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A control and signal processing integrated circuit
for the JPL-Boeing micromachined gyroscopes

Yen-Cheng Chen, Robert M’Closkey, Member, IEEE, Tuan Tran, Brent Blaes

Abstract— A special-purpose integrated circuit that accom-
plishes the real-time control and filtering tasks for the JPL-Boeing
micromachined gyroscopes using a flexible, low-power implemen-
tation is presented. Our exposition focuses on the integration of
the circuit and a prototype sensor, the synthesis and implementa-
tion of the control filters, and the subsequent performance of the
closed-loop system. Identified sensor models are also presented be-
cause the control approach, and hence, the circuit architecture, is
motivated by special features of the sensor dynamics.

Index Terms – gyroscopes, application specific integrated cir-
cuits, gain control, microelectromechanical devices

NOMENCLATURE

ADC Analog-to-digital converter
AGC Automatic gain control(ler)
ASIC Application-specific integrated circuit
DAC Digital-to-analog converter
FIR Finite impulse response
FPGA Field-programmable gate array
RMS Root-mean-square
V Volt unit
Ci j i jth channel of compensator C
Di, D̃i ith actuator component
Fclk ASIC operation frequency
KI AGC integrator gain
KP AGC proportional gain
M � K � C Mass, stiffness, damping matrices
Pi j i jth channel of plant P�
PC � i j i jth channel of loop gain PC

R AGC reference amplitude
Si, S̃i ith sensing pick-off component
SI Input sensitivity function
SO Output sensitivity function
α Oscillator model gain
c Oscillator model damping
fs Servo rate
Ω Sensor angular velocity
σ̄ Maximum singular value
s Laplace transform variable
ω Frequency
ωn Oscillator model natural frequency
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I. INTRODUCTION

Vibratory gyros are an interesting class of sensor because
of the opportunity to implement numerous control loops to
improve sensor bandwidth, linearity, and dynamic range and
to maintain performance in the presence of perturbations to
the sensor dynamics. Devices such as the Jet Propulsion
Laboratory-Boeing micromachined-class of rate sensors are de-
signed with degenerate dynamics in which the natural frequen-
cies of two lightly-damped modes are coincident. Fabrication
irregularities, however, can produce a wide range of dynamic
responses among any batch of supposedly identical devices due
to the microscopic scale of key mechanical components. The
deviation of the dynamic response from the ideal is caused by
the sensitivity of the sensor’s eigenvector structure to asymme-
tries in the mass and stiffness distribution. This sensitivity pro-
duces a splitting of the modal frequencies as well as crosschan-
nel coupling.

There are several approaches for contending with the vari-
ability of the sensor dynamics. For example, electrostatic tun-
ing can bring the sensor’s eigenvectors into more favorable
alignment with the sensing pick-off frame, or alternatively, mul-
tiple sensing pick-off signals can be blended to essentially align
the sensing frame with the sensor’s eigenvectors. In practice,
both approaches are pursued. Once this task is complete it is
necessary to fine-tune the various feedback loops for each in-
dividual sensor because, for example, sub-degree perturbations
of the pick-offs’ phase caused by variations in signal condition-
ing electronics can have a measurable impact on the sensor’s
ultimate performance.

As with most prototype sensor development, the JPL-Boeing
micromachined gyroscopes were initially custom-built and
hand-tuned for optimal performance. Thorough testing can
never be avoided, especially with high-performance devices,
but it is desirable from a production point of view to devise
a systematic and efficient approach for identifying important
sensor parameters that define the compensator properties, and
then once the compensation is synthesized, to implement it on
a flexible computational platform. Pursuing this program has
been our focus for several years and in this paper we report
one aspect of this work, namely the creation of an application-
specific integrated circuit (ASIC) for the JPL-Boeing gyros that
performs the requisite control and signal processing tasks. Our
objective is to have the ASIC supplant the current analog im-
plementation and its associated time-consuming tuning without
sacrificing, and perhaps even increasing, sensor performance.

The computational architecture of the ASIC is fixed, how-
ever, there is great flexibility in the individual filters and com-
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ponents comprising the architecture that enable its operation
with a wide range of sensor dynamics. This adaptability can be
achieved with a general purpose digital signal processor (DSP),
however, the advantage enjoyed by the ASIC over a DSP is its
low power consumption, which makes the ASIC suitable for
some applications that preclude the use of a DSP.

The design, fabrication and testing of the ASIC is a her-
culean task so we will not present the many details related to
the engineering choices and trade-offs that we performed. In-
stead, this paper is focused toward a control audience and so
we present 1) interesting features of the JPL-Boeing gyros’ dy-
namics that motivate our control approach, 2) how to synthesize
typical compensation, and 3) an assessment of the performance
of the ASIC.

The paper is organized as follows. Section II briefly intro-
duces a vibratory gyro model which is useful for understanding
the basic operation of the device as a rate sensor. Some metrics
for measuring controller performance are also mentioned. Sec-
tion III presents detailed frequency domain models of a JPL-
Boeing microgyro prototype and identifies several challenges
for the control loop design. Section IV introduces the ASIC.
Section V discusses the synthesis procedure and Section VI
presents the closed-loop implementation results.

II. A GENERIC MODEL AND TYPICAL CONTROL LOOPS.

A. Vibratory rate sensor model

A generic linear model for vibratory rate sensors is com-
posed of a two degree-of-freedom (DOF) system with a skew-
symmetric matrix that is modulated by the angular rate of rota-
tion of the sensor:

M ¨�x � C ˙�x � ΩS ˙�x � K
�
x � �f � (1)

In this model M, C, and K are the real, positive definite 2 � 2
mass, damping, and stiffness matrices, respectively, Ω and�
f ��� f1 � f2 � T represent the sensor angular rate of rotation and
applied actuation forces, respectively, and S is skew-symmetric.
These equations are written in the sensor-fixed coordinates de-
noted by

�
x ��� x1 � x2 � T . The reader is referred to [5], [7] for a

detailed introduction to vibratory rate sensors.

B. Typical vibratory rate sensor control loops

The mode of operation of generic vibratory rate sensors is
now described. Control forces are selected to drive x1 into a
sinusoidal response –this is usually accomplished by a drive
control loop– then rotation at angular rate Ω about the sense
axis transfers momentum from one DOF into the other DOF
resulting in a change in amplitude and phase of x2 from which
Ω may be inferred. In practice, a second control loop is used
to null the x2 pick-off signal and in this case the control effort
is related to Ω. The second loop has been termed the force-
to-rebalance loop or simply, rebalance loop, in the literature.
These two control loops are common in vibratory rate sensors
although their implementation may differ from one technology
to another. These loops are depicted in Fig. 1.

Gyro 	
ẋ2

Rebalance
loop 



f2

		Ω
	

ẋ1


Drive
loop

f1 	

Fig. 1. Sense and drive axis control loops. The rebalance loop control effort,
denoted f2, is demodulated with respect to ẋ1 for an estimate of Ω.

Analysis of the closed-loop signals illuminates certain limi-
tations imposed on the detection of Ω. Consider the following
simplified version of (1)

I ¨�x � C ˙�x � αΩS ˙�x � K
�
x � �f � (2)

where the mass matrix is taken to be the identity, the parame-
ter α is the Coriolis coupling coefficient, S ��� 0 
 1; 1 0 � ,
and the forces

�
f ��� f1 � f2 � T are co-located with the sensing pick-

offs, and the damping and stiffness matrices are positive definite
but otherwise arbitrary. The non-idealities in the sensor dynam-
ics that produce rate-sensing errors in some simple models are
itemized in [10], [11] and can be identified according to their
influence on the system matrices in (2).

In this analysis we assume that the drive loop has estab-
lished a constant amplitude sinusoidal response for x1 and so
we take ẋ1

�
t ��� Acosωt for the analysis. The objective is to

compute the ideal force co-located with x2, denoted f̂2, to en-
force x2

�
t ��� 0. The control effort of the rebalance loop con-

verges to f̂2 as the loop gain goes to infinity. Define T
�
θ ���

� cosθ sinθ ; 
 sinθ cosθ � and let T
�
θC � and T

�
θK � be

the matrices that diagonalize the damping and stiffness matri-
ces, i.e. T T �

θC � CT
�
θC ��� diag

�
ĉ1 � ĉ2 � and T T �

θK � KT
�
θK ���

diag
�
ω2

1 � ω2
2 � where ĉ1 and ĉ2 represent the eigenvalues (prin-

cipal damping constants) of C and ω1 and ω2 are the modal
frequencies. The ideal f2 actuator signal required for x2

�
t ��� 0

is computed to be

f̂2 � A
�
αΩ � �

ĉ1 
 ĉ2 � sinθC cosθC � cosωt


 A
ω2

1 
 ω2
2

ω
cosθK sinθK sinωt � (3)

The terms multiplying cosωt are composed of the angular rate
Ω and the contributions from the damping. The effects of
damping may be reduced by controlling the amount of damp-
ing asymmetry (ĉ1 � ĉ2) or by aligning the eigenvectors of the
damping matrix with the x1–x2 frame established by the sens-
ing pick-offs (θC � 0). It is extremely difficult to achieve either
of these tasks in practice, hence the sensor is usually designed
so as to minimize damping to the greatest extent possible. The
second group of terms in (3) are 90 � out of phase (quadrature)
with the Ω-induced terms and are due to stiffness matrix cou-
pling between the two measurement and drive channels. The
sensor’s angular rate of rotation is estimated by demodulating
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f̂2 with respect to ẋ1 and, although this phase-sensitive detec-
tion scheme ideally rejects the quadrature terms, any errors in
the demodulation signal phase will introduce a spurious compo-
nent into the estimate of Ω. The quadrature components can be
minimized by orienting the stiffness matrix eigenvectors along
the x1-x2 coordinate frame axes (θK � 0) or by reducing the fre-
quency split between the modes (ω1 � ω2). Both methods are
pursued in practice by a variety of tuning schemes that perturb
the mass and stiffness matrices. For example, [6], [13] advocate
adaptive and closed-loop methods for tuning the sensor dynam-
ics. The JPL-Boeing fabrication process aims to produce sen-
sors with these degenerate dynamics and in fact can consistently
produce devices with frequency splits on the order of 0 � 2%. A
complementary method is to change the sensing pick-off frame
by creating weighted sums of the pick-off signals to decouple
the dynamics. The latter approach is adopted in this paper (see
Section III-C).

C. Controller performance metrics

The drive loop controller is selected as a nonlinear filter for
reasons to be provided shortly, and the rebalance loop controller
is a linear filter, so different experiments are performed to assess
their performance. The rebalance loop is designed to null the x2

pick-off signal, however, the steady-state analysis of the previ-
ous section does not illuminate issues such as closed-loop band-
width, i.e. when Ω is not constant. Linear sensitivity function
analysis is an effective means of assessing the rebalance loop
performance (closed-loop bandwidth in particular) because the
dynamics of the sensor are accurately described by linear equa-
tions and the rebalance controller itself is a linear filter. This
controller is also used to damp another resonance in the sensor
and so the sensitivity function is a useful metric in this case too.

The drive loop controller is designed to regulate the x1 pick-
off signal to a fixed-amplitude sinusoid and in contrast to the
linear rebalance controller, it is a nonlinear filter. The reason for
choosing a nonlinear controller will become clear when view-
ing the system identification results of Section III, but to state
it briefly, the sensor dynamics, though accurately represented
by linear time-invariant equations over intervals of several min-
utes, are actually slowly time-varying and are well-modeled in
the frequency domain by a re-parameterization of the frequency
scale. The extremely high quality factors of the sensor’s modes
can produce enormous changes in gain at a given fixed fre-
quency via a slight shift in the modal frequencies. Hence, a
nonlinear controller, the details of which are given in Section V,
is necessary to track the slow modal frequency variations. Im-
portant performance criteria for the drive loop include drive am-
plitude stability and modal frequency tracking. In quantifying
the nonlinear drive loop bandwidth it is necessary to use local or
small signal perturbations, so we will content ourselves with an
experimental approach for assessing these performance criteria.

III. JPL-BOEING VIBRATORY GYRO MODELS

A. JPL-Boeing micromachined gyro overview

The JPL-Boeing vibratory gyro prototypes (Fig. 2) consist of
a silicon micromachined plate suspended above a set of elec-
trodes. The prototype that was tested for this paper was deliv-
ered in a high vacuum, hermetically sealed package. The two

modes that are exploited in angular rate detection correspond to
a two degree-of-freedom rocking motion of the plate that is pa-
rameterized by the θ1 and θ2 angular coordinates in Fig 2. The
central post strongly couples these rocking degrees of freedom
via a Coriolis term (the axis which is sensitive to angular rates is
the Ω-axis along the post). The electrodes can be used to apply
electrostatic forces at points on the plate or, as the plate deflects
relative to the electrodes, capacitive sensing can be used to mea-
sure the deflection. More details on the design and fabrication
of these sensor may be found in [1], [14], [15], [16].

Two electrodes are selected for sensing and another two elec-
trodes are designated as actuators. The actuation electrodes,
also commonly referred to as the drive electrodes, can be driven
directly from a function generator or digital-to-analog converter
(DAC). The sensing electrodes use a trans-impedance op-amp
configuration to provide a buffered output voltage that is pro-
portional to the average velocity over the electrode surface.
Maximum displacements of the sensor’s elastic structure, on
the order of 1 to 2 µm, correspond to sense electrode poten-
tials of several hundred millivolts in the frequency range of the
important modes discussed below. Thus, in the Bode plots that
follow, the magnitude scale has Volt/Volt (V/V) units. When
defining the equations of motion of this structure we focus on
the two closely spaced rocking modes that can be modeled
by (1). The angular coordinate parameterization from Fig. 2
is not employed but rather the following perspective is adopted:
the generalized coordinates are chosen to be the coordinates es-
tablished by the sensing electrodes; if we denote the sensing
electrode measurements as S1 and S2 then � ẋ1 ẋ2 � : � � S1 S2 � .
Furthermore, the electrostatic forces, denoted D1 and D2, cre-
ated by potentials applied to the drive electrodes are different
from the generalized forces � f1 � f2 � in (1) since the drive elec-
trodes and the sensing electrodes are not co-located. Thus, we
modify (1) to

M ˙�S � C
�
S
�

K
� �

S � B
�
D � (4)

where
�
S : � � S1 � S2 � T ,

�
D : � �D1 � D2 � T , and B is a real, non-

singular 2 � 2 matrix that specifies how forces applied by each
drive electrode couple into the coordinate frame specified by the
sensing electrodes. The Coriolis term has been omitted from
this equation. The post is not present in the sensor tested for
this paper and so it has reduced sensitivity to rotational mo-
tion but nevertheless it retains all of the interesting features of
a vibrational gyro. Hence, the controller synthesis, its subse-
quent implementation on the ASIC, and its performance can be
clearly quantified.

B. Sensor empirical frequency response

Fig. 3 shows the wide-band frequency response magnitude
of the sensor. In this case Ω � 0 and the device is tested as a
2-input/2-output system. The title of each subplot indicates the
sensor/actuator pair. The first large-amplitude, lightly-damped
resonance occurs near 2700 Hz. This is a mode in the sensor
that corresponds to a linear translation of the sensor’s elastic
structure along the post direction. This mode is not only easily
excited by the control electrodes, but also by linear acceleration
in the appropriate direction. The next lightly damped resonance
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θ2-axis

Ω-axis

θ
1 -axis

10µm

Capacitor 

Gap

D1

D2

S1S2

Fig. 2. A photo of the JPL-Boeing vibratory gyro prototype (left) and drawing indicating electrode layout on the baseplate (right). The cloverleaf structure,
clearly visible in the photo, has three prominent modes: two angular deflections that can be parameterized by the θ 1 and θ2 coordinates, and an out-of-plane linear
translation in the direction of the Ω-axis. The post along the Ω-axis strongly couples the two angular degrees of freedom with a Coriolis term and it is this coupling
that is exploited for detection of the sensor’s angular velocity resolved along the Ω-axis. The shaded area on the baseplate drawing reveals the electrode layout.
Deflection of the cloverleaf structure changes the capacitance between the cloverleaf and baseplate and the S 1 and S2 electrodes serve as measurement pick-offs.
Electrostatic forces are applied to the cloverleaf by creating a potential difference between the cloverleaf and the D1 and D2 electrodes.

near 4420 Hz actually comprises two modes that correspond to
the rocking motions of the plate and that have a frequency split
of less than 5 Hz (0.11%) and so cannot be individually resolved
on this scale. It is these two modes that are strongly coupled via
the Coriolis acceleration when the sensor is rotated. Although
the sensor was designed to exploit these two modes for angular
rate sensing, it is quite evident that the wide-band sensor dy-
namics are far richer than (4). Nevertheless (4) is an appropriate
description if one is interested in a narrow frequency window
around the modes. The remaining lightly damped resonances
above 5000 Hz are other flexural modes in the sensor’s elastic
structure. The positive trend in the slope up to 35 kHz is caused
by parasitic capacitive coupling between the drive electrodes
and sense electrodes. The signal conditioning amplifiers roll-
off above 35 kHz and this is responsible for the attention shown
in the plots. Lastly, the sharp notches in close proximity to the
modes near 2700 Hz and 4420 Hz are created by a charge can-
cellation on the sensing electrodes due to the opposite phase of
parasitic capacitance-induced charge and the charge created by
motion of the sensing electrodes. These plots were produced by
concatenating results from multiple tests with a dynamic signal
analyzer. An alternative approach using ARX models is pur-
sued in [9].

Although each channel in Fig. 3 looks quite similar, there
are significant differences in a neighborhood of the two modes
near 4420 Hz. It is necessary to explore this region more closely
since it is the Coriolis coupling of these modes that render the
device sensitive to angular rotation. Fig. 4 reveals the sensor
frequency response details in a neighborhood of the 4420 Hz
modes with 10 mHz frequency resolution, and demonstrates the
high degree of coupling between channels in this device. The
process by which we obtain this precise frequency response
data is discussed in [2]. The heavy traces in Fig. 4 show the
magnitude and phase of the sensor’s empirical frequency re-
sponse taken from a single experiment and are subsequently
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Fig. 3. Wide-band frequency response of the sensor dynamics from the D1
and D2 actuation electrodes to the S1 and S2 sensing electrodes. The low fre-
quency resonance near 2.7 kHz is the translational mode noted in Fig. 2. The
two angular degrees of freedom create resonances near 4.4 kHz but cannot be
individually distinguished in this figure due to their approximately 5 Hz sep-
aration in frequency. Other flexural modes of the cloverleaf are responsible
for the remaining resonances and the upward trend of the frequency response
magnitude with increasing frequency is caused by parasitic electrical coupling
between the actuation and sensing electrodes.

used in the controller synthesis. The light traces show the mag-
nitude obtained from two additional experiments performed 20
minutes apart (the phase is not included so as to keep the fig-
ures uncluttered). It is quite evident that the dynamics exhibit
a time-varying characteristic that can be accurately modeled by
a re-parameterization of the frequency scale. It is widely ac-
cepted that the observed drift is caused by thermally-induced
stresses within the sensor [12]. It was pointed out in Section II-
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Fig. 4. The sensor’s empirical frequency response in a neighborhood of 4420
Hz (magnitude, solid; phase, dash). The heavy traces are used for synthesiz-
ing input-output transformations. The light traces, from data sets acquired 20
minutes apart, illustrate the drift phenomenon.

C that it is necessary for the drive control loop to excite one of
the modes at the frequency corresponding to its peak response.
This is evidently a challenging task due to the time varying na-
ture of the plant.

The scale factors associated with each electrode establish the
electrode’s sensitivity (if used for sensing) or authority (if used
for actuation). The prominent mode near 2700 Hz is not used
in sensing angular rate, however, it is desired to regulate this
mode about a given fixed position in order to hold constant the
scale factors because they are dependent upon the nominal gap
between the vibrating plate and electrodes. As previously noted
though, the sense electrode signal conditioning electronics are
configured so that the velocity is measured at points on the vi-
brating structure. Hence, maintaining a constant average plate
position is not possible so instead this mode is damped, using
feedback, about the equilibrium established in a constant ac-
celeration field (reorienting the sensor in the gravitational field
will cause a small shift in the plate’s equilibrium position even
though the mode at 2700 Hz is effectively damped). Detail of
the sensor’s frequency response in a neighborhood of 2700 Hz
is shown in Fig. 5 along with several additional data sets illus-
trating the time-dependent frequency response.

C. Synthesis models

The JPL-Boeing sensors are designed to operate in a “degen-
erate” condition (when ω1 � ω2), however, the 5 Hertz differ-
ence between these modes in Fig. 4 is the native split due to
manufacturing imperfections and packaging-induced stresses.
There are post-fabrication methods that can be employed to fur-
ther reduce the difference between modal frequencies, however,
we will not elaborate on these but instead adopt an approach
of decoupling the sensor’s closely-spaced modes by perform-
ing input and output transformations. Recall that decoupling
the modes near 4420 Hz into separate channels is a viable ap-
proach to reducing the quadrature error in (3) in lieu of achiev-
ing ω1 � ω2. Thus, it is desired to find input and output trans-
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Fig. 5. The sensor’s empirical frequency response in a neighborhood of 2700
Hz (magnitude –solid; phase –dash).

formations that render the sensor dynamics diagonally domi-
nant such that each diagonal channel has a different mode in the
4420 Hz region. With this approach the sensor’s mass and stiff-
ness matrices in (4) are not perturbed so that their generalized
eigenvectors align with the native sensing electrodes frame but
rather a set of virtual sense and drive electrodes are created to
align with the generalized eigenvectors so that in these new co-
ordinates the modes near 4420 Hz are decoupled to the greatest
degree possible (see Section II-B). Although this diagonalizing
process should be considered a part of the control synthesis pro-
cedure outlined in Section V it is convenient to address it while
discussing sensor modeling.

Denoting the sensor frequency response as Hsens, we com-
pute 2 � 2 constant-gain input and output transformations, de-
noted Tin and Tout respectively, such that Tout HsensTin is diag-
onally dominant with a separate mode isolated to each chan-
nel. The individual gains in the transformations are rounded to
signed, 8-bit constants (the largest magnitude being 255

256 ) and
then subsequently realized with an analog signal summing net-
work possessing 8-bit programmable coefficients. The trans-
formations are nearly orthogonal matrices (maximum condition
number of 1.2) and hence do not exacerbate any modeling un-
certainty associated with the frequency response data. The al-
gorithm that produces Tin and Tout uses the frequency response
data (heavy traces) from Fig. 4 to fit a model of the form (4) and
then from this model we compute Tin and Tout . Presentation of
the algorithm would take us too far from the paper’s focus so it
is our hope that the reader will be content with the final result
and the fact that these modeling-oriented details will appear in
the literature at some future date.

The virtual sense electrode potentials are denoted by S̃ and
are related to the native sense pick-off potentials by S̃ � Tout

�
S,

where the notation of (4) is used to represent the native pick-off
signal vector

�
S. Similarly, the new virtual drive electrode vec-

tor, denoted D̃, is related to the native drive electrode potentials
by
�
D � TinD̃. The wide-band identified frequency response of

ToutHsensTin is shown in Fig. 6. The efficacy of the transforma-
tions in decoupling the modes near 4420 Hz into separate chan-
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Fig. 6. Identified frequency response of the system ToutHsensTin (magnitude,
solid; phase, dash). Programmable analog networks implement Tin and Tout
with 8-bit coefficient accuracy.

nels is evident in Fig. 7, which is a zoomed version of Fig. 6. In
this frequency range the system is very much diagonally dom-
inant with a different mode in each of the diagonal channels.
In fact, the peak gain in the diagonal channels now exceeds the
peak gain in the off diagonal channels by almost 40 dB. Fig. 8
displays the detail of the mode near 2700 Hz.

The sensor with the virtual actuation and sensing pick-offs
is ideal for controller synthesis. We will have occasion to use
simple single degree-of-freedom resonator models of the form
αs � �

s2 � cs
� ω2 � for the diagonal channels in Fig. 7. These

transfer functions are

h1 : � S̃1 � D̃1 � α1s
s2 � c1s

� �
ω1 � 2 � π � 2

� 56 � 4847s
s2 � 0 � 614618s

� �
4427 � 63 � 2 � π � 2 (5)

h2 : � S̃2 � D̃2 � α2s
s2 � c2s

� �
ω2 � 2 � π � 2

� 
 60 � 1777s
s2 � 0 � 727505s

� �
4422 � 64 � 2 � π � 2 � (6)

The time constants (2 � c) of h1 and h2 are approximately 3.25
seconds and 2.75 seconds, respectively. The off-diagonal trans-
fer functions are not modeled since they are ignored in the syn-
thesis procedure, although their effect is fully accounted for in
the post-synthesis analysis. Similarly, a resonator model for the
sensor’s frequency response near 2700 Hz in the 2-2 channel of
Fig. 8 is,

h3 : � S̃2 � D̃2 � α3s
s2 � c3s

� �
ω3 � 2 � π � 2

� 16 � 3403s
s2 � 0 � 619545s

� �
2704 � 67 � 2 � π � 2 � (7)

The time constant of this mode is 3.22 seconds. Only the 2-2
channel is modeled since it will be used in the synthesis of the
rebalance control filter.
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Fig. 7. Data from Fig. 6 near 4420 Hz illustrating the diagonally dominant
transfer matrix with a different mode in each diagonal channel (magnitude,
solid; phase, dash). The S̃1 � D̃1 and channel S̃2 � D̃2 are fit with the frequency
domain models (5) and (6), respectively.
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Fig. 8. Data from Fig. 6 near 2700 Hz (magnitude, solid; phase, dash).

IV. A CONTROL ASIC FOR VIBRATORY GYROSCOPES

This section describes the high-level functionality, architec-
ture, and features of the special-purpose digital integrated cir-
cuit that implements the control and signal processing tasks for
the family of JPL-Boeing gyroscopes. The ASIC architecture,
shown in Fig. 9, employs a nonlinear automatic gain control
for the drive loop, a linear filter for the rebalance loop and also
provides filtering and demodulation of the rebalance signal for
detection of its in-phase and quadrature components. The linear
filters are realized with an FIR implementation. A feature that
makes this ASIC attractive for a variety of rate gyro applica-
tions is its low power consumption because the ASIC core con-
sumes only 0 � 37µW/tap/ fs, where fs is the servo rate in kHz.
The efficient hardware implementation that produces these low
power requirements is described in [3]. Our exposition, how-
ever, will focus on specifying the filters and gains in Fig. 9 for
a successful integration with a prototype sensor.



7

_

AGC loop

Rebalance 

pick-off 

measurement

1K

2K

3K

4K

5K

6K
8K

7K

FIR1

FIR3

FIR2•

R

PK

Rebalance loop

Signal RectificationDrive

pick-off

measurement

IK

Drive loop

control effort

Rebalance loop

control effort

2

~
D

1

~
D

1

~
S

2

~
S

DAC

ADC + X

+

+

ADC

( )•

+

+

+

DAC

Z

90° Phase Shift filter

In-Phase term

Quadrature term

FIR4

FIR5

FIR6

FIR7X

X

Demodulation Stage
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and KI are programmable and represent the PI compensation for the AGC loop.

It is necessary at this point to discuss some details of the
drive control loop in order to interpret the architecture in Fig. 9.
Section II-C alluded to the fact that the drive control loop is a
nonlinear filter that selectively excites and maintains a stable
amplitude of a modal resonance in the sensor’s dynamics even
though these dynamics are slowly time-dependent (see Figs. 4
and 5). A classical approach would employ linear compensa-
tion with an external sinusoidal reference signal to drive the
appropriate mode. This, of course, does not perform well un-
less the reference signal frequency tracks the resonance shift.
Scheduling the reference frequency (with respect to a tempera-
ture measurement, for example) is not practical since it requires
exhaustive testing of the sensor to precisely quantify the tem-
perature dependence of its dynamics. The automatic gain con-
trol filter, or AGC, overcomes these challenges in an elegant
and simple manner.

The AGC may be described using a simple harmonic oscil-
lator model with a velocity measurement that determines the
feedback force as shown in Fig. 10. The magnitude and sign
of the feedback gain are determined by the AGC which em-
ploys an amplitude detection scheme, a comparator to generate
the amplitude error signal and some compensation, commonly
a PI filter, to set the feedback gain based on the amplitude er-
ror. The amplitude detection scheme is depicted as a rectifier
and low-pass filter in Fig. 10 and R is the reference amplitude.
The AGC functions in the following manner: if the oscillation
amplitude is smaller than the desired reference amplitude, the
AGC essentially destabilizes the harmonic oscillator with pos-
itive feedback; on the other hand, if the oscillation amplitude
is too large, the AGC adds damping to the loop to reduce the
oscillator amplitude. During steady state operation the AGC
adds just enough energy to the oscillator to counter its intrinsic
damping thereby maintaining a stable amplitude. The primary
advantage is that the oscillator is always excited at its natural

KP
�

KI
1
s

�
� �u

	
ẍ
�

cẋ
� ω2

n x � αu



�

 
 1

τs � 1 
�
R

�����
�

	
ẋ




Fig. 10. Automatic gain control loop for regulating the oscillator amplitude.
The AGC gains are KI and KP, R is the reference amplitude, and τωn �	� 1 is
necessary for effective amplitude detection.

frequency, denoted ωn in the figure, even when ωn is slowly
time varying. This will be clearly demonstrated by the experi-
mental results in Section V.

The closed-loop system is nonlinear but the distinct time
scales associated with the dynamics, corresponding to a fast os-
cillator frequency and a slower time scale for the modulated
amplitude, can be exploited to analyze the closed-loop system
response as demonstrated in [4], [8]. These references analyze
the continuous-time case shown in Fig. 10 and reveal how the
response of the oscillator depends upon the various controller
parameters. In contrast to the thoroughly analyzed continuous-
time models, however, the ASIC filters are purely discrete-time
and FIR. The discrete-time implementation is pursued because
of the flexibility it imparts to the ASIC for adapting to a wide
range of sensor dynamics. The choice of FIR filters is due to
the desire to avoid limit cycling because all computations use
fixed-point arithmetic. Consequently, rigorous analysis of the
closed-loop system consisting of a sampled-data sensor model
and a controller employing fixed-point implementations of FIR
filters is beyond the scope of this paper.

We now return to the ASIC architecture in Fig. 9 and indicate
its main features:

1) Filters. There are seven, 128-tap, fully programmable
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FIR filters and a proportional-integral section for the au-
tomatic gain control.

2) Precision. The computations are fixed-point with 18-bit
input data precision, 18-bit output data precision, 18-bit
coefficient precision, and 20-bit internal data precision
(24-bits for the integrator).

3) I/O Signals. The S̃1 and S̃2 input channels are the signals
from the analog network that decouples the two modes
near 4420 Hz. Similarly, the D̃1 and D̃2 output channels
are the analog virtual drive electrode potentials. The A-D
and D-A converters are not integrated into the ASIC but
are shown in order to clarify the input and output signals.
The Z channel reads out the AGC gain, and in-phase and
quadrature components of the rebalance-loop signal.

4) I/O gains. Gains K1 through K8 are programmable and
can implement the Tin and Tout transformations discussed
in Section III-C.

5) AGC loop. The AGC consists of FIR1, the rectifier,
FIR2, the proportional-integral (PI) compensation and
programmable limiters on the integrator and AGC gain.

6) Rebalance loop. The rebalance loop compensation is im-
plemented in FIR3.

7) Demodulation. The rebalance signal may be demodu-
lated with respect to the input signal to the AGC stage.
FIR4 and FIR5 are typically used to shift signal phases
and FIR6 and FIR7 are low-pass filters located after the
multipliers.

Evidently the ASIC implements a diagonal controller if one
considers the signal flow between the gains Ki, i � 1 � � � � � 8, in
Fig. 9. Our experiments will demonstrate that there is some
crosstalk between the channels but that it can be effectively
ignored. The ASIC servo rate for real-time control is con-
strained by the filter complexity. For example, with a core
voltage of 2.5 V the ASIC operating frequency, denoted Fclk,
is 37 MHz, and because one multiply can be performed per
cycle, the maximal I/O rate of the ASIC is determined by the
longest FIR path length through the AGC (in which case the
path would be � FIR1,FIR2 � ) or the rebalance-demodulation
path (in which case the path would be � FIR3,FIR4,FIR6/7 �
or � FIR1,FIR5,FIR7 � ). Hence, the maximal I/O rate is then
Fclk � max

�
N1
�

N2 � N3
�

N4
�

N6 � N3
�

N4
�

N7 � N1
�

N5
�

N7 � ,
where Ni is the length of FIRi. If we assume that all of the FIRs
have maximum length (128 taps each), then the servo rate limit
of the ASIC is Fclk � �

N3
�

N4
�

N6 ��� 96 � 4 kHz and the total
core power consumption is 31 � 9 mW. If the complexity of the
filters is reduced, then a corresponding increase in the maxi-
mum servo rate, or a reduction in power requirements, can be
realized.

A. ASIC Brassboard

The ASIC is a digital processor and requires interfacing to
the analog sensor signals. A brassboard was constructed to
accomplish this task. It hosts the ASIC, an audio codec chip
with stereo analog-to-digital converters (ADC) and digital-to-
analog converters (DAC), analog antialiasing and smoothing fil-
ters, six 12-bit ADCs for gyro biasing, three with a high-voltage
(-10V to +50V) output range, and a Xilinx SRAM-based field-

programmable gate array (FPGA). The FPGA contains digi-
tal logic for a personal computer interface via the IEEE 1284
enhanced parallel port (EPP), logic for setting the bias DACs,
configuring the codec, and configuring, controlling, and mon-
itoring the digital ASIC. The FPGA also includes circuitry to
synchronize data flows between the ASIC and the codec and
to measure the gyroscope rocking frequency with mHz resolu-
tion. The FPGA may be replaced with more special purpose
circuitry, however, it was included in this brassboard version
as a back-up processor in the event that the ASIC did not per-
form to expectations. The hardware and signal relationships are
shown in Fig. 11.

The computer controls and monitors the brassboard through
Enhanced Parallel Port (EPP) interface. In EPP mode, two in-
dependent 8-bit I/O channels are available, one designated as
address and the other designated as data. Both share 8-bit bi-
directional bus. The data/address transfer handshake for EPP
is handled by hardware allowing transfer rates on the order of
500 KB/s to 2 MB/s. Two independent strobes differentiate in-
put/output transfers to the data/address channels. The EPP in-
terface is implemented as part of the FPGA and an addressed
I/O approach is employed where the contents of an address reg-
ister, updated by address write operations, is used to select the
source or destination of data read/write operations.

The codec chip is a Crystal CS4224 and is a highly inte-
grated, high performance, 24-bit, audio codec providing stereo
analog-to-digital and stereo digital-to-analog converters using
delta-sigma conversion techniques. One channel of the codec is
used for the AGC loop and the other for the rebalance loop. The
servo rate is set by the codec at 48 kHz so all ASIC filters are de-
signed with this value. The conversion technique provides 24-
bit resolution at the expense of an appreciable transport lag. In
fact, the total transport lag associated with the control hardware
on the brassboard is 980 µs and this is almost entirely due to the
ADC and DAC conversion process. A lag of such long duration
would under typical circumstances vastly limit the bandwidth
of the closed-loop system however we will demonstrate that ef-
fective regulation of the lightly damped modes is still possible.

V. CONTROLLER SYNTHESIS AND IMPLEMENTATION

The decoupled sensor dynamics in a neighborhood of 4420
Hz permits a greatly simplified design process because the off-
diagonal terms in Figure 7 can be ignored. The wide-band re-
sponse in Figure 6 demonstrates that large loop gain can be
achieved in a neighborhood of 2705Hz and 4420Hz with rel-
atively modest controller gain.

Some notation is now introduced. The sensor is designated
by P, the control hardware with ASIC filters (programmed ac-
cording to Figs. 12 and 15) is designated by C, and the i jth
channel of P is denoted Pi j, with the same convention apply-
ing to C. Our design process ignores the off-diagonal coupling
in both C and P but the analysis of the designs in Section V-
C includes the coupling effects. Hence, we will have occasion
to discuss properties of the loop gains PC and CP and in this
case the i jth channel of PC is denoted

�
PC � i j with the same

convention applying to CP.
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Fig. 11. This figure clarifies the signal flow in the closed-loop system. The sensor dynamics shown in Figs. 3, 4, and 5 reveal the system response with direct
access to the sensor’s sensing and drive electrodes (the S � D transfer functions in the diagram). The analog networks create virtual drive and sense electrodes
that decouple the gyro dynamics in a neighborhood of the 4420 Hz modes. The system dynamics from the perspective of the new measurements and actuators
(S̃ � D̃ transfer functions) are shown in Figs. 6, 7, and 8. The ASIC has access to the sampled S̃ signals and specifies the discrete-time D̃ sequence. The servo rate,
denoted fs, is 48 kHz. The implemented controllers’ frequency responses, including the brassboard I-O dynamics, are shown in Figs. 12 and 15. These filters are
discussed in detail in Section V.

A. AGC design

The automatic gain controller is defined by specifying FIR1,
FIR2, the reference amplitude R, and the AGC gains KP and
KI . The plant model for this loop is the 1-1 channel in Fig. 7
which is described by (5). The performance criteria outlined in
Section II-C are amplitude stability with a constant reference,
modal frequency tracking capability, and closed-loop band-
width. We can add one more criteria, namely excitation rate
from zero amplitude (this determines how rapidly the sensor
can reach steady-state). The first two criteria must be evalu-
ated through experimentation because the sources that induce
the modal frequency drift include the complicated dependence
of the sensor dynamics on temperature and thermistor effects in
the signal conditioning electronics, both of which are difficult
to analytically capture. If the AGC is implemented using the
analog filters shown in Fig. 10 then the last two criteria may
be accurately predicted from the parameters in the simple para-
metric plant model (5) and those in the controller, as illustrated
in [8], however, the fact that the AGC uses FIR filters compli-
cates the analysis of the closed-loop system.

Although the closed-loop system is easily simulated with FIR
filters, we forgo presentation of simulation results in the inter-
est of minimizing the paper length. A useful heuristic, however,
emerged from [8] that is somewhat independent of the filter im-
plementation details and that may be applied here: the two-time
scale behavior of the closed-loop system allows us to design the
AGC filters by assuming the compensator is a fixed, linear fil-
ter. That is, from the sensor’s perspective, the compensation
can be treated as a fixed filter for any given sensor response be-
cause the resonances in the sensor are much higher in frequency
than the bandwidth of the AGC gain. Here we refer to the AGC
gain as the subsystem that modulates the feedback signal in

Fig. 9 to distinguish it from the compensator that is defined as
the AGC gain times FIR1. Suppose the resonance with AGC
loop closed has reached a steady state amplitude. Let a denote
the amplitude of the post-FIR1 signal and assuming KI � 0 the
steady-state AGC gain is given by

�
R 
 a � � KP. We set KI � 0

for convenience because this reduces the AGC gain to an affine
function of a and whose bandwidth is determined by FIR2. This
gain modulates the output of FIR1 to determine the control ef-
fort.

The details of the compensator implemented in Section VI
are now presented. The measured frequency response of com-
pensator when the input amplitude is zero (that is, FIR1 times
the AGC gain R

�
KP) is shown in Fig. 12. This figure repre-

sents the controller magnitude and phase when the amplitude
of the AGC input (S̃1) is much smaller than the reference, i.e.
R � a. In fact, the frequency response was measured by set-
ting FIR2 � 0 thereby yielding the compensator KP

�
R
�
FIR1.

Under normal operation FIR2 is a 51-coefficient linear phase,
low-pass filter with 50 Hz cut-off frequency. Note, however,
that the magnitude shape in Fig. 12 is defined solely by FIR1
since R and KP are real gains (also, K1 � K3 � K6 � K8 � 1 and
K2 � K4 � K5 � K7 � 0 since the plant has been decoupled via
Tin and Tout ; furthermore, the compensator servo rate is 48kHz
for these tests). The corresponding loop gain is shown in Fig. 13
and confirms that only the response of the ω1-mode is actually
regulated because outside of a very small band around ω1 the
loop gain magnitude is less than one. It is especially impor-
tant to filter out the ω3-mode so that it cannot be excited by the
AGC nor corrupt the amplitude measurement of the ω1-mode.
The notch at ω3 in Fig. 12 is quite effective in this regard.

The reader will observe in Fig. 12 that there is significant
group delay in the controller phase. This is caused by the 980



10

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
10

−6

10
−4

10
−2

10
0

10
2

M
ag

ni
tu

de
(V

/V
)

Frequency(Hz)

ω
1

ω
3

(1,1) channel of compensator, C
11

(2,1) channel of compensator, C
21

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
−200

−100

0

100

200

Frequency(Hz)

P
ha

se
(D

eg
re

e)

Fig. 12. Measurement of the AGC filter gain (top) and phase (bottom). The
AGC is implemented in the (1,1) channel of the compensator, i.e. D̃1 � S̃1 trans-
fer function of the compensator in Fig. 11, and is denoted C11. The FIR2 filter
used in the amplitude detection scheme is set to zero for the measurement of
this transfer function to demonstrate the initial controller gain when the loop
is closed about a quiescent sensor. FIR1 is a 121-tap filter that achieves atten-
uation at 2700Hz and the target phase at the ω1-mode frequency. The com-
pensator cross-channel response C21 � D̃2 � S̃1 is also shown (magnitude only)
and demonstrates that the extremely small magnitudes of the compensator’s
off-diagonal terms justifies our treating it as a diagonal system.
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Fig. 13. This figure shows the magnitude of the loop gain of the AGC channel
P11C11. The plot is constructed from the open-loop frequency response data of
the sensor and control hardware. The compensator C11 is designed to attenuate
the ω3 resonance in the loop gain, and to excite the ω1 resonance by appropriate
shaping of loop phase. P11 represents the decoupled sensor transfer function
S̃1 � D̃1 whose dynamics are approximated by (5) in a neighborhood of ω1.

µs transport lag associated with the 24-bit sigma-delta ADC
and DAC converters. Additional lag is introduced by the anti-
aliasing and smoothing filters on the brassboard and by the FIRs
themselves. By bookkeeping all of these contributions it is pos-
sible to shape the phase of FIR1 to achieve the target loop phase
of 0 (modulo 360) degrees at ω1. Thus, the AGC loop feeds-
back a signal whose phase is 0 degrees at the model frequency
and by our positive feedback convention, this implies the mode
is destabilized when the loop is initially closed around a quies-
cent sensor. Nyquist plots readily demonstrate that the desired
phase is achieved at the modal frequency, however, these plot
are deferred until Section V-C.

The picture revealed thus far demonstrates the compensator
response for very small oscillator amplitudes. When the loop
is closed about a quiescent sensor the small-input condition
is satisfied and the large loop gain at ω1 in conjunction with
the loop phase lead to exponential growth in the amplitude
of the ω1-mode. The initial growth rate of the amplitude
is computed to be exp

�
1
2

�
K̄α1 
 c1 � t � � exp

�
100 � 5t � , where

K̄ : � KP
�
R
�
FIR1

�
j2πω1 � � 3 � 57 is the compensator magni-

tude at ω1, and α and c are the modal parameters from (5). The
growth in amplitude is detected by the AGC and, accordingly, a
reduction in the AGC gain occurs because the amplitude error
signal R 
 a has been reduced. This has the effect of scaling
the magnitudes in Figs. 12 and 13 to smaller values than those
shown in the plots. In fact, when the steady-state amplitude of
the ω1-mode is achieved, the loop gain has been reduced to one.
The results of an empirical test of the compensator are shown
in Fig. 14 and reveal the dependence of its steady-state output
amplitude for a given input amplitude. This figure was created
by driving the compensator with asinω1t over a range of am-
plitudes to emulate the sensor’s resonance at ω1. Note that the
compensator gain at zero input amplitude obtained from plot
shown at the bottom of Fig. 14 matches the compensator mag-
nitude at ω1 in Fig. 12. The figure demonstrates that the com-
pensator gain is reduced as the input amplitude increases.

A limit on the maximum compensator magnitude is imposed
by the 980 µs transport lag. In the case that the closed-loop
system can be treated as a linear system, excessive gain will
lead to the formation of large lobes in the closed-loop sensitiv-
ity function. In fact, these lobes are present in the sensitivity
function of the rebalance channel shown in Fig. 22. If we re-
strict the controller magnitude to be less than five at the sensor’s
resonances then this sensitivity function is less than two at all
frequencies. Although these arguments are not directly appli-
cable to the nonlinear AGC, we make a similar restriction on
its maximum magnitude. With regard to the parameters com-
prising the controller magnitude, R � 0 � 405 (volts) is chosen
to achieve a given peak mechanical displacement in the sensor,
and KP and the FIR1 coefficients are scaled to optimize fixed-
point computation performance while respecting the maximum
gain limit noted above.

B. Rebalance loop control design

The linear rebalance loop controller implemented by FIR3
uses S̃2 as its measurement and D̃2 is its output. One objec-
tive of this loop is to achieve disturbance rejection in a neigh-
borhood of 2700Hz, which corresponds to damping an elas-
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Fig. 14. Even though the AGC is a nonlinear compensator it is still possible to
define its steady-state input-output properties. This figure displays the steady-
state AGC compensator behavior in two different formats. The top plot shows
the compensator output amplitude as a function of the input amplitude when the
input is a sinusoid with frequency ω1. Since very little excitation amplitude is
required to maintain a constant response amplitude of the sensor at ω1, the sen-
sor’s final amplitude is very near where the graph crosses zero. Alternatively,
the bottom plot is what we defined in Section V-A as the AGC gain. It is the
top graph normalized by the input amplitude. The top representation is useful
for determining the peak actuator effort (cf. Fig. 23) while the bottom represen-
tation permits rapid identification of the steady-state amplitude (which differs
slightly from R since only proportional compensation is used on the amplitude
error).

tic mode whose excitation can lead to degraded sensor perfor-
mance (see Section III-B). Since this mode is easily excited
by linear acceleration of the sensor case we can ascertain the
effectiveness of the control by analysis of the sensitivity func-
tion. The primary control objective of this loop, however, is to
reject the disturbance injected by the Coriolis term in (1) into
the second degree of freedom, i.e. S̃2, and in this case it is not
the magnitude of the sensitivity per se but rather the rapidity
with which the signal reaches steady-state after the disturbance
is imposed. In other words, the time constant of the closed-loop
system is the pertinent metric for controller performance.

As in the AGC design, velocity-to-force feedback for the re-
balance loop is used to achieve the objectives. The controller
phase must be shaped to produce -180 (modulo 360) degrees
loop phase at ω2 and ω3 in order to realize optimum damping
of these modes under the action of positive feedback. One such
filter, shown Fig. 15, achieves the target loop phases at ω2 and
ω3. This figure is an empirical frequency response of the con-
trol hardware with the test signal injected at S̃2 and measure-
ments made at D̃2 and D̃1, with the latter measurement repre-
senting the cross-channel coupling. The loop gain magnitude of
the rebalance loop is shown in Fig. 16 to demonstrate that the
compensator does indeed regulate the ω2 mode and ω3 mode
but unlike the AGC, the phase of this loop is shaped to achieve
increased damping of the resonances.

The relationship between closed-loop sensitivity and time
constant can be derived using the simple harmonic oscillator
model in Fig. 17. Although the controller is much more com-
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Fig. 15. The measured rebalance controller frequency response, denoted C22,
is the (2,2) channel of the compensator. Note that the cross-channel coupling
transfer function C12 is zero for all practical purposes. The controller magnitude
at ω2 and ω3 is approximately 4.6 implying that the closed-loop bandwidth
associated with the ω2-mode exceeds 20 Hz. This channel’s sensitivity function
magnitude is also less than two (Fig. 22).

plex than the constant gain K in this model, the fact that the
loop gain can only be made larger than one in a narrow band
about each mode suggests that the large lag discussed in Sec-
tion V-A, and also present in the rebalance controller channel,
can be effectively ignored if the controller gain is not excessive.
This view is also supported by Nyquist plots of the loop gains
shown in Section V-C, where one cannot discern the effect of
the lag.

The loop gain magnitude from the model in Fig. 17 at ωn,
which we denote L, and closed-loop time constant are given
by Kα � c and 2 � �

Kα � c � � 2 � �
Kα � , respectively. Hence,

if the closed-loop time constant is desired to be smaller than
some minimum time constant τmin, then we have the loop-gain
constraint L � 2 � �

cτmin � which in turn implies that the sensi-
tivity function magnitude

�
u � d

�
at ωn satisfy

�
u � d

� � 1 � L �
cτmin � 2. This is achieved with a controller gain satisfying
K � 2 � �

ατmin � . For example, a minimum bandwidth of 20Hz
corresponds to τmin � 1 � �

20
�
2
�
π � and the lower bound on the

controller gain is computed to be K � 4 � 18 using the plant pa-
rameters from (6). The controller magnitudes at ω2 and ω3 are
4.87 and 4.82, respectively, and respect the maximum value
noted in Section V-A that ensures the peak sensitivity is less
than two.

C. Multi-input/Multi-output analysis

The ASIC filters were designed without regard to cross-
coupling in the controller and subsequent tests of the hardware
confirmed that the off-diagonal terms are negligible. We also
chose, for the sake of design expediency, to ignore the small
cross-coupling in the sensor in a neighborhood of 4420 Hz
while synthesizing the filters. Since the loop gains PC and
CP have two distinct regions where their norms are greater
than one, we can present their Nyquist plots in separate fig-
ures from 1kHz to 3.5kHz and from 3.5kHz to 6kHz. To wit,
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Fig. 16. This figure shows the magnitude of the loop gain of the rebalance
channel, P22C22. Open-loop frequency response data were used to construct
the loop gain. The design plant dynamics are approximated by (6) and (7) in a
neighborhood of ω2 and ω3.
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Fig. 17. Oscillator model for deriving the relation between the closed-loop
time constant and sensitivity function.

Figs. 18 and 19 show Nyquist plots of both loop gains over
these frequency bands. Nyquist plots complement Figs. 12,
15, 13 and 16 because they clearly demonstrate that the tar-
get loop phases are achieved at the resonances. Since the AGC
is nonlinear, these plots were created by fixing the AGC gain
at its maximum value as we described for Fig. 12. Note that�
PC � ii � �

CP � ii � PiiCii, for i � 1 � 2, as a consequence of the
diagonal controller.

Let us first consider the loop gains in the lower frequency
range encompassing the ω3-mode (see Fig. 18). Recall that the
rebalance controller C22 has the ancillary task of damping the
resonance at ω3 and that the magnitude of C11 (the AGC) is
greatly reduced so as not to regulate this mode. The ability of
the ASIC to shape the loop phase to the desired values is ev-
ident in

�
PC � 22 because the phase is almost 
 180 degrees at

the maximum loop magnitude in this channel. Furthermore,
since C11 possess very low gain in this region, it is reasonable
to treat the closed-loop as linear and time-invariant and thereby
employ singular value analysis tools for performance assess-
ment. It is important, however, to first select the appropriate
closed-loop functions for performance analysis. For example,
in Fig. 18 it is evident that

�
PC � i1 � 1, i � 1 � 2, leading one to

conclude that the closed-loop system should suffer from very
poor disturbance rejection if we are considering the output sen-
sitivity function as the best function to capture performance. A
more realistic model of the disturbance, and in particular linear
acceleration of the sensor case, is effectively modeled as a dis-
turbance at the plant input (summed with D̃ in Fig. 11) because
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Fig. 18. CP (solid) and PC (dash) from 1 kHz to 3.5 kHz constructed from
empirical frequency responses of the sensor and controller. The direction of
increasing frequency can be determined from ωA1 � 2704 � 60 Hz and ωA2 �
2704 � 61 Hz. Both are shown with largest controller gain determined by the
AGC. Positive feedback is used when the loop is closed.

the acceleration-induced forces applied through the supports to
the sensor’s vibrating structure are similar to the electrostatic
forces created by the actuation electrodes. The output, how-
ever, is taken at the plant output since we are interested in how
these disturbances affect the sensor response. Hence, we are
interested in the magnitude of the closed-loop transfer function
PSI , where SI � �

I 
 CP ��� 1 is the input sensitivity function, for
assessing the performance of the controller with regard to lin-
ear acceleration disturbance over the band 1 kHz to 3.5 kHz. A
plot of the maximum singular values of PSI (using measured
closed-loop transfer functions) is compared with the maximum
singular values of P in Fig. 21 and shows a 40 dB reduction in
the peak sensitivity. We elaborate on this result in Section VI.

The loop gains in the higher frequency band extending from
3.5 kHz to 6 kHz are shown in Fig. 19. Note that the phase
and gain of

�
PC � 11 will lead to destabilization of the ω1-mode

but that the ω2-mode is damped as is evident from
�
PC � 22. The

variable AGC gain scales the magnitudes of
�
PC � 11,

�
PC � 21,�

CP � 11, and
�
CP � 12 to smaller values from maximums shown

in the plots. For example, when the loop is initially closed
about the sensor and the amplitude estimate in the AGC is close
to zero, the

�
PC � 11 and

�
PC � 21 loci (alternatively

�
CP � 11 and�

CP � 12), are given as shown in the plot, however, when the
amplitude estimate is half that of the reference amplitude then
the magnitude of these plots is halved which leads to contin-
ued growth in the amplitude of the ω1-mode but at a reduced
rate. This reduction in AGC gain continues to a critical value
at which the AGC has excited the ω1-mode to a steady-state
amplitude and the locus of

�
PC � 11 essentially passes through�

1
�

j0 on the Nyquist plot.
A more rigorous argument for the stability condition of the

closed-loop system for different AGC gains is desired, however,
because the off-diagonal elements in Figs. 18 and 19 have ap-
preciable magnitudes ( � 1) that heretofore have been ignored.
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Fig. 19. CP (solid) and PC (dash) from 3.5kHz to 6kHz. The following
frequencies are shown on the plots ωA1 � 4427 � 60 Hz, ωA2 � 4427 � 61 Hz,
ωB1 � 4422 � 60 Hz, and ωB2 � 4422 � 61 Hz. Both are shown with largest con-
troller gain determined by the AGC. The variable AGC gain affects the mag-
nitude of � PC � 11, � PC � 21, � CP � 11, and � CP � 12 by scaling. Positive feedback is
used when the loop is closed.

Thus, the stability question is more intricate than the single
loop arguments we employed for designing C. We will apply
the multivariable Nyquist criterion for several AGC gains to
resolve this question. A Nyquist plot of det

�
I 
 P∆C � , where

∆ : � � δ � 0;0 � 1 � , δ � � 1 � 1 � 10 � 1 � 328 � , is shown in Fig. 20 for
ω � � 1kHz � 6kHz� . This plot employs the plant and controller
empirical frequency response data over this frequency band.
Note that the δ parameter models the reduction of the (1,1)
channel loop gain (due to the reduction in C11 magnitude via
the AGC) from its maximum value of 328. The Nyquist plot re-
veals that for δ � � 1 � 1 � 10 � the closed-loop system possess one
pair of closed-loop poles with real part strictly greater than zero
since there is one clockwise encirclement of the origin. When
δ � 1 � 328 the locus of det

�
I 
 P∆C � essentially passes through

the origin and hence a pair of closed-loop poles lie on the jω-
axis. The location of these poles is revealed by the ωA1 marker
to be in extremely close proximity to ω1, i.e. the resonance that
was selected for excitation by the AGC. The axes of the Nyquist
plot have been scaled to more clearly reveal the details near the
origin: if L represents a complex quantity to be graphed on a
Nyquist plot we scale it according to log10

�
1
� �

L
� � e j � L so its

phase does not change but its amplitude is logarithmically com-
pressed.

VI. CLOSED-LOOP RESULTS

The closed-loop results are presented in this section. We
first discuss the disturbance rejection properties in the lower
frequency region where the ω3-mode can be excited by lin-
ear acceleration of the sensor case. The AGC controller has
very small gain in this region and so we can perform a stan-
dard closed-loop frequency response experiment even though
the mode at ω1 is excited to a stable amplitude during the course
of the experiment. We discussed in Section V-C the motivation
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Fig. 20. Nyquist plots of det � I � P∆C � for ∆ ��� δ � 0;0 � 1 � , δ �	
1 � 1 � 10 � 1 � 328 
 , with logarithmically compressed magnitude. The frequency

scale spans 1 kHz to 6 kHz. The loci corresponding to the larger AGC gains
imply that the closed-loop system has two unstable closed-loop poles. When
the AGC gain is reduced to the point where the locus passes through the origin
it is revealed by the frequency marker that it is the ω1 mode that is excited by
the AGC (ωA1 � 4427 � 63 Hz and ωA2 � 4427 � 64 Hz).

for considering the maximum gain of PSI as the appropriate
measure of linear acceleration disturbance rejection. A plot of
σ̄

�
PSI � , where σ̄ denotes the maximum singular value, over

the interval 2.4 kHz to 3 kHz, is shown in Fig. 21 and demon-
strates a 40dB reduction in peak gain compared to the open-
loop case σ̄

�
P � . This result appears counterintuitive because

the loop gains in Fig. 18 have either a row or column of low
gain in the neighborhood of ω3 and hence both sensitivity func-
tions possess input directions that provide essentially no signal
attenuation. If a disturbance near ω3 is introduced into the low-
gain direction at the plant input, however, the (2,2) controller
element generates a signal in a different input direction which
has the effect of canceling the disturbance through the plant due
to the highly-coupled nature of its dynamics near ω3 (cf. Fig 8).
This provides the excellent performance observed in Fig. 21 for
all input directions.

The sensitivity function can also be measured for the (2,2)
channel due to the decoupled plant dynamics in a neighborhood
of ω1 and ω2 and because of the low gain of the AGC loop at
ω3. Furthermore SO � 22 � SI � 22 (the controller is diagonal) so
only SI � 22 is displayed in Fig. 22. The primary objective of the
rebalance control is to regulate ω2-mode amplitude to zero and
the SI � 22 function can be used to quantify the closed-loop time
constant associated with the ω2-mode. The sensitivity function
exhibits 50 dB of attenuation at ω2 and this corresponds to a
closed-loop bandwidth of nearly 20 Hz.

We now turn our attention to the drive loop regulated by the
AGC. Both the rebalance and AGC loops are closed simultane-
ously about the quiescent sensor to obtain the response shown
in Fig. 23. Ideally, the D̃2 and S̃2 signals associated with the
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Fig. 21. The ability to reject linear acceleration (vibration) disturbances is
quantified byσ̄ � PSI � (solid) in relation to σ̄ � P � (dash). The closed-loop transfer
function magnitude is reduced by over 40 dB compared to the open-loop sensor.
The closed-loop transfer function PSI was measured for this plot.
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Fig. 22. The measured (2,2) channel of SI shows a 50 dB reduction at ω2. This
corresponds to a 20 Hz bandwidth for the ω2-mode.

rebalance loop are isolated from the D̃1 and S̃1 signals and this
is largely the case although some cross-coupling is to be ex-
pected through the plant. A point to note is that the ω1-mode
is excited from rest with an amplitude envelope initially given
by the exponential e100 � 5t . This growth rate was predicted from
the sensor and controller parameters in Section V-A. Of course
as the amplitude of S̃1 increases, the AGC gain is reduced until
a steady-state amplitude is reached. Due to the extremely light
damping in the sensor’s structural modes, very little drive am-
plitude is required to maintain the steady-state condition as is
evident from the later half of the D̃1 trace.

The bandwidth of the closed loop is determined by applying
a small perturbation to the reference amplitude while the sen-
sor is operating in steady-state. The result of this experiment
is shown in Fig. 24 where the RMS value of S̃1 (over a short
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Fig. 23. Start-up transients in the closed-loop system. The S̃1-D̃1 pair rep-
resent the AGC response which is largely decoupled from S̃2 and D̃2, which
represent the rebalance loop pick-off signal and rebalance loop control com-
mand, respectively. A plot of e100 � 5t is shown in the S̃1 plot to demonstrate
that the amplitude envelope predicted by the initial AGC loop gain does indeed
match extremely well with the closed-loop response.

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
0.38

0.385

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

0.43

Loop
broken

Re−established
with new reference

Time(sec)

A
m

pl
itu

de

Fig. 24. Amplitude of S̃1 with positive perturbation about the nominal refer-
ence amplitude. Loop is broken at t � � 0 � 04s and then reestablished with a
new reference at t � 0s. This step response test on the amplitude of S̃1 estab-
lishes the drive loop bandwidth to be 26Hz in a neighborhood of the nominal
reference amplitude.

time window) is graphed. This effectively recovers the signal’s
amplitude and is more convenient to graph than the original
signal. The initial reference amplitude is 0 � 405 V and the per-
turbed reference 5% larger. As the new parameters load into the
ASIC the loop is temporarily opened and this accounts for the
droop in the amplitude starting at t � 
 0 � 04 seconds. At t � 0
loop closure is reestablished with the slightly larger reference
amplitude. The ensuing response indicates an AGC bandwidth
of 26Hz.

The raison d’être for employing the AGC to excite the se-
lected mode within the sensor is its ability to track the slow
modal frequency drift. The tracking capability of the loop
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Fig. 25. Steady-state AGC excitation frequency versus time. Two seconds of
S̃ and D̃ data were acquired at a 50 kHz sampling frequency every two minutes.
The frequency and amplitude of S̃1 were extracted from a model fit. The fre-
quency is plotted in this figure and the amplitude is plotted in Fig. 26. The drift
in modal frequency is believed to be caused by thermal transients in the sensor.

is shown in Fig. 25. This experiment was conducted over a
one hour period during which several seconds of the S̃ and D̃
signals were acquired every two minutes. The frequency of
the steady-state S̃1 response was obtained by fitting a sinusoid
model with amplitude, frequency and phase parameters to the
sampled data. The fitting procedure was benchmarked by ad-
justing the frequency and amplitude of a precision function gen-
erator in steps of 1 mHz and 0.5 mV, respectively. The algo-
rithm easily tracked these minute changes. Fig. 25 shows that
over a one hour interval the frequency of the sustained oscilla-
tion changes by almost 1 Hz. The fact that the AGC success-
fully drives the mode at its natural frequency is supported by
the RMS measurement the AGC effort, i.e. RMS of D̃1, shown
in Fig. 26. The change in RMS control effort is approximately
4% and indicates a similar change in plant gain at the oscil-
lation frequency from which it can be inferred that the AGC
is driving the mode at its natural frequency. The stability of
the S̃1 amplitude is also shown in Fig. 26. As with the excita-
tion frequency and control effort values, the amplitude seems
to have stabilized after one hour. The change in amplitude is
quite small though, approximately 0.07%, and this complicates
efforts to identify the sources that contribute to the drift. We
included the AGC integrator (KI

�� 0) in a separate experiment
and still observed roughly the same amplitude change so this
indicates that its cause is located primarily in the sensing mech-
anism which includes the signal conditioning circuit, the analog
network, and the FIR filter ripple in the AGC. We will report at
a future date our efforts to eliminate the drift.

VII. CONCLUSION

The ASIC shows great promise as a technology for supplant-
ing the traditional but cumbersome analog control electronics
for the JPL-Boeing micromachined rate sensors. We demon-
strated a process by which detailed frequency domain models
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Fig. 26. Top plot: stability of the steady-state S̃1 amplitude versus time. The
amplitude information is extracted from the same data sets that were used to
quantify the frequency drift in Fig. 25. Bottom plot: the RMS value of D̃1 for
this experiment exhibits a 4% change thus implying that the AGC is driving the
the sensor at its resonant frequency even though this frequency slowly drifts
with time.

of the sensor can be used to generate the control filters via a set
of interpolation constraints on the loop phase at the sensor’s res-
onances. Our current effort is producing a detailed comparison
between the ASIC implementation and the analog electronics
and these results will be made available at a future date.
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