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REVIEW Open Access

The role of extracelluar matrix in
osteosarcoma progression and metastasis
Juncheng Cui1,2, Dylan Dean2, Francis J. Hornicek2, Zhiwei Chen1* and Zhenfeng Duan2*

Abstract

Osteosarcoma (OS) is the most common primary bone malignancy and responsible for considerable morbidity and
mortality due to its high rates of pulmonary metastasis. Although neoadjuvant chemotherapy has improved 5-year
survival rates for patients with localized OS from 20% to over 65%, outcomes for those with metastasis remain
dismal. In addition, therapeutic regimens have not significantly improved patient outcomes over the past four
decades, and metastases remains a primary cause of death and obstacle in curative therapy. These limitations in
care have given rise to numerous works focused on mechanisms and novel targets of OS pathogenesis, including
tumor niche factors. OS is notable for its hallmark production of rich extracellular matrix (ECM) of osteoid that goes
beyond simple physiological growth support. The aberrant signaling and structural components of the ECM are rich
promoters of OS development, and very recent works have shown the specific pathogenic phenotypes induced by
these macromolecules. Here we summarize the current developments outlining how the ECM contributes to OS
progression and metastasis with supporting mechanisms. We also illustrate the potential of tumorigenic ECM
elements as prognostic biomarkers and therapeutic targets in the evolving clinical management of OS.
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Background
Osteosarcoma (OS) is the most common primary bone
malignancy and disproportionately affects those in child-
hood and adolescence [1]. Before the widespread use of
chemotherapy in the 1970s, surgical resection was the
primary treatment modality available to OS patients [2].
Adjuvant chemotherapy has since dramatically improved
the prognosis for OS patients, with the five-year survival
rate increased from 20% to approximately 55 to 70% in
patients with localized disease [3, 4]. However, in cases
of metastatic lesions, the five-year survival rate remains
dismal at less than 20% [5]. Targeting and preventing
metastasis has thus been a significant obstacle in OS
treatment, and recent publications have highlighted

various novel treatment strategies to that end. The dys-
regulation and aberrant remodeling of extracellular
matrix (ECM) has gained considerable attention for its
promise in pathogenic targeting and predictive value.
Very recently, the tumor microenvironment (TME)

has gained prominence outside of its traditional role
of cellular support as a veritable contributor to cancer
progression and metastasis [6]. The TME, consists of
a complex arrangement of blood vessels, fibroblasts,
immune cells, endothelial cells, signaling molecules,
extracellular vesicles and most importantly, the ECM.
The ECM forms a three-dimensional acellular net-
work of macromolecules which provide the necessary
structural and biochemical support of its cellular con-
stituents [7–9]. In addition to its function as a sup-
portive framework, the ECM regulates most cellular
behaviors, including communication, migration, adhe-
sion, proliferation, and differentiation [10–12]. Fur-
thermore, when aberrant, these functions are hijacked
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and form a specific ECM remodeling profile that en-
ables metastatic dissemination of cancer cells [13, 14].
These features of ECM transformation have been re-
ported in OS development and progression, a tumor
with a characteristically robust ECM [15, 16]. For OS,
the generation of pathogenic osteoid matrix and other
ECM components enables a supportive scaffold for
rapid tumor progression [17, 18] (Fig. 1).
In this review, we summarize the most recent discov-

eries of ECM contribution to OS progression and metas-
tasis. We also detail the various ECM components that
have shown preclinical and clinical promise as prognos-
tic predictors and therapeutic targets in OS.

ECM components and their function in OS
The ECM is primarily composed of collagen, fibronectin,
laminin, and proteo- glycan which shape and maintain
tissue vitality [7, 19, 20]. In the pathological state of

cancer, however, ECM cultivates tumorigenesis and me-
tastasis in malignancies such as OS [21–25] (Table 1).

Collagens
Collagens are the main organic components of the ECM
and represents approximately 30% of the total protein
mass of the human body [56]. The collagen superfamily
includes 28 members, each with their own unique three
polypeptide chains assembled into a final triple helix
structure [57, 58]. Several collagens have been investi-
gated in OS, including collagens I, III, IV, V, and XVIII.
The exact changes these collagens undergo are of con-
siderable interest in OS progression especially given
their abundance to the OS stroma.

Collagen I
Collagen I is composed of two alpha 1 chains and one alpha
2 chain, which are encoded by the COL1A1 and COL1A2

Fig. 1 ECM changes in OS progression and metastasis. The primary components of ECM in normal bone are significantly changed in
osteosarcoma (OS). Due to activated fibroblasts, cancer cells, collagen deposition, fibronectin, and other ECM components, ECM production is
dramatically increased which results in a stiffer stroma and more aggressive phenotype. The basement membrane surrounding the primary tumor
site is broken down by ECM remodeling enzymes allowing for OS cells from the primary tumor to undergo hematogenous spread where they
frequently seed the lung
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genes, respectively [59]. Collagen I is a rich ECM compo-
nent and found in connective tissues such as bone, tendon,
and ligament [60]. Elevated concentrations of collagen I
metabolites have been found in untreated OS patients’
serum [61], and supplementation with exogenous collagen
I has shown to increase the synthesis and activation of
MMP-2 in OS cell lines [62]. This is of interest, as MMP-2
alone has been shown to promote OS progression, invasion,
and migration [26]. Additionally, MMP2 activity is signifi-
cantly increased in those OS patients with poor response to
chemotherapy [63].

Collagen III
Collagen III is composed of three identical peptide
chains encoded by the COL3A1 gene and is found
throughout cortical bone [64, 65]. A significantly higher
level of COL3A1 mRNA expression has been observed
in chemoresistant patients compared to those with a
more favorable response to therapy [27]. Furthermore,
overexpression of COL3A1 in methotrexate-resistant OS
cell lines significantly reduces apoptosis via the activity
of miR-29abc, a miRNA in the miR-29 family [27].

Collagen IV
Collagen IV is a heterotrimer composed of three dif-
ferent α chains from alpha 1 to alpha 6 [66]. These

chains are encoded by the COL4A1- COL4A6 genes.
Collagen IV is a major constituent of basement mem-
branes in the ECM and is heavily involved in inter-
action with other cellular components [67]. In a
combined culture system with a 3D OS cell line and
2D endothelial cell line, the endothelial cells formed a
vascular network expressing collagen IV. These net-
works infiltrated the nearby tumor spheroids with
tubular structures. These results support the role of
collagen IV in regulating OS angiogenesis, a well-
known feature of tumor proliferation [28].

Collagen V
Collagen V exists as an alpha1, alpha2, and alpha3
heterotrimer which are encoded by COL5A1,
COL5A2, and COL5A3 genes, respectively [68]. While
collagen V is a relatively minor component of the
ECM, it has critical roles in matrix organization
alongside collagen I [69]. Together, the deposition
and cross-linking of collagen I and collagen V are the
principal components of cultured OS cell ECM [70].
Collagen V is especially important in the cell contact
and interactions of OS, as the peptides derived from
the basic segment of the alpha 3 chain of collagen V
form adhesive qualities [29].

Table 1 The ECM components involved in OS

ECM protein Expression in OS Roles in OS References

Collagens Collagen I Increase Invasion and metastasis [26]

Collagen III Increase Chemotherapy resistance [27]

Collagen IV Increase Angiogenesis [28]

Collagen V Increase Adhesion [29]

Collagen XVIII Decrease Anti-angiogenesis [30, 31]

Cell growth and Metastasis [32]

Fibronectin Increase Adhesion [33–35]

Chemotherapy resistance [36]

Metastasis [37, 38]

Invasion [39]

Laminins Increase Adhesion [40]

Invasion [41, 42]

Proteoglycans Biglycan Increase Cell growth [43, 44]

Decorin Decrease Migration [45]

Cell growth [46]

Lumican Increase Cell growth [47]

Adhesion [48]

Versican Increase Migration and invasion [49]

HA Increase Proliferation and invasion [50–52]

Cell apoptosis [53]

Metastasis [54, 55]
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Collagen XVIII
Collagen XVIII contains 10 collagenous domains
encoded by the COL18A1 gene [71]. This collagen is a
component of basement membranes in the ECM, with
structural properties of both collagen and proteoglycan
[72]. Proteolytic cleavage within the C-terminal domain
of collagen XVIII releases a fragment, endostatin, with
anti-angiogenic effects [73]. Endostatin is important in
the progression of various tumors, including OS [74, 75].
As angiogenesis is important for OS progression and
metastasis, researchers elected to analyze the effects of
endostatin in an orthotopic OS model. Results were
positive, as their endostatin anti-angiogenic therapy sig-
nificantly reduced the postoperative progression of pul-
monary metastasis [30, 31]. Another study showed a
combination of endostatin with Adriamycin produced
synergistic inhibition of tumor growth and pulmonary
metastases in an orthotopic OS model [32].

Fibronectin
Fibronectin is an adhesive glycoprotein of the ECM com-
posed of two polypeptides which bind integrins, collagen,
fibrin, heparin, and proteoglycans [76, 77]. It forms a
multidimensional fibrillar matrix with partial control of
cell adhesion, migration, and differentiation [78–80].
Abundant expression of fibronectin is apparent in OS cell
lines [81]. The heparin-binding domain of fibronectin af-
fects cell adhesion and spreading of OS cells by cooperat-
ing with the central cell-binding domain of fibronectin
[33]. Significant upregulation of fibronectin had been de-
tected in chemo- resistant OS cell lines [36].
Fibronectin displays various functional motifs that inter-

act with integrins, which are the most common transmem-
brane receptors and regulate its function [82–84]. The
integrin structure is formed by heterodimers of α and β
subunits which penetrate the cell membrane and form sev-
eral cytoplasmic domains [85]. The binding of fibronectin
with integrins represents a crucial step in OS progression
and metastasis [37, 38]. In a recent in vitro work, integrins
were shown to be involved not only in cell adhesion but
also in the binding and assembly of exogenous fibronectin
[34]. Selective down-regulation of integrins resulted in the
decreased deposition of fibronectin within the ECM and
subsequently reduced overall OS cell spreading and adhe-
sion [39]. Conversely, upregulation of integrins enhanced
adhesiveness of OS cells to fibronectin [35].

Laminins
Laminins are components of the basement membrane in
ECM and are constructed of heterotrimeric glycoproteins
with alpha, beta, and gamma chain subunits [86, 87]. They
interact with their respective cancer cell receptors
whereby they promote angiogenesis, invasion, and metas-
tasis [88]. Laminins have demonstrated to enhance cell

adhesion in OS cell lines [40], with high laminin-adherent
OS cells showing notably more invasiveness than their
low laminin-adherent counterparts [41]. In a work which
implemented a 3D OS cell line model, a matrix supple-
mented with laminin led to an increased invasion of OS
cells into the surrounding acellular bone marrow environ-
ment [42].

Proteoglycans
Proteoglycans are heavily dispersed throughout the ECM
and are composed of glycosylated proteins with a pro-
tein core and covalently attached glycosaminoglycan
(GAG) chains [89, 90]. The GAGs are major regulators
of metastasis in various cancers [91–93]. Hyaluronic acid
(HA), also known as hyaluronan or hyaluronate, is an-
other macromolecule that belongs to the GAG family.
HA is abundant in most tissues and has unique proper-
ties as a result of its variable covalent bonding and core
proteins [90, 94]. And although HA is not a true proteo-
glycan, it possesses similar biological functions. It is syn-
thesized on the cytoplasmic membrane and is directly
secreted into the ECM [95]. Based on the core protein
and GAG chain properties, proteoglycans are classified
into one of three groups, including small leucine-rich
proteoglycans (SLRPs), modular proteoglycans, and cell-
surface proteoglycans [90]. Overall, these unique variants
have roles in ECM communication, tumor angiogenesis,
progression, and metastasis [96, 97].

SLRPs
SLRPs have relatively short protein cores with a central
domain of leucine-rich repeats [98]. The SLRP family is
divided into five classes according to structure and in-
cludes classes I to V [99, 100]. Functionally, these pro-
teins regulate ECM organization and cell behavior [101].
Of the SLRP family members, biglycan, decorin, and
lumican have been investigated in OS.
Biglycan is a class I SLRP encoded by the BGN gene

which promotes proliferation and differentiation in OS
cells [43, 102]. A mechanistic study has revealed biglycan
enhances OS cell growth through the low-density lipo-
protein receptor- related protein 6 /β-catenin/IGF-I re-
ceptor signaling pathway [44].
Decorin is another class I SLRP and a small pericellu-

lar matrix proteoglycan with a structure closely related
to biglycan. That is where their similarities end, how-
ever, as its presence negatively correlates with oncogen-
esis. Decorin inhibits OS cell migration through its
glycosaminoglycan side chains [45, 103]. Ectopic expres-
sion of decorin significantly decreased OS cell growth
through the induction of cyclin-dependent kinase inhibi-
tor P21 [46].
Lumican is a class II SLRPs and encoded by the LUM

gene [104]. It positively correlates with OS cell
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differentiation and inversely correlated with growth [47]. In
a subsequent study, lumican was shown to regulate OS cell
adhesion by modulating transforming growth factor beta-2
activity [48].

Modular proteoglycans
Modular proteoglycans are multidomain motif pro-
teins with a highly glycosylated structure [105]. They
are subdivided into families of HA-binding, lectin-
binding, and non-HA-binding proteoglycans [90, 96].
The four proteoglycans versican, aggrecan, neurocan,
and brevican constitute the family of HA-binding pro-
teoglycans [106]. Versican is notable for its ability to
regulate cellular processes including adhesion, prolif-
eration, apoptosis, and invasion [107, 108]. High ex-
pression of versican has been found in OS tissues
relative to normal tissues [49]. Its expression is up-
regulated by transforming growth factor-beta 1
(TGFß1), which leads to enhanced OS cell migration
and invasion [49].

Ha
As previously stated, HAs have similar functions to
proteoglycans [94]. They exist in all tissues and are
abundant in bone [109]. In addition to their structural
importance, HAs have strong roles in cancer cell dif-
ferentiation, proliferation, and migration when aber-
rantly expressed [94]. HA promotes OS cell
proliferation and invasion by initiating intracellular
signal transduction [50]. In a work where HA accu-
mulation was selectively inhibited, there was a sub-
stantial decrease in OS cell proliferation, motility, and
invasiveness [51]. The inhibition of HA can also re-
duce cell viability and induce apoptosis in OS cells
[53]. At the microscopic level, cells interact with HA
through cell surface receptors, which initiates their
actions. The cluster of differentiation 44 (CD44) is a
well-known cell membrane receptor for HA. When
HA is bound to CD44, it regulates cell-cell interac-
tions, cell adhesion, and migration [110]. The HA-
CD44 pathway increases tumor aggression and drug
resistance as well as influencing the cancer stem cell
phenotype through promoting stem-cell gene expres-
sion, progression, and metastasis [111]. Of note, the
expression of CD44 is significantly higher in meta-
static and recurrent OS patient tumor specimens
compared to primary tumor tissues [54]. Therapeutic-
ally, the proliferation and spheroid formation of OS
cells is inhibited in 3-D culture when CD44 is si-
lenced [52]. In an orthotopic mouse model of OS, in-
jection with CD44 overexpressing OS cells resulted in
increased primary tumor formation and lung metasta-
sis, which was dependent on the HA to CD44 inter-
action [55].

Signaling pathways responsible for ECM
remodeling in OS
The function of ECM is derived from its diverse com-
position of macromolecules, proteases, inhibitors, and
their respective downstream signaling pathways [112].
Within the ECM of OS, matrix metalloproteinases
(MMPs) and heparinases regulate several pathways re-
sponsible for progression and metastasis (Fig. 2).

MMPs
MMPs are proteolytic enzymes that degrade surround-
ing ECM components, release active growth factors, and
promote tumor angiogenesis [113]. Elevated levels of
MMP-2, MMP-9, and MMP-13 exist in OS (Fig. 2) and
contribute to cell migration, invasion, and metastasis.
The upstream PI3K/Akt signaling pathway promotes the
expression of MMP-2 and MMP-9, thus degrading ECM
and enabling OS cell invasion and metastasis [114, 115].
The extracellular signal-regulated kinase (ERK) signaling
pathway also upregulates MMP-2 and MMP-9 and mi-
gratory activity of OS cells [116, 117]. Another MMP,
MMP-13, causes turnover of ECM collagens and proteo-
glycans and directly correlates with OS progression. In
one recent study, plasminogen activator inhibitor-1 was
shown to upregulate the expression of MMP-13 and
promote invasion and lung metastasis in an OS mouse
model [118].

Heparanase
Heparanase is an endo-β-D-glucuronidase that cleaves
heparan sulfate chains in the ECM, thus releasing hepa-
ran sulfate-binding angiogenic factors and allowing for
tumor cell migration, invasion, and metastasis [119, 120]
(Fig. 2). Previous works have shown the down-regulation
of heparanase significantly reduces OS cell proliferation
and invasion [121, 122]. Additionally, OS patient tissues
with more heparanase correlate with higher microvessel
density and rates of pulmonary metastasis [122].

ECM components as prognostic biomarkers in OS
Although the adoption of neoadjuvant chemotherapy in
OS has significantly improved patient survival since its
implementation several decades ago, outcomes have
since plateaued. The personalized and immunotherapies
that have shown great promise in several cancers have
had less favorable results for OS, likely due in part to its
heterogeneity between patients. There is, therefore, an
urgent need for prognostic biomarkers which allow for
the delineation of patients according to their unique
tumor microenvironments and response patterns, so that
their therapeutic regimens can be tailored accordingly.
In response, there has been an expansion of works inves-
tigating the components of the ECM, some of which
have been found to play vital roles in cancer progression,
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metastasis, and clinical outcomes [123–125]. An emer-
gence of clinical data has revealed various collagens to
correlate with the clinical stage, metastasis, and out-
comes [126]. The correlation between ECM makeup
with clinical stage and prognosis in OS are summarized
(Table 2). Several noteworthy examples exist, including
the expression of collagen triple helix repeat containing
1 (CTHRC1) protein in OS. It has significantly higher
expression compared to adjacent normal tissue controls,
and predicts a poor prognosis of OS patients [127].
Functionally, CTHRC1 is a secretory protein known to
regulate vascular remodeling and bone formation [128].
A collagen I (COL1A1) polymorphism is associated with
OS susceptibility and death [129]. Fibronectin is overex-
pressed in OS specimens compared to osteochondroma
as well as other tissues [130, 131]. Additionally, overex-
pression of fibronectin in OS tissues is associated with a
poorer chemo- therapeutic response, distant metastasis,

and shorter overall survival [130, 131]. In short, these
works support high fibronectin expression as an under-
lying mechanism of aggressive clinical behavior in OS. A
higher level of CD44 expression in OS tissues is appar-
ent in patients with shorter survival and those with an
unfavorable response to neoadjuvant chemotherapy [54].
Furthermore, CD44 expression is predictive of poor sur-
vival, metastasis, recurrence, and drug resistance in
patients with OS [132, 133].

ECM components as potential therapeutic targets
in OS
The ECM is pivotal in OS pathogenesis, especially in
tumor cell migration and invasion. Targeting the regula-
tory and responsible molecules within the ECM has thus
been explored as a novel strategy for OS treatment
(Table 3).

Table 2 ECM as prognostic predictors in OS

ECM components Expression in OS Prognostic value References

Collagens CTHRC1 High Shorter survival time [116]

COL1A1 High Shorter survival time [118]

Fibronectin High Metastasis, poor response to chemotherapy, and shorter survival time [119, 120]

Proteoglycans CD44 High Poor response to chemotherapy [54]

Metastasis, recurrence and shorter survival time [121, 122]

Fig. 2 Schematic of signaling pathways involved the ECM remodeling in OS. The ECM is dynamically remodeled by multiple proteases and
signaling pathways. In OS, MMP-2, MMP-9, and MMP-13 function via PI3K/Akt and ERK associated signaling pathways. Heparanase also
participates in ECM remodeling, as it cleaves the ECM by heparan sulfate degradation, thus promoting OS cell invasion and metastasis
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Collagen targets
Overexpression of COL3A1 can decrease apoptosis and
promote methotrexate resistance in OS cell lines. The
precise targeting of COL3A1 is therefore a promising
and personalized strategy for overcoming methotrexate
resistance in candidate OS tumors [27]. The antiangio-
genic protein fragment tumstatin, which is cleaved from
collagen, is the non-collagenous domain of the alpha 3
chain in collagen IV shown to inhibit cell proliferation
and induce cell apoptosis in OS cell lines [134]. Mechan-
istically, this occurs through the phosphorylation of
p65NF-κB and its subsequent nuclear translocation
[135]. Tumstatin has therefore become of interest in the
treatment of OS [135]. Endostatin combined with other
chemotherapy has been evaluated in an OS clinical trial,
with results showing a significant reduction in angiogen-
esis, metastasis, and an increased event-free survival rate
[136]. Overall, endostatin-targeting angiogenesis-based
therapy has yielded positive results for OS patients at
the clinical trial level.

Fibronectin targets
The fibronectin and integrin families within the ECM
regulate a diverse array of cellular functions crucial for
proliferation, progression, and metastasis [137]. Thera-
peutically, fibronectin inhibition greatly increases OS
sensitivity to doxorubicin in vitro. Similarly, fibronectin
knockdown decreases the tumor growth rate and can
even resensitize OS to doxorubicin in orthotopic OS
models [36]. Consequently, targeting fibronectin has be-
come a promising treatment for doxorubicin-resistant
OS [36]. As the main receptor of fibronectin, integrins
are also proposed targets of cancer treatment. Several
studies have shown inhibition of integrin or its down-
stream effectors to block many of the major hallmarks
of cancer [137–139]. Additionally, selective knockdown
of integrins significantly inhibits OS growth and lung
metastasis, and an exogenous reintroduction of integrins
can restore cell proliferation and lung metastasis in
xenograft models of OS [140]. As pulmonary metastasis
is the major cause of patient death in OS, these findings
are especially promising and warrant future works.

Proteoglycans targets
In a murine OS model, significantly fewer pulmonary
metastases and longer survival times were observed in
mice treated with decorin, a matrix proteoglycan. The
works of these investigations support decorin as a poten-
tial therapeutic target in the prevention of lung metasta-
sis in OS [141]. As previously described, CD44 is
important in OS progression. Furthermore, it is the dir-
ect target of miR-199a-3p, which is a significantly down-
regulated miRNA in OS [142, 143]. As a therapeutic
strategy, overexpression of miR-199a-3p significantly in-
hibits CD44 expression in OS cell lines, with transfection
also increasing chemosensitivity. Taken together, these
results support targeting CD44 to reduce pulmonary
metastasis and increase OS clinical outcomes [54].

Conclusion and future perspectives
In addition to is physiologic importance in structural
and biochemical support, the ECM has gained increased
recognition for its carcinogenic roles, including in the
progression and metastasis of OS. The various compo-
nents of the ECM including collagens, fibronectin, lami-
nins, and proteoglycans may contribute to OS
progression and metastasis through distinct and inter-
twining mechanisms. It is therefore important to further
study and validate the ECM components, cellular recep-
tors, and associated signaling pathways in OS synergis-
tically and as components of the primary tumor tissue.
Novel culture systems will be especially important in this
endeavor, as resembling the in vivo tumor microenviron-
ment with in vitro customizability, such as with 3D cell
culture, will be necessary to accurately model extracellu-
lar matrix and growth. Overall, the ECM components
have shown promise as clinical biomarkers and thera-
peutic targets in OS, and warrant a continued evaluation
in preclinical models as well as future clinical trials.

Abbreviations
OS: Osteosarcoma; TME: Tumor microenvironment; ECM: Extracellular matrix;
GAG: Glycosaminoglycan; HA: Hyaluronic acid; SLRPs: Small leucine-rich pro-
teoglycans; CTHRC1: Collagen triple helix repeat containing 1; MMPs: Matrix
metalloproteinases

Table 3 ECM as therapeutic targets in OS

Therapeutic target Functions References

Collagens COL3A1 Methotrexate resistance, apoptosis [27]

Tumstatin Cell proliferation, apoptosis [124]

Endostatin Metastases [125]

Fibronectin Fibronectin Doxorubicin sensitivity [36]

Integrins Cell proliferation, metastasis [129]

Proteoglycans Decorin Cell invasion, metastasis [130]

CD44 Doxorubicin sensitivity [54]
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