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Hippocampally-dependent learning and spatial representation in the subiculum 

Steve M. Kim 

 

The hippocampal formation is a part of the brain that is essential for everyday 

learning and memory, including the ability to remember places and scenes. The 

mnemonic function of the hippocampal formation can be experimentally investigated in 

rats using behavioral paradigms that engage spatial learning and memory. Such 

behavioral paradigms have compelling neural correlates, as neurons in the hippocampal 

formation fire in response to spatial locations and environmental contexts. Here I present 

two significant original contributions to our understanding of the cognitive function of the 

hippocampal formation and the neurophysiology that underlies this function. 

The first part of this dissertation is a behavioral study of the effects of 

hippocampal lesions on learning of the W-maze continuous spatial alternation task. The 

W-maze task is a test of spatial working memory and rule-learning. Neurons in the 

hippocampal formation exhibit task-relevant activity during performance of this task. 

However, previous to this study, it was not known whether learning of the W-maze task 

really depends on the hippocampal formation. I found that rats with excitotoxic lesions of 

the hippocampal formation made unusual perseverative errors and were significantly 

slower to learn the W-maze task than sham-operated controls. This finding suggests that 

the hippocampal formation contributes to rapid learning of spatial trajectories that lead to 

reward. 

The second part of this dissertation is a single-unit recording study of the 

subiculum. The subiculum is a region within the hippocampal formation that has received 

little previous investigation, even though it is a major output structure through which 

information from the hippocampal formation reaches the rest of the brain. I recorded 

spikes and local field potentials in the subiculum while rats ran in two environments. I 
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found that neurons in the subiculum provide a highly informative representation of the 

animal’s spatial location and environmental context, and that the sparseness of this 

spatial representation exhibits a gradient along the proximal-distal anatomical axis. 

Additionally, I discovered that neurons in the subiculum exhibit theta phase precession, 

an oscillatory phase coding phenomenon that is thought to be important for coordinating 

information transfer and spike timing-dependent plasticity. 
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1 Introduction 

 This dissertation is about the hippocampal formation, a part of the brain that is 

essential for the everyday ability to remember facts, scenes and episodes. In this 

introductory chapter, I review findings from psychological, anatomical, and physiological 

studies to arrive at a conceptual framework for understanding neural information 

processing in the hippocampal formation. After establishing this conceptual framework, I 

present the background and motivation for two specific lines of investigation that 

comprise this dissertation. 

1.1 The cognitive function of the hippocampal formation 

In our everyday lives, we vividly remember places, scenes and episodes from the 

past and use these memories to make sense of the present and to guide future 

behavior. These ordinary yet phenomenologically-fascinating mnemonic functions 

depend on a part of the brain called the hippocampal formation. Modern research on the 

role of the hippocampal formation in memory began with the case of the neurological 

patient H.M., who had his hippocampal formation surgically removed to treat epilepsy 

(Scoville and Milner, 1957). H.M. was profoundly impaired at forming memories for new 

facts and events encountered after the surgery, regardless of the sensory modality in 

which they were presented or the domain of knowledge to which they pertained 

(reviewed in Corkin, 2002). Since the case of H.M., studies with other neurological 

patients have confirmed that selective damage to the hippocampal formation is sufficient 

to cause amnesia for new events (Zola-Morgan et al., 1986; Reed and Squire, 1997; 

Teng and Squire, 1999; Smith et al., 2006). Complementary lines of evidence also 

implicate the hippocampal formation in mnemonic processes. Functional imaging studies 
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with neurologically-normal humans have demonstrated that the hippocampal formation is 

activated during encoding and retrieval of memories for faces, objects, scenes and 

places, and that the degree of activation correlates with memory strength (Zeineh et al., 

2003; Stark and Okado, 2003; Law et al., 2005; Kao et al., 2005; Kumaran and Maguire, 

2006; Cornwell et al., 2008; Suthana et al., 2009). During aging, atrophy of the 

hippocampal formation correlates with age-related memory decline (Stoub et al., 2006; 

Lister and Barnes, 2009; den Heijer et al., 2010). Finally, numerous experiments in non-

human animal models, using lesion techniques as well as non-destructive manipulations 

of neural activity, have demonstrated that the hippocampal formation is essential for 

remembering objects, places, scenes, and sequences of events (Riedel et al., 1999; 

Zola et al., 2000; Clark et al., 2000; Brun et al., 2001; Fortin et al., 2002; Day et al., 

2003; Pastalkova et al., 2006; Ergorul and Eichenbaum, 2006). 

While there is some controversy over the exact nature and scope of mnemonic 

processes that are subserved by the hippocampal formation, there is consensus that the 

hippocampal formation is critically important for the ability to vividly remember and 

imagine episodes. Amnesic patients with hippocampal lesions are able to acquire and 

retain visuomotor skills (Gabrieli et al., 1993; Shadmehr et al., 1998) and even show 

limited ability to learn new facts (O'Kane et al., 2004; Bayley et al., 2008), but these 

patients are completely unable to remember any specific scenes or episodes of their 

lives that occurred after their lesions. Additionally, amnesic patients with hippocampal 

lesions are unable to imagine future or fictitious episodes (Hassabis et al., 2007; Kwan 

et al., 2010). These neuropsychological data suggest that the hippocampal formation 

has a general role in representing multisensory spatiotemporal sequences, both 

remembered and imagined (Tulving, 2002; Schacter et al., 2007; Eichenbaum and 

Fortin, 2009). The long-term scientific goal that motivates this dissertation is to 
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understand how the phenomenology of episodic memory/imagination emerges from the 

collective activity of neurons in the hippocampal formation. 

1.2 Information flow through the hippocampal formation 

In this section, I present an overview of the flow of information through the 

hippocampal formation. The hippocampal formation receives convergent inputs that 

carry information about the animal’s internal state and the external sensory world. These 

inputs provide the unitary elements of the animal’s experience that are combined into 

abstract higher-order representations of places, scenes and episodes. Information 

processing within the hippocampal formation is achieved through an intricate 

feedforward circuit with multiple nested feedback loops. Divergent output projections 

broadcast information out from the hippocampal formation to many other parts of the 

brain. Through these output projections, downstream neural circuits gain access to 

hippocampal representations that can be used to support learning and guide behavior. 

Information outflow from the hippocampal formation is temporally structured to 

guarantee the efficacy of downstream synaptic integration and spike timing-dependent 

plasticity. The anatomical and physiological evidence for this picture are further 

elaborated below. 

Anatomically, the hippocampal formation is many synapses removed from the 

sensory and motor periphery of the nervous system (with the notable exception of an 

oligosynaptic pathway from the olfactory bulb). The main source of direct inputs into the 

hippocampal formation is the entorhinal cortex. The entorhinal cortex, in turn, integrates 

inputs from various polymodal association areas of the neocortex (Burwell and Amaral, 

1998; Mohedano-Moriano et al., 2007; Insausti and Amaral, 2008). Thus, the 

hippocampal formation can be conceptualized as the convergent apex of a neocortical 
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Figure 1.1. Simplified circuit diagram of the hippocampal formation. Boxes represent 
populations of neurons, and arrows indicate projection pathways. For simplicity, only 
the projections of principal neurons are shown. The hippocampal formation and 
entorhinal cortex are outlined in gray boxes. The overall flow of connections within the 
hippocampal formation is from right to left. 

processing hierarchy (Felleman and Van Essen, 1991; Lavenex and Amaral, 2000). The 

hippocampal formation also receives direct inputs from the amygdaloid complex, 

hypothalamic nuclei and basal forebrain (Amaral and Cowan, 1980; Pikkarainen et al., 

1999). Through these subcortical afferents, the hippocampal formation receives 

information about the animal’s internal state, which is an integral component of episodic 

memory. The diverse, multisensory inputs to the hippocampal formation supply the 

necessary elements to form abstract higher-order representations of places, scenes and 

episodes. 

Within the hippocampal formation, information flows through multiple nested 

feedforward pathways. The hippocampal formation is parcellated into five distinct 

regions: dentate gyrus, area CA3, area CA2, area CA1, and subiculum (Witter and 

Amaral, 2004; van Strien et al., 2009). Direct inputs from the superficial layers of the 

entorhinal cortex arrive at each of these regions (Figure 1.1.). These regions are 

connected to each other in a predominantly unidirectional series, so that area CA3, area 

CA2, area CA1 and the subiculum receive inputs from the entorhinal cortex and from the 

hippocampal region that is immediately upstream. This pattern of nested convergence 
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suggests a function of comparing and/or selecting between entorhinal input and 

hippocampally-processed information (Naber et al., 2000; Kumaran and Maguire, 2007; 

Colgin et al., 2009). At the output end of the hippocampal formation, area CA1 and the 

subiculum project to the deep layers of the entorhinal cortex. The deep layers of the 

entorhinal cortex send interlaminar projections to superficial layers, forming feedback 

connections between the inputs and outputs of the hippocampal formation. Consistent 

with this anatomy, electrophysiological recordings in anesthetized rats have shown that 

excitatory output from area CA1 and the subiculum can reenter the hippocampal 

formation via the entorhinal cortex (Kloosterman et al., 2003; Kloosterman et al., 2004). 

Entorhinal-hippocampal feedback loops may allow the hippocampal formation to 

generate and sustain sequences of activity that represent sequences of events. 

The major efferents of the hippocampal formation originate from area CA1 and 

the subiculum (Witter, 2006; Cenquizca and Swanson, 2006; Cenquizca and Swanson, 

2007). These two regions send direct projections to the deep layers of the entorhinal 

cortex, and second-order projections from the deep layers of the entorhinal cortex reach 

many neocortical targets (Insausti et al., 1997; Munoz and Insausti, 2005; Agster and 

Burwell, 2009). The subiculum and area CA1 also give rise to direct output projections 

that bypass the entorhinal cortex. In particular, the subiculum is a major source of output 

projections, sending divergent output projections to many targets, including the perirhinal 

cortex, postrhinal cortex, retrosplenial cortex, prelimbic and infralimbic (prefrontal) 

cortices, nucleus accumbens, amygdala, and hypothalamus (Witter et al., 1990; Naber 

and Witter, 1998; Ishizuka, 2001; Witter, 2006). Therefore, in order to understand how 

the hippocampal formation communicates with these various target structures, it is 

necessary to examine the spiking output of neurons in the subiculum. The second part of 

this dissertation addresses this issue. 
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The flow of information through the hippocampal formation is temporally 

structured. Neural activity in the hippocampal formation is organized into global patterns 

that co-vary with the behavioral state of the animal (Vanderwolf, 1969; Frederickson and 

Whishaw, 1977; Jarosiewicz and Skaggs, 2004). These global patterns can be identified 

by recording the local field potential (LFP), which is the macroscopic signal that results 

from the summation of electrical activity over a large number of neurons (Buzsaki et al., 

1983). The two global patterns that are most frequently observed are the rhythmic theta 

(θ) oscillation and arrhythmic large irregular-amplitude activity. During these global 

patterns, distributed populations of neurons across multiple regions within the 

hippocampal formation fire in temporal coordination with each other on timescales that 

are suitable for synaptic integration and spike timing-dependent plasticity. Experiments 

in vitro have demonstrated timing-dependent plasticity at synapses throughout the 

hippocampal formation (Remondes and Schuman, 2002; Kobayashi and Poo, 2004; 

Behrens et al., 2005; Kwag and Paulsen, 2009; Behr et al., 2009). Thus, temporally-

coordinated firing of neurons in the hippocampal formation may result in pervasive 

modifications of synaptic weights that underlie the formation of new memories.  

During awake activity and paradoxical sleep, the hippocampal LFP is dominated 

by sustained oscillations in the theta frequency band (5-10 Hz). These LFP theta 

oscillations are coherent across multiple regions within the hippocampal formation and 

represent the rhythmic firing of distributed populations of neurons (Mitchell and Ranck, 

Jr., 1980; Bullock et al., 1990; Csicsvari et al., 1999; Sabolek et al., 2009; Lubenov and 

Siapas, 2009; Mizuseki et al., 2009). Several studies have observed that neural activity 

in the prefrontal cortex – which is a target of long-range output projections from the 

hippocampal formation – is coherent with hippocampal theta oscillations (Siapas et al., 

2005; Jones and Wilson, 2005; Benchenane et al., 2010). This is evidence that, during 
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LFP theta oscillations, outputs from the hippocampal formation influence neural 

information processing in downstream targets. 

During slow-wave sleep, quiescent waking immobility, feeding and grooming, the 

hippocampal LFP is dominated by arrhythmic large irregular-amplitude activity (LIA) with 

high power at low frequencies. LIA is accompanied by transient high-frequency 

(100-200 Hz) LFP oscillations called ripples. Ripples reflect synchronous bursts by 

populations of neurons in the output structures of the hippocampal formation – area 

CA1, subiculum and the deep layers of entorhinal cortex (Chrobak and Buzsaki, 1996). 

These bursts may serve to propagate information out from the hippocampal formation to 

downstream targets. Consistent with this idea, several studies have observed that neural 

activity in the prefrontal cortex and in the ventral striatum is temporally coordinated with 

hippocampal ripples (Siapas and Wilson, 1998; Pennartz et al., 2004; Battaglia et al., 

2004a; Molle et al., 2006; Wierzynski et al., 2009). Moreover, transient electrical 

disruption of neural activity in the hippocampal formation during ripples disrupts spatial 

learning and memory (Girardeau et al., 2009; Ego-Stengel and Wilson, 2009). This effect 

suggests that during ripples the hippocampal formation supplies information to other 

parts of the brain to support learning and memory-guided behavior. 

1.3 Neural representations in the hippocampal formation 

Single-unit recording studies of the hippocampal formation have found neurons 

that exhibit complex, multimodal, and seemingly arbitrary responses to the animal’s 

location in the world and other salient aspects of the animal’s ongoing experience. 

These complex neural responses are compelling neural correlates to the role of the 

hippocampal formation in representing multisensory spatiotemporal sequences. 
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In the CA regions of the hippocampal formation, neurons called “place cells” are 

tuned to the rat’s spatial location in the world (O'Keefe, 1976; O'Keefe and Nadel, 1978; 

Muller et al., 1987). Each place cell fires when the rat visits a particular delimited region 

of its environment and is nearly silent everywhere else. Different place cells have spatial 

receptive fields ("place fields") in different regions of the environment, so that the 

population of place cells provides a real-time representation of the rat’s current location 

and trajectory of movement (Wilson and McNaughton, 1993; Zhang et al., 1998; Brown 

et al., 1998). Neurons that fire in relation to the rat’s location in the world are also found 

in the dentate gyrus (Jung and McNaughton, 1993; Leutgeb et al., 2007), subiculum 

(Barnes et al., 1990; Sharp and Green, 1994; Lever et al., 2009), and entorhinal cortex 

(Frank et al., 2000; Hargreaves et al., 2005; Hafting et al., 2005; Sargolini et al., 2006; 

Solstad et al., 2008; Derdikman et al., 2009). Spatially-tuned neurons exist in the human 

hippocampal formation as well. Intracranial recording studies in humans have found 

hippocampal and entorhinal neurons that fire according to the subject’s virtual location in 

a video game (Ekstrom et al., 2003; Jacobs et al., 2010).  

The spatial firing of hippocampal neurons is a convenient online readout of 

information processing within the hippocampal formation (Barnes et al., 1990; Moser et 

al., 2008; Mizuseki et al., 2009). Different regions of the hippocampal formation exhibit 

different spatial firing properties, and interregional differences in spatial representation 

reveal the transformations that occur as information propagates through the 

hippocampal formation. The spatial firing of hippocampal place cells is a special 

manifestation of the general role of the hippocampal formation in representing 

multisensory spatiotemporal sequences (Eichenbaum et al., 1999; Suzuki, 2006; 

Shapiro et al., 2006). In addition to the animal’s current location, hippocampal place cells 

also represent the past origin of departure and future destination of journeys during 

spatial memory tasks (Frank et al., 2000; Wood et al., 2000; Ferbinteanu and Shapiro, 
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2003; Lipton et al., 2007; Ainge et al., 2007a; Pastalkova et al., 2008). Place cells also 

represent spatial context. Across different environments, place fields may disappear, 

relocate, or undergo firing-rate changes, in a process called “remapping” (Muller et al., 

1987; Thompson and Best, 1989; Leutgeb et al., 2004; Karlsson and Frank, 2009). The 

formation of new memories can be studied by examining how place cells remap when a 

rat is introduced to a novel environment (Wilson and McNaughton, 1993; Leutgeb et al., 

2004; Frank et al., 2004; Karlsson and Frank, 2008) or when a sudden change is made 

to a previously familiar environment (Fyhn et al., 2002; Moita et al., 2004). Finally, place 

cells represent non-spatial elements in conjunction with spatial locations, including 

olfactory stimuli, motivational state, and task-related events (Wood et al., 1999; 

Deadwyler and Hampson, 2004; Griffin et al., 2007; Kennedy and Shapiro, 2009; 

Komorowski et al., 2009). 

Thus, the hippocampal formation transforms incoming information about the 

animal’s internal state and the external sensory world into complex, multimodal, abstract 

representations of spatial locations, completed and intended journeys, environmental 

context, motivational state, and assorted stimuli and events encountered in their 

respective places. What could these seemingly arbitrary representations be useful for? 

The world contains subtle and complicated spatiotemporal structure that cannot be 

captured in any single sensory modality, yet this structure must be learned and exploited 

to guide behavior. By providing a rich basis of multisensory representations to its 

downstream targets, the hippocampal formation can facilitate learning and adaptive 

behavior. However, these hippocampal representations may sometimes be superfluous. 

For example, hippocampal neurons exhibit task-relevant responses even during a task 

behavior that does not depend on the hippocampal formation (Ainge et al., 2007b). The 

relationship between neural representations in the hippocampal formation and the 

animal’s behavior remains mysterious. Only a few recent recording studies have 
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examined changes in hippocampal spatial representations in relation to ongoing overt 

task learning (Ji and Wilson, 2008; Dupret et al., 2010; Gill et al., 2010; Lee and Kim, 

2010). The goal of the first part of this dissertation (“Hippocampal lesions impair rapid 

learning of a continuous spatial alternation task”) was to determine whether the 

hippocampal formation contributes to learning of the W-maze spatial working-memory 

task, which is a suitable behavioral paradigm for investigating the relationship between 

hippocampal spatial representations and behavior. 

The spatial firing of hippocampal neurons is temporally coordinated with theta 

oscillations in the LFP. Place cells in area CA1 exhibit the greatest spatial selectivity at 

times when there are large-amplitude theta oscillations in the LFP (Muller et al., 1987; 

O'Neill et al., 2006). The phase of firing relative to ongoing LFP theta oscillations is 

correlated with spatial location. Specifically, a hippocampal place cell will fire at 

progressively earlier phases of the theta cycle as a rat passes through its place field, in a 

phenomenon known as theta phase precession (O'Keefe and Recce, 1993; Skaggs et 

al., 1996). Thus, hippocampal place cells convey spatial information through a 

combination of rate and phase coding (Mehta et al., 2002; Huxter et al., 2003; Huxter et 

al., 2008). An important consequence of theta phase precession is that the firing of place 

cells is ordered within the theta cycle, which is on the timescale of synaptic integration 

and spike timing-dependent plasticity. Theta phase precession has been reported for 

neurons in the entorhinal cortex. However, no published studies to date have examined 

whether theta phase precession occurs in the subiculum. This lacuna in our knowledge 

of the subiculum is addressed in the second part of this dissertation (“Distributed spatial 

representation and phase precession in the subiculum”). 
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1.4 Overview of this dissertation 

In this dissertation, I present two specific lines of investigation that I have 

pursued using complementary experimental techniques – lesions and neurophysiology – 

in freely-behaving rats. 

The first part of this dissertation, “Hippocampal lesions impair rapid learning of a 

continuous spatial alternation task”, is a behavioral study of the contribution of the 

hippocampal formation to learning of the W-maze task. The W-maze task is a spatial 

rule-learning and working-memory task. Neurons in the hippocampal formation exhibit 

interesting task-related firing when rats perform this task (Frank et al., 2000; Singer and 

Frank, 2009). However, the functional contribution of the hippocampal formation to 

learning of this task was not previously known. The goal of this study was to determine 

whether learning of W-maze task depends on the intact hippocampal formation, in order 

to establish a stronger connection between these neural correlates and mnemonic 

function. I discovered that lesions of the hippocampal formation impair learning of the W-

maze and result in a remarkable pattern of perseverative errors. The results are 

consistent with the idea that the hippocampal formation carries useful representations of 

spatiotemporal sequences that can be utilized by other parts of the brain to guide 

reinforcement learning and flexible behavior. 

The second part of this dissertation, “Spatial information outflow from the 

hippocampal circuit: distributed spatial coding and phase precession in the subiculum”, 

is a single-unit recording study of the subiculum. As reviewed earlier, the subiculum is 

the final stage of feedforward processing within the hippocampal formation and a major 

source of hippocampal output projections to other parts of the brain. Selective lesions of 

the subiculum impair spatial learning and memory in a variety of behavioral paradigms 

(Morris et al., 1990; Bolhuis et al., 1994; Cho and Jaffard, 1995; Potvin et al., 2007; 
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Potvin et al., 2010). These findings are consistent with the idea that the subiculum is 

critically important for the outflow of information from the hippocampal formation. Despite 

the importance of the subiculum, remarkably few studies have examined the spiking 

output of subicular neurons during behavior. Some evidence suggests that subicular 

neurons maintain invariant spatial representations when CA1 place cells remap (Sharp, 

2006). This is puzzling given the direct projections from area CA1 to the subiculum. Also, 

it was unknown whether neurons in the subiculum exhibit theta phase precession. To 

address these issues, I recorded spikes and local field potentials in the subiculum and in 

the adjacent hippocampal area CA1 while rats ran in two geometrically-identical 

environments. I discovered that neurons in the subiculum, like place cells in area CA1, 

exhibit theta phase precession. I also discovered, contrary to previously published 

findings, that neurons in the subiculum remap across two geometrically-identical 

environments. In fact, subicular neurons provide a highly informative representation of 

the animal’s spatial location and environmental context to their efferent targets. 
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2 Hippocampal lesions impair rapid learning 
of a continuous spatial alternation task 

This chapter of the dissertation is adapted from Kim S.M., Frank L.M. (2009) 

Hippocampal lesions impair rapid learning of a continuous spatial alternation task. PLoS 

ONE 4(5): e5494. doi:10.1371/journal.pone.005494. This is an open-access article 

distributed under the terms of the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original 

author and source are credited. 

2.1 Abstract 

The hippocampus is essential for the formation of memories for events, but the 

specific features of hippocampal neural activity that support memory formation are not 

yet understood. The ideal experiment to explore this issue would be to monitor changes 

in hippocampal neural coding throughout the entire learning process, as subjects acquire 

and use new episodic memories to guide behavior. Unfortunately, it is not clear whether 

established hippocampally-dependent learning paradigms are suitable for this kind of 

experiment. The goal of this study was to determine whether learning of the W-track 

continuous alternation task depends on the hippocampal formation. We tested six rats 

with NMDA lesions of the hippocampal formation and four sham-operated controls. 

Compared to controls, rats with hippocampal lesions made a significantly higher 

proportion of errors and took significantly longer to reach learning criterion. The effect of 

hippocampal lesion was not due to a deficit in locomotion or motivation, because rats 

with hippocampal lesions ran well on a linear track for food reward. Rats with 

hippocampal lesions also exhibited a pattern of perseverative errors during early task 
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experience suggestive of an inability to suppress behaviors learned during pretraining on 

a linear track. Our findings establish the W-track continuous alternation task as a 

hippocampally-dependent learning paradigm which may be useful for identifying 

changes in the neural representation of spatial sequences and reward contingencies as 

rats learn and apply new task rules. 

2.2 Introduction 

The hippocampal formation – comprising the dentate gyrus, CA3, CA2, CA1, 

subiculum, presubiculum, parasubiculum, and entorhinal cortex – is essential for 

creating detailed new memories of experiences (Amaral and Witter, 1995; Scoville and 

Milner, 1957; Rempel-Clower et al., 1996; Zola et al., 2000; Spiers et al., 2001). In non-

human subjects such as laboratory rats, lesions of the hippocampal formation as well as 

non-destructive perturbations of hippocampal neural activity impair learning and memory 

in a variety of behavioral paradigms (Pouzet et al., 1999; Riedel et al., 1999; Clark et al., 

2000; Cimadevilla et al., 2001; Fortin et al., 2002; Brun et al., 2001; Day et al., 2003; 

Jarrard et al., 2004; Pastalkova et al., 2006). Parallel multielectrode single-unit recording 

studies in rats have revealed that neurons in the hippocampal formation code for diverse 

features of the rat’s experience: past and present spatial locations in the environment, 

intended future destination of travel, running speed, head direction, landmarks, visual 

and geometric features of the environment, goal locations, odors, conditioned stimuli, 

and sequences of events (Wood et al., 1999; Wiebe and Staubli, 1999; Frank et al., 

2000; Ferbinteanu and Shapiro, 2003; Moita et al., 2003; Leutgeb et al., 2005; Sargolini 

et al., 2006; Hok et al., 2007; Lipton et al., 2007; Manns et al., 2007; Huxter et al., 2008; 

Pastalkova et al., 2008; Solstad et al., 2008). Some studies have characterized changes 

in hippocampal neural coding during incidental learning upon changes in environment 
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(Bostock et al., 1991; Wilson and McNaughton, 1993; Lee et al., 2004; Leutgeb et al., 

2004; Frank et al., 2004; Hafting et al., 2005; Anderson et al., 2006) and during task 

learning following a sudden change of task demands (Markus et al., 1995; Kobayashi et 

al., 1997; Kobayashi et al., 2003; Lee et al., 2006; Ji and Wilson, 2008). However, the 

functional contribution of the hippocampus to these forms of learning has not been 

established, so the significance of these neural correlates is unclear. We feel that it is 

important to acknowledge that the significance of neural coding phenomena in the 

hippocampal formation such as place cells, phase precession and sequential replay 

remains to be established. To date, no one has shown conclusively that any of these 

phenomena contributes to learned changes in behavior. Thus, while these various firing 

patterns clearly exist, and while there are hypotheses about their possible functional 

significance, we still lack a direct link between neural coding by hippocampal neurons 

and the learning and memory functions of the hippocampus.  

Ideally, we would have a hippocampally-dependent learning paradigm that is 

suitable for single-unit recording studies. Unfortunately, most classic hippocampally-

dependent learning paradigms are not suitable for investigating the learning-related 

dynamics of neural coding. In these learning paradigms, the subject is exposed to the 

task for only a few trials per day, and the behavior can be highly variable from trial to trial 

(Barnes, 1979; Morris et al., 1982; Morris et al., 2003). Because neurons are stochastic, 

accurate characterization of neural coding requires consistent sampling of behavior and 

spiking over many trials. As a result, it is difficult to characterize the relationship between 

neural activity and behavior in these classic learning paradigms. To overcome the 

disadvantages of undersampling and variability, investigators have designed 

hippocampally-dependent learning paradigms in which the behavior is carefully sampled 

over many repeated trials (Hollup et al., 2001b; Hollup et al., 2001a; Ferbinteanu and 

Shapiro, 2003; Jeffery et al., 2003; Smith and Mizumori, 2006; Ainge et al., 2007a; Fortin 
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et al., 2002; Manns et al., 2007). These recording-friendly learning paradigms are very 

useful, but learning of these tasks typically requires at least 6-7 days of training with 30-

40 trials per day, depending on the exact learning criterion. Single-unit recording quality 

and yield tend to diminish over time, and it is difficult to maintain stable recordings of the 

same individual neurons across days. As a result, while these other established learning 

paradigms could potentially be used to study learning, it is not yet clear whether one 

could track neural dynamics within a single subject throughout the entire learning 

process. 

We previously developed a W-track continuous alternation task that rats can 

learn quickly (Frank et al., 2000). Using this task paradigm, we found that neurons in 

area CA1 of the hippocampus and in the entorhinal cortex exhibit task-relevant 

spatiotemporal coding, which (we speculate) could be used by other brain regions to 

guide task behavior. More recently, we found neural changes in the population-level 

distribution of firing rates in hippocampal area CA1 that paralleled behavioral changes in 

task performance (Karlsson and Frank, 2008). At the same time, other investigators, 

using a similar but not identical maze-based continuous alternation task, observed that 

hippocampal neurons code for task-relevant spatiotemporal information even during 

performance of a task which can be accurately performed by rats with complete lesions 

of the hippocampus (Wood et al., 2000; Ainge et al., 2007b). This surprising observation 

suggests that the sensitivity of a task to hippocampal function is not necessarily 

correlated with task-relevant neural coding in the hippocampus. Here we investigated 

whether the learning of our W-track alternation task really depends on the hippocampal 

formation. We found that rats with extensive excitotoxic lesions of the hippocampal 

formation showed a dramatic deficit in acquisition of this task, whereas intact rats were 

able to learn this task in a few days. Thus, the W-track continuous alternation task may 
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be a useful learning paradigm for investigating changes in neural representations that 

underlie memory formation and retrieval. 

2.3 Results 

Lesion evaluation 

We tested 14 rats, of which 10 received hippocampal lesions and 4 underwent 

sham surgeries. We infused NMDA into the dentate gyrus, CA3, CA2, CA1, and 

subiculum (Table 2.1) to produce excitotoxic lesions of the hippocampal formation. At 

the end of behavioral testing, we sacrificed the rats and processed sections for Nissl 

staining and histological evaluation. Figure 2.1. shows the extent and location of damage 

for the subjects that were included in the final data analyses. 

Table 2.1 Stereotaxic coordinates of NMDA infusions to produce complete lesions of 
the hippocampal formation. The coordinates are given for a Long-Evans rat skull 
which is leveled so that bregma and dura lie in the same horizontal plane. AP, 
anteroposterior; ML, mediolateral; DV, dorsoventral. The anteroposterior and 
mediolateral coordinates are referenced to the skull at bregma, while the dorsoventral 
coordinates are distances below the dural surface. 
 

AP (mm) ML (mm) DV (mm) 

−2.8 ±1.4 −3.0 

−3.3 ±2.4 −3.0 

−4.1 ±1.8 −2.8 

−4.1 ±3.4 −2.8 

−4.8 ±2.0 −2.8 

−4.8 ±4.2 −7.4 

−4.8 ±4.2 −3.1 

−4.8 ±5.0 −6.5 

−5.5 ±2.6 −3.0 

−5.5 ±3.6 −2.9 

−5.5 ±5.0 −7.0 

−5.5 ±5.0 −5.5 

−5.5 ±5.0 −3.5 

−6.2 ±4.0 −6.8 

−6.2 ±4.0 −3.4 

−6.2 ±5.4 −4.4 

−6.8 ±5.4 −4.0 
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All rats in the hippocampal lesion group sustained extensive loss of neurons in 

areas CA1, CA2, CA3, and the dentate gyrus (DG) throughout the entire longitudinal 

axis of the hippocampal formation. The neuropil was shrunken in these regions, and the 

ventricles had correspondingly expanded to fill the space. The alveus, fimbria, and 

hippocampal commissures were spared to various degrees in the lesioned rats. 

Hippocampally-lesioned rats also had variable damage to the subiculum, postsubiculum, 

presubiculum, parasubiculum and entorhinal cortex. Of the 10 rats with hippocampal 

lesions that we tested, 4 had extensive damage to regions outside of the hippocampal 

formation. These rats were removed from consideration, leaving 6 rats in the 

hippocampal lesion group (see Figure 2.1.A for illustrations of lesion extent). We did 

include rats that had either (1) circumscribed damage to the white matter and 

visual/parietal cortex dorsal to the hippocampus, or (2) circumscribed damage to 

thalamic nuclei adjacent to the hippocampus. To quantify the lesions, we measured the 

total volume of remaining tissue within the dentate gyrus and CA fields (including the 

adjacent fimbria), as well as the total volume of remaining tissue in retrohippocampal 

structures (subiculum, presubiculum and parasubiculum and entorhinal cortex). These 

reconstructed volumes, normalized with respect to the mean of the control group, are 

Figure 2.1. (following page) Histological reconstruction of hippocampal lesions. A, 
Drawings of coronal sections at different anteroposterior levels illustrate the extent 
and location of brain damage, for subjects in the control group (left) and in the lesion 
group (right). Damaged areas within each subject are shaded in light pink; where 
there is overlap among subjects, the opacities of the overlapping regions sum to give 
darker shading. The darkest shade of red indicates areas that were consistently 
damaged in all subjects. The coronal section outlines are adapted from (Paxinos & 
Watson, 2004). B, Quantification of lesion extent. The horizontal axis is the estimated 
volume (combined over both hemispheres) of the dentate gyrus, CA fields, and 
fimbria. The vertical axis is the estimated volume (combined over both hemispheres) 
of the retrohippocampal cortex, which we define as the subiculum, presubiculum, 
parasubiculum, and entorhinal cortex. These volume estimates underrepresent the 
true loss of neurons because they include spared hippocampal white matter and 
partially-damaged shrunken tissue.  
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between food wells; and the median duration of the end-of-trial food-well visit. We used 

nonparametric repeated-measures tests (Brunner et al., 2002) for statistical comparisons 

between the hippocampal lesion group and the control group. 

There were no significant between-group differences in the proportion of trials 

performed correctly, the total number of trials completed, or the median food-well visit 

duration (Figure 2.3.A-C). However, running speed (Figure 2.3.D) showed a significant 

main effect of group (p = 0.0092) as well as a significant group × day interaction 

(p = 0.012). To examine the temporal pattern of this effect, we did within-day pairwise 

post hoc comparisons using the Wilcoxon rank-sum test. The difference in running 

speed between the two groups did not reach statistical significance on the last day of 

pre-surgery training (p = 0.76), but was significant for the post-surgery test (p = 0.0095). 

Thus, hippocampal lesions caused an increase in running speed but did not disrupt the 

fluency of task performance on the linear track. 

W-track continuous spatial alternation task  

We introduced the rats to the W-track continuous spatial alternation task on the 

day after the post-surgery test on the linear track (Figure 2.2.). We tested the rats on this 

task for 10 consecutive days. Rats had no prior experience with the W track. At the 

beginning of each session, each rat was simply placed on the center arm of the W track 

and allowed to explore uninterruptedly. The food wells at the ends of the three arms 

dispensed fixed reward according to the following rules: (1) A visit to the center food well 

was rewarded when the rat came from either side food well. (2) A visit to the left or right 

food well was rewarded when the rat came from the center food well after having 

previously visited the opposite side food well. (3) Consecutive repeat visits to the same 

food well were never rewarded. Together, these rules defined a correct cyclical 
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sequence of food-well visits (Figure 2.2.C): right, center, left, center, right, center, left, 

center, etc.  

The correct task sequence on the W track can be decomposed into two 

interleaved components. When the rat departed from the left food well or from the right 

food well, the correct destination was always the center food well. We use the term 

“inbound” to describe this return-to-center component of the task. In contrast, when the 

rat departed from the center food well, it needed to remember which side of the W track 

it had last come from, because the correct destination was the opposite-side food well. 

We use the term “outbound” to describe this side-alternation component of the task. 

Note that the inbound and outbound task components correspond respectively to 

“reference” and “working” memory, as classically defined (Olton et al., 1979). 

To quantify performance of the W-track continuous alternation task, we parsed 

the running behavior into trials and classified the trials as inbound or outbound according 

to their point of origin on the W track. All trials in which the rat departed either from the 

left food well or from the right food well were classified as inbound trials, and all trials in 

which the rat departed from the center food well were classified as outbound trials. 

Examples of 10-trial moving averages of task performance, separated by inbound versus 

outbound trials, are shown for one control subject and one hippocampal lesion subject in 

Figure 2.4.A,B. (Moving-average plots for all subjects are shown in Figure 6.1. and 

Figure 6.2.) While this sort of moving average is frequently used to evaluate behavioral 

performance, it is difficult to compute meaningful confidence bounds for individual 

animals using this analysis. We therefore used a state-space model of learning (Smith et 

al., 2004) to estimate individual learning curves for each subject on both the inbound and 

outbound components of the W-track alternation task (see Materials and Methods for 

details). This model uses the observed data to estimate the subject’s probability of 

making a correct choice from trial to trial, along with confidence bounds on that 
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estimated probability. This state-space model-based analysis has a number of 

advantages over moving average or change-point analyses, including the ability to 

estimate confidence bounds for individual subjects and greater sensitivity to changes 

associated with learning (Smith et al., 2004). Examples of learning curves for one control 

subject and one hippocampal lesion subject are shown in Figure 2.4.C,D. (Learning 

curves for all subjects are shown in Figure 6.3. and Figure 6.4.). These learning curves 

are estimates of the probability of correct performance, with 95% confidence intervals, 

as a function of the number of trials completed by the subject. 

We used these smooth estimated learning curves to quantify how quickly the 

subjects learned the inbound and outbound components of the W-track continuous 

alternation task. Specifically, we identified the first trial and test day on which the 95% 

confidence interval of the estimated probability of correct performance exceeded and 

remained above chance throughout at least two full consecutive days of testing. This 

Figure 2.4. (following page) Examples of learning curves on the W-track continuous 
alternation task for two subjects. A, 10-trial moving average of proportion correct for a 
control subject. The top plot shows performance on inbound trials, while the bottom 
plot shows performance on outbound trials. Trials are counted cumulatively along the 
horizontal axis, starting with the first trial on day 1 and ending with the last trial on day 
10. The alternating blue and green background shading indicates the number of trials 
completed on each day. B, 10-trial moving average of proportion correct for a lesion 
subject. C, Smooth learning curve estimated using the state-space model of learning, 
for the same subject as in A. The top plot shows the estimated learning curve for the 
inbound component of the task, while the bottom plot shows the estimated learning 
curve for the outbound component of the task. Trials are counted cumulatively along 
the horizontal axis in the same manner as in A. Black dots indicate maximum-
likelihood estimates of the probability of correct performance, and gray errors bars 
indicate point-wise 95% confidence intervals. Dashed horizontal lines indicate the 
chance performance level (1/2) that would be expected if the subject randomly chose 
the next destination food well. We defined the learning criterion (highlighted in red) as 
the earliest trial at which the 95% confidence interval of the learning curve exceeded 
this chance level and remained above chance for two full consecutive days. D, 
Similar to C, but for the same hippocampal lesion subject as in B. The initial low dip of 
the inbound learning curve, and the paucity of outbound trials, reflects the many 
perseverative inbound errors that this subject made during the first two days of 
testing. This subject’s peformance on the inbound component of the task regressed 
transiently on day 8 for unknown reasons. 
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conservative imputations of the truncated learning curves allowed us to include all 

subjects in the statistical tests. Compared to control rats, rats with hippocampal lesions 

required a greater number of inbound trials to reach learning criterion on the inbound 

component of the task (p = 0.019), and they also required a greater number of outbound 

trials to reach learning criterion on the outbound component (p = 0.0095). When we 

analyzed the number of test days to reach learning criterion, the learning impairment of 

the lesion group was statistically significant on the outbound component of the task 

(p = 0.0095), but the trend on the inbound component of the task did not reach statistical 

significance (p = 0.095). We also compared final task performance on day 10 between 

the two groups, and found that the groups did not significantly differ on either inbound or 

outbound trials, although there appears to be a trend for the lesion group to be skewed 

towards poorer task performance (Figure 2.5. and Figure 6.4.). Together, these results 

suggest that hippocampal lesions retard learning of the W-track continuous alternation 

task but do not prevent eventual fluent task performance. 

We found another difference between the groups on inbound trials during the first 

two days of experience on the W track. On the first day of testing, all six of the lesioned 

animals performed well below chance levels on inbound trials, while only 1 out of 4 of 

the control animals showed a comparable tendency. The dramatically below-chance 

performance of the hippocampal lesion subjects suggested some initial bias or 

perseveration. We inspected the recorded video of the behavior and noticed that some 

rats had a tendency to repeatedly run from one side of the W track to the opposite side, 

entirely skipping the center arm (Figure 2.6.A). To quantify this tendency, we classified 

errors on inbound trials according to rat’s choice of destination: trials on which the rat ran 

from one side food-well to the opposite side (while skipping the center arm) were 

classified as side-to-side errors; trials on which the rat returned to the outside arm food-

well from which it had just departed were classified as turn-around errors. We found that 
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This early perseverative behavior appeared to contribute to the larger number of 

trials required for the lesioned animals to learn the inbound component of the task. 

Indeed, a visual inspection of Figure 2.6. along with the learning curves in Figure 6.4., 

suggested that once the lesioned animals reduced their perseverative, below-chance 

behavior, their performance rapidly increased. We attempted to measure the slopes of 

the learning curves either following that initial perseverative behavior or around the 

learning trial, but we were unable to construct a measure that could be applied 

consistently and sensibly to all lesioned animals due to the variability in their 

performance. Thus, we did not feel that we could effectively quantify the rate of post-

perseverative learning. 

To rule out the possibility that rats with hippocampal lesions had nonspecific 

impairments of locomotion or motivation, we examined the number of trials performed, 

food-well dwell times and running speeds for inbound and outbound trials (Figure 2.7.). 

We found that lesioned animals tended to perform more inbound trials than controls 

(main effect of group, p < 0.02). While there was no significant difference in the number 

of outbound trials performed, there was a significant (p < 0.005) group × day interaction. 

This interaction can be seen by the fact that the lesion group tended to perform fewer 

outbound trials than the control group during initial task experience (day 1), but tended to 

perform more outbound trials than the control group during later task experience (days 

7-10). The deficit in the number of outbound trials performed by lesion subjects on day 1 

can be ascribed to their early perseverative failure to visit the center arm on inbound 

trials, as previously shown in Figure 2.6.. The poorer overall task performance of the 

lesion group was also accompanied by decrease in food-well dwell times on both 

inbound (main effect of group, p < 0.005) and outbound (main effect of group, p < 0.002) 

trials. This difference was directly related to the better performance of the control group, 

as animals paused longer at the wells when they were rewarded. When we computed 
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hippocampal lesions did not lack motivation or locomotor drive. 

2.4 Discussion 

We found that rats with lesions of the hippocampal formation are significantly 

impaired at learning the W-track continuous spatial alternation task. Compared to control 

rats that had undergone sham surgeries, rats with extensive lesions of the hippocampal 

formation made more errors and took longer to reach learning criterion on both the 

inbound (reference memory) and outbound (working memory) components of the task. 

These effects could not be attributed to lesion-induced deficits in locomotion or food-

seeking motivation, because rats with hippocampal lesions successfully performed the 

linear-track running task. We did observe that, compared to control rats, rats with 

hippocampal lesions ran faster and completed more trials on the linear track and during 

the latter days of testing on the W track. These results are consistent with previous 

reports that hippocampal lesions can cause locomotor hyperactivity (McNish et al., 1997; 

Good and Honey, 1997; Bannerman et al., 1999; Godsil et al., 2005; Faraji et al., 2008; 

Davidson et al., 2009b). However, hyperactivity cannot explain why the rats with 

hippocampal lesions exhibited such a dramatic pattern of perseverative errors on 

inbound trials during initial task experience. 

The W-track continuous alternation task is similar to other maze-based running 

tests of hippocampal function, such as the radial maze working-memory task (Jarrard et 

al., 2004) and the delayed continuous T-maze alternation task (Ainge et al., 2007b). A 

distinguishing feature of this task is that working-memory and reference-memory 

demands are regularly interleaved between trials, and the time in the center arm serves 

as a built-in “delay” period. We found that lesions of the hippocampal formation impaired 

learning of both mnemonic components of the task. However, some of the subjects with 
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hippocampal lesions were able to acquire both the inbound and outbound components 

of the task by the end of the 10-day test sequence. Thus, given enough prolonged 

experience, other brain regions can support the learning of this task even in the absence 

of a functional hippocampus. The lengths of time required for lesioned animals to learn 

the outbound component of the task correspond reasonably well to the amounts of time 

required for animals to switch from a hippocampal to a basal ganglia dependent strategy 

in a plus-maze task (Packard and McGaugh, 1996). Thus, we speculate that plasticity in 

circuits associated with the basal ganglia may support the slower learning seen in the 

lesioned animals. It is not known whether the transition from hippocampal control to 

extra-hippocampal control involves intrinsic changes within the hippocampal formation, 

or if instead it involves some complex gating of hippocampal output in coordination with 

other regions. We think that recording experiments to probe those possibilities would be 

very informative. 

In our experiment, we challenged rats to learn a complex task sequence through 

trial-and-error exploration of an unfamiliar environment. On outbound trials, there was no 

simple sensory stimulus that predicted reward. Instead, alternation between side arms 

required internal representation of the recent history of trials to the side arms. Our 

finding of an effect of hippocampal damage on this type of learning is consistent with the 

theory that the hippocampal formation is important for incremental learning of the latent 

structure of the world, such as stimulus regularities and environmental context (Gluck et 

al., 2003). It also agrees with theories that the hippocampal formation supports 

reinforcement learning of the paths that lead to reward. During learning of the alternation 

task, the rat must integrate reward information with memory of the recently-visited 

sequence of food wells (Foster et al., 2000; Johnson and Redish, 2005; Foster and 

Wilson, 2006).  



33 
 

Our observation that rats with hippocampal lesions perform perseverative side-

to-side errors on inbound trials is reminiscent of previous reports that hippocampal 

lesions result in perseverative failure to suppress conditioned behavioral responses 

when reward is diminished or when reward contingencies are switched (Schmelzeis and 

Mittleman, 1996; Whishaw and Tomie, 1997; Flaherty et al., 1998; Bannerman et al., 

1999; Holland et al., 1999). We speculate that this perseverative tendency may be a 

consequence of the pretraining procedure, in which we trained rats to run from end to 

end along the entire length of a linear track. In the pretraining situation, uninterrupted 

running behavior led to maximum exploitation of available food rewards. We speculate 

that rats with hippocampal lesions transferred their previously acquired habitual 

responses to the W track, instead of exploring and re-optimizing their behavior according 

to the new task rules. Thus, the effect of hippocampal lesions on performance of the 

inbound, reference memory portion of the task could have resulted from a requirement 

for the hippocampus in inhibiting a previously acquired response. If this explanation is 

true, then the prediction is that the perseverative side-to-side errors will be less severe if 

rats are not pretrained to shuttle back and forth on a linear track. This prediction remains 

to be tested in future studies. 

This study enhances the significance of previous recording studies. In a previous 

study, we recorded the activity of neurons in the hippocampus and in the entorhinal 

cortex while well-trained rats performed the same W-track alternation task fluently; we 

found that neurons in these areas exhibit trial-specific coding for prospective 

destinations on outbound trials and retrospective origins on inbound trials (Frank et al., 

2000). Thus, there is an intriguing correspondence between task demands and neural 

activity. Our results here indicate that animals can learn this task without the 

hippocampus, but that learning is slower in that case. We speculate that prospective and 

retrospective coding by hippocampal neurons may contribute to early, rapid learning but 
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is not necessary for later fluent performance of the task. This possibility is consistent 

with the observation that hippocampal neurons exhibit such spatiotemporal coding even 

during task behavior that does not depend on the hippocampus (Ainge et al., 2007b). 

Thus, future experiments will need to determine whether these trial-specific coding 

emerges in parallel with time course of learning.  

We have also found that changes in the distribution of firing rates over the 

population of place cells in hippocampal area CA1 occur on the same timescale as 

changes in behavioral performance during learning of the W-track continuous alternation 

task (Karlsson and Frank, 2008). In this study, we found that firing rates and spatial 

specificity of neurons in hippocampal area CA1 are plastic across the first 5-6 days of 

task experience and subsequently stabilize. If this neural coding plasticity in the 

hippocampus is required for learning during the first few days of task experience, we 

would expect that rats with hippocampal lesions would be unlikely to learn the entire task 

(outbound and inbound) in less than 6 days; indeed, in this study, we found that the 

three lesioned animals that managed to master the outbound portion of the tasks did so 

on days 6, 7 and 9. Our demonstration here that learning of this task is sensitive to 

hippocampal damage strengthens the hypothesized connection between changes in 

hippocampal neural activity and learning in this task, and provides a foundation for future 

studies.  

Finally, efforts to develop behavioral tasks that are both dependent on an intact 

hippocampus and suitable for electrophysiology may facilitate new studies that link 

specific patterns of hippocampal neural activity to behavioral change. We know quite a 

lot about neural coding phenomena exhibited by hippocampal neurons during both 

waking and sleep (Best et al., 2001; O'Keefe and Recce, 1993), but most of these 

studies used open field random foraging or linear track alternation tasks which did not 

impose demands on hippocampally-dependent learning or memory. Given that an intact 
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hippocampus is not essential for behavior in these tasks, it remains possible that these 

neural coding phenomena are not directly related to the learning and memory functions 

of the hippocampus. Understanding how hippocampal neural activity and plasticity 

underlie hippocampally-dependent learning thus requires the use of tasks that 

demonstrably engage and require hippocampal circuitry. In conjunction with targeted 

manipulations of neural activity or plasticity at specific timepoints during learning, we 

believe that the hippocampally-dependent W-track continuous alternation task is well 

suited to help us link neural coding with behavior. 

2.5 Materials and Methods 

Subjects 

We used 26 male Long-Evans rats obtained from a commercial breeder (Taconic 

Farms). Rats were singly housed in polycarbonate cages (42 × 21 × 21 cm) with 

recycled paper pellet bedding and ad libitum access to drinking water. Temperature, 

humidity and illumination (12:12-hour light/dark cycle) in the housing facility were 

artificially controlled. Behavioral testing occurred during the lights-on phase. All 

procedures were approved by the Institutional Animal Care and Use Committee at the 

University of California, San Francisco. 

Training before surgery 

Upon arrival in the housing facility, rats had ad libitum access to standard 

laboratory rat chow pellets. We gradually habituated the rats to daily human handling 

over several weeks. After every handling session, each rat was given access to a licking 

spout in his home cage that delivered evaporated milk (Carnation brand, Nestlé) 

sweetened with 0.2% saccharin (Smoky Mountain Sweetener). This procedure 
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guaranteed that the rats overcame their food neophobia to recognize the palatability of 

this liquid food reward. 

After habituation, feeding was restricted to maintain the rats at 85-88% of their 

baseline free-feeding body mass, as verified by daily weighings. We trained the rats to 

run back and forth along an elevated linear track (150 cm long, 6 cm wide). Rats were 

motivated with droplets of sweetened milk, which were automatically dispensed in food 

wells located at the two ends of the track. Rats received a fixed amount of food reward 

on every visit to a food well, except that no reward was given for any consecutive repeat 

visits to the same food well. A monochrome CCD camera mounted above the linear 

track captured video of the rat’s behavior (30 frames per second at 320 × 240 

resolution), which was streamed to the NSpike data acquisition system (L.M. Frank, J. 

MacArthur) and processed for automated delivery of food reward. The linear track and 

the floor were colored bright white, so that the dark pigmented hood and stripe of the 

Long-Evans rats could be identified in video images simply by luminance contrast. 

Rats were trained on the linear track for two 15-minute sessions per day. Each 

rat finished training and underwent surgery after he performed at least 30 correct food-

well visits per session, in all four sessions over two consecutive days. We removed 3 

rats from the cohort of subjects before surgery because they failed to reach this 

performance criterion after 7 days of training. 

Surgery 

Rats were 3-5 months old at the time of surgery. Each rat was randomly 

assigned to either the control group or the hippocampal lesion group; this group 

assignment was blind to individual performance on the linear track. General anesthesia 

was induced with 5% isoflurane in oxygen and maintained with 1-5% isoflurane. We 

administered atropine (0.04 mg/kg, i.p.) to reduce airway secretions and buprenorphine 
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(0.04 mg/kg, i.p.) for analgesia. We secured the anesthetized rat in a stereotaxic head 

frame (David Kopf Instruments) with a thermostat-regulated heating pad (37°C) to 

prevent hypothermia. After exposing the skull, we adjusted the height of the incisor bar 

so that bregma and lambda were in the same horizontal plane and then drilled 

craniotomy in the skull overlying the hippocampus. We made bilateral excitotoxic lesions 

of the hippocampal formation by infusing NMDA (Sigma) dissolved in artificial CSF 

(20 mg/mL) at 17 sites in each hemisphere (listed in Table 1), with the intention of 

targeting the dentate gyrus, CA fields, and subiculum. We made the infusions with a 

26 ga microliter syringe-needle (Hamilton) mounted in a motorized syringe driver (KD 

Scientific), which was attached to an arm of the stereotaxic frame. At each site, we 

infused 0.08 µL of NMDA solution at a rate of 0.10 µL/min, and then waited 2 minutes 

after the end of infusion before retracting the needle. During sham surgeries, we filled 

the Hamilton syringe with the NMDA solution and positioned the needle in the brain at 

the same locations for the same durations, but the syringe plunger was not driven to 

effect infusion. This sham procedure was intended to control for extraneous damage 

during passage of the NMDA-loaded needle on the way to the hippocampus. We 

administered diazepam (10 mg/kg) intraperitoneally before the cessation of general 

anesthesia as a prophylactic against seizures; subjects in the control group also 

received diazepam. After surgery, we administered meloxicam (0.4 mg/kg) 

subcutaneously every 18 hours for analgesia until full healthy recovery from surgery. 

Nine rats died during surgery or were euthanized because of poor recovery after 

surgery. We believe that this high mortality rate was due to our relative inexperience with 

these techniques, combined with our efforts to produce complete lesions. 
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Testing after surgery 

After 2-6 weeks of recovery from surgery, restricted feeding was resumed. The 

rats were tested again on the familiar linear track for two 15-minute sessions, to control 

for any possible effects of surgery on food-seeking motivation or locomotion. Next, they 

were tested on the W-track continuous spatial alternation task for 10 days, in two 15-

minute sessions per day. We did not give the rats any prior habituation or shaping on the 

W track. Sweetened milk was automatically dispensed in food wells located at the three 

ends of the track, according to the following rules: (1) A visit to the center food well was 

rewarded when the rat came from either side food well. (2) A visit to the left or right food 

well was rewarded when the rat came from the center food well after having previously 

visited the opposite side food well. (3) Consecutive repeat visits to the same food well 

were never rewarded. The rats were free to choose any of 32 = 9 possible combinations 

of start/end points for their journeys on the W track. At the beginning of each session, 

the experimenter placed the rat on the center arm facing the center food well, which was 

pre-baited with sweetened milk. Because of this initial task state, scoring of the first 

outbound trial (i.e., following departure from the center food well) was ambiguous with 

respect to the left/right alternation rule. To avoid confusing the rats, we always rewarded 

the first visit to a side food well within a session, but we did not include this first 

outbound trial when analyzing task performance. 

Histology 

At the end of behavioral testing, we killed the rats with an overdose of Euthasol 

(Virbac) and perfused transcardially with isotonic sucrose followed by 4% formaldehyde 

in phosphate-buffered buffered saline. After overnight post-fixation in 4% formaldehyde, 

the brains were stored in a cryoprotectant solution (20% glycerol/2% DMSO). Frozen 

brains were sectioned coronally (50 µm) on a cryostat microtome, starting from the 



39 
 

caudal pole of the cortex and continuing rostrally throughout the entire extent of the 

hippocampal formation. Every other section was mounted on a gelatin-coated glass slide 

and stained with cresyl violet to visualize Nissl substance. We captured brightfield 

photomicrographs at 20× magnification, using a Photometric Coolsnap HQ2 camera 

attached to a Nikon TE2000E microscope. Photomicrographs were merged into whole-

section montage images using Nikon NIS-Elements software. We examined the pattern 

of Nissl staining with reference to published anatomical guides (Amaral and Witter, 1995; 

Paxinos and Watson, 2004) in order to evaluate the lesions. We quantified lesion extent 

with the Cavalieri method (Gundersen and Jensen, 1987). We measured the volume of 

intact hippocampal tissue within both hemispheres from cross-sectional outlines taken at 

every 200 µm throughout the anteroposterior extent of the hippocampal formation. 

Analysis of behavior 

We processed the video data to estimate the rats’ movement trajectories along 

the two running tracks. In each video frame, we identified pixels whose grayscale 

luminance values were less than a certain threshold. The largest contiguous cluster of 

these dark pixels corresponded to the pigmented fur (“hood”) of the rat, which was 

clearly visible against the white background surfaces. We tracked the centroid of this 

pixel cluster in every video frame, and then applied nonlinear smoothing (denoising) to 

the sequence of centroids to estimate the position of the rat (Hen et al., 2004). To 

estimate instantaneous velocity, we took first-order differences of the position estimate 

and multiplied by the video frame rate. We converted pixel distances to physical 

distances (centimeters) for these measures. 

Next, we marked the locations of food wells in the video images and defined 

corresponding regions of interest (2 ROIs on the linear track, 3 ROIs on the W track) 

centered on these locations. Each ROI was a circle with a 15-cm radius. Using the 
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estimated movement trajectories, we determined the times when the rat entered or 

exited the ROIs. These transition times were used to reconstruct the sequence of food-

well visits and the durations of those visits. Inbound and outbound trials were 

automatically scored according to the rules for the task. 

Estimation of learning curves 

We used a state-space model of learning (Smith et al., 2004) to estimate 

individual learning curves on the W-track continuous alternation task. This model 

describes an animal’s choice behavior as a evolving process. At each trial, the model 

estimates the value of a hidden (e.g. not directly observable) “state” variable that 

represents the probability of making a correct choice. The model simultaneously 

estimates confidence bounds for the state variable, representing the level of uncertainty 

about the probability of a correct choice. We used the expectation maximization 

algorithm to find the set of values that best describe the animal’s choice behavior across 

time. The result is a more accurate estimate of learning-related changes in choice 

behavior than arises from standard moving average or choice-point measures of 

learning (Smith et al., 2004). 

Mathematically, the observed task responses are treated as outcomes of a 

Bernoulli process whose success rate (i.e., the probability of correct performance on 

each trial) is linked to a hidden learning state. The evolution of the hidden learning state 

is modeled as a Gaussian random walk of unknown variance. Given the observed 

outcomes of an experiment, the hidden learning state can be estimated with some 

uncertainty; the principled treatment of uncertainty in the state-space model provides 

advantages over alternative constructions of learning curves (e.g., moving average). 

For simplicity, we estimated separate learning curves for the inbound and 

outbound components of the W-track continuous alternation task. We chose this 
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simplification because we could not parsimoniously model the statistical dependence 

between the two task components. To estimate a learning curve for the inbound 

component of the task, we considered the outcomes (correct versus incorrect) of all trials 

that departed from either the left food well or the right food well. These outcomes were 

concatenated into a single long sequence that spanned the subject’s entire task 

experience on the W track. Similarly, we concatenated the outcomes of all trials that 

departed from the center food well to estimate a learning curve for the outbound 

component of the task. As described in (Smith et al., 2004), we then estimated (with 

confidence intervals) the evolution of the hidden learning state from the sequence of 

observed outcomes. This algorithm required an initial proposal for the baseline 

probability of correct performance. We set this chance probability at 1/2, reasoning that 

the subjects would initially choose randomly one of the two other food wells as a 

destination when departing from a food well. To confirm that the results were not overly 

sensitive to this initial proposal probability, we also estimated the learning curves with 

the chance probability set to 1/3, which corresponds to random equiprobable choice 

from among all three food wells on the W track. 
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3 Spatial information outflow from the 
hippocampal circuit: distributed spatial 
coding and phase precession in the 
subiculum 

3.1 Abstract 

Place cells in the hippocampus convey spatial information through a combination 

of spatially-selective firing and theta phase precession. We investigated how this 

information is represented in the subiculum, a structure that receives direct inputs from 

area CA1 of the hippocampus and sends divergent output projections to many other 

parts of the brain. Previous studies reported that neurons in the subiculum tend to have 

multiple, irregularly-spaced place fields and poorer spatial selectivity than neurons in 

hippocampal area CA1. We found that the spatial representation in the subiculum 

follows a proximal-distal gradient: neurons in the proximal subiculum are more similar to 

canonical hippocampal place cells, whereas neurons in the distal subiculum have high 

mean firing rates and distributed spatial firing patterns that resemble those of neurons in 

entorhinal cortex. Using information theory, we found that the more distributed spatial 

representation in the subiculum carries, on average, more information about spatial 

location and context than the sparse spatial representation in CA1. We also found that 

neurons at all proximal-distal locations within the subiculum exhibit robust theta phase 

precession, with similar spiking oscillation frequencies as neurons in area CA1. Our 

findings suggest that the subiculum is specialized to transmit a distributed but highly 

informative spatial code to other parts of the brain, and that it may participate in 

oscillatory phase coding and spike timing-dependent plasticity in coordination with other 

regions of the hippocampal circuit. 
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3.2 Introduction 

Place cells in the hippocampus represent an animal’s location in the world 

through a combination of rate and phase coding (Mehta et al., 2002; Huxter et al., 2003; 

Dragoi and Buzsaki, 2006). These neurons fire selectively in certain regions of an 

environment (“place fields”) and are otherwise nearly silent. The resulting sparse pattern 

of ensemble activity among hippocampal place cells can be used to decode an animal’s 

path through an environment (Wilson and McNaughton, 1993; Brown et al., 1998; Huxter 

et al., 2008) and distinguishes between different environments (Leutgeb et al., 2005; 

Karlsson and Frank, 2009). The phase of firing relative to ongoing theta oscillations 

(5-10 Hz) in the local field potential (LFP) also conveys spatial information. A 

hippocampal place cell will fire at progressively earlier phases of theta as the animal 

passes through its place field, in a phenomenon known as theta phase precession 

(O'Keefe and Recce, 1993; Skaggs et al., 1996). 

Hippocampal place cells are part of a larger circuit for spatial representation that 

includes the entorhinal cortex and subiculum (Sharp, 1999; Barry et al., 2006; Moser et 

al., 2008). While recent investigations have characterized rate and phase coding in the 

entorhinal cortex (Hafting et al., 2008; Mizuseki et al., 2009), the subiculum has received 

relatively little scrutiny. The subiculum receives exceptionally dense projections from 

area CA1 of the hippocampus (Amaral et al., 1991; Cenquizca and Swanson, 2007; 

Jinno et al., 2007; Fuentealba et al., 2008), and like area CA1, has topographically-

organized reciprocal connections with the entorhinal cortex (Naber et al., 2001; 

Kloosterman et al., 2004). The subiculum is also a major output structure of the 

hippocampal circuit, sending projections to diverse targets including the prefrontal 

cortex, amygdala, nucleus accumbens, and hypothalamus (Witter, 2006).  
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Previous studies reported that neurons in the subiculum tend to fire in multiple 

irregularly-spaced firing fields and are less spatially selective than neurons in the 

hippocampus (Barnes et al., 1990; Sharp and Green, 1994). Some evidence suggests 

that subicular neurons maintain invariant spatial firing fields across distinct environments 

(Sharp, 2006), unlike hippocampal neurons which tend to “remap” when the environment 

is changed (Muller et al., 1987; Leutgeb et al., 2005; Karlsson and Frank, 2009). 

Similarly, a recent study has proposed that some neurons in the subiculum are 

“boundary-vector cells” that are insensitive to environmental context (Lever et al., 2009). 

These findings suggest, quite surprisingly, that the hippocampal representation of 

specific locations and environments may not be well-maintained in the subiculum, just 

one synapse downstream from CA1 place cells. 

We recorded spikes and LFPs in the subiculum of freely-running rats to 

determine (1) whether the distributed spatial representation in the subiculum might be 

advantageous for conveying information about spatial location and environmental 

context and (2) whether subicular neuronal activity exhibits a phase code as well as a 

rate code. We discovered that neurons in the subiculum exhibit robust theta phase 

precession and that the distributed code found in the subiculum is well-suited to transmit 

information about both the animal’s current spatial location and environmental context. 

3.3 Materials and Methods 

Extracellular recordings in behaving rats 

 The data presented here come from five adult (400-600 g) male Long-Evans 

rats. All procedures were approved by the Institutional Animal Care and Use Committee 

at the University of California, San Francisco. Rats were handled and trained to run back 

and forth on a U-shaped elevated running track (6 cm wide, 350 cm long) for drops of 
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saccharin-sweetened milk. During training and later recording, food intake was restricted 

to maintain each rat at 85-90% of its baseline free-feeding body mass. The daily training 

schedule consisted of three 15-minute task sessions on the U track, with intervening 15-

minute rest sessions in a nest enclosure. Rats were trained for at least five days before 

undergoing surgery for electrode implantation. After recovery from surgery, rats were 

retrained for at least five additional days to ensure that the load on the head and the 

cable tether did not impair running. 

Rats were implanted with microdrive arrays that bilaterally targeted the 

intermediate subiculum (Table 3.1). In each hemisphere, six tetrodes and one single-

wire electrode made parallel penetrations into the brain tissue, with ~0.3 mm spacing 

between adjacent electrodes. The electrodes were constructed from polyimide-insulated 

12.5 µm nichrome wire, and the recording tips were plated with gold to achieve 

impedance in the range of 200-250 kHz at 1 kHz. The single-wire electrode in each 

hemisphere was used to record a local reference signal in the white matter overlying the 

subiculum. Spike waveforms (600-6000 Hz) were recorded relative to the local 

reference. Local field potentials (1-400 Hz) were recorded relative to a stainless steel 

screw in the skull over the midline cerebellum which served as a common ground. 

Table 3.1 Stereotaxic coordinates of electrode implants. Electrodes penetrated the 
brain vertically along the DV axis, normal to the flat-skull plane. 

 

Subject Stereotaxic coordinates in flat-skull position (mm) 

 Posterior from bregma Lateral from midline 

Rat 1 6.6 4.1 

Rat 2 7.0 4.1 

Rat 3 6.8 3.8 

Rat 4 6.8 3.8 

Rat 5 6.9 3.8 
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Recordings began on the last day of training on the familiar U-track (“day 0”). On 

the next day of recording (“day 1”) and on all subsequent days, the second 15-minute 

run session took place in a geometrically-identical U track with the same surface color 

and texture, located on the other side of the room which the rat had never before visited. 

The two sides of the room were separated by a tall barrier and contained different visual 

landmarks. We refer to the training U track as “environment 1” and the second, novel 

track as “environment 2”. The two environments were separated by a wall so that they 

were not visible from each other. For one rat, environment 1 and environment 2 were 

oriented anti-parallel to each other; for the other four rats, the two environments were 

oriented parallel to each other, so that the rat faced the same wall when approaching the 

food wells. On each day after the conclusion of recordings, tetrodes were adjusted in 

order to optimize recording yield for the following day. Recordings continued for as many 

days as well-isolated single units could be recorded.  

Details of data acquisition and off-line processing have been published 

previously (Karlsson and Frank, 2008). Only well-isolated putative single units that had 

an absolute refractory period of at least 2 ms (1 ms for fast-spiking neurons with high 

firing rates) were included in the final analyses. For units that were cleanly isolated in 

only a subset of the recording sessions (e.g., as a result of slow tetrode drift), we 

included spike data from only those sessions, provided that the waveform cluster was 

identifiable across all sessions without the possibility of confusion with other units. We 

did not attempt to match putative single units across days, so it is possible that the some 

of the same neurons may have been recorded in multiple days. We included data from 

“silent cells” that fired few spikes during the task sessions (Thompson and Best, 1989), 

which we identified by their stable spike waveforms across intervening rest sessions. 

We recorded video of the rats’ running behavior in the two environments with an 

overhead video camera. To ensure visibility, infrared light-emitting diodes were fixed on 
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the animals’ heads. In off-line video processing, we determined the pixel coordinates of 

the light-emitting diodes in every video frame with a semi-automated object-tracking 

algorithm. We then transformed these pixel coordinates to physical distances along the 

length of the environment, using the known geometry of the environment to calibrate 

image scale and camera distortion.  Next, we smoothed the linearized position data in 

two steps. In the first step, we used robust locally weighted regression to suppress 

outliers and pixel jitter (Cleveland and Loader, 1996). In the second step, we fitted a 

smoothing spline with a data-adaptive roughness penalty (de Boor, 2001). The 

roughness penalty of the smoothing spline was based on the third derivative of the fit, 

which guaranteed the smoothness of the first derivative (running speed), and it was 

weighted in proportion to the local mean squared relative acceleration (acceleration 

divided by speed) at each time point. The adaptive weighting of the roughness penalty 

suppressed spurious high-speed transients due to head-bobbing when the rat was 

standing in place, while preserving veridical accelerations and decelerations that 

occurred when the rat was running. We estimated running speed by analytical 

differentiation of the fitted smoothing spline. 

Histological reconstruction of recording sites 

At the end of the experiment, each rat was anesthetized with isoflurane, and 

direct current (10 µA for 3 seconds) was passed through the electrodes to make small 

electrolytic lesions at the recording tips. One day later, the rat was lethally overdosed 

with pentobarbital and transcardially perfused with isotonic sucrose followed by 

formaldehyde fixative. After perfusion, the brain was further soaked in fixative for 24 

hours with the electrodes remaining in situ; this post-fixation step made the electrode 

penetration tracks stand out clearly in the fixed tissue. The fixed brain was cryoprotected 

by infiltration in 20% glycerol/2% DMSO, cut in 50 µm coronal sections on a cryostat 
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microtome, and stained with cresyl violet. Cytoarchitectonic boundaries of area CA1, 

subiculum, and presubiculum were resolved according to established criteria (Witter and 

Amaral, 2004). We subdivided the subiculum into longitudinal strips corresponding to 

proximal (closer to CA1), middle, and distal (closer to presubiculum) thirds along the 

transverse dimension. We also distinguished, separate from the subiculum proper, a 

CA1/subiculum transition zone and a subiculum/presubiculum transition zone where the 

principal cell layers overlapped.  

LFP theta oscillations 

We recorded all LFPs relative to ground. To estimate the instantaneous phase of 

theta oscillations, we bandpass filtered the LFP and decomposed the filtered signal into 

amplitude and phase components using the Hilbert transform (Harris et al., 2003; Siapas 

et al., 2005). We used a phase-preserving acausal filter with a 5-10 Hz passband; this 

passband was chosen to accommodate fluctuations in the instantaneous frequency of 

theta (Montgomery et al., 2008). We defined 0° phase to be the positive peak of the 

theta oscillation. 

For obvious reasons, instantaneous theta phase could not be reliably estimated 

whenever theta oscillations became indistinct. To ensure that we were always working 

with a well-defined theta phase, we restricted our phase-dependent analyses to times 

when there was a clear spectral peak in the 5-10 Hz frequency band of the LFP power 

spectrum. We determined when this peak was present by first prewhitening the LFP to 

compensate for the 1 f  shape of the power spectrum, so that our estimate of power in 

the 5-10 Hz frequency band would not be overwhelmed by leakage of background power 

from lower frequencies (Percival and Walden, 1993). After prewhitening the LFP, we 

estimated the power spectrum in overlapping 2-second time windows using the 

multitaper method (Mitra and Pesaran, 1999). The resulting whitened power spectrum 
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was approximately flat over the frequency intervals 1-4 Hz and 18-400 Hz. We defined a 

“theta power ratio” to identify time windows during which theta power was elevated 

against this flat background. The theta power ratio was computed as the integrated 

power of the whitened spectrum over 5-10 Hz (theta), divided by the integrated power 

over 10-25 Hz (supra-theta). We specifically avoided using the delta frequency band in 

our calculation of the theta power ratio, because low-frequency (<4 Hz) movement 

artifacts occurred when rats were running. Contiguous overlapping time windows in 

which the theta power ratio exceeded 5 dB were determined to be times when theta 

oscillations were clearly present in the LFP. 

We used circular statistics to measure the relationship between single-unit 

spiking and the phase of ongoing theta oscillations in the LFP (Siapas et al., 2005). We 

determined an instantaneous phase value for every spike by interpolating the theta 

phase component of a reference LFP signal at the spike times. In practice, we found that 

the choice of reference LFP signal did not qualitatively alter any of our results, because 

LFPs were highly coherent in the 5-10 Hz  frequency band across all recording sites. 

However, for the sake of definition, we referenced each neuron’s spikes to the LFP 

signal recorded in the ipsilateral subiculum that showed the largest-amplitude theta 

oscillations. 

We tested the unimodality of each neuron’s spike phase distribution with the 

Rayleigh test of circular uniformity. Because theta oscillations in the LFP have a 

characteristic sawtooth asymmetry, the LFP theta phases that we estimated using the 

Hilbert transform were slightly non-uniformly distributed. To adjust for this baseline non-

uniformity, we transformed the spike phases to circular ranks in the empirical distribution 

of LFP theta phases, and then performed the Rayleigh test on these circular ranks 

(Siapas et al., 2005). We also fit a von Mises distribution to the spike phases via 

maximum likelihood. The estimated mean parameter of the von Mises fit was taken as 
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the neuron’s preferred phase of firing, and the estimated concentration parameter was 

taken as a measure of phase locking to theta oscillations in the LFP. A larger value of 

the von Mises concentration parameter indicates a smaller circular variance, i.e. greater 

selectivity for the preferred phase of theta.  

Burst index 

Previous work has suggested the presence of different subicular cell types based 

burstiness (Sharp and Green, 1994), so we calculated a burst index to describe 

subicular neurons.  A conventional measure of burstiness is the proportion of inter-spike 

intervals that are shorter than some threshold value, typically 6-10 ms (Harris et al., 

2001b; Frank et al., 2001; Anderson and O'Mara, 2003). This conventional measure is 

reasonable for comparing neurons that have low mean firing rates, such as principal 

neurons in the hippocampus, but it gives misleadingly inflated values for neurons with 

high mean firing rates. We observed a wide range of mean firing rates among neurons in 

the subiculum, so we needed a measure of burstiness that was not confounded by firing-

rate differences. We therefore defined a new “burst index” that was based on a neuron’s 

spike autocorrelogram, rather than the distribution of inter-spike intervals. This burst 

index was computed as the integrated power of the spike autocorrelogram over 1-6 ms, 

divided by the integrated power over 1-20 ms. Larger values indicate more burstiness. 

Our burst index is similar to the “first moment” of the (truncated) autocorrelogram 

(Csicsvari et al., 1999), but unlike the first moment, it is selectively weighted to measure 

bursts. 

Firing-rate maps 

To characterize rate and phase coding by neurons in the subiculum and area 

CA1, we estimated each neuron’s instantaneous firing rate as a function of the rat’s 

linearized position in the environment and the phase of theta oscillations in the LFP 
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(Mehta et al., 2002; Maurer et al., 2006). Separate position-phase firing-rate maps were 

estimated for the rightbound and leftbound directions of travel in each environment. We 

required data from a minimum of five passes in a given environment/direction in order to 

estimate a corresponding firing-rate map. We defined a pass to be a single traversal of 

the environment from one food well to the other food well. We excluded passes in which 

the rat backtracked or failed to attain a mean running speed of at least 10 cm/second. 

We also excluded time intervals when the theta power ratio fell below the minimum 5 dB 

criterion, because theta phase was ill-defined in the absence of clear theta oscillations in 

the LFP; furthermore, if these intervals of low theta power comprised more than 10% of 

the duration of a pass, we excluded the entire pass. 

To accurately estimate position-phase firing-rate maps, we needed a statistically-

efficient estimator that could cope well with noisy and undersampled data. Because the 

rats behaved freely in our experiments, the number of passes in any given 

environment/direction was modest and there was pass-by-pass variability in the 

sampling of linearized positions and LFP theta phases; consequently, the position-phase 

space (that is, the set of all possible combinations of position and phase) was unevenly 

and sparsely sampled. To overcome this sampling variability and the intrinsic spiking 

variability of neurons, we used local polynomial kernel regression (Fan et al., 1995) to 

smooth the data, under the natural assumption that a neuron’s instantaneous firing rate 

should be a smooth function of linearized position and theta phase. The smoothness 

assumption reflects our prior knowledge about the shapes and sizes of the neurons’ 

firing fields (Barnes et al., 1990; Sharp and Green, 1994). Details of the statistical 

estimator are given below. 

To motivate the use of local polynomial kernel regression and to introduce 

necessary notation, we first consider a simple estimator that is known in statistics as the 

Nadaraya-Watson kernel smoother (Hastie et al., 2009). The Nadaraya-Watson kernel 
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smoother has been used in previous studies to estimate the firing-rate maps of 

hippocampal place cells (Harris et al., 2001b; Harris et al., 2003). Conceptually, it is 

straightforward: simply divide a smoothed spike density map by a smoothed position-

phase occupancy map to obtain a smoothed firing-rate map. Formally, the computation 

proceeds as follows: We discretize the data in small time steps ( 2 mst∆ = ) that are 

indexed by 1, ,t T= ⋯ . In this discrete representation, the number of spikes fired by the 

neuron in each time step (typically zero or one) is given by the time series 1, ,
T

N N⋯ ; 

the linearized position of the rat is given by 1, ,
T

X X⋯ ; and the phase of the LFP theta 

oscillation is given by 1, ,
T

Φ Φ⋯ . Then the Nadaraya-Watson estimator of the neuron’s 

instantaneous firing rate f  at a given linearized position x  and LFP theta phase φ  is 

given by the following formula: 
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where K  is a kernel function supported in [ 1, 1] [ 1, 1]− + ⊗ − + . The phase difference 

( )φΦ −  in the argument of the kernel function must be taken in a way that respects the 

periodicity of phase.  

The parameters x
h  and hφ  specify the smoothing bandwidth of the Nadaraya-

Watson kernel smoother. The kernel-weighted contributions of nearby data points that 

fall within the position bandwidth [ ],x xx h x h− +  and the phase bandwidth 

,h hφ φφ φ − +   are averaged together to produce the estimate ( )ˆ ,N -Wf x φ . If x
h  and hφ  

are too small, then the Nadaraya-Watson kernel smoother will exhibit unacceptably high 

variance, because few data points will be included in the smoothing bandwidth around 
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each point in position-phase space. On the other hand, if x
h  and hφ  are too large, then 

the Nadaraya-Watson kernel smoother will systematically underestimate the heights 

(depths) of peaks (valleys) in the firing-rate map, because the local structure of the data 

within the smoothing bandwidth will be averaged away. In other words, the Nadaraya-

Watson kernel smoother controls sampling variance at the cost of increasing bias in 

regions of position-phase space where the true firing-rate map f  is curved. 

Unfortunately, these regions of curvature – i.e., place fields – are precisely the regions 

where we want to accurately quantify a neuron’s response. 

We can achieve a better tradeoff between variance and curvature bias by adding 

parameters to explicitly model the local curvature of the firing-rate map. This is the basic 

principle of local polynomial kernel regression (Fan et al., 1995). Assuming that f  is 

everywhere smooth, we can locally approximate log f  with a low-degree polynomial. (In 

fact, the Nadaraya-Watson kernel smoother happens to be a special case of local 

polynomial kernel regression with a 0-degree polynomial, i.e. a constant function.) We fit 

the logarithm of the firing rate with a polynomial to guarantee that the estimated firing 

rate is always positive. Furthermore, the logarithm is the canonical or natural link 

function for Poisson-distributed count data, with attractive mathematical properties for 

efficient maximum-likelihood estimation (McCullagh and Nelder, 1989). 

For example, the quadratic Taylor approximation to log f  in the neighborhood of 

the fitting point ( ),x φ  is the following: 
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where 
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( ) ( ) ( ) ( ) ( ) ( ) ( )0
, , , , , , ,

x xx x
x x x x x x xφ φφ φβ φ β φ β φ β φ β φ β φ β φ ≡  

�

 

is a vector of coefficients. ( ),x xβ φ  and ( ),xφβ φ  approximate the first-order partial 

derivatives of log f  at ( ),x φ ; likewise, ( ),xx xβ φ , ( ),xφφβ φ , and ( ),x xφβ φ  

approximate the second-order partial derivatives. We can use nearby data points that 

are within a smoothing bandwidth around the fitting point to estimate these derivatives. 

Just as the Nadaraya-Watson kernel smoother averages the kernel-weighted 

contributions of data points around each fitting point, local polynomial kernel regression 

maximizes the kernel-weighted log-likelihood of the data (Fan et al., 1995). Assuming 

that the spike counts are Poisson-distributed, maximization of the kernel-weighted log-

likelihood takes the following form: 
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where 

( )( ) ( )( ) ( )( ), , | , , | , log , | ,
t t t t t t t t

L N X x t f X x N f X xβ φ β φ β φΦ = ∆ ⋅ Φ − Φ
� � �

 

is the Poisson log-likelihood of the data given the coefficients ( ),xβ φ
�

, and the kernel 

function K  and the bandwidth parameters x
h  and hφ  are the same as in the Nadaraya-

Watson estimator. This log-likelihood maximization problem is equivalent to fitting a 

generalized linear model with weighted observations, for which there are well-developed 

numerical recipes (McCullagh and Nelder, 1989). Exponentiating the constant coefficient 

of the fit gives the “local quadratic” estimator of the firing-rate map: 

( ) ( )( )0
ˆ ˆ, exp ,
quadratic

f x xφ β φ=  

Although the local quadratic estimator exhibits less curvature bias than the 

Nadaraya-Watson kernel smoother, it is susceptible to overfitting in regions of position-
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phase space where the firing rate is very close to zero. The Nadaraya-Watson kernel 

smoother, in contrast, is immune to overfitting and performs well in regions where the 

firing rate is flat and close to zero. Combining the two estimators yields a robust 

shrinkage estimator that adapts to the local curvature of the data without overfitting: 

( ) ( ) ( ) ( )( ) ( )ˆ ˆ ˆlog , , log , 1 , log ,shrinkage N -W quadraticf x x f x x f xφ α φ φ α φ φ= + −  

The shrinkage parameter ( ),xα φ  takes values between zero and one, and can be 

selected in a data-adaptive manner by cross-validation, as described below. 

We estimated firing-rate maps on a uniform grid of points that were spaced 2 cm 

apart in the linearized position dimension and 6° apart in the theta phase dimension. 

This grid spacing was fine enough to support smooth interpolation between grid points. 

We excluded linearized positions within 20 cm of either food well, because theta 

oscillations in the LFP often were indistinct when rats stopped to feed, and also because 

linearized position was not well-defined during turning behavior. At each grid point, we 

computed both the Nadaraya-Watson kernel smoother and the local quadratic estimator. 

We used a tensor-product Epanechnikov kernel: 

( )( ) ( )( )2 22 21 1 if  and 
,

0 otherwise

x x

x

X x h h X x h hX x
K

h h

φ φ

φ

φ φφ   − − − Φ − − < Φ − <− Φ − 
=   
  

 

which downweights data points at the outlying extremes of the smoothing bandwidth. We 

chose bandwidth parameters 20 cm
x

h =  and 90hφ = �

 to match the scale of features in 

the firing-rate maps. To confirm that this smoothing bandwidth was reasonable, we also 

tested smaller and larger values ( 15 cm, 30 cm
x

h =  and 
o o

60 , 120hφ = ) on data from a 

randomly-selected subsample of neurons. As assessed by visual inspection of the firing-

rate maps and by cross-validation scores (see below), these smaller and larger values of 
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the bandwidth parameters resulted in worse fits for a majority of the neurons in the 

random subsample. 

To determine the optimal degree of shrinkage between the Nadaraya-Watson 

estimator and the local quadratic estimator, we partitioned the data into passes and 

performed cross-validation. Let 1, ,p P= ⋯  be the pass number, and let 
pS  be the set of 

all time bins that belong to pass p . We excluded each pass from the data set and 

estimated firing-rate maps from the remaining 1P −  passes; these leave-one-out 

estimates are denoted by ( )ˆ p

N-Wf
−  and ( )ˆ p

quadraticf
− . We then selected the shrinkage parameter 

( ),xα φ  that minimized the kernel-weighted cross-validation deviance: 
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is the deviance of the shrinkage estimate against the data and 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )ˆ ˆˆ , , exp , 1 ,
p p p

t t N -W t t quadratic t tN t f fα α α− − −
Χ Φ = ∆ Χ Φ + − Χ Φ  

is the expected spike count in time bin t  that was predicted from the cross-validation 

data set 
pt S∉ . The deviance is a natural error measure for Poisson count data that is 

analogous to the sum of squared errors for normally-distributed data. The cross-

validation procedure also conveniently provided jackknife estimates of the firing-rate 

map, which we used to test the statistical significance of theta phase precession as 

described below. 
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Spatial activity fraction 

We quantified the sparseness of spatial coding in the hippocampus and 

subiculum by the spatial activity fraction, which can be interpreted as the proportion of 

the environment over which a neuron fires (Rolls et al., 1998; Battaglia et al., 2004b). 

Given a position-phase firing-rate map ( ),f x φ , where x  is linearized position on the 

track and φ  is the instantaneous phase of the LFP theta oscillation, the spatial activity 

fraction was computed as follows: ( )
( )( )
( )

2

2
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f x dx
f
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=
∫

∫
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is the spatial firing-rate profile averaged over all theta phases. The spatial activity 

fraction ranges between zero and one. A value close to zero indicates that the neuron 

fires in only a small region of the environment and is silent everywhere else, whereas a 

value close to unity indicates that the neuron fires uniformly at all locations throughout 

the environment. 

Comparison of firing-rate maps across environments 

We used two complementary measures to quantify the similarity between the 

firing-rate maps of a given neuron in environment 1 versus environment 2. The first 

measure, which we call cosine similarity, was computed as follows: 
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Here, 1f  and 2f  are the neuron’s position-phase firing-rate maps in the two 

environments. The cosine similarity is the mean, taken over all theta phases, of the 

normalized dot product between spatial firing-rate profiles conditioned on theta phase. 

Because firing rates are strictly positive, this measure can assume values between zero 

and one; a value of unity indicates that the two firing-rate maps are identical up to a 

proportionality constant. The second measure, which we call normalized overlap, was 

computed as follows: 
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is the firing-rate map normalized at each theta phase. The normalized overlap is a 

generalization of place-field overlap (Battaglia et al., 2004b) to account for LFP theta 

phase. This measure also ranges between zero and one. For the purposes of computing 

cosine similarity and normalized overlap, we concatenated firing-rate maps for the 

rightbound and leftbound directions of travel in each environment. 

Mutual information 

Using the experimentally-derived firing-rate maps of the neurons that we 

recorded, we constructed model populations of neurons and simulated their ensemble 

spiking responses. From these simulations, we estimated how much spatial information 

is carried by neurons in the subiculum and in area CA1, while making as few 

assumptions as possible about how this information might be decoded by downstream 

circuits. Our combined use of experimental data, modeling, and information theory is 
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similar to the approach used in Osborne et al. (2008). The inferences that we derived 

are valid to the extent that the firing-rate maps of the neurons in our data set were 

representative of the true coding statistics in the larger neuronal populations.  

We had three reasons to rely on an experimentally-derived model instead of 

estimating information-theoretic quantities directly from the experimental data. First, 

estimates of mutual information from limited samples are biased, and corrections for this 

sampling bias require considerable effort (Panzeri et al., 2007). By using a model, we 

could perform exact calculations that were equivalent to simulating infinite amounts of 

data. Second, estimates of mutual information depend on both the neural response and 

the stimulus distribution (in this case, the occupancy distribution over spatial locations 

and environments). In our model, we fixed the stimulus distribution to be exactly the 

same for all neurons, so that we could fairly compare mutual information between 

different neurons and regions without having to worry about confounding differences in 

spatial behavior. Third, the model allowed us to assess combinatorial coding by diverse 

ensembles of neurons. In our experiments, we were never able to simultaneously record 

more than a few well-isolated single units, so it was necessary to model pseudo-

simultaneous ensemble responses from data recorded over multiple days in multiple 

animals. 

While our model-based information-theoretic approach has a number of 

advantages, correct interpretation of the results requires an understanding of its 

assumptions and limitations. In our model, we assumed that each neuron’s spike train 

could be described as a conditionally-independent inhomogeneous Poisson process, 

given the rat’s current position and the instantaneous phase of theta oscillations. In other 

words, we did not model bursting or other history-dependence in the spike trains, nor did 

we model “excess” correlations between neurons that might be present in the data. 

Thus, the number of bits of information that we calculated cannot be interpreted literally. 
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That said, our approach does provide a principled way to compare the information 

content of different firing-rate maps, and that is how the results should be understood. 

We constructed populations of model neurons for each of the following 

anatomical subregions: distal subiculum, middle subiculum, proximal subiculum, and 

distal area CA1 (including the CA1/subiculum transition zone). The responses of each 

model neuron were completely described by position-phase firing-rate maps of a 

corresponding real neuron in our data set. For simplicity, we ignored directionality in our 

model; that is, the virtual rat ran in the same direction on every pass. This 

unidirectionality allowed us to duplicate each real neuron in our model, by mirror-

reflecting the estimated firing-rate map in one of the two directions and treating this as 

an additional model neuron. We always coupled the same real neuron’s firing-rate maps 

in environment 1 and environment 2, so that the corresponding model neurons properly 

reflected the observed degree of similarity/remapping between the two environments.  

From these model populations, we drew ensembles of K  neurons at a time, for 

1, ,7K = ⋯ . Because it was computationally intractable to simulate every possible 

combination of neurons for 2K > , we randomly sampled at most 500 unique ensembles 

from each population for each value of K . We simulated the responses of these K  

neurons, indexed by 1, ,k K= ⋯ , using the experimentally-derived position-phase firing-

rate maps, ( ), ,kf x eφ . x  is the linearized position of a (virtual) rat, φ  is the phase of 

theta oscillations in the LFP, and { }1, 2e∈  is a variable that indicates whether the rat is 

running in environment 1 or environment 2. We simulated realistic distributions of x  and 

φ  by randomly selecting 100 passes from our data set in which the animal’s mean 

running speed exceeded 10 cm/second and the theta power ratio was above the 

minimum 5 dB criterion for at least 90% of the pass duration. These passes were 

identically replicated in both environment 1 and environment 2 to simplify our 
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calculations and to enable us to estimate how much information was conveyed about the 

identity of the environment. 

We divided each pass into short (but not infinitesimally-small) non-overlapping 

time bins of duration t∆ . We assumed that information was conveyed in the patterns of 

simultaneous spiking and silence among the ensemble of neurons within each time bin. 

For simplicity, each neuron’s response in a single time bin was denoted as either “0” 

(silence) or “1” (one or more spikes). With an ensemble of K  neurons, 2K  possible 

binary ensemble responses (“words”) were possible. Patterns of spiking across time 

were not considered. We set the bin size t∆  to be 20 ms, because this is consistent with 

the known temporal resolution of spiking in the hippocampus (Harris et al., 2003; 

Lisman, 2005). However, we obtained qualitatively similar results with 10 ms and 30 ms 

bins. 

The neurons in our model fired Poisson spike trains and were conditionally 

independent given their respective firing-rate maps. For a single neuron, the probability 

of spiking/silence in a given time bin was calculated as follows: 

[ ]( ) ( ) ( )( )0 | in , exp , ,
t t

k k
t

P n t t t f x t t e dtφ
+∆ 

′ ′ ′= + ∆ = − 
 ∫  

[ ]( ) [ ]( )1 in , 1 0 in ,
k k

P n t t t P n t t t= + ∆ = − = + ∆  

where 
k

n  is the spike response of the neuron and ( ), ,kf x eφ  is the neuron’s firing-rate 

map. The time-varying continuous variables ( )x t  and ( )tφ  were taken directly from 

experimental data, and the environment e  was imposed by simulation. Assuming 

conditional independence among K  neurons in an ensemble, the probability of the 

ensemble word [ ]1, , Kn n n≡
�

⋯  was then simply 
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Because the virtual rat performed identical passes in the two environments, we 

had the following simple marginal probabilities for the spatial variables ( ),x e : 

( ) ( ) ( )| 1 | 2

( 1) ( 2) 0.5

P x P x e P x e

P e P e

= = = =

= = = =
 

Note that ( )p x  was not uniform because rats sped up and slowed down in a 

stereotyped manner over the environment across the multiple passes. The mutual 

information between the ensemble responses n
�

 and the spatial variables ( ),x e  is 

defined to be the difference between the total entropy of spike responses and the noise 

entropy of the spike responses: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2; , log | , log | ,

n e x n

I n x e P n P n P e P x P n x e P n x e= − +∑ ∑ ∑ ∑
� �
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The first term is the total entropy of the response, and the second term is the noise 

entropy, wherein we average the conditional distribution of response over all linearized 

positions and both environments. Notice that although the LFP theta phase φ  

contributes to the spiking probabilities, it does not appear directly in the mutual 

information. φ  is effectively a nuisance variable, which we included to realistically model 

theta modulation and phase precession. The simulated passes by the virtual rat 

contained enough random variation that φ  was uncorrelated with x . 

We also estimated the mutual information between ensemble responses s
�

 and 

the environment e , conditioned on the current linearized position x :  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
; | | log | | , log | ,

x n e n

I n e x p x P n x P n x P e P n x e P n x e
 

= − +  
 

∑ ∑ ∑ ∑
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This conditional mutual information quantifies how much information the neurons convey 
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to distinguish between locations in environment 1 versus environment 2. We used this 

measure to quantify the remapping of spatial representations between the two 

environments. 

We performed additional simulations to determine whether theta phase 

precession was essential for conveying spatial information. We modified the position-

phase firing-rate maps of the model neurons to remove theta phase precession while 

preserving spatial modulations of firing rate. For each experimentally-derived firing-rate 

map 
experimentf , we computed a rank-1 approximation 

approxf , using the singular value 

decomposition (Linden et al., 2003). The rank-1 approximation 
approxf  is separable, 

meaning that it can be factored as the product of a position-only component and a 

phase-only component: 

( ) ( ) ( ),approx position phasef x f x fφ φ≡ ⋅  

Thus, by construction, a model neuron whose firing-rate map is given by 
approxf  will not 

exhibit theta phase precession. 
approxf  is an optimal approximation to the experimentally-

derived firing-rate map 
experimentf  in the following sense: 
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That is, the spatial profile of the firing-rate map and the phase profile match the original 

as closely as possible, subject to the separability condition. 

Our estimate of mutual information is related, but not identical, to the “spatial 

information rate” that has been widely used to characterize hippocampal spatial 

representations (Skaggs et al., 1993). The spatial information rate is also a model-based 

estimate of mutual information. However, it is limited to a single neuron’s spiking 
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response, and it is computed from the neuron’s firing rate as a function of position alone 

without considering theta modulation. In contrast, we modeled the dependence of firing 

rate on LFP theta oscillations to simulate realistic spiking responses, and we 

enumerated ensemble patterns of spiking and silence to account for combinatorial 

coding synergies, which cannot be captured by simply summing the spatial information 

rates of individual neurons. 

Phase precession in unitary place fields 

Theta phase precession is conventionally quantified by computing the correlation 

between position and the preferred theta phase of spiking within a neuron’s place field 

(Mehta et al., 2002; Huxter et al., 2003). If a neuron has multiple place fields in an 

environment, these unitary place fields are segmented and a separate correlation is 

computed for each field. Previous investigators simply segmented place fields by the 

local minima and maxima of spatial firing rate as a function of linearized position alone, 

without considering theta phase (Hafting et al., 2008; Mizuseki et al., 2009). However, 

segmentation in the position dimension alone is prone to error, because two adjacent 

place fields can be partially overlapping in position but clearly separated in theta phase 

(Maurer et al., 2006).  We therefore developed a new approach using morphological 

grayscale algorithms (Vincent, 1993) to segment unitary place fields in position-phase 

firing-rate maps. Our procedure is fully automated, objective, and involves only two 

parameters: a minimum peak firing rate (
min

f ), and a parameter (ε ) that specifies the 

contrast of the segmented place field against the “background” bumpiness of the firing-

rate map. 

Given a position-phase firing-rate map ( ),f x φ , we first identified all peaks (local 

maxima) that exceeded 
min

f . We set 
min

f  to be 10 spikes/second, although qualitatively 
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similar results were obtained with a more stringent threshold of 15 spikes/second or a 

more permissive threshold of 5 spikes/second. All identified peaks were checked 

sequentially in decreasing order of firing rate. Given a peak with firing rate 
peak minf f> , 

we applied the H-maxima transform to suppress all local maxima in the firing-rate map 

whose height was smaller than 
peakfε ⋅ . This smoothing step was necessary to make the 

procedure robust to noisy bumps in the firing-rate map. We set ε  to be 0.3 (30%). Next, 

we used a flood-fill algorithm to trace the 
peakfε ⋅  contour that surrounded the base of 

the firing-rate peak, and we also used a watershed algorithm to identify watershed lines 

between neighboring convex domes in the firing-rate map. The traced contour was 

accepted as a valid place-field segmentation only if it did not intersect the contours of 

any other place fields that had already been segmented, did not intersect any watershed 

lines, did not intersect itself, and did not extend to the minimum or maximum linearized 

position of the firing-rate map. These criteria distinguished well-isolated, unimodal, 

completely-segmented fields from multiple overlapping fields or truncated fields. The 

contrast parameter ε  tunes the algorithm’s tolerance for departures from strict 

unimodality. Setting ε  to a more stringent value of 0.2 made the algorithm too sensitive 

to small bumps in the firing-rate map and excluded many place fields that appeared to 

be effectively unimodal by visual inspection, such as fields with closely-spaced twin 

peaks or small sidelobes on their flanks. It should be noted that our morphological 

segmentation procedure is completely symmetric and invariant with respect to periodic 

theta phase; we did not impose any prior bounds on the peak phase of the segmented 

place field or its orientation in position-phase space. 

After segmenting the unitary place fields, we then identified their principal axes. 

Place fields that exhibit phase precession have a characteristic oblique orientation in 

position-phase space. To capture this orientation, we fit a two-dimensional Gaussian 
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function to the firing-rate surface within the segmented baseline contour of each place 

field. We did not impose any prior bounds on this Gaussian fit; “backwards” place fields 

with positive-valued phase/position slopes could be fit just as well as place fields with 

negative slopes. From the covariance matrix of the Gaussian fit, we computed the slope 

(in degrees/cm) and the Pearson correlation coefficient between linearized position and 

LFP theta phase. We repeated the Gaussian fitting procedure over all jackknife 

estimates of the firing-rate map to estimate a studentized confidence interval on the 

Fisher-transformed correlation coefficient. We excluded place fields whose correlation 

coefficients were not significantly different from zero, because the phase/position slope 

of a field is ill-defined in the absence of correlation. 

Spike phase spectra 

 The preceding analysis of theta phase precession on a per-field basis 

was limited to place fields that could be automatically segmented. To confirm the 

generality of our results, we performed an alternative analysis that did not rely on 

segmentation of unitary place fields. We measured theta phase precession by estimating 

the peak of the spike phase spectrum (Mizuseki et al., 2009; Geisler et al., 2010). The 

spike phase spectrum is the power spectral density of a spike train after it has been 

transformed from a sequence of spike times to a sequence of instantaneous spike 

phases relative to the ongoing LFP theta oscillation. The frequency domain of the spike 

phase spectrum has units of relative frequency, where the instantaneous frequency of 

theta oscillations in the LFP is defined to be 1 cycle−1. A neuron that exhibits theta phase 

precession has a peak in its spike phase spectrum at a frequency greater than unity. A 

higher peak frequency indicates a faster rate of phase precession. 

We introduced three methodological improvements to the estimation and 

interpretation of the spike phase spectrum. First, we estimated the spike phase spectrum 
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using only data from valid running passes when LFP theta power was high, deliberately 

excluding times when rats were stopped at the food wells. Second, we used the 

derivative of the spike phase spectrum to accurately resolve the frequencies of peaks in 

the spectrum. Third, we performed shuffle tests to identify statistically-significant spectral 

peaks. We describe these methods in further detail below. 

For each neuron, separate spike phase spectra were estimated for the 

rightbound and leftbound directions of travel in each environment. We required data from 

a minimum of five valid passes in a given environment/direction in order to estimate a 

corresponding spike phase spectrum. To ensure that our estimates were not 

contaminated by spikes emitted at times when theta phase was ill-defined, we excluded 

passes in which the theta power ratio fell below the minimum 5 dB criterion for more 

than 10% of the pass duration. We also excluded time intervals at the start and end of 

each pass when the rat was within 20 cm of either food well, because rats were stopped 

and/or feeding at these reward locations, and theta phase precession is not observed in 

these behavioral states (Skaggs et al., 1996). We computed a multitaper estimate of the 

spike phase spectrum by taking a weighted sum of eigenspectra over passes and tapers 

(Jarvis and Mitra, 2001). Because different passes contained different numbers of theta 

cycles, we constructed a separate set of Slepian tapers for each pass to maintain a 

consistent smoothing bandwidth of ±0.05 cycle−1 (Walden et al., 1995). 

The multitaper method reduces the variance of the spectral estimate by 

averaging the true spectrum over the smoothing bandwidth. This averaging flattens out 

local structure in the spectrum whose frequency scale is smaller than the smoothing 

bandwidth. As a result, peaks in the estimated spectrum have distorted shapes and are 

not sharply resolved. Simply selecting the numerical maximum of a multitaper spectral 

estimate is not a consistent estimator of the true peak. However, it is possible to resolve 

spectral peaks by examining the covariance structure of the multitaper eigenspectra. We 
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used this method to estimate the peak frequency of the spike phase spectrum, which 

was the parameter of interest for measuring theta phase precession. A detailed 

explanation of the theory behind this method is given in Prieto et al. (2007). 

Assuming that the spectral density varies smoothly with the bandwidth of the 

multitaper estimate, it can locally approximated by a second-degree Chebyshev 

polynomial expansion: 

( ) ( ) ( )0 0 1 1 2 2
( ) ,

f f f
S f f a f T a f T a f T W f W

W W W

′ ′ ′     
′ ′+ ≈ + + − < < +     

     
 

where W  is the half-bandwidth, 
n

T  are Chebyshev basis polynomials, and ( )na f  are 

coefficients. The coefficient of the linear term is approximately proportional to the first 

derivative of the spectral density at f :  
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Using this Chebyshev polynomial approximation, the local covariance of the 

eigenspectra within the bandwidth [ ],f W f W− +  can be expanded as 
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where 

( ) ( ) ( )ij i j
G f V f V f∗≡  

and 1, ,
K

V V…  are the K  orthonormal Slepian tapers (in frequency space) that were 

used to compute the multitaper estimate. 1, ,
K

V V…  are Hermitian functions, meaning 

that their real components are even functions and their imaginary components are odd 
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functions. 0T  and 2T  are even functions, and 1T  is an odd function. Because the domain 

of integration [ ],W W− +  is symmetric about zero, ( )1a f  can be estimated from the 

imaginary component of the complex covariance matrix ( )ijC f . 

Around each frequency f , we constructed a global covariance matrix with block-

diagonal structure, in which each submatrix along the diagonal was the multitaper 

covariance matrix for a single pass. We estimated the first derivative of the spectral 

density, ( )1a f W⋅ , by least-squares fit to the imaginary component of this global 

covariance matrix. We then found all local maxima in the spike phase spectrum (i.e., 

positive-to-negative zero-crossings of the first derivative) within the 0.6-1.4 cycle−1 

frequency band. We deliberately chose this wide, inclusive frequency band to avoid 

selection bias. 

After finding all candidate local maxima, we defined the peak of the spike phase 

spectrum to be the local maximum with the largest integrated spectral power within 

±0.05 cycle−1 (the multitaper smoothing bandwidth). We wanted to be confident that this 

spectral peak reflected a significant oscillation in the neuron’s spike train, rather than a 

spurious fluctuation due to finite sampling. To test statistical significance, we computed 

spike phase spectra for 500 surrogate spike trains in which each spike phase was 

independently jittered by a random offset drawn from a uniform distribution on the 

interval [−π, + π]. This jittering disrupted oscillatory structure on the theta timescale 

while preserving slower spatial modulations of firing rate. The test statistic was the ratio 

of integrated power within ,
peak peak

f W f W − +   divided by the total power within the 

0.6-1.4 cycle−1 frequency band. We deemed an observed peak in the spike phase 

spectrum to be significant at the 0.05 level if the test statistic for the experimentally-
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observed spike train was greater than the value attained by  95% or more of the phase-

jittered spike trains. 

3.4 Results 

We collected data from 5 rats while they ran on two geometrically-identical 

running tracks that were located in separate partitions of a room. The rats experienced 

many training sessions on one of the tracks (“environment 1”) prior to recording, 

whereas the other track (“environment 2”) was relatively novel because it was introduced 

during recording. This experimental design allowed us to characterize neural 

representations of  spatial context between different environments as well as spatial 

location within an environment.  We did not record enough neurons every day to be able 

to analyze novelty-triggered dynamics as a function of the number of exposures to 

environment 2, so instead we combined data from all days of recording. 

Diversity of firing patterns in the subiculum 

Using tetrodes, we recorded spikes from 91 single units in the subiculum at 

intermediate locations along the septal-temporal axis (Figure 3.1.A).  Previous studies 

proposed various schemes to classify subicular neurons on the basis of firing rates, 

bursting patterns, and extracellular spike waveforms (Sharp and Green, 1994; Anderson 

and O'Mara, 2003). We therefore examined these parameters to identify salient 

differences in the firing properties of the neurons in our data set (Figure 3.1.B,C). 

We were able to distinguish separate fast-spiking and non-fast spiking classes of 

neurons, but we did not find any clear basis for classifying neurons according to 

burstiness. Three neurons in our data set had narrow, symmetric spike waveforms and 

fired at high mean rates (>30 spikes/second) with no appreciable bursting tendency. 

Non-bursting, fast-spiking neurons in the subiculum have been previously identified as 
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putative inhibitory interneurons (Greene and Totterdell, 1997; Menendez de la et al., 

2003). The other 88 neurons had broad, asymmetric spike waveforms and were quite 

diverse in their firing properties. There was no clear category boundary between 

“bursting” and “non-bursting” neurons, and burstiness did not significantly correlate with 

any features of the spike waveform that we measured. We classified these neurons as 

putative pyramidal cells, in agreement with previous studies that found substantial 

variability in burstiness among subicular neurons with indistinguishable pyramidal 

morphologies (Taube, 1993; Staff et al., 2000). 

The subiculum is topographically organized along its transverse or proximal-

distal axis, so that neurons at different proximal-distal locations within the subiculum 

receive different inputs and send output projections to different targets (Witter, 2006). 

Sharp and Green (Sharp and Green, 1994) reported that neurons in the proximal 

subiculum (closer to area CA1) have lower mean firing rates and fire over a smaller 

proportion of the environment than neurons in the distal subiculum (closer to  

Figure 3.1. (following page) Single-unit recording in the subiculum. A, A Nissl-stained 
coronal section, approximately 6.8 mm posterior from bregma, showing 
representative recording sites in the intermediate subiculum. The arrows indicate two 
tetrode penetration tracks. The scale bar is 500 µm. B, Spike autocorrelograms and 
mean extracellular spike waveforms of three representative subicular neurons. Spike 
autocorrelograms were computed with 1 ms bins. Mean spike waveforms were 
computed with spikes aligned on the initial negativity (trough). The bursting neuron at 
top is distinguished by the short-lag peak in its autocorrelogram, as quantified by the 
burst index. The fast-spiking neuron at bottom is distinguished by the narrow and 
nearly symmetric negative and positive phases of the spike waveform. C, Summary of 
mean firing rate and burst index for all neurons recorded in the subiculum. Each 
symbol corresponds to a single neuron. Fast-spiking neurons (putative inhibitory 
interneurons) are plotted as circles, and non-fast spiking neurons (putative pyramidal 
neurons) are plotted as triangles. Symbols are color-coded by anatomical location 
along the transverse axis of the subiculum. Mean rates increased from proximal to 
distal subiculum. D, Spike waveform width and trough/peak asymmetry for the same 
neurons shown in C. E, Summary of mean firing rate and burst index for all neurons 
recorded in distal area CA1 and in the CA1/subiculum transition zone. Fast-spiking 
neurons (putative inhibitory interneurons) are plotted as circles, and non-fast spiking 
neurons (putative pyramidal neurons) are plotted as triangles. F, Spike waveform 
width and trough/peak asymmetry for the same neurons shown in E. 
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presubiculum). We therefore examined whether the subiculum is functionally 

differentiated along its transverse axis. 

We found a proximal-distal gradient in the distribution of firing rates among 

neurons in the subiculum. We grouped neurons by anatomical location in transverse 

thirds of the subiculum: proximal (closer to CA1), middle, or distal (closer to 

presubiculum). Plotting the mean firing rates of subicular neurons grouped by transverse 

location revealed a striking pattern (Figure 3.1.C). The median (inter-quartile range) 

firing rates of principal neurons in the proximal, middle, and distal groups were, 

respectively, 2.5 (1.4-3.7), 6.3 (4.1-11.4), and 10.3 (6.6-14.1) spikes/second. The effect 

of proximal-distal location on firing rate was statistically significant (p < 10−7, Kruskal-

Wallis test). We did not find a statistically significant effect of proximal-distal location on 

spike waveforms (Figure 3.1.D). 

For reference, we compared the firing properties of neurons in the subiculum to 

those of simultaneously-recorded neurons in area CA1 at nearby locations along the 

septal-temporal axis (Figure 3.1.E,F). In 3 of the 5 rats, some tetrodes penetrated the 

distal part of area CA1 and the transition zone where the principal cell layer of area CA1 

superficially overlaps the principal cell layer of the subiculum. The neurons that we 

recorded at these locations seemed to constitute a homogeneous sample; none of our 

analyses revealed significant differences between neurons in the CA1/subiculum 

transition zone versus neurons in CA1 proper. Therefore, to improve the statistical power 

of comparisons with neurons in the subiculum proper, we assigned all of these neurons 

to a single “distal CA1” group, with the caveat that this may be an oversimplification of 

the neuronal population in the CA1/subiculum transition zone.  

As expected (Barnes et al., 1990; Sharp and Green, 1994), we found that the 

median (inter-quartile range) firing rate of principal neurons in the distal CA1 group was 

1.4 (1.1-1.7) spikes/second, which was significantly lower than the overall median firing 
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rate of principal neurons in the subiculum (p <10−9, Kruskal-Wallis test). The firing rates 

of principal neurons in area CA1 cluster near zero; in the proximal subiculum, firing rates 

are slightly higher; and in the middle and distal subiculum, the firing-rate distributions are 

shifted even higher. 

Spatial representation in the subiculum 

We also found significant proximal-distal differences in the spatial coding 

properties of neurons in the subiculum. We estimated firing-rate maps as a function of 

the animal’s linearized position along the track and the instantaneous phase of theta 

oscillations in the LFP (see Materials and Methods). For each neuron, separate position-

phase firing-rate maps were estimated in each environment and direction of running. 

Figure 3.2. shows examples of firing-rate maps for representative neurons in the 

proximal, middle, and distal subiculum. These firing-rate maps contain well-defined 

Figure 3.2. (following page) Spatial representation in the subiculum. A-C, Each panel 
shows position-phase firing-rate maps and spike-amplitude cluster plots for one 
neuron. The top and bottom rows correspond to sessions 1 and 3 which were in the 
same environment. Each position-phase firing-rate map shows the estimated firing 
rate of the neuron as a function of the rat’s linearized position and the phase of theta 
oscillations in the LFP. Separate firing-rate maps are shown for the rightbound and 
leftbound directions of travel in the environment. Linearized position was measured 
with respect to the midpoint of the track, and theta phase was defined so that the 
positive peak of the theta oscillation was at 0°. The firing-rate maps are duplicated 
over two cycles of theta to clearly show their phase-periodicity. To the right, cluster 
plots show spike amplitudes recorded on pairs of tetrode channels. Black points 
correspond to spikes from the neuron, and gray points correspond to spikes from 
other neurons. A, A representative neuron in the proximal subiculum. B, A 
representative neuron in the middle subiculum. C, A representative neuron in the 
distal subiculum. D, Summary of mean firing rate and spatial activity fraction for all 
putative principal neurons recorded in the subiculum. Only valid running passes 
during task sessions were included in the calculation of mean firing rate. Each symbol 
corresponds to a single neuron. Symbols are color-coded by anatomical location 
along the transverse axis of the subiculum. Spatial representation within the 
subiculum exhibits a proximal-distal gradient. E, Summary of mean firing rate and 
spatial activity fraction for all putative principal neurons recorded in distal area CA1 
and in the CA1/subiculum transition zone. Comparison of panels D and E reveals that 
neurons in area CA1 have lower mean firing rates and finer spatial selectivity than 
neurons in the subiculum. 
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regions of high firing rate in position-phase space, which we refer to as unitary place 

fields in line with previous terminology (Maurer et al., 2006). Note that these place fields 

have oblique orientations that are indicative of theta phase precession; this aspect of 

spatial coding will be addressed later in the paper. 

We found that a majority of neurons in the subiculum have multiple, irregularly-

spaced unitary place fields, consistent with previous descriptions of “patchy” spatial firing 

(Barnes et al., 1990; Sharp and Green, 1994). Remarkably, the firing-rate maps seemed 

to vary from those in proximal subiculum (Figure 3.2.A) that closely resembled maps 

from CA1 neurons to those in the middle and distal parts of the subiculum (Figure 

3.2.B,C) that resembled maps from entorhinal grid cells in linear environments (Hafting 

et al., 2008; Mizuseki et al., 2009; Derdikman et al., 2009).  Almost all of the neurons 

that we recorded in the subiculum showed distinct patterns of activity in the rightbound 

versus leftbound directions of travel; this is consistent with the known directional 

selectivity of neurons in area CA1 (McNaughton et al., 1983) and also agrees with 

previous recording studies of subicular neurons during directional running on an 8-arm 

radial maze  (Barnes et al., 1990). 

To compare the spatial firing patterns of neurons in the proximal, middle, and 

distal subiculum, we computed spatial activity fractions based on the firing-rate maps 

(Battaglia et al., 2004b). A spatial activity fraction close to zero indicates that the neuron 

is sparsely active in space and only fires in a single location in the environment, whereas 

a fraction close to indicates that the neuron fires uniformly over all spatial location. 

Plotting the spatial activity fractions of subicular neurons grouped by transverse location 

revealed a proximal-distal gradient that was consistent with the firing-rate gradient 

(Figure 3.2.D). The median (inter-quartile range) spatial activity fraction of principal 

neurons in the proximal, middle, and distal groups were, respectively, 0.31 (0.19-0.43), 



77 
 

0.54 (0.32-0.68), and 0.69 (0.59-0.74). The effect of proximal-distal location on spatial 

activity fraction was statistically significant (p < 10−4, Kruskal-Wallis test).  

Comparison between regions confirmed previous findings that neurons in the 

subiculum tend to fire over a greater proportion of the environment than neurons in area 

CA1 (Figure 3.2.E). The median (inter-quartile range) spatial activity fraction of putative 

principal neurons in distal CA1 was 0.26 (0.21-0.37), which was significantly lower than 

the overall median spatial activity fraction in the subiculum (p < 10−10, Kruskal-Wallis 

test). Thus, the different firing-rate distributions in area CA1 and the subiculum are 

mirrored by different patterns of spatial selectivity. 

Spatial information content of subicular firing-rate maps 

What are the functional consequences of these spatial activity differences on 

neural information processing? We applied information theory to address this question. 

Using experimentally-derived position-phase firing-rate maps, we simulated realistic 

spiking responses and computed the mutual information between spatial variables and 

spiking in short (20 ms) time windows. This model-based information-theoretic analysis 

allowed us to extrapolate from our experimental data to infer differences in the amount of 

spatial information that is conveyed by neuronal populations in the proximal, middle, and 

distal subiculum and in area CA1. 

First, we compared the spatial information content of the firing-rate maps of 

single neurons. We found that, on average, single neurons in the subiculum convey 

more spatial information than do single neurons in distal CA1. The median (inter-quartile 

range) of mutual information for neurons in the subiculum was 0.057 (0.036-0.080) bits, 

versus 0.021 (0.0081-0.056) bits for neurons in distal CA1. This difference was 

statistically significant (p < 0.001, Kruskal-Wallis test). Comparisons within the subiculum 

revealed a statistically significant effect of transverse location as well. The median (inter-
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quartile range) mutual information for single neurons in the proximal, middle, and distal 

portions of the subiculum was, respectively, 0.030 (0.011-0.052), 0.062 (0.040-0.088), 

and 0.062 (0.043-0.083) bits (p = 10−4, Kruskal-Wallis ANOVA). Post-hoc multiple 

comparison with the Tukey-Kramer method showed that the median information for the 

proximal group was significantly lower than the median information for the middle and 

distal groups, at the 0.05 statistical significance level. 

These differences in spatial information content can be understood by 

considering the relationship between mean firing rate and information (Figure 3.3.A,B). 

Neurons with high mean firing rates tend to fire over a large proportion of the 

environment, with numerous up-and-down spatial modulations of intensity; conversely,  

Figure 3.3. (following page) Information-theoretic comparison of spatial 
representations in the subiculum and in area CA1. A, Relationship between mean 
firing rate and mutual information conveyed by single neurons in the subiculum. 
model neurons whose position-phase firing-rate maps were matched to experimental 
data from putative principal neurons in the subiculum. Symbols are color-coded 
according to the location of the neuron along the transverse dimension of the 
subiculum. Neurons with mean firing rates less than 1 spikes/second have low mutual 
information, whereas higher firing rates are compatible with high mutual information.  
B, Relationship between mean firing rate and the spatial information conveyed by 
model neurons whose position-phase firing-rate maps were matched to experimental 
data from putative principal neurons in the CA1/subiculum transition zone and in 
distal area CA1. Mean firing rates is strongly correlated with mutual information, and 
the distribution is skewed so that most neurons are clustered close to zero mean 
firing rate and convey almost no information. C, Histograms of spatial information 
conveyed by neuronal ensembles of different sizes in different subregions. Each 
subpanel is a histogram of mutual information for ensembles of model neurons of a 
given size. From left to right, columns correspond to single neurons, pairs of neurons, 
triplets of neurons, etc. Each row represents data from an anatomical subregion. As 
expected, the distributions shift to the right as the ensemble size increases; however, 
this shift is larger in the distal and middle subiculum than in the proximal subiculum 
and in distal area CA1 and the CA1/subiculum transition zone. For single neurons 
and pairs, the distribution of mutual information is skewed towards zero in the more 
proximal subregions. As one can also see in B, the mode of the distribution of mutual 
information among single neurons in area CA1 is near zero. D and E, Medians and 
inter-quartile ranges of the histograms shown in C. Mutual information increases 
nearly linearly with the number of neurons in the ensemble. For a given ensemble 
size, neurons in the proximal subiculum convey as much spatial information as do 
neurons in distal area CA1 and the CA1/subiculum transition zone, and neurons in 
the middle and distal subiculum convey more spatial information. 
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neurons with low mean firing rates tend to fire sparsely and remain silent in most of the 

environment (see Figure 3.2.D,E). A key insight of our information-theoretic analysis is 

that distributed, spatially-modulated firing throughout the environment conveys more 

information than sparse, spatially-localized firing. For example, a spatially-selective 

neuron that fires in only a single place field will be silent at most times, and these 
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silences convey little information about the animal’s current spatial location because they 

ambiguously code for any place that is not within the neuron’s place field. Stated in 

information-theoretic terms, this mostly-silent neuron has a low response entropy, and 

because the response entropy is an upper bound on mutual information, the mutual 

information must also be low. In agreement with this theoretical argument, we found a 

significant positive correlation between mean firing rate and the information conveyed by 

single neurons in the subiculum and in area CA1 (Spearman r = 0.66, p < 10−9). Neurons 

with very low firing rates (<1 spikes/second) conveyed little information, whereas 

neurons with higher firing rates conveyed more information, even though they were less 

spatially selective. Hippocampal area CA1 and the proximal subiculum contain a 

substantial fraction of neurons that are silent or only fire in a small region of the 

environment; these relatively uninformative neurons explain the lower information 

content of these regions. In contrast, the middle and distal subiculum contain neurons 

with higher mean firing rates and larger activity fractions, and most of these neurons 

exhibit informative spatial firing-rate modulations.  

Next, we compared the spatial information content of multi-neuronal 

combinations of firing-rate maps. Given an ensemble of neurons with diverse firing-rate 

maps, the amount of information that is conveyed in a combinatorial ensemble code can 

exceed the sum of information that each single neuron conveys independently. We 

found that, for a given ensemble size, randomly-selected ensembles of subicular 

neurons, particularly the middle and distal subiculum, carry substantially more spatial 

information than randomly-selected ensembles of CA1 neurons (Figure 3.3.C). For all 

groups, the relationship between ensemble size and mutual information was very close 

to linear. We therefore quantified the gain in information per additional neuron by linear 

regression of the median mutual information against ensemble size (Figure 3.3.D,E). 

The slopes (bootstrap standard error) of the best fit lines for the proximal, middle, and 
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distal portions of the subiculum were, respectively 0.037 (0.00094), 0.059 (0.0010), and 

0.064 (0.00080) bits/neuron. The slope of the best fit line for area CA1 and the 

CA1/subiculum transition zone was  0.036 (0.0013) bits/neuron. We performed a one-

way analysis of variance on these slopes, using bootstrap estimates of the variances of 

the regression coefficients. This ANOVA revealed a highly significant effect of transverse 

anatomical location (p < 10−9). Pairwise multiple comparisons with the Tukey-Kramer 

method revealed that distal area CA1 and the proximal had significantly smaller slopes 

than the middle subiculum and distal subiculum, at the 0.05 significance level. Thus, 

neuronal ensembles in the proximal subiculum convey as much spatial information as 

neuronal ensembles in area CA1, and neuronal ensembles in the middle and distal 

subiculum convey more spatial information. 

Our information-theoretic analysis points to the functional consequences of 

sparse versus non-sparse spatial representations in area CA1 and in the subiculum. 

Sparse, selective spatial representation has an information cost, because neurons (like 

CA1 place cells) that are active in only a small fraction of the environment convey little 

information when they are silent. In contrast, the non-sparse, high firing-rate spatial 

representation in the middle and distal subiculum results in greater average information 

per neuron, because neurons that exhibit spatial firing-rate modulations over a large 

proportion of the environment consistently convey information for most of the time. 

Remapping of subicular spatial representations between two geometrically-

identical environments 

Most place cells in the hippocampus exhibit distinct firing-rate maps in different 

environments, even when those two environments share the same local geometry 

(Skaggs and McNaughton, 1998; Karlsson and Frank, 2009). Given the projections from 

area CA1 to the subiculum, we would expect these changes in spatial representation to 
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propagate to the subiculum. However, published studies of the subiculum suggested that 

the spatial representation in the subiculum is much less sensitive to changes in 

environment than the upstream spatial representation in area CA1 (Sharp, 2006; Lever 

et al., 2009). To investigate this puzzle, we examined the firing-rate maps of neurons 

that were recorded in both environment 1 and environment 2. 

We found clear evidence that the spatial representation in subiculum remaps 

across two geometrically-identical environments that differed only in their familiarity to 

the rats and their allocentric locations. Of the subicular neurons that we recorded, 59 

putative principal neurons had stable, well-isolated, identifiable spike waveforms in both 

environment 1 and environment 2. We found many examples of neurons whose firing-

rate maps were completely different between environment 1 and environment 2. 

Examples of between-environment remapping by representative neurons in the 

proximal, middle, and distal subiculum are shown in Figure 3.4.. The diversity of 

remapping patterns is remarkable. Some neurons (like the one shown in Figure 3.4.A) 

had clear place fields in one environment and rarely spiked in the other environment. 

Other neurons maintained homotopic place fields across both environments, but with 

significant differences in firing rate, which has been described as “rate remapping” in the 

hippocampus (Leutgeb et al., 2005). Such rate remapping could account for previous 

claims about the invariance of subicular receptive fields (Sharp, 2006). Most commonly, 

we observed a complex form of remapping, where a subset of place fields were  

Figure 3.4. (following page) Examples of remapping in the subiculum. A-F, Each 
panel shows position-phase firing-rate maps of a single neuron in the same direction 
of travel in both environment 1 and environment 2, along with a comparative overlay 
of the spatial firing-rate profiles in the two environments. Arrows indicate the direction 
of travel. To show firing-rate differences, the firing-rate maps in each pair are plotted 
with the same color scale. Dark blue is zero, and dark red is the maximum firing rate 
encountered in either environment. A, B Representative neurons in the proximal 
subiculum. C, D Representative neurons in the middle subiculum. E, F 
Representative neurons in the distal subiculum. 
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maintained across both environments while other portions of the firing-rate map 

changed. Given a neuron’s firing-rate map in one environment, we could not find any 

parameter that reliably predicted how similar that neuron’s firing-rate map would be in 

the other environment. 

To quantify these observations over our entire data set, we first examined 

differences in the firing rates of neurons across environment 1 versus environment 2. 

Overall, neurons in the subiculum maintained a similar level of activity in both 

environments (Figure 3.5.A). There was a non-significant trend for neurons in the distal 

subiculum to have lower firing rates in environment 2 than in environment 1 (p = 0.15, 

two-sided binomial test); this difference may be attributable to that fact that environment 

2 was less familiar and therefore rats tended to run more slowly in environment 2. 

However, none of the neurons in the subiculum exhibited firing-rate changes so drastic 

that they were fired robustly in one environment but were silent in the other. The overall 

correlation between firing rate in environment 1 and firing rate in environment 2 was 

strong among subicular neurons (Spearman r = 0.87, p < 10−9). In contrast, principal 

neurons in distal area CA1 had much lower firing rates, and a substantial proportion had 

firing rates close to zero in one or both of the environments (Figure 3.5.B). Among 

neurons in the distal CA1 group, the correlation between firing rate in environment 1 and 

firing rate in environment 2 was weak and not statistically significant (Spearman r = 0.19, 

p = 0.49).  With a firing rate of 1 spikes/second as a threshold for categorizing a neuron 

as active/inactive, 7/15 (47%) of principal neurons in distal CA1 and the CA1/subiculum 

transition zone were active in one environment but not the other. Only 4/59 (7%) of 

principal neurons in the subiculum exhibited such a contrast in activity between the two 

environments. Fast-spiking putative inhibitory interneurons in both the subiculum and in 

CA1 fired consistently at the same high firing rate in either environment (data not 

shown). 



85 
 

We also quantified the within-neuron pairwise similarity of position-phase firing-

rate maps in environment 1 and environment 2 (Figure 3.5.C,D,E,F). The first measure, 

cosine similarity of receptive fields (DeAngelis et al., 1999), is equivalent to treating a 

given neuron’s firing-rate maps in the two environments as vectors and taking their dot 

product. The second measure, normalized overlap (Battaglia et al., 2004b; Singer et al., 

2010) measures the overlapping areas of the spatial firing profiles. Both the cosine 

similarity and normalized overlap measures are sensitive to overall place field rates and  

Figure 3.5. (following page) Remapping of spatial representations across 
environments. A, Scatterplot of mean firing rates in environment 1 versus 
environment 2 for putative principal neurons in the subiculum. Mean firing rates were 
computed during times when the rat was running towards a food well with a speed of 
least 10 cm/second and the LFP theta power ratio was above threshold. Symbols are 
color-coded according to the location of the neuron along the transverse dimension of 
the subiculum. The dashed diagonal line has unity slope.  B, A similar scatterplot of 
mean firing rates in environment 1 versus environment 2 for putative principal 
neurons in the CA1/subiculum transition zone and in distal area CA1. C, Cosine 
similarity of position-phase firing-rate maps between two sessions in the same 
environment (horizontal axis) and between two different environments (vertical axis), 
for neurons in the subiculum. Departures below the dashed diagonal unity line 
indicate dissimilar spatial representations in environment 1 versus environment 2. 
Each symbol corresponds to a neuron and a direction of travel (rightbound or 
leftbound). Triangles correspond to putative principal neurons, and circles correspond 
to fast-spiking putative interneurons. Symbols are color-coded according to the 
location of the neuron along the transverse dimension of the subiculum. D, The same 
cosine similarity measures for neurons in the CA1/subiculum transition zone and in 
distal area CA1. Triangles correspond to putative principal neurons, and circles 
correspond to fast-spiking putative interneurons. E, Normalized overlap of position-
phase firing-rate maps between two sessions in the same environment (horizontal 
axis) and between two different environments (vertical axis), for neurons in the 
subiculum. Again, departures below the dashed diagonal unity line indicate dissimilar 
spatial representations in environment 1 and environment 2. Symbols are the same 
as in C. F, The same normalized overlap measures for neurons in the CA1/subiculum 
transition zone and in distal area CA1. Triangles correspond to putative principal 
neurons, and circles correspond to fast-spiking putative interneurons. G, Mutual 
information between spike responses and environment, conditioned on linearized 
position in the environment, for ensembles of neurons in the subiculum. Each plotted 
point is the median of the conditional mutual information for ensembles of a given 
size. Error bars indicate the inter-quartile range of values. Symbols and lines are 
color-coded according to the location of neurons along the transverse dimension of 
the subiculum. H, Medians and inter-quartile ranges of conditional mutual information 
for ensembles of neurons in distal area CA1 and in the CA1/subiculum transition 
zone. 
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sizes, so we performed within-neuron comparisons only, comparing the similarity of 

firing-rate maps in environment 1 versus environment 2 to the similarity across two 

exposures to environment 1. If the spatial representation in the subiculum were invariant 

to changes in environment, then we would expect, by chance alone, approximately half 

of the neurons to have higher similarity scores for [environment 1–environment 2] than 

for [environment 1–environment 1]. 

 In fact, we found that a significant majority of neurons in the subiculum exhibited 

more similarity in their firing-rate maps between two sessions in the same environment 

than between different environments (cosine similarity: 39/39 neurons, p < 10−10; 

normalized overlap: 37/39 neurons, p < 10−8; binomial test). Performing the same 

analyses with principal neurons in distal CA1 showed that they also remapped between 

environment 1 and environment 2, as expected (cosine similarity: 10/11 neurons, 

p < 0.01; normalized overlap: 10/11 neurons, p < 0.01; binomial test). These results 

clearly demonstrate that the spatial representation in the subiculum, like the spatial 

representation in the hippocampus, is not invariant to changes of environmental context, 

contrary to previous hypothesis (Sharp, 2006). 

We again used our model-based information-theoretic approach to rigorously 

compare how much information neurons convey about the animal’s current 

environmental context. Because the two tracks were geometrically identical, we could 

compare the spiking probabilities of neurons at equivalent linearized positions across 

both environments. In terms of information theory, we estimated the conditional mutual 

information between ensemble spiking responses and the identity of the environment, 

given the animal’s current linearized position on the track. We found that neurons in the 

subiculum, on average, are as informative about spatial context as neurons in area CA1. 

Figure 3.5.G,H show the gain in conditional mutual information per additional neuron in 

the ensemble. The slopes of the best fit lines (bootstrap standard error) for the proximal, 
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middle, and distal portions of the subiculum were, respectively 0.012 (0.00027), 

0.016 (0.00036), and 0.022 (0.00034) bits/neuron. For comparison, the gain in 

conditional mutual information per additional neuron in distal area CA1 and was 

0.015 (0.00052) bits/neuron. We performed a one-way analysis of variance on these 

slopes, using bootstrap estimates of the sample variances. This ANOVA revealed a 

significant effect of transverse anatomical location (p < 1-9). Pairwise multiple 

comparisons with the Tukey-Kramer method revealed that the gain in conditional mutual 

information was significantly lower in the proximal subiculum versus the middle 

subiculum, and significantly higher in the distal subiculum, at the 0.05 statistical 

significance level. Thus, there is a proximal-distal gradient in the amount of environment-

specific information that is conveyed in the subiculum. Neurons in the proximal 

subiculum convey slightly less information than those in area CA1, while neurons in the 

distal subiculum convey more information. Overall, the population of neurons in the 

subiculum is as informative about the identity of the current environment as the 

upstream population in area CA1. 

Theta modulation in the subiculum 

The spatial information analyses revealed that the firing-rate maps of subicular 

neurons contain ample information about both the animal’s location in an environment 

and the identity of that environment.  We then asked whether subicular neurons also had 

the potential to participate in a temporal code associated with phase precession. We first 

examined the relationship between the firing of neurons in the subiculum and the phase 

of the theta oscillations in the LFP (Figure 3.6.).  

Previous investigators found that the firing of neurons in the subiculum was 

significantly modulated by LFP theta phase (Anderson and O'Mara, 2003). We confirmed 

this result in our data and also discovered that distal subicular neurons were more  
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Figure 3.6. Theta phase modulation of single-unit spiking in the subiculum. A, Theta 
phase tuning curves of putative principal neurons in the subiculum. Each row of the 
colormap shows the instantaneous firing rate of a single neuron as a function of the 
phase of theta oscillations in the LFP. Instantaneous firing rates were estimated with 
an Epanechnikov kernel smoother (15° halfwidth) and normalized by the maximum 
for each neuron. Neurons are sorted by their preferred theta phase, indicated by 
white dots for neurons that are significantly modulated at the 0.05 statistical 
significance level. To show periodicity, tuning curves are displayed over two full 
cycles of theta. B, Corresponding population firing rates, averaged over principal 
neurons in the distal, middle, and proximal thirds of the subiculum. C, Histograms of 
spike phase concentration  parameters for neurons in the distal, middle, and proximal 
thirds of the subiculum. Larger values indicate stronger phase locking to LFP theta 
oscillations. 



90 
 

strongly theta modulated than their proximal or distal subicular counterparts. Out of the 

91 neurons that we recorded in the subiculum, 89 had a statistically significant unimodal 

theta phase preference at the 0.05 significance level (Rayleigh test for non-uniformity). 

Categorizing neurons in the subiculum by transverse location revealed significant 

differences in the degree theta modulation (Figure 3.6.B,C). The population average 

firing rate in the distal subiculum was not only greater than that in the proximal 

subiculum, but also more strongly modulated by theta phase. Differences in theta phase 

modulation were also apparent when analyzed on a per-neuron basis. We quantified the 

phase locking of each neuron to LFP theta oscillations by fitting the distribution of spike 

phases with a von Mises distribution and calculating the concentration parameter of fit 

(Siapas et al., 2005). The concentration parameter assumes positive values, and larger 

values indicate stronger phase locking. Excluding fast-spiking neurons, median (inter-

quartile range) spike phase concentration values in the proximal, middle, and distal 

portions of the subiculum were, respectively, 0.25 (0.16-0.34), 0.17 (0.11-0.29), and 

0.34 (0.28-0.50) (p = 0.00014, Kruskal-Wallis ANOVA). Pairwise multiple comparisons 

with the Tukey-Kramer method revealed that neurons and proximal and middle 

subiculum had significantly weaker theta phase modulation than neurons in the distal 

subiculum at the 0.05 level, but the proximal and middle groups did not significantly differ 

from each other. To control for possible theta phase offsets between recording sites, we 

repeated these analyses with each neuron referenced to the local phase of theta 

recorded on the same tetrode on which the neuron’s spikes were recorded, instead of a 

common reference electrode in each hemisphere. This did not qualitatively alter any of 

the results. 
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Phase precession in the subiculum 

The position-phase firing-rate maps in Figure 3.2. and Figure 3.4. indicate that 

neurons in the subiculum exhibit theta phase precession. Many of the unitary place fields 

in these firing-rate maps are obliquely oriented in position-phase space, with a negative 

correlation between forward displacement along the track and the preferred theta phase 

of firing.  In addition, phase precession is apparent over multiple successive place fields 

along the track. Similar multi-field phase precession has been described for neurons in 

the hippocampus (Maurer et al., 2006) and in the entorhinal cortex (Hafting et al., 2008; 

Mizuseki et al., 2009).  

To quantify theta phase precession over the entire data set, we segmented 

individual place fields in the firing-rate maps and measured their sizes and slopes in 

position-phase space, using a fully-automated, unbiased procedure (Figure 3.7.A). This 

procedure was designed to be equally sensitive to positive and negative slopes. Using 

this algorithm, we segmented 143 unitary place fields that had a statistically significant 

correlation between theta phase and linearized position. The correlation between phase 

and position was negative – that is, there was theta phase precession in the expected 

direction – in 142/143 of these unitary place fields (Figure 3.7.B). 

We also measured the spatial extent of the place field along the linearized 

position dimension (field length) and found a significant correlation with phase 

precession slope, as has been reported for the place fields of CA1 neurons (Dragoi and 

Buzsaki, 2006). Larger place fields had shallower phase precession rates (Spearman 

correlation = 0.65, p < 10−9). Similar statistically-significant correlations (all p < 0.001) 

were obtained when we separately analyzed neurons in the proximal, middle, and distal 

groups, and we also obtained a similar correlation with the place fields of neurons that 

we recorded in distal area CA1 (Figure 3.7.D). Both in area CA1 and in the subiculum,  
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Figure 3.7. Theta phase precession in unitary place fields. A, Illustration of the place 
field segmentation method. A position-phase firing-rate map is shown for a 
representative neuron in the subiculum. Segmented place fields are outlined in a 
dashed white contour, and white arrows indicate the principal axis of phase 
precession within each field. B, Summary of field length and phase precession slope 
for all unitary place fields of subicular neurons with significant position-phase 
correlations. Each symbol corresponds to a unitary place field. Symbols are color-
coded according to the anatomical location of the neuron along the transverse axis of 
the subiculum. Phase precessions slope is positively correlated with field length, so 
that larger place fields have shallower slopes. C, Summary of preferred theta phase 
and peak firing rate for the same unitary place fields as in B. The vertical line 
indicates the mean phase for all segmented place fields,  which is near to the trough 
of the LFP theta oscillation. D, Summary of field length and phase precession slope 
for all unitary place fields of CA1 neurons with significant position-phase correlations. 
E, Summary of preferred theta phase and peak firing rate for the same unitary place 
fields as in D. 
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place fields were preferentially centered around the trough of the LFP theta oscillation 

(Figure 3.7.C,E). These findings indicate that although neurons in the subiculum and 

CA1 differ in their spatial activity fractions and mean firing rates, the phenomenology of 

theta phase precession within unitary place fields is similar. 

Although this place-field segmentation analysis demonstrated qualitative 

similarities in phase precession between the subiculum and CA1, it only included a small 

subset of the place field that could be cleanly segmented in an automated fashion. Many 

neurons in the subiculum had firing-rate maps that contained characteristic “sloped” 

regions indicative of phase precession, but unitary fields in these regions could not be 

segmented because they were overlapping (for example, see the middle part of the 

firing-rate map in Figure 3.7.A). To give a more complete accounting of phase 

precession which did not require segmentation of receptive fields and include all of the 

spike data, we computed the spike phase spectrum (Mizuseki et al., 2009). This method 

quantifies the relative frequency shift between the neuron’s oscillatory spiking and the 

ongoing theta oscillation in the local field potential; phase advance due to theta phase 

precession is manifested as a peak frequency that is faster than the frequency of the 

LFP theta, which is defined as unity in the spike phase spectrum. Because most of the 

neurons fired differently in the two directions of running along the track and across the 

two environments, we estimated separate spectra for each environment and direction of 

travel. We used a multitaper covariance method to locate the peak of each spike phase 

spectrum, and we used a shuffle test to determine which spectra had significant peaks. 

This peak-finding procedure, illustrated in Figure 3.8.A, was designed to be equally 

sensitive to peak frequencies above or below the theta frequency.  

We found that neurons in the subiculum had peak frequencies which were 

consistently shifted above unity, indicating that their spiking oscillated faster than the 
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local LFP theta oscillation. This was true for neurons in the proximal, middle, and distal 

thirds of the subiculum, and also held true regardless of the neuron’s spatial activity 

fraction (Figure 3.8.B). There was, however, a weak but significant negative correlation 

between the spatial activity fraction and the peak frequency of the spike phase spectrum 

(Spearman correlation = −0.14, p < 0.03). 

When we performed the same spike phase spectrum analysis with neurons in 

distal area CA1 and the CA1/subiculum transition zone, we found that principal neurons 

exhibited a range of shifted peak frequencies similar to those observed in the subiculum, 

even though neurons in distal area CA1 had significantly smaller spatial activity fractions 

and lower mean firing rates (Figure 3.8.C). Both in the subiculum and in CA1, fast-

spiking putative interneurons, with spatial activity fractions close to unity, had peak 

frequencies that were closer to unity. In summary, principal neurons in the subiculum 

Figure 3.8. (following page) Spectral analysis of theta phase precession. A, The 
spike phase spectrum of a representative neuron in the subiculum. This example 
corresponds to the same neuron, environment, and direction of travel that is shown in 
Figure 3.7.A. The top panel shows the estimated power spectral density, while the 
bottom panel shows the estimated first derivative of the spectrum with respect to 
frequency. Note that this first derivative was estimated using the covariance of the 
multitaper eigenspectra, not by numerical differentiation of the estimated power 
spectral density. The solid vertical line indicates the peak frequency, which is greater 
from unity, indicating phase precession. Gray lines in the top panel are spike phase 
spectra computed for 500 surrogate spike trains in which spikes were independently 
jittered within a single theta cycle. This shuffle test shows that the peak in the 
observed spike phase spectrum is statistically significant. B, Summary of peak 
frequencies for all spike phase spectra of subicular neurons that have significant 
peaks. Each symbol corresponds to spike phase spectrum of a single neuron in a 
particular environment and direction of travel. Spatial activity fractions were computed 
from the corresponding firing-rate maps. The spike phase spectra of fast-spiking 
neurons (putative inhibitory interneurons) are plotted as circles, and the spike phase 
spectra of non-fast spiking neurons (putative pyramidal neurons) are plotted as 
triangles. Symbols are color-coded according to the anatomical location of the neuron 
along the transverse axis of the subiculum. The peaks of the spike phase spectra for 
putative principal neurons occur at frequencies that are shifted above unity, and the 
distribution of peak frequencies is similar across proximal-distal locations within the 
subiculum. C, Summary of peak frequencies for all spike phase spectra of CA1 
neurons that have significant peaks. 
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and in area CA1 oscillate at similar frequencies – offset from the frequency of theta 

oscillations – despite pronounced differences in firing rate and spatial activity fraction 

between these two regions and at different proximal-distal levels within the subiculum. 

This result implies that the mechanism of phase precession is not sensitive to 

differences in overall activity level or distributed spatial coding, and it also suggests that 

neurons in the subiculum are frequency-coupled to upstream cell assemblies in the 

hippocampus (Geisler et al., 2010). 

Given that neurons in the subiculum exhibit theta phase precession, we 

examined whether phase precession is essential for the spatial information content of 
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subicular firing-rate maps.  We repeated our information-theoretic analysis with 

synthetically generated firing-rate maps in which theta phase precession (that is, the 

interactions between phase and position) had been removed while preserving each 

neuron’s overall theta modulation and spatial firing profile.  We found that replacing 

phase precession with simple theta modulation had little effect on the amount of spatial 

information conveyed in patterns of spiking and silence in short (10-40 ms) time 

windows. However, due to the computational limitations, we only measured information 

in single time bins and did not examine temporal correlations in spiking across multiple 

time bins. Thus it remains possible that additional information may be conveyed by 

sequential spiking patterns associated with theta phase precession in the subiculum. 

3.5 Discussion 

We gained several insights into how spatial information is propagated and 

transformed through the subiculum. First, we found that the spatial representation within 

the subiculum exhibits a proximal-distal gradient, with higher firing rates and more 

spatially-distributed firing patterns in the distal part of the subiculum. Second, we found 

that this transverse gradient within the subiculum has important functional consequences 

for conveying spatial information: the distributed firing-rate maps of neurons in the distal 

subiculum contained more information about both spatial location and spatial context 

than the sparse firing-rate maps of neurons in the proximal subiculum or area CA1.  

Finally, we demonstrated that neurons at all proximal-distal locations within the 

subiculum exhibit theta phase precession.  

Proximal-distal differentiation within the subiculum 

We found several significant proximal-distal differences within the subiculum. 

Neurons in the proximal subiculum (closer to area CA1) have lower mean firing rates 
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and sparser spatial firing-rate maps than neurons in the distal subiculum (closer to the 

presubiculum). The proximal-distal difference in the sparseness of coding that we 

observed is larger than the difference that was reported in a earlier study (Sharp and 

Green, 1994); this discrepancy may be due to methodological differences, such as the 

septal-temporal recording location within the subiculum, the behavioral paradigm, or the 

exact measure that was used to quantify sparseness. The transverse gradient in spatial 

representation corresponded to a in the amount of spatial information conveyed by 

neurons in the distal versus proximal subiculum. Neurons in the proximal subiculum, 

which have spatial activity patterns similar to neurons in area CA1, carry less spatial 

information than neurons in the distal subiculum, which have high mean firing rates and 

large spatial activity fractions. In addition, we report a new finding of transverse 

topography: neurons in the distal subiculum tend to show stronger theta modulation than 

neurons in the proximal subiculum.  

The proximal and distal portions of the subiculum send output projections to 

different territories (Naber and Witter, 1998). Thus, the observed proximal-distal 

gradients in firing rate and spatial activity may reflect different requirements for sparse 

versus distributed spatial coding in the target areas. These proximal-distal gradients may 

be governed by the topographical organization of entorhinal inputs to the subiculum. The 

distal subiculum receives inputs from, and sends return projections to, the medial 

entorhinal cortex; likewise, the proximal subiculum is interconnected with the lateral 

entorhinal cortex (Witter, 2006). Recent work has shown that LFP theta oscillations and 

theta modulation of spiking are stronger in the medial entorhinal cortex than in lateral 

entorhinal cortex (Deshmukh et al., 2010). This finding is consistent with our observation 

that neurons in distal subiculum, which receive inputs from the medial entorhinal cortex, 

show stronger theta modulation of spiking than neurons in proximal subiculum, which 

receive inputs from the lateral entorhinal cortex. However, others have reported that 
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neurons in medial entorhinal cortex exhibit greater spatial selectivity than those in lateral 

entorhinal cortex (Hargreaves et al., 2005). This functional topography within the 

entorhinal cortex is puzzling in light of our finding that neurons in the distal subiculum, 

which receive inputs from the medial entorhinal cortex, exhibit poorer spatial selectivity 

than neurons in the proximal subiculum, which receive inputs from the lateral entorhinal 

cortex. One possible explanation is that neurons in the distal subiculum may integrate a 

greater number of inputs from entorhinal cortex or area CA1 than neurons in the 

proximal subiculum, so that the net resultant spatial firing profile per neuron is less 

selective in the distal subiculum despite the spatial selectivity of individual neurons in 

medial entorhinal cortex.  

Advantages of distributed coding in the subiculum 

We examined the spatial firing patterns of neurons in the subiculum during 

running behavior in linear environments. We replicated previous findings that neurons in 

the subiculum tend to have higher firing rates and poorer spatial selectivity than neurons 

in area CA1 (Barnes et al., 1990; Sharp and Green, 1994). However, using information 

theory, we demonstrated that neurons in the subiculum with high mean firing rates and 

broad, multi-peaked spatial firing profiles actually convey more spatial information than 

neurons in area CA1 with low mean firing rates and localized spatial firing profiles. In 

effect, subicular neurons with multiple unitary fields act as “multiplexed” CA1 place cells, 

sacrificing spatial selectivity for higher information capacity.  

The subiculum is at the output end of the classical trisynaptic circuit of the 

hippocampus. Studies of spatial representation in upstream regions of this circuit have 

demonstrated that spatial representations become progressively less sparse at each 

stage of feedforward processing (Barnes et al., 1990; Jung and McNaughton, 1993; 

Leutgeb et al., 2004). We propose that one of the functions of the subiculum is to 
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transform the still relatively sparse spatial representation in area CA1 (Thompson and 

Best, 1989; Karlsson and Frank, 2008) into a dense, distributed representation that is 

suitable for conveying information to downstream targets outside of the hippocampal 

formation. Sparse representations have several advantages: metabolic efficiency, 

reduced interference during learning, associative memory capacity, and the ability to 

learn using simple local synaptic plasticity rules  (Marr, 1971; Olshausen and Field, 

2004; Fiete et al., 2004). However, sparse representations are also wasteful in terms of 

average information per neuron, because a large fraction of neurons in the population 

are silent for most of the time and therefore contribute little information. In contrast, 

dense distributed representations are characterized by a population firing-rate 

distribution that is shifted away from zero, so that any randomly-selected neuron in the 

population is likely to be informative at any given time. From the perspective of a 

downstream decoding circuit that can sample only a small random subset of incoming 

axons, it may advantageous to receive inputs from subicular neurons, even if those 

inputs individually have poor spatial selectivity, because enough spikes will be received 

in a short time window to disambiguate the animal’s current spatial location. 

Comparatively less information can be recovered from the same number of sparsely-

firing CA1 inputs. Thus, the distributed spatial representation in the subiculum may be 

specialized for conveying hippocampally-processed information to the rest of the brain. 

Subicular representation of spatial context 

An earlier hypothesis was that the subiculum, unlike area CA1, provides an 

“invariant” spatial representation (Sharp, 2006). Our data are not consistent with this 

hypothesis. We found that individual neurons in the subiculum remap across two 

different environments, even when those environments are geometrically identical. 

Furthermore, using information theory, we demonstrated that neurons in the subiculum 
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convey comparable information about the identity of the current environment as do 

neurons in area CA1. Thus, at a population level, the spatial representation in the 

subiculum is sensitive to environmental changes, and in this respect, is unlike the 

invariant geometric maps reported in parts of the entorhinal cortex (Hafting et al., 2005; 

Solstad et al., 2008).  [But see (Lever et al., 2009)]. Thus, the context-dependent 

remapping of spatial representations in area CA1 is reflected in the downstream output 

of the subiculum. 

However, we did observe a diversity of remapping patterns in the subiculum. 

Some neurons appeared to have completely different place fields in the two 

environments, whereas others seemed to have place fields in similar locations but with 

modest scaling of firing-rate. We speculate that these different degrees of remapping at 

a single-neuron can support multiple levels of representation, as has been suggested by 

others (Leutgeb et al., 2005). Neuron that maintain the same firing-rate map may 

support a generalized representation of geometric similarities across environments, 

whereas neurons that exhibit completely different firing-rate maps may represent 

contextual information, such as environmental novelty, that disambiguates between 

geometrically-identical environments (Singer et al., 2010). 

Theta phase precession in the subiculum 

We found that neurons at all proximal-distal locations within the subiculum exhibit 

robust theta phase precession, and that the range of oscillatory spiking frequencies is 

similar between the subiculum and area CA1 at the same intermediate location along the 

septal-temporal axis. This finding implies that the mechanism of phase precession in the 

subiculum must be remarkably invariant to proximal-distal gradients in mean firing rate, 

spatial activity, and anatomical connectivity. 
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The manifestation of theta phase precession across both area CA1 and the 

subiculum, and the “compositional” appearance of subicular firing-rate maps with 

multiple unitary place fields, might seem to suggest that neurons in the subiculum inherit 

phase precession and spatial information through the convergence of multiple inputs 

from CA1 place cells. This hypothesis was proposed much earlier (Barnes et al., 1990; 

Sharp and Green, 1994) to explain why neurons in the subiculum do not exhibit the 

sparse, selective spatial firing patterns of upstream neurons in area CA1. We argue that 

this hypothesis, although appealing, is unlikely to be correct in its simplest form. 

Although we do not know the exact numbers or detailed organization of CA1-subiculum 

synapses, the direct projection from CA1 to the subiculum is indisputably extremely 

dense  (Amaral et al., 1991; Cenquizca and Swanson, 2007), so it is likely that each 

neuron in the subiculum receives inputs from a large number of CA1 place cells. Recent 

modeling work has shown that, as a consequence of the spatial offsets and overlaps 

between CA1 place fields, the summation of spiking outputs from phase-precessing CA1 

place cells results in a net excitatory drive that is phase-locked, not precessing, relative 

to the LFP theta oscillation (Geisler et al., 2010). Therefore, massed convergence and 

summation of many uncorrelated CA1 inputs would produce spatially-distributed firing in 

the subiculum with weak or absent phase precession. More intricate circuit-level 

mechanisms are required to explain the persistence of theta phase precession despite 

the tremendous convergence of CA1 inputs onto subicular neurons.  

Like area CA1 of the hippocampus, the subiculum receives direct inputs from the 

entorhinal cortex which selectively originate from neurons in layer 3 (Witter et al., 2000; 

Baks-Te et al., 2005). Principal neurons in layer 3 of entorhinal cortex have spatially-

extensive receptive fields and rarely exhibit theta phase precession, but rather exhibit 

phase-locking to the LFP theta oscillation (Hafting et al., 2008; Mizuseki et al., 2009). As 

is the case for CA1, it is mystery how the majority of neurons in the subiculum maintain a 
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higher frequency of oscillation than the LFP theta oscillation despite the frequency 

mismatch with entorhinal inputs, which would cause destructive interference. The 

contribution of entorhinal input to oscillatory activity in the subiculum remains unclear. 

What are the consequences of theta phase precession for spatial information 

coding in the subiculum?  It is not clear whether temporal coding of distances by 

“temporal sequence compression”, which was developed for hippocampal place cells 

with single place fields (Skaggs et al., 1996; Dragoi and Buzsaki, 2006), is a plausible 

mechanism in the subiculum. Neurons in the middle and distal subiculum tend to 

“multiplex” their firing over multiple place fields, so that their spikes do not 

unambiguously signal a single region in the environment. As a result, spike-timing 

differences between pairs of neurons are similarly ambiguous with respect to spatial 

order and distances between the neurons’ place fields. Instead, it may be more fruitful to 

think about theta phase precession as a signature of transiently-synchronized cell 

assemblies that are temporally segregated from the larger population by their frequency 

of co-oscillation (Geisler et al., 2010). Coordinated phase precession of cell assemblies 

across area CA1 and the subiculum may facilitate the transmission of spatial information 

and spike timing-dependent plasticity within the hippocampal circuit.  
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4 Conclusion 

The hippocampal formation plays an essential role in the mnemonic 

representation of multisensory spatiotemporal sequences. Neurons in the hippocampal 

formation exhibit complex responses to the animal’s spatial location and environmental 

context. In this dissertation, I have presented two significant and original pieces of 

research, which I hope will contribute to bridging the explanatory gap between neural 

responses in the hippocampal formation and the cognitive phenomenology of 

hippocampally-dependent learning and memory. 

In the first part of this dissertation, “Hippocampal lesions impair rapid learning of 

a continuous spatial alternation task”, I tested the effects of hippocampal lesions on 

learning of the W-maze task. The goal of this study was to determine whether the 

hippocampal formation contributes to learning of the W-maze task. I discovered that 

complete excitotoxic lesions of the hippocampal formation impair learning of the W-maze 

task and result in a remarkable pattern of perseverative errors in which animals 

repeatedly run along unrewarded trajectories. The learning impairment due to 

hippocampal lesions could not be explained by simple deficits in locomotion or 

motivation, because lesioned rats performed well on a control maze-running task. I 

conclude that the hippocampal formation makes an essential contribution to rapid 

reinforcement learning of spatiotemporal sequences. This work provides a solid 

foundation for future experiments that combine the W-maze learning paradigm with 

single-unit recording and/or real-time targeted perturbation of neural activity in the 

hippocampal formation.  

In the second part of this dissertation, “Spatial information outflow from the 

hippocampal circuit: distributed spatial coding and phase precession in the subiculum”, I 

recorded spikes and LFPs in the subiculum and in adjacent area CA1 while rats ran in 
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two geometrically-identical environments. The goals of this study were the following: to 

quantify spatial information content in the subiculum; to determine whether subicular 

spatial representations remap according to environmental context; and to characterize 

the firing of subicular neurons relative to theta oscillations in the LFP. I discovered that 

neurons in the subiculum carry a non-sparse but highly informative representation of 

spatial location and context. This subicular spatial representation is topographically 

organized along the proximal-distal anatomical axis, so that neurons in the proximal 

subiculum are similar to CA1 place cells in their spatial selectivity, while neurons in the 

distal subiculum have higher mean firing rates and fire in a more spatially-distributed 

manner. Furthermore, I discovered that neurons in the subiculum, like place cells in area 

CA1, exhibit robust theta phase precession. Subicular neurons with multiple unitary 

place fields often exhibit phase precession within each field, which suggests that their 

firing may be driven by multiple independently-precessing inputs. These findings 

substantially advance our understanding of the special role of the subiculum in the 

outflow of spatial information from the hippocampal formation. 

4.1 Methodological considerations 

There are several methodological caveats to consider when interpreting the 

findings of this dissertation. I will address these caveats in turn, first for the hippocampal 

lesion study and then for the subicular single-unit recording study. 

In the hippocampal lesion study, a major methodological factor that is not well 

understood is the pretraining procedure. Rats were pretrained to run on a linear track to 

ensure baseline proficiency at running for food reward. However, it is possible that the 

pretraining procedure exacerbated the effects of hippocampal lesions on learning of the 

W-maze task by establishing a prepotent running behavior. This caveat does not 
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invalidate the significant finding that the hippocampal formation contributes to learning of 

the W-maze task, but it does raise questions about the exact nature of the hippocampal 

contribution. An additional experiment is necessary to determine whether hippocampal 

lesions result in perseverative errors on the W-maze task even in naïve rats that have 

not been pretrained. The selectivity of the excitotoxic lesion technique is another 

methodological factor that warrants consideration. In the lesion group, damage to the 

hippocampal formation was complete, and there was also significant damage to the 

entorhinal cortex and extraneous damage to neighboring neocortical and thalamic 

structures. It is possible that damage outside of the hippocampal formation may partially 

account for the observed learning impairment. Because of the small sample sizes and 

the completeness of the lesions, it was not possible to comprehensively analyze the 

relationship between spared hippocampal tissue and learning. 

A major methodological limitation of the single-unit recording study of the 

subiculum is that neurons were not recorded throughout the anatomical extent of the 

subiculum. In all subjects, the recording electrodes were located at intermediate 

locations along the longitudinal axis of the hippocampal formation. Thus, the findings 

should be interpreted as strictly pertaining only to the intermediate subiculum. This is not 

a trivial detail, because the hippocampal formation is functionally differentiated along its 

longitudinal axis (Maurer et al., 2005; Brun et al., 2008; Kjelstrup et al., 2008; Royer et 

al., 2010; Fanselow and Dong, 2010). Additional experiments are necessary to examine 

spatial representation at different longitudinal levels of the subiculum. Likewise, the 

laminar extent of the subiculum was not comprehensively sampled. Unlike area CA1, in 

which principal neurons are all aligned in a single compact cell layer, the subiculum has 

a diffuse, heterogeneous cell layer, and subicular neurons located deep in the layer 

differ from those that are superficially located (Greene and Mason, 1996; Ishizuka, 2001; 

Harris et al., 2001a). The recording techniques used in this study precluded any analysis 



106 
 

of the laminar structure of spatial representation within the subiculum. In future studies, it 

may be advantageous to use high-density silicon probes (Csicsvari et al., 2003) in order 

to record neurons throughout the laminar extent of the subiculum. 

Another methodological caveat has to do with the statistical model that was used 

to estimate position-phase firing-rate maps. Each neuron’s spike train modeled as an 

inhomogeneous Poisson process that was completely described by a fixed firing-rate 

map. In fact, neurons do not exhibit Poisson spike-train statistics due to refractoriness 

and bursting, and hippocampal place cells exhibit within-session non-stationary in their 

firing-rate maps (Mehta et al., 2000; Frank et al., 2002). Considering these departures 

from the statistical model, the estimated position-phase firing-rate maps – and the 

information-theoretic analysis that is based upon these firing-rate maps – should be 

interpreted as useful approximations that capture the important features of spatial coding 

even if they are not exact. 

4.2 Future directions 

The research that is presented in this dissertation can be readily extended in 

several exciting directions. Given the results of the hippocampal lesion study, the 

obvious next step is to record from hippocampal neurons during learning of the W-maze 

task in order to identify related changes in spatial representation. This could be done by 

applying statistical algorithms to track non-stationary neural responses over the course 

of behavior (Frank et al., 2004). A complementary approach is to perturb neural activity 

in order to assess the causal relationship between neural changes and behavioral 

changes. As reviewed in the introductory chapter of this dissertation, hippocampal 

ripples are thought to be important for conveying information from the hippocampal 

formation to other parts of the brain. Transient electrical disruption of neural activity in 
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the hippocampal formation during ripples impairs spatial learning and memory 

(Girardeau et al., 2009; Ego-Stengel and Wilson, 2009), and neurons in hippocampal 

area CA3 show reward-related activity during learning and performance of the W-maze 

task (Singer and Frank, 2009) Thus, an obvious next experiment is to disrupt 

hippocampal ripples to determine whether learning and/or performance of the W-maze 

task depends on ripples. Using recently-developed optogenetic techniques (Miesenbock, 

2009), it may even be possible to transiently disrupt hippocampal neural activity in a 

region-selective manner during learning of the W-maze task. For example, given the role 

of the subiculum in the outflow of information from the hippocampal formation, an 

interesting question is whether selective silencing of the subiculum – while preserving 

activity in other hippocampal regions – is sufficient to reproduce the learning impairment 

that results from lesions of the entire hippocampal formation. 

In the single-unit recording study of the subiculum, I have shown that neurons in 

the subiculum have remarkably complex structure in their position-phase firing-rate 

maps. Future experiments using optogenetic manipulations can address the role of CA1 

versus entorhinal inputs in generating place fields and theta phase precession in the 

subiculum. Recently-developed techniques for head-fixed intracellular recordings in 

awake behaving animals (Harvey et al., 2009) can be used to investigate the membrane-

potential dynamics of subicular neurons during spatially-extended firing and phase 

precession across multiple place fields. The finding that subicular neurons at all 

proximal-distal locations exhibit theta phase precession, even though they differ widely 

in their mean firing rates and spatial activity fractions, poses interesting questions about 

the mechanism of phase precession. Several biophysical models have been proposed to 

explain how neurons generate faster-than-theta oscillations in their spiking (Kamondi et 

al., 1998; Magee, 2001; Mehta et al., 2002; Harris et al., 2002), but these models are 
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based on data from CA1 neurons. These models should be generalized to account for 

the different properties of neurons in the subiculum.  

Finally, neural activity in the subiculum during the large irregular-amplitude (non-

theta) activity state was not examined in this dissertation. Several studies have 

demonstrated that the spatial firing sequences of CA1 place cells are reactivated during 

ripples (Nadasdy et al., 1999; Lee and Wilson, 2002; Foster and Wilson, 2006; Diba and 

Buzsaki, 2007; Karlsson and Frank, 2009; Davidson et al., 2009a). Future studies can 

determine whether reactivation events in area CA1 during ripples are accompanied by 

reactivation downstream in the subiculum. During LIA, neurons in the subiculum, unlike 

neurons in other regions of the hippocampal formation, exhibit bimodality in their 

membrane potentials with transitions between up and down states that are coherent with 

up/down transitions in the neocortex (Isomura et al., 2006). Future experiments can 

investigate how the spatial activity of neurons in the subiculum during awake behavior is 

related to their up/down dynamics during LIA.  
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6 Supporting information for “Hippocampal 
lesions impair rapid learning of a 
continuous spatial alternation task” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1. (following page) Moving-average learning curves for individual control 
subjects on the W-track continuous alternation task.  Each panel shows 10-trial 
moving averages of task performance for one control animal. The top plot in each 
panel shows performance on inbound trials, while the bottom plot shows performance 
on outbound trials. Trials are counted cumulatively along the horizontal axis, starting 
with the 10th trial on day 1 and ending with the last trial on day 10. The alternating 
blue and green background shading indicates the number of trials completed on each 
day. 
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Figure 6.2. (following page) Moving-average learning curves for individual 
hippocampal lesion subjects on the W-track continuous alternation task. Each panel 
shows 10-trial moving averages of task performance for one lesion animal. The top 
plot in each panel shows performance on inbound trials, while the bottom plot shows 
performance on outbound trials. Trials are counted cumulatively along the horizontal 
axis, starting with the 10th trial on day 1 and ending with the last trial on day 10.  The 
alternating blue and green background shading indicates the number of trials 
completed on each day. 
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Figure 6.3. (following page) Smooth learning curves for individual control subjects on 
the W-track continuous alternation task. Each panel shows the estimated probability 
of correct performance for one control animal. The top plot in each panel shows the 
estimated learning curve for the inbound component of the task, while the bottom plot 
shows the estimated learning curve for the outbound component of the task. Trials 
are counted cumulatively along the horizontal axis, starting with the first trial on day 1 
and ending with the last trial on day 10. The alternating blue and green background 
shading indicates the number of trials completed on each day. Black dots indicate 
maximum-likelihood estimates of the probability of correct performance, and gray 
errors bars indicate point-wise 95% confidence intervals. Dashed horizontal lines 
indicate the chance performance level (1/2) that would be expected if subjects 
randomly chose the destination food well on each trial. We defined the learning 
criterion (highlighted in red) as the trial on which the 95% confidence interval of the 
learning curve exceeded this chance level and thereafter remained above chance 
throughout two full consecutive days of testing.   
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Figure 6.4. (following page) Smooth learning curves for individual hippocampal lesion 
subjects on the W-track continuous alternation task. Each panel shows the estimated 
probability of correct performance for one lesion animal. For explanation, see the 
legend for Figure 6.3.. Lesioned subjects were much more variable in their task 
performance than subjects in the control group.  They often performed below chance 
level on the inbound component of the task during the first few days, reflecting 
perseverative errors (see Figure 2.6.). By our learning criterion, three of the six lesion 
subjects failed to learn the outbound component of the task by the end of testing. 
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Table 6.1 (following page) Summary statistics for individual subjects on the W-track 
continuous alternation task. Each column corresponds to an individual subject; C1-C4 
are control subjects, and L1-L6 are hippocampal lesion subjects. The p-value column 
shows the result of the Wilcoxon rank-sum comparison between the two groups. Note 
that the p-values for the comparisons of the cumulative total number of inbound and 
outbound trials are larger than those derived from the non-parametric repeated 
measures test presented in the main text, because the repeated measures test takes 
into account the day-by-day trend for each individual subject. 
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