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Abstract
Previous studies (Doxas, Dennis, & Oliver, 2010) show that
natural language discourse exhibits a two-scale structure with
a lower dimension at short distances and larger dimension
at long distances. We attempt to search for the source of
this constraint in the visual input that goes into forming
episodic experiences in human beings. This information is
assumed to be approximated well by images captured by a
MicrosoftTMResearch SenseCam that our subjects used. The
hypothesis is that if the same two scale structure is observed
here, the constraint is possibly not one that is imposed by the
cognitive system. We use and contrast two methods by which
images can be represented: the traditional color histogram and
a more recently developed color correlogram method. The
color correlogram is established to work better for our current
purposes. We observe hints of a two scale structure in the cor-
relation dimension plots but these are not conclusive.
Keywords: Episodic Memory; Correlation Dimension; Net-
works; Graphs.

Introduction
The existing models of episodic memory assume a represen-
tation of context. Retrieval of episodes involves reinstatement
of context. The current literature does not address the nature
of representation of context and the question of how the rep-
resentation was formed in the first place. Our ultimate goal
is to model contextual reinstatement as a search over episodic
networks. We begin by looking at the images that people en-
counter everyday. In a parallel study, graphs of these images
are constructed and the structure of the graphs is investigated.
People are extremely fast at isolating episodes from mem-
ory. Such a search has to be fast and efficient. The graph has
to satisfy certain properties for it to be efficiently searchable
(Steyvers & Tenenbaum, 2005). We attempt to test the idea
that contextual reinstatement can be modeled as a network
search. One prerequisite for this model to be feasible is that
the episodic network must be quickly searchable.

We encode events into our memory as we encounter and
experience them. What kinds of constraints are inherent to
this input information? Such a question is motivated by pre-
vious studies on natural language discourse where paragraph

spaces of corpora of different languages exhibited a two-scale
structure (Doxas et al., 2010). Doxas et al. did a correlation
dimension analysis on the paragraph spaces of text corpora
taken from five different languages and genres. The corre-
lation dimension is a measure of how points within a given
distance r scales with that distance. The paragraph spaces
were found to exhibit a low dimensional structure at short dis-
tances and a higher dimensional structure at larger distances.
This is similar to a “weave” structure. For example, if we
zoom in to look at a thread that is part of a shirt, the observed
dimensionality is one. If we zoom out to intermediate length
scales, we would start observing a two dimensional structure.
Further zooming out will further increase the dimensionality.
The finding of this “weave” structure in natural language dis-
course raises an important question regarding the origin of
this constraint. Is this constraint one that is imposed by the
cognitive system or is it a property of the input the system
receives that is being mirrored by the cognitive system? We
attempt to address this question in the current study. To in-
vestigate this, we used a MicrosoftTMResearch SenseCam to
capture images that can be thought of as representative of a
person’s (visual) episodic experience. A dimensionality anal-
ysis was then done on these images.

The paper is organized as follows. The next section out-
lines the method used to capture and represent the images on
which the dimensionality analysis is done. The Microsoft Re-
search SenseCam device is described briefly. Two different
image representation schemes and their corresponding dis-
tance measures are discussed. The two methods are then con-
trasted using a definition of a ratio that is based on the require-
ment that these methods must, among other things, success-
fully identify images that belong to the same contexts. The
subsequent section describes the correlation dimension. The
results section discusses the correlation dimension plots for
the image sets obtained from different individuals. The paper
concludes with a discussion of the structure that is observed
in the correlation dimension plots of the image data.
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Image Data Collection, Representation and
Distance Measures

Microsoft Research SenseCam
To capture a sufficient number of images that can sufficiently
represent an individual’s visual episodic experience for a pe-
riod of about a week, we used a Microsoft Research Sense-
Cam. Subjects hung the camera around their necks for about a
week each. The SenseCam contains sensors which can detect
changes in color, light-intensity and temperature. Changes in
these sensor readings can be set to automatically trigger the
SenseCam to take pictures. The camera can also be set to a
timer mode where pictures can be captured periodically. Our
camera captures an image once every eight to ten seconds.
The camera has wide-angle (fish-eye) lens that maximizes its
field-of-view. The resulting images are particularly useful for
studying episodic experience because these images are frag-
mentary, time compressed, temporally ordered, and have a
‘field perspective’ (Berry et al., 2006).

HSV Space
The HSV (hue, saturation, value) color space is very dif-
ferent from the better known RGB (red, green, blue) color
space.The problem with using the RGB color space is that it
is not perceptually uniform. To get a satisfactory represen-
tation of the image in the RGB space, the quantization step
sizes should be fine such that distinct colors are not assigned
to the same bin. This increase in the number of bins affects
performance in terms of computation time. The oversampling
also produces a larger set of colors than are necessary and this
is not an accurate representation of human visual discrimina-
tion of colors.

A three dimensional representation of the HSV color space
is a hexacone (Stockman & Shapiro, 2001). The central axis
represents the intensity. Hue is defined as an angle in the
range [0,2π] relative to the red axis such that red is at angle 0,
green is at 2π/3, blue at 4π/3 and red again at 2π. Saturation
takes values between 0 and 1. Saturation is the depth or pu-
rity of the color. It is measured as a radial distance from the
central axis. The saturation value is 0 at the central axis and
is 1 at the outer surface. As saturation varies from 0 to 1, the
corresponding hues vary from unsaturated (shades of gray) to
fully saturated (no white component, pure form of the color
represented by its hue). In other words, for a low value of
saturation, a color can be approximated by a gray value spec-
ified by the intensity value and for a high value of saturation,
the color can be approximated by its hue. HSV separates out
the light-intensity information (luminance) from the color in-
formation (chromaticity).

Color Histogram Representation
A color histogram for an image is generated by concatenat-
ing ‘N’ higher order bits for the Red, Green and Blue values
in the RGB space (Swain & Ballard, 1991). The histogram
is generated by counting the number of pixels with the same
color and accumulating it in 23N bins . We generate such a

histogram from the representation of each image in the HSV
space. Quantizing the hue component more precisely than the
value and saturation components makes the HSV histogram
more sensitive to color differences and less sensitive to bright-
ness and depth differences. We found it sufficient to use a
(h=30 levels, s=10 levels, v=3 levels) quantization to generate
the histograms based on the fact that the human eye is more
sensitive to variations in hue and intensity than variations in
saturation.

Several distance measures can be used to calculate dis-
tance between images (Jeong, Won, & Gray, 2004). These
include the histogram euclidean (HE) distance and the his-
togram intersection (HI) distance (Smith & Chang, 1995,
1996). A Kullback-Liebler divergence (Greenspan, Gold-
berger, & Ridel, 2001) measure is also discussed which has
been established to work better than the HE and HI mea-
sures in information retrieval tasks (Goldberger, Gordon, &
Greenspan, 2006).

Histogram Euclidean Distance If h and g represent two
color histograms, the euclidean distance between them is
given by

d2(h,g) = ∑
A

∑
B

∑
C
(h(a,b,c)−g(a,b,c))2 (1)

A,B and C are the three colors (RGB or HSV). In this for-
mula, all bins contribute equally to the distance and only iden-
tical bins in the respective histograms are compared.

Histogram Intersection Distance The histogram intersec-
tion (HI) distance (Swain & Ballard, 1991) between h and g
is given by

d(h,g) =
∑
A

∑
B

∑
C

min(h(a,b,c),g(a,b,c))

min(|h| , |g|)
(2)

|h| and |g| are the number of samples in the respective his-
tograms. The sum is normalized by the histogram with the
lesser number of samples. We used the histogram intersec-
tion distance for our initial analysis. The distance tends to 1
if the images are highly similar and 0 if they are highly dis-
similar.

Square root of the Jensen-Shannon divergence: a proper
metric A better measure to calculate similarity between im-
ages is the information theoretic Kullback-Liebler (KL) di-
vergence (Greenspan et al., 2001). This is a non-symmetric
measure of the difference between two probability distribu-
tions. It has been shown to perform better than HI in image
search and retrieval tasks (Goldberger et al., 2006). Though
the intuition is to use the KL divergence directly as a dis-
tance measure, it is not a true metric. A symmetrical version
of the KL divergence is the Jensen-Shannon (JS) divergence,
the square root of which is a metric. Using a proper metric is
important since we intend to study the dimensionality of the
space of these image representations. Our color histogram re-
sults here are based on the distance measure that is the square
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root of the JS divergence. Figure 1 shows a query image and
the retrieved images that are similar to the query image based
on the JS distance. The distance is printed on top of each of
the retrieved images.

The Kullback-Liebler divergence of Q from P is defined as

DKL(P||Q) = ∑
i

log
P(i)
Q(i)

(3)

where P and Q are probability distributions of a discrete
random variable. The symmetric Jensen-Shannon divergence
is given by

DJS =
1
2

DKL(P||M)+
1
2

DKL(Q||M) (4)

where M = 1
2 (P+Q)

Query image (3742) Retrieved images

0 . 2 3 1 3 4 0 . 2 6 6 7 5 0 . 2 7 5 5 1

0 . 2 7 7 9 3 0 . 2 8 2 4 2 0 . 2 8 5 3 3

0 . 2 9 7 6 7 0 . 3 0 0 4 9 0 . 3 0 6 1 9

Figure 1: Query image and retrieved images (JS divergence
distance method).

Color Correlogram Representation
The color histogram has the drawback of being a purely
global description of the color content in an image. It does not
include any spatial information. Purely local properties when
used can be extremely sensitive to appearance changes due to
slight changes in angle, zoom, etc. Purely global properties
(like those used in the color histograms) can give false posi-
tives as it can classify images from widely separated scenes
as belonging to the same scene if they have similar color con-
tent. An example of this can be found in figure 1. The third
image in the second row of the retrieved images is a false
positive because that image belongs to an entirely different
event.

A color correlogram (Huang, Kumar, Mitra, Zhu, & Zabih,
1997) describes global distributions of local spatial color cor-
relations. In other words, a correlogram of an image is a three
dimensional matrix whose k-th entry for 〈i, j〉 is the probabil-
ity of finding a pixel of color j at a distance k from a pixel

of color i. This makes the correlogram robust to changes in
appearance caused by occlusions, zoom, viewing angles, etc.
We use a special case of the correlogram for ease of computa-
tion: the banded correlogram (Huang, 1998). Figure 2 shows
the same query image as earlier and the retrieved images that
are based on the relative L1 distances between images repre-
sented as banded correlograms. The distance is printed on top
of each of the retrieved images. There are no false positives
in these retrieved images.

Let I be an n×m image. The colors in I are quantized
into k colors c1,c2, · · ·ck. For a pixel p = (x,y) ∈ I , let I (p)
denote its color. Ic , {p|I (p) = c} where c ∈ {c1,c2, · · ·ck}.
For pixels p1 = (x1,y1), p2 = (x2,y2), we define L∞ norm to
measure the distance between them, such that |p1 − p2| ,
max{|x1− x2|, |y1− y2|}.

The correlogram of I is defined for i, j ∈
{1,2,3, · · · ,k},d ∈ {1,2,3, · · · , l} where distance d is
fixed a priori, such that

γ
(d)
ci,c j(I ), Pr

p1∈Ici ,p2∈I
[p2 ∈ Ic j | |p2− p1|= d],

|Ic j ∩ I d
ci
|

|I d
ci
|

(5)
where I d

c , {p2|p1 ∈ Ic ∧ |p2 − p1| = d}, where d ∈
{1,2,3, · · · , l} is a distance between two given pixels in the
image. Given any pixel of color ci in the image, γ

(d)
ci,c j(I )

gives the probability that a pixel at distance d away from the
given pixel is of color c j. Hence, the color correlogram is
a three-dimensional table indexed by color and distance be-
tween pixels and the size of the correlogram is O(k2l).

The banded correlogram (Huang, 1998) is for storage trim-
ming. Given b, for 1 6 d 6 l/b,

γ
(d)
ci,c j

(I ),
db

∑
d′=(d−1)b+1

γ
(d′)
ci,c j(I ) (6)

For each color pair (ci,c j), the probability values for the
distances in the selected distance set whose cardinality is b
are summed as a single number. Hence, a banded color cor-
relogram is a restricted version of the color correlogram.

Distance Measure We use a relatively weighted L1 dis-
tance measure for computing the distance between images I
and I ′ as follows:

|I − I ′|γ,L1 , ∑
i, j,d

|γ(d)ci,c j(I )− γ
(d)
ci,c j(I ′)|

1+ γ
(d)
ci,c j(I )+ γ

(d)
ci,c j(I ′)

(7)

where i, j ∈ {1,2,3, · · · ,k}, and d ∈ {1,2,3, · · · , l}.
The L1 distance is also known as the manhattan dis-

tance. The manhattan distance between two points in an n-
dimensional vector space with a fixed cartesian coordinate
system is just the sum of the lengths of the projections of
the line segment between the two points onto the coordinate
axes. The normalization is such that non-uniform weights are
assigned to the contribution of different colors to the dissimi-
larity between the two images. This is in keeping with the in-
tuition that a difference in the number of pixels in any given

696



color bucket has a more significant contribution to the per-
ceived dissimilarity if the content of that color in the image
is low to start with. The same difference but when the color
content is extremely high shouldn’t contribute too much to
the perceived dissimilarity between two images.

Query image (3742) Retrieved images

1 9 5 . 1 4 2 6 2 1 4 . 4 1 7 8 2 2 5 . 3 1 5 7

2 2 5 . 3 4 0 6 2 4 8 . 3 9 0 7 2 6 1 . 9 7 5 8

2 6 9 . 6 8 1 5 2 7 3 . 4 5 9 2 7 5 . 7 7 9 1

Figure 2: Query image and retrieved images (the color cor-
relogram method).

Comparison: Common Neighbor Ratio
We now need to compare the performance of the two methods
for our current purpose: to check if the distance measure on
the respective representation does a good job of identifying
as neighbors images that really are closely spaced in the time
sequence. Events within a context are closely spaced in time
and one of the major tasks for our method is to be able to ac-
curately retrieve images that are from the same context. The
idea here is that most of the closely spaced images as char-
acterized by the distance measure ought to be closely spaced
in time. Periodic events are exceptions where people might
return to the same place after a certain duration. The images
from those two episodes will be closely spaced but might be
far apart in time. With this in mind, we define the common
neighbor ratio. Given a positive integer k, for each image
I, we find its k nearest neighbors both in the distance do-
main and in the time domain. Suppose DI = {Id1, Id2, · · · , Idk}
are image I′s k nearest neighbors in the distance space and
TI = {It1, It2, · · · , Itk} are image I′s k nearest neighbors in the
time space (the images come with timestamps on them which
are used in this calculation), then

common neighbor ratio =
∑

n
I=1 |DI ∩TI |

n× k
(8)

where n is the total number of images. If k equals to n,
then the ratio is 1. The method that has a higher common
neighbor ratio is the better one. Figure 3 shows clearly that
the correlogram representation and its corresponding distance
measure outperforms the traditional histogram representation

Figure 3: The common neighbor ratio as a function of number
of nearest neighbors for image data from two subjects. The
correlogram-relative L1 distance method gives a higher ratio
than the histogram-JS distance and the histogram intersection
distance methods.

and the associated JS divergence distance measure. It can also
be seen that the JS divergence measure works slightly better
than the histogram intersection distance.

Correlation Dimension Analysis
Dimension measures are used to quantify the space filling
properties of a set. A fractal dimension is a more informative
measurement than a topological dimension which can take
only integer values. For example, the topological dimension
of a point is 0, of a line is 1 and of a surface is 2. A wiggly
line is more space filling than a straight line but has a topolog-
ical dimension of 1. The wiggly line is said to be a fractal if
its fractal dimension is greater than its topological dimension
(Mandelbrot, 1967). Fractal dimension measurements have
been widely used in nonlinear dynamics time series analysis.

If a time series is from a nonlinear dynamical system or
from a random process, the time series is irregular in both
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time and frequency domains. Methods of time series analysis
based on phase space reconstructions can reveal structure in
time series from nonlinear dynamical systems as opposed to
little structure in time series from random processes. Many
popular methods of analysis involve correlation dimension
estimates. There are several dimension measurements that
are possible (Camastra, 2003). The correlation dimension is
one of the simplest to calculate and is the most widely used di-
mension measurement in time series analysis. The correlation
dimension is also related to the minimum number of variables
needed to model the system’s behavior in phase space.

The correlation dimension is a measure of the dimen-
sionality of the space occupied by a set of points and is a
type of fractal dimension because it allows non-integer val-
ues. Grassberger and Procaccia (1983a, 1983b) introduced
the correlation dimension to characterize phase space filling
properties of attractors. The set is covered by spheres of a
given size r and the correlation dimension v is defined by:

v = lim
r→0

∑
i

log
(

∑i pi(r)
2
)

logr
(9)

where ∑i pi(r)
2 is the probability of finding a pair of points

in a sphere of size r. For small values of r, this probabil-
ity is the same as the probability of finding a pair of points
separated by less than r. This probability, for large data
sets, is given by the correlation sum. For N points in an M-
dimensional space, the correlation sum is given by

C(r) =
2

N(N−1)

N

∑
i=1

N

∑
j=1 j 6=i

H
(

r−
∣∣∣~Xi−~X j

∣∣∣) (10)

H is the heaviside function. Here, it counts the number
of pairs of points which are separated by less than r. For
sufficiently small r and large number of points N,

C(r) ∝ rv (11)

Taking logarithms of each side, we get:

v∼ log(C (r))
log(r)

(12)

v is calculated from the slope of the straight line scaling
region of a log(C(r) versus log(r) plot.

Results
The color histogram method was used to represent the im-
ages and the square root of the Jensen-Shannon divergence
was used to calculate the similarity between pairs of images.
log(C(r)) was then recorded in a series of 1000 bins. The
correlation dimension(s) v is the slope d log(C(r))

d log(r) of the lin-
ear portion(s) of the log(C(r)) versus log(r) plot. The same
procedure was repeated for the color correlogram represen-
tations using the relative L1 distances to calculate similarity
between images. Figure 4 shows the correlation dimension

plots for image data taken from 2 subjects. The left panel
contains the results for the correlation dimension using the
color histogram representation and the associated square root
of the JS Divergence. The right panel contains the results us-
ing the color correlogram representation and the associated
relative L1 distance measure. Points close to zero have been
discarded in the correlogram correlation dimension plots due
to insufficient pairs of points in that region.

There are hints of a two scale structure in the histogram
based correlation dimension plots but the correlogram based
correlation dimension plots do not show this structure. More
discussion follows in the next section.

Figure 4: The correlation dimension plots for 2 subjects:
The left panel is with the color histogram-JS div distance
method and the right panel is with the correlogram-L1 dis-
tance method.

Conclusion and Discussion
Images were captured by subjects using a
MicrosoftTMResearch SenseCam. A correlation dimen-
sion analysis was done on images that were obtained from
each subject. These images can be considered as representa-
tive of the visual input that goes into an individual’s episodic
memory. Distances between pairs of images represented by
color histograms were calculated using the square root of the
Jensen-Shannon divergence. Color histograms do not include
spatial information. HSV autocorrelograms have been found
to work better in image retrieval studies (Ojala, Rautiainen,
Matinmikko, & Aittola, 2001). Spatial information in the
images may be relevant here. For example, how do people
recognize that two very different images in terms of color
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content belong to the same episode? The distances calculated
from the HSV histogram have given us sufficiently accurate
nearest neighbour pairs as demonstrated in Figure 1 but
the correlogram method and the associated L1 distance
measure was found to work better for our current purposes
based on our definition of the common neighbor ratio. We
conclude that the better method is the one that correctly
identifies images that are close in time (within context) by
classifying them as close in space based on the distance
measure employed by the respective method.

A two scale structure was found in earlier studies on cor-
pora of different languages (Doxas et al., 2010). The trajec-
tory through a semantic space as one transitions from para-
graph to paragraph in written discourse was shown to display
a low dimensionality at short distances and higher at larger
distances. This structure was observed in five corpora of writ-
ten text in English, French, Modern Greek, Homeric Greek,
and German respectively. The lower scale dimension of eight
was observed to be approximately the same across languages.
These structures suggest that there are strong constraints on
the topology of the space through which authors move as they
write and through which readers move as they read. The ques-
tion now is if this is a constraint imposed by the cognitive
system. This study is aimed at addressing this question. The
images used represent the visual input that goes into a per-
son’s episodic experience, i.e., of the everyday events that one
encounters (visually). The correlation dimension plots how-
ever don’t reliably show a two scale structure here. Further
exploration is necessary, however, to determine if the image
representation meets all of the assumptions of the correlation
dimension analysis as it has been used in this study. One such
assumption is that the space has orthonormal basis vectors.
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