
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Novel Frustrated Matter in Artificial Nanomagnets

Permalink
https://escholarship.org/uc/item/1b191122

Author
Saccone, Michael Douglas

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1b191122
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
SANTA CRUZ

NOVEL FRUSTRATED MATTER IN ARTIFICIAL NANOMAGNETS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

PHYSICS

by

Michael Saccone

June 2020

The Dissertation of Michael Saccone
is approved:

Onuttom Narayan, Chair

Professor Joshua Deustch

Professor Peter Young

Dean Quentin Williams
Acting Vice Provost and Dean of Graduate Studies



Copyright c© by

Michael Saccone

2020



Table of Contents

List of Figures vi

List of Tables xxvi

Abstract xxvii

Dedication xxix

Acknowledgments xxx

1 Introduction 1

2 Artificial nanomagnets 4
2.1 Array design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 3D square ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Trident ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Cairo ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Gaussian glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Bethe glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Photoemission electron microscopy . . . . . . . . . . . . . . . . . . . 19

2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Magnetic structure factors . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Debye-Hückel analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Crystallization order parameter . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.5 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.6 Magnetic Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



I Artificial Spin Ice 32

3 The Square Lattice: Monopole-like excitations 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Thermal annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Real-time thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 The Trident Lattice: Out of equilibrium relaxation 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 The dipolar trident lattice . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Direct observation of thermal relaxation . . . . . . . . . . . . . . . . . 51
4.2.3 Controlling the balance of competing interactions . . . . . . . . . . . . 53
4.2.4 Low-temperature configurations and magnetic structure factors . . . . . 56

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 The Cairo Lattice: Topological frustration and polarons 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Energy landscape and micromagnetic simulations of coupling strengths 62
5.3.2 Thermal annealing and XMCD imaging . . . . . . . . . . . . . . . . . 66
5.3.3 Emergent ice-rule and polaronic states . . . . . . . . . . . . . . . . . . 70
5.3.4 Correlations and short-range ordering . . . . . . . . . . . . . . . . . . 72

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

II Artificial Spin Glass 76

6 A first attempt through Gaussian disorder 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.1 Thermal Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.2 Temperature-dependent moment fluctuations . . . . . . . . . . . . . . 87

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Increasing effective dimension via the Bethe lattice 92
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2.1 Sample fabrication and XMCD imaging . . . . . . . . . . . . . . . . . 96
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

iv



7.3.1 Spin-spin correlations and ordering preferences . . . . . . . . . . . . . 96
7.3.2 Effective dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Conclusion 104

Bibliography 107

v



List of Figures
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appear dark, while those opposing the x-ray direction appear with bright con-

trast. (c) The 16 possible moment configurations on a four-nanomagnet vertex

are traditionally listed into four topological types. Without a height offset (h =

0 nm), the ice rule–obeying (two-in-two-out) type I and II configurations have

a significantly different energy. Once a critical height offset is introduced, their

energies are equalized and spin ice degeneracy is realized. Highlighted with

magenta, cyan blue, and yellow frames in (b) and (c) are type I, type II, and
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indicates a length of 450 nm. b X-ray magnetic circular dichroism (XMCD)

image resolving moment configurations achieved in the trident lattice. Nano-

magnets with a magnetization pointing toward the incoming X-ray propagation

vector (indicated by a red arrow) appear dark, while moments opposing that

direction appear bright. c Vertex and trident types listed with increasing en-

ergy. In both b, c green, yellow, and blue frames highlight the realizations of

Type I, Type II, and Type III vertices, respectively. Regarding tridents, Type A

and B tridents are highlighted with orange and magenta frames, respectively. d

Minimization of dipolar interactions in an isolated trident building block would

result in a Type A domination. On the other hand, nearest-neighbor nanomag-

nets at the four-nanomagnet vertices will prefer a head-to-tail moment align-

ment, which would result in clockwise or anti-clockwise vortices. Satisfying

vertex interactions (creation of vortices or Type I vertices) results in frustration

of trident moments. Satisfying trident interactions (creation of Type A tridents)

results in two of nearest-neighbor vertex moments being aligned head-to-head

(red circles) or tail-to-tail (blue circles). . . . . . . . . . . . . . . . . . . . . . 8

vii



2.3 (a) Dipolar Cairo lattice. We see dipolar-coupled Ising-type nanomagnets (stadium-

shaped islands) occupy the sites of the pentagonal Cairo lattice (lines the back-

ground). Lattice parameters a = 472 nm and b = 344 nm are kept constant,

while the lattice parameter c = 376 nm, 450 nm, 500 nm and 600 nm is varied,
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ing the area in which spins will be designated nearest neighbor (NN, red line),
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bor (NNNN, blue dotted line) are drawn to denote categories used to calculate

correlation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 (a) An illustration of a Bethe lattice with coordination number k = 3. Black

circles represent nodes connected by grey lines. (b) A Cayley tree modified to

be embedded in two dimensions. Each circle represents a step taken from the

center of the lattice. (c) Scanning electron microscope (SEM) image of a Cayley

tree consisting of Ising-type nanomagnets with a length L = 300 nm, width W =
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2.6 Sample fabrication process. Schematic drawing of the nanofabrication process

to create artificial square ice patterns with a controlled height offset. In a first

lift-off assisted e-beam lithography step, a chromium mask is generated (left

panel). Then, reactive ion etching (RIE) is used to etch the Silicon (100) sub-
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equalized and an extensive spin ice degeneracy is achieved. Scale bar, 400 nm.
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moments pointing toward the incoming x-rays (indicated by a yellow arrow)

appear dark, while those opposing the x-ray direction appear with bright con-
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and (c) h = 180 nm. Scale bars, 1 µm. (d) Average vertex-type populations

of thermalized artificial square ice, plotted as a function of introduced height

offsets. Type I vertices dominate the configuration landscape up to an offset of

40 nm but continue to decrease in population with increasing height offset. A

turning point is observed at an offset around 80 nm, where type I and II popula-

tions reach nearly identical values. The type II population continues to rise with

increasing height offset and reaches twice the population of type I vertices at a

height offset between 145 and 155 nm. As the height offset is increased beyond
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magnetic monopole defects (blue dots: Q = −2q, red dots: Q = +2q) in two-

dimensional artificial square ice with a height offset h = 145 nm. Arrows of
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magnets with a magnetization pointing toward the incoming X-ray propagation

vector (indicated by a red arrow) appear dark, while moments opposing that

direction appear bright. c Vertex and trident types listed with increasing en-

ergy. In both b, c green, yellow, and blue frames highlight the realizations of

Type I, Type II, and Type III vertices, respectively. Regarding tridents, Type A

and B tridents are highlighted with orange and magenta frames, respectively. d

Minimization of dipolar interactions in an isolated trident building block would

result in a Type A domination. On the other hand, nearest-neighbor nanomag-

nets at the four-nanomagnet vertices will prefer a head-to-tail moment align-

ment, which would result in clockwise or anti-clockwise vortices. Satisfying

vertex interactions (creation of vortices or Type I vertices) results in frustration

of trident moments. Satisfying trident interactions (creation of Type A tridents)
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correlation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xxi



6.2 XMCD images of a low-energy moment configuration achieved, following ther-

mal annealing in (a) a fully ordered array of Ising-type nanomagnets, (b) a

partially randomized array (σ = 30%) of parallel nanomagnets (no rotational

disorder), (c) a fully randomized array (σ = 100%) of parallel nanomagnets (no

rotational disorder), (d) a partially randomized array (σ = 30%) with rotational

disorder, and (e) a fully randomized array (σ = 100%) with rotational disorder.

The red scale bar indicates 1 µm. We see a transition from a long-range ordered

anti-ferromagnetic moment alignment for the ordered arrays, showing the char-

acteristic dark- and bright lines (a), to a long-range ordered ferromagnetic state

for the arrays with only positional disorder (b-c), ending in short-range ordered

phases, when full randomness is introduced with rotational disorder (d-e). . . . 81

6.3 Measures of correlation in the annealed systems. On the left are the absolute

value of spatial correlation functions from the (a) non-rotated and (c) rotated

samples plotted on a semi-logarithmic scale with their exponential fits indi-

cated with dashed lines. The top right plot (a) displays the non disordered (red

circles), partially disordered (green squares), and fully disordered non-rotated

cases (blue diamonds), while the bottom left (c) contains the partially (red tri-

angles) and fully (blue stars) disordered rotated systems. The dotted lines rep-

resent the fits used to extract the correlation lengths. On the right are the nearest

neighbor correlations of the (b) non-rotated and (d) rotated systems as disorder

is varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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6.4 Temperature dependence of the non-rotated σ = 100% system (a, c, and e)

and the rotated σ = 100% system (b, d, and f). The data points at and to the

left of the teal dotted vertical lines are marked with crosses to indicate that

they come from frozen configurations of spin islands. a-b) The characteristic

relaxation time τ was recorded from a least squares fit of the autocorrelation

function (Eqn. 6). The error bars are the standard error of this fit. c) and d)

The dimensionless magnetic susceptibility for non-rotated and rotated patterns,

respectively. χ was extracted from the spatial correlation function (Eqn. 5) at

each frame. The averages from all frames are plotted with error bars represent-

ing standard deviations of the mean. The decreasing inverse susceptibility for

non-rated patterns (blue squares) indicate long-range ferromagnetic ordering,

which also visually evident in Fig. 6.2b. The grey dashed lines in c) and d) are

linear Curie-Weiss fit, which imply a critical temperatures of Tc = 298±28.8 K

for the non-rotated patterns and Tc = 11.2±14.9 K for the rotated patterns. e-f)

The least squares fit to the spatial correlation function (Eqn. 2) produces the

correlation length, ξ , whose standard error is represented by the error bars. The

curves of best fit plotted as gray dashed lines correspond to critical exponents of

ν = 1.38±0.620 for the non-rotated case and ν = 1.82±0.986 for the rotated

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
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7.1 (a) An illustration of a Bethe lattice with coordination number k = 3. Black cir-

cles represent nodes connected by grey lines. (b) A segment of a Bethe lattice

modified to be embedded in two dimensions. Each circle represents a step taken

from the center of the lattice. (c) Scanning electron microscope (SEM) image

of part of a Bethe lattice consisting of Ising-type nanomagnets with a length L

= 300 nm, width W = 100 nm and a thickness t = 2.6 nm. The yellow scale bar

corresponds to 600 nm. The tree-like structure is best understood when looking

at the inter-nanomagnet dipolar couplings, which are highlighted with red (fer-

romagnetic coupling) and blue lines (antiferromagnetic coupling) connecting

centers of nanomagnets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 (a)-(d) XMCD images of low-energy states achieved in four different Bethe
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Abstract

Novel Frustrated Matter in Artificial Nanomagnets

by

Michael Saccone

Spin ice is a magnetic system in which the geometry of competing interactions makes it im-

possible to reach a single ground state. Ice states naturally occur in magnetic pyrochlore sys-

tems [12, 42, 81] which have since been emulated by manufactured metamaterials called arti-

ficial spin ice [105, 55, 63, 28, 30, 79, 87]. The field of artificial spin ice advanced patterned

nanofabrication and X-ray magnetic circular dichromism (XMCD) imaging to the point where

researchers can create nearly any two dimensional arrangement of bar magnets such as the

kagome [55] and square [30] lattices, and visualize their magnetic orientations [30]. Here we

explore three ice-like lattices, the 3D square [33], trident [32], and Cairo [90] lattices, their

unique means of achieving geometric frustration, and the resulting emergent states of matter.

Beyond ice type behavior, randomized frustration may lead to spin glass behavior [10]. Compet-

ing anti-ferro- and ferromagnetic interactions of ice systems lead to complex energy landscapes,

slow thermal relaxation, and memory effects beyond simple magnetic hysteresis. We explore

pathways of generating artificial spin glass to better experimentally understand this complicated

state of matter. We begin by constructing an artificial spin system with Gaussian positional and

uniform rotational disorder [91], analyze the nature of the magnetic correlation, then repeat the

process through a tree like system with rotational disorder and heightened effective dimension

xxvii



[89]. As a whole, these meta-materials confirm predictions of foundational statistical mechan-

ics while posing new questions of their precise out of equilibrium dynamics and potential for

device applications.
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Felix, Maria, Urho, and Taddäus, your hospitality and lively lunchtime antics made me feel at

home despite being flung thousands of kilometers from my birthplace.

I quite literally wouldn’t be here without my family. My mom and dad always en-

couraged my explorations of science, very rarely refusing my constantly shifting, obsessive

interests. Perhaps this was because my too permissive grandparents would always find some

way to sneak me a book I wanted. It was an incredible privilege to grow up with this white,

male, middle class security and my difficulty in achieving a PhD is nothing compared to those

from more discouraging circumstances.

And finally, the greatest of thanks to my best friend, Jacob Serpa. We braved adoles-

cence together, loving each other in ever shifting ideologies and geographies. You’ll forever be

a cornerstone of my life.

xxxii



Chapter 1

Introduction

In magnetism, when interactions between magnetic moments are in conflict with each

other, frustration arises. Systems incorporating frustrated interactions are characterized by ex-

tensive degeneracies, exotic emergent phenomena, and non-trivial ground states [42, 36, 16, 33].

Two prominent classes of these systems are spin ice [12, 42, 81] and spin glass [10, 68]. Though

the two have numerous similarities and differences that will be explored within this thesis, their

main distincion is as follows: spin ice systems have periodic interactions with multiple com-

peting ground states while spin glass systems have aperiodic, randomized interactions with a

single, if difficult to achieve, ground state. The distinct features of these systems are worth

exploring for the sake of both fundamental science and industrial applications. The field of ar-

tificial spin ice emerged to fill this need [105]. Made of nanomagnets fabricated in virtually any

two dimensional pattern imaginable, artificial spin ice creates analogues to complex systems

that may be directly visualized and tweaked in parameter ranges previously inaccessible. Until
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recently, no researchers had sought an “artificial” version of spin glass, despite their shared ori-

gins as frustrated Ising type systems. Our work within is split into two predominant parts: one

in which we explore systems with emergent disorder via ice type behavior and another in which

we attempt to cleverly randomize systems to produce spin glass states.

Spin ices [12, 42, 81] represent a class of geometrically frustrated magnetic materi-

als that, at low temperatures, enter a phase that is strongly dominated by short-range moment

correlations and the absence of long-range order [81]. They are composed of corner-sharing

tetrahedra, where the rare-earth ion moments occupy the corners of these tetrahedra. Local con-

straints force these moments to obey the so-called ice rules [42, 74] of two moments pointing

in and two moments pointing out of each tetrahedron.

Artificial spin ice systems [69], comprising Ising-type nanomagnets, are printed meta-

materials simulating ice like physics. Prominent examples are systems in which nanomag-

nets are lithographically arranged onto two-dimensional square [105, 63] and kagome [55, 87]

geometries. In particular, artificial spin ices exhibiting thermally induced moment fluctua-

tions [52, 29, 33] paved the way for a whole new line of research, where Ising-type nano-

magnets are arranged onto novel two-dimensional magnetically frustrated geometries, leading

to emergent phenomena that do not necessarily exist in nature.

Spin glasses have been another one of the most prominent examples of frustrated

magnetism. They usually consist of randomized interactions creating a jumble of competing

ferro- and antiferromagnetic order, leading to frustration [10, 68], degenerate energy landscapes

and non-trivial pathways to their ground states [10]. In fact, the spin glass ground state ques-

tion has long been an extensively investigated optimization problem [93, 41]. Theoretical spin
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glass models became, among other examples, the basis of error-correcting codes [96], problems

of optimization [93], and brain science paradigms [82, 47]. Spin glass phase transition, most

prominently characterized by a sharp cusp in ac-susceptibility measurements, became an area of

intense research efforts since the early 1970’s, both experimentally and theoretically [68]. The

variety of characteristic phenomena in spin glass systems have mostly been investigated us-

ing macroscopic or spectroscopic characterization techniques, ranging from magnetometry [2],

Mössbauer spectroscopy [84], to neutron diffraction and µSR spectroscopy [3]. Spin glass does

not possess the regular and ordered geometries common to all previous artificial frustrated sys-

tems. This raises the question whether an artificial Ising spin glass system can be created from

the same Ising-type nanomagnets arranged into random and disordered patterns. If so, what

types of magnetic configurations are accessed, following thermal annealing protocols [34, 32]?

How would the directly observable thermal fluctuations behave, as temperature and disorder

are varied? Can a two dimensional spin glass be experimentally realized, despite theoretical

predictions only discovering zero temperature glass phases [43, 8]?

These systems in which novel two-dimensional lattices comprising Ising-type nano-

magnets are designed to exhibit exotic emergent phenomena beyond simple spin ice physics.

Prominent examples are the observation of emergent magnetic charge screening and pola-

ronic states in systems with mixed coordination numbers [38, 34, 18], field-induced phase

coexistence in a quadrupole lattice [95], in addition to systems exhibiting topological frus-

tration [26, 35, 94, 11] and the ability to directly control the degree of spin frustration at the

nanoscale [32, 77]. All these artificial frustrated systems have also shown promise in potential

applications in the field of spintronics and magnonics [106, 73, 40, 50, 9].
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Chapter 2

Artificial nanomagnets

The conceit of artificial spin systems is that an array of nanomagnets can be designed

so that their interactions and resulting magnetic ordering represent an interesting physics prob-

lem. Individual nanomagnets are shaped so that they consist of a single magnetic domain that

switches direction under the influence of their neighbors’ dipolar fields. Arrays of these mag-

nets, tacitly referred to as “lattices” despite their finite nature, approximate Ising systems with

interaction strengths set by how their constituent’s positions and orientations alter the dipolar

interaction strengths. The resulting nanomagnetic configurations may be recorded over vari-

ous temperatures and system geometries using a combination of photon emission electron mi-

croscopy (PEEM) and the X-ray magnetic circular dichroism (XMCD) effect, both of which

will be described below. The result is a system whose magnetic configuration may be en-

tirely imaged within seconds within a select temperature range. The upper bound to this is the

blocking temperature, the temperature where thermally induced moment reorientations of the
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nanomagnets start to occur at the time scale of several seconds. The lower bound is the freezing

temperature, below which the time scale of nanomagnet reorientations is longer than several

minutes. This expository section describes the design of the systems we studied, the details

of their fabrication and magnetic imaging, and data analysis methods incorporated to discern

ordering and frustration.

2.1 Array design

2.1.1 3D square ice

The square lattice in the context of artificial spin ice is a set of nanomagnets placed

on the edges of a mathematical square lattice, as illustrated in Fig. 2.1. A height offset out

of the plane is added to modify interaction strengths and encourage degeneracy, elevating this

system to a “3D” square lattice. This quasi–three-dimensional lattice is realized by placing

nanomagnets with lengths L = 400 nm, widths W = 100 nm, and thicknesses d = 3 nm onto a

square lattice with lattice parameter a = 550 nm on top of a pre-etched silicon (100) substrate

(Fig. 2.1a). While one set of nanomagnets (Fig. 2.1a) is grown on the base of the pre-etched

substrate, the second set (Fig. 2.1a) is grown on top of plateaus whose height can be accurately

controlled.
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Figure 2.1: Thermally activated two-dimensional artificial square ice with height offsets be-
tween nanomagnets. (a) Tilted-sample scanning electron microscopy (SEM) image of an artifi-
cial square ice with an introduced height offset h, which can be varied from sample to sample,
until the competing interactions J1 and J2 are equalized and an extensive spin ice degener-
acy is achieved. Scale bar, 400 nm. (b) XMCD image of the same artificial square ice array.
Nanomagnets with moments pointing toward the incoming x-rays (indicated by a yellow arrow)
appear dark, while those opposing the x-ray direction appear with bright contrast. (c) The 16
possible moment configurations on a four-nanomagnet vertex are traditionally listed into four
topological types. Without a height offset (h = 0 nm), the ice rule–obeying (two-in-two-out)
type I and II configurations have a significantly different energy. Once a critical height offset is
introduced, their energies are equalized and spin ice degeneracy is realized. Highlighted with
magenta, cyan blue, and yellow frames in (b) and (c) are type I, type II, and type III vertices,
respectively.
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2.1.2 Trident ice

The trident lattice consists of three-nanomagnet (trident) building blocks periodically

arranged in a perpendicular fashion (Fig. 2.2a). The “checkerboard” pattern of horizontal and

vertical islands creates “pinwheel” like meeting points of adjacent tridents. The ordering at

these pinwheels competes with that within each trident because a system of both low energy

pinwheels and tridents is impossible, creating the frustration necessary for an ice state.
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Figure 2.2: The dipolar trident lattice. a Scanning electron microscope image of a dipolar trident
lattice (a = b = 50 nm, L = 450 nm, W = 150 nm). The black scale bar indicates a length of
450 nm. b X-ray magnetic circular dichroism (XMCD) image resolving moment configurations
achieved in the trident lattice. Nanomagnets with a magnetization pointing toward the incoming
X-ray propagation vector (indicated by a red arrow) appear dark, while moments opposing that
direction appear bright. c Vertex and trident types listed with increasing energy. In both b, c
green, yellow, and blue frames highlight the realizations of Type I, Type II, and Type III vertices,
respectively. Regarding tridents, Type A and B tridents are highlighted with orange and magenta
frames, respectively. d Minimization of dipolar interactions in an isolated trident building block
would result in a Type A domination. On the other hand, nearest-neighbor nanomagnets at the
four-nanomagnet vertices will prefer a head-to-tail moment alignment, which would result in
clockwise or anti-clockwise vortices. Satisfying vertex interactions (creation of vortices or Type
I vertices) results in frustration of trident moments. Satisfying trident interactions (creation of
Type A tridents) results in two of nearest-neighbor vertex moments being aligned head-to-head
(red circles) or tail-to-tail (blue circles).
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2.1.3 Cairo ice

The concept of the Cairo lattice derives from a class of irregular pentagonal tilings.

To create ice physics, the pentagons are chosen such that their vertices where four edges meet

only contain right angles and their corners where three edges meet only contain 120◦ angles.

The edges are replaced with nanomagnets which may be adjusted to balance the dominance of

coordination four and three vertex ordering Fig. 2.3.
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Figure 2.3: (a) Dipolar Cairo lattice. We see dipolar-coupled Ising-type nanomagnets (stadium-
shaped islands) occupy the sites of the pentagonal Cairo lattice (lines the background). Lattice
parameters a = 472 nm and b = 344 nm are kept constant, while the lattice parameter c = 376 nm,
450 nm, 500 nm and 600 nm is varied, to tune the coupling strengths between the nanomagnets.
(b) Scanning electron microscopy (SEM) image of one of the dipolar Cairo lattices consisting
of nanomagnets with lengths and widths of 300 nm and 100 nm, respectively. The coupling
parameter c can be varied, so that the balance between the coupling strengths J1, J2, J3 and J4
can be tuned at the nanoscale. The yellow scale bar indicates a length of 300 nm.
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2.1.4 Gaussian glass

To introduce a controlled disorder in the lattice, the islands are shifted from their

lattice sites, ri j = (W +d)ix̂+(L+d) jŷ, where W = 300 nm is the nanomagnet width, L = 100

nm is the nanomagnet length, and d = 80 nm is nearest-neighbor edge-to-edge spacing (see

Fig. 2.4). The x and y coordinates are displaced by values drawn from a normal distribution

with a mean of zero and a standard deviation of varying percentages of d. For convenience,

a standard deviation of xd is referred to as σ = 100x%. Introducing disorder in the x- and y-

coordinates results in patterns consisting of horizontal (non-rotated) nanomagnets arranged at

random x and y sites. For simplicity, we call these structures the ”non-rotated” arrays. Further

disorder is induced by introducing the same type of randomness to the orientation angle φ

of the nanomagnets (see Fig. 2.4b). The rotational distribution is defined around 0 degrees

(islands are aligned along the x-axis) with a deviation of σφ =180◦σ . Since XMCD contrast

in the X-PEEM experiments is angle sensitive [30] with maximum contrast, when an angle

of 0◦ is present between the incoming X-rays and the magnetization direction (zero contrast

is present for an angle of 90◦), the rotation of the nanomagnets is limited to a maximum of

80◦. Again, for simplicity, we call these patterns with additional rotational disorder as the

”rotated” arrays. Three kinds of disorder are investigated, σ= 0% (ordered), 30% (distorted)

and 100% (disordered), for an edge-to-edge distance d = 80 nm. Furthermore, to ensure that

nanomagnets do not overlap as a result of the introduced randomness, we define a minimum

of 20 nm edge-to-edge distance when generating the random patterns. This minimum edge-to-

edge distance also ensures a smooth and clean lift-off process in acetone. The overall number
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Figure 2.4: (a) Scanning electron microscope (SEM) image of part of an arrangement consisting
of Ising-type nanomagnets with a length L = 300 nm, width W = 100 nm and a thickness t =
2.7 nm arranged onto a collinear ordered fashion with a nearest-neighbor edge-to-edge distance
d = 80 nm. (b) SEM image of an array, where disorder in x- and y coordinates of the centers
of nanomagnets is introduced in form of Gaussian distribution with a relative deviation σ =
100% around an average edge-to-edge distance of d = 80 nm. In addition to coordinate ran-
domness, the same type of disorder is introduced for the rotational angle φ , ensuring maximum
randomness possible in two dimensions. Circles representing the area in which spins will be
designated nearest neighbor (NN, red line), next-nearest neighbor (NNN, green dashed line),
and next-next-nearest neighbor (NNNN, blue dotted line) are drawn to denote categories used
to calculate correlation functions.
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of nanomagnets in each individual array was 7200, occupying areas of 26-30 µm2. These

system sizes are comparable to previously studied artificial frustrated spin systems [34, 29, 32],

reducing potential finite-size effects to a negligible minimum.

2.1.5 Bethe glass

Cayley trees are finite subset of infinite Bethe lattices. A Bethe lattice (see Fig. 2.5a)

is a tree-like graph with the helpful property that many models in statistical physics are exactly

solvable on it [71]. To construct a Bethe lattice with a coordination number k, the number of

connections per node, is chosen. k nodes are connected to a central lattice site. From each of

these nodes k− 1 new nodes are attached, then k− 1 additional nodes are attached from each

of those. This continues ad infinitum in the case of a Bethe lattice and to a finite number of

layers for a Cayley tree. Fig. 2.5a shows an example where k = 3. Multiple studies suggest a

non-zero spin glass transition temperature could be obtained if spins would be mapped onto a

Bethe lattice [101, 15, 60], which is here emulated by the patterning of Ising-type nanomagnets.

To observe glassy dynamics, the spin glass transition temperature needs to be higher than the

so-called blocking temperature TB of the patterned nanomagnets, as spin freezing occurs below

TB [30, 31, 34, 32, 91].

Our nanomagnet samples mimic the essence of the Cayley tree’s structure to create

higher dimensional interaction networks. However, they differ from Cayley trees in three ma-

jor ways. First, the spins interact via dipolar coupling. This increases the significance of next

nearest neighbor effects, enabling the interaction network to leap from one branch to another.

The finite-size nature of the fabricated Cayley trees serves as an advantage, as the increasing
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Figure 2.5: (a) An illustration of a Bethe lattice with coordination number k = 3. Black circles
represent nodes connected by grey lines. (b) A Cayley tree modified to be embedded in two
dimensions. Each circle represents a step taken from the center of the lattice. (c) Scanning
electron microscope (SEM) image of a Cayley tree consisting of Ising-type nanomagnets with
a length L = 300 nm, width W = 100 nm and a thickness t = 2.6 nm. The yellow scale bar
corresponds to 600 nm. The tree-like structure is best understood when looking at the inter-
nanomagnet dipolar couplings, which are highlighted with red (ferromagnetic coupling) and
blue lines (antiferromagnetic coupling) connecting centers of nanomagnets.

network density would cause nanomagnets to overlap and interactions between next nearest

neighbors to grow. Finally, the central spin is only given two neighbors to reduce the even-

tual crowding at the sample boundary. Implementing these compromises, we design modified

Cayley trees for embedding in two dimensions (see Fig. 2.5b). The positions of the islands are

uniformly spaced on concentric circles. The size of the circles is chosen to keep the distance

of connected nodes constant (see gray lines in Fig. 2.5b). Here this sets the nearest neighbor

distance to a = 500 nm. The orientation of the magnets is chosen to create random interactions

while simultaneously supporting the Bethe structure. To do so, one nanomagnet per circle has

its orientation selected randomly from a uniform distribution. The members of the same circle

should not interact with one another, to maintain the tree-like structure. Thus, their orientations

are chosen to place them perpendicular to the dipolar magnetic field of their direct neighbors
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within each circle. Circles are added until next-nearest neighbor interactions begin to break

down the tree-like structure, allowing for five circles in our systems. In Fig. 2.5c we show a

typical structure and the network of interactions created by its geometry.

2.2 Experimental methods

2.2.1 Sample fabrication

All lattices were fabricated using variations of electron beam lithography [34, 28].

This method of nanofabrication begins with a “resist” layer, typically a hydrocarbon glass that

may be dissolved by the electrons in a desired pattern, on a silicon substrate. The electron

beam precisely etches the shape of the nanomagnets, ferromagnetic material is deposited on

the exposed substrate, and the remainder of the resist is dissolved, leaving only the patterned

nanomagnet array on a non-magnetic substrate. The precise parameters vary as follows:

3D spin ice fabrication

The spin ice structures with height offsets were fabricated in two separate electron

beam lithography exposure steps (Fig. 2.6) for the plateau definition and then for the nano-

magnets. First, gold marks were fabricated on a silicon substrate to align both electron beam

exposure steps to the same set of marks. PMMA (polymethyl methacrylate) 950k C2 was spun

at 2000 rpm to give a thickness of 170 nm. The pattern for the raised plateau was then exposed

with a Vistec VB300 electron beam lithography tool at 100 kV in four separate quadrants of

the silicon wafer to allow four different etch depths on the same substrate. The PMMA was
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Figure 2.6: Sample fabrication process. Schematic drawing of the nanofabrication process to
create artificial square ice patterns with a controlled height offset. In a first lift-off assisted e-
beam lithography step, a chromium mask is generated (left panel). Then, reactive ion etching
(RIE) is used to etch the Silicon (100) substrate through the chromium mask, which is followed
by a second e-beam exposure (middle panel), which generates the desired permalloy nanomag-
nets (right panel).

then developed using a high-contrast cold development process consisting of 7:3 isopropyl al-

cohol (IPA):water solution ultrasonicated for 100 s. Cr (10 nm) was evaporated and lifted off

to create the etch mask for the raised plateau. The silicon was etched in an Oxford Instruments

reactive ion etcher with gas flow of 40-SCCM (standard cubic centimeter per minute) CHF3

and 8-SCCM SF6 at a pressure of 20 mtorr and a power of 50 W. Varying etch times gave the

desired variation in etch depth. After stripping the Cr, PMMA was spun again on the substrate

at 1000 rpm for the electron beam lithography exposure defining the nanomagnets. After expo-

sure and cold development, a layer of 2.5-nm (TB = 160 K) and 3-nm (TB = 330 K) permalloy

(Ni80Fe20) and a capping layer of 3 nm Al were evaporated and lifted off in dichloromethane.

The exact values of the etched height offsets were determined using atomic force microscopy

(AFM).
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Dipolar trident lattices

A silicon (100) substrate was first spin-coated with a 70-nm-thick layer of poly-

methylmethacrylate resist. Then, trident lattices with various lattice spacings were defined onto

the sample with a VISTEC VB300 electron beam writer. Next, using a Semicore SC600 e-beam

evaporator, a ferromagnetic permalloy (Ni80Fe20) film was deposited at a base pressure of 1.2 x

10−7 Torr, which was followed by lift-off in acetone at a temperature of 50 ·C. Thermally driven

moment fluctuations in one set of artificial spin ice samples were realized by fabrication of ul-

trathin nanomagnets with length L = 450 nm and width W = 150 nm. The samples discussed

in this work had thicknesses of 2.7 nm and 3 nm, resulting in blocking temperatures of 270 and

310 K, respectively. For low-temperature measurements, the blocking temperature was moved

down to 160 K by preparing nanomagnets with lengths, widths, and thickness of 300, 100, and

2.4 nm, respectively.

Dipolar cairo lattice fabrication

Following e-beam exposure and development of a 70-nm-thick polymethylmethacry-

late (PMMA) resist layer on a silicon (100) substrate, a 2.6 nm thick Permalloy (Ni80Fe20) thin

film was deposited (base pressure: 2×10−7 Torr), along with a 2 nm thick aluminum capping

layer to avoid fast oxidation of the sample. Next, a lift off process in acetone removed all

unwanted magnetic material.
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Spin glass fabrication

The samples were fabricated by lift-off assisted electron beam lithography. A 1×

1 cm2 silicon (100) substrate was first spin-coated with a 70-nm-thick layer of polymethyl-

methacrylate (PMMA) resist. Patterns of interest are then exposed on the substrate using a VIS-

TEC VB300 electron beam writer. Next, a 2.7 nm thick ferromagnetic permalloy (Ni80Fe20)

film was thermally evaporated at a base pressure of 1.4 × 10−7 torr, together with 1.5 nm thick

aluminum capping layer, to avoid fast oxidation of the structures. This was followed by lift-

off in acetone at a temperature of 50◦ C. The resulting nanomagnets had lengths L = 300 nm

and widths W = 100 nm (see Fig. 2.4a-b). The elongated shape of the patterned single-domain

nanomagnets are chosen, so that the magnetization within each individual nanomagnet can only

point in one of two possible direction along the long axis of the nanomagnet. Thus, each nano-

magnet represents an individual Ising macrospin. The nanomagnet dimensions are chosen to

ensure a blocking temperature TB of 190-240 K. Generally, we define the blocking temperature

as the temperature where thermally induced moment reorientations of the nanomagnets start to

occur at the time scale of several seconds [34, 29].

Bethe lattice fabrication

We used lift-off assisted electron-beam lithography to fabricate our samples (see

Fig. 2.5). First, a 70-nm-thick layer of polymethylmethacrylate (PMMA) resist was spin-coated

on top of a 1× 1 cm2 silicon (100) substrate. Designed Bethe patterns are then exposed on

the substrate using a VISTEC EBPG 5000PlusES system. A 2.6 nm permalloy (Ni80Fe20) thin
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film was then evaporated at a base pressure of 3.6 × 10−6 mbar, together with a 1.5 nm thick

aluminum capping layer, to avoid fast oxidation of the structures. This is followed by a lift-off

process in acetone, where all unwanted material is removed from top of the substrate. This

results in Bethe structures consisting of nanomagnets with lengths L = 300 nm and widths W

= 100 nm. The size of the nanomagnets is chosen to ensure a mono-domain state and their

elongated shape is set, so that the magnetization within each individual nanomagnet can only

point in one of two possible direction along the long axis of the nanomagnet. Therefore, each

individual nanomagnets represents a macroscopic Ising macrospin. Similar to our previous

work [31, 34, 32, 33, 91], the individual volume of the nanomagnets is chosen so that the block-

ing temperature TB = 140-180 K. With regard to XMCD imaging (see below), we define the

blocking temperature as the temperature where magnetic moment re-orientations within the

patterned nanomagnets start to occur at timescales equivalent to the time needed to record an

XMCD image, which is about 7 seconds per image.

2.2.2 Photoemission electron microscopy

All measurements were performed using the cryogenic photoemission electron mi-

croscope PEEM3 at beamline 11.0.1 at the Advanced Light Source [25]. Magnetic images were

captured by taking advantage of XMCD at the Fe L3-edge [97]. The obtained contrast is a

measure of the projection of the magnetization on the X-ray polarization vector, so that nano-

magnets with a magnetization parallel or anti-parallel to the X-ray polarization either appear

black or white. Nanomagnets with moments having ±45◦ and ±135◦ angles with respect to the

incoming X-rays appear dark and bright, respectively. In the case of the 3D systems, the silicon
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plateaus do not generate any disturbing background or shadow signal [75].

2.3 Analysis

2.3.1 Magnetic structure factors

Reciprocal space measurements, from Fourier transforms to scattering experiments,

illustrate the dominant patterns in a system. Ordering patterns scattered throughout a system in

real space separate as peaks in reciprocal space, with features such as peak width and location

providing information about the consistency, dominance, and identity of real space patterns.

The most relevant reciprocal space measurement for magnetic systems is neutron scattering.

Since scattering on thin films is limited by their low mass, we use its mathematical equivalent,

the magnetic structure factor.

This magnetic structure factor may assess whether or not a system is frustrated. Sharp

scattering peaks correspond to system-wide order while diffuse peaks and reciprocal space fill-

ing patterns indicate disorder. The magnetic structure factor is calculated as

I(q) =
1
N

N

∑
i=1

N

∑
j=1

S⊥i ·S⊥j exp(iq · ri, j) (2.1)

where S⊥i = Si− (q̂ ·Si)q̂ is the component of the spin vector of each island, Si, perpendicular

to the reciprocal space vector q; the unit vector is given by q̂ = q/||q||; ri, j is the vector from

island i to j; and N is the total number of islands. This equation has the same form as in neutron

scattering experiments and has previously been used to analyze artificial spin ice configurations.
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Figure 2.7: Illustrations of correlated and uncorrelated emergent magnetic monopoles. (a) Illus-
tration of an artificial spin ice with a correlated monopole. To illustrate similarity to a magnetic
dipole, field lines are drawn outward from the positive +2q charge (red spheres) to the corre-
lated negative -2q charges (blue spheres). Although other charges interact with the correlated
charge, its proximity to its adjacent negative charge ensures that the two will dominantly inter-
act with one another due to energetic stability. In contrast with the uncorrelated charge, most
of the field lines converge nearby. (b) Schematic of converging field lines on an uncorrelated
charge. The uncorrelated charge interacts with surrounding positive and negative charges. In
isolation, the negative charge would tend to correlate with the nearby positive charge. The other
randomly distributed charges screen this interaction, which can be seen in the field lines appear-
ing more like those of a point charge and less like those of a dipole. This corresponds with this
uncorrelated charge’s long-range energy averaging to zero.

2.3.2 Debye-Hückel analysis

To experimentally define and measure magnetic charges, we use the so-called dumb-

bell model [16, 62]. Dipoles are the fundamental source of magnetic interaction, but not the

only means of accounting for magnetic properties. To better understand frustrated systems, it

is common to use the relationship between electric dipoles and charges as an analogy to define

a magnetic charge. This approach converts dipole moment to two charges with opposite sign at

a finite separation, creating the appearance of a dumbbell. The magnitude of these charges Q
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is the magnetic moment divided by the dipole length L. This approximation is well established

enough to serve as a description of the charged excitations in our system.

The Debye-Hückel theory of plasmas [53] can be seen as a means to understand the

liquid-gas transition and emergent magnetic monopole dynamics in pyrochlore spin ice. The

basic idea is to describe the emergence of different categories of charges as carriers of energy.

In this model of plasma, the charges emerge through Bjerrum ion pairing [58], splitting the

population into correlated and uncorrelated charges. In the following analysis, the correlated

monopoles are located adjacent another correlated monopole of opposite charge and otherwise

homogeneously distributed, while the distribution of the uncorrelated monopoles is completely

uniform. The density of the correlated charges, number per total charge sites, is predicted

as a function of uncorrelated charge density, temperature, and material parameters. Levin’s

work on electrostatic correlations [58] outlines these predictions. The relationship between the

correlated and uncorrelated charge density predicted by this theory is

ρ̃2 =
1
4

ρ̃
2
1 ξ2 exp(2β µ). (2.2)

Here ρ̃1 is the number density of uncorrelated charges, and ρ̃2 is the number density of corre-

lated charges. β = 1/kBT , where T is the temperature and kB is the Boltzmann constant. The

chemical potential is µ = ∂ f
∂ρ1

. ξ2 is a constant with the dimension of volume,

ξ2 = 4π

∫ Rmin

a
r2dr exp(

βQ2

εr
). (2.3)

Q is the magnitude of a single charge, a is the lattice spacing, ε is the permittivity of free space,

and V is the volume the charges may occupy. Rmin is the value of r for which the integrand is a
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minimum. The free energy of this system is

f =− 1
4πa3β

[
ln(κa+1)−κa+

(κa)2

2

]
(2.4)

where

κ =

√
4πq2(ρ1 +ρ2)β

ε
. (2.5)

To deunitize these equations, we recognize common parameters C1 =
4πQ2

kBεa , C2 =
a3

V , ρ1 =
ρ̃1
V ,

and ρ2 =
ρ̃2
V . Elementary calculus gives Rmin =

C1a
8π

. Simplifying, rewriting, and combining a

few terms yields

ρ2 =
C3

1C2

128πT 3 ρ
2
1 exp

[
1

2πC2

(
1

2
√

T ρ1
C1C2

− 1

2ρ1 +2
√

T ρ1
C1C2

−C1C2

2T

)]∫ C1
4πT

2

eu

u4 du (2.6)

In making the analogy to a magnetic system, ε is replaced with 1/µ0.

This theory does not constrain total charge density or temperature. These parameters

were drawn from experiment. We first measure the total charge density from XMCD data. ρ1

may be written in terms of this total charge density, ρ = ρ1 + ρ2. This places ρ2 on the right

hand side of Eq. (2.6), converting it into a self-consistency problem. This is solved using the

method of relaxation to produce pairs of ρ1 and ρ2 for given values of C1 and C2. Though

C1 and C2 may be estimated from experimental parameters, better agreement with experimental

data is attained by using them as parameters of best fit when comparing ρ1 and ρ2 pairs from the

method above, deriving from a plasma theory, to the method below, only assuming the dumbbell

approximation and utilizing the directly observed charge positions from XMCD images. Data

will be fit by varying C1 and C2 as parameters over the entire temperature range measured. This

will compare a plasma theory generated prediction for the correlated charge density with the

magnetic configurations hypothesized to generate magnetic plasmas.

23



Correlated and uncorrelated charge densities can be determined through a calculation

of the configurational energy and measurement of the total charge density. To do so, the square

grid of dipoles is converted to a square grid of charges using the dumbbell model approximation

[16]. The charges meeting at the corners of the square lattice are added together and approxi-

mated as one charge, q j = Q j/2. The energy of nearest-neighbor interaction is mapped onto a

q2
j term, while the long-range interactions take a Coulomb form:

E = Jnn ∑
j

q2
j + Jlr ∑

j<k

q jqk

r j,k
(2.7)

where r j,k is the distance between two charges in number of lattice parameters and all dimen-

sional quantities are absorbed into Jnn and Jlr, which can be calculated as functions of dipolar

and exchange energies (exchange energies absent in our systems) but will cancel in this analysis

due to its geometric nature. The assertion that the system of charges acts like a plasma motivates

a mean field approximation of the energy using correlated and uncorrelated charge populations

as the average parameters. This mean field approximation allows the correspondence of the

dumbbell energy to the correlated and uncorrelated charge densities.

Each configuration has an associated total energy in this approximation. The long-

range interactions in the uncorrelated charges are between an equal number of positive and

negative charges at random distances. These interactions average to zero, making the uncorre-

lated charge energy contribution just the energy of emerging from the vacuum, E1 = JNN ∑ j q2
j .

Every charge will either be +1 or -1 in the theoretical plasma and Nρ1 charges are present,

where N is the number of total charge sites. This simplifies the energy to E1 = NJnnρ1. The

correlated charges share this first term, but their long-range interactions are nonzero due to a
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constant adjacent charge of opposite sign. All other long-range interactions will cancel, making

the total correlated energy E2 = NJnnρ2−NJlrρ2. The total energy is

E
N

= Jnn(ρ1 +ρ2)− Jlrρ2 (2.8)

In reality, correlations need not take place at just neighboring charges, which introduces another

set of energies from decreasingly correlated charges. Fortunately, any weakly correlated charges

will have nearly the same energy as the uncorrelated charges and any close to completely corre-

lated charges will approach the correlated charge energy. Measuring density in this way rather

than imposing a direct classification of correlated and uncorrelated charges maintains the infor-

mation of these partially correlated charges. One could correct this approximation in the future

by including more correlated charge groups, ρ3,ρ4, etc., that constitute the system.

Both the total charge density, ρ = ρ1 +ρ2, and the energy as represented by the indi-

vidual charges are immediately calculable from the data. Isolating ρ2 yields

ρ2 =
E

NJlr
− Jnn

Jlr
ρ (2.9)

ρ2 =
1
N ∑

j<k

q jqk

r j,k
(2.10)

As expected, this is a quantity purely derived from the arrangement of the charges. Once ρ2 is

calculated, ρ1 is what remains of the total charge density.

These two models state independent expressions for the correlated charge density.

Eq. 2.6 corresponds to plasma theories of charge densities, while Eq. 2.10 relies on the verified

dumbbell approximation and the experimental state of the spin ice system.

For this paper, the 145-nm offset array data at six temperatures were processed to

yield charge densities as calculated by Eq. 2.10. Error bars for these values were derived from
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the standard deviation of the mean from real-time observations of thermal fluctuations for a

period of approximately 20 min at each temperature. These densities were fitted to the Debye-

Hückel theory as derived in Eq. 2.6 by scaling the magnetization of the dipoles within the

expected range. C1 and C2 were left as fitting parameters, while the experimental data provided

T and ρ .

2.3.3 Crystallization order parameter

As another measure of charge ordering, a crystallization order parameter was calcu-

lated as defined by Brooks-Bartlett et al. [13]

Mc =

〈∣∣∣∣ 1
N

N

∑
i=1

qi∆i

∣∣∣∣〉. (2.11)

Here, the sum is taken over all N charge sites. The charge sites are checkered with

∆i = ±1 so that a complete tiling of the charge sites with alternating plus and minus charges

would result in Mc = 1. In contrast, a low-temperature spin ice has an order parameter of zero

because most charge sites are vacant, and any emerging charges are independent of one another.

This parameter quantifies global charge ordering, complementing the more local measure of

correlated versus uncorrelated charges. The temperature dependence of this parameter may be

compared to curves from Brooks-Bartlett et al. [13] as further confirmation of spin ice behavior

and lack of charge crystallization.

The presence of either a crystallized or spin ice ground state can be determined from

the chemical potential of charges in relationship to the energy necessary to separate charges.

If the chemical potential is small, then charges will dominantly populate the system without
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Figure 2.8: (a) Illustration of possible low-energy configurations, whether being a dilute gas of
magnetic charges or a magnetic monopole crystalline ground state. Illustrations of possible low
energy configurations. The neutral charge sites are left blank, +2q charges are red spheres, and
negative -2qcharges are blue spheres. Dilute gas of magnetic charges emerging from a spin glass
ground state. There is no global ordering as is the case in our experiments. The charges are free
to separate due to low Coulomb attraction compared to the chemical potential. (b) Magnetic
monopole crystalline ground state. The charges freeze in one of two global configurations.

dissociating, forming a crystal of charges. Higher chemical potential prevents charges from

emerging until the temperature is high enough to immediately dissociate introduced charges.

This latter description is required to facilitate the low density of monopoles characteristic of a

spin ice [16].

The critical chemical potential equals the energy of a single charge interacting with a

lattice otherwise filled by a charge crystal. We have already labeled the interaction energy with a

single opposing charge as Jlr. Units may be restored to these calculations by Jlr
µ0m2

4πa3 [16], where

m is the magnetic moment of a single-spin island. Finding an entire crystal’s ionic energy in

relationship to this interaction strength is a well-explored numerical problem. The total energy
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is simply Jlr times an irrational determined by geometry number named the Madelung constant

[16]. Here, we seek the Madelung constant divided by two, as the energy belongs equally to the

charge in question and every other charge in the system. For the square lattice, this constant is

about 1.61554 [7], which makes the critical energy 0.80777Jlr, translating to a critical chemical

potential of µc = 0.80777Jlr. De-unitizing in the same fashion as in the study of Brooks-Bartlett

et al. [13], we write µ∗c = µc
Jlr

= 0.80777. A system with a chemical potential below this will

enter a charge crystal phase at low temperatures.

The chemical potential of the square ice can be found by flipping one spin in a charge-

free state. Here, we assume that the energy of this spin is entirely found in dipole-dipole nearest-

neighbor interactions. As seen in Fig. 2.8, J1 is reduced by the height offset to approximately

equal J2. In the dipole approximation

J2 =
µ0m2

4πa3 |m̂1 · m̂2−3(m̂1 · r̂)(m̂2 · r̂)|. (2.12)

Because the spins referred to in 3D spin ice, m̂1 and m̂2, and the unit vector joining them,

r̂, are all orthogonal when calculating the collinear J2 interaction, all dot products are one, so

J2 = 2Jlr.

A single spin in a charge-free state has four favorable interactions and two unfavorable

interactions, making the net energy −2J1. Flipping the spin to create two charges negates these

interactions, resulting in an energy of 2J1. This costs the system 4J1 for two charges, making the

chemical potential µ = 2J1 = 4Jlr. This is de-unitized to µ∗ = 4, which is comfortably above

the critical chemical potential. Charge crystallization is therefore not expected in 3D spin ice.
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2.3.4 Simulations

Kinetic Monte-Carlo simulations were used to understand the relaxation of the trident

lattice. We model each nanomagnet as an infinitesimally thin compass needle with a uniform

magnetic moment density |mL|. The magnetic moment points along the long axis of the island.

This description is equivalent to placing a magnetic charge at each end of the island [34, 62, 16].

The inter-island interaction is given by the Hamiltonian

Hi j =
µ0m

24nL2

[
1

||rai− ra j||
− 1
||~rai−~rb j||

− 1
||~rbi−~ra j||

+
1

||~rbi−~rb j||

]
, (2.13)

where~rai and~rbi are the locations of the positive and negative magnetic charge on the

ith nanomagnet, µ0 is the magnetic permeability, L is the island length, and |m| = MV is the

magnetic moment of each nanomagnet with M being the saturation magnetization and V the

nanomagnet volume. The system size is 1200 islands, and only interactions with a magnitude

of at least 2% of the nearest-neighbor interaction are included in the simulation ( 35 neighbors

per spin).

To simulate the dynamics of the system, we use the kinetic Monte Carlo method

[30, 28], which evolves the system through single-spin flips. A particular spin flip move is

selected with a probability proportional to its rate. Assuming an Arrhenius-type switching

behavior, the rate of a spin flip is given by v = v0 exp(−E/kBT ), where kB =8.62 x 10-5 eV

K−1 is the Boltzmann constant, v0 is the so-called attempt frequency, T is the temperature,

and E is the reorientation barrier, which is equal to the intrinsic energy barrier E0 plus half

the dipolar energy gain associated with moment re-orientations (Eq. (2.13)). The simulation

parameters, M = 240 kA m−1, E = 0.887 eV, and v0 = 1012 s−1, were fit using the experimental
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relaxation results of Fig. 4.2. These values are in good agreement with previous studies on

thermally activated artificial spin ice [34, 30, 28]. In addition to the assumption of a uniform

system, where all nanomagnets have the same intrinsic energy barrier, we also investigated the

role of disorder [30]. This is included by assuming a random variation in E0, which follows a

Gaussian distribution with mean E0 = 0.893 eV and standard deviation σ = 0.05 eV.

To generate equilibrium configurations, for the results presented in Fig. 4.3, we use

the parallel tempering technique [27, 98]. Replicas of the system are simulated at a number of

temperatures simultaneously using kinetic Monte Carlo. After every Monte Carlo sweep a move

is proposed which swaps the configuration of a pair of replicas at neighboring temperatures Tn

and Tm. This move is accepted with a probability

Pswap(n,m) = min
{

1,exp[−( 1
kBTm

− 1
kBTn

)(En−Em)]
}
, (2.14)

where En is the energy of replica n. The set of temperatures is selected such that

the acceptance ratio of a swap move at each temperature is greater than 0.2. A value of M =

362 kA m−1 is used to obtain the results in Fig. 4.3. The equilibration time is estimated with

the exponential autocorrelation time [108], τ . This is defined by the decay of the autocorrela-

tion function, γ ∝ exp[−t/τ]. It is calculated for the autocorrelation function of the spin overlap

function between two concurrent independent simulations, its absolute value, and the configura-

tion energy throughout the parallel tempering simulation. Taking the largest of these calculated

exponential autocorrelation times, the first 20 ×τ exp time steps are treated as equilibration

time and discarded.
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2.3.5 Correlation Functions

To quantify the ordering in the dipolar Cairo lattice and spin glass systems, the spa-

tial correlation function, conventional in analysis of ferromagnets and anti-ferromagnets, was

calculated:

C(ri j) = 〈SiS j〉T (2.15)

where Si =±1 to represent the Ising state of spin i, ri j is the distance between spins i and j, and

〈· · · 〉T denotes a thermal average. This function was averaged over subsets of ri j in methods

appropriate to the system geometry to capture the dominant ordering.

2.3.6 Magnetic Susceptibility

The dimensionless magnetic susceptibility χ was calculated from this correlation us-

ing the fluctuation dissipation theorem [1]. This susceptibility χ was returned to appropriate

dimensions by an additional factor m (the magnetic moment of a single spin, referred to as µ in

the source):

χ =
m2

kBT ∑
i j

C(ri j). (2.16)

For the arrays discussed here, the magnetic moment m is calculated from a saturation magne-

tization, M = 85 kA/m found for similarly thin-film permalloy kagome structures [30], to be

m = 5.41×10−18 Am2.
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Part I

Artificial Spin Ice
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Chapter 3

The Square Lattice: Monopole-like

excitations

3.1 Introduction

Two-dimensional artificial square spin ice [105] was initially introduced to mimic ice

rule constraints, with the attractive prospect of directly visualizing the consequence of geomet-

rical frustration using appropriate imaging techniques [105, 30]. However, it has been shown

to lack typical spin ice degeneracy and residual entropy, mainly due to nonequivalent nearest-

neighbor distances of nanomagnets meeting at four-nanomagnet vertices [105, 61]. Simple

thermal annealing procedures have been shown to lead artificial square ice to access long-range

ordered ground-state configurations [30, 79, 109]. The introduction of height offsets between

the two sub-lattices of the square geometry has long been proposed as means to restore spin

ice degeneracy by equalizing the relevant vertex interactions (J1 and J2 in Fig. 3.1a) [61], but a
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first experimental realization of such square ice systems could only be most recently achieved

[75]. An extensive degeneracy was achieved, accessing the Coulomb phase, a state in which the

energy of the system is in approximate correspondence to the Coulomb interaction of magnetic

charges [16]. Specifically, each dipole moment is replaced by a dimer of two opposite magnetic

charges. Configurations obeying the ice rule can be mapped onto a divergence-free field, which

acts like a vacuum for local excitations that behave like emergent magnetic monopoles [16].

These monopoles arise in the form of ice rule breaking type III vertex defects (Fig. 3.1, b and

c). These monopole defects result in an overall net magnetic charge Q = ±2q residing at the

corresponding four-nanomagnet vertex site (Fig. 3.1c). In contrast to that, ice rule–obeying

moment configurations (types I and II) result in neutral Q = 0 vertex sites. So far, the patterned

nanomagnets had blocking temperatures far above room temperature, making thermal anneal-

ing impractical and direct observations of the real-time thermodynamics of emergent magnetic

monopoles impossible. Therefore, in analogy to previous work on athermal two-dimensional

artificial spin ices [105, 59, 80], a demagnetization protocol was used to access quasi-frozen

low-energy states in the patterned square ice arrays [75]. Previously, researchers have sought

Coulombic behavior in the highly frustrated artificial kagome spin ice [55]. Although it does

feature some analogies to pyrochlore spin ice [4, 17], the thermodynamics of emergent mag-

netic charge defects in this lattice have been shown to be strongly confined in nature [29], which

is typical for all known two-dimensional artificial spin ice systems [30, 34]. The introduction

of XY-mesospins, single domain circles of permalloy where the macrospin may point in any di-

rection in the XY plane, within four-nanomagnet vertices [72] allows a two-dimensional square

ice system to access a spin liquid-type phase. However, it is not clear how one can accurately
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account for emergent magnetic monopoles because the magnetic charge is less localized when

compared to elongated spin islands. Thus, the gap toward a direct comparison to both theo-

retical and experimental studies on the statistical physics of pyrochlore spin ice and emergent

magnetic monopoles is not overcome until an artificial square ice system with variable height

offsets [75] is realized that exhibits moment fluctuations, ideally at experimentally accessible

temperatures [34, 32]. In addition, these fluctuations are ideally visualized with an appropriate

imaging technique.

Here, we present two-dimensional artificial square ice patterns consisting of nano-

magnets with variable height offsets and thermally induced moment reorientations at experi-

mentally accessible temperatures. This quasi–three-dimensional lattice is realized by placing

nanomagnets with lengths L = 400 nm, widths W = 100 nm, and thicknesses d = 3 nm onto a

square lattice with lattice parameter a = 550 nm on top of a pre-etched silicon (100) substrate

(Fig. 3.1a). While one set of nanomagnets (Fig. 3.1a) is grown on the base of the pre-etched

substrate, the second set (Fig. 3.1a) is grown on top of plateaus whose height can be accurately

controlled. Magnetic configurations and thermal fluctuations are then directly visualized using

synchrotron-based photoemission electron microscopy (PEEM) [97], using x-ray magnetic cir-

cular dichroism (XMCD; Fig. 3.1b) (24), which gives a direct measure of the magnetization

direction of each individual nanomagnet. More details on sample fabrication and characteriza-

tion are provided in Chapter 2.

3.2 Results
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Figure 3.1: Thermally activated two-dimensional artificial square ice with height offsets be-
tween nanomagnets. (a) Tilted-sample scanning electron microscopy (SEM) image of an artifi-
cial square ice with an introduced height offset h, which can be varied from sample to sample,
until the competing interactions J1 and J2 are equalized and an extensive spin ice degener-
acy is achieved. Scale bar, 400 nm. (b) XMCD image of the same artificial square ice array.
Nanomagnets with moments pointing toward the incoming x-rays (indicated by a yellow arrow)
appear dark, while those opposing the x-ray direction appear with bright contrast. (c) The 16
possible moment configurations on a four-nanomagnet vertex are traditionally listed into four
topological types. Without a height offset (h = 0 nm), the ice rule–obeying (two-in-two-out)
type I and II configurations have a significantly different energy. Once a critical height offset is
introduced, their energies are equalized and spin ice degeneracy is realized. Highlighted with
magenta, cyan blue, and yellow frames in (b) and (c) are type I, type II, and type III vertices,
respectively.

36



3.2.1 Thermal annealing

As a first step, we apply a thermal annealing protocol on our artificial square ice struc-

tures with various height offsets. The patterned structures had blocking temperatures around

330 K. Therefore, the sample is heated to 390 K, with a waiting time of 100 min, before cooling

down below the blocking point to 300 K. The achieved moment configurations at all height

offsets are then imaged (Fig. 3.2, a to c) and first analyzed in terms of vertex-type populations

(Fig. 3.2d). The results reveal a transition from a long-range ordered (type I) ground state at

low values of h [30] to increasingly disordered configurations with an increasing number of

type III vertex defects as h increases. Furthermore, square ice systems with height offsets of

145 to 155 nm feature twice as many type II as type I vertices, indicating the restoration of

spin ice degeneracy within this critical height offset regime. This is further confirmed by the

average magnetic structure factor of an artificial square ice array with a height offset of 145

nm (Fig. 3.2e). The data reveal that the system accessed a phase that features properties of

a cooperative paramagnet, exhibiting pinch-point singularities in the magnetic structure factor,

indicative of algebraically decaying correlations resulting from the local ice rule [44]. That is,

an effective Coulomb phase [44] is accessed with topological defects (type III vertices) that can

be described as emergent magnetic monopoles [16, 44, 75]. The ice phase in square and kagome

lattices produces “pinch points,” structure factor singularities at the corners of frustrated regions

of reciprocal space. Pinch points are visible in the structure factor map of the h = 145 nm sam-

ple, for example, at the point (2,2). To analyze this quantitatively, we extracted a line scan of the

structure factor through the pinch point, from the point (3/2,5/2) to the point (5/2,3/2), plotted in

37



Fig. 3.2. Through a continuum approximation of spins on a pyrochlore lattice, it was previously

determined that a line scan of pinch points should approximate a Lorentzian function scaled by

the correlation length of the system [45, 75]. We calculated this correlation length, ξ , from a

Lorentzian fit to the intensity profile

I(q) = A
ξ−2

(q−q0)2 +ξ−2 +B (3.1)

where q is the distance along the line scan, q0 is the location of the pinch point, and A and B are

constants. Fitting the data of Fig. 3.2E, we find A = 4.75, B = 0.25, and ξ = 10.8a± 0.1. The

locations of the pinch points are determined by the symmetry of the lattice. Analyzing one pinch

point singularity in detail [we choose the point (qx = 2, qy = 2) for consistency with previous

experiments [75]), we find an intensity distribution that fits well into a sharp Lorentzian curve

(Fig. 3.2e) from which a spin-spin correlation length [75] of 10.8a±0.1 is obtained. The finite

width of our pinch points is a result of both the finite size of the lattice and disruptions of ice

rule ordering by topological defects. The correlation length calculated from the width is related

to the average ice rule–obeying string length connecting emergent magnetic monopole defects.

Magnetic structure factors as a function of introduced height offsets are shown in fig. S3. As

we increase the height offset between nanomagnets beyond the critical regime of 145 to 155

nm, we observe a transition toward phases featuring multidomain type II vertex patterns (Fig.

3.2c).
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3.3 Real-time thermodynamics

In pyrochlore spin ice, emergent magnetic monopoles are predicted to behave as clas-

sical magnetic analogs to electric charges with a Coulomb-type interaction [16]. Evidence

regarding their existence and behavior has relied heavily on scattering or macroscopic measure-

ment techniques [37, 66], while the macroscopically degenerate artificial square ice discussed

here offers the unique opportunity to shed light into the dynamic behavior of emergent magnetic

monopole defects via real-space imaging. For this, we fabricated a second sample with a height

offset of 145 nm and a blocking temperature of 160 K consisting of nanomagnets with length L

= 400 nm, width W = 100 nm, and thickness d = 2.5 nm. Obtaining XMCD image sequences

(7 to 10 s per image) at various temperatures between 160 and 210 K, we are able to directly

visualize real-time thermal fluctuations and motion of emergent magnetic monopoles (see Fig.

3.3) and characterize their temperature-dependent behavior. In Fig. 3.3, a short sequence of

XMCD images recorded at 190 K is shown, with a time frame of 14 s separating them. Fol-

lowing sequential changes in the XMCD contrast, when going from frame to frame (marked

by correspondingly colored arrows in each frame of Fig. 3.3), we are able to track the motion

of emergent magnetic monopoles as a function of time. We find that the motion of magnetic

monopoles is free in all possible directions, with the only limitation being that certain motion

steps are unlikely, as they would require the generation of type IV (Q =±4q) defects, which is

energetically unfavorable and never detected within all our observations. This “free” motion of

emergent magnetic monopoles in a two-dimensional lattice with a critical height offset between

nanomagnets stands in contrast to the purely two-dimensional artificial square ice (h = 0 nm),
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where magnetic monopoles are highly confined within domain boundaries separating type I do-

mains. As a consequence of this restricted motion, the concept of freely moving Coulomb-type

magnetic monopoles becomes highly questionable in purely two-dimensional spin ice systems

[30, 104].

A collection of free charges should act according to the predictions of a plasma theory.

These theories typically account for a process that dissociates dipoles into monopoles, much like

electrolytes dissolve in a solution. Commonly used to model electrolyte and plasma systems,

the Debye-Hückel theory [53] describes a plasma in which charge pairs may spontaneously en-

ter the system and separate through Bjerrum-ion dissociation [58]. While the Debye-Hückel

theory was successfully applied in modeling the dynamics of emergent magnetic monopoles

in pyrochlore spin ice [17, 48], it is only with a thermally activated and macroscopically de-

generate artificial square ice realized in this work that a direct visual interpretation of magnetic

monopole motion within the framework of the Debye-Hückel theory can be delivered. Using

this theory, we view the square ice lattice as a plasma of emergent magnetic charges. Charge

populations (see inset in Fig. 3.4a for the overall monopole density plotted as a function of tem-

perature) are divided into correlated and uncorrelated magnetic monopoles. Correlated charges

are uniformly distributed in pairs, while uncorrelated charges are simply uniformly distributed

(Fig. 2.7). Analyzing the aforementioned XMCD sequences, we extract both the densities of

correlated (ρ2) and uncorrelated (ρ1) magnetic monopoles (see section 2.3.2) and plot the ratio

ρ2/ρ1 as a function of temperature (black dots in Fig. 3.4a calculated from Eq. 2.10). This

experimentally derived temperature dependence is in good agreement with the theoretical pre-

diction (blue stars in Fig. 3.4a calculated from Eq. 2.6 in section 2.3.2), implying Coulombic-
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type interactions between the emergent magnetic monopoles. The agreement is achieved for an

emergent magnetic monopole charge of Q = 9.765 ×10−12Am, which corresponds to a satura-

tion magnetization of the permalloy nanomagnets of M ≈ 54 kA/m. This value is substantially

lower than the saturation magnetization for bulk permalloy, but it is not far off from 85 kA/m

reported for patterned 3.2-nm-thick permalloy kagome structures [28]. A similar reduction in

the saturation magnetization has been reported on patterned FePd thin films [65], which indi-

cates that the apparent decrease in M can be attributed to smaller activation volumes that initiate

moment reversals, once thermal effects gain significance in these nanostructured thin films.

The Bjerrum association approach assumes charges to be either correlated or uncor-

related. However, images of charge distributions reveal that charges also exist in more com-

plicated states [107]. For example, charges may slightly correlate by aligning with next-next

nearest neighbors, lie adjacent to two or more charges, or any other combinatoric possibilities.

To investigate the extent of charge ordering, a crystallization order parameter (see chapter 2.3.3)

[13] is calculated and plotted versus temperature in Fig. 3.4b. Because this parameter remains

well below 1, we can conclude that the global ordering needed for crystallization is absent. The

parameter increases to an asymptotic value at higher temperatures due to crowding of magnetic

charges into cohabiting neighboring sites. The jump toward this asymptote occurs around 180

K, the temperature associated with the spike in the charge density ratio. Both total monopole

density (Fig. 3.4a, inset) and the ρ2/ρ1 ratio (Fig. 3.4a) show a sudden rise at 180 K. Barring

any complex, non-monotonic behavior missed by theoretical studies and previous experiments,

this jump in total monopole density is likely a result of the limited field of view of approxi-

mately 17 µm. The large standard deviation in this measurement corroborates this. The ρ2/ρ1
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ratio implicitly depends on total charge density, adding an outlier within otherwise monotonic

temperature dependencies. The lack of monopole crystallization in our quasi–three-dimensional

artificial square ice stands in contrast to charge crystallites observed in two-dimensional arti-

ficial kagome spin ice [109]. This can be attributed to the chemical potential in this type of

system being well above the critical chemical potential [107] of µc = 0.80777 under which

charge crystallization can be expected.

3.4 Discussion

Although the finite-temperature blocking temperature of the patterned nanomagnets

prevents measurements of dynamics at even lower temperatures, a comparison of chemical po-

tential to crystallization energy leads us to conclude that this system supports a spin ice ground

state. A system of magnetic charges on the pyrochlore lattice with a tunable chemical potential

is expected to form low temperature arrangements of alternating positive and negative charges

(Fig. 2.8) when the chemical potential is smaller than a critical value [13]. By basic energetic

considerations (see [13] and section 2.3.3), the critical chemical potential is half the Madelung

constant of the lattice in question. Alternatively, if the chemical potential is high compared

to the energy required to ionize a pair of charges, then the pair will separate at temperatures

where charges form in the system. Although the square ice chemical potential is less than that

of the pyrochlore lattice, it is still comfortably higher than the critical value (see chapter 2.3.3),

coinciding perfectly with the qualitative behavior of the order parameter and suggesting the ex-

istence of a spin ice ground state and pure Coulomb phase with zero ice rule violations at lower
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temperatures.

The Coulomb phase is further validated by the data’s correspondence to Debye-

Hückel theory. At its core, this theory describes point charges that interact with one another

via Coulomb’s law. These charges can emerge and disappear within the system via thermal

activity or whenever energetically favorable. Because they are attracted to opposite charges

and repelled by charges of the same sign, some portion of the charges spend more time near

one another. This portion of the charges is referred to as the correlated charge density, leaving

the rest as the uncorrelated charge density. Combining the fundamental physics of Poisson’s

equation with charge density governed by Maxwell-Boltzmann statistics, these point charge

densities are predicted to change as a function of temperature. The magnetic defects observed

in our study obey these fundamental laws of thermodynamics and electrostatics through their

agreement with the Debye-Hückel theory. The Coulomb interaction at the core of this theory

further affirms the defects’ identity as emergent monopoles.

The current study focuses on field-free thermodynamics of emergent magnetic monopoles

in extensively degenerate artificial square ice with height offsets between nanomagnets. Fu-

ture research might take advantage of the real-space imaging aspect to explore field-dependent

non-equilibrium response of emergent magnetic monopoles and establishing links to electro-

diffusion theories [51]. Furthermore, advances in nanofabrication techniques will allow re-

searchers to fabricate similar artificial square ice patterns consisting of significantly smaller

nanomagnet sizes and lower blocking temperatures [4] that will finally answer the long-standing

question regarding the true spin ice ground state [81, 78].

43



Figure 3.2: Vertex populations, magnetic structure factors, and pinch-point analysis. (a to c)
Low-energy moment configurations achieved after thermal annealing in artificial square ice
arrays with height offsets of (a) h = 55 nm, (b) h = 145 nm, and (c) h = 180 nm. Scale bars,
1 µm. (d) Average vertex-type populations of thermalized artificial square ice, plotted as a
function of introduced height offsets. Type I vertices dominate the configuration landscape up
to an offset of 40 nm but continue to decrease in population with increasing height offset. A
turning point is observed at an offset around 80 nm, where type I and II populations reach
nearly identical values. The type II population continues to rise with increasing height offset
and reaches twice the population of type I vertices at a height offset between 145 and 155 nm.
As the height offset is increased beyond this critical value, type II vertices start to fully dominate
the moment configuration in the spin ice. (e) Magnetic structure factor of an artificial square
ice with a height offset of 145 nm. The structure factor is calculated from magnetic moment
configurations recorded with PEEM imaging and exhibits pinch-point singularities, a typical
feature of a magnetic Coulomb phase. The line scan through (qx, qy) = (2, 2) is fitted by a
Lorentzian function (black curve in inset) from which an average spin-spin correlation length ξ

= 10.8a ± 0.1 is derived. r.l.u., reciprocal lattice unit.
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Figure 3.3: Temporal evolution of emergent magnetic monopoles. XMCD image sequence
(recorded at T = 190 K) highlighting the thermally driven motion of emergent magnetic
monopole defects (blue dots: Q =−2q, red dots: Q =+2q) in two-dimensional artificial square
ice with a height offset h = 145 nm. Arrows of different colors (magenta, cyan blue, and yel-
low) indicate sequential changes in moment configurations at each instant of time (7, 14, and
21 s). The green bar and the big white arrow indicate a length of 1 µm and the incoming x-ray
direction, respectively. Debye-Hückel theory and monopole crystallization
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Figure 3.4: Debye-Hückel behavior and crystallization of emergent magnetic monopoles. (a)
Ratio of correlated to uncorrelated monopole defects observed in the h = 145 nm sample (black
dots from Eq. 2.10) compared to the prediction from the Debye-Hückel theory with Bjerrum
association corrections (blue stars from Eq. 2.6). The error bars correspond to real-time thermal
fluctuations over observations of approximately 15 min at each temperature. The best fit is
obtained for a magnetic charge Q = 9.765 ×10−12Am and a magnetization M = 54 kA/m in the
Debye-Hückel analysis. The overall monopole density ρ as a function of temperature is shown
as an inset. (b) Crystallization order parameter over the same temperature range.
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Chapter 4

The Trident Lattice: Out of

equilibrium relaxation

4.1 Introduction

Though the offset square lattice appropriately restores degeneracy to artificial spin ice,

it is not technically simple to achieve. Alternatively, highly frustrated artificial kagome spin ice

has been extensively investigated, as it exhibits some analogy to pyrochlore spin ice [99], includ-

ing a spin liquid phase with short-range correlations [4, 19, 62, 14, 21]. Still, long-range dipolar

interactions have been shown to overcome the fixed degree of frustration at low-temperature

regimes, leading the system to access a long-range ordered ground state [4, 19, 62]. This raises

the question whether a two-dimensional geometrical concept can be proposed that shares some

similarities to the square ice geometry, while exhibiting a higher degree of geometrical frustra-

tion. In the following, we address this point by exploring moment configurations achieved in a
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two-dimensional artificial frustrated system consisting of nanomagnets occupying the sites of a

so-called trident lattice. Following thermal annealing, we observe how accessible low-energy

configurations can be directly manipulated by tuning the balance of competing interactions.

4.2 Results

4.2.1 The dipolar trident lattice

We introduce an artificial frustrated system consisting of three-nanomagnet (trident)

building blocks periodically arranged in a perpendicular fashion (Fig. 4.1a). Each nanomagnet

is small enough to be single-domain and elongated, so that the magnetization points toward one

of two possible directions along the long axis of each nanomagnet, thus representing a single

Ising-type moment. As these moments couple via dipolar magnetic fields, we refer to this sys-

tem as the dipolar trident lattice. Using synchrotron-based photoemission electron microscopy

PEEM [25] (section 2.2.2), we directly visualize thermally induced magnetic relaxation of the

trident lattice, and demonstrate the inability of the system to access a fully ordered state down

to temperatures around 150 K, when tuning the balance of competing interactions. We show

how, above 150 K, the ordering preferences of the system can be altered between two long-

range ordered phases via an intermediate disordered state, exhibiting a continuous presence of

vertex defects, which through their migration control the relaxation process and configurational

fluctuations in thermal equilibrium. Upon cooling, the disordered phase also evolves toward

long-range order, exhibiting a mixture of the two magnetic configurations.

Energetically, moment configurations in the trident lattice (Fig. 4.1b) can be char-
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acterized by four vertex types [105, 30] listed with increasing dipolar energy in Fig. 4.1c. In

addition to the vertex types, the so-called trident types need to be taken into account, which

are listed with increasing energy as Type A, B, and C in Fig. 4.1c. In order to understand the

concept of competing interactions in the trident lattice, one has to be aware of the consequence

of dipolar interactions: First, at four-nanomagnet vertices (for example, α , δ , ε , and ν in Fig.

4.1a), nearest neighbors will preferably exhibit a head-to-tail moment alignment, giving rise to

Type I vertices (Fig. 4.1c) and vortex-like states (Fig. 4.1d). Second, the tridents (α , β , and

γ in Fig. 4.1a) favor an anti-parallel moment alignment (Fig. 4.1d). In a long-range picture, a

system where vertex interactions are mostly minimized (Type I vertex domination) cannot sat-

isfy all trident interactions, as Type B tridents will dominate the configuration landscape (Fig.

4.1e). In contrast, if trident interactions are minimized (Type A trident domination), the ener-

getically higher Type II vertices will exhibit a dominating presence (Fig. 4.1f). In other words,

it is impossible to simultaneously satisfy both vertex interactions and trident interactions and

the system is expected to be frustrated.
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Figure 4.1: The dipolar trident lattice. a Scanning electron microscope image of a dipolar trident
lattice (a = b = 50 nm, L = 450 nm, W = 150 nm). The black scale bar indicates a length of
450 nm. b X-ray magnetic circular dichroism (XMCD) image resolving moment configurations
achieved in the trident lattice. Nanomagnets with a magnetization pointing toward the incoming
X-ray propagation vector (indicated by a red arrow) appear dark, while moments opposing that
direction appear bright. c Vertex and trident types listed with increasing energy. In both b, c
green, yellow, and blue frames highlight the realizations of Type I, Type II, and Type III vertices,
respectively. Regarding tridents, Type A and B tridents are highlighted with orange and magenta
frames, respectively. d Minimization of dipolar interactions in an isolated trident building block
would result in a Type A domination. On the other hand, nearest-neighbor nanomagnets at the
four-nanomagnet vertices will prefer a head-to-tail moment alignment, which would result in
clockwise or anti-clockwise vortices. Satisfying vertex interactions (creation of vortices or Type
I vertices) results in frustration of trident moments. Satisfying trident interactions (creation of
Type A tridents) results in two of nearest-neighbor vertex moments being aligned head-to-head
(red circles) or tail-to-tail (blue circles).
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4.2.2 Direct observation of thermal relaxation

As a first step, we aim to visualize the consequence of geometrical frustration on

the ordering mechanism in a trident lattice consisting of nanomagnets with length, width, and

thickness of 450, 150, and 2.7 nm, respectively (section 2.2.1). The lattice spacing was chosen,

so that the two relevant parameters a and b (Fig. 4.1a), which control the strength of trident

and vertex interactions, respectively, are set to be 50 nm each. The blocking temperature T B,

which we define as the temperature at which moment re-orientations start to occur within the

timescale needed to acquire a single-PEEM image (7–10 s per image)[30, 34]was determined

to be 270 K. The sample was kept at a constant temperature of 280 K and a saturating magnetic

field (B = 30 mT) was shortly applied along the incoming X-ray direction. After the field is

switched off, the system undergoes thermally induced magnetic relaxation from a well-defined

energetically excited state toward a highly disordered equilibrium state (Fig. 4.2a–c).

A quantitative analysis of the relaxation mechanism is obtained by looking at the

vertex-type and trident-type populations plotted as a function of time (Fig. 4.2d, e). Starting

from a 100% Type II vertex and Type C trident background (saturated state), the system experi-

ences a rapid drop and rise in Type II and Type III vertex populations, respectively, while Type

I vertices are moderately on the rise (Fig. 4.2d). In parallel, the population of Type C tridents

decreases rapidly, while Type A and B tridents are showing an almost equal increase (Fig. 4.2e).

As the system continues to relax, the high number of generated Type III vertex defects converts

into Type I vertices, while new defects are continuously generated with an ongoing decrease in

Type II vertices. Thus, the system stagnates in terms of Type III population during this stage
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Figure 4.2: Thermal relaxation of the dipolar trident lattice. a–c XMCD images of the dipolar
trident lattice undergoing thermally induced magnetic relaxation from a magnetically saturated
state to a low-energy equilibrium configuration. The yellow scale bar indicates a length of 1
µm. d Experimentally obtained temporal evolution of vertex-type population extracted from
XMCD images recorded at a constant temperature (T = 280 K). e Trident population plotted for
the same relaxation process.

(Fig. 4.2d). Finally, the system enters a stage where the Type I vertex population rises continu-

ously at the cost of Type II and Type III vertices, until equilibrium is achieved. Kinetic Monte

Carlo simulations (section 2.3.4)[62] are in good agreement with the experimental observations.
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4.2.3 Controlling the balance of competing interactions

The dominance of Type I vertices for a = b = 50 nm indicates that the competition

between vertex interactions and trident interactions is not perfectly balanced and, as a result, a

high degree of frustration is not obtained. This balance of competing interactions can be tuned

by varying the b/a ratio. Therefore, a second set of trident arrays are fabricated (section 2.2.1),

where a = 50 nm is set to stay constant, while b is varied to be 50, 75, and 100 nm. The sample

was kept at a constant temperature of 330 K (T B = 310 K) for 24 h before it was cooled down

to 300 K and magnetic images were obtained (Fig. 4.3a–c). Plotting the vertex populations and

trident populations as a function of b (Fig. 4.3d, e), we see a transition from a largely ordered

phase with Type I vertex and Type B trident domination (b = 50 nm), through a disordered phase

with short-range order and no clear preference for any vertex types (b = 75 nm), to, finally, a

phase that shows trends toward Type II vertex and Type A trident preference (b = 100 nm).

This balancing act between competing trident interactions and vertex interactions in-

dicates that accessible low-energy states can be directly tuned by a variation of the b/a ratio. This

is a direct consequence of the enforced lattice constraints, making it impossible for the involved

entities to simultaneously minimize both trident interactions and vertex interactions. Similar to

previous work [31, 59], calculating the energy spectrum of an isolated five-nanomagnet build-

ing block, clarifies the degeneracies listed in Fig. 4.1e, f. For a system with b/a = 1, the building

block ground state is four-fold degenerate, with a clear gap to the second energy band, which

consists of eight quasi-degenerate states. This gap can be tuned by varying the b/a ratio. The

critical ratio b/a = 1.5 of the relevant lattice parameters can be further comprehended, when
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comparing the dipolar energies for fully ordered magnetic configurations of Type A/Type II and

Type B/Type I trident types and vertex types as a function of b, while a is kept constant at 50

nm. Dipolar energies are equalized when b reaches a value around 75 nm. In other words, this

is the point where the dipolar trident lattice reaches maximum degeneracy with no preference

for any of the twelve states listed in Fig. 4.2e, f.

54



Figure 4.3: Tuning geometrical frustration in dipolar trident lattice. a–c XMCD images of equi-
librium configurations of trident lattices with various lattice spacings (a = 50 nm = constant, b =
50, 75, and 100 nm) recorded at T = 300 K (blocking temperature T B = 310 K). The red arrow
indicates the direction the X-ray propagation vector. The yellow scale bar indicates a length of 1
µm. d Experimentally observed vertex-type population plotted as a function of lattice parameter
b. e Trident-type population plotted with increasing lattice parameter b. Experimental observa-
tions (filled symbols) are in satisfactory agreement with equilibrium Monte Carlo simulations
(lines). The results reveal the transition from a Type I vertex and Type B trident-ordered state
(b = 50 nm), to a disordered configuration (b = 75 nm) with no clear ordering preference, and,
finally, to a Type A trident-ordered state (b = 100 nm), as the lattice parameter b is increased.
The error bars represent standard deviations originating from ten experimental observations.
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4.2.4 Low-temperature configurations and magnetic structure factors

As a next step, we study how the degeneracy of low-energy building block states af-

fects moment configurations at lower temperatures. Previous work on highly frustrated artificial

kagome spin ice [4, 31, 92] showed that despite an extensive degeneracy and short-range order-

ing at higher temperatures, the long-range nature of dipolar interactions gives rise to ordered

configurations at lower temperatures. Therefore, it is our purpose here to see whether any sig-

natures of long-range ordering can be observed in the dipolar trident lattice, particularly in the

case of highest degeneracy, when b/a = 1.5.

We prepared another set of trident lattices, consisting of nanomagents with lengths L

= 300 nm, widths W = 100 nm, and thickness d = 2.4 nm, together with the corresponding lattice

parameters a = 33 nm = constant and b = 33, 50, and 66 nm. This reduction of nanomagnet size

resulted in a lowering of the blocking temperature down to 160 K. The sample was kept in

vacuum at room temperature for 20 days, before it was cooled down to 150 K for XMCD image

acquisition (Fig. 4.4a–c). While long-range ordered patterns are observed for b = 33 and 66

nm, the b = 50 nm array remains disordered at 150 K. Similar to the room-temperature data

(Fig. 4.3), tuning of geometrical frustration can again be inferred from the evolution of vertex

populations and trident populations as a function of lattice parameter b. Our results thus indicate

that for the case b/a = 1.5, the system is caught in a short-range ordered phase, while both the

b/a = 1 and 2 cases exhibit long-range ordered ground state configurations.

A deeper quantitative insight into the experimentally accessed low-temperature con-

figurations is achieved by calculating the respective magnetic structure factors [75](section
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Figure 4.4: Experimental low-temperature observations. a–c XMCD images of equilibrium
configurations of the dipolar trident lattice with various lattice spacings (a = 33 nm = constant,
b = 33, 50, and 66 nm) recorded at T = 150 K (blocking temperature T B = 160 K). The red arrow
indicates the direction the X-ray propagation vector. The yellow scale bar indicates a length of
600 nm. d–f Magnetic scattering patterns of moment configurations achieved in dipolar trident
lattices with lattice parameters d a = 33 nm and b = 33 nm, e a = 33 nm and b = 50 nm, and f
a = 33 nm and b = 66 nm, following thermal annealing. While long-range order with relatively
sharp peaks is seen for b = 33 nm and b = 66 nm, the diffuse patterns for b = 50 nm indicate
highly disordered moment configurations with short-range correlations.

2.3.1), which are shown in Fig. 4.4d–f. For both b = 33 nm and b = 66 nm (Fig. 4.4d, f),

we see relatively sharp peaks in the magnetic structure factors. The splitting of the magnetic

peaks into four satellites for b = 33 nm reflects multi-domain long-range ground state ordering

for b = 33 nm (Fig. 4.4d). Figure 4.4f (b = 66 nm) shows sharp magnetic peaks that stand for an

almost single-domain long-range ordered ground state consisting mostly of a tile of two Type A

tridents, as can also be seen from real-space images (Fig. 4.4c). However, a dramatic change in

the magnetic structure factor is observed for the lattice parameter combination of a = 33 nm and

b = 50 nm (Fig. 4.4e), where the diffuse patterns indicate the presence of a disordered phase
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consisting of a complex arrangements of possible low-energy configurations (Fig. 4.1e, f),

where neither of these states dominate. Similar patterns are also observed in the structure factor

of the simulated b = 50 nm system. To ensure that these simulated configurations are in fact in

thermal equilibrium, we use the parallel tempering technique [27, 98, 108](section 2.3.4), where

the equilibration time is estimated by calculating the so-called exponential autocorrelation time

[108], τ exp, which itself is defined by the temporal decay of the autocorrelation function,

Γ ∝ exp[−t/τ] (section 2.3.5). The agreement between experimental and simulated configu-

rations provides evidence that the experimental observations also represent states in thermal

equilibrium.

4.3 Discussion

In summary, we presented a magnetically frustrated meta-material, which provides

the possibility to directly control competing dipolar interactions at the nanoscale, thus allow-

ing versatile tuning of geometrical frustration and ground state configurations. The complex

phase into which the system gets trapped, when competing interactions are balanced, opens up

multiple questions regarding the physics of the dipolar trident lattice, in particular the ques-

tion regarding possible phase transitions toward complex long-range ordered states at lower

temperature regimes [4, 19, 62]. Experimentally, this will require the fabrication of trident lat-

tices consisting of nanomagnets with lateral dimensions that go beyond the spatial resolution

of known magnetic imaging techniques [4], and will therefore rely on emerging scattering and

spectroscopic techniques [4, 92, 64, 76].
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Chapter 5

The Cairo Lattice: Topological

frustration and polarons

5.1 Introduction

Artificial spin ice candidates need not comprise a single vertex geometry (coordina-

tion number three for the kagome lattice, coordination number four for the square lattice). Many

systems with mixed coordination numbers [38, 34, 18], while exhibiting high degeneracy levels,

have been shown to exhibit long-range charge-ordered states at lower temperatures. This raises

the question whether another system with mixed coordination numbers can be proposed, which

exhibits a high degree of spin frustration and remains in a state that is dominated by short-

range spin correlations, thus adding an additional system to the family of artificial frustrated

systems [70].

In this paper we address this question, by exploring geometrical frustration achieved
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Figure 5.1: (a) Dipolar Cairo lattice. We see dipolar-coupled Ising-type nanomagnets (stadium-
shaped islands) occupy the sites of the pentagonal Cairo lattice (lines the background). Lattice
parameters a = 472 nm and b = 344 nm are kept constant, while the lattice parameter c = 376 nm,
450 nm, 500 nm and 600 nm is varied, to tune the coupling strengths between the nanomagnets.
(b) Scanning electron microscopy (SEM) image of one of the dipolar Cairo lattices consisting
of nanomagnets with lengths and widths of 300 nm and 100 nm, respectively. The coupling
parameter c can be varied, so that the balance between the coupling strengths J1, J2, J3 and J4
can be tuned at the nanoscale. The yellow scale bar indicates a length of 300 nm.

in a two-dimensional artificial spin system, where Ising-type nanomagnets are placed onto the

sites of a so-called Cairo lattice (see Fig. 5.1). The Cairo lattice geometry has risen to promi-

nence as an alternative approach in achieving geometrical spin frustration leading to a variety

of new properties and ground state configurations [88, 86, 102, 86].

This chapter is organized as follows: in the methods section, we describe the process

of sample fabrication and the magnetic imaging technique. Micromagnetic simulations of rel-

evant coupling strengths are also described. This is followed by a report on thermal annealing

and magnetic imaging experiments including a quantitative analysis of all observations. The

data obtained are discussed in terms of short-range spin correlations, highlighting the high de-
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gree of geometrical spin frustration achieved in this artificial spin system. We conclude with a

summary and outlook on potential future investigations featuring the dipolar Cairo lattice.

5.2 Methods

We used electron beam lithography to fabricate dipolar Cairo lattices. The resulting

patterned nanomagnets have a length of 300 nm and a width of 100 nm and they are arranged

onto a Cairo lattice with lattice parameters a = 472 nm and b = 344 nm (see Fig. 5.1a). The

coupling strengths Ji (see Fig. 5.1b) are directly tuned by varying the lattice parameter c (see

Fig. 5.1a), which is given values of 376 nm, 450 nm, 500 nm and 600 nm. Each array covered

an area of 60×60 µm2.

Magnetic imaging was performed by synchrotron-based photoemission electron mi-

croscopy (PEEM) [25], employing x-ray magnetic circular dichroism (XMCD) at the Fe L3

edge [97]. XMCD images were obtained by pixel-wise division of images recorded with circu-

lar right and left polarized light. The resulting dark and bright contrast provides a direct measure

of the orientation of the local magnetization. Magnetic moments pointing towards the incom-

ing X-rays will appear dark and moments opposing the X-ray direction will appear bright. If a

magnetic moment is oriented 90◦ with respect to the X-ray direction, it does not show contrast

and appears gray. Because the nanomagnets of the dipolar Cairo lattice are patterned along dif-

ferent directions, deterministic imaging of all magnetic moments is challenging (see Fig. 5.1b).

To ensure that all magnetic moments have a non-zero projection onto the incoming X-rays, we

rotated the sample by 15◦.
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We performed micromagnetic simulations using MuMax3 [103] to determine the cou-

pling energies in the dipolar Cairo geometry. In the simulations, nanomagnets with a size of

300 × 100 × 3 nm3 were discretized into 1.95 × 1.95 × 3 nm3 cells. Typical material parame-

ters for Permalloy were used: Ms = 790 kA/m, A = 13×10−12 J/m. The magnetic anisotropy

was set to zero. As the Gilbert damping parameter we used α = 1.0 to allow the simulations to

relax quickly. The coupling energies were derived from simulating different nearest-neighbor

nanomagnet pairs. To do this, we first determined the low and high energy states E1 and E2,

which are given by E1 = 2Enanomagnet−Ecoupling and E2 = 2Enanomagnet +Ecoupling. Here, only

the coupling energy Ecoupling depends on the orientation and distance between the nanomagnets.

The coupling energy is then given by Ecoupling = (E2−E1)/2. The simulations were performed

for a lattice parameter c varying from 350 nm to 600 nm in 12.5 nm steps.

5.3 Results

5.3.1 Energy landscape and micromagnetic simulations of coupling strengths

Before we summarize the experimental observations, it is important to understand and

characterize the dipolar Cairo lattice energetically. As in other artificial spin ice systems [105,

38, 34, 29, 77], the magnetic configurations can be categorized into vertex types (see Fig. 5.2).

The dipolar Cairo lattice exhibits four- and three-nanomagnet vertices similar to those observed

in the square- and kagome spin ice geometry, respectively [105, 30]. The four-nanomagnet

vertex types are listed with increasing dipolar energy in Fig. 5.2a, going from Type I to Type

IV. Type I and Type II obey the so-called ice rules, which dictate two moments to point into the
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vertex and two moments to point out of the vertex (see Fig. 5.2a). In an emergent magnetic

charge picture [75, 33, 16, 62], these vertices exhibit a zero magnetic charge at the vertex of

Q = 0. Type III vertices break the ice rule, as three moments point into the vertex and one out

or vice versa. In the magnetic charge representation, they can be seen as topological defects

bearing a non-zero effective magnetic charge residing at the vertex (Q =±2q). Type IV vertices

((Q =±4q) represent the highest energy states and are energetically so unfavorable that they are

not observed in our experiments. The three-nanomagnet vertices can be compared to the known

kagome vertices [30, 29, 80], however, with one crucial difference:

Because a 6= b and the varying lattice parameter c, the distances between nanomagnets

at the three-nanomagnet vertices can be non-equal, resulting in different coupling strengths

(J1 ≥ J3). Therefore, the six-fold degenerate ice-rule (two-moments-in-one-moment-out or vice

versa) configurations are now split into two different vertex types. Moment alignments that

minimize the stronger J1 interactions (coupling between black and red moments in Fig. 5.2b)

are lower in energy and are labeled Type A (see Fig. 5.2b). Configurations that minimize the

weaker interaction J3, but maximize one of the two J1 interactions, are higher in energy and are

labeled Type B vertices. Configurations breaking the ice-rule remain energetically equivalent

and are now branded Type C.

The unique feature in the dipolar Cairo lattice is that the balance between the com-

peting interactions J1 and J3 can be tuned at the nanoscale from being vastly different to being

totally equal. In the latter case, Type A and Type B vertices become energetically equivalent

again. In other words, one can turn the spin ice degeneracy at the three-nanomagnet vertices on

and off, by varying the lattice parameter c. In Fig. 5.3 we plot all coupling strengths J1 to J4 as
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Figure 5.2: (a) Vertex types at four-nanomagnet vertices listed with increasing dipolar energy
from Type I to Type IV. Type I and Type II are the so-called ice-rule obeying configurations and
exhibit a zero net emergent magnetic charge at the vertex (Q = 0). Type III vertices break the
ice rules and can be described as vertex defects that possess an non-zero net magnetic charge at
the vertex (Q = ±2q). Type IV vertices have the highest energy and are never observed in our
experiments. (b) Vertex types at three-nanomagnet vertices categorized with increasing dipolar
energy from Type A to Type C. Red arrows mark those moments that are coupled with each
other via J3, while the red and black arrows are coupled via J1.
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Figure 5.3: Evolution of all relevant coupling strengths J1 (blue dots and curve), J2 (red dots
and curve), J3 (yellow dots and curve) and J4 (purple dots and curve) plotted as a function of
coupling parameter c.

a function of c (see Methods). According to these simulation results, J1 and J2 as well as J3 and

J4 equalize around c = 500 nm. Equalization of J1 and J3 and thus a restoration of the spin ice

degeneracy (Type A Energy = Type B Energy) is predicted around coupling parameter c = 600

nm (blue and yellow curves in Fig. 5.3). This can also be seen when looking at micromagnetic

vertex type energy calculations (see Fig. 4d and e).
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5.3.2 Thermal annealing and XMCD imaging

Now that the dipolar Cairo lattice has been introduced, we turn our attention to ther-

mal annealing experiments. Similar to previous work on artificial frustrated systems [28, 30, 34,

32, 33], the prepared structures were kept at room temperature and in vacuum for several days.

Then, the samples were transferred into the PEEM and cooled down 20-30 K below the temper-

ature where thermally-induced moment fluctuations start to occur within the nanomagnets on

the time scale of several seconds [34, 32, 33]. Cooling below the so-called blocking temperature

(TB = 130 K in our system) ensures that configurations remain frozen during XMCD imaging

after thermal annealing. For each lattice parameter (c = 376 nm, 450 nm, 500 nm and 600 nm),

this annealing procedure is performed five times of each to ensure sufficient statistics. To en-

sure that observations are not linked to lithographic defects, a different array on the sample was

imaged, after each annealing protocol.

Figure 4 shows XMCD images of dipolar Cairo lattices. For all values of the lattice

parameter c, long-range ordering is absent by pure visual inspection. A first quantitative char-

acterization of these observations is obtained by plotting the vertex type populations achieved

as a function of lattice parameter c (see Fig. 4d and 4e). The four-nanomagnet vertices show

a nearly linear decrease in the Type I ground state population, while Type II vertices are rising

with increasing lattice parameter c. Type III vertex defects are almost absent up to c = 450 nm,

but appear in lattices with c = 500 nm and c = 600 nm. The diminishing energy difference be-

tween all four-nanomagnet vertices (see dashed curves in Fig. 4d) is likely what allows these ice

rule violations to occur. In contrast to the four-nanomagnet vertices, the populations of three-
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nanomagnet vertex Types do not depend much on c (see Fig. 4e). Intuitively, one would expect,

that full dominance by ground state Type I vertices would lead to the ergodicity of Type A

and Type B three-nanomagnet vertices, comprising 1/3 and 2/3 of the population, respectively.

However, the number of Type A and Type B vertices is approximately equal, implying that an-

other mechanism is at play. Curiously, only the 600 nm system moves towards ergodicity as the

Type A and B vertices equalize in energy (see dashed curves in Fig. 4e) and ice rule obedience

at the four-nanomagnet vertices diminishes. In summary, the dipolar Cairo lattice aims to es-

tablish a Type I ground state configuration at the four-island vertex sites, while the three-island

vertices strictly obey the ice rule (almost no Type C vertices). However, the proportion of Type

A vertices remains higher than expected. These observations provide a first glance as to why

the dipolar Cairo lattice lacks features of long-range order, standing in contrast to other dipolar

systems with mixed coordination numbers [34, 18].
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Figure 5.4: XMCD images (recorded at T = 100 K) of a low-energy moment configuration
achieved, following thermal annealing in (a) dipolar Cairo lattice with lattice parameter c = 376
nm, (b) c = 500 nm and (c) c = 600 nm. The incoming X-ray direction is indicated by a large red
arrow. The XMCD dark-and-bright contrast gives a direct measure of the magnetization direc-
tion relative to the incoming X-ray propagation vector. Magnetic moments pointing towards the
incoming X-rays appear dark, while moments opposing the X-ray direction appear bright. The
blue bar indicates a length of 1 µm. (d) Vertex type populations at four-nanomagnet vertices
plotted as a function of lattice parameter c. (e) Three-island vertex-type population under the
variation of c. The error bars in (d) and (e) represent standard deviations of the mean resulting
from XMCD measurements performed after each of the five repeated annealing cycles. The
dashed curves in (d) and (e) represent the corresponding relative vertex type energies (from
micromagnetic calculations) plotted as a function of c.
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Figure 5.5: (a),(b) Magnetic moment and charge configurations achieved after thermal anneal-
ing for Cairo lattices with (a) c = 376 nm and (b) c = 600 nm. Positive +q and negative −q
charges are depicted in with red and blue circles at three-nanomagnet vertices, respectively.
Filled circles represent Type A vertices, while Type B vertices are shown with empty circles.
Type III charge defects±2q are represented with red (+) and blue (-) crosses. Grey circles in (b)
highlight screened charge defects. (c) Four-vertex plaquettes obeying the emergent ice-rule. Six
variations of the two Type A (filled circles) and two Type B (empty circles) vertices within each
plaquette obey this emergent ice-rule. (d) Percentage of screened Type III charge defects plotted
as a function of lattice parameter c. The error bars represent standard deviations resulting from
observations after each one of the five annealing cycles.
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5.3.3 Emergent ice-rule and polaronic states

The Cairo lattice is topologically equivalent to the recently investigated Shakti lat-

tice [38, 72]. implying that the same mode of toplogical frustration prevents long range order

in the system. Looking at magnetic moment configurations (see arrows in Fig. 5.5a and b)

and magnetic charge patterns (blue and red circles in Fig. 5.5a and b), long-range order seems

absent. In analogy to the Shakti lattice, the Cairo lattice largely obeys an emergent ice-rule.

This rule dictates that a system with this geometry and only Type A, B, and I vertices must dis-

tribute Type A and Type B vertices (filled and empty circles in Fig. 5.5a, b and c, respectively)

equally within a four-vertex plaquettes (see Fig. 5.5c). The emergent ice rule explains the dis-

crepancy from ergodic vertex populations by bringing them closer to 50% (see Fig. 5.4e). This

strict emergent ice-rule obedience is particularly striking in the case of strong nearest-neighbor

coupling at the four-nanomagnet vertices (c = 376 nm) due to the lack of Type II-IV vertices

and provides a direct explanation why the Cairo lattice lacks features of long-range order. As

the lattice parameter c is increased, we see an increasing number of violations to this emergent

ice-rule (see Fig. 5.5b) because coupling strengths of the coordination number four vertices

(J2 and J4) no longer dominate. Interestingly, this is coupled to an increase in Type III vertex

defects at the four-nanomagnet vertex sites (blue and red crosses in Fig. 5.5b). These vertex

defects can be seen as emergent magnetic charge defects (Qz4 = ±2q), with a major part of

them getting screened by surrounding magnetic charges (Qz3 =±q), which reside at neighbor-

ing three-nanomagnet vertices (see Fig. 5.5d). In other words, the sum of magnetic charges

residing at four- and three-nanomagnet vertices becomes zero (∑Qz4 +Qz3 = 0). The fraction
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Figure 5.6: Correlation functions and extracted correlation lengths of all annealed ground states.
All length scales are stated in proportion to the lattice parameter a = 472 nm. (a),(b) Spin-spin
correlations between the ”p” subset of spins (a) and the ”s” subset of spins (b). (c) Charge-
charge correlation function of all charges in the lattice. All correlation function seem to be
exponentially encapsulated as a function of distance. (d) Correlation lengths as a function of
lattice parameter c. The error bars represent standard deviations resulting from XMCD mea-
surements performed after each of the five repeated annealing cycles.

of Type III vertices that are perfectly screened is plotted in Fig. 5.5d. A random distribution of

Qz3 charges would only screen four out of sixteen possible states, but all fractions remain signif-

icantly higher than 25%. The outlying point at c = 376 nm is likely a result of the low number

of Type III vertices (9) at this offset. These polaronic states are a typical feature for structures

with mixed coordination numbers as predicted and observed in the dipolar dice and pentagonal

lattice [34, 18]. However, in contrast to these cases, which feature long-range charge ordered

ground states, the dipolar Cairo lattice does not seem to show any tendency towards long-range

ordering, whether defined by magnetic charges or magnetic moments.
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5.3.4 Correlations and short-range ordering

The existence of preferred vertex types and emergent ice rule obedience suggests

quantifiable short-range ordering within the system. Additionally, the emergent magnetic charges

may possess some hidden order [20], providing another structure to the system not immediately

apparent in the magnetic orientation of the islands. Here we extract the spin-spin and charge-

charge correlation functions, fit these functions to an exponential, and from those fits compute

the spin and charge correlation lengths.

The geometry of the Cairo lattice creates two subsets of spins, those only partaking

in three island vertices and those in both three and four island vertices. The former we label ”p”

spins because they are parallel and perpendicular to each other and the latter we label ”s” spins

as they are skewed from one another. The two subsets experience different types of interactions

and therefore should not be assumed to have correlation functions that behave the same. The

correlation functions themselves are calculated in a manner typical of Ising type systems:

C(ri j) = SiS j (5.1)

where Si =±1 to represent the Ising state of spin i and ri j is the distance between spins i and j.

There is normally a thermal average, but it is omitted here as the analysis is performed on single

configurations. The correlation functions are made a function of distance, r, by averaging over

Ci j where r−∆/2 < ri j < r+∆/2:

[C(r)]av =
1

Npair

′

∑
i j

C(ri j). (5.2)

Here, Npair is the number of pairs of i j over which the sum is taken. A charge correlation
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function is defined similarly as

CQ,i j = Θ(QiQ j), (5.3)

where Qi is the magnetic charge at a vertex labeled i and Θ(x) returns the sign of the argument

or zero if the argument is zero. Again, the function is averaged over similar distances to create

C(r). The magnitude of this parameter and the spin correlations are fitted to an exponential de-

cay function, |C(r)|= Aexp(−r/L), where A is merely a fitting constant and L is the correlation

length (see dashed curves in Fig. 5.6a-c). Three categories of lengths are extracted for the p

spins, s spins, and charges (Lp, Ls, and LQ respectively). The correlation lengths are plotted as

a function of c in Fig. 5.6d.

All correlation functions (Fig. 5.6a-c) are fit to exponentials with confidence intervals

of 95%. They typically oscillate between positive and negative values as antiferromagnetic spin

ordering and alternating charge ordering are preferred. The higher value of the spin correlation

functions (Fig. 5.6a-b) compared to the charge-charge correlation function (Fig. 5.6c) indicates

a dominant preference for spin ordering over charge ordering. Though they are less likely to

correlate, the lengths over which charges correlate are similar to the spin correlation lengths

(Fig. 5.6d). In accord with the topological frustration picture, the spin-spin correlation lengths

are all on the order of 2-3 lattice parameters a, approximately the size of a single plaquette.

Long-range order is clearly absent, consistent with the vertex and pattern frustration. Despite

the absence of a clear trend, the ”p”- and ”q” lengths roughly decrease with increasing c and

the ”s” length fluctuates up and down with c. Each of the three correlation lengths are dominant

for at least one value of c. These non-monotonic behaviors further highlight the flexibility in
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defining ordering preferences in the dipolar Cairo lattice.

5.4 Discussion

The Cairo lattice presents rich, tunable frustration. Its geometry allows for lattice

parameter c to influence 4 magnetic coupling constants (Fig. 5.3). All annealed systems with c

varying from 376 nm to 600 nm contained no apparent long-range order (Fig. 5.4) as verified by

correlation function and correlation length calculations (Fig. 5.6). The vertex type populations

commonly used to motivate frustration do not take on anticipated values in the dipolar Cairo

lattice, which indicates that their distribution should be random (Fig. 5.3). Despite this, all

lattices still appeared to be highly disordered, reflecting a high degree of frustration and low-

energy degeneracy. An effective ice rule (Fig. 5.5a-c) explains the high degree of frustration

and the oddity of similar concentrations of Type A and Type B vertices (Fig. 5.4). In contrast to

the Shakti lattice where this rule was first observed, long range charge ordering is absent (Fig.

5.5a-b and Fig. 5.6d). Reducing the three island vertex coupling by increasing c enables the

system to break the emergent ice rule and developed charge screened states (Fig. 5.5d) similar to

the dipolar dice lattice. Both high and low temperature regimes promise greater understanding

of the nature of frustration and emergent phenomenon.

However, an important open question remains, namely that of the true ground state of

this system and the role of long-range dipolar interactions that go beyond J1 to J4 (see Fig. 5.1b).

This question might be addressed through computational studies [62] or improvements in the

annealing procedure. Just as defects arose for spin ice in the form of emergent magnetic charges,
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systems deviating from equivalent energy patterns may create similar emergent carriers whose

dynamics may be analyzed at higher temperature in future XMCD experiments [34, 29, 32]. The

degree to which these charges are screened and their mobility may provide ideal conditions for

new Debye–Hückel plasmas [33]. Such dynamic XMCD measurements might also shed light

on the potential observation of emergent reduced dimensionality [39], a scenario that cannot be

fully excluded with absolute certainty, based on the current results.
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Part II

Artificial Spin Glass
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Chapter 6

A first attempt through Gaussian

disorder

6.1 Introduction

In the present work, we aim to take a first step in addressing the conceit of an artifi-

cial spin glass, first by fabricating arrays of nanomagnets exhibiting a controlled disorder and

randomness, the major ingredient for the emergence of spin glass behavior. We begin with a

methods section that describes the sample fabrication process and the sample characterization,

employing synchrotron-based photoemission electron microscopy (PEEM). Then, we move on

to a section describing the obtained results, starting from thermal annealing experiments and

temperature-dependent moment fluctuations observed in randomized nanomagnetic patterns.

We then conclude with a section summarizing the obtained results with conclusions and an

outlook for potential future work.
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Figure 6.1: (a) Scanning electron microscope (SEM) image of part of an arrangement consisting
of Ising-type nanomagnets with a length L = 300 nm, width W = 100 nm and a thickness t =
2.7 nm arranged onto a collinear ordered fashion with a nearest-neighbor edge-to-edge distance
d = 80 nm. (b) SEM image of an array, where disorder in x- and y coordinates of the centers
of nanomagnets is introduced in form of Gaussian distribution with a relative deviation σ =
100% around an average edge-to-edge distance of d = 80 nm. In addition to coordinate ran-
domness, the same type of disorder is introduced for the rotational angle φ , ensuring maximum
randomness possible in two dimensions. Circles representing the area in which spins will be
designated nearest neighbor (NN, red line), next-nearest neighbor (NNN, green dashed line),
and next-next-nearest neighbor (NNNN, blue dotted line) are drawn to denote categories used
to calculate correlation functions.
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6.2 Methods

To introduce a controlled disorder in the lattice, the islands are shifted from their

lattice sites, ri j = (W +d)ix̂+(L+d) jŷ, where W = 300 nm is the nanomagnet width, L = 100

nm is the nanomagnet length, and d = 80 nm is nearest-neighbor edge-to-edge spacing (see

Fig. 6.1). The x and y coordinates are displaced by values drawn from a normal distribution

with a mean of zero and a standard deviation of varying percentages of d. For convenience,

a standard deviation of xd is referred to as σ = 100x%. Introducing disorder in the x- and y-

coordinates results in patterns consisting of horizontal (non-rotated) nanomagnets arranged at

random x and y sites. For simplicity, we call these structures the ”non-rotated” arrays. Further

disorder is induced by introducing the same type of randomness to the orientation angle φ

of the nanomagnets (see Fig. 6.1b). The rotational distribution is defined around 0 degrees

(islands are aligned along the x-axis) with a deviation of σφ =180◦σ . Since XMCD contrast

in the X-PEEM experiments is angle sensitive [30] with maximum contrast, when an angle

of 0◦ is present between the incoming X-rays and the magnetization direction (zero contrast

is present for an angle of 90◦), the rotation of the nanomagnets is limited to a maximum of

80◦. Again, for simplicity, we call these patterns with additional rotational disorder as the

”rotated” arrays. Three kinds of disorder are investigated, σ= 0% (ordered), 30% (distorted)

and 100% (disordered), for an edge-to-edge distance d = 80 nm. Furthermore, to ensure that

nanomagnets do not overlap as a result of the introduced randomness, we define a minimum

of 20 nm edge-to-edge distance when generating the random patterns. This minimum edge-to-

edge distance also ensures a smooth and clean lift-off process in acetone. The overall number
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of nanomagnets in each individual array was 7200, occupying areas of 26-30 µm2. These

system sizes are comparable to previously studied artificial frustrated spin systems [34, 29, 32],

reducing potential finite-size effects to a negligible minimum.

Magnetic imaging was performed at PEEM3 [25] at the Advanced Light Source, em-

ploying x-ray magnetic circular dichroism (XMCD) at the Fe L3 edge [97]. XMCD images are

obtained by pixelwise division of images recorded with right and left circularly polarized x-rays.

The resulting XMCD contrast gives a direct measure of the projection of the magnetic moments

onto the x-ray propagation vector. Moments pointing towards the incoming x-rays will appear

dark, while moments opposing the x-ray direction will appear bright (see Fig. 6.2a-e). For each

x-ray polarization, an exposure time of one and a half second is chosen, while switching po-

larizations regularly takes four seconds. This gives an overall time of roughly seven seconds

to obtain an XMCD image. The aforementioned blocking temperature is chosen to fit these

timescales.

6.3 Results
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Figure 6.2: XMCD images of a low-energy moment configuration achieved, following thermal
annealing in (a) a fully ordered array of Ising-type nanomagnets, (b) a partially randomized
array (σ = 30%) of parallel nanomagnets (no rotational disorder), (c) a fully randomized array
(σ = 100%) of parallel nanomagnets (no rotational disorder), (d) a partially randomized array
(σ = 30%) with rotational disorder, and (e) a fully randomized array (σ = 100%) with rotational
disorder. The red scale bar indicates 1 µm. We see a transition from a long-range ordered anti-
ferromagnetic moment alignment for the ordered arrays, showing the characteristic dark- and
bright lines (a), to a long-range ordered ferromagnetic state for the arrays with only positional
disorder (b-c), ending in short-range ordered phases, when full randomness is introduced with
rotational disorder (d-e).
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6.3.1 Thermal Annealing

As mentioned above, we aim to explore the effect of increasing disorder and random-

ness on low-energy magnetic moment configurations achieved, after thermal annealing proto-

cols [38, 34, 29]. For that purpose, the sample is heated in situ up to 350 K, where it is kept

for 1-2 hours. Then, the sample is cooled down to 180 K for magnetic imaging of both time

dependent dynamics and low temperature states (see Fig.6.2a-e). At these low temperatures,

the moment configurations are not observed to change over time and appear to be in a frozen

state. Following this annealing procedure, the regular arrays (see Fig. 6.1a) show what ap-

pear to be long-range-ordered ground state patterns consisting of anti-ferromagnetic moment

alignments, seen as black and white stripes in the XMCD images (see Fig. 6.2a). Closer in-

vestigation of correlation functions will later reveal these states to be in a paramagnetic phase,

but this subjective picture shows an emerging pattern that is expected to dominate at inacces-

sibly low temperatures. Considering the dipolar nature of inter-nanomagnet interactions, these

moment configurations are not surprising [5]. Interestingly, this anti-ferromagnetic alignment

of moments transforms into long-range-ordered configurations exhibiting domains of parallel

(or ferromagnetic) moment alignments (see dark and bright patches in Fig. 6.2b-c) for arrays

with nanomagnets where randomization is induced for the x- and y-coordinates, but where all

nanomagnets remain non-rotated (see Fig. 6.2b-c). Introducing rotational randomness of the

Ising-type nanomagnets, as described above, leads to more complex ordering patterns (dark

and bright domains in Fig. 6.2d-e), which at least visually appear more short-range ordered

compared to the non-rotated arrays.
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Lattice Type ξ (µm) ξ/L χ

Non-Rotated σ = 0% 7.6 25 0.0×10−12

Non-Rotated σ = 30% 3.1 10 2.4×10−12

Non-Rotated σ = 100% 3.9 13 1.8×10−12

Rotated σ = 30% 1.2 4.1 1.7×10−12

Rotated σ = 100% 1.3 4.3 1.5×10−12

Table 6.1: Correlation length ξ and magnetic susceptibility χ for magnetic configurations
achieved after thermal annealing, all summarized as a function of increasing disorder σ for
structures without and with rotational disorder. The third column represents the correlation
length as multiples of the largest dimension of the islands, L, for greater clarity of interpreta-
tion. The first two digits of the values are displayed due to imprecision from the limited sample
size.

Figure 6.3: Measures of correlation in the annealed systems. On the left are the absolute value
of spatial correlation functions from the (a) non-rotated and (c) rotated samples plotted on a
semi-logarithmic scale with their exponential fits indicated with dashed lines. The top right
plot (a) displays the non disordered (red circles), partially disordered (green squares), and fully
disordered non-rotated cases (blue diamonds), while the bottom left (c) contains the partially
(red triangles) and fully (blue stars) disordered rotated systems. The dotted lines represent the
fits used to extract the correlation lengths. On the right are the nearest neighbor correlations of
the (b) non-rotated and (d) rotated systems as disorder is varied.
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To quantify this ordering, the spatial correlation function, conventional in analysis of

ferromagnets and anti-ferromagnets, was calculated:

C(ri j) = 〈SiS j〉T (6.1)

where Si = ±1 to represent the Ising state of spin i, ri j is the distance between spins i and j,

and 〈· · · 〉T denotes a thermal average. The absolute value of this, C′(ri j) = |C(ri j)|, was used

for correlation function calculations. After days at room temperature and subsequent gradual

cooling, the systems are assumed to be in equilibrium, thus allowing/enabling to take the ther-

mal average over time (in the temperature dependent case). This average is not possible for

the annealed, frozen configurations as only one state of the system was accessed after each an-

nealing procedure. To perform a meaningful average for a single spin configuration and more

effectively extract correlation lengths in the thermally active cases, a set of bins at evenly spaced

values r were chosen. All correlation function values corresponding to r−∆/2 < ri j < r+∆/2,

where ∆ is the distance between consecutive rk, were averaged to a single value,

[C′(r)]av =
1

Npair

′

∑
i j

C′(ri j). (6.2)

The fit of the function to the exponential [C′(r)]av = exp(−r/ξ ), ξ being the so-called correla-

tion length, produced the values given in Table I. Notably, this is an order parameter that does

not always diverge with spin glass transition [23, 48]. The proper spin glass order parameter is

believed to be [48, 10]

CSG(ri j) = 〈SiS j〉2. (6.3)

This function would always possess the value of one for the frozen configurations of spins,

and therefore provides no information about them. For the time dependent measurements that
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allowed a spatial average,

[CSG(r)]av =
1

Npair

′

∑
i j

CSG(ri j), (6.4)

all values of this function were within their error bars from zero while i 6= j. Though short range

correlations are likely present, this information is obscured by the current statistics.

These measures of correlation do not discern whether the system is ferro- or anti-

ferromagnetically correlated. Therefore, a ”neighbor” correlation function is introduced:

[C]N =
1

Npair

N

∑
i j

C(ri j). (6.5)

where the sum was either taken over nearest neighbor (NN, ri j ≤ 180 nm), next-nearest neigh-

bor (NNN, 180 < ri j ≤ 360 m), or next-next-nearest neighbor (NNNN, 360 < ri j ≤ 540 nm)

pairs (see Fig. 6.1b for an illustration of these regions). Since the geometry of these systems

is variable, this does not strictly represent nearest neighbor coupling in a traditional sense, but

does provide a consistent basis for measuring local correlations. A value below zero indicates

predominantly antiferromagnetic coupling while one above zero indicates ferromagnetic cou-

pling. These correlations are plotted for all systems of interest in Fig. 6.3b and 6.3d and

confirm qualitative observations of XMCD images such as in Fig. 6.2. The alternating left-

oriented stripes and right-oriented stripes of magnetic moments in the ordered system give rise

to NN and NNN antiferromagnetic correlation and NNNN ferromagnetic correlation (see σ

= 0 in Fig. 3b and d). When position alone is disordered, NN correlation becomes approxi-

mately evenly split, as the correlation measure approaches a value of zero (red line in Fig. 3b),

while NNN and NNNN correlation is weakly ferromagnetic, strengthening with higher disorder

(see Fig. 3b). The inter-nanomagnet coupling prefers ferromagnetic-type coupling when spins
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are moved away from their ordered state. This is mainly due to the fact that the tips of the

nanomagnets exhibit the strongest interaction among each other. So, adding positional disorder

leads to an increase in collinear (ferromagnetic) ordering patterns. The tip-to-tip aligned spins

interact ferromagnetically by their geometry and with greater strength than anti-ferromagnetic

spins aligned side to side. In other words, nanomagnets that have their ends facing each other

exhibit a stronger ferromagnetic-type coupling than nanomagnets that are perfectly parallel to

one another, which exhibit a weaker anti-ferromagnetic coupling. A similar effect is observed

in the so-called dipolar trident lattice [29]. When rotation is introduced, however, this trend

disappears. Due to the orientations changing, there is a smaller probability that these strong

tip to tip interactions will be accessed. Antiferromagnetic correlation dominates for the NN

interactions but equalizes for the NNN and NNNN interactions (see Fig. 6.3d). These orderings

influence the critical behavior of the system as is further revealed by the temperature dependent

measurements discussed in the next subsection.

The dimensionless magnetic susceptibility χ was calculated from this correlation us-

ing the fluctuation dissipation theorem [1]. This susceptibility χ was returned to appropriate

dimensions by an additional factor m (the magnetic moment of a single spin, referred to as µ in

the source):

χ =
m2

kBT ∑
i j

C(ri j). (6.6)

For the arrays discussed here, the magnetic moment m is calculated from a saturation magne-

tization, M = 85 kA/m found for similarly thin-film permalloy kagome structures [30], to be

m = 5.41× 10−18 Am2. The susceptibility was extracted from the annealed configurations of
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all samples at 180 K (Table 1). The ordered case shows an essentially vanishing susceptibil-

ity. The true ground state of this system possesses equal proportions of positive and negative

Ising spin states, corresponds to equal parts positive and negative C(ri j which makes χ = 0, in

correspondence to this experimental observation. All other systems slightly decrease in suscep-

tibility and slightly increase in correlation length with increasing disorder. The results appear

contradictory as correlation lengths and susceptibility should be proportional, suggesting more

data is required to determine an overarching trend between disorder and correlation.

6.3.2 Temperature-dependent moment fluctuations

Now, we turn to our attention to temperature-dependent observations of thermal fluc-

tuations in our artificial Ising spin glass structures. To further explore the effects of disorder,

the characteristic fluctuation time, τ , of both rotated- and non-rotated systems are explored,

with a focus on arrays with the highest degree of introduced disorder (σ = 100%) and freezing

temperatures between 230 K and 240 K (see teal dotted lines in Fig. 6.4a-f). Below these tem-

peratures, only a few spin islands fluctuated due to disorder intrinsic to the fabrication process.

In studies of magnetic nanowires and some spin island systems, fabrication disorder can create

spatial disorder that pins domain walls [54, 63]. Despite this disorder, no domain pinning effects

were apparent in the time evolution of the systems, perhaps being overridden by the disorder

introduced in the system’s geometry. In a spin glass phase, the fluctuation timescale is expected

to not remain constant over time as the system defies thermal equilibrium [83]. XMCD imag-

ing provides the unique opportunity to directly observe this relaxation process and extract these
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Figure 6.4: Temperature dependence of the non-rotated σ = 100% system (a, c, and e) and the
rotated σ = 100% system (b, d, and f). The data points at and to the left of the teal dotted verti-
cal lines are marked with crosses to indicate that they come from frozen configurations of spin
islands. a-b) The characteristic relaxation time τ was recorded from a least squares fit of the
autocorrelation function (Eqn. 6). The error bars are the standard error of this fit. c) and d) The
dimensionless magnetic susceptibility for non-rotated and rotated patterns, respectively. χ was
extracted from the spatial correlation function (Eqn. 5) at each frame. The averages from all
frames are plotted with error bars representing standard deviations of the mean. The decreasing
inverse susceptibility for non-rated patterns (blue squares) indicate long-range ferromagnetic
ordering, which also visually evident in Fig. 6.2b. The grey dashed lines in c) and d) are linear
Curie-Weiss fit, which imply a critical temperatures of Tc = 298± 28.8 K for the non-rotated
patterns and Tc = 11.2±14.9 K for the rotated patterns. e-f) The least squares fit to the spatial
correlation function (Eqn. 2) produces the correlation length, ξ , whose standard error is repre-
sented by the error bars. The curves of best fit plotted as gray dashed lines correspond to critical
exponents of ν = 1.38± 0.620 for the non-rotated case and ν = 1.82± 0.986 for the rotated
case.
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fluctuation timescales. The auto-correlation function,

C
′′
(t) = 〈S(t)S(t0)〉, (6.7)

where the average is taken over all spins in the system, was measured from an initial time t0

through a time 1200 seconds later and fit the curves to an exponential decay, C′′(t) = exp(−t/τ)

revealing the characteristic fluctuation time τ at each temperature (see Fig. 6.4a and b). Pearson

χ2 goodness of fit tests [100] indicated that all fits to this curve rejected the null hypothesis

with 95% confidence. With only a 5% chance that this model matched the data due to random

fluctuation, this result strongly implies single timescale dynamics, inconsistent with the varying

timescales found in the glass phase. As seen in 6.4a and b, τ varies inversely with temperature

as expected but shows no indication of a spin glass transition.

Furthermore, using the fluctuation dissipation theorem from Eqn. 5, the magnetic

susceptibility was calculated at each temperature for both non-rotated and rotated arrays, and

plotted in Fig. 6.4c and d, respectively. The non-rotated patterns show a decreasing inverse sus-

ceptibility with increasing temperature (see Fig. 6.4c) indicating that the system is well within a

long-range ordered ferromagnetic phase, as can be visually seen from the XMCD image in 6.2b.

The opposite trend is observed for rotated structures (see 6.4d). Applying a Curie-Weiss fit,

χ = C
T−Tc

to both temperature dependencies, where C is the Curie constant and Tc is the critical

temperature, yields Tc = 298±28.8 K for the non-rotated patterns and Tc = 11.2±14.9 K for

the rotated structures. This and all additional fits passed Pearson’s χ2 test. These temperatures

differ by an order of magnitude due to the variable interaction strengths. Those strengths are

higher for the non-rotated systems because the tips are more likely to be close to one another.
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This highlights the potential of controlling critical temperatures through a variation of certain

parameters such as disorder σ , in our particular case.

Plotting the correlation lengths as function of temperature (see Fig. 6.4e and f), the

data is fitted to a power law ξ (T ) = A|(T −Tc)/Tc|−ν using the Tc determined from the suscep-

tibility and leaving A, a prefactor, and ν , the critical exponent, as fitting parameters. The grey

dashed lines in Fig. 6.4e and f represent these fits, ν = 1.38±0.620 and ν = 1.82±0.986 for the

rotated and non-rotated patterns, respectively. Comparing these exponents to those of the 2D-

and 3D-spin glasses (ν = 3.559± 0.025 [85] and ν = 2.15(15) [6], respectively) and the 2D

through 4D Ising models (ν = 1, ν = 0.6310±0.0015 and ν = 0.5 for 2, 3 and 4 dimensions,

respectively [57]) further indicates that the systems investigated here, while exhibiting complex

behavior, are not forming spin glass phases. The critical exponent falls below the spin glass

critical exponents for two (ν = 3.559± 0.025 [85]) and three dimensions (ν = 2.15(15) [6])

and, considering the error, lies somewhere in the vicinity of the two dimensional Ising model

(ν = 1 [57]).

6.4 Discussion

Seen as a whole, these systems do not form typical spin glasses but offer hints as

to how artificial spin glasses may be constructed. The random configurations should balance

ferromagnetic and anti-ferromagnetic interaction to avoid ordering by either of those dominant

behaviors. Patterning nanomagnet arrays to mimic higher dimensional behaviors may achieve

this, perhaps through concepts such as effective dimension [22]. If interactions are structured
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to be more tree-like, then spin glasses can approach system-wide correlation in multiple con-

figurations. This would translate to higher entropies corresponding to higher critical tempera-

tures. System geometry may be modified further by randomizing spin dilution or nanomagnet

sizes [67], or by introducing random height offsets [33, 75] within the system. These modifica-

tions could leverage the long range nature of dipolar interactions to shape interaction structures

in methods not typically approached by purely theoretical studies. The patterned permalloy thin

films analyzed here and in so-called artificial spin ices always exhibit an obstacle in the form of

finite blocking temperatures, but non-zero critical temperatures would work around this limita-

tion. Once these steps are taken and spin glass phases are realized, the real-time dynamics of

such artificial spin glasses may be explored in their entirety. This unique testing grounds could

probe new questions about magnetic dynamics and systems with similar mathematic descrip-

tions, such as artificial neural networks [46], EEG data [47], and sediment deposition [48]. Fur-

thermore, the exploration of various temperature schedules and their effect on the low-energy

state achieved [41], aging and memory effects [10, 68] in prospective artificial spin glasses will

be the focus of potential future research, establishing direct links to naturally occurring spin

glass systems.
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Chapter 7

Increasing effective dimension via the

Bethe lattice

7.1 Introduction

The Gaussian patterns of Ising-type nanomagnets, while exhibiting partial short-range

order, fell short in accessing a typical spin glass phase, in part because of unbalanced compet-

ing anti-ferro- and ferromagnetic ordering. This raises several open questions, regarding the

prospect of realizing an artificial spin glass system. For example, can a different system design

be implemented that would better optimize the balance of competing interactions in such dis-

ordered systems, so that spin glass degeneracy might arise? Also, can this goal be achieved by

designing structures that would exhibit a higher effective dimension [22]?

Here, we aim to address these questions by defining dipolar-coupled Ising-type nano-

magnets onto Bethe lattices (see Fig. 7.1). These structures bear three main advantages: First,
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Figure 7.1: (a) An illustration of a Bethe lattice with coordination number k = 3. Black circles
represent nodes connected by grey lines. (b) A segment of a Bethe lattice modified to be em-
bedded in two dimensions. Each circle represents a step taken from the center of the lattice. (c)
Scanning electron microscope (SEM) image of part of a Bethe lattice consisting of Ising-type
nanomagnets with a length L = 300 nm, width W = 100 nm and a thickness t = 2.6 nm. The
yellow scale bar corresponds to 600 nm. The tree-like structure is best understood when look-
ing at the inter-nanomagnet dipolar couplings, which are highlighted with red (ferromagnetic
coupling) and blue lines (antiferromagnetic coupling) connecting centers of nanomagnets.

their tree-like pattern increases the effective dimension [22], which is linked to accessing spin

glass behavior [43]. Second, the balance of competing ferro- and antiferromagnetic interac-

tions between the magnetic moments can be better tuned compared to structures with a simple

Gaussian-type disorder [91]. Third, considering the complexity of the quest to achieve an ar-

tificial spin glass, these finite-size structures offer a comfortable building block approach in

addressing this purpose. Such a bottom-up approach has already been successfully applied to

gain an understanding of ordering phenomena in the highly-frustrated artificial kagome spin

ice [30, 31]. We begin with a methods section that describes our theoretical approach and how

dipolar Bethe structures are designed, fabricated, and characterized using X-ray photoemission

electron microscopy (X-PEEM). This is followed by a section where we describe the obtained

results, starting from discussing moment configurations achieved after thermal annealing and
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the characterization of these ordering patterns in terms of spin correlations, effective dimension,

and potential links to glassy behavior. We then conclude with a summary and outlook section

where we assess the advantages of our Bethe structures as promising building blocks for the

generation of the first artificial spin glass systems.

7.2 Methods

The illustrated network was formed by first considering the dipolar coupling strength

between islands i and j,

Ji j =−
µ0

4π

(
Si ·S j

r3
i j
−3

(Si · ri j)(S j · ri j)

r5
i j

)
, (7.1)

where µ0 is the permittivity of free space, Si is the magnetic moment of an island, and ri j is the

vector joining the center of two islands. If Ji j is less than zero, the coupling is anti-ferromagnetic

(blue lines in Fig. 7.1c), and if it is higher than zero, the coupling is ferromagnetic (red lines

in Fig. 7.1c). Where the magnitude of their dipole-dipole coupling was greater than 20% of

maximum magnitude, two spins are considered connected. Visualizing this network (see red

and blue lines in Fig. 7.1c), a randomly modified tree-like network is apparent. The most

prominent violations to pure tree-like structures occur in the outer ring as crowding increases

interaction strengths. Overall, we designed, fabricated and imaged 21 individual randomly

generated Bethe structures using this theoretical concept. The interaction networks of these

lattices are used to assess the effective dimension of the magnetic systems.
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Figure 7.2: (a)-(d) XMCD images of low-energy states achieved in four different Bethe struc-
tures, after thermal annealing. Moments pointing towards the incoming x-rays (big red arrow)
will appear dark, while moments opposing the incoming x-ray direction will appear bright. The
blue bar indicates a length of 600 nm.
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7.2.1 Sample fabrication and XMCD imaging

Following sample fabrication, and after a waiting period of three days in high vacuum

at room temperature (T = 298 K), the samples are transferred into a photoemission electron mi-

croscope (PEEM) [59]. There, the sample was cooled down to temperatures around 120 K, en-

suring that magnetic moments stay frozen within the timescale of hours, and magnetic imaging

was performed employing x-ray magnetic circular dichroism (XMCD) at the Fe L3 edge[97].

The dark and bright contrast in a so-called XMCD image is a direct measure of the orientation

of the magnetic moment of a nanomagnet relative to the x-ray polarization vector (see Fig. 7.2).

7.3 Results

7.3.1 Spin-spin correlations and ordering preferences

The relatively small size of these systems does not provide enough statistical rele-

vance for a reliable extraction of typical or spin glass correlation lengths. However, since our

concern is equalizing anti-ferro- and ferromagnetic ordering, we focus on local correlations.

Using a similar approach as in our most recent work [91], we introduce a neighbor correlation

function:

[C]N =
1

Npair

N

∑
i j
〈Θ(Si ·S j)〉T . (7.2)

Θ(x) =−1 if x is less than zero and Θ(x) = 1 otherwise, the sum was either taken over nearest

neighbor (NN, ri j ≤ a), next-nearest neighbor (NNN, ri j ≤ 2a), or next-next-nearest neighbor

(NNNN, ri j ≤ 3a) pairs, and Npair is the number of those pairs in a particular sum. This pro-

vides a consistent basis for measuring local correlations in these systems without translational
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Figure 7.3: Neighbor correlations in randomized magnetic systems. In (a), the nearest-neighbor
(r/a = 1), next-nearest-neighbor (r/a = 2), and next-next-nearest neighbor (r/a = 3) correla-
tions are plotted for the most ferromagnetically ordered Bethe system (red crosses), the average
Bethe system (black triangles), the most anti-ferromagnetically ordered Bethe system (blue cir-
cles) and the most disordered system from a previously investigated artificial spin system with
Gaussian disorder[91] (gray squares). (b) Moment configurations of the Bethe structure with
the highest degree of ferromagnetic-type ordering [red crosses and lines in (a)]. (c) Moment
configurations of the Bethe structure with the strongest anti-ferromagnetic spin ordering [blue
circles and lines in (a)].
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invariance. A value below zero indicates predominantly antiferromagnetic coupling while one

above zero indicates ferromagnetic coupling. These correlations are plotted for all systems of

interest in Fig. 7.3a.

A glance at these correlation measures reveals that nearest-neighbor correlations in

the Bethe structures have a weaker anti-ferromagnetic tendency when compared to structures

with Gaussian disorder [91] (compare blue, black and red lines with dotted grey line in Fig 7.3a.).

There seems a tendency towards more ferromagnetic-type ordering in the Bethe structures,

which can even be visually seen when looking at magnetic configurations shown in Fig. 7.2

through the small clusters of moments pointing in the same direction. Overall, the balance of

ferro- and antiferromagnetic correlations is significantly improved in comparison to structures

with Gaussian disorder [91], as indicated by nearest-neighbor correlations that are closer to zero

(see Fig. 7.3a). As seen in Fig. 7.3b-c, this is manifested by a reduction of the ferromagnetic

cluster size and regions of anti-ferromagnetic ordering. These results provide a first strong in-

dication that such tree-like structures are better candidates in achieving artificial spin glasses.

However, a finite non-zero spin glass transition temperature is still an obstacle that needs to

be overcome [43, 91]. One strategy moving towards that goal relies on elevating the effective

dimensions of such disordered structures, which is discussed in the following subsection.

7.3.2 Effective dimension

The dipolar Bethe lattices discussed here, as any other artificial frustrated system, can

be viewed as a network that consists of nodes (nanomagnets) and their connections (dipolar

coupling between nanomagnets). While this network is embedded in two-dimensional space,
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Figure 7.4: Effective dimension of randomized magnetic systems. (a) m(r) and its fits are plot-
ted to demonstrate effective dimension d. The purple and pink circles represent data from the
Bethe lattices with the largest (d = 2.72) and smallest (d = 2.51) effective dimensions, respec-
tively, while the curves of corresponding color are their fits. The dashed curve represents the
average effective dimension of all 21 investigated Bethe structures (d = 2.61). The dashed grey
line corresponds to the effective dimension (d = 2.17) of a system with mere Gaussian disorder
[91]. (b) and (c) Representative graphs of interactions for systems with Gaussian disorder and
a typical Bethe lattice, respectively.
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inter-nanomagnet connections via dipolar coupling go beyond neighboring nanomagnets. As

we will explain here, this can be used to elevate effective dimension [22]. The notion of an

effective network dimension may be understood in terms of how ”scale” and ”mass” relate to

one another in different dimensions. One could consider a hypothetical shape existing in an

arbitrary dimension, d′. Its size may be changed by altering a length scale r′ (the side length

of a cube or a golden rectangle, for example). How does mass, or some other quantity present

in the space, encompassed by this shape relate to this scale? If the density is constant and the

dimension is an integer, the answer is simple. m′(r′) = m′0r′d
′

where m′(r′) is the mass, m′0

is the mass of the shape when r′ = 1, r′ is the scale of that shape, and d′ is the dimension.

Because d′ is the exponent, we can tell that larger dimensions allow access to more ”stuff”

(mass, charge, magnetic moments etc.) with less scale. If the density is not constant or there

are different ways of leaping from place to place, more or less stuff may be accessed than

what is considered typical for dimension d′. In these more complex systems, d′ is replaced

with d and is allowed to vary as a real number, taking on the name ”effective dimension” [22].

This definition is non-trivial as it allows the comparison of theoretical models on non-integer

dimensions to real models with non-integer effective dimensions [22]. In spin glass models, the

spin glass transition temperature depends on the effective dimension and for a critical dimension

of dc = 2.520 the spin glass transition temperature has been predicted to be finite [24]. We will

compare the effective dimension of our systems to this critical value to assess their viability as

spin glasses.

To calculate the effective dimension of our experimental spin systems, a spin i corre-

sponding to a point rl=0 was chosen. l labels the degree of separation from this spin. All spins
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connected to spin i, those with coupling strength Ji j exceeding 20% the maximum strength,

were accessed. The average distance between connected spins and the initial spin, rl=1, was

calculated. This can be considered the ”scale” of the network’s ”shape.” The total number of

spins with this proximity, m(rl=1) (in analogy the mass of a shape), were counted. This was re-

peated for further steps away from the center (l = 2 through 5, see the colored dots in Fig. 7.4a).

The process was reiterated for all spins i less than 1.3 µm from the center of the lattice to avoid

edge effects. The resulting data were fit to m(r) = m0rd via linear regression to determine d, the

effective dimension (see curves of best fit and text in Fig. 7.4a). Notably, a true Bethe lattice’s

density of nodes would exponentially grow from the origin, thus making the effective dimen-

sion infinite. In our case, the effective dimensions of the finite-sized Bethe lattices exceed that

of previously studied systems with Gaussian disorder [91], d = 2.17 (see Fig. 7.4a) and the crit-

ical dimension dc = 2.520. They exhibit average effective dimension of 2.61 and a maximum

d = 2.72 (see Fig. 7.4a). Fig. 7.4b-c shows that the Bethe lattice interaction structures expand

this effective dimension with their tree like arrangement. Though this is not infinite and never

could be due to the constraints of two dimensional embedding, it is high enough to anticipate

a change in system dynamics. We conclude that a prospective extended structure built on an

interaction concept similar to Fig. 7.4c could have the appropriate effective dimension and bal-

ance of competing interactions that would allow the realization of the first artificial Ising spin

glass.
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7.4 Discussion

Despite the inherent difficulties in building tree like interaction networks in two di-

mensions, our artificial Bethe glass building blocks overcome previous limitations in artificial

spin glass systems. However, not all randomly generated samples possess the same physics

because of variations in the balancing ferro- and antiferromagnetic interactions. The finite size

of our samples produces fluctuations from average ordering (black triangles in Fig. 3a), allow-

ing individual samples to exhibit more ideally balanced ordering ([C]N ≈ 0, see blue circles in

Fig. 3a). This tunability is a substantial improvement over ordering in systems with Gaussian

disorder (gray squares in Fig 3a). Though less markedly variable, the effective dimension of

the Bethe lattice is also tunable, ranging from just below dc at d = 2.51 all the way to d = 2.72.

Even though long range interactions break the perfect Bethe lattice structure (see Fig. 7.4c), its

dimension almost always remains high enough to allow a finite temperature spin glass transi-

tion. By contrast, the purely Gaussian-disordered system [91] did not alter its interactions into

a network with high enough effective dimension (Fig. 4b), so that finite-temperature spin glass

phase could be accessed.

This work has taken two outstanding problems, unbalanced ordering and low effective

dimension, and condensed them into one: making a larger Bethe lattice system. This clear next

step would allow for a raised spin glass transition temperature and novel, direct observation of

spin glass dynamics via XMCD imaging. By simulating combinations of Bethe lattices before

they are fabricated, they may be vetted for balanced ordering and high effective dimension.

This future work would use model systems to bridge the gap between spin glass theory and
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experiment by exploring non-equilibrium thermodynamics of the spin glass phase.
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Chapter 8

Conclusion

As a whole, this former half of this work distinguishes important features of the spin

ice field. All three systems investigated possessed geometric frustration, but their deviations

from frustrated ground states differed. Though a diffuse structure factor was previously consid-

ered a trait of the Coulomb phase in square and pyrochlore lattices, such a feature also emerged

in the trident lattice, which contains no magnetic analogue to Coulomb charges. Indeed, frustra-

tion pointed to by diffuse structure factors is needed for a unbiased, divergence free “vacuum” of

the Coulomb phase[16, 44, 75], but definitive proof of charge like behavior requires further evi-

dence in analogy to other models, such as the Debye-Hückel theory [53, 58, 17, 48]. The mixed

coordination disorder of the Cairo lattice expressed another relevant feature: charge screening

and resulting polarons [34, 20]. Since coordination three vertices never become charge neutral,

the charge energetics favor screening of fields rather than free monopoles. Further, the notion

of vertex type enforced ergodicity (1/3 type I vertices and 2/3 type II) is superseded by the
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topological order forcing a fifty-fifty ratio of the two [38]. Presumably there are even more

undiscovered forms of competition that lead to alternate spin textures to coexist and different

emergent states to develop.

Spin glasses require a bit more fine tuning before they are accessible in artificial spin

systems. The preliminary work within this thesis explores the intermediate temperature, low

dimension sector of a conceptual “phase space.” At an ideal balance of ferromagnetic and anti-

ferromagnetic interaction, the transition to a spin glass phase may be sought [10]. Our first

spin glass chapter showed the importance of rotational disorder in balancing these interactions,

while the second increased the transition temperature through elevated effective dimension. Un-

fortunately, this heightened dimension sacrificed system size, making the statistics inadequate

to analyze whether or not the spin glass phase existed. Knowing it is possible to raise effective

dimension [22], their are three plausible routes forward: carefully balance statistics and effec-

tive dimension with the same tree-like structures, define an extensive structure with increased

effective dimension, or forgo the concept of effective dimension entirely and focus on another

feature correlated with increased spin glass transition temperature.

In terms of broader impact, the details of the Coulomb phase in the offset square lat-

tice and spin glass phase are of primary importance to fundamental science. They are at once

model systems for the microscopic equivalents of these phases and their own beasts entirely,

confined by the rules of spin by spin relaxation and the requirement of overcoming internal

coercivity [49]. Recent publications have begun to unravel the connection between complicated

relaxation pathways and tweaked Coulomb phases. Further, just observing the relaxation itself

and connecting said relaxation with out of equilibrium dynamics predicted by Debye-Hückel
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[58], Onsager-Wien [51], and other plasma theories requires much more experimentation. Once

spin glass phases are accessible, probing the spin glass ground state will be helpful to under-

standing equivalent NP hard problems [108] and brain science models [47]. The freedom to

tweak these system’s geometry will allow representation of other computing problems. It has

already been shown that nanomagnetic systems may potentially approach the Landauer limit

at room temperature [56] and thus make excellent candidates for low energy computing. Alto-

gether, access to these system’s thermodynamics and details of interaction strength allows for a

rich tool in comprehending novel phases.
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izio Sacchi, Frithjof Nolting, Jan Lüning, and Laura J Heyderman. Extended reciprocal
space observation of artificial spin ice with x-ray resonant magnetic scattering. Physical
Review B, 88(21):214424, 2013.

[77] Charlotte F Petersen, Alan Farhan, Scott Dhuey, Zuhuang Chen, Mikko J Alava, Andreas
Scholl, and Sebastiaan Van Dijken. Tuning magnetic ordering in a dipolar square-kite
tessellation. Applied Physics Letters, 112(9):092403, 2018.

[78] D Pomaranski, LR Yaraskavitch, S Meng, KA Ross, HML Noad, HA Dabkowska,
BD Gaulin, and JB Kycia. Absence of pauling’s residual entropy in thermally equili-
brated dy 2 ti 2 o 7. Nature Physics, 9(6):353, 2013.

[79] JM Porro, A Bedoya-Pinto, A Berger, and P Vavassori. Exploring thermally induced
states in square artificial spin-ice arrays. New Journal of Physics, 15(5):055012, 2013.

[80] Yi Qi, Todd Brintlinger, and John Cumings. Direct observation of the ice rule in an
artificial kagome spin ice. Physical Review B, 77(9).

[81] Arthur Pdf Ramirez, A Hayashi, Robert Joseph Cava, R Siddharthan, and BS Shastry.
Zero-point entropy in ‘spin ice’. Nature, 399(6734):333, 1999.

[82] Ibon Recio and Joaquı́n J Torres. Emergence of low noise frustrated states in e/i balanced
neural networks. Neural Networks, 84:91–101, 2016.

[83] Ph Refregier, E Vincent, J Hammann, and M Ocio. Ageing phenomena in a spin-glass:
effect of temperature changes below tg. Journal de Physique, 48(9):1533–1539, 1987.

[84] Michael Reissner, Walter Steiner, Z Seidov, and G Guseinov. Mössbauer investigation of
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