent trend is the introduction of radically new transport protocols. This in-

cludes protocols such as pFabric [AYK+12], NDP [HRA+17], Fastpass [POB+14], and Ethernet

TDMA [VPVS12]. Unlike TCP, these new transports commonly impose stringent requirements

on exactly when packets need to be transmitted on the wire, and further often require fine-grained,

67



per-flow rate limiting [JAM+12, SKG+11]. Finally, datacenter operators and rack-scale com-

puter designers have begun to explore new, advanced topologies. As discussed in the previous

chapter, one such topology, Opera, is based on expander graphs [KVS+17, VSDS16]. All of

the circuit switched topologies in Chapter 2 rely on non-shortest path forwarding and multi-hop

indirection. Other circuit-switched topologies topologies rely on RF [CXW+16, ZZZ+12] or

optical [FPR+10, LLF+14] devices to physically reconfigure their structure, which necessitates

sending data at precisely the correct time [LML+15, BVAV16] (and rate) to match the physical

configuration, potentially relying on multi-hop indirection as well [BVAV16, MMR+17].

Rapidly increasing link rates make these trends even more challenging to address. Net-

works running at 10- and 40 Gbps have been deployed for years [SOA+15, RZB+15a], and 100

Gbps NICs and switches are now commodity. At the 2018 OpenCompute Summit, a number

of vendors announced 400 Gbps networking gear to serve modern datacenter workloads, and

Facebook now uses 400 Gbps networking equipment in their datacenter [AWE19]. While ad-

vancements in OS design have improved endhost performance, they are still hard to scale. This

has led to the development of modular user-level, kernel-bypass frameworks called “software

NICs” [HJP+15, PHJ+16, KPAK15]. Software NICs are highly programmable software inter-

faces between virtualized endpoints (e.g., VMs or containers) and the network. While software

NICs are primarily targeted for environments where more complex operations are required,

such as network function virtualization (NFV), they are beginning to gain traction as a standard

medium for endhost traffic control [SDV+17].

The pairing of endhost-backed flow control with the fine-grained capabilities of software

NICs invites the natural extension that software NICs should implement these endhost-based flow

control proposals, as the extensibility and ease of use of software NICs makes them extremely

attractive for both rapid development and deployment in datacenter and rack-scale environments.

In order for software NICs to be suitable to today’s environments, their performance must be

satisfactory for both current and future workloads.
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In this chapter, I investigate the feasibility of deploying complex endhost-based flow

control and TDMA mechanisms on a representative modern software NIC, BESS [HJP+15]. As

software NICs are deployed on faster links, first 40 Gbps and ultimately 100 Gbps, I seek to

understand how they perform across a range of operational conditions. While I am evaluating

BESS, its fundamental performance characteristics are largely due to DPDK [Fou], the underlying

kernel-bypass framework that it is built upon, which I use in Section 2.5.

I create a number of experimental networking applications on the BESS framework and

measure results up to and at 100 Gbps speeds. I focus primarily on a limited number of targeted

applications to determine performance baselines across core flow control concepts. I discuss

our experience developing for the BESS architecture during development and some additional

features that would be beneficial to recent flow control proposals.

I find that while BESS and DPDK provide mechanisms for designing and implementing

wide range of networking applications purely in software, there are still inherent limitations I

observe that require NIC hardware support to solve. BESS provides great TDMA performance

at speeds at around 40 Gbps, but fails to operate sufficiently at 100 Gbps in the majority of the

scenarios I test.

3.2 Background of Software NICs

In this section I discuss software network interface cards (sNICs) and their architectures,

taking note of the BESS author’s original intentions of the problems they are intended to solve.

Next I hypothesize how their software architecture can potentially provide a solution to current and

future forms of high-speed network traffic control, particularly features that are often implemented

via hardware rather than software. Finally, I review the core concepts of TDMA flow control, and

how an sNIC may be leveraged for the requirements of TDMA schedules.
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3.2.1 History of Software NICs (sNICs)

Software network interface cards are designed to supplement or reimplement functionality

traditionally performed by NIC hardware, such as packet pacing, tenant isolation, and protocol

offloading. Since these functions are implemented in software, they can be upgraded quickly,

reducing bugs, enabling new features, and ensuring flexibility for future architectures and systems.

To provide high performance, sNICs layer directly on the hardware NIC by mapping

portions of the NIC memory into the sNIC, rather than relying on an OS-provided device driver.

Both BESS [HJP+15] and FlexNIC [KPAK15] directly claim to be software NICs, but I argue

that NetBricks [PHJ+16], a framework targeted specifically for network function virtualization

(NFV) falls in this purview as well. Both BESS and NetBricks leverage DPDK [Fou], which

provides drivers for mapping hardware NIC memory into userspace and a generalized library for

interfacing with these drivers.

Of course, software may perform any amount of packet processing it wishes; NIC hard-

ware does not limit the actions that endhosts can perform inside the network. But while the Linux

TC subsystem provides a workable interface for many forms of traffic control, such implementa-

tions are typically too slow for current demands [KNHM17], leading to the trend of hardware

offloading described above.

As modern datacenters serve increasing amounts of demand each year [SOA+15], it

is essential for sNICs to provide high performance alongside an easy-to-use framework for

development. I argue that the long-term feasibility of sNICs is dependent on whether they can

operate efficiently at high speeds or if iterations of specialized hardware will be necessary for

future flow control needs.

For my evaluation, I use BESS as a representative case study for an sNIC. It supports

recent versions of DPDK that interface with the 100 Gbps NIC used in my tests. My aim is to

establish how well BESS achieves its goal for several different forms of traffic and flow control
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(which I refer to more generally as “flow control” or “traffic control”) in a 100 Gbps environment

using several benchmarks. From this I posit the strengths and weaknesses of an sNIC and its

potential to support new forms of traffic control.

3.2.2 Endhost Flow Control

The advertised features of sNICs make them a suitable target for quickly changing

implementations of network traffic control. At its core, traffic control aims to maximize network

performance. It is important to quantify multiple distinct vectors of measurement in order to

properly evaluate sNICs as a networking utility. I focus on a few of these general concepts that I

believe are critical for future datacenter architectures.

Rate limiting

Rate limiting is perhaps the most fundamental concept of flow control, with roots based

in one of networking’s earliest and most ubiquitous flow control proposal, TCP. The idea of

rate limiting is simple: if the network cannot support the bandwidth that the host wishes to

supply, simply make the host supply less bandwidth. This avoids packet loss, which can cause

unnecessary retransmissions, increased latency, and lower overall network performance.

Although hardware-based rate limiters have become common in recent high-speed NICs,

they are unlikely to support per-flow limiting for thousands of flows due to limitations in on-NIC

memory and processing power [RGJ+14]. Recent work [SDV+17] has proposed a method to

handle rate limiting in software with the help of an sNIC framework.

Many flow control proposals require rate limiting in order to avoid packet loss or restrict

the bandwidth of low-priority flows. I list several such proposals in Table 3.1. It’s clear that rate

limiting is an essential component of flow control, and one that sNICs must support very well at

scale in order to be a suitable alternative to hardware.
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Packet pacing

Because bandwidth is measured as data per second, the delta time that bandwidth is

computed for can be of any duration. However, packets are always sent at the configured speed of

the link. Even if the rate a flow is sending at is properly limited, the packets from that flow may

be arriving in bursts large enough to cause packet loss. This can be mitigated with larger packet

queues, which has the side effect of increasing overall latency.

In order to allow for small queues (and thus low latency) without overloading the network,

some proposals require that rate limiters also pace packets. Perfect packet pacing is achieved by

ensuring each packet of a flow is sent on the wire with interpacket gaps equal to the amount of

time the packet would have theoretically required to send on a link with the same aggregate speed

of the rate limited flow.

This is generally a feature relegated to hardware for two reasons. First, it requires software

to precisely time when individual packets are given to a NIC, which requires a dedicated CPU

core. Additionally, supplying a single packet in each PCI transaction to the NIC drastically

reduces the potential throughput of the system compared to sending a group of packets as a single

unit.

Some flow control proposals leverage packet pacing mechanisms for additional perfor-

mance. NDP [HRA+17] proposes a secondary queue for flow control administration that requires

packet pacing in order to provide theoretical guarantees. I investigate what granularity of packet

pacing an sNIC can perform to understand if it can potentially replace hardware solutions.

Flow scheduling and TDMA

Flow scheduling can refer to a number of different specific approaches within the flow

control space. As mentioned in Chapter 2, TDMA flow scheduling is of interest due to its

ability to be used in optical and RF-based reconfigurable datacenter networks [VPVS12, LLF+14,

CSS+12, WAK+10]. In Table 3.1 I list some flow control proposals that leverage TDMA in
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their implementation. These proposals aim to provide a future-proof way to scale the speed of

a datacenter at the cost of path availability, requiring a TDMA-style form of control in order to

function efficiently.

TDMA flow scheduling operates on the core idea that flows cannot be transmitted at all

times. TDMA schedules require sending bursts of packets to destinations during precise time

windows. The exact reason for this restriction is dependent on the datacenter architecture and

flow control system. For example, optical networks implement a circuit-switched abstraction, and

so endpoints can only send data to a particular destination or set of destinations when the circuit

is established to those points. Fastpass [POB+14] implements this circuit-switched abstraction

on a packet-switched network, rather than on a physical circuit-switch.

I review two central concepts to TDMA scheduling: the period of the schedule, and its

duty cycle. The period of the schedule is the duration over which a single set of flows may be

sent, and includes any downtime delay from reconfiguration or other sources. I divide a period

into an uptime during which packets are sent and a downtime when nothing can transit the circuit

Table 3.1: Proposals that use rate limiting, TDMA, and/or indirection for flow control.

Proposal Rate Limit TDMA Indirect
DCTCP [AGM+10] X
EyeQ [JAM+12] X
NDP [HRA+17] X
TIMELY [MLD+15] X
HUG [CLGS16] X
Fastpass [POB+14] X X
Diamond [CXW+16] X X X
WaveCube [CWM+15] X X X
RotorNet [MMR+17] X X X
Eclipse [BVAV16] X X X
OSA [CSS+12] X X X
TDMA [VPVS12] X
Helios [FPR+10] X
ReacToR [LLF+14] X
c-Through [WAK+10] X
Solstice [LML+15] X
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switch. The duty cycle of the schedule is simply the ratio of the uptime over the total period of

the schedule, and represents the percentage of time that can be used to send data. The period and

duty cycle of a dynamic TDMA schedule may change rapidly over time, such as in Fastpass.

TDMA flow scheduling can be difficult to efficiently implement on endhosts. Packets

sent outside of the uptime can potentially cause increased queueing or even packet loss. This

requires flows to start and stop transmitting as closely to the edges of the uptime as possible in

order to maximize performance. Short periods or duty cycles make this a difficult task, but are

theoretically beneficial by decreasing the scheduling latency of flows.

Little to no hardware support exists for TDMA scheduling, and enforcing precise forms

of packet transmission is intractable with the standard Linux networking stack [VPVS12], as I

discuss in Chapter 2. Software NICs may provide a potential solution to implementing this form

of flow control at high speeds and realizing some TDMA-based flow control proposals which rely

on simulations in order to compute their results [BVAV16, LML+15].

Multi-hop indirection

A unique form of flow control that has begun to appear in some systems is multi-hop indi-

rection, a form of routing that has endpoints in the network forward a flow across multiple paths

to its ultimate destination. Multi-hop indirection requires that components forward information

back into the network along a transmission path, which reduces the potential outgoing throughput

of the endhost or top-of-rack switch forwarding the flow.

Multi-hop indirection is rooted in the core ideas of Valiant load balancing (VLB), and

has become a useful idea for flow control implementations in datacenter architecture propos-

als that do not always have a direct path between all endhost pairs. For example, the previ-

ously mentioned optical networking proposals often cannot implement a full crossbar using

an optical switch. While an endhost could simply store the data until a direct connection is

available, some proposals [MMR+17, CSS+12] instead leverage underutilized outgoing links
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Figure 3.1: Simple sNIC sender and receiver. More cores may run concurrently with their own
TX/RX queue.

at currently connected hosts and employ multi-hop indirection to reduce latency. Yet other

proposals [VSDS16, CWM+15] may never have a direct connection between an arbitrary pair

of hosts, and thus require indirection. I mark some proposals that use multi-hop indirection in

Table 3.1.

Multi-hop indirection may be implemented via per-switch forwarding tables based on

destination IP or other information, similar to how most tree-based datacenter networks typically

operate. I examine a different method that provides forwarding information in each packet

as an encapsulated GRE header, an idea taken from previous work in source-based datacenter

routing [JFR16]. Packet encapsulation is typically done in hardware, and most enterprise-level

switches support using GRE headers to determine the output port to forward an incoming packet.

Software NICs provide a low-overhead method of prepending headers to packets, and are

able to implement multi-hop indirection. Future datacenter architectures may significantly benefit

from this if hardware solutions for multi-hop direction at 100 Gbps speeds are unavailable or

insufficient.

3.3 sNIC Testing Design

Software NICs are intended to be easily usable for a large range of networking applications,

and must provide a consistent and extendable framework in order to fulfill this goal. They must

accomplish this while also effectively leveraging an often unintuitive kernel-bypass framework in

order to provide high performance for applications. BESS, the software NIC I analyze in this
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work, achieves this by having only a few core interfaces that users can combine and interact

with to implement complex network functions. These interfaces leverage or even partially

reimplement DPDK libraries to gain the performance benefits DPDK provides. BESS also

exposes programmable RPC endpoints to interact with these interfaces in order to enable more

dynamic systems.

I briefly describe the interfaces that BESS provides and how they can be leveraged by

users to perform a variety of actions. I also discuss the potential limitations of this architecture

and how it may be improved to provide even further flexibility. I then focus on the framework

I created to run and gather results, and the modifications I made to the general purpose tools

provided by BESS.

3.3.1 Core functionality

The main component of the BESS sNIC consists of a C++ daemon that utilizes DPDK

libraries. The daemon runs a gRPC (https://grpc.io) server that is used by a controller for setting

up and configuring applications. A control client written in Python is provided to users in order

to easily communicate with and execute tasks on a daemon. BESS applications consist of some

combination of workers, schedulers, modules, and packets.

Components

A BESS worker is a logical thread pinned to a CPU core that executes a root scheduler

object. Scheduler objects implement configurable scheduling policies, such as round robin or

weighted fair queueing, and have one or more children attached to them, creating a tree. Each

child may be either another scheduler object (a node), or a module that defines a task (a leaf).

This is akin to how the Linux TC subsystem operates, and as such schedulers in BESS are also

sometimes referred to as “traffic classes”.

BESS modules may or may not have a task that is executed by a scheduler, but every
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module has some set of input and output gates that represent how packets flow through an

application. An output gate may only connect to one input gate, though an input gate may have

multiple output gates connected to it. A module that implements a task represents a starting point

for some chain of modules that will handle batches of packets. When a module is run or receives

some packets at an input gate, it will execute a function that may perform any operation it wishes

over the batch, and then either stop all further processing of the batch or send the batch through

an output gate to another module.

A range of basic modules are provided by the BESS codebase that implement several

forms of common network functions, such as header encapsulation, field matching, and packet

timestamping. Every module must supply a minimal set of RPC functions that allow the module

to be created by the control client, and may supply further functions to allow users to inspect

module state or change its configuration at runtime. Some modules provide wrappers around

DPDK libraries, such as queue modules that may send or receive packets from a device queue on

a DPDK-compatible NIC.

Simple applications

All traffic in my results is generated by software NICs. I define a flow generated by an

sNIC to mean a continuous stream of a single unique duplicated UDP packet. Every byte of each

packet is written by the sNIC, and additional headers are written into the packet based on the

experiment being run. I program the packet generation modules to run at their maximum speed,

meaning there is always infinite demand for every flow. This ensures that I primarily evaluate the

performance of the scheduling and packet processing components; I defer evaluation of timely

traffic generation and application feedback for TDMA traffic patterns to future work. One or

more flows may be sent via a single TX/RX queue, and each TX/RX queue pair is handled by a

dedicated CPU core.

The simple sending and receiving applications I run for my microbenchmarks presented in
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Section 3.4.1 are shown in Figure 3.1. Source modules can be configured with different batch/burst

sizes, which determines the number of packets that will be allocated and sent simultaneously to

the pipeline, and ultimately over the network. The size of the data buffer given to the Rewriter

module will determine the size of each packet in the batch. The statistics reported to the scheduler

are used to determine sending and receiving rate.

3.3.2 Rate Limiting and Packet Pacing

BESS provides a rate limit scheduler that can attach to a single child task. I create one

rate limit scheduler for each sending flow. Each worker uses a round robin scheduler as their root

with rate limit schedulers as children. The rate limit scheduler uses an internal token bucket filter

that is refilled at a user-programmed rate. After a batch of packets is sent by a flow, tokens are

generated based on execution time. If a flow uses more tokens than are available, it is blocked for

a period equivalent to the time it would have taken to produce those tokens.

This means that the rate limit scheduler attempts to perfectly pace the child when it is

using bitrate as the variable for producing and consuming tokens. While the rate limit scheduler

has a maximum burst parameter, this does not have any additional function when bitrate limiting

is used. The true size of a burst for a flow is determined by the burst size that is input to the packet

generation (Source) module, as this allocates a group of packets in a single execution loop of the

scheduler. Because the rate limiter cannot block the flow in the midst of a single batch, large

batch sizes at the Source module of a sending flow will result in a roughly equivalent burst of

packets on the wire (n.b., the actual batch size sent is ultimately dependent on the NIC firmware).

3.3.3 TDMA Scheduling

TDMA support is not included in BESS. I implemented a custom TDMA module that runs

on a dedicated CPU core with no other tasks. This ensures that the scheduler will not accidentally

send packets at inappropriate times. While it would be expected to implement TDMA as a
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State	Array

RPC	Functions

RunTask() {
now = get_time();
if(is_night(now))

return;
state = get_state(now);
t = state_array[state];
active_queue =

destination_queues[t];
build_batch(active_queue,

dummy_pkts);
write_tdma_header(batch);
send_batch();

}

Destination	
Queues

Dummy	
Packets

.			.			.			.			.
Figure 3.2: sNIC TDMA module. Destination queues may contain data from one or more
flows. Dummy packets are used when little data is available to ensure the NIC transmits data
packets promptly.

Packets on wire (up-time)

Up-time preallocation

Guard delay Down-time

Packets sent from TDMA Module Packets sent from TDMA Module

Packets on wire (up-time)

Up-time preallocation Up-time preallocation Up-time preallocation

Guard delay

Figure 3.3: A TDMA schedule. Up-time preallocation and guard time correct for observed
delays and variance in packet transmission from NIC hardware.
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scheduling object, I have ultimately decided to implement TDMA as a monolithic module instead.

The primary reasoning for this decision is twofold.

First, the module interface of BESS is clearly defined and allows for rapid development

of new classes, and provides a direct way to create RPCs for these modules that can be used to

inspect and modify the module’s state. The scheduling interface does not permit heavy amounts

of inspection or modification to overall state at runtime without significantly more programming

effort, which made it difficult to use during development.

Further, the scheduling interface does not provide a way to the parent class to identify

a specific node that has become blocked or unblocked, only that there was a child for which

that event occurred. If a TDMA scheduler wishes to use rate limited flows or any flows that do

not have infinite amounts of traffic, this then requires the scheduling object to manually iterate

through all of its children to identify which child became blocked, resulting in an inconsistent

and uncontrollable delay that scales with the number of flows the TDMA scheduler controls.

In general, I found the difficulty of developing new schedulers in BESS to be much higher

than developing modules. Doing so requires a more in-depth knowledge of both the core daemon

and control client, which may be disappointing for users that may be examining BESS as a

general platform for future flow control systems. However, I have not examined the difficulty of

creating a similar mechanism in the Linux TC subsystem, so I cannot comment on the difficulty

of this task relative to BESS.

A custom TDMA module

The structure of my TDMA module is shown in Figure 3.2. The module is configured

with the number of hosts in the network, and creates a destination queue for each. Flows provide

packets to the appropriate destination queue via an equal number of input gates. The vertical

line in the figure denotes a separation between the input gates which terminate the current task

chain, and the output gate which executes a separate task on a dedicated core in order to ensure
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scheduling accuracy.

RPC functions are used to program the state array of the module, which contains the

up/down pattern that the TDMA module task should use, and the appropriate destination queue to

use for each up-time. Once the last state is executed, the module will loop back to the beginning

of the state array. The state array also contains a base index time that is used to synchronize the

up/down periods of TDMA modules on separate machines. I use PTP on a separate interface not

controlled by software NICs to synchronize the host clocks of each machine.

There is an additional input gate for dummy packets, which are generated by a separate

Source module and contain a basic Ethernet header with zeroed MAC addresses. This is necessary

in order to ensure that the physical NIC transmits packets quickly even if there is only a small

number of packets waiting in a destination’s queue when up-time begins. If a batch cannot be

completely filled with real packets, dummy packets are used instead. Because the MAC addresses

are zeroed, a network switch will drop these packets immediately upon receiving them.

Even with this precaution, there are still times that the physical NIC hangs onto packets

too long, causing packets to be transmitted during down-times. Additionally, the delay between

the NIC receiving and transmitting its first batch can be high. There is also a software delay from

the time an up-time begins and the first batch of packets being handed off to the NIC. To solve

these issues, I provide a guard time and an up-time preallocation value to a TDMA module.

The guard time value is used to “cut off” an up-time early to ensure that no packets

get transmitted during the down-time. I evaluate the measured loss of various guard times in

Section 3.4.3. The up-time preallocation value starts an up-time early in order to ensure packets

fill as much of the up-time as possible. The combined effect of these two values is visualized in

Figure 3.3. I show two up-times along with the down-time between them.

By using multiple cores each with a dedicated TDMA module, I can create multiple

“virtual hosts” that are all controlled by a single sNIC. Each virtual host can then act in isolation,

generating its own flows and sending to their own distinct destinations. For my results, I create
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pairs of virtual hosts that only communicate with one another on fixed up/down intervals in order

to provide a baseline evaluation of the capabilities of sNICs for TDMA scheduling.

Because BESS will run each module at full speed unless otherwise specified, I use a rate

limiting scheduler with the BESS module as its child to ensure virtual hosts do not compete with

one another for link bandwidth.

3.3.4 Multi-Hop Indirection

I measure the latency and accuracy of multi-hop indirection in sNICs to understand if they

can be utilized for future datacenter architectures. I use packet encapsulation, which provides the

most flexibility but slightly larger overhead due to the additional data and processing required

for each packet in a flow. Another method of indirection could be to communicate a forwarding

pattern as a scheduling state to the TDMA module, but this has extremely limited flexibility

within my specific implementation.

BESS supplies generic header encapsulation and decapsulation modules to the user, and it

can be used to implement both standard GRE headers as well as any arbitrary header the user

wishes to define. DPDK packets provide a buffer on either side of the packet when they are

allocated in order to rapidly prepend and append information without requiring the entire data

buffer to be copied.

I create a simple forwarding application using basic modules that encapsulates each packet

of a single flow with a 4-byte standard GRE header and timestamps packets before sending them

to a receiving host. The receiver then removes the GRE header, swaps the MAC addresses in the

Ethernet header, and then forwards the packet back to the sending host. The sending host records

round-trip packet latency.
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3.3.5 Statistics Modules

I create a few modules to gather statistics for my experiments. While basic rate information

is provided by BESS, I wish to inspect interpacket gaps for packet pacing and record arrival

times to analyze the performance of my TDMA module and multi-hop indirection application. I

leverage the histogram object provided by BESS for TDMA scheduling statistics and round-trip

latency.

Recording interpacket gaps cannot be done precisely in software, and I do not have a

Figure 3.4: sNIC data throughput with one sending core.
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hardware solution available for accurately timestamping packets at 100 Gbps. Instead, I create

a module that records the arrival time and size of each batch of packets for a flow in a memory

array for a fixed number of batches. This is then dumped to a file at the end of an experiment for

later analysis.

While loss information can be provided by NIC counters, I create a sequencing module

that detects packet loss in a flow. The sequencing module has a paired loss detection module

that simply inspects the sequence number of each packet and records any gaps in a histogram. I

slightly modify BESS to allow the sequencing module to retransmit sequence numbers if they

were dropped at the sender by a later module.

3.4 sNIC Results

I now present results when using sNICs for a variety of flow control components along

with microbenchmarks to provide an understanding of software NIC baseline performance. I

execute my tests on a pair of Dell PowerEdge R630 servers, each with a 100 Gbps ConnectX-5

NIC. The NICs are connected together using a 100 Gbps Mellanox Spectrum Ethernet switch.

Both servers are configured with two 12-core Intel Xeon E5-2650v4 CPUs, though only one is

used to ensure I do not require any tasks to use QPI to communicate with the NUMA domain

of the NIC. My servers run Ubuntu 16.04.3 LTS with Linux kernel version 4.4. I use a current

open-source version of BESS that leverages DPDK version 17.11. The ConnectX-5 network card

driver and firmware is provided by MLNX OFED version 4.2-1.2.

3.4.1 Microbenchmarks

I begin by executing a few microbenchmarks that allow a basic understanding of the

baseline performance of software NICs. This is a requirement when properly evaluating more

complex applications, as I must understand if failures and limitations observed there are a result

84



Figure 3.5: Combined sending/receiving throughput using bidirectional flows with a burst size
of 32 packets.
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Figure 3.6: sNIC throughput with 64-byte packets.
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Figure 3.7: sNIC throughput with an 8 packet burst size.

(a) Flows from a single core. (b) Flows from four cores.

Figure 3.8: Rate limiting accuracy of a primary flow. Remaining bandwidth is evenly split
across all other flows (not shown). All flows use 1500 byte packets and a burst size of 8 packets.
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of one or more basic restrictions. In all but one microbenchmark, one host acts as a dedicated

sender, and the other as a dedicated receiver. I report the statistics at the sender, as the receiver

was not the limiting factor in my microbenchmarks.

I first determine the throughput that a single core can provide in gigabits per second

(Gbps) as a function of packet size. I also vary the burst size, which determines how many packets

are created and sent in a single scheduling loop. A lower burst size means more time will be spent

between allocating and sending each packet, but allows for finer grained rate limiting and packet

pacing.

The results in Figure 3.4 suggests that a single core is able to saturate the entire link

if maximum sized packets and the largest possible burst size (32 packets) is used. Even still,

saturating the link with 40Gbps of bandwidth is very feasible with a large range of packet and

burst sizes. As a baseline, a single core is quite capable of saturating link bandwidth. At 100Gbps,

saturating with a single core is typically infeasible, but given 100Gbps is a large amount of data

for a single core to handle in many scenarios, this is neither unreasonable nor unexpected.

Some of my later experiments use bidirectional flows, where each host acts as both a

sender and receiver. I modify my previous microbenchmark and have each machine have a

number of sending and receiving queues simultaneously handled by different CPU Cores. I

measure the combined sending and receiving throughput at a single host.

I see from the results in Figure 3.5 that when a single queue is simultaneously sending

and receiving data, it is unable to achieve 100 Gbps bidirectionally. I are unable to determine

whether this is a limitation of BESS or DPDK, but this does mean that users should be aware that

multiple queues may be required to achieve 100 Gbps bidirectionally on an endhost.

My next microbenchmark examines sending throughput and how this scales with multiple

sending queues, where each queue is dedicated to a single physical CPU core. I measure the

sending rate at the receiver in millions of packets per second (MPPS). I use 64 byte packets in

order to ensure that the link can be saturated with the maximum possible number of packets
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instead of data. I again test with different burst sizes at the sender.

The results are presented in Figure 3.6. I note that the advertised maximum MPPS for

the NIC I use is roughly 140 MPPS [MT], meaning the theoretical ideal maximum shown in

the figure is likely not achievable with my hardware. With the maximum possible burst size (32

packets), I can achieve just over 142 MPPS.

For my TDMA experiments in Section 3.4.3, I select a fixed burst size of 8 packets. The

final microbenchmark I perform is the throughput scaling of multiple cores with this same fixed

burst size and different packet sizes. I again have each queue on unique physical CPU cores.

The data in Figure 3.7 asserts that demonstrate that adding a small number of additional

cores can linearly scale throughput for all packet sizes, but as more cores are added, throughput

grows at a slightly slower rate. Interestingly, throughput always increases when using 64 byte

packets, but otherwise there is a slight loss of performance when using 8 cores. My hypothesis

is again that there is some form of CPU cache contention at this point that has a more negative

effect than the increased throughput provided by an additional core.

I find it interesting that performance decreased when increasing the number of sending

queues or packet size in a few places, and are not able to provide a definitive explanation as to

why. My hypothesis is that at these points the CPU cache became limited due to the increased

memory required, offsetting the potential benefit.

I see from these microbenchmarks that although I am unable to completely saturate a

100 Gbps link with non-MTU size packets, it can send at a significant fraction of that with only

a few cores and a moderate burst size. However, in order to ensure link saturation for future

experiments with a lower number of queues, I use packet sizes of 1500 bytes.

3.4.2 Rate Limiting

I examine the accuracy of sNICs for rate limiting over a number of different active queues

and flows per sending queue, using one dedicated core per queue. I again have dedicated sender
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(a) A single flow. (b) Four queues, each with one flow.

Figure 3.9: CDF of estimated inter-packet gaps with 1500 byte packets for a flow. All flows are
limited to 25Gbps.

and receiver hosts. I use rate increments of 5Gbps and record the amount of bandwidth observed

at the receiver. I create one receiver queue per sending flow to ensure the receiver accurately

gathers sending statistics.

I sweep the desired rate for the first (primary) flow on the first queue I create. The

remaining rate on the link is distributed evenly across every other flow in the experiment, including

flows sent from other queues. I record both pacing and loss data along with the average throughput

of each flow (see below).

I first increase the number of flows that are sent from a single core (and thus queue) and

compute how close the achieved rate is to the desired rate for that flow. I use a burst size of 8 and

a packet size of 1500 bytes in order to provide a balance between good throughput of single and

multiple flows.

The clear takeaway from the data in Figure 3.8a experiments is that multiple flow tasks

with different rate limits do not perform well on a single queue. With just two flow tasks sharing

the link bandwidth the primary flow underperforms, even though with 1500 byte packets it is

possible for a single flow to almost completely saturate the 100 Gbps link. However, I see that

the primary flow never takes more bandwidth than it is allotted, which is a desirable invariant.
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In order to further understand this issue, I perform the same test with four active queues

and between one to four flows per queue. This means there are again at most 16 flows sending at

any given time. Bandwidth not assigned to the primary flow is again split evenly across every

flow across all queues.

The performance seen in Figure 3.8b is much more promising. I immediately see that

while I am still unable to completely fulfill requested rate limits for high amounts of bandwidth,

there is not a rapid collapse between the achieved versus requested rate. This argues that the sNIC

is currently unable to handle multiple rate limits on a single core when that core is responsible for

sending extremely large amounts of traffic, and does far better when some of the link bandwidth

is offloaded onto other cores.

Packet pacing

During my rate limiting evaluation, I record the arrival time and size of each batch of

packets for each flow at the receiver. I then assume that each packet in a batch was evenly

spaced between the arrival time of that batch and the previous batch. While this is an optimistic

evaluation of packet arrival times for a flow, it does permit me to coarsely inspect the distribution

of inter-packet gaps for each flow without requiring an advanced hardware solution. I ensure that

each receiver core only handles one flow.

I again present results for a ”primary” flow that is allocated a fraction of the overall link

bandwidth on one core, with the remaining bandwidth distributed across all other flows both on

the same and other cores. I plot the arrival times as a cumulative distribution function, with the

ideal interpacket gap for the given bandwidth displayed as a vertical dotted line.

My results when sending with only a one flow and one queue at 25Gbps are plotted in

Figure 3.9a. This exhibits that up to moderate burst size of 16 packets, the sNIC is capable

of pacing packets to a reasonable degree of error, some of which may be attributed to my

measurement method.
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We’ve established previously that I need to send with multiple cores and hardware queues

in order to permit multiple flows to fulfill requested rate limits. However, when increasing to

sending with four separate queues with each sending at 25Gbps, I am now reliant on the NIC

hardware to properly stripe sending across each hardware queue, rather than batching groups of

packets from each queue together. As shown in Figure 3.9b, my NIC clearly does the latter and

the burst size I configure no longer affects the distribution of interpacket gaps. This behavior may

play a role as to why multiple queues are better able to fulfill requested rate limits.

3.4.3 Basic TDMA Schedules

My investigation into the performance of TDMA schedules on sNICs is done by sweeping

a few different basic parameters in order to gain insight into the core limitations of software NICs.

The results here are targeted towards the TDMA specific requirements described in Section 3.3.

Because more complex TDMA schedules will have strict requirements in order to work effectively,

I work here to identify scenarios where the performance of a software NIC is insufficient to

identify future work for both networking software and hardware to satisfy future systems.

I run each test with a number of virtual TDMA hosts on the same two physical machines,

with each machine hosting half of the virtual hosts for the experiment. Each virtual host requires

two physical CPU cores; one for sending scheduled traffic, and the other for receiving traffic and

gathering statistics. I use a third physical core for each virtual host to generate traffic to ensure

infinite demand. Each virtual TDMA host only sends a single flow to one other virtual host in a

repeating static up/down pattern, as described in Section 3.3.3. I use a fixed up-time preallocation

value of 3 microseconds, which I determine based on preliminary results. The burst size of each

virtual host is fixed at 8 packets to balance throughput and emission accuracy. I use dummy

packets sized at 128 bytes, which are able to mitigate NIC transmission delays while not creating

any observable overhead on performance.
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Guard time

As discussed in Section 3.3.3, the appropriate guard time value varies due to both software

and hardware. Because evaluating the effect of hardware in my case would require multiple

100Gbps NICs to cross reference their minimum appropriate guard time value, I instead simply

present a sweep over my experimental setup to evaluate the effect of different guard times on the

quantity of packets seen during down-time. I use 8 virtual hosts (4 per physical machine) rate

limited to 10Gbps each.

My results are shown on Figure 3.10. While it may initially seem unintuitive that larger

packet sizes are lost more often, this is caused by batches of packets transmitting just before the

up-time ends, meaning some fraction of the batch will be lost. If the batch takes more time to

transmit, more of the overall batch will end up being transmitted during down-time. There is

observable variance in the results caused by the hardware and scheduling randomness. I see that a

guard time of 4 microseconds is sufficient for preventing packets of any size from arriving during

down-times. For the following results I select a value of 5 microseconds in order to provide a

reasonable buffer and eliminate any possible variance in the transmission delay of packets that

may cause packets to be transmitted during down-times.

Duty cycle

The purpose of a TDMA schedule’s duty cycle is important to determine how to appro-

priately balance the schedule of flows, so it is important that a software NIC be able to support

a range of up/down-time durations without sacrificing accuracy or performance. This becomes

especially important if dynamic schedules are used, as the duration of the up-time or down-time

will vary between shorter and longer values over time.

I fix the duration of the TDMA scheduling period and use a number of different up/down-

time length ratios to determine the effect that the duty cycle may have on both achieved rate and

packet loss. I compute the packet loss rate across all virtual hosts via both dropped packets via
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Figure 3.10: Effect of guard time on the amount of packets observed during down-times with 8
virtual hosts each sending at 10Gbps.

sequence numbers and observed down-time packets. I use a period of 500µs and limit each virtual

host to 25 Gbps.

I see from Figure 3.11 that with both small up-times and down-times packet loss begins

to increase (thus throughput suffers), and shorter down-times have a greater effect than shorter

up-times. When the number of virtual hosts combined leverages all the available link bandwidth,

a large amount of packet loss occurs and throughput suffers. With shorter down-times, I note that

a reasonable fraction of the loss is caused by packets arriving during down-times. Interestingly,

having a small number of virtual hosts that leverage a smaller fraction of the link bandwidth

avoids most of the performance issues observed with higher speeds and more hosts, although
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Figure 3.11: TDMA packet loss rate by duty cycle with a period of 500 µs and 25 Gbps per
virtual host.
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shorter up-times do seem to induce a small penalty.

Scheduling period

I next examine the performance of TDMA when the duty cycle is fixed, but the scheduling

period is varied. I briefly mention in Section 3.3.3 that smaller scheduling periods allow new flows

to be scheduled sooner, as they have to wait less time for the previous period to complete before

they can begin sending traffic. Additionally, longer periods can be desirable in order to avoid

down-time weighted duty cycles caused by high reconfiguration delays of physical networking

hardware, such as 3D-MEMS optical switches.

I again fix the sending rate of each virtual host to 25Gbps, and use a fixed 50% duty cycle

with a varying scheduling period. I compute statistics as in the duty cycle experiments.

In Figure 3.12, I observe similar trends with the number of active virtual hosts from the

duty cycle experiment with no significant deviations. I notice that small scheduling periods still

seem to cause significant packet loss at the receiver. The variance in performance becomes larger

as the period increases at higher bitrates due to the increased duration that the sNIC must saturate

the link, which I discover can be difficult in Section 3.4.2.

3.4.4 Multi-Hop Indirection

To test multi-hop indirection, I create a single sending queue with one flow sending 1500

byte packets at various rate limits to understand how forwarding latency is affected by network

speed.

While rate limiting performance for a single queue and flow performed reasonably well

in my rate limiting experiments, it is expected that any performance degradation caused by rate

limiting will affect forwarding latency in any system. Because multi-hop indirection requires

sacrificing the forwarding host’s outgoing throughput on indirected traffic, it is typically necessary

to rate limit forwarded data so that it does not completely consume the outgoing link’s available

96



Figure 3.12: TDMA packet loss rate by scheduling period with a duty cycle of 50% and 25
Gbps per virtual host.
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bandwidth.

The results of my experiment are in Figure 3.13. The boxes represent the standard quartiles

for the results, and the whiskers represent the 0.1 and 99.9 percentiles of observed latency to

account for scheduling variance during beginning the test and while collecting results. I record

loss information (not shown), and measure roughly 18% packet loss only at speeds of 80Gbps

and above, explaining the massive spike in latency at those points.

I see that the forwarding latency does slightly increase for higher speeds before loss

occurs, implying that there is some software-associated overhead with forwarding encapsulated

packets at high network speeds. I also observe that the forwarding latency at low speeds is

actually rather large. I suspect this is due to the hardware NIC delaying packet transmissions until

a sufficiently large batch has been enqueued, which explains the large gap between the median

and the minimum values.

3.4.5 sNIC Performance Observations

Although these tests are not completely exhaustive, I have gathered enough results that I

have gained a basic understanding of the limitations of sNICs for usage in a few different flow

control contexts. I do not expect these results to be a statement on whether the idea of software

NICs is well formed or invalid, but just an observation of the current state of affairs based on the

results I have presented.

The amount of bandwidth that an sNIC can provide to the network is very good for 40

Gbps links: only a few cores are necessary to send at 40 Gbps with minimum size packets.

However, scaling to 100 Gbps speeds becomes difficult for smaller packet sizes without using

a large number of cores, which is prohibitive for non-experimental usage. I suspect that the

microbenchmarks perform roughly equivalent to base DPDK due to the simplicity of the sNIC

application used to run them, implying that the core technologies enabling software NICs at all

may need further development in order to satisfy future networking demands.
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Per-flow rate limiting performance in the sNIC was rather disappointing when using a

single core. I note that given the performance of the microbenchmarks that this is primarily due

to the large amount of bandwidth sent on a single CPU, especially since splitting the bandwidth

across multiple CPUs drastically improved performance.

While packet pacing performance was disappointing, it was not unexpected. It is impos-

sible for current software to control the exact method that the NIC firmware will use to select

and send packets from various queues. I am impressed that the sNIC and DPDK managed to

pace a single flow fairly well in isolation, given that the hardware NIC could have simply held

onto packets until a minimum size threshold. Future hardware could provide a method through

DPDK to configure some of the firmware’s packet transmission parameters to make software-

programmed packet pacing a viable alternative. At the moment, hardware is still a necessary

solution to enforce pacing of flows.

The TDMA performance of the sNIC is satisfactory when it is bound within the limits

found in the previous results and the parameters of the schedule are within some moderate

restrictions. The only serious setback for TDMA is that scheduling periods at or less than 50µs

begin to incur serious performance setbacks at higher speeds, which makes multi-hop indirection

more essential when using sNICs for TDMA flow control.

Multi-hop indirection proved to have higher latency than I expect in even the best case,

though I am unable to determine how much of this is due to software versus hardware. The current

performance is sufficient to reduce flow latencies for TDMA based on the required scheduling

periods I observe. However, many datacenter networks are beginning to use low flow latency as a

primary metric, and the multi-hop forwarding latency of the sNIC is an order of magnitude higher

than current expectations for flow latencies in datacenters [ZDM+12].

Additionally, the limited flexibility of the scheduling subsystem discussed in Section

3.3.3 prevents me from seeing sNICs as a perfect solution for future-proof TDMA flow control

development. Nonetheless, the module subsystem is easily extensible and provided sufficient
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Figure 3.13: Packet forwarding latency using GRE encapsulation with 1500 byte packets and a
single flow.

performance with a limited number of cores at 40 Gbps that I can highly recommend that users

leverage sNICs in current datacenter networks in endhosts for a range of flow control systems.

3.5 sNIC Conclusions

Software NICs provide a flexible framework to aid to future flow control development,

and their features aim to supplant some of the trends towards offloading networking functions

onto NIC hardware. Rate limiting, packet pacing, and TDMA flow scheduling, and multi-hop

indirection are traditionally difficult flow control problems for software, despite how prevalent
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they are in many of today’s flow control systems.

BESS, a software NIC developed specifically for endhosts and built on the DPDK software

library, provides a modular system that I use to implement and measure the performance of these

forms of flow control at 40 and 100 Gbps speeds. While sNICs allow for rapidly evolving

applications with satisfactory performance for 40 Gbps networks, there is still work to be done in

order for sufficient performance in 100 Gbps environments.

3.5.1 The Future of Circuit-Switched Networks

The support that software NICs and other TDMA implementations need will need to come

from hardware rather than software. Throughout this work and the work in Chapter 2, the common

factor I encounter is that software is not able to efficiently provide precise, nanosecond level

timing information in the variety of situations that are required for flow and traffic control inside

a datacenter network. I use a wide variety of possible tools to attempt to support the networking

protocols required in circuit switched datacenter networks at high bitrates, but am unable to

provide sufficient performance to justify the move away from a packet switched environment to a

circuit switched one.

There is still hope for circuit switched networks. Hardware support has become increas-

ingly available through complex programmable endhost NIC hardware [FSPP20, GYBS20], and

new NIC hardware aims to more directly support precisely timed packet transmissions. However,

it is clear from my work that software support alone cannot create circuit switched networks that

achieve a higher rate of energy efficiency at scale over traditional packet-switched datacenters.

Next, I will move into discussing how datacenter networks can aid in extending the

lifetimes of smartphones by understanding the current lifetime limitations in an academic envi-

ronment, and what applications may specifically be offloaded into a datacenter to prevent device

obsolescence via software incompatibility.

Chapter 3, in full, is a reprint of the material as it appeared in the Proceedings of the
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2018 Symposium on Architectures for Networking and Communications Systems (ANCS ’18).

Rob McGuinness; George Porter, Association for Computing Machinery, 2018. The dissertation

author was the primary investigator and author for this paper.
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Chapter 4

Stipulated Smartphones for Students:

Using Datacenters to Extend Device

Lifetimes

I now move from discussing how the impact of computing on the environment can be

reduced via lowering the operational energy of datacenters, to discussing how datacenters can be

leveraged to lessen the embodied energy smartphones have on the environment. In particular, I

look at the context of smartphones within an academic setting, as students are typically consumers

with less purchasing power. This means that students are poised to want to keep their smartphone

for longer.

Examining how long students can and do keep using their smartphones aids me in

understanding the current limitations of smartphone lifetimes, and how datacenters can best

be leveraged to extend them. I look at a set of student user data obtained by my campus and

understand how this data reflects what future steps need to be taken. I then discuss solutions on

how datacenters can make phones function for longer on the academic tools that are nowadays
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often required for college coursework.

4.1 Introduction to Smartphones in Academia

Computing has become an invariable and essential part of everyday life. Individuals

are now required to use digital devices in order to carry out daily tasks in both personal and

professional settings. Supporting this change is a rapid and constant evolution in hardware

and software capabilities. This is evident in the purchase rate of new smartphones, with users

replacing them roughly every 20 months on average [Pan]. Users may replace their device for

a large number of reasons, such as wanting higher resolution screens, better cameras, or better

software performance.

This inevitable “march of progress” can result in newer, widely used software that that

is cumbersome or impossible to use on older devices. Users that require this software for their

work, or students requiring this software for their education may find that their older devices no

longer work correctly and no longer receive necessary software updates. They may be able to

compromise by relying on a degraded interface to these software services (e.g. via a browser

instead of a dedicated app). However, as I will show later in this chapter, even browser interfaces

often become unusable, forcing users to upgrade their devices to continue accessing the modern

web. Those upgraded devices comes with numerous costs, both to users in the form of monetary

cost and the world at large in the form of pollution, eWaste, and increased carbon output.

In this chapter, I examine these costs with respect to undergraduate college students, a

sector of the population that now is required to use technology to receive an education in the wake

of the COVID-19 pandemic. I then discuss how datacenter networks can reduce these costs using

future novel systems ideas. Even before to the pandemic, learning management systems (LMS)

such as Blackboard and Canvas have garnered widespread use [Bla18, Ins21], forcing students to

use internet browsers or mobile apps to access and interact with coursework.
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I look at three different types of costs that occur in relation to these educational users:

Monetary Costs: With smartphone costs doubling between 2014 to 2018 [Suc19], and continu-

ing to rise, I note that students are disproportionately affected by the cost of frequently purchasing

a new device. A majority of students now receive some form of financial aid to afford a college

education [MSWH16], and some percentage of students additionally require aid for basic needs

like food and shelter. Students that are required to purchase new devices to continue to access

basic education materials may have to make compromises against their own personal well-being

in order to fulfill class requirements. I argue that a student should never have to make this

compromise in order to receive an education, especially since at a component level, their “older”

devices are likely released only a few years ago.

eWaste Costs: The other significant cost is to the world at large in the form of the eWaste

generated from discarding old devices. In 2016, the world produced over 44 million metric

tons of eWaste, with computers (laptops, desktops, smartphones, and tablets) accounting for

about a quarter of that total [BFG+17]. The vast majority of eWaste is not properly discarded or

recycled [BS+17], which results in long-term damaging effects to the environment.

Manufacturing Costs: Additionally, the vast majority of environmental damage from com-

puters and smartphones comes in their manufacturing process [BS+17]. Manufacturing incurs

enormous environmental damage, involving mining for minerals, generating greenhouse gasses

during transportation and assembly, and processing elements like cobalt, lithium, and mercury.

At the same time, once a computer goes into service, it is quite efficient, due to lower power

components, flash storage instead of spinning hard drives, and more efficient battery technologies,

among other reasons.

Taken together, it is clear that upgrading devices unnecessarily has huge personal and

environmental effects on students. And yet because the web-hosted services that students rely on
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to complete their studies become increasingly complex over time, simply keeping older devices

in use for longer is often no longer a feasible option. In this chapter I take a critical look at this

issue.

My research in this chapter focuses on the question: In the worst case, how long can

a user realistically continue to use their device to access online educational resources? I

examine multiple sources of data to answer this question. I both independently test websites with

a range of browser software and device hardware, and also perform analysis of real user data

obtained from the authors’ university, UC San Diego.

As a motivating use case, I look at websites used by an undergraduate computer science

student. Using an online platform for browser testing, I survey a sample set of educational

websites they might access across a range of legacy operating systems and browsers, dating

back to 2012. I find that after about four years, the educational websites become increasingly

inaccessible to older devices and software. I carry this information forward into my investigation

of user data.

My user data investigation is done via several years of access logs to a web-based learning

management system, Blackboard, used by classes at the authors’ college campus. I study the

average age of browsers and devices used by students across each year, and study the upgrade

pattern of devices to understand how old the software and hardware is “in the wild”. I find a

reinforcement of the “four year” lifetime implied by my website survey, seeing that there are

extremely few cases where a user operates with software or hardware outside of this timespan.

Because a traditional undergraduate degree at a university takes four years to complete

(and often more than four years), this implies that a student may be forced to purchase a new

device within their career as a student at a university in order to complete their degree. However,

I argue that a student should not be required to make this purchase, as their old hardware should

be more than suitable.

I acknowledge that there are a number of both technical and non-technical reasons why
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people dispose of their computers to get new ones. However, performance and functionality are

common concerns [BS+17]. In reality, “obsolete” devices are just as capable today as when

they were brand new. There is a growing market of “refurbished devices” showing that users are

willing to purchase older hardware, provided it still functions well [PCPS18]. I posit that this

obsolescence is a function of the evolution of modern apps, websites, and web-based services

that have grown increasingly more sophisticated and resource-hungry over time. Since most

applications that are used on a day-to-day basis require some Internet-enabled functionality, the

evolution of web-based services render devices prematurely obsolete. In an era of long-distance

learning, it is of particular importance to increase device longevity for students who now require

computers to complete even baseline academic tasks like attending class.

4.2 Background: The Use and Cost of Smartphones

4.2.1 The Ubiquity of Computing in Teaching and Learning

Academic platforms are commonplace as a support framework for presenting coursework

and managing student submissions for assignments. An academic-focused learning management

system (LMS), Blackboard, reported more than 100 million users in 2017 [Bla18]. A recently

adopted LMS, Canvas, reported more than 30 million users as of 2019 [Ins21]. Students are

expected to use these systems to access and complete coursework, and require computing devices

in order to do so. Commonly, these are accessed using internet browsers or dedicated mobile

application software.

Additionally, the COVID-19 pandemic has had an extreme effect on the role of technology

in teaching by requiring that classes begin to be taught remotely over video conferencing platforms.

Instructors need to use online teaching methods for courses [MGS20], which further reinforces

the obligation for a student to own a device capable of accessing online learning platforms.

This trend is not particularly surprising when reflecting on the growth of technology
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across the world as a whole. The proliferation of mobile networks has meant that over 80% of

the world’s population is now covered by a mobile broadband signal [BFG+17]. The number of

users has grown dramatically as well, with over 4.2 billion mobile broadband subscriptions active

as of 2017 [BFG+17], over 50% of the world global population.

4.2.2 The cost and life cycle of a computer

In order to access the aforementioned online learning platforms, a suitable computing

device must be available for each student. I must examine the costs of a computing device to

provide context the effects they have on students and eWaste generation.

There are variety of costs observed when examining the lifetime of a computing device.

These include monetary costs to the users and the environmental costs of manufacturing and

discarding the device. Each of these costs can have disproportionate effects in different ways.

Extending the life cycles of devices will offset these costs.

Monetary costs

Purchasing a computer or smartphone is a non-trivial cost to a user. While users have

varying upgrade rates depending on a large range of factors, users with less financial assets are

more likely to be unable to upgrade their devices as frequently. With the cost of smartphones

rising quickly in the past decade [Suc19], it is important to consider how students who operate on

less funding can access technologies required to complete their coursework.

It is an unfortunate reality that many students require financial assistance. At my university

campus, UC San Diego, a report [MSWH16] states that over 60% of students require some form

of financial aid. Additionally, the on-campus food pantry provided food to thousands of students

in a single quarter, with that number expected to climb in the following years. A separate report

on community colleges [GRRH17] reported that two in three students were food insecure, and 13

to 14 percent of students were homeless.
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With this in mind, I believe that the monetary costs for students to provide their own

devices to access educational opportunities must be reasonable. Unfortunately, no programs to

widely provide remote access technologies existed at the time of the shift to remote learning due

to the COVID-19 pandemic at my campus, which is a relatively large institution (over 40,000

enrolled students in the 2020 academic year [Uni21]). Smaller and less funded institutions

struggled disproportionately during the pandemic [MGS20].

Environmental costs

The environmental cost of a device comes in the form of eWaste. eWaste is defined as any

device with a plug, electrical cord, or battery that is no longer used and thus has reached the end

of its useful life [BS+17, UIU19]. eWaste is divided into six categories: temperature exchange

equipment, screens and monitors, lamps, large equipment, small equipment, and small IT and

telecommunications equipment. In this chapter, I will use the term devices or computers to refer

to the two categories of “screens and monitors” as well as “small IT and telecommunications

equipment”, which includes laptops, desktops, smartphones, and tablets. In 2016, the world

produced 44.7 million metric tons of eWaste [UIU19], with screens and computers accounting

for about a quarter of that total volume. And while eWaste only accounts for about 2% of the

total waste volume in landfills, it represents about 70% of the volume of hazardous waste that

makes its way back into the ecosystem [UIU19]. This waste is rich in precious, heavy, and

rare-earth materials, with computers often consisting of up to 60 different elements from the

periodic table [UIU19].

To understand the environmental impact of eWaste, it is important to understand the

entire lifecycle of modern computers, which can be broken down into four phases [BS+17]:

Manufacturing, use, eWaste generation, and eWaste disposal. Each of these phases has a different

environmental impact:
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Phase 1: Manufacturing. During manufacturing, materials are brought together to create

integrated circuits, flash memory, screens, and other components. This process is very resource

intensive, relying on a number of materials including gold, silver, copper, platinum, and aluminum,

and heavy metals such as mercury, cobalt, iridium, cadmium, lead, and lithium. Mining these

materials results in significant environmental damage, and transporting components from their

origins to be integrated and delivered to their ultimate destinations incurs a significant carbon

footprint as well.

Phase 2: Use. In this phase, the device is put into use, either by the primary owner, or subsequent

owners in secondary markets. Here the environmental impact of the device is primarily due to its

energy demands (e.g. to recharge its internal batteries).

Phase 3: eWaste generation. At the end of a device’s usable life, it is no longer used and

becomes eWaste. Unfortunately, as I will highlight below, the replacement cycle for devices

has become more rapid over time. Users report replacing devices to keep current with the most

advanced models, obtaining new manufacturer warranties, and supporting increasingly complex

and resource-demanding applications and apps [BFG+17]. Manufacturers have encouraged short

replacement lifecycles through planned obsolescence, subsidized replacement programs, and

making it difficult or impossible to maintain and repair devices past their planned “end of life”

and warranty period [BFG+17].

Phase 4: eWaste disposal. There are two ways to dispose of eWaste. The first approach

includes official eWaste recycling programs which safely recycle and reclaim materials before

disposing of the devices. This method is preferred and has a negative environmental impact.

The second method includes sending devices to landfills, incinerators, unregulated reuse and

reclamation channels, and other untracked disposal methods. This latter case greatly impacts

the environment as the aforementioned materials used in manufacturing cause damage when
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eWaste is removed in this manner. Unfortunately, only 20% of eWaste is properly recycled, and

the remaining 80% ends up in other channels [BS+17].

Is recycling the answer?

Recycling, by itself, is not able to fully address the scale and scope of these challenges. As

mentioned above, only about 20% of eWaste is currently recycled. But even increasing that ratio

to 100% would not solve the problem for two primary reasons. First, the internal components in

modern computers are increasingly monolithic. For example, modern CPUs typically include not

only compute cores, but external graphics support and GPUs, and even networking and wireless

LAN support (e.g. the Atom x3). It simply isn’t possible to recover the underlying elements from

these chips and devices, in the same way that you can’t unbake a cake to recover its underlying

flour and sugar.

Even if components could be recovered, recycling by itself is not sufficient to address

these problems. Research has shown that most of the impact of creating computing devices

resides in the Phase 1 manufacturing step. Bakker et al. performed a lifecycle assessment (LCA)

that evaluated laptops both in 1990 and in 2010, assuming they are used for only one year. They

found that the total environmental impact of the manufacturing step rose from 68% in 1990 to

78% in 2010. However, the impact of the per-year use of the device fell from 31% in 1990 to

21% in 2010. Lastly, transportation accounted for a negligible percentage [BS+17]. Despite

improvements to laptops in other respects, Kasulatis et al. found that between 1999 to 2008, the

impact of the manufacturing phase of laptops did not decrease at all [KBK+15].

Further, a metastudy by Suckling and Lee found that, similar to laptops, the manufacturing

phase of smartphones represents the majority of the device’s environmental impact [SL15]. In

fact, they found that for a set of smartphones manufactured after 2010, the manufacturing phase

accounted for an average of almost 75% of the total impact, with the use phase making up the

majority of the remaining 25%.
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How long should devices last?

In recent years, use periods of devices have decreased, raising the impact of device

manufacturing and disposal on the environment. Bakker et al. found that the Phase 2 (Use) period

of laptops decreased from 4.3 years in 2000 to 4.1 years in 2005 [BS+17]. A study in 2016 [Pan]

found that the lifespan of smartphones varied from under 18 months to just under 2 years.

Given the environmental impacts described above, Bakker et al. suggest that the optimal

replacement point of a laptop is at least after seven years after manufacturing, based on the

increased operational efficiency of laptops during their use [BS+17]. Further, Suckling and

Lee suggest that smartphones need to be usable for approximately 5 years before impacts are

amortized [SL15].

This information shows that devices are used, on average, for approximately half as long

as they would need to be in order to offset the costs of manufacturing and eWaste disposal have on

the environment. Unfortunately, as I discuss below, there are significant challenges that prevent

users from simply using their devices for longer periods of time.

Extending a computer’s life

Given the oversized role that cost and manufacturing plays in a computer’s impact, a

key to reducing that impact is extending the usable life of computing devices. This idea is

referred to as a Circular Economy and aims to keep devices in circulation to avoid them become

eWaste and to reduce the ownership burden of the device across its lifespan. This concept is also

called Product Lifetime Extension (PLE). Lifetime extension is sustainable, economical, good

for the environment, and helps to address the “technology gap”. As shown above, aiming to

double the usable life of computing equipment would contribute greatly to solving economic and

environmental challenges. Surveys of consumers find that they do wish that their devices did

last longer, and are unsatisfied with their typical short lifespan [Ech16, Coo04, WTH15]. If there

is a way to extend the usable lifespan of computers, it will address the eWaste problem while
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reducing the monetary and environmental cost of computing devices.

Using datacenter networks, which are an increasingly available source of high amounts of

computing power, computing work can be offloaded. Cloud computing services now support a

significant amount of computing infrastructure [LWN+17], and are run on datacenter networks.

Using similar methods to offload work from smartphones and laptops “into the cloud” could

extend their lifetime. I will discuss this at length later in this chapter.

Why do devices get outdated? An inevitable scenario that forces a user to discard their older

hardware is when the device becomes unable to readily access online resources. In this chapter

I focus on web browsers, given their importance, especially for students. Internet browsers are

an extremely elaborate and rapidly-evolving software domain. Major browsers release updates

regularly in order to improve security and performance for their users. Updates also include

additional features that websites can use to present and render more complex content. This can

come at the cost of removing compatibility for older browser versions. Since many websites

deprecate support for older browsers, users have needed to continuously upgrade their devices to

stay apace with modern websites.

Further, mobile devices can become outdated at a hardware level if manufacturer of the

device chooses to stop supporting it. Qualcomm officially supports updates for their mobile

chipsets for only three years [Ama21]. Apple does not support iPhones more than five years out of

date [App21]. The official “end of life” declaration from a smartphone manufacturer effectively

eliminates any further usefulness it has for a typical consumer, who will not or cannot go out of

their way to install alternative system software to extend the phone’s usefulness.

Does Moore’s Law help? The ending of Moore’s law in the early 2000s fundamentally changed

computing, and at first glance seems like it might make computers usable for longer, since CPU

frequencies no longer increase at the rate they did prior. Unfortunately, available evidence shows

the opposite, with the usable life of laptops decreasing from 2000 to 2005 [BS+17]. Further,
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although CPU frequencies have not continued to increase, other resources such as memory, the

number of CPU cores, flash storage capacity, and the prevalence of GPU units have provided

computers with increased capabilities. Further, newer operating systems and device hardware

offers new security primitives.

What about upgrades? What about repairing, upgrading, and extending computing devices

in the field? In other arenas, repair is common, such as replacing a car’s flat tire with a new tire

instead of buying an entirely new car. Unfortunately, several trends in computing make repair and

upgrade more infeasible. As previously mentioned, laptops, smartphones, and tablet computers

rely on increasingly monolithic integrated subsystems and “systems on chip (SoC)” designs,

which combine compute, graphics, storage, and even networking into a single chip that can only

be replaced, not repaired. This is in contrast to pre-2000 era desktops, which consisted of a

number of discrete components like sound cards, RAM modules, network cards, etc., which could

all be independently upgraded or replaced. But even then, machines were often replaced rather

than piecemeal upgraded over time. For these reasons, I largely rule out upgrading computing

devices’ hardware directly.

What about repairs? As mentioned above with respect to automobile tires, repairing damaged

or defective components of very expensive equipment is commonplace. But for computers, it

is unlikely that repair by itself will significantly address the needs I outline, since there is little

evidence that durability is a significant factor in replacement decisions. The above-referenced

studies show that the majority of devices are replaced either for non-technical reasons or to

obtain new features/capabilities. When devices are eventually replaced, they are typically just as

performant as the day they were manufactured. Further, as computers become more integrated,

several sources of device failure are simply removed. For example, flash storage has largely

replaced spinning hard drives, batteries are less likely to leak, and some laptops no longer rely on

spinning fans for heat management. Smartphone screen repair remains popular, but nearly any
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other damage to a smartphone requires replacing the entire device.

4.2.3 Background Summary

The increasing sophistication and resource requirements of modern websites, especially

in the education technology space, render consumer computing devices prematurely obsolete,

resulting in significant contributions to the eWaste problem and to financial burdens for students.

If there is a way to extend the usable life of these devices, it will reduce their financial and

environmental impact.

4.3 Browser Obsolescence

To understand the ability of older devices to use modern websites, I now study their

compatibility to various “eras” of hardware and software, with configurations representative of

a given year. Each configuration uses a device, operating system, and browser version that was

released in the appropriate year I wish to investigate. Comparison between years reveals the

trends of obsolescence for different devices over time. To focus my study, I target representative

websites used by students in an undergraduate computer science program.

The websites I consider are Google Drive, Canvas (a learning management system), Stack-

Overflow, Jupyter Notebook, and Piazza (a message board), which are all platforms frequently

used by computer science undergraduate students. I wished to test against Blackboard, the

learning management system I analyze data from in Section 4.4, but it unfortunately has been

decommissioned at the authors’ campus.

I leverage the BrowserStack[Bro11] online browser sandboxing platform to access each

of these websites. BrowserStack provides a wide selection of smartphone hardware and desk-

top/laptop browser versions to the user dating back to more than eight years. Smartphone browsers

are not emulated, and are run on live devices. The client is required to select the specific device
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to use. I bin configurations into “eras” in time. Each era is represented by one of five fixed years,

from 2012 to 2020, where I select device, operating system, and browser versions representative

of what was up to date at the time. For each test, I complete a basic task on the website in question.

I then determine the quality of the user experience, assigning it one of three outcomes: good

(green), okay (yellow), and unacceptable (red). Good outcomes represent the website working as

intended, Okay indicates minor issues such as incorrect CSS rendering or unsupported version

error messages, and Unacceptable represents the website being unusable, due to intentional

deprecation, HTTPS issues, or JavaScript errors.

4.3.1 Mobile Browsers

I evaluate both Android and iOS devices on BrowserStack, omitting apps for this study,

though I acknowledge that apps do have a large user base (the Google Play store reports that

Google Drive has 5 billion installations[Goo20], and my results in Section 4.4 show many app

users as well). The mobile results are shown in Figure 4.1.

I see that there are definite limitations placed on users who are using older smartphones.

Devices from the 2012 era are unusable in almost all cases. In these cases, HTTPS errors occur

on StackOverflow, and the other two websites fail to render. Perhaps the most shocking result

is that an iPhone 6 and iPhone 7 cannot access Canvas on nearly up-to-date browsers: the main

window is non-functional. Older Android devices receive much better compatibility, but I do

begin to see some issues with Canvas.

4.3.2 Desktop Browsers

The results for my study of desktop browsers are shown in Figure 4.2. These results solely

look at the incompatibility of browser versions, which helps understand what failure modes occur

in browsers.

My results reveal a very apparent trend that older browser software often has difficulties
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supporting these websites, with 2012-era systems almost always failing. Even 2016-era software

have significant issues, which is alarming given they are only four years outdated. Except for one

case, every yellow cell is caused by either a CSS rendering error or a notification being given to

the user that their browser is no longer supported. Google Drive and StackOverflow have frequent

CSS issues that do not render the site unusable, but clearly impact the rendered appearance.

Canvas gives an unsupported browser notification on every page that temporarily covers page

elements for versions it deems are outdated. For 2012-era browsers, half of the errors are due to

HTTPS negotiation failures; the browser software does not support the newer encryption schemes

used by the site. For 2014-era and 2016-era browsers, cases of various JavaScript or rendering

errors make websites unusable. These browsers are essentially inoperative across the spectrum of

requirements a student may have if they wished to use these sets of websites in a class.

Browser version usage

It’s clear from the above results that there are issues with using older browser versions

on modern websites. However, it is unclear whether a user would be able to resolve these issues

without needing to upgrade their hardware or needing an edge-cloud solution. One point of insight

that I have been able to gather was to examine the browser version usage statistics gathered by

StatCounter[Sta]. I analyze usage data for the month of May 2020, and found that a non-trivial

8.6% percent of users are using browser versions released on or before 2016. I compare against

this baseline when studying browser usage data of of real students in the following section.

4.4 Student Browsers and Devices

Given my baseline of how older browsers and the devices that run them operate on

websites used for coursework, I next move to analysis of real user data. I analyze seven years

worth of access logs to Blackboard, a learning management system (LMS) commonly used on
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the authors’ university campus for both undergraduate and graduate courses. An LMS provides

functionality for both instructors and students to post and review course material, submit and

grade assignments, and more. Instructors that choose to leverage an LMS require students to use

a device in order to access material and assignments hosted there.

Log frequency of the LMS is non-uniform due to a varying degree of usage between these

dates, beginning in the fall of 2013 and ending in the spring of 2020. However, I am still able to

observe some definite trends that reveal the limitations of software and the devices that run them

among the student population. Teaching and administration staff are included in my dataset, but

are not the vast majority of users. My dataset consists of over 165 million requests to the LMS

web server. The use of this dataset was approved by the authors’ campus for this study.

Every user in my dataset is first anonymized with a unique identifier. The information I

base my study on are this identifier, access time, event type, and the user agent string given to the

web server. Beginning in 2015 on iOS devices, and 2017 on Android devices, I begin to see user

agent strings for the Blackboard mobile app, which includes a unique device identification string

for a single app installation, and a more specific device model identifier. This allows for wider

analysis of device upgrade rates among users.

For my purposes, I filter event types in my dataset to only include successful login and

logout events to capture the range of usage of a device, and to filter out devices attempting to use

the LMS unsuccessfully. Because my dataset is based around user agent strings provided to a

web server, I cannot claim 100% accuracy as users may modify their user agent however they see

fit (the authors have directly observed a nonzero but negligible number of user agents that were

modified by a user).

All data is processed by user agent parsing software, and then inspected by a variety

of assertions manually crafted by the authors. Assertion failures trigger a fallback routine that

sends the user agent to a large-scale subscription user agent parsing service in order to provide

verification of results. Mobile app agent strings are manually parsed using a key-value scheme
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given as part of the agent string.

4.4.1 Browser usage

The most obvious and accurate information I can obtain from browser user agent strings is

the versions of browsers themselves. Using the access date of the user and recording the browser

and operating system information provided, I are able to obtain how dated a given access to the

browser is for a given record. To more accurately survey my dataset, I group accesses by user and

browser identifiers, and count only the latest entry from that user/browser pair. This means that I

record the point where the browser was at its “oldest” and still used by the client to access the

LMS.
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Figure 4.3: Browser age by year for Android (left) and iOS (right). Background colors denote
yearly boundaries.

I create an “oldness” metric representing the number of days between when the version

string of the browser given was released and when it was used by the client. I record this “oldness”

metric over the period of each month in my dataset, i.e. each record indicates the oldest point that

a browser was used by a given client within that one-month period. I plot this metric for a single

month, October, over the different years of data that I have available. I select October as it is near

the beginning of the academic year, and patterns across subsequent months within an academic
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year were similar.

The oldness data of browsers used to access the LMS is given in Figure 4.3. I observe

that effectively nearly 99% of all users access the LMS with a browser that has been released

within a four year window. Only mobile results are shown, but the results for desktop devices

(Windows and Mac) are similar.

There is no observable trend of browser age by year, except on Android, where there is a

clear trend of browser versions becoming newer over time. I do not investigate why this is the

case, but recognize that there is an obvious push for Android users to run newer software over

time that has proven successful.

From this data I can conclude that nearly all users in most cases tend to use a browser that

was released well within the past year. However, there is a non-trivial number of users that wish

to run older software on their devices. Despite this, they still all typically fall within a four-year

window, a trend that follows from my previous section.

Comparing this to the browser data I study in Section 4.3.2, there is a significantly lower

percentage of students in my dataset that use a browser version four or more years out of date

than on the internet at large. This may imply that the LMS system has upgrade requirements

more aggressive than is typical for other web-based applications.

4.4.2 Device oldness

My dataset also provides significant insight into the trends of smartphone and tablet models

used by students to access the LMS. Android devices frequently provided device information

directly present in the user age or had characteristics unique to an individual model. Additionally,

agents given from the the LMS mobile app provided device model information as well as a unique

“device identifier” generated at the time of app installation. This identifier provided additional

insight as to when a user changed which device they leveraged to access the LMS.

To support this data, I used multiple services to acquire and store device release dates,
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Figure 4.4: Device age at time of use across various years.

brands, and full model names. Device naming schemes ultimately proved to be extremely

ephemeral and volatile, particularly for less popular devices such as low-cost and rebranded

aftermarket devices. Manual inspection, human data entry, and secondary/tertiary verification of

the dataset proved invaluable to solving these challenges, but the authors still cannot claim 100%

accuracy for every device present in the the LMS dataset.

I repeat the “oldness” metric where I track the last time the device was used by a client

within a month’s time. The results are shown in Figure 4.4. I use a similar presentation as in the

browser data shown previously.

I once again see that the majority of devices used were released within the past four years
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from when it was used. There is a more significant tail of devices (¡5%) from users that have

smartphones up to five to six years years old. The devices in the long tail shown are both from

Android and Apple users; there is no clear distinction between device family for the long tail of

users.
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Figure 4.5: Device upgrades by month over time for Android (left) and iOS (right). iOS is
limited to app installs, which began in 2017.

There is an observable trend that devices seem to grow slightly older over time. However,

I posit that this is a result of the number of devices used on the LMS also growing over time,

as more and more students became required to use it in order to interact with coursework. The

number of entries in my dataset between 2013 and 2017 grows by approximately 1.6x.

4.4.3 Device upgrades

The last statistic I gather from my dataset is understanding how users upgrade their

devices. Because these devices are used to access an essential academic service, they represent a

case where a user is required to acquire a newer device. Of course, users may (and as shown, do)

upgrade their devices well before they are outdated.

The LMS user data I study provides a significant amount of information, but does not give

a direct signal for when a user upgrades their device. A user may simply use multiple devices, or
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get a tablet or other device they use “on the side” of their primary smartphone. I create a fixed set

of criteria I use when detecting an upgrade. In order for a device to count as an “upgrade” for a

user, the following criteria must apply:

• The new device was released within the past year, or was newer than the old device by at

least two years.

• The new device was released at least six months after the release date of the old device.

• The new device was first used within 90 days of the time the old device was last used.

• The old device stopped being used within 90 days from the first time the new device was

used.

• The new device was last used at least a month after the old device stopped being used.

• To remove duplicate upgrade events (e.g. a user purchases two new devices), additional

devices added or removed within two months of the first upgrade event are not counted.

I do not use a rolling monthly window as in the previous two subsections, but instead use

the first time the new device is seen as the “time” of the upgrade event. Each user’s entire set

of devices is gathered and computed against the above requirements in order to detect eligible

upgrade events. Device identifiers are used where possible, and my duplication filtering prevents

counting two separate devices in the case where a user both installs the mobile app and accessed

the LMS via a traditional web browser.

The number of upgrade events detected is shown in Figure 4.5. Each graph shows the

number of times an Android or Apple device was discarded in the monthly window. I break

down upgrade events into separate Apple and Android graphs, as Apple devices hide their model

identifier in web browser user agents, whereas the mobile app provides an exact identifier of the

device. Therefore identifiers for Apple devices begin only in the summer of 2017.
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Figure 4.6: Ages of devices at time of upgrade, by percentile.

Interestingly, the pattern for the two device families is different, with Apple upgrades

occurring towards the end of the year and Android occurring somewhat after the academic year

begins, but with a spike at the start of the calendar year. I do not have insights into whether this

coincides with other events, such as the release of a new flagship smartphone. However, I wish

to primarily note that I see a fairly consistent pattern of upgrades across all years across device

types (with the exception of the, 2019-2020 academic year, which has far less events than the

other years due to the introduction and use of a new learning management system).

Next, I break down each upgrade event into percentiles by the age of the old device when

it was upgraded. This will allow me to understand how different types of users upgrade their
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Figure 4.7: Age of new devices users upgraded to at time of first use, by oldness percentiles.

devices- for example, users who upgrade their device within a year of it first releasing are perhaps

more likely to purchase a brand new device, rather than a device that may be somewhat dated. I

then plot the age of the device these users upgraded to as a CDF. I also include the raw thresholds

of old devices ages.

The percentile thresholds are shown in Figure 4.6. I immediately see that very few users

actually upgrade their phone within a year- well under 10%. Additionally, there is a fairly linear

growth between the most vigorous of upgrades and the least. My results show that almost all

users upgrade their phone once it is four years out of date, although once again I observe a decent

tail end of users (¡10%) hold onto their devices for roughly five years instead.
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The upgrade newness CDF is shown in Figure 4.7. There is a clear trend that the users

who discard their devices sooner are more likely to purchase a newer device. Note that the users

who discard their phone within three years of its original release date all have roughly equivalent

behavior when choosing a new device to purchase. It can be conjectured that the majority of

users fall within a two to three year life cycle for their device, which is in line with information I

present in Section 4.2.

However, the users from the 60th percentile onward clearly tend to purchase older devices,

likely from a second-hand market. I observe that these users often discard their device when it

is four years old, and then purchase a device that is three years old to replace it. Because of my

previous results on device ages showing that phones are discarded after four years, these users are

likely purchasing hardware that they will only find useful for just over a year before discarding it.

This is a frightening trend: these users are purchasing a second-hand device that is then likely

discarded within a year.

This implies that the second-hand market is not sufficiently extending the lifetime of

devices: if it was, I would hopefully see some non-trivial number of students still leveraging these

older phones. The reasoning for this is not obvious, but I can conclude that these users either

cannot or do not wish to purchase newer devices.

4.5 Beating the Four Year Life Cycle

The common trend from all of my data is that roughly every four years, both software

and hardware become obsolete. The financial burden on low income students and total e-Waste

generated by devices suggests that smartphone lifetimes should be extended. However, it is not

immediately obvious how to achieve this goal.

The cyclical nature of device manufacturing, use, and discard is a function of both

consumer and producer. There are a vast variety of solutions that can increase the lifetime of
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computing devices, reaching far beyond the scope of my work here. It is difficult to say whether

focusing on producers or consumers to extend device longevity would be more impactful. There

are recent efforts [Ama21] to develop longer-lasting devices from the producer side, and there are

software solutions from consumers [Lin21] to support devices past this four year duration.

I believe that a more universal and transparent approach that involves neither the consumer

or the producer could have the most impact. In this section, I describe my proposed approach to

extending the lifespan of consumer computing devices through datacenter networks via cloud

offload. I outline the benefits of cloud-offloaded applications. I then discuss previous cloud-

offloaded web browsers intended for other purposes, finishing by proposing the requirements and

functionality of a possible offload architecture for browsers with the goal of enabling students to

access the web with legacy devices.

4.5.1 Cloud Offload for Applications

Cloud computing at the edge for radio networks has been in development for several

years [TSM+17, LWN+17], and with the recent advent of large scale 5G network deployments, it

has become an attractive target for cloud-based applications that require low latency. Interactive

applications that run on a user’s device are a great target for cloud offload. However, the

requirements of offloading are different from application to application.

A more blunt solution for an outdated device may be to run remote desktop to a more

powerful machine. However, I believe this is a poor solution. Remote desktop clients do not

provide offline access to applications or files to the user, and do not take advantage of the client’s

hardware capabilities past simple video processing and keyboard/mouse I/O. Legacy client devices

still can easily run applications such as text processors, presentation software, etc. for periods

longer than four years, making them still suitable for many student needs.

For students, the core target application for cloud offloading is a web browser. Academic

software with high compute requirements is an interesting target, but solutions for offloading
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typically either already exist (e.g. remote compilation for programming projects), or are better

suited to remote desktop environments even on the newest of student devices (e.g. complex

engineering software such as AutoCAD).

4.5.2 Cloud-backed browsers

I continue to assume the environment of a student accessing educational resources re-

motely with a legacy device that is no longer supported. They need to access a set of educational

websites and tools, as described in Section 4.3. In this context, any solution to achieve computer

lifetime extension must meet the following requirements.

The user must be able to access modern websites and web-based applications. This

includes the most recent versions of JavaScript, CSS-support, etc. While functionality is important,

the user’s experience must be performant, similar to the experience they would have received on

modern hardware. Lastly, a typical student relies on a number of resources when doing school

work, and so any solution must not consume an overly significant amount of resources on the

target device.

Existing cloud-backed browsers

Development of a split-browser architecture has been explored for decades [FGBA96,

FGG+98]. Recent efforts using virtual machines in cloud environments exist, but they primarily

focus on providing client security rather than extending device lifetimes [Pat20]. They do provide

insight into how a modern split-browser architecture on the cloud may be achieved.

One example is the recently developed browser isolation system from Cloudflare [Obe21],

which uses a modern WebAssembly framework to provide a “remote browser” from the client to a

cloud VM. The cloud VM performs all browser functions, and the client simply receives a network

stream from the VM to interact with the rendered webpage. There is no offline functionality,

which does not satisfy the requirements.
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Other examples of recent cloud-backed browsers are Amazon’s “Silk” browser [Ama20]

and Opera’s “mini” browser [Ope]. Silk targets performance as a primary objective and is more

in line with the requirements, but still requires browsers to run all of the end-result web content

locally, which does not solve the compatibility issue. Opera Mini solely performs webpage

compression to save on networking overheads.

A cloud browser for legacy devices

Extending previous efforts of split browser architectures is likely the best way forward

to create a cloud browser that fits the requirements. Using a remote VM in the cloud to create

a fully-featured browser frame that the client interacts with is a strong solution that offloads all

security and compatibility requirements off of the client, and has the potential to be useful for a

large range of legacy devices.

In order to meet the offline requirement that is absent in the Cloudflare solution, there is a

rather large development effort needed in order to translate page content into a safe and offline

viewable format for each client. Original split browser designs from Fox et al. [FGBA96] could

be useful in order to “distill” webpage information into a proper format.

A significant challenge with legacy devices using modern browsers lies in memory uti-

lization. Browsers now use gigabytes of memory when a large number of tabs are simultaneously

opened, and legacy devices may not be able to support this. A distilled webpage may allow a

separate type of process to view the content, which may save on memory. Additionally, pages that

are not currently active when the user is online can be cached in the cloud VM, creating further

savings in memory used.

The challenges of 5G networking

My solution relies on the dual wins of 5G networking by providing students with access to

a low-latency, high-bandwidth link to a nearby server in order to support a cloud-backed browser.
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However, 5G is a new and rapidly developing technology that has its own challenges to overcome

to make this a reality. The promises of modern 5G networks have yet to come to fruition.

One concern is that the environmental impact of 5G networking will offset the benefits that

green-focused proposals like ours receive from it. There is significant effort in making new 5G

deployments focused on reducing environmental impact at the power and antenna level [IRH+14],

which alleviates some of this concern. However, it remains to be seen if the local edge datacenter

deployments for these networks will receive a similar focus on reducing carbon emissions.

Additionally, while 5G networks are likely to become available at large university cam-

puses and their students, it is unknown to what extent availability will benefit those in more

remote areas, and if students on remote learning platforms will have access.

I believe solutions targeting 5G networks are still beneficial despite these issues. However,

it is imperative that additional solutions for device longevity will need to be explored and

implemented in order to achieve a zero-carbon future.

4.5.3 Future work

The approaches and concerns listed above are certainly not exhaustive, and there is an

extremely large range of possible solutions for elongating the lifetime of computers. I hope that

future work can examine and implement many such ideas and introduce new systems that promote

a circular economy and aid in reducing eWaste.

In this work I primarily target one limited, specific type of user. There has already been

work targeting other types of applications, such as those targeting GPU-related applications

for videogame platforms. I expect to see additional work also examine many more types of

consumers around the world.

Lastly, while work can be done individually by producers and consumers in order to

increase device lifetimes, I believe that there needs to be work on how to change societal patterns

as a whole regarding smartphones. The increasingly rapid cycle of device replacement cannot
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solely be attributed to consumers’ or producers’ lack of ability to provide software or hardware

solutions that increase device longevity. In order to create a holistic solution for a zero-carbon

future, it will become necessary to create pressure via policy or market demand to change

how the idea of “new” smartphones and other computing devices are viewed within the public

consciousness.

4.6 Conclusions Regarding Smartphones and Datacenters

The cycle of device obsolescence has created worrying trends for students, who have in

recent years have been required to use technology to access educational resources. The data I have

analyzed shows that students are not exempt from the increased rates of software and hardware

obsolescence. I observe an overall trend that roughly every four years, a student is required

to upgrade their hardware and/or software. While many students can afford to purchase new

devices, many experience financial hardship and cannot easily do so. Additionally, the frequent

manufacturing and discarding of new devices increases the amount of generated eWaste in the

world.

The observed trends in the LMS data I analyze point to the need for a solution for students

to access educational resources without the need of purchasing a new device. The class of users

that wishes to upgrade their devices less regularly and not purchase a brand new device shows

that there is a definite need for a system that extends the lifetime of devices within a teaching

environment. The previous solutions for cloud-based browser offloading via datacenter networks

present an interesting solution space that I believe should be explored in order to provide sufficient

extensions to product lifetimes for undergraduate students.

Chapter 4, in full, is a reprint of the work as it appeared in the Workshop on Computing

within Limits (LIMITS 21). Rob McGuinness; George Porter, 2021. The dissertation author was

the primary investigator and author for this paper.
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Chapter 5

Conclusion

With digital infrastructure being an irreplaceable part of everyday life, it is imperative

that the environmental impact of their creation, operation, and disposal be reduced to create a

sustainable future. Datacenter networks are a very crucial component in modern computing.

Datacenters are an important focus for aiding ecological efforts for at least two reasons.

First, future datacenter network designs can operate with less of an ecological impact.

Using optical circuit switched networks will allow scaling datacenter networks to meet future

demand without vastly scaling their operational energy requirements. However, there is still

work to be done in providing hardware support to endhosts such that they can meet the precise

transmission requirements emplaced by TDMA flow control. While endhosts can implement

TDMA networking well at around 40 Gbps, new datacenter networks support are targeting 400

Gbps speeds.

Additionally, datacenters can aid reducing the impact of the embodied energy of smart-

phones, particularly in educational environments where mobile devices have become tethered

to accessing educational resources. Smartphones have a fixed, limited lifespan for accessing

online educational applications, and students are being required to purchase new phones to access
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coursework. Datacenter networks can solve this by providing a platform for offloading application

workloads so that smartphones will be operable for longer periods of time, reducing the impact of

their embodied energy on the environment.

Datacenter networks have many uses beyond the scope of this dissertation. Additional

research within other areas examining how future datacenters can operate with a lower environ-

mental impact is necessary [All20]. New hardware designs will be required to not only implement

TDMA networking, but holistically rework server architectures to solve the crisis of global

warming.
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