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Abstract

Built environment features (BEFs) refer to aspects of the human constructed environment, which 

may in turn support or restrict health related behaviors and thus impact health. In this paper 

we are interested in understanding whether the spatial distribution and quantity of fast food 

restaurants (FFRs) influence the risk of obesity in schoolchildren. To achieve this goal, we propose 

a two-stage Bayesian hierarchical modeling framework. In the first stage, examining the position 

of FFRs relative to that of some reference locations - in our case, schools - we model the distances 

of FFRs from these reference locations as realizations of Inhomogenous Poisson processes (IPP). 

With the goal of identifying representative spatial patterns of exposure to FFRs, we model the 

intensity functions of the IPPs using a Bayesian non-parametric model, specifying a Nested 

Dirichlet Process prior. The second stage model relates exposure patterns to obesity. We offer 

two different approaches to carry out the second stage; they differ in how they accommodate 

uncertainty in the exposure patterns. In the first approach the odds of obesity at the school 

level is regressed on cluster indicators, each representing a major pattern of exposure to FFRs. 

In the second, we employ Bayesian Kernel Machine regression to relate the odds of obesity to 

the multivariate vector reporting the degree of similarity of a given school to all other schools. 

Our analysis on the influence of patterns of FFR occurrence on obesity among Californian 

schoolchildren has indicated that, in 2010, among schools that are consistently assigned to a 

cluster, there is a lower odds of obesity amongst 9th graders who attend schools with most distant 

FFR occurrences in a 1-mile radius as compared to others.

atpvyc@umich.edu . 

SUPPLEMENTARY MATERIAL
We provide additional supporting plots and tables that show 1. Descriptive statistics of our data. 2. The Estimated Intensity Functions 
on the real line. 3. Spatial plot showing coclustering probabilities across California. 4. Mode GLM and BKMR results fit to full dataset 
5. Posterior mode vs consensus glm probability of obesity estimates. 6. Simulation intensities and numerical summaries comparing 
traditional methods to our proposed methods across simulated scenarios. 7. Model Convergence Diagnostics. 8. Plot illustrating 
BKMR distance and co-clustering properties.
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1. Introduction.

The dramatic increase in child obesity is one of the most pressing public health issues 

of the 21st century (Sacks, Swinburn and Xuereb, 2012). Indeed, obesity prevalence 

demonstrates linearly increasing trends among children of school age (Skinner et al., 

2018). The need for population-level interventions, beyond individual-level treatments, 

has been strongly emphasized by the research community and policy makers alike 

(McGuire, 2012). Place-based interventions are one realm of population level approaches 

that seek to modify neighborhood environments in ways that can support residents’ health 

promoting behaviors. Changes to the distribution of health-supportive (or detrimental) point-

reference environmental characteristics within neighborhood environments have emerged as 

a possibility, given that the built environment – the human made space in which humans live, 

work and recreate on a day-to-day basis – constrains everyday health-relevant choices (Roof 

and Oleru, 2008).

The potential contribution of the food environment near schools (e.g., fast food restaurant 

availability) to child obesity has been studied extensively (Currie et al., 2010; Davis 

and Carpenter, 2009; Sanchez-Vaznaugh et al., 2019; Sánchez et al., 2012; Baek et al., 

2016), as children spend large proportions of their waking hours and consume a large 

proportion of their food within and near the school environment. While the body of evidence 

supports these connections broadly, different approaches to conceptualize exposure make it 

challenging to more fully understand the health effects of environmental exposures, as well 

as identify where interventions may be especially needed. To assist policy makers with these 

challenges, methods need to be developed that both (i) identify different spatial patterns of 

exposure and (ii) link these patterns to health outcomes quantitatively. Exposure patterns, 

compared to continuous exposure measures, may make it more straightforward to identify 

places in higher need of interventions.

Previous work has approached these problems by first clustering some measure of built 

environment features (BEFs) and then incorporating cluster assignments as a categorical 

predictor into a second stage regression model. For example, Wall et al. (2012) used a 

spatial latent class analysis (LCA) to cluster multivariate measures of the built environment, 

including the density of food outlets within 1 mile of the subjects residential location, and 

subsequently estimated the association between cluster membership and adolescent obesity. 

However, clusters identified with these traditional buffer-based exposure counts ignore the 

spatial distribution of BEFs within the buffer. This spatial distribution is relevant from a 

mechanistic perspective because BEFs closer to schools are easier to access, as well as 

policy relevant since the distribution could inform built environment interventions such 

as zoning laws to curtail exposure. Finally, using an estimate of cluster membership as a 

predictor in a health outcome model does not account for the uncertainty in the estimated 
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cluster assignment label, leading to potentially incorrect inference of the associated health 

effect.

Motivated by the need to better understand how proximity of FFRs to schools, beyond their 

number, is associated with child obesity, this paper has two complementary goals. First, 

we aim to develop a clustering procedure that provides interpretable groupings of BEF 

(e.g. FFR) exposure that is based on the spatial distribution of BEFs. For this goal, we 

work with the geographical coordinates of BEFs and schools, modeling the set of distances 

of each school to its nearby BEFs as a realization of a 1-dimensional Inhomogeneous 

Poisson process (IPP) with a school-specific intensity function (Diggle, 2013). Clusters of 

schools are formed by clustering the intensity functions using a Nested Dirichlet Process 

(NDP) (Rodriguez, Dunson and Gelfand, 2008). Working directly with point-level data and 

distances, instead of buffer-based counts, maintains the level of granularity needed to form 

clusters based only on the proximity of BEFs to schools. In turn, this allows us to separate 

the effect of the spatial distribution of BEFs around schools on children’s obesity from the 

effect of the quantity of BEFs in the buffer. This is important because quantity can vary 

greatly across levels of urbanicity, and proximity is a separate dimension of accessibility to 

BEFs beyond quantity. This separation of effects may thus provide new insights compared to 

prior work. Second, we show two ways to use the output from the NDP clustering model to 

address cluster assignment uncertainty when using clusters as predictors in a regression that 

evaluates the association between FFR exposure near schools and students’ obesity risk.

Clustering methods vary widely, from the model-based finite mixture models (FMM) 

(Diebolt and Robert, 1994) and LCA (Wall and Liu, 2009), to algorithmic K-means style 

methods (Hartigan, 1975; Friedman, Hastie and Tibshirani, 2001). Each of these have 

varying strengths and weaknesses according to the problem at hand. FMMs, K-means 

and LCA rely on pre-specifying the number of clusters that should be found in the data 

and make parametric assumptions about the relevant distribution or metric that define 

the clusters. Our use of the NDP (Rodriguez, Dunson and Gelfand, 2008) allows us to 

cluster schools without enforcing strong parametric constraints on the shape of the intensity 

functions in the IPP (introduced above and described in detail in Section 3) or prespecifying 

the number of clusters. Akin to Xiao, Kottas and Sansó (2015), our model factorizes the 

intensity functions in the IPP into the product of a normalized intensity function, modeled 

non-parametrically, and the total number of BEFs. This factorization enables clustering 

based on proximity of FFRs independently of FFR quantity. Our model differs from that of 

Xiao, Kottas and Sansó (2015)’s in our use of the IPP to model a spatial process instead 

of a temporal process, and a NDP to create clusters of subjects (schools) instead of using 

a dependent Dirichlet process (DDP) (MacEachern and Shen, 1999; MacEachern, 2000) to 

capture the temporal dependencies.

Additionally, in accordance with our conceptual objective (i), the NDP provides cluster 

assignment labels which can be processed and used in a second-stage regression analysis 

to estimate associations between the BEF’s spatial distribution and a health outcome of 

interest. Second-stage models raise the need to accommodate uncertainty in estimated 

exposures, in this case cluster assignment (Chiang et al., 2017; Graziani, Guindani and 

Thall, 2015; Wall et al., 2012; Wade et al., 2018). We explore two approaches to using the 
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output of our NDP clustering model in a second-stage analysis to handle the challenges 

of making cluster assignments, given that the NDP does not constrain the number of 

clusters to be fixed and consequently produces a varying number of cluster assignments 

across posterior samples. One approach relies on using a conservative “consensus of cluster 

assignments” determined from cluster-specific uncertainty bounds (Wade et al., 2018). The 

second approach avoids a single cluster assignment by using the matrix of co-clustering 

probabilities among schools to form an input to a Bayesian kernel machine (BKMR) 

regression model for the health outcome (Bobb et al., 2015; Valeri et al., 2017). This latter 

approach is an innovation in terms of expanding the applications of BKMR, as well as a way 

to utilize a clustering model’s output to address classification uncertainty.

Section 2 discusses the data sources used in our analysis of child obesity in relation to FFR 

occurrence near their schools, including data processing needs for our proposed methods, as 

well as preliminary data analysis. Section 3 describes our proposed NDP clustering approach 

and the second stage health analysis models. Section 4 contains the results from fitting our 

models to the California data, as well as comparison of our proposed models to traditional 

modeling approaches with both simulated and California data. We finish with a discussion of 

our contribution to the built environment literature, limitations of our approach and possible 

methodological extensions.

2. Data on child obesity and food environment near schools in California.

2.1. Data sources and study sample.

By state mandate, California public schools collect data on the fitness status of 5th, 7th 

and 9th graders using the Fitnessgram battery. The Cooper Institute’s sex-, age- and 

height-specific standards for body weight are used to classify each child as “meeting the 

standard”, “needs improvement”, or “needs improvement, high risk”, which correlate to 

normal, overweight, and obese classifications. We use the last two of these as “not meeting 

the standard”, and use the term obesity henceforth when referring to this outcome. We 

use data collected during academic year 2009-2010 on 9th graders only, since high school 

youth are more likely to be exposed to the food environment surrounding their school (e.g., 

students may leave the campus for lunch).

Fitnessgram as well as school-level characteristics are available through the California 

Department of Education (CDE) website (https://www.cde.ca.gov/ds/), including schools’ 

geocodes. We use geocodes to link schools to census tract level covariates and to calculate 

the distances between the school and the geocoded location of each FFR in California. 

FFRs were identified from the National Establishment Time Series (NETS) database (Walls, 

2013), using a published algorithm that classifies specific food establishments as FFRs 

(Auchincloss et al., 2012). Only distances shorter than one mile were kept for this analysis, 

because previous work shows FFRs cease to have an effect on childhood obesity at 

approximately one mile from schools (Baek et al., 2016). Finally, we calculated the distance 

between all schools, to derive a data set of schools that are at least one-mile away from one 

another, to satisfy independence assumptions used in the analysis.
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2.2. Preliminary analysis.

The data comprise 420,085 children who attended 1,193 high-schools. Forty percent of the 

children had obesity, and 64% of schools had ≥ 1 FFR within one mile. While the second 

stage analysis modeling obesity includes all schools, the first stage analysis that derives 

clusters of schools with similar spatial distribution of surrounding FFRs includes only the 

schools with ≥ 1 FFRs within one mile of their location.

Descriptive statistics of the schools are presented in Table S1 in the Supplementary Material, 

for the entire dataset and for the two subsets of schools with and without FFRs within a 

mile. Aside from having ≥ 1 FFR, schools in the first stage analysis are more likely to be 

located in urban areas (46%) compared to schools not included (27%). Schools included in 

the first stage analysis varied in terms of the number and spatial distribution of nearby FFRs. 

Among these schools, 45% had 1 to 4 FFRs within one mile, while the rest of the schools 

had at least 5; the median (Q1-Q3) distance to the first FFR was 0.4 (0.3-0.6) miles.

Examining the empirical cumulative distribution function (ECDF) of the distances between 

each school and its neighboring FFRs provides a richer understanding of schoolchildren’s 

exposure to FFRs and illustrates how using buffer counts or distance to the closest FFR, may 

fail to incorporate meaningful aspects of spatial exposure. Figure 1A illustrates how schools 

with a similar number of FFRs within a given distance may be characterized by dramatically 

different spatial distributions of surrounding FFRs. Likewise, Figure 1B illustrates that while 

certain schools may have the same distance to the first outlet and/or have similar distribution 

of distances to FFRs, the total number of nearby FFRs might be completely different. Figure 

1C shows the distribution of school-FFR distances for 100 randomly selected high schools, 

further demonstrating the wide variability in the spatial distribution of FFRs in our dataset. 

Figure 1 thus illustrates the need for improvements in characterizing spatial distribution (or 

proximity) and quantity of BEFs as separate, albeit related, dimensions of exposure.

3. Model and Estimation.

Our analysis to distinguish the association between obesity and the spatial distribution and 

quantity of FFRs is based on a two-stage approach: (i) a first stage model characterizes 

the main patterns of school-level exposure to FFR, by clustering the spatial distribution of 

FFRs near schools independently of their quantity; (ii) a second stage model uses the output 

from stage 1 in a regression model with child obesity as the outcome. Here we discuss each 

modeling stage and corresponding estimation strategy, as well as exposure summaries from 

the first stage that are input into the second stage model.

3.1. Stage I: Clustering the spatial distribution of FFRs near schools.

To characterize the food environment near schools, our clustering approach focuses on the 

point processes describing the relative locations of FFRs in the immediate vicinity of the 

schools, rather than the global 2-dimensional point process representing the location of 

FFRs across the entire state of California. Specifically, let rij be the distance between the 

ith school (i = 1, …, N) and the jth nearby FFR j = 1, …, ni : each rij belongs to the interval 

(0, R) ⊂ ℝ, with maximum distance R chosen on substantive grounds. Since the schools in 
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the sample are relatively far from each other (by at least R), the distribution of distances 

for one school does not inform on the distribution of distances for another. Thus, for 

each school i, we model the random subset Di = rij; j = 1, …, ni  as a realization from a one-

dimensional Inhomogeneous Poisson Process (IPP) with intensity function λi(r), r ∈ (0, R). 
This realization consists of both the random number of FFR locations near a school as well 

as the distances to those locations, both of which are governed by the intensity function 

λi(r). However, to accomplish our main purpose of separating the proximity of locations 

(distances) from the number of locations, we follow Xiao, Kottas and Sansó (2015) in 

decomposing the intensity function λi(r) as λi(r) = γifi(r) with γi representing the expected 

number of FFRs within radius R from school i and fi(r) denoting a normalized density. Thus, 

the ith school’s contribution to the likelihood is:

p(Di ∣ γi, fi(r)) ∝ γi
niexp{−γi} ∏

j = 1

ni
fi(rij),

(1)

where fi rij  is the value of the density fi(r) evaluated at rij. Assuming independence among 

the N collections of distances between school i and the nearby fast food restaurants, 

rij j = 1
ni  the full likelihood is obtained by taking the product over the N schools’ likelihood 

contributions. Because of the normalization of the intensity function, we note that (1) 

separates into a component that handles the number, ni, of FFRs for each school i, and 

a component that, given ni FFRs surrounding school i, evaluates the density at each of 

the ni distances. We consider γi, i = 1, …, N as nuisance parameters, as they do not affect 

the estimation or interpretation of the fi(r)’s beyond what has been previously discussed. 

In the health outcome model we use the observed ni’s directly as a predictor, instead of 

their expected values γi’s, in accordance with our aim to differentiate between the separate 

effects of the observed FFR quantity (a traditional exposure metric) and the FFRs’ spatial 

distribution on child obesity.

Our goal is to simultaneously model and cluster the FFRs spatial density functions fi(r), 
i = 1, …, N, in a non-parametric fashion. While the non-parametric estimation of a single 

fi(r) could be accomplished by using a Dirichlet Process (DP) mixture model (Gelman et 

al., 2013), we use a NDP modeling approach to accomplish our goal. The NDP uses two 

DP’s simultaneously: one to estimate the normalized intensities, and another to cluster them. 

Specifically, we express each fi(r) as:

fi(r) = ∫ K(r ∣ θ)dGi(θ)

Gi ∼iid Q
Q ∼ DP (α, DP (ρ, G0)),

(2)

where, K(r ∣ θ) is a mixing kernel with parameter vector θ, and the distribution Gi is 

drawn from the random distribution Q on which we place a NDP prior. In (2), DP ρ, G0
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denotes a DP with concentration parameter ρ, ρ > 0, and parametric base measure G0. The 

base measure G0 is the distribution around which the DP is centered and the concentration 

parameter, ρ, reflects the variability around that base measure.

The fi(r)’s are clustered through the Gis as can be seen from the stick breaking construction 

representation of the NDP: Q = ∑k = 1
∞ πk

*δGk*( ⋅ ). In this representation, πk
* represents the 

probability that a school is assigned to the k-th mixing measure, Gk
*, δ( ⋅ )( ⋅ ) is the Dirac 

delta function and Gk
* = ∑l = 1

∞ wlk
* δθlk*

* ( ⋅ ) is itself composed of weights, wlk
*  and associated atoms 

θlk
* . This hierarchy of distributions, weights and atoms provides a framework that flexibly 

identifies clusters of schools, and also flexibly estimates the corresponding normalized 

intensity function (See Figure S1 in the Supplementary material for a helpful illustration 

(Peterson et al., 2020)).

Combined altogether, the hierarchical formulation of our model is:

{rij; j = 1, …, ni} ∼ind IPP (λi(r)), i = 1, …, N
λi(r) = γifi(r)
fi(r) = ∫ K(r ∣ θ)dGi(θ)

Gi ∼iid Q
Q ∼ DP (α, DP (ρ, G0)) .

(3)

As previously noted, given the separability of the likelihood contributions, (1), the γi

are nuisance parameters that do not influence the estimation of the normalized intensity 

functions, which are of primary interest.

In our analysis of the California data, we transform the school-FFR distances from 

(0, R) ℝ using a probit function to create the unrestricted distances rij
′ = Φ−1 rij/R . This 

transformation enables us to use a normal mixing kernel and corresponding normalinverse-

chi square base measure, G0 = N(0, σ) × Inv − χ2(1,1), to facilitate computation. The Beta 

base measure could also be used here, as in the work of Xiao, Kottas and Sansó (2015), 

but it is not amenable to computation with large datasets. Additionally, in our preliminary 

simulations we found no difference in clustering estimates between the two base measures. 

Furthermore, an infinite mixture of normal distributions has been shown to be sufficient to 

approximate any distribution (Nguyen and McLachlan, 2019), lending further theoretical 

justification for our modeling choice. Completing our model specification, we place 

informative Gamma priors, on the concentration parameters, α, ρ ∼ Gamma(10,10), to encode 

our a priori belief that there should be a small number of clusters (Ishwaran and James, 

2001; Gelman et al., 2013; Rodriguez, Dunson and Gelfand, 2008).

3.1.1. Clustering model estimation.—As our modeling approach is specified within 

a Bayesian framework, inferences on all model parameters are obtained through the 

posterior distribution, which we approximate using a Markov chain Monte Carlo (MCMC) 

algorithm. Specifically, we use the blocked Gibbs sampler as described in Rodriguez, 

Dunson and Gelfand (2008), truncating the summations for the inner and outer DPs using 
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Gk
* ≈ ∑l = 1

L wlk
* δθlk*  and Q ≈ ∑k = 1

K πk
*δGk*( ⋅ ), where L = 30 and K = 35. This model fitting routine 

is implemented within our bendr (Peterson, 2020) R package.

We drew 250,000 samples from the posterior distribution, with 240,000 discarded for burn-

in and the last 10,000 iterations thinned by 3 to reduce auto-correlation. The length of the 

burn-in period and thinning were determined by inspecting traceplots for various model 

parameters and by computing Raftery and Lewis’ diagnostic statistic (Raftery and Lewis, 

1995).

Posterior medians, inter-quartile ranges (IQRs) and 95% credible intervals were calculated 

for the intensity function parameters, μlk, σlk
2 *, πk

*. The f̂(r)’s were constructed over a fine 

grid of equally spaced values in ℝ representing the distances of a BEF from a school, 

combining the K clusters and the L within-cluster components at each distance. Since we 

transformed the school-FFR distances from (0, R) to ℝ, we back-transform the normalized 

intensities onto the (0, R) domain using the inverse probit function, and rescale them by an 

empirically calculated proportionality constant.

3.1.2. Clustering summaries from stage I model.—We create two summaries of 

the clustering model output that characterize the between-school similarity in the spatial 

distribution of FFRs near schools: (1) discrete cluster labels; (2) a matrix of co-clustering 

probabilities.

First, we assign cluster labels to the schools such that the set of schools is partitioned 

into mutually exclusive groups. We derive cluster assignment labels for each school using 

the posterior samples and a loss function in a decision theoretic framework (Wade et al., 

2018). Specifically, we use the variation of information (VI) loss function to determine the 

optimal cluster configuration, which simultaneously identifies both the number of clusters 

and cluster labels for the schools. This approach finds the posterior sample that produces 

the minimal loss, and uses the number of clusters and cluster assignments in that posterior 

sample to assign labels to schools– thus deriving, essentially, a “point estimate” for the 

discrete/categorical cluster assignment. We refer to this point estimate as the “mode” cluster 

label. Cluster labels are derived using the mcclust.ext2 package in R (Wade, 2015). 

Given our interest in characterizing clustering uncertainty, we note that Wade et al. (2018)’s 

method also produces 95% uncertainty bounds for both the number of clusters and for the 

cluster labels for each school, yielding three additional cluster configurations (for a total 

of four including the mode). Compared to “upper” and “lower” bounds that are typical of 

credible intervals for univariate parameters in ℝ, Wade et al. (2018) provide three bounds for 

the cluster configurations which are mapped from a lattice space. The bounds for the cluster 

configurations may differ from the point estimate in the number of clusters identified, and/or 

the members (schools) belonging to each cluster. We use the same R package to estimate the 

posterior assignment credible bounds with VI loss function as detailed in Wade et al. (2018), 

using the minVI and credibleball functions.

A second summary is the matrix of co-clustering probabilities, P  with P ij entry equal to 

the proportion of posterior samples where schools i and j were in the same cluster, with 
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P ii equal to 1 by convention. When the underlying true clusters are well separated (i.e., 

the normalized intensity functions have little overlap), the values of P ij will tend to be 

concentrated near 0 or 1. When P ij ≈ 1, we have high certainty that the two schools belong 

to the same (true) cluster and thus have a highly similar spatial distribution of FFRs near 

them. Conversely, when P ij ≈ 0, there is high certainty that the two schools do not belong in 

the same cluster and thus have different spatial distribution of FFRs nearby. The more likely 

scenario in practice is that most schools will have a non-zero probability of co-clustering 

with other schools, reflecting clustering uncertainty related to the amount of available 

information (e.g., sample size) as well as due to some overlap in the underlying (true) 

normalized intensity functions. The co-clustering probability matrix can be used to visualize 

the degree of clustering uncertainty by first re-ordering the rows and columns of P  such that 

schools with high co-clustering probabilities have neighboring indices. We use the algorithm 

described in Rodriguez, Dunson and Gelfand (2008)’s Supplementary Material to re-order 

the indices. After this reordering, the heat-map of the co-clustering probability matrix will 

have distinct blocks when the NDP is able to identify underlying clusters; well-defined 

blocks in the heat-map reflect less clustering uncertainty.

3.2. Stage II: Health Outcomes Model.

In the second stage of the analysis, we examine whether the spatial distribution of FFRs 

around schools are associated with obesity of children in the school. We propose two 

alternative approaches that separately use the NDP clustering summaries described in 3.1.2 

and that seek to deal with clustering uncertainty.

3.2.1. Consensus generalized linear model (CGLM).—The first approach controls 
(or reduces) uncertainty in the cluster labels by using, in the health outcome model, only 

the subset of schools for which the cluster label is known with greater certainty. To 

identify this subset, we take the intersection over the four cluster configurations that can 

be obtained from the NDP output using Wade et al. (2018)’s method - the mode, and the 

three bounds as described in Section 3.1.2 - to arrive at the consensus cluster assignment. 

Identifying the consensus cluster assignment is possible when clusters are well identified 

and posterior samples do not exhibit label-switching across iterations – as is our case – 

or a post-processing step that adjusts for label switching has been run (Gelman et al., 

2013; Rodríguez and Walker, 2014; Stephens, 2000; Papastamoulis, 2016). These conditions 

ensure that cluster labels are consistent across configurations and, consequently, taking the 

intersection has a consistent meaning. While using each of the four assignments in separate 

health outcome regression models, and subsequently fuse together their results may be 

possible, that would entail fusing models with potentially a different number of clusters. We 

name our proposed approach consensus generalized linear model (CGLM); and use the term 

‘mode GLM’ (MGLM) to refer to a model that simply uses the mode (or “point estimate”) 

cluster labels.

To define the CGLM and enable us to distinguish the association between the quantity of 

FFRs and obesity from that of the FFRs’ spatial distribution, let Ci, k = I(ith school belongs 

to cluster k), k = 1, …, K, be an indicator variable equal to one when the i-th school is 

assigned to cluster k and zero otherwise. Note that the cluster indicators are available only 
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for schools where the number of FFR ni > 0; however, we bring back into consideration the 

schools that had zero FFRs within 1 mile. Thus, the schools included in the CGLM model 

are both those with ni = 0 or those with ni > 0 that are determined by the consensus approach 

to have a cluster label with relatively higher certainty. This set of schools is denoted as 

DConsensus. In addition, define Qi, m, m = 0, …, 5 a set of indicator variables that treat the number 

of FFRs as a categorical variable. In particular Qi, m = I ni ∈ Bm , with B0 = {0} and the other 

categories being defined as B1 = {2}; B2 = {3}; B3 = {4}; B4 = {5, 6, 7}, and B5 = [8, ∞) ∈ ℕ. 

This categorical representation is used in our analysis given the lack of linearity in the 

association between FFR quantity and the odds of obesity, though other parametrizations of 

ni could be used.

The CGLM outcome model is thus:

logit(pi′) = ∑
m = 0

5
Qi′, mζm + I(ni′ > 0) ∑

k = 1

K
Ci′, kξk + Zi′

Tβ i′ ∈ Dconsensus

(4)

where pi′ denotes the proportion of obese 9th grade students at the i′th high school, ζm

and ξk are quantity- and cluster-specific coefficients, respectively, and Zi′ is a vector of 

school characteristics (shown in Table 1) without an intercept term. The outcome model 

specification is completed by specifying flat improper priors for β, ζm, m = 1, …, 5 and 

ξk, k = 1, …K.

In summary, the CGLM approach mitigates the uncertainty in the cluster label assignment 

by taking the intersection of the four cluster labels to arrive at a more conservative (less 

uncertain) estimate of the schools’ cluster assignment. This reduction of uncertainty in 

cluster assignment comes at the cost of sample size, which we anticipate will lead to wider 

credible intervals for the coefficients of the health outcome model. The key advantages of 

this approach are that it enables a straightforward analysis, and the cluster assignment is 

more precise than using the single “point estimate” (that is, the cluster mode label) for all 

the school in the sample. This increase in precision in the cluster label assignment reduces 

miss-classification error, thereby reducing bias in cluster effect estimates.

3.2.2. Bayesian Kernel Machine Regression (BMKR).—In the second approach, 

we draw from the Bayesian kernel machine regression literature and include, in the health 

outcome model, all the clustering information contained in the matrix P of co-clustering 

probabilities through a function ℎ( ⋅ ) on which we place a Gaussian Process prior. In 

contrast to using discrete cluster labels, this approach incorporates clustering uncertainty 

since the co-clustering probabilities are not always 0 or 1. Heuristically, assigning discrete 

cluster labels is equivalent to thresholding the co-clustering probabilities in P, such that 

schools with co-clustering probabilities above some threshold are assigned to the same 

cluster, and subsequently discarding both the threshold and the remaining variation of the 

P ij within and between clusters thereby discarding clustering uncertainty. To define the 

second outcome model, recall that a BKMR relies on: (a) each subject having separate 

Peterson et al. Page 10

Ann Appl Stat. Author manuscript; available in PMC 2024 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



‘exposure information’ (e.g., exposure vector); (b) the availability of a metric that captures 

the similarity between the exposure information of any two subjects; and (c) a covariance 

function that takes as input the similarity in exposure information between pairs of subjects 

(Bobb et al., 2015).

Thus, to take into account clustering uncertainty, let the ‘exposure vector’ for each school 

i, i = 1, …, N be the N-dimensional vector of co-clustering probabilities Pi defined as the itℎ

row of the co-clustering matrix P. Clearly, Pi is not a typical exposure vector since none of 

its entries are interpretable as a higher or lower degree of exposure. While this vector does 

not quantify exposure in an absolute sense, by definition of co-clustering this vector as a 

whole indirectly captures information on the FFR distribution near the ith school as it relates 

to exposure of other schools and thus can serve as an exposure vector for the itℎ school. 

Moreover, when schools i and j have a similar spatial distribution of FFRs near them, the 

vectors Pi and Pj will tend to be similar. We use the Euclidean distance between these vectors 

as the metric measuring their similarity. Supplementary Figure S10 demonstrates that when 

the co-clustering probability for schools i and j, P ij, is high, the Euclidean distance between 

Pi and Pj is small.

More formally, the vector Pi is mapped to a scalar ℎ Pi , through the function ℎ( ⋅ ). This 

function ℎ( ⋅ ) is provided with a GP prior with mean 0 and Gaussian covariance function 

κ ⋅ , ⋅ ; ϕ, σ2  that evaluates the covariance between ℎ Pi  and ℎ Pj . The covariance function 

depends on the Euclidean distance between the two N-dimensional vectors Pi and Pj, and the 

parameters σ2 and ϕ, which encode, respectively, the marginal variance of each ℎ Pi , and 

the Euclidean distance between Pi and Pj at which the correlation between ℎ Pi  and ℎ Pj

is negligible. Thus, given the inverse relationship between the Euclidean distance of these 

vectors and the co-clustering probability, the model implies that, a priori, ℎ Pi  and ℎ Pj  are 

very similar if the two schools have a high co-clustering probability.

As with the CGLM, we incorporate all observations with 0 FFRs into the outcome model 

and use the indicators for quantity of FFRs nearby, Qi, m, to distinguish the effect on obesity 

associated with the quantity of FFRs from their spatial distribution. Altogether, the second 

health outcome model is:

logit(pi′) = Qi′, 0ζ0 + I(ni′ > 0) α + ℎ(P i) + ∑
m = 0

5
Qi′, mζm + Zi′

Tβ i′ ∈ DFull

ℎ( ⋅ ) ∼ GP(0, κ( ⋅ , ⋅ ∣ ϕ, σ2)) .

(5)

In (5), DFull is the set of schools with zero FFRs in addition to the full set of N schools used 

in the first stage model less those without outcome data. Additionally, α denotes the intercept 

for schools with at least one FFR, ℎ P i′ , i′ ∈ DFull is as described above, and β, and Zi′ have 

the same definition and interpretation as in the CGLM.
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To complete the BKMR outcome model specification, coefficients β, and ζm, m = 1, …, M
are given flat priors, while ϕ and σ2 are each given informative folded Normal(1, 3) priors 

to accommodate known identifiability issues (Zhang, 2004). These informative priors were 

chosen after initial runs with uniform priors on larger intervals of ℝ+ for both parameters 

showed that posterior samples were contained in the (0, 1) interval.

3.2.3. Estimation and inference for health outcome models.—For comparative 

purposes, we fit the BKMR and the model with categorical cluster assignments to both 

datasets, DConsensus and DFull. In the latter case, the mode cluster assignment was used 

to determine cluster specific indicators; the mode or MGLM previously discussed. The 

models are fit using the Hamiltonian Monte Carlo variant sampler implemented in stan 

(Carpenter et al., 2016) via rstan (BKMR) (Stan Development Team, 2020) and rstanarm 

(CGLM,MGLM) (Goodrich et al., 2020). All model fitting was performed within R (v3.6.1) 

(R Core Team, 2019) on a Linux Centos 7 operating system with 2x3.0 GHz Intel Xeon Gold 

6154 processors.

For each outcome model, we ran 4 independent chains, using different initial values, each 

ran for 2000 iterations. For each chain, we kept 1000 samples after burn-in, for a total of 

4000 posterior samples. Convergence was assessed via split R̂ (Gelman et al., 2013) and 

visual inspection of traceplots.

Posterior median and 95% credible intervals are calculated for regression coefficients 

β, cluster effects ξk, k = 1, …, 6, and ℎ P i , i = 1, …, N. Additionally, given that schools 

with ni = 0 cannot be assigned a cluster for obvious reasons, the CGLM includes 

the non-standard interaction terms between quantity ni′ > 0 and cluster assignment. 

As in any model with interactions,the “main effect” of the quantity of FFRs thus 

depends on the cluster to which schools with ni′ > 0 were assigned. To estimate this 

FFR quantity effect, for each category of FFR quantity Qi′, m with m > 0, we 

marginalize over the cluster assignment to define the probability of obesity given 

category Qi′, m, holding Zi = 0 and taking the median across the s = 1, …, S post burn-

in MCMC samples, P Obesity ∣ Qm, Data) = medians∑k = 1
K wk

sinv − logit ζm
s + ξk

s , where wk is 

the probability of a school being assigned to cluster k in the DCGLM dataset. Note 

that for ni = 1, there is no corresponding effect, ζ1, as this is defined as the average 

cluster effect by the construction of the model in (4). Similarly, for the BKMR we 

calculate the FFR quantity effect on schoolchild obesity, now averaging over the ℎ P i ’s: 

P (Obesity ∣ ζm, Data) = medians
1

DFull
∑i = 1

DFull inv − logit(ζm
s + ℎ Pi

s).

3.3. Model Comparison and Validation.

We compare our proposed methods to traditional modeling approaches using the California 

data as well as simulations. In separate logistic regressions, we include traditional predictors, 

namely: (1) the count of FFRs within the 1 mile buffer radius, (2) the distance to the 

nearest FFR, or (3) both of these. We compare these models on our California data using the 

Widely Applicable Information Criteria (WAIC) (Vehtari, Gelman and Gabry, 2017). WAIC 
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is asymptotically equal to leave-one-out cross validation and thus represents the ability of 

the model to predict obesity while penalizing model complexity. In addition, we include 

MSE as a traditional model performance metric that balances estimation bias and variance in 

the school-level obesity prevalence. To better evaluate each model’s prediction performance, 

we calculated MSE for the estimates of the proportion of obese students on 20% held-out 

observations. Thus, these metrics evaluate the models in terms of their predictive ability and 

estimation accuracy and, consequently, how well the models may help identify schools with 

greater need for interventions (e.g., high estimated obesity prevalence and/or high number of 

children with obesity).

Second, in order to further validate our model results in a more general setting, we conduct 

simulation experiments. Clearly, since the first-stage model relies on the substantive belief 

that there is heterogeneity in the spatial distribution of BEF locations around schools (i.e., 

some degree of clustering), our NDP proposed approach will not work when the FFR 

locations are uniformly distributed, as the NDP will identify only one cluster, resulting in 

unidentifiable consensus and BKMR models. In real data, this is unlikely to occur, given 

the strong spatial patterning of businesses more broadly. Hence, our simulations focus on 

demonstrating that when heterogeneity in the spatial distribution of FFR is present and the 

outcome is associated with it and/or the quantity of FFRs, our models either outperform or 

compare well with traditional approaches. In the cases when there is no association between 

the outcome and the spatial distribution of environmental features, our proposed models 

perform similarly to traditional models.

In our simulations we assume that three underlying clusters govern the spatial distribution of 

FFRs near schools, where the three clusters’ number and distance of FFRs are generated 

from a 1-dimensional IPP with cluster-specific intensity functions. We simulate first 

simulate the number of FFRs within a mile of a school from a Poisson distribution 

with a mean of 10 for each of three intensity functions. The intensity functions for 

these clusters have some degree of overlap (see Supplementary Figure S8, Peterson et 

al. (2020)), given that we found overlap in the estimated intensity functions in our 

analysis of the CA data. These functions were used to generate distances between 

FFRs and schools for 150 schools evenly assigned to each cluster (50 schools each). 

Each school is then assigned ai children, where ai ∼ Poisson(100), to reflect the observed 

variability in the number of students across schools. Given the exposure data, we 

then generated the proportion of obese children in each school i according to four 

models for pi: (a) Cluster Model: logit pi = − 1.4 + I Clusteri = 1 × . 4 + I(Clusteri = 3 × . 2, 

(b) Distance Model: logit pi = − 1.4 + Minimum Distancei × . 4, (c) Quantity 

Model: logit pi = − 1.4 + Num FFRi × . 1 and (d) Quantity & Distance Model: 

logit pi = − 1.4 + Minimum Distancei × . 4 + Num FFRi × . 1. To obtain the number Y i of obese 

children in each school, we used the binomial model: Y i ∼ Binomial ai, pi .

We first fit the NDP to the distance data and obtain consensus clusters and co-clustering 

matrix P  as described above, before generating 6 datasets in each of the four settings 

described above. We fit both our CGLM and BKMR models in each setting and compare 

against the traditional modeling approaches that employ simple buffer counts, minimum 
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distance to the nearest FFR, or both counts and minimum distance to estimate the exposure 

risk. For each model fitted to each outcome data set, we construct plots of the density of 

residuals calculated as follows for a random dataset of the 6 simulated. For each school, 

at each MCMC iteration, we obtain a predicted number of children with obesity. We 

then obtain the median of these predicted values across the posterior samples (ŷmedian), and 

calculate the residual as the difference between this quantity and the observed number of 

children with obesity at each school. We also tabulate the average WAIC rank as well as the 

average out-of-sample MSE of the proportion of obesity estimated for each model in the full 

and consensus dataset setting.

4. Results.

4.1. Spatial Intensity Functions.

All models converged according to visual inspection of traceplots and numerical assessment 

of the split R̂ statistic. Summary statistics for this diagnostic and effective sample size are 

included in Supplementary Table S3 (Peterson et al., 2020).

The clustering model estimates six clusters with high probability, with the estimates of the 

cluster-assignment probabilities, πk
*, beyond the first six effectively negligible when rounding 

to the hundredths place. The median cluster normalized density estimates, representing the 

likelihood of finding an FFR at a given distance from a school, are presented in Figure 

2, along with the proportion of schools in each cluster. Clusters are labeled according 

to their mode’s proximity to the school, i.e. the cluster which estimates most FFRs are 

located nearest to schools is labeled cluster 1, and so forth. Supplementary Figure S2 shows 

the estimated densities along with 95% credible intervals (Peterson et al., 2020). Figure 3 

presents a heat map of the co-clustering probability matrix P, after re-ordering the rows and 

columns such that indices for schools with high co-clustering probabilities are near each 

other.The six clusters are evident, viewing the figure from left to right, followed by the 

remaining schools which the model cannot cluster consistently.

Table 1 presents summary statistics for the characteristics of the schools included in the 

six clusters identified, as well as schools that have no FFRs within one mile of their 

location (labeled “Cluster 0”). There is a weak association between schools’ socioeconomic 

characteristics and cluster membership. For example, Cluster 1’s (closest FFRs) median 

census tract median income is $55,200, Cluster 6’s median census tract median income is 

$67,400. However, this patterning does not include Cluster 0, which has a lower median 

census tract median income of $53,900. Also, 44% of schools in Cluster 1 have a majority 

of white students, whereas 38% have predominantly Latino students; for cluster 6, these 

percentages change to 58% and 16%, respectively. Notably, all clusters contain schools 

across all urbanicity classification, and include schools with a varying number of FFRs. 

Thus, the mode cluster is not driven by FFR quantity or broader context (e.g., urbanicity) of 

the schools.

To assess whether the six identified clusters were geographically concentrated in one or 

more sub regions of California, and to investigate whether schools tended to co-cluster with 

nearby schools, we produced spatial plots of the co-clustering probabilities for a randomly 
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selected school – Figure S4 in the Supplementary Material (Peterson et al., 2020). Schools 

that are more likely to be co-clustered with the other school are not necessarily located 

nearby.

4.2. Health Outcomes Models.

The proportion of students that are obese is similar in both the consensus and full datasets 

(Table 2), which is encouraging since schools are not excluded on the basis of the outcome. 

Schools used to fit the consensus model are less likely to have few FFRs around them - only 

21% have 1-4 FFRs vs. 45% in the full dataset.

We discuss both second stage approaches on both datasets, starting with the consensus 

dataset. Since the BKMR results mirror those of the CGLM, we focus on how these 

second-stage models reinforce one another rather than describing each individually.

As shown in Figure 4, we observe a monotonic decrease in the probability of obesity as a 

function of the proximity of FFRs to the school, after adjusting for 1 mile radius quantity of 

FFRs. Specifically, according to the CGLM, children attending schools consistently assigned 

to Cluster 6 have a 35% (95% CI: [33%;38%]) probability of being overweight or obese, 

while, for other clusters, the lower bound estimate of the probability of obesity ranges from 

37% to 40%. These results are consistent with the substantive expectation that students 

who are exposed to FFRs in the immediate environment around schools are more likely 

to be obese than they would be otherwise: the density of FFRs for schools in Cluster 6 is 

greatest after 3 quarters of a mile, in explicit contrast to the other clusters. This finding 

supports prior work suggesting that zoning laws that restrict the placement of fast food 

restaurants could serve as possible population-level strategies to reduce child obesity (Austin 

et al., 2005). Given that our model separates proximity and quantity of FFRs, this finding 

and potential policy recommendation applies independently of the overall number of FFRs 

across different urban areas.

Figure 4 overlays the results of the CGLM and the BKMR models, when both are fitted 

to the consensus data set. The figure demonstrates general agreement across both models. 

However, in addition to the central tendency of obesity risk across the clusters as estimated 

by the CGLM, the BKMR provides additional information regarding the probability of 

obesity for children in each school. Thus, beyond potential policy implications of the 

average obesity risk for children across schools’ food environment clusters, the school-level 

estimates can be used to prioritize individual schools for additional interventions.

Figure S5 in the Supplementary Material shows the estimated probability of obesity as a 

function of the number of FFRs within a 1-mile radius of a school, calculated as described 

in Section 3.2.3, from both the CGLM and BMKR fitted to the consensus dataset(Peterson 

et al., 2020). As the figure indicates, there is a general agreement between the CGLM 

and BKMR models with respect to the negligible effect of the number of FFRs on 

obesity after adjusting for the FFRs’ spatial distribution and other covariates. The only 

estimate that stands out from these analyses is the BKMR’s estimate of lower obesity for 

children in schools with 5-7 FFRs nearby, as compared to zero FFRs - a counter intuitive 

result. However, it is possible that the greater number of FFRs implies greater variety of 

Peterson et al. Page 15

Ann Appl Stat. Author manuscript; available in PMC 2024 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



food choices, including healthier options. The data set in this analysis does not contain 

information on the specific types of FFRs, beyond the number and location, thus not 

allowing us to examine this possibility.

As with the consensus data set, the results from fitting a GLM (using only the median 

cluster assignment) and the BKMR in the full data set are in agreement with each other, 

as shown in Figures S3 and S6 of the Supplementary Material (Peterson et al., 2020). 

However, the results from the analysis on the full data set instead of the consensus data 

identify Cluster 2 as having the lowest probability of obesity, at 37% (95% CI: 36%, 38%), 

with the probability for all other clusters near or above 40%. Differences in the association 

between the spatial distribution of FFRs near schools on child obesity, comparing the full 

and consensus data sets are likely due to the fact that the full dataset contains schools with 

more uncertain cluster assignments, and thus potentially more prone to miss-classification 

errors and thus bias in the associations. The quantity effects are similar in the consensus and 

full data set, and again agree between methods (see Figures S5 and S6 in the Supplementary 

Material (Peterson et al., 2020)).

4.3 Results of Model Comparison.

We now examine the results from comparing our model to more traditional methods. 

Considering the CA data first, Table 3 shows that BKMR and CGLM consistently 

outperform the traditional models in terms of WAIC and out-of-sample MSE.

Figure 5 presents the simulation results. In scenario (a), where cluster indicators determine 

obesity risk, we see that the BKMR and CGLM perform better than other models, as 

expected; this is evidenced by the fact that the residuals’ densities have sharper peaks at 

zero and thinner tails for the proposed models compared to other competitor models. Thus, 

the proposed models have improved prediction. However, even when the model for risk is 

determined by the distance to the first FFR (minimum distance), (b), or both distance to 

the first FFR and quantity of FFRs, (d), the BKMR and CGLM continue to perform just 

as well or better than the fitted model that matches that scenario’s generative model. The 

reasoning for this performance derives from the association between the distance to the first 

FFR and the cluster intensity functions, through which the BKMR and CGLM gain their 

information. In the scenario where obesity risk depends only on the count of FFRs in the 

buffer, the BMKR and CGLM perform similarly to the model that matches the generative 

model. These results are further substantiated in Table S2 and Figure S9 which we include in 

the Supplementary Material (Peterson et al., 2020). Both the BKMR and CGLM are found 

to have consistently better or equivalent performance by WAIC and effectively equivalent 

in-sample MSE scores.

5. Discussion.

We presented a two-stage modeling strategy that aims to provide built environment 

investigators with tools to disentangle the contribution of two interrelated but distinct 

dimensions of availability of BEFs to health outcomes, namely quantity vs. proximity, and 

identify subjects at greatest risk of negative health outcomes. By implementing methods for 

point pattern data in a Bayesian non-parametric clustering approach, the first stage model 
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characterizes subjects’ exposure in terms of BEFs’ spatial distribution near subjects. This 

approach is an innovative contribution to built environment science because it introduces a 

new tool to characterize exposures in this field, beyond exposure assessment methods based 

on the quantity of BEFs as previously done. The second stage links the spatial distribution of 

BEFs around subjects to a health outcome, while adjusting for the number of FFRs nearby. 

This enables researchers to estimate the independent effects of quantity and proximity of 

BEFs, which is challenging to do with traditional modeling approaches. In particular, the 

introduction of kernel machine regression to the built environment research gives researchers 

in this area a new tool that has improved prediction performance, and is thus better equipped 

to identify subjects at greater risk associated with BEF exposures. The twostage modeling 

strategy allowed us to identify clusters of high schools in California that have FFRs within 

closer proximity relative to peer schools, and those that have FFRs farther way. Moreover, 

we found that after accounting for the spatial distribution of FFRs nearby, the quantity 

of FFRs did not have an independent effect on child obesity in our ecological analysis. 

This two-stage modeling strategy can be easily adapted to answer questions involving 

the association between other point-referenced environmental characteristics and health 

outcomes, for example, availability of parks and measures of physical activity (Evenson 

et al., 2016), depression (Bojorquez and Ojeda-Revah, 2018), or availability of social 

engagement destinations and cognition, among others (Besser et al., 2018).

Both second stage modeling approaches are innovative as they offer new ways to incorporate 

output from a clustering method into a second stage regression model while considering 

clustering uncertainty, although each with advantages and disadvantages. The CGLM is 

a novel combination of the idea of using a cluster label derived by a BNP model as a 

regressor in a health outcome model (Graziani, Guindani and Thall, 2015) with the notion 

of characterizing uncertainty in cluster assignment via credible balls (Wade et al., 2018). 

Thus, the CGLM is advantageous because it controls the uncertainty in cluster assignments 

and ultimately reduces misclassification error and potential bias in regression coefficients 

that would otherwise be present in an outcome model that uses a single point estimate of 

the cluster labels as a regressor. Naturally, the approach loses efficiency given the reduced 

sample size and has the potential to suffer from selection bias by using only the subjects 

with highest certainty in their class assignment. In our analysis, although the schools with 

higher uncertainty tended to have fewer outlets nearby, the excluded schools did not differ 

in terms of the outcome, thus minimizing selection bias concern upon conditioning by the 

number of FFRs in the second stage. Inverse probability of selection weights could be 

incorporated into the second stage when selection bias is a concern. Furthermore, while 

our modeling approach sought to estimate the independent health effects of the quantity 

of amenities vs. their proximity to study subjects, the sizes of the consensus clusters we 

identified did not permit us to examine interactions among these two factors. Estimating 

synergistic effects of quantity and proximity may be of interest in future studies with 

larger sample sizes. The BKMR is advantageous as it can use data from all subjects, 

handles cluster assignment uncertainty by using the co-clustering probability matrix, and 

can provide more granular information about health outcome risk for each subject in a 

school through the posterior estimates of ℎ Pi  instead of for discrete clusters. However, 

visualizing/interpreting the BKMR’s rich set of output could be challenging. In our case, we 
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compare the results of the analyses between the GCLM and BMKR methods and thus we 

used the mode cluster label to visualize the BKMR results. Other visualizations of the results 

may include displays of plots of the ℎ P i  as a function of the L2 norm of the co-clustering 

probabilities, P i and P j for a reference school j or visualizations of the estimated BEF 

normalized intensities among subgroups of subjects with similar values or ℎ P i . Importantly, 

high values of ℎ P i  imply higher outcome risk, thus these values can be used to identify 

subjects that may need further interventions.

We note several future research directions. First, as a comment on our application, future 

research could conduct this analysis on subject level data and avoid the possibility of 

introducing ecological bias, as our analysis of aggregate data does here. Methodologically, it 

is desirable to pursue joint estimation or other methods to more comprehensively propagate 

the uncertainty associated with the use of DP clustering results as an input in a health 

outcome analysis, as neither the BKMR or CGLM fully do so. Our current method is 

unable to easily embrace such a joint modeling approach due to both label switching and 

the varying number of assigned clusters across the MCMC iterations, yielding identifiability 

problems for the health outcomes models (Gelman et al., 2013). One possible solution 

is to incorporate the health outcome at the level at which the cluster is constructed by, 

for example, adapting the Logistic Stick Breaking Process (Ren et al., 2011). While the 

two-stage approach proposed here does not fully propagate uncertainty in cluster assignment 

in a standard fashion, defining exposure clusters independent of the outcome ensures a 

greater level of interpretability and conforms to substantive understanding of clusters being 

specifically about exposure. Furthermore, estimating clusters separately from an outcome 

means they can be used for more than one health outcome analysis. Second, we note our 

clustering objective focused on identifying meaningful patterns of FFR exposures and using 

these patterns as predictors of health outcomes, but not on explaining FFR prevalence. Thus, 

we do not model the distribution of FFRs as a function of related covariates. Researchers 

interested in identifying predictors of these environment clusters may find the work of 

Nylund-Gibson, Grimm and Masyn (2019) useful. Third, future researchers using NDP for 

clustering BEFs spatial distributions, or other uses, will need to be mindful of emerging 

theoretical results that cast some doubts on the quality of clustering results in some cases 

(Camerlenghi et al., 2019; Miller and Harrison, 2013, 2014, 2018). The specific causes of 

concern raised by these theoretical results may be less relevant when clustering BEF data 

and/or can be addressed by the dual use of CGLM and BMKR in the second stage. Finally, 

it is of interest to consider various extensions of the first stage model. One is to consider 

alternative modeling strategies for the point pattern of the fast food restaurants that allow 

for dependence among their locations that is not incorporated by the IPP. Another is to 

incorporate the spatial distribution of more than one type of BEF amenity and incorporate 

the spatial proximity of subjects to one another.

In summary, this work offers new tools to characterize the built environment in which 

humans live and approaches to use novel exposure summaries to disentangle the 

health effects of two dimensions of accessibility to amenities in the built environment. 

Disentangling the effect of proximity from that of availability of amenities may help 

informing decisions as to how new built environments may be constructed in the future 
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to reduce health risks within community environments (e.g., zoning regulations for school 

neighborhoods), as well as to identify places where to target interventions to ameliorate risks 

associated with existing built environment characteristics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Panel A: Distribution of distances from the school to nearby FFRs for two schools with 10 

fast food restaurants (FFRs) within a 1 mile radius. Panel B: Distribution of distances from 

the school to nearby FFRs for two schools that have the same distance to the closest FFR. 

Panel C: distribution of distances to FFRs for a sample of 100 schools. For each school the 

plot shows the range of distances between the 2.5th and the 97.5th percentile. Schools are 

sorted by median distance to FFR. Darker dashed and dotted lines represent the four schools 

depicted in panels A and B of this figure.
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Fig 2. 
Estimate of cluster density functions fk

*(r), k = 1, …, 6, with the estimated percent of schools 

within each cluster, πk
*. The estimate here is taken to be the posterior median. The IQR for 

the percent of schools in each cluster are, for clusters 1 to 6, respectively: 3, 2, 4, 5, 5, and 

2%
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Fig 3. 
Heat map of co-clustering probabilities, that is, the probability that any two schools are 

assigned to the same cluster. The identity line may be interpreted as a school’s probability 

of being clustered with itself. Although this probability is trivially equal to 1, for plotting 

purposes, in the figure this line is left equal to 0 to more clearly show the plot’s line of 

symmetry.
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Fig 4. 
Probability of obesity in relation to fast food restaurant (FFR) proximity. Estimates from 

the Bayesian Kernel Machine Regression (BKMR) are shown for each school (gray dot), 

along with 95 % credible intervals (gray line), and are sorted according to the cluster mode 

assignment; Cluster 1 is at the top of the figure, and Cluster 6 (FFRs furthest away) is at 

the bottom. The black stars represent the overall median probability of obesity for children 

attending schools in the given cluster. Triangles (and horizontal black dashed lines) denote 

the median posterior probability of obesity for children attending schools in each cluster 

estimated from the consensus GLM (CGLM) along with the 95% credible interval interval. 

The dotted vertical line is the posterior median probability of obesity when all adjusting 

covariates are 0 (that is, a majority White sub-urban high school with at least one FFR 

within a mile of the school’s location, and with the average percent of college educated 

adults and median census tract household income). BKMR and CGLM results are estimated 

using the consensus data set.
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Fig 5. 
Density estimate of residuals paneled by simulation scenario as described in the text. Black 

lines correspond to proposed models, gray lines correspond to competitor models. Line type 

and color defines the exact model used.
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Table 1

Descriptive statistics of school characteristics by mode cluster assignment. For categorical predictors, the 

value shown is the percent of schools in the column that fall in a given category. The column designated as 

“Cluster 0” reports summary statistics for high schools without any fast food restaurants within one mile of 

their location. The income and education variables refer to characteristics of the population living in the 

census tract in which schools are located.

N of Schools

Mode Cluster

0 1 2 3 4 5 6 Total

426 103 28 231 105 252 31 1,176

FFR Quantity within 1 mile

   [1,4]   0 42 39 48 34 47 55 29

   ≥5   0 58 61 52 66 53 45 35

   Zero 100   0   0   0   0   0   0 36

Urbanicity

   Rural 39 10 14 13 10   6 19 21

   Sub-Urban 34 40 39 44 44 46 42 40

   Urban 27 50 46 43 47 48 39 39

Majority Race/ethnicity among enrolled students

   African American   2   2   4   1   0   0   3   1

   Asian   2   6   4   4   4   5   3   4

   Hispanic 27 38 21 27 29 29 16 28

   No Majority   9 11 14 13 18 13 19 12

   White 59 44 57 55 50 52 58 55

Median Household Income (1,000 USD)

   Median 53.9 55.2 55.7 61.0 69.7 61.1 67.4 58.6

 IQR 34.1 33.3 30.2 39.1 41.7 30.1 43.0 35.1

Proportion of adults with ≥ 16 years of education

 Median 24.9 25.0 25.4 25.4 25.6 25.3 25.5 25.2

 IQR   2.1   2.7   3.4   2.6   2.9   2.6   2.5   2.4
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Table 2

Descriptive statistics for schools included in the Consensus GLM vs. not. IQR = Inter-quartile range; FFR = 

Fast Food Restaurant. For categorical variables, the entries represent the percentage of schools in each column 

that fall in a given category. The income and education variables pertain to the population living in the census 

tract where schools are located.

In Consensus Not in Consensus All*

Proportion Obese

 Median (Q1-Q3) 40.9 (33.3-47.4) 41.3 (34.1-48.2) 41.3 (33.9-48)

 IQR 14 14.1 14.2

FFR Quantity within 1 mile

 [1,4] 21 55 45

 ≥5 79 45 55

Urbanicity

 Rural  8 11 10

 Sub-Urban 35 47 44

 Urban 57 42 46

Majority Race

 African American   1   1   1

 Asian   5   4   4

 Hispanic 30 28 29

 No Majority 16 13 14

 White 49 53 52

Median Income (1,000 USD)

 Median (Q1-Q3) 60.4 (43.2-78.4) 61.4 (46.2-82.9) 61.2 (45.3-81.5)

 IQR 35.2 36.7 36.2

Proportion of residents with ≥ 16 years of education

 Median (Q1-Q3) 25.3 (24.3-26.7) 25.4 (24.2-27) 25.4 (24.2-26.9)

 IQR   2.5   2.7   2.7

*
N=17 schools were omitted from the health outcome models due to missing data on obesity.
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Table 3

Widely Applicable Information Criterion (WAIC) and (out-of-sample Mean Square Error) for Bayesian Kernel 

Machine Regression (BKMR), and Consensus and Mode GLM (CGLM, MGLM), and Traditional models 1-3, 

for both Consensus and Full datasets corresponding to “In Consensus” and “All” columns from Table 3, 

respectively. Each model contains the same adjusting covariates but different measures of FFR exposure in a 

logistic regression modeling 9th grader obesity. “Count GLM” includes the number of FFR within 1 mile of 

the school. “Min-GLM” includes the distance to the closest FFR and “Min & Count-GLM” includes both 

measures.

Dataset

Models Full Consensus

Proposed

 BKMR 11,126.52 (0.014) 6,922.43 (0.011)

 CGLM - 9,883.43 (0.011)

 MGLM 17,612.0 (0.009) -

Traditional

 Min & Count-GLM 26,096.42 (0.043) 12,169.42 (0.040)

 Min-GLM 33,972.94 (0.043) 17,040.08 (0.038)

 Count-GLM 30,566.95 (0.035) 12,217.12 (0.039)
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